Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations

reportActive / Technical Report | Accession Number: ADA571864 | Open PDF

Abstract:

A new wind-input and wind-breaking dissipation for phase-averaged spectral models of wind-generated surface waves is presented. Both are based on recent field observations in Lake George, New South Wales, Australia, at moderate-to-strong wind-wave conditions. The respective parameterizations are built on quantitative measurements and incorporate new observed physical features, which until very recently were missing in source terms employed in operational models. Two novel features of the wind-input source function are those that account for the effects of full airflow separation and therefore relative reduction of the input at strong wind forcing and for nonlinear behavior of this term. The breaking term also incorporates two new features evident from observational studies the dissipation consists of two parts--a strictly local dissipation term and a cumulative term--and there is a threshold for wave breaking, below which no breaking occurs. Four variants of the dissipation term are selected for evaluation, with minimal calibration to each. These four models are evaluated using simple calculations herein. Results are generally favorable. Evaluation for more complex situations will be addressed in a forthcoming paper.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms