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i3 ABSTRACT

N =

“Newton's method is a well known and often applied technique

for computing a zero of a nonlinear function. Situations arise in

which it is undesirable to evaluate, at each iteration, the deriva-

tive appearing in the Newton iteration formula. In these cases, a
technique of much modern interest is the quasi-Newton method, in

which an approximation to the derivative is used in place of the

derivative. By using the theory of generalized equations, quasi-
Newton methods are developed to solve problems arising in both

mathematical programming and mathematical economics.-

. ¥
We-pggéb two results concerning the convergence and convergence

1l rate of quasi-Newton methods for generalized equations.

We preéeﬁ; computational results of quasi-Newton methods applied

4 Bl

to a nonlinear complementarity problem of Koiima.£££l.
AMS(MOS) Subject Classification: 49D99, 90CP9)\ 90A15
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Ouasi-Newton Methods.
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Significance and Explanation

Many practical problems in operations research and mathematical
economics can be formulated as a system of equations and inequalities.
A previous paper (Josephy [10]) developed an iterative procedure,
Newton's method, for computing a solution to such a system. However,

situations arise in which it is computationally unreasonable to

evaluate the derivative appearing in the Newton iteration formula.

In such cases, an approximation to the derivative which is easier to
compute is used in place of the derivative. The iterative procedure
with an approximation to the derivative is called a quasi~Newton
method. This paper extends the results known about the convergence
and rate of convergence of quasi-Newton methods for equations to the
case of equations and inequalities which arise in the nonlinear
programming problem and the economic equilibrium problem. The
method is illustrated by solving a small practical problem involving

equations and inequalities.
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QUAST-NEWTON METHODS FOR GENERALIZED EQUATIONS i

Norman H. Josephy

1. Introduction.
We recall the definition of a generalized equation. Further

elaboration can be found in Robinson [13-17] and Josephy [10].

Let C be a non-empty, convex, closed subset of R". The normal

cone to C at x € C is the set of outward pointing normals to C at x.

[ We have the following:

; Definition 1. Let C be a non-empty, closed, convex subset of i,

The normal cone to C at x is given by

No(x): = {z|<z,k-x> S0V k ¢ C} ifxeC,
¢  ifx¢cC
We can now define a generalized equation.
Definition 2. Let £:D c R" » R".
Let C be a non-empty, closed, convex subset of B f

\ A generalized equation is a set relation

(1) 0e f(x) + Nc(x) v

Thus, x* satisfies the generalized equation 0 ¢ f(x) + NC(x) G

and only if x* satisfies the relations

x* ¢ C

| and
g
7‘ Cf(x*), k = x*¢} >0 for all k e T .

| =

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
This material is based upon work supported bv the National Science Foundation !
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| Newton's method for solving a generalized equation 0 ¢ F(x) + Nc(x)

t involves the evaluation of F' , the derivative of F , at each iterate

t X - (See Josephy [10]). 1In situations where this evaluation imposes an
excessive computational burden, we consider replacing F'(xn) with an
approximation. A quasi-Newton method for solving 0 e F(x) + NC(x) re-
places F with an affine map F(xn) + B('—xn) whose derivative B is
both an approximation to F'(xn) in some sense and is computationally
easier to evaluate. One class of approximations, the secant approxima-
tions, has been the subject of great interest to those solving systems of
equations and related problems, such as non-linear least squares estima-
tion, unconstrained and equality-constrained optimization, and, most
recently, inequality-constrained optimization. A sample of the recent
work on quasi-Newton methods can be found in Brodlie [2], Dennis and Moré
[5], Gill and Murray [8], Tapia [18], and Han [9].

In this paper, we will extend to the generalized equation case two

fundamental results on the convergence and rate of convergence of quasi-
Newton methods with secant approximations. Section 2 contains intro-
ductory material on quasi-Newton methods. We prove local convergence of
quasi-Newton iterates to a solution of a generalized equation in Section 3,
and prove in Section 4 Q-superlinear rate of convergence for the quasi-
Newton iterates. We conclude in Section 5 with the computational results

‘ of applying a quasi-Newton method to the generalized equation representing

a nonlinear complementarity problem of Kojima [11].

e




2. Quasi-Newton Methods.

Newton's method for finding a zero of F proceeds by itera-
: ! - - 2 :
tively solving 0 F(xn) + F (xn)(x xn) for a solution Xie1" A
quasi-Newton method iteratively solves 0 = F(xn) + Bn(x-xn), where

Bn approximates F'(xn) in some sense. An approximation of much cur-

- : ; 3 n :
rent interest is a generalization to maps on R of the secant approxi-

mation of the derivative of a real-valued map on R. Let f:R + R have
derivative f'. Given two points in R, say X and X 1’ the secant

3 2 - ;
approximation to f (xn+1) is

b: = (f(xn+1) - f(xn))/(xn+1 - xn) :

Alternatively, the secant approximation b is the unique solution of
1) f(xn+1) - f(xn) = b(xn+l - xn) .

For F:R" » Rn, a secant approximation to F'(xn01) is any matrix B

satisfying

) .

(2) F(xn+l) - F(xn) = B(xn+1 - X :

Since equation (2) does not uniquely specify B, additional conditions
can be imposed to guarantee desired properties of B, such as symmetry

and positive definiteness. This approach to secant approximations

is discussed in more detail in Dennis and Schnabel [6] . Stable

SRES B e G P A e

numerical techniques for efficiently implementing these secant ap-
proximations are described in Gill, Golub, Murray and Saunders [7].

The price one pays for using an approximation for F'(xn) is the

i
¥
i
1 K
-3
el 1 P e W H o, -
W s Y

i T Tl S AR R 5 %
1

-
—




loss of the quadratic rate of convergence to a local solution. How-

ever, iterates generated by secant approximations typically exhibit

Q-superlinear convergence, provided appropriate conditions are satis- {
fied. We will need the concepts of linear and Q-superlinear con-

vergence, which we now define.

A ke

Definition 1. A sequence {xn} converges to x* linearly (Q-super- /

linearly) if and only if for some a ¢ (0,1) (for some

sequence {an} converging to zero),

<
" xn’l = ”= a" xn-x*“

.
=
=
+
—
)
b
I

The Q-superlinear convergence of quasi-Newton iterates can be proven

in the following fashion. In Theorem 1, we establish linear convergence

l

|
for iterates determined by any quasi-Newton method whose approximations t

x
{Bn} satisfy a certain norm inequality. The proof for the generalized ‘
equation case is modeled on the single-valued case given in Broyden, !
Dennis and Moré [1, Theorem 3.2]. We can then invoke the results %
appearing in Broyden, Dennis and Moré [1] which show that the traditional ‘
update formulas, such as the Broyden rank one, Powell symmetric Broyden
rank two, and the DFP update of {Bn} (see Dennis and Moré [5] for further
details) satisfy the required norm inequality. This establishes a linear b
convergence rate for the generalized equation case. Dennis and Moré [4,

Theorem 3.4 and Section 4] show that

2 = lim H(Bn—F'(x*))(xn+1-xn)H/Hxn+1-xnﬂ =0,

n >




whenever the sequence {Bn} is computed by one of the above mentioned
update formulas and the sequence {xn} converges linearly to x* .
They note, in a remark immediately following their proof of Theorem 3.4,
that the limit =0 1is established independent of how the sequence {xn}
is generated. In particular, their result remains valid when {xn} is
the linearly convergent sequence of solutions to the quasi-Newton method
applied to generalized equations rather than to single~valued equations.
Thus, for the update formulas mentioned above, the limit ¢=0 is valid
for the generalized equation case, since Theorem 1 of this paper estab-
lishes the linear convergence of {xn}. Theorem 2 shows that 2=0 suf-
fices to establish Q-superlinear convergence of iterates {xn} generated
by quasi-Newton methods applied to generalized equations. We note that
proofs of the two theorems appearing in this paper, when restricted to
the single-valued equation case, have appeared in the literature (Dennis
and Moré (5]). However, those proofs depend critically upon the fact that
single-valued equations are being solved. Hence, proofs are given in this
paper which are valid for the generalized equation case.

