Learning Categories with Invariances in a Neural Network Model of Prefrontal Cortex
Abstract:
Prefrontal cortex (PFC) is implicated in a number of functions including working memory and categorization. Here the Prefrontal cortex Basal Ganglia Working Memory (PBWM) model (O'Reilly and Frank, 2006) is applied to learning categories with invariances. In particular, motivated by a problem in scene recognition, objects in different locations are sequentially presented to the network for categorization. The model learns to recognize these classes without explicit programming, thus modeling human categorization along with characteristics such as generalization to novel sequences and frequency dependent effects. Future extensions to the current work including applications to other domains and modeling functionally distinct segregations of PFC and neuromodulatory systems are also described.