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ABSTRACT

Newton ’s method is a well known and often app lied techn ique

for computing a zero of a nonlinear function . Situations arise in

which it is undes irable to evaluate , at each iteration , the deriva—

tive appearing in the Newton iteration formula. In these cases , a

technique of much modern interest is the quasi—Newton method , in

which an approximation to the derivative is used in place of the

derivative. By us ing the theory of generalized equations, quasi—

Newton me thods are developed to solve problems aris ing in bo th

mathematical programming and mathematical economics..~

We- p
~~~~ 

two results concerning the convergence and convergence

rate of quasi—Newton methods for generalized equations . -~

We pre~tht~ computational results of quasi—Newton methods applied

to a nonlinear comp lementarity problem of Koiima ,~~~J.
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Signif icance and Exp lana t ion

Many prac tical problems in opera tions research and ma thema t ical

economics can be formulated as a system of equations and inequalities .

A previous paper (Josephy [10]) developed an iterative procedure ,

Newton ’s method , for computing a solution to such a system. However ,

situations arise in which it is computationally unreasonable to

evaluate the derivative appearing in the Newton iteration formula.

In such cases, an approximation to the derivative which is easier to

compute is used in place of the derivative. The iterative procedure

with an approximation to the derivative is called a quasi—Newton

method . This paper extends the results known about the convergence

and rate of convergence of quasi—Newton methods for equations to the

case of equations and inequalities which arise in the nonlinear

programming problem and the economic equilibrium problem. The

method is illustrated by solving a small prac tical problem involving

equations and inequalities .
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OUAS I—NE W TON METHODS FOR GENERALIZED EQUATIONS

Norman H. Josephy

1. in t roduc t ion .

We re &’all the d e f i n i t i o n  of a generalized equation . Further

e laborat ion can be found in Rob inson [13— 17 1 and Josephy [101.

Let C be a non-empty,  convex , closed subset of R~~. The normal

cone to C at x c C is the set of outward poin ting normals to C at x .

We have the following:

Definition 1. Let C be a non—empty , closed , convex subset of

The normal cone to C at x is given by

N
~

(x) : = {zI<z ,k-x>~~~0 Y k c C }  i f x c C ,
- 

i f x ~~~C

We can now define a generalized equation.

Definition 2. Let f:D c R’1 + R~.

Let C be a non—empty , closed , convex subset of Rn •

A generalized equation is a set relation

(1) 0 £ f(x) + Nc (x) •

Thus, x~ satisfies the generalized equation 0 c f ( x )  + N
~~

(x) if

and onl y if x~ satisfies the relations

x* c C

and

— x~~ > > 0 fo r  a l l  k C .

Sponsored by the ~n i ’ t~d ‘~t a t e s  A rmy t inder  C on t r a c t  No . DM G 2 9—7 5—C—0 0 24 .
This materi al is based upon work suppor ted  by t h e  N a t i o n a l  Science  Founda t ion
under  Grant  No. DCR 74— 2 1) 5 84 and Gr an t No.  ~I ( ’~ 7 4 — 2 0 5 8 4  AO2 and the Graduate
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Newton’s method fo r solving a generalized equation 0 ~ F(x ) + N
~

(x )

involves the evaluation of F ’ , the derivative of F , at each itera te

x . (See Joseph y [10]). In si tua tions where this evalua tion imposes an

excessive computational burden , we cons ider rep lacing F ’(x ) with an

approximation. A quasi—Newton method for solving 0 e F(x) + N
~
(x) re-

places F with an af fine map F(x~) + B(•_Xn
) whose derivative B is

both an approximation to F’(x ) in some sense and is computationally

easier to evaluate. One class of approximations , the secant approxima-

tions, has been the subject of great interest to those solving systems of

equations and related problems , such as non—linear least squares estima-

tion, unconstrained and equality—constrained optimization , and , most

recently,  inequality—constrained optimization . A sample of the recent

work on quasi—Newton methods can be found in Brodlie [2], Dennis and More

[5], Gill and Murray [8],  Tapia [18], and Han [9] .

In this paper , we will extend to the generalized equation case two

f undamental results on the convergence and rate of convergence of quasi—

Newton methods with secant approximations. Section 2 contains intro-

ductory material on quasi—Newton methods. We prove local convergence of

quasi—Newton iterates to a solution of a generalized equation in Section 3,

and prove in Section 4 Q—superlinear rate of convergence for the quasi—

Newton iterates. We conclude in Section 5 with the computational results

of applying a quasi—Newton method to the generalized equation representing

a nonlinear complementarity problem of Kojima [11].
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2. Quasi—Newton Methods.

Newton ’s method for finding a zero of F proceeds by itera-

tively solving 0 = F(x ) + F’(x~)(x_x~ ) for a solution ~~~~ A

quasi-Newton method iteratively solves 0 = F(x~) + B~ (x_x ~) ,  where

B~ approximates Ft (x~) in some sense. An approximation of much cur-

rent interest is a generalization to maps on R
n 
of the secant approxi-

ination of the derivative of a real-valued map on R. Let f:R ÷ R have

derivative f ’ . Given two points in R, say x and x~~1, the secant

approximation to f’(xn+i ) is

b: = (f(x~~1) - f(x ))/(x~~1 
- x)

Alternatively, the secant approximation b is the unique solution of

(1) f(x~41) - f(x~) = b(x~~1 - x)

For P:R1
~ + R

T1, a secant approximation to F’(x~41) is any matrix B

satisfying

4

(2) F(x~~1) - F(x ) = B(x~~1 
- x~) .

Since equation (2) does not uniquely specify B , additional conditions

can be imposed to guarantee desired properties of B, such as symmetry

and positive definiteness. This approach to secant approximations

is discussed in more detail in Dennis and Schnabel 161 . Stable

ntm~erica1 techniques for efficiently implementing these secant ap-

proximations are described in Gill , Go lub , Murray and Saunders [71.

The price one pays for using an approximation for F’(x~) is the
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loss of the quadratic rate of convergence to a local solut ion . How-

ever, iterates generated by secant approximations typically exhibit

Q-superlinear convergence , provided appropriate condit ions are satis-

fied . We w i l l  need the concepts of l inear  and Q-superl inear  con-

vergence , which we now define.

Definition 1. A sequence (x} converges to x~ l inearly (Q- s~per-

linearly)~ if and only if for some a c (0 , 1) (for some

sequence {a~ ) converging to zero) ,

II x - x~ ~ all x _X *lln+l n

( lix - x*li ~ a x - x *lI )n+l n n

The Q-superlinear convergence of quasi-Newton iterates can be proven

in the following fashion . In Theorem 1, we establish linear convergence

for i terates determined by any quasi—Newton method whose approximations

{ B }  sa tisf y a certain norm inequality . The proof for the generalized

equation case is modeled on the single—valued case given in Broy den ,

Dennis and More [1, Theorem 3.2]. We can then invoke the results

appearing in Broyden, Dennis and More [1] which show that the traditional

update formulas , such as the Broyden rank one, Powell symmetric Broyden

rank two , and the DFP update of {B~ } (see Dennis and More [5] for fur ther

de ta i l s)  sa t i s f y the required norm inequality . This establishes a linear

convergence rate for the generalized equation case. Dennis and More [4,

Theorem 3.4 and Section 4] show that

9. :~ lim II (Be— F’ (x*))(x~~1
_x~)ll /fl x~~1— x I ) = 0 ,

n
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whenever the sequence ( B )  is computed by one of the above mentioned

up date  formulas and the sequence {x }  converges l inearly to x~

They note , in a remark immediately following their  proof of Theorem 3. ’4 ,

that the limit 2=0 is established independent of how the sequence {x}

is generated.  in par t icu la r , their result  remains va l i d  when { x )  is

the linearly convergent sequence of solutions to the quasi—Newton method

app lied to generalized equations rather than to single—valued equations .

Thus, f or the upda te form ulas mentioned above , the limit 2=0 is valid

for  the generalized equat ion  case , since Theorem 1 of this paper estab —

lishes the linear convergence of f x  } .  Theorem 2 shows that  2=0 suf—n

fices to establish Q—superlinear convergence of iterates {x} generated

by quasi—Newton methods applied to generalized equations . We note that

proofs of the two theorems appearing in this paper , when restricted to

the single—valued equation case , have appeared in the literature (Dennis

and More 151). However , those proofs depend critically upon the fact that

single—valued equations are being solved . Hence , proofs  are given in this

paper which are valid for the generalized equation case.

We conclude this section with a corollary to Theorem 2.4 of Rob inson

[161, and a lemma from Ortega and Rheinboldt [121.

Corollary 1. Let C be a closed , convex , nonemp ty subse t of Rn , and

let D be an open , convex , nonempty subset of R . Le t f : D  -
~

- R have

Fr~ chet derivative f ’. Suppose the generalized equation 0 I f(x) + N
C

(x)

has a strongly regular solution at x* E D , with associated Lipschitz

constant d .
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Then, for some posi tive cons tan ts r , R, b and e , the following hold.

Let A be an nxn matrix and let i c R~ . Then

~(x*,r) ~ (f(j) + A.(~~~) + Nc)’ restricted to ~(O,R)

is single-valued and Lipschitz continuous with modulus

d(1-d ~IA_f~ (x*)Il )
_ l  

, whenever if i_x *t I< e and

IIA_ft(x *) II < b

Lenmia 1. Let D be an open, convex subset of R
n 

. Let f:D -
~ be

continuously differentiable. Suppose that for some k > 0 ,

Ilf’ (u) — f’(v)Il < kil u — v i i  whenever u,v E D . Then Iif(u) — Lf
v
(u)iI -

-
~~ 1J1 u — vu

2 
whenever u,v c D , where Lf(u) := f(v) + f ’(v)(u—v).

The definition and properties of strong regularity of a solution to a

generalized equation can be found in Robinson [16]. The use of strong

regularity in establishing convergence properties of Newton ’s method for

generalized equations can be found in Josephy [101.

e
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3. Local Conver~et~ce.

We begin with a definition .

Definition 2. (Dennis and More [5]).

Let D be an open , nonempty convex subset of R~ , and

let P denote a class of n x n matrices.  Then an

update function U is a map from D x P to subsets of P.

An update function can be used to define a set of approximations to

the derivative of F at x 1. In the typical situation , the present

iterate x~ and the present approximation B will determine the new

iterate x . Both iterates x and x are used to determine then+ l n n+l

next approximation ~~~~ This procedure , by which B~÷1 is determined

from x and B , can be represented by B c U(x ,B ) ,  where (.1 isn n n+l n f l

the appropriately defined update function.

We now state and prove the local convergence theorem.

Theorem 1. Let D be an open, nonempty convex subset of R~ , and let

C be a closed , nonempty convex subset of R . Let F:D + R have a

Lipschitz continuous derivative F’ with  Lipschitz constant K. Sup-

pose x~ ~ D is a strongly regular solution of the generalized equa-

tion 0 C F(x) + Nc(x) with associate Lipschitz constant d. Let W

be an open neighborhood of F~ (x*) in the space of linear maps from

—7—
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Rn to Rn . Let denote a matrix norm and let a > 0 be such that

l i ii ~ a il . II M, where ~~ is a matrix norm subordinate to the given

Vector norm on Rn. Suppose that two positive constants , a1 
and a2,

exist such that the inequality

ii — F ’ (x *) II M ~ 
(l+a l .max{ fi i—x e f , ~ 

x_ x * Ii)) B—F’ (x*) 
M

+ a2
.m axfll i_ x *II ,

~~ 
x_ x * f f }

holds whenever the following conditions are valid :

(x,B) c D x W , c U(x,B), where U is an update function,

and ~ , the vector closest to x in the set

(F (x) + B( .-x )  + Nc)
~~~(0) , exists.

Let b , e , r and R be the positive constants associated with the

strongly regular solution x~ , as given in Corollary 1 . Fix p

positive and less than 1. Suppose the following relations hold, with

e and b reduced, if necessary, from those guaranteed by Corollary 1

fi B0-F ’(x ~)~ M < 1ba~~ and 
~ 

xo_x *Il <

(~Ke+b)e < R and d(l-db)~~ (.~Ke+b) < p.

2a (a~~ba 1+a 2)e (l-p)~~ < b and ~(x*,e) c D.

Then a sequence of iterates {x~} and a sequence of matrices {B~}

exist and satisfy the following relations, for all n = 0

—8—
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0 c F(x ) + B (x 
1
- x )  + N

c
( x )

B c U(x  , B )n -si n n

ii B~— F ’ ( x ~) j J  M < ba~~

Il x~+~~x~ ll ~ p~ x~ _ x~

Proof. We will use the following notation .

Sn : = B(x *,r) ci (F(x *) + B(~~x*) + Nc)~~

= ~ (x *,r) n (F (x ) + B
n(~

_X
n) + Nc)~~

J : = F(x *1 - F(x ) - B (x * - x )n - n n n

= d (l-db)~~

By hypothesisj~ B0
_ Ft (x*)ff M < Iba~~ and x

o
_x * fl < e . Thus,

~J B0-F’(x~)~j < b . By Corollary 1 , T0 
restricted to ~ (0 ,R) is

single-valued and Lipschitz continuous with Lipschitz constant

d(1-d fj Bo
_ Fl (x*)Il )

..l
, which is less than a. Similar ly , S

0 
re-

stricted to ~(0,R) is single-valued and Lipschitz continuous with

Lipschitz constant a , and S0 (0) = x~ . Define x
1
: = T0 (0) . In order

to estimate the distance from x 1 to x~ , we need to estimate the norm

of J0. It follows from

= F(x *) - F(x 0) - 80 (x *_x
0)

= F(x *) - LF
~ 

(x*) + (F I (x *)_ B
0) ( x *_ x

0) +

0

+ F ’(x 0) - F~ (x *)( x *_ x
0)

— 9 —
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that the norm of is bounded by

II Ja il ~~ 1IF (x*) - LF (x *) + h F ’  (x*) - B011 . 11 x~~xc~ J +x0

+ ihF~(x*) — F~(xo)hf .hh x *..xo iI

~ ~Kfl x*
_x
~ 11

2 
+ bhi x*_x~hl + K it x*_x~hI 2

~ (~ 
Ke+b) fl x*_xo ll < R

By definition of T0, x1 e ~(x*;r) and

0 c F(x0) + B0(x1-x0) + Nc(x1)

= F(x*) + B0(x 1
_x*) - Jo+Nc ( x )

Thus, J0 C F(x~) + B0
(x
1
_x *) + Nc (x i) , so that x 1 c S0 (J0) .  But

~ J0 ~J < R , imp lying S0 (J0) is a singleton and x
1 

= S0 (J0) .  We can

now estimate the distance between x1 and x * as

fl x~~x*~ = ~S0 (J~) - S0 (0) ~ ~ll .J
~il 

-

~ a(.~ Ke+b) iI x*_x o ll < p~ x~
_x*hl

We now proceed by induction . We wil l  show that for all k 0

(3) ~ Bk - F’ (x*) ~ M < ba4

(4) 
~ 

X)~44
.
~X~~fl = ~l1 Xk_ X II = ~ ~ x~

_ x *ll .

We have already established (3) and (4) when k=0 . We thus assum e
> .that (3) and (4) hold for all k = in- i , where in=l , and will establish

—10— ,-  
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(3) and (4) for k=m . We f irst  note that p < 1 and (4) imply

ink: = max{hl xk+l~x *Ih , hi  x~-x~ 11 } = hlx k x*hI

for ail k ~~m-l , and

/ 
~ 
Bk i~~

I(x*)hh M Bk~F I ( x *) h I  M ~ 
al
m
khh Bk~

F9 (x*)hI M + a2mk

-1 k k
= a1ba p Ii x0

_ x *~ + a2p x0
_ x * h j

-1 k
= (a

1
ba + a2)p e

Summing over k between 1 and m-l  yields

II B~~F’ (x*) ~ M ~ 11B0-F’ (x*) M + (a
1
ba 1 

+ a2) (l-pY 1e

By hypothesis , hh Bo
_ F~~(x *) h I  M < ~ba~~ and (a 1ba~~ +a 2) ( l - p )~~~e <

hence Bm_ F ? ( x *) lt M < ba~~ . Thus (3) is established . To prove

(4) , we note that hi x~
_x *hI  ~ ~m

11 x0-x~ h ! < pme < e. We can now apply

Corollary 1 to T
~ 

and Sm and conclude that , when restricted to

~ (0,R) ,  both are single-valued and Lipschitz continuous with Lipschitz

constant d( 1-dhl B~
_ F
~ (x*)hi)~~. Let x

~+i
: = T (O) and note that

= S (O). It remains to bound the distance between Xm l  and x~.

We will first obtain a bound on the norm of J~, and then use that

bound to estimate hI x ~+i _ x *hI . We have that

—11—
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J :  = F(x *) - F(X
m) 

- B(x t-x)

= (F (x*) - LF
xm

(X *))  + (Fs (x*) - B~)(X
*_ X

~) +

+ (F ’ (x
~
) - F I ( x *)( x*_x

m)

Using Lemma 1 to bound the first term, (3) to bound the second term,

and Lipschi tz continui ty of F’ to bound the third term, we have

II ~m ll ~ j K~ Xm
_ X * 11 2 + bit x~-x ’~ + Kit x*_x~ hi 2

~ 
(.
~Ke+b)I~ x 

_x *fl < R
2 in

By definition of I , Xm+l c ~(x*,r) and

o e F(Xm) + B(x 1
..x ) + N

c
(X

i)

= F(x *) + B~ (x~+i _ x *) - Jm + Nc (x i)

Hence, X
~+l 

C Sm (Jm) and < R, from which we can conclude that

= Sm (Jm)• We finish the induction proof by noting that

J~ x~~~—x *~J = JJS (J ) - S~ (O) ~

~ d(l-d~ B~ 
- F~ (x*)II Y’lI J,~h l

~ a(~K~+b)II x~-x~~

< .

This completes the induction and the proof of the theorem.
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4. Q—Superlinear Convergence

The pr eced ing theorem establishes local l inear convergence

of the quasi-Newton iterates (x~ } to a strongly regular solut ion x~
of the generalized equation , for any update function which satisfies

the given norm inequality. The results of Broyden , Dennis and Mord [1]

show that the traditional update functions satisfy this inequality.

Dennis and More [4] show that for the traditional upda te fun ctions ,

the limit appearing in the next theorem is zero. Theorem 2

proves that this suffices for the quasi-Newton iterates to converge

Q-superlinearly.

Theorem 2. Let D be an open , nonempty convex subset of R’~, and let

C be a closed , nonempty convex subset of R”. Let F have a Lipschitz

continuous derivative F’ with Lipschitz constant K. Suppose that

the generalized equation 0 c F(x) + Nc(x) has a strongly regular solu-

tion x* with associated Lipschitz constant d. Let {Bk} be a

sequence of n x n matrices. Assume that the set of norms {hiBk hl }

is bounded. Let x0 c D and suppose that the sequence {xk) , k 0

satisfies the relation 0 c F(xk) + Bk (xk+l
_ x

k ) + NC (xk l ) .

Also assume that {X
k
} converges to x~. Defi ne

= Bk
_ F

~ (x *) sk: = Xk+1
_X

k , and Vk+l: = _ F(x k ) - B
ksk

h i E ks ll
Then u r n  ~ k

11 = 0 implies that the sequence {xk} converges
k-~~ 

11 5
k U

-13.-
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Q-superlinearly to x~.

Proof. By definition and some algebra , we have

E k sk = F(xk+l) - F(xk) 
- Ft (x*)sk 

- (V k+1 + F(xk+l))

Letting pk+1 : = F( x
k l

) + Vk+l~ 
we can solve for 

~k+1 
and take norms

to obtain

~l ~k+l 0 hl~~Fhl Eksk hl
ii S~J1 = 

]J S~j1 
+ II S~J1 —

where ~F: = F(xk+l) 
- F(x k ) - F t ( x *)( xk+l

_ x
k ) . But the Lipschi tz

continuity of F’ implies (see Ortega and Rheinboldt [12] )

lI~ Ftl ~ K.max{ ll xk+l
_x *hi ,

~~ 
xk

_x *hl } .hh x k+l
_x
k hI . Hence ,

1lim II ~ ~ u r n  K~max {ll Xk+l
_X *l I  , II z~—x 11 } +

k-~c~ k k-”

fl E~s~j t
+ liii

K~
:_ II S~j~

= 0 .

To obtain the next result, we use a special case of the Implicit Func-

tion Theorem of Robinson ( 16 , Theorem 2.1). Specifically, we take

as the function f(p,x) in that theorem the function -p +F(x) . The

conclusions of that theorem give us the following results. Fixing

e > 0 , there exist neighborhoods Uc of 0 and We of x , and a single-

valued map ~: U~ -
~ 

such that 
~(p) is the unique solution in 

W
e

—14—
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of the generalized equation 0 -p + F( x ) + Nc (X )  - A l s o , for  mv

P~ 
q c UeI ii ~(p) - x(q)j~ ~ (d+e) ii p+q~ - We now show t h a t  t h i s

result can be applied to the generalized equation 0 t F(x
k
)+B

k
s
k 

+

NC(xk l ) , where Xk l  is the unknown variable , to obtain a bound on

fi Xk+l - x* l l  . Note that the assumptions that ~!! Bk ?1 ] is bounded

and (X
k
} converges to x~ imp ly the convergence of (V

k+1 } to 
_F(x*) .

Thus, 
~~k+l

1 converges to zero , and will be in Ii for all sufficiently

large k. Also , ~(0) = x~. Thus, Xk+l C W

o F(x k ) + Bksk + N
C

(x k l ) F(xk l ) - + N
c

(x k l ) and

~k+l 
C Ue for all sufficiently large k , which impl ies 

~~~~~~~ 
Xk l

for all sufficiently large k. Hence,

~f x *_ x
k+l hi = Ihi o - X (p~~1)~I 

< (d+e)~ ~k+l 1’ , and

~ 
Sk it : = hIXk l ~

Xk Il = hIxk+l~x* h I  + h i X~ -X~~11 y ie ld

11 1~k.l u > — l I~ 
X _ X

k+l hI > -l ~ 
X _ X

k+l hh
~ 
SkU 

= (d+e) ii ~kih 
- = (d+e) X *~ x k+1 hI  +

~~ 
X - X

~~ 11

II X~~•X ~~~~jt
Defining rk : = II X _ X k Ii , we have

II ~k+1lh -l 
r
k

~ 
5k H 

— (d+e) l+rk

—is—
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Hence 0 = lIrn > (d+e)~~ l ltn p4— which implies

lim rk . Hence, {x.~} converges Q-superlinearly, as was to be

shown . This completes the proof of the theorem.
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l~ C o m p u t a t  jonal Results.

The I I> I1OWIf l~ 4 - 4  n o n l i n e a r  (-omp l e m e n t a r i ty  p r o b l em  is  given

i n  K oj  m a  l i i i  -

+ 2x~ x~ + 2x~ + x 3 + 3x 4 
— 6

2x~ + x
1 

+ x~ + 3x .3 + 2x 4 — 2

2 2 ~ 0
3x 1 + x1

x
2 
+ 2x

2 + 2x3 + 3x 4 
— 1

L x~~~+ 3 x ~~ + 2 x 3 + 3 x 4 — 3  
-

x := (x 1 , x2 , x3, x
4
) 0 , < x , f ( x ) > = 0

The un ique  s o l u t i o n  is given as

= ~6/ 2  = 1.2247449 , x
2 

= 0, x3 
= 0 , X , = 0 5

he generalized equation representing this nonlinear compiementaritv

problem is 0 f(x) + N 
4
(x). This generalized equation has the

R
+

linearization at x given by

(I f(x) + f ’(~~)(x—x) + N ~ (x)
R~

A quasi—Newton method replaces f ’(t) wi th an approximat ion B

resulting in the generalized equation

0 f(x) + B.(x—x) + N 
~ 

(x) ,

which corresponds t o  the linear complementaritv problem

x () , 1(x)  — Bx + Bx ~ 0, 
( x ,f ( x )  — Bx + Bx ) = 0

The upd;s t e  fu n e  ion  u i-ied f o r  this test case is Broyden ‘s r a n k — o n e  up d ;it  e ,

that is , c~iven ite r~i t I S  x and x , and current approx imit ion  B 
*n n+l

the new approximation B
÷l 

to f ’(x +i) is given by

— ‘7— - 
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(v — B S )S 1
n n f l  n -B := I l +— - --- -

~~~~
- - - , where $ :=x  — x

n+I n ~~ ,~~~ 
) n n+l nn n

and v = t ( x  ) — f(x ) -n n+l n

We note that If S = 0, then x = x . Since , by def inition ,n n+i n

0 f(x ) + B ( X +i 
— x )  + N 4

(x~÷1). rep lacing x~~ 1 by x

y ields 0 ~ f ( x  ) + (x ) , s~ that x is a solution to the original• n n n
nonl inear comp lementartty problem if S

n 
= 0, and the iterative procedure

Is terminated .

The results of applying Lemke’s algorithm to the linear complemen—

tarity prob lems with Broyden rank one approximations to the derivative

are given in Table 1.
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Table 1 Kojima Examp le

Initial x Iterations Final x F in a l f

1. 6 (1.2247449 ,0,0,.49999993) (.2.10
6
, 3. 22 4 7 4 5 , 5. 0U(J~~~O? ,

3. 11 (l.2247449 ,0,0,.49999995) C 0, 3 . 2 2 4 7 4 5 , 5.0000000 , ~~~~~~~~

5. 12 (l.2247449 ,0,0,.49999999) (_ .2.l0
_6

,3 . 2 2 4745 , 4.9999998, - .~~.1O
’)

Three starting points , with each component of x initialized to the entry in

column 1, all lead to a convergent sequence of iterates . The number of iterations

is listed in column 2, with the final value of x and f(x) given in columrs 3

and 4, respectively . Each iteration consists of Lemke ’s algori thm app lied to a

4x 4  linear complementarity problem, each of which required two p ivot opera t ions

of Lemke’s algorithm to solve.
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A b s t r a c t ( c o n t i n u e d )

~ prove two r e s u l t s  concerning the convergence and convergence rate of
quasi—Newton methods for generalized equations .

We present computational results of quasi—Newton methods app lied to a
nonlinear comp lementarity problem of Ko j ima [111.
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