We conclude this section with a corollary to Theorem 2.4 of Robinson
[16], and a lemma from Ortega and Rheinboldt [12].
Corollary 1. Let C be a closed, convex, nonempty subset of R" , and
let D be an open, convex, nonempty subset of R" . Let f:D > R® have
Fréchet derivative f'. Suppose the generalized equation 0 ¢ f(x) + NC(x)
has a strongly regular solution at x* ¢ D , with associated Lipschitz

constant d .




Then, for some positive constants r, R, b and e , the following hold.

Let A be an nxn matrix and let x ¢ R®. Then

B(x*,r) n (£(X) + A+(--X) + NC).1 restricted to B(O,R)

is single-valued and Lipschitz continuous with modulus

d(1-d JA-£'(x*) | )7! , whenever| X-x*||<e and

la-£rx) [l < b .
Lemma 1. Let D be an open, convex subset of R" . Let f:D > R" be
continuously differentiable. Suppose that for some k > 0 ,
H£'(u) = £'(WI < Klu - v II whenever u,v e D . Then I f(u) - Lfv(u)H <
%kllu - W2 whenever u,v ¢ D, where Lf (u) := f(v) + £'(v) (u-v).
The definition and properties of strong regularity of a solution to a
generalized equation can be found in Robinson [16]. The use of strong

regularity in establishing convergence properties of Newton's method for

generalized equations can be found in Josephy [10].
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3. Local Convergence.

We begin with a definition.

Definition 2. (Dennis and Moré [5]).

Let D be an open, nonempty convex subset of Rn, and

let P denote a class of n x n matrices. Then an

update function U is a map from D x P to subsets of P.

An update functicn can be used to define a set of approximations to

the derivative of F at x In the typical situation, the present

n+l’

iterate X, and the present approximation Bn will determine the new

iterate x . Both iterates x_ and x are used to determine the
n+l n n+l

next approximation B .

ext approxi -

from x_ and B_, can be represented by B e U(x_,B_), where U is
n n n+ n’ n

1
the appropriately defined update function.

We now state and prove the local convergence theorem.

Theorem 1. Let D be an open, nonempty convex subset of Rn, and let
C be a closed, nonempty convex subset of R". Let F:D » R" have a
Lipschitz continuous derivative F' with Lipschitz constant K. Sup-
pose x* ¢ D is a strongly regular solution of the generalized equa-
tion 0 ¢ F(x) + Nc(x) with associate Lipschitz constant d. Let W

be an open neighborhood of F'(x*) in the space of linear maps from

This procedure, by which Bn+1 is determined

——




R" to R". Let ”-HM denote a matrix norm and let a > 0 be such that

<
-1l = all-[ly, where

+|| is a matrix norm subordinate to the given

vector norm on Rn. Suppose that two positive constants, a, and ay,

exist such that the inequality

nA

I8 - Breend ]y € avapomax(] Zext L | xex* )3 ) B-Fr (x) I,

+

a,omax( || k-x* , || x-x*||}

2
holds whenever the following conditions are valid:

(x,B) e Dx W, B e U(x,B), where U is an update function,
and x, the vector closest to x in the set

(F(x) + B(-x) + N1 (0), exists.

Let b, e, r and R be the positive constants associated with the
strongly regular solution x*, as given in Corollary 1 . Fix P

positive and less than 1. Suppose the following relations hold, with

e and b reduced, if necessary, from those guaranteed by Corollary 1 .

I Bo-Fr(xall g < 3ba™" and || xg-x*]l < e
3 -1 /3
(EKe+b)e <R and d(1-db) CEKe+b) < p.
=1 =1 =
2a(a bal+a2)e (1-p) " <b and B(x*,e) c D.

Then a sequence of iterates {xn} and a sequence of matrices {Bn}

>
exist and satisfy the following relations, for all n = 0




e e

| iR

0 ¢ F(xn) + Bn(xn+l-xn) + NC(xn)

Bn+1 & U(xn’ Bn)
IB_-Fr o), < ba™h

<
I xqoxell S pll x x|

Proof. We will use the following notation.

S_: = Bx*,1) 0 (F(x*) + B_(--x*) + NC)'1
T : = Bex*,1) 0 (F(x ) + B (+-x ) + N !
J:=F(x*) - F(x) - B (x* - x)

d: = d-dby?

By hypothesis, || BO-F'(x*)“ i< %ba.1 and || xo—x*“< e . Thus,

I BO-F'(X*)“ < b . By Corollary 1, TO restricted to B(0,R) is

single-valued and Lipschitz continuous with Lipschitz constant

d(1-d|| BO—F'(x*)H )-1, which is less than d. Similarly, S, re-

0

stricted to B(0,R) is single-valued and Lipschitz continuous with

Lipschitz constant d, and SO(O) = x*, Define x,: = TO(O). In order

1
to estimate the distance from X to x*, we need to estimate the norm
of JO. It follows from
L * - . *
Jo. F(x*) F(xo) Bo(x xo)

+

F(x*) - LFxo(x*) + (F'(x*)—BO)(x*-xO)

+

F'(xg) - F'(x*)(x*-x,)

\\ ‘i¢




that the norm of J0 is bounded by

nA

+

Al x*-x

IF (x*) - LFxo(x*)“ + Frexe) - Bl oll

+

[Er ety - Bt xg) = flxrex, |

nA

2 2
K| xt-xg ]2+ bl xe-xgll + Kl xe-x, |

nA

3
(5 Ke+b) I x*-x0|| < R.

By definition of Tys X € B(x*;r) and

1
0 ¢ F(xo) + Bo(xl—xo) + Nc(xl)
= F(x*) + Bo(xl-x*) - J0+Nc(x1)

Thus, Jo e F(x*) + Bo(xl-x*) + NC(xl) , So that x. ¢ SO(J But

1 0)'

I Jo || < R, implying S9(Jg) is a singleton and x; = S (J We can

0)'

now estimate the distance between x1 and x* as

I x-xtll = lisg@y) - Sy 1l =l 3,

nA

3 :
aQ kes) || x*-x, [l < pll xp-x*|

We now proceed by induction. We will show that for all k ) »
(3) I8, - Frexnyfly <bat

< < k
4) " xk'&l-x*" i P“ xk’x*“ =P " xo'X*"

We have already established (3) and (4) when k=0. We thus assume

that (3) and (4) hold for all k : m-1, where m:l, and will establish

-10-

b




r-- -

~
r

(3) and (4) for k=m. We first note that p< 1 and (4) imply
L max{ || xk+1-x*H Al xk-x*”} 2 ”xk-X*”

for all k s m-1, and

<
" Bk+1-F'(X*)" M '" Bk-F'(X*)“ M = almk" Bk'F'(X*)” M ® azmk

nA

-1 k k
alba P ” XO-X*” % azp ” xo'X*”

(alba-l + az)Pke 3

Summing over k between 1 and m-1 yields
=4 &
I B -Fr ey gy 2 [Bg-Fr(x®) [l gy + Cagba™ + a)a-pyle .

By hypothesis, ”BO-F'(x*)” 0 %ba-1 and (alba'1+a2)(1-p)'le < };ba'1

3

hence || Bm-F'(X*)” M < ba™l . Thus (3) is established. To prove

(4), we note that|| x -x*|| oM xo-x* |l Zp" <e. We can now apply

Corollary 1 to Tm and Sm and conclude that, when restricted to
B(0,R), both are single-valued and Lipschitz continuous with Lipschitz

constant d(1-d|| Bm-F'(x*)”)-l. Let x

-l Tm(O) and note that

x* = Sm(O). It remains to bound the distance between Xnel and x*.

We will first obtain a bound on the norm of Jm, and then use that

pound to estimatellxm*l-x*" . We have that

«lle

Ly o O el E N,

|
{
|




(]
n

F(x*) - F(xm) - Bm(x*-xm)

(Flx*) - ¥ (x*)) « (F*(x*) - B)(x*-x ) +
m

-~

+ (F'(xm) - F'(x*)(x*-xm) .

