Maritime Threat Detection Using Probabilistic Graphical Models

reportActive / Technical Report | Accession Number: ADA559938 | Open PDF

Abstract:

Maritime threat detection is a challenging problem because maritime environments can involve a complex combination of concurrent vessel activities, and only a small fraction of these may be irregular, suspicious, or threatening. Previous work on this task has been limited to analyses of single vessels using simple rule-based models that alert watchstanders when a proximity threshold is breached. We claim that Probabilistic Graphical Models PGMs can be used to more effectively model complex maritime situations. In this paper, we study the performance of PGMs for detecting small boat maritime attacks. We describe three types of PGMs that vary in their representational expressiveness and evaluate them on a threat recognition task using track data obtained from force protection naval exercises involving unmanned sea surface vehicles. We found that the best-performing PGMs can outperform the deployed rule-based approach on these tasks though some PGMs require substantial engineering and are computationally expensive.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms