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Abstract. Prefrontal cortex (PFC) is implicated in a number of functions including 

working memory and categorization.  Here the Prefrontal cortex Basal Ganglia 
Working Memory (PBWM) model (O'Reilly and Frank, 2006) is applied to 

learning categories with invariances.  In particular, motivated by a problem in 

scene recognition, objects in different locations are sequentially presented to the 
network for categorization.  The model learns to recognize these classes without 

explicit programming, thus modeling human categorization along with 
characteristics such as generalization to novel sequences and frequency dependent 

effects.  Future extensions to the current work including applications to other 

domains and modeling functionally distinct segregations of PFC and 

neuromodulatory systems are also described. 
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Introduction 

Prefrontal cortex (PFC) is implicated in a number of functions including working 

memory and categorization.  Working memory includes the ability to actively maintain 

task relevant information over delays and distracters.  As early as the 1930s, ablation 

studies established that PFC was critical to working memory in delayed response tasks 

[1, 2].  These findings have since been extended with single unit (e.g., [3, 4]) and fMRI 

recordings (e.g., [5]).  Categorization involves grouping perceptually dissimilar objects 

into functionally organized classes.  (For current purposes, “category” and “class” will 

be used interchangeably.)  Although posterior cortical areas are certainly involved in 

the recognition of individual objects, categorization is at least partly encoded by PFC 

(e.g., [6, 7]).  For example, in the case of vision, inferotemporal cortex might represent 

objects such as a plum or fish, but PFC can group these into an is-edible class. 

Perhaps the simplest task that involves both working memory and categorization is 

classifying sequences of objects.  For example, in the case of language, if 4 character 

words are generated from the English letters A through Z, PLUM and FISH would 

belong to the is-edible class but other combinations (e.g., WISH, TIRE) would not. 

Working memory is required to differentiate between words (e.g., FISH v. WISH), 

while categorization is required to group individual objects (e.g., PLUM and FISH) 

into classes. 

One recent neural network model of working memory is the Prefrontal cortex 

Basal Ganglia Working Memory (PBWM) model [8].  PBWM posits “stripes” within 
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PFC to hold each working memory symbol—each letter in PLUM for example—over 

delays and distracters.  Symbols are gated into and out of PFC stripes by basal ganglia 

if doing so is deemed to be rewarding.  Although PBWM is an extensive and 

sophisticated model, it has not been applied to tasks with overlapping symbols or 

generalization to new input sequences.  For example, the two categories in the popular 

1-2-AX task require rote memorization of two disjoint input sequences (1-AX and 2-

BY).  Categories can be learned with bio-inspired models (e.g., [9, 10]) but few claims

are made with regards to detailed neuroanatomical underpinnings.  Thus, this work

extends the neuro-realism of PBWM to classifying sequences of symbols motivated by

a problem in scene recognition.

Section 1 describes the inputs, datasets, and networks studied in this paper. 

Section 2 contains results, while section 3 contains the discussion and conclusion. 

1. Material and Methods

Consider the task of scene recognition.  This too can be seen as classifying sequences 

of objects.  Saccades create a series of foveated image regions which must be 

integrated in working memory to discern the category of a scene.  Each object and its 

relative location define a scene.  Scenes may exhibit invariance over objects or 

positions as explained below. 

1.1.  Inputs and Datasets 

Four scene categories are defined in Table 1.  To stress working memory and 

categorization as opposed to visual processing, fixed scan paths (top to bottom, left to 

right) to 4 discrete locations are considered.  Furthermore, 8 objects with 2 objects per 

scene are used. 

The first scene category has no object or positional invariance.  Changing either a 

constitute object or its location invalidates a scene from the category.  The second 

scene category has object invariance but not position invariance.  For example, in Table 

1, if A is store, B is hotel, and Y is a surrounding gate, then AY and BY are both gated 

businesses.  YA and YB, on the other hand, would be business surrounding a gate.  The 

third scene category has positional invariance but no object invariance.  For example, 

in Table 1, a hotel (B) at or above a certain ground plane (Z) would be a mountain hotel. 

Changing the hotel to a shop (A), however, means it is no longer a member of that 

scene class.  The fourth scene category has both positional and object invariance.  That 

is, both the object in the first sector and the position of the second object can vary.  The 

first two members in this category—B(AA) in different spatial configurations (where 

(AA) represents an arbitrary symbol following Z)—exhibit positional invariance, while 

the second two members—C(AA) and D(AA)—exhibit combined position and object 

invariance.  In addition to the four scene categories, non-target scenes were generated 

to provide counter-examples to the previously defined scene categories.  Objects and 

positions are used in multiple categories to increase the difficulty of the task.  For 

example, B is used in 3 scene categories and in the non-target class. 



 

 

Table 1. Scene classes 1 through 4, which exhibit invariances between objects and locations, and examples 

of the non-target scenes. 

Scene 

class 
Sectors Description 

1 A X No invariances. 

   

2 A Y Object invariant. 

  

2 B Y 

  

3 B Z Position invariant. 

  

3 B  

 Z 

4 B AA Multiply invariant. 

  

4 B  

AA  
 

Scene 

class 
Sectors Description 

4 C AA Multiply invariant 

(continued).   

4 D  

AA  

Non-

target 
C X Object changed wrt 

scene class 1   

Non-

target 
B  Position changed wrt 

scene class 2  Y 

Non-

target 
C  Object changed wrt 

scene class 3  Z 

Non-

target 
D  Position and object 

changed wrt scene 

class 4  AA 
 

A training set consisted of 50 random scenes generated from a probability 

distribution across scene categories.  Testing sets were then created with 25 scenes not 

in the training set.  Furthermore, to study the effect of relative proportions of scene 

categories on training and generalization, the probability of each scene class was varied 

in 3 ways.  In the first dataset, all 4 scene categories and the non-target class were 

equiprobable.  The second dataset assigned equal probabilities to the 4 scene categories 

but non-target scenes constitute half of the dataset because there are many more 

possible scenes in this category.  The third dataset is similar to the second, but each 

scene class was given more examples based on the expected learning difficulty.  For 

example, twice as many scene 4s were created than scene 3s because it involves 2 

invariances instead of 1.  Table 2 summarizes the class distributions in each dataset. 

Table 2. Class distributions across datasets used to study training and generalization performance. 

 Even distribution 

across scene 

classes and non-

target 

Even distribution 

across scene 

classes, more non-

target 

Distributed by 

expected difficulty 

to learn 

1 20% 12.5% 4% 

2 20% 12.5% 11% 

3 20% 12.5% 11% 

4 20% 12.5% 24% 

Non-target 20% 50% 50% 

1.2. Network 

PBWM networks were constructed in the Emergent simulation environment [11] with 4 

stripes—2 for maintenance and 2 for output.  These stripes comprise the working 

memory component of the model.  Output stripes are meant to model the immediate 

use of a symbol and its removal from working memory, while maintenance stripes hold 

symbols for longer time frames.  Each stripe was 5 by 6 neurons in size.  Maintenance 

stripes received connections from input fields and were subject to adaptation through 

error driven learning.  Output stripes received connections from the maintenance stripes 

only.  A hidden layer of 10 by 6 neurons received connections from all PFC stripes and 

the input fields.  While PFC maintains a working memory of previously seen objects, 



the hidden layer maps the contents of PFC, along with the current input to a motor 

response.  This motor response corresponds to identifying a scene category, such as 

with a button press or vocalization.  Activation in the network is shown in Figure 1a. 

(a) (b) 

Figure 1. (a) A PBWM network used to learn scene categories. (b) Input to the network representing the 

contents of each sector (“Input” column) and its location (“Index” column); other columns are described in 
the text.  Here scene classes 1 through 4 are depicted followed by a non-target scene. 

To represent the scenes to the network, input fields included both the object and 

the sector in which the object occurred.  The former is meant to be the output of 

temporal cortex (“what”) and was represented by a localist 2 by 4 input field.  The 

latter is meant to correspond to the output of parietal cortex (“where”/ “how”) and was 

represented by a localist 1 by 4 input field.  Each object was represented with a single 

neuron set to be maximally active while all other neurons remained inactive.  Symbol 

A, for example, had only the first unit on; symbol B had the second unit active and so 

on.  Sector information was represented in a similar fashion where sector 1 had only 

the first neuron active, sector 2, the second neuron, and so on.  Output categories were 

presented by a 1 by 5 output field, with one neuron per scene category, and one for 

non-target scenes.  Again, scene category 1 had only the first neuron active, etc.  With 

each foveation, a single object and its location was serially presented to the network 

with the category label and reward signal presented after the second foveation.  (The 

reward signal tells the network when to answer, but its amplitude is dictated by the 

match between the prediction of the network and the ground truth label.)  Inputs to the 

network are illustrated in Figure 1b. 

During training, each network was trained until the sum of squared error (SSE) of 

the output field, averaged across all scenes, reached 0 for 2 consecutive epochs or 500 

epochs was reached, whichever came first.  An epoch contains all training scenes and 

the order of scenes was shuffled between epochs.  Thirty random weight initializations, 

or batches, were run.  Thus, a successful batch is one where SSE converges to 0 before 

500 epochs.  During testing, learning was turned off, and novel scenes were presented 

to determine generalization capability. 

2. Results

First, PBWM networks can learn the scene categories without explicit programming as 

shown in Table 3.  Across all datasets, approximately 70% of the networks were able to 

reach 0 training error within 500 epochs.  Five hundred epochs was sufficient to 



determine learning convergence as it was nearly 4 times as long as the average number 

of epochs in successful batches across all datasets (135.01).  In testing, average percent 

correct across all successful weight initializations was 81.01%, which is far better than 

chance for 5 classes (20%). 

Table 3. Training and generalization performance across datasets.  Numbers within parenthesis are standard 

deviations. 

 

 

 

 

 

Looking at the generalization performance shows differences across the datasets. 

In the first dataset, the percentage of successful batches was 22% lower than that of the 

second and third datasets.  Testing percent correct was also smaller than the other 

datasets (t(58) = 8.36, p < .05).  This is because the first dataset did not have as many 

counter-examples to differentiate scene categories 1 through 4 from the non-target 

scenes.  In the second dataset, the number of epochs did not change with respect to the 

first dataset (t(37) = 1.24, p > .05), but testing percent correct was higher (t(37) = 6.81, 

p < .05).  Here, more counter-examples helped generalization.  The second and third 

datasets do not differ in terms of percent correct (t(41)=.27, p > .05) or number of 

epochs (t(41)=.29, p > .05) as they share the same number of counter-examples.  

Similar training times across all datasets may reflect the limited capacity of the 

relatively small networks used. 

3. Discussion and Conclusion

Using scene recognition as a challenge problem, PBWM networks are able of 

classifying sequences of symbols.  However, the inputs and network structure used are 

generic enough to be applied to other domains that rely on working memory and 

categorization.  Continuing in visual domain, this framework could be extended to 

behavior recognition where each scene is part of an action sequence (e.g., car left of 

gate, car at gate, car right of gate → car exit gate).  Furthermore, the use of relational 

input encoding can introduce generality over objects or locations [12].  In addition, 

language involves processing chains of symbols at many scales: phonemes in words, 

words in sentences, sentences in paragraphs, etc.  Navigation and motor sequence 

learning are other examples that could be modeled with this framework. 

One limitation of this work is that the inputs and network structure used are 

relatively simple.  Longer sequences, sequences with repeated symbols, or sequences 

with variable lengths would increase task difficulty.  Similarly, more symbols, symbols 

with distributed representations, and the use of distracter symbols would stress network 

performance.  The network structure could also be extended to include a functional 

segregation of PFC such as “what” inputs feeding into ventral regions, “where”/ “how” 

Even distribution 

across scene 

classes and non-

target 

Even distribution 

across scene 

classes, more non-

target 

Distributed by 

expected 

difficulty to learn 

Average 

Percentage of 

successful batches 
56.67 73.33 73.33 67.78 

Number of 

epochs in 

successful batches 

157.88 (6.75) 126.59 (4.13) 120.57 (3.92) 135.01 

Percent correct in 

successful batches 
73.18 (6.75) 85.09 (4.13) 84.76 (3.92) 81.01 



inputs feeding into dorsal regions, and more anterior regions of PFC representing more 

abstract concepts or longer term working memory [13].  In the present work, “what” 

and “where” information was fused directly due to the simple nature of the input. 

Neuromodulatory systems, although connected with nearly every region of the brain, 

interact tremendously with PFC and anterior cingulate cortex (ACC) [14].  These 

interactions change working memory and categorization through short and long term 

dynamics respectively, and remain a ripe area for research. 
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