Using Lemma 1 to bound the first term, (3) to bound the second term,

and Lipschitz continuity of F' to bound the third term, we have

A

2 2
a1l S 3Kl x-x 12 o bl xox ]| + KI| x|

nA

3
(GKe+b) || x -x*[[ < R .

By definition of T , x ¢ B(x*,r) and

m+1

0 ¢ F(xm) + Bm(xm+1~xm) + Nc(xm+1)

= F(x*) + Bm(xm+1~x*) - Jm + NC(xm+1) .

Hence, x ., € S (J ) and||Jm"'< R, from which we can conclude that

X

il = Sm(Jm). We finish the induction proof by noting that

% =x* 1 = lIs, ) - 5,0 ] |

nA

da-dll 8, - Freen 7o

e
nA

a(%Ke+b)" x,=x* |

A

pll x x|l .

This completes the induction and the proof of the theorem.
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4. Q-Superlinear Convergence

The preceding theorem establishes local linear convergence
of the quasi-Newton iterates {xn} to a strongly regular solution x*
of the generalized equation, for any update function which satisfies
the given norm inequality. The results of Broyden, Dennis and Moré [1]

show that the traditional update functions satisfy this inequality.

Dennis and More [4] show that for the traditional update functions,
the limit appearing in the next theorem is zero. Theorem 2
! proves that this suffices for the quasi-Newton iterates to converge

Q-superlinearly.

Theorem 2. Let D be an open, nonempty convex subset of Rn, and let
C be a closed, nonempty convex subset of Rn. Let F have a Lipschitz
continuous derivative F' with Lipschitz constant K. Suppose that .
the generalized equation 0 € F(x) + NC(x) has a strongly regular solu-
tion x* with associated Lipschitz constant d. Let {Bk} be a

sequence of n x n matrices. Assume that the set of norms {HBk”}

is bounded. Let x, € D and suppose that the sequence {xk} , k20

satisfies the relation 0 ¢ F(xk) + Bk(xk+1-xk) + NC(xk+1)'

Also assume that {xk} converges to x*. Define

Ek: = Bk-F'(x*) » St = X% and Vool ® -F(xk) - Bksk .

s Il Es, |
: . : T S
Then ixm _“_2;_“. = 0 implies that the sequence {xk} converges

wl 3~




Q-superlinearly to x*.

Proof. By definition and some algebra, we have

Eksk = F(xk+l) - F(xk) - F'(x*)sk - (vk+1 + F(xk+l))

Letting Prort = F( ) + v we can solve for Pre1 and take norms

Xk+1 k+1’

to obtain
oyl < Nafl 1 Es,l

+ 3
I syl Il sill I sl

where AF: = F(xk#l) - F(xk) - F'(x*) (x But the Lipschitz

kel %) ¢

continuity of F' implies (see Ortega and Rheinboldt [12] )

<
la B|| = Kemax{]| xk+l-x*" ol x=x* |3+ llx, =%, [l -« Hence,
(B
: k1" < .. g " .

pa Kl U xgay-xell s I xe-xel3 |
|
1
s, | |

+ lim t X

kb k
= o .

To obtain the next result, we use a special case of the Implicit Func-
tion Theorem of Robinson ( 16 , Theorem 2.1). Specifically, we take
as the function f(p,x) in that theorem the function -p +F(x) . The
conclusions of that theorem give us the following results. Fixing
e > 0 , there exist neighborhoods Ue of 0 and We of x* , and a single-

valued map x: U, > W, such that x(p) is the unique solution in w

«lf=




of the generalized equation 0 € -p + F(x) + NC(x) . Also, for any

P.qe U, | x(p) - x(q) | : (d+e) || p+qll . We now show that this

result can be applied to the generalized equation 0 ¢ F(xk)+Bksk +

NC(xk+l) , where Xel is the unknown variable, to obtain a bound on

Il Xpel x*|| . Note that the assumptions that {J| Bk”} is bounded
and (xk} converges to x* imply the convergence of {vk+l} to -F(x*).
Thus, {pk#l} converges to zero, and will be in U, for all sufficiently

large k. Also, x(0) = x*. Thus, Xpe1 € we 5

0 ¢ F(xk) + Bksk + NC(xk+1) = F(xk01) - P + Nc(x and

k+1 k+l)

