Quasi-Newton Methods for Generalized Equations,

reportActive / Technical Report | Accession Number: ADA077097 | Open PDF

Abstract:

Newtons method is a well known and often applied technique for computing a zero of a nonlinear function. Situations arise in which it is undesirable to evaluate, at each iteration, the derivative appearing in the Newton iteration formula. In these cases, a technique of much modern interest is the quasi-Newton method, in which an approximation to the derivative is used in place of the derivative. By using the theory of generalized equations, quasi-Newton methods are developed to solve problems arising in both mathematical programming and mathematical economics. Two results concerning the convergence and convergence rate of quasi-Newton methods for generalized equations. Computational results of quasi-Newton methods applied to a nonlinear complementarity problem of Kojima.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release

RECORD

Collection: TR
Identifying Numbers
Subject Terms