Prog € Ug for all sufficiently large k, which implies i(pk+1)= X0l

for all sufficiently large k. Hence,
- - < n
" x"xk*lll = ||x(0) = x(pk+l) " = (d+e) pk+l” s and

< .
I sk" B “xk+1°xk" . "xkq‘x*" « xk-x*” yield

Pyl a hxtx gl x|
—_?—_ = (dee) S N S * (i) *.X +|| x*-x
I skl Il skl | x*=Xpaq |+l x*=x|l

I x*-x .. |l

Defining r : = kel , we have
L S
k

P o T

I :+1|| 2 (o) ! K

Il Sk |l k

YR

i R o

v :‘ﬁ.’.‘w:ﬁéﬁ'-‘ L

L

e




o . .
iR (d+e)"! 1im o

Hence 0= 1lim P
k k> k

k>

v

which implies

lim r . Hence, {xk} converges (-superlinearly, as was to be
k >

shown. This completes the proof of the theorem.

]G

AP

R TN .
SR




5. Computational Results.
The following 4x4 nonlinear complementarity problem is given

in Kojima [11].

3 3 2 + 2 + 2 - + %, + 3Ix, =6 4
* e Bt : Sl
e * 2 +2 )
oy KMy Ry W By ¥ A, -
f(x):= ) 9 S50 .
3xl + xlx2 + 2x2 + ;x3 + 3x4 -1
2 i
+ -
L x1 5x2 + 2x3 + 3x4 3 ]
X := (Xl’ Xys Xg, xa) >0, (x,f(x))=0

The unique solution is given as

x, = /6/2 = 1.2247449 , %, = 0, x, =0 , x, = 0.5 .

The generalized equation representing this nonlinear complementarity

problem is 0 ¢ f(x) + N Q(X)' This generalized equation has the
R
linearization at x given by

0 ¢ f(x) + £ (X)(x-x) + N 4 (¥

o

A quasi-Newton method replaces f'(x) with an approximation B ,

resulting in the generalized equation

0 ¢ f(x) + Be(x-x) + N e
By
which corresponds to the linear complementarity problem
x >0, f(x) - Bx +Bx >0, (x,f(x) -Bx+Bx) =0
The update function used for this test case is Broyden's rank-one update,

that is, given iterates X and xn+l' and current approximation Bn s

the new approximation B te £'Ux

ntl ) is given by

n+l

oy




ez + — ore S = -
Bn+l Bn (S .5 ) , where e xn+l Xn

and v f(xn+1) - f(xn) -

We note that if S = 0, then x = X . Since, by definition,
n n+l n

0 « f(xn) - Bn(xn+l - xn) + NRa(xn+1L replacing X 4 by x
yields 0 ¢ f(x_ ) + N ,(x ), s6 that x_1is a solution to the original
n RA n n

nonlinear complementartty problem if Sn = 0, and the iterative procedure

n

is terminated.
The results of applying Lemke's algorithm to the linear complemen-
tarity problems with Broyden rank one approximations to the derivative

f' are given in Table 1.

P
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Table 1 Kojima Example

Initial x Iterations Final x Final f
1. 6 (1.2247449,0,0,.49999993) (.2.10-6, 3.224745, 5.0000002,
3. 11 (1.2247449,0,0,.49999995) ( O, 3.224745, 5.0000000,
5. 12 (1.2247449,0,0,.49999999) (-.2.10_6,3.226745, 4.9999998,

- 8.307

Three starting points, with each component of x initialized to the entry in

{
q
column 1, all lead to a convergent sequence of iterates. The number of iterations ‘ J

is listed in column 2, with the final value of x and f(x) given in columns 3

and 4, respectively. Each iteration consists of Lemke's algorithm applied to a

4x4 linear complementarity problem, each of which required two pivot operations

of Lemke's algorithm to solve.
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