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ABSTRACT

Integrals of a function of a single variable can be expressed as the sum of
a numerical quadrature rule and a remainder term. The quadrature rule is a
linear combination of function values and weightsk or the integral of a Taylor
polynomial, while the remainder term depends on some derivative of the integrand
evaluated at an unknown point in the interval of integration. Numerical
quadrature is made self-validating by using interval computation to capture both
the roundoff and truncation errors made when using a given rule. Necessary
derivatives can be generated automatically by using well-known recurrence
relations for Taylor coefficients. In order for quadrature methods of this type
to be accurateD(in the sense that small intervals containing the exact result 'S

are produced) -and efficient (to obtain results of given accuracy in a reasonably
short time an-accurate scalar product and an adaptive strategy are required.
The necessary scalar product and support for interval arithmetic are provided in
Pascal-SC (for microcomputers) and ACRITH (for IBM 370 computers). The adaptive
strategy chooses the subintervals of integration and the order of the quadrature
formula used in each subinterval on the basis of guaranteed, rather than
estimated, information about the error of the numerical integration in each
subinterval. The program described fin thisi-eort'implements standard Newton-
Cotes, Gaussian, and Taylor series methods for numerical integration. Ways to
handle singularities are discussed, and comparisons are given with a standard
numerical integration method. -

AMS (MOS) Subject Classifications: 65D30, 65G10

Key words: Numerical quadrature, Guaranteed error bounds, Automatic
Differentiation, Interval computation
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SIGNIFICANCE AND EXPLANATION

Routines for numerical integration are among the most heavily used programs
in computer libraries supporting scientific, engineering, and statistical
computation. The ones in common use at the present time, such as CADRE and
QUADPACK, produce approximations to integrals with only estimates of the error
in the value returned. The program described in this report performs self-
validating numerical quadrature, returning an interval in which the desired
integral is guaranteed to lie. To do this, automatic differentiation and
interval computation are used to capture both the roundoff and truncation error
inherent in standard Newton-Cotes, Gaussian, and Taylor polynomial methods for
numerical integration. The actual integration can be expressed as the interval
scalar product of a vector of function values with a vector of weights, so in
order to obtain accuracy (small intervals) the computation has to be supported
by an accurate scalar product as well as interval arithmetic. Fortunately,
these capabilities are provided in Pascal-SC for microcomputers, and ACRITH for
IBM 370 mainframe computers. The program described in this report is written in
FORTRAN, and uses ACRITH. This avoids the kind of special implementation of
interval computation which was necessary on outdated systems. Since the IEEE
standard for floating-point arithmetic requires the support of interval
arithmetic, it can be assumed that self-validating computation in general will
be much easier to perform as conforming systems become available. Comparisons
of the program described in this paper with the standard integration routine
QUADPACK indicate comparable execution times; however, the results of QUADPACK
lack any guarantee of accuracy.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ADAPTIVE. SELF-VALIDATING NUMERICAL QUADRATURE

George F. Corliss and L. B. Rail

1. Requirements for Automatic Integration Algorithms

In 12], de Boor formulates fundamental requirements for an automatic algorithm for nu-

merical approximation of the integral

(1.1) If = Ia,blf f (x)dx

of a function of a single real variable. Such an algorithm requires (i) the limits of integration

a, b, (ii) access to a procedure for the evaluation of f(x) for x in the interval of integration,

(iii) tolerances a, p on the desired absolute and relative error, respectively, and (iv) a limit

M on the number of function evaluations allowed.

As output, the algorithm should produce an estimate I* for the value of If which

satisfies

(1.2) 1f - 1*1 < max { a,pjlfl).

Furthermore, the algorithm should be efficient, computing as few function values as pos-

sible. It should also be reliable, which will be taken here to mean that either the desired

accuracy (1.2) is guaranteed, or a message to the contrary is returned to the user, possibly

with additional information about the cause of failure. As pointed out by de Boor [2J,

algorithms which use only values of f(x) at a finite number of points cannot meet the

above requirements in general; nevertheless, accurate and efficient automatic integration

algorithms can be formulated for wide classes of integrands 131, 123].

This paper presents automatic quadrature algorithms which attain the goals of reli-

ability and efficiency by use of automatic differentiation and interval computation. They

Sponsored in part by the U. S. Army under Contract No. DAAG29-80-C-0041.



make use of information about the integrand on entire subintervals of integration, rather

than at a discrete set of points. The results combine the self-validating algorithms of Gray

and Rail [8], [9], [10], and the notion of adaptive quadrature [21, 131, j23;. Adaptation

is carried out on the basis of guaranteed, rather than estimated, bounds for the error of

the approximate integration over each subinterval. Furthermore, the given algorithm has

the ability to detect and handle certain types of singularities in the integrand, and even

to verify nonexistence of the integral in some cases. In the terminology of Rice [23], the

method described here has the following features:

Interval Processor Component:

Variable order rule with remainder using interval

arithmetic to give guaranteed bounds.

Bound Estimator Component:

Direct analysis.

Special Behavior Components:

Polynomials.

Roundoff level.

Singularities in derivatives.

Jump discontinuities.

Removable singularities.

xe-type singularities.

All are strictly validated.

Interval Collection Management Component:

Ordered list.

None discarded.

The method of this paper does not belong to the large family of 10c or so algorithms

considered by Rice because of the use of interval computation and automatic differentiation,

2
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which were not considered in !23'. Details of the actual implementation of the algorithms

presented here in an environment which supports interval computation will be given in §7.

The next few sections describe the underlying methodology.

2. Self-validating Evaluation of Quadrature Formulas

Self-validation of numerical computations is one of the basic motivations of interval analysis

[I], 115], [16]. The goal is to obtain an interval which contains the desired result, be it

real or set-valued. In the case of the integration problem (1.1), a self-validating interval

method produces an interval J = [c, d] which is guaranteed to contain the value If of the

integral. The width of this interval inclusion will depend on uncertainties in the values of

the integrand and the limits of integration, the roundoff error in the actual computation,

and the truncation error appropriate to the method used. All of these quantities can be

estimated in a tedious way by the techniques of classical error analysis, an effort which is

unnecessary in the computational environment described below. However, once an interval

[c, d] containing I is found by whatever method, one has the following approximations to

I and corresponding error bounds 121]:

(2.1) 1* -(c + d), ifs - 1*1 (d-c),
22

for absolute error, or

(2.2) 1* 2cd IfS-] - P d-c
c+d' I Jf ''

for relative error, with cd > 0 in this case. It follows that (1.2) will be satisfied if an interval

J = [c,d] can be obtained with width w(J) = d - c small enough so that w(J) < 2a and

w(J) < pie + df.

First, the problem of finding an interval inclusion J of If will be considered. The

basic method for interval integration by use of standard formulas for numerical quadrature

or Taylor series was first described by Moore 114'. To illustrate Moore's idea. consider a

3
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standard interpolatory integration formula of the form

b n_ f (P) )h"(2.3) f(x)dx wif (xi) -- ch ,

where h = (b - a)/n, and a < < b. A formula of type (2.3) will be called a quadrature

formula of order p on n points. The ordinary Gauss and Newton-Cotes integration formulas

follow this pattern [7]_

It should be noted that integration formulas such as (2.3) give the exact value of the

integral If of functions which are differentiable p times. The only difficulty is that the

value of C is unknown. For practical computation, it is thus customary to express (2.3) as

the sum of a rule

n

(2.4) rnf = Zwif(xi)
1=1

of numerical integration, and a (truncation) error term

(2.5) enf = cnh" fp(.,h),

where

(2.6) fp( ,h) = f(P)(!)hP

denotes the Taylor coefficient of order p in the expansion of f( + h). It is usual to

compute P - raf to approximate the value of the integral, and to estimate ef somehow.

Of course, if f is a polynomial of degree p - 1 or less, then ef 0 0, and If = r~f.

A self-validating computation of the rule rnf of numerical integration is straightfor-

ward in an environment which provides interval arithmetic and monotone interval inclu-

sions of the library functions used in the evaluation of f(x) for a given x. Let S denote the

screen of floating-point numbers available, and IS the corresponding set of closed intervals

iu,vi, u,v E S. If f is evaluated on an interval X E IS using interval arithmetic and
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library functions, then the result is the natural interval inclusion F(X) of f on X such

that

(2.7) f(X) = {f(x) 1x E X} C (x),

j15], 116). If W;, Xi respectively denote the smallest intervals in IS which contain the real

numbers wi, xi, that is, Wi = [Vwi, Awi], [Vxi, Ax,], where V,A denote the monotone

downward and upward roundings from the real numbers R to S 111], then the inclusion

n

(2.8) rf E Rn! = ZWF(X,)
i=1

is guaranteed, and the computation of R, can be done automatically.

An automatic, self-validating computation of the error term (2.5) requires an addi-

tional ingredient. This consists of subroutines for the generation of the Taylor coefficients

fP(x, h) of f. These use well-known recurrence relations for the arithmetic operations and

library functions used to evaluate f(x) for given x 161, [15], 116], [19]. A suitable compu-

tational environment provides these routines. Corliss and Chang [5) have shown that the

calculation of fo(x, h), fi (x, h),...,f,(x,h) requires about

(2.9) t = ap2 + bp + c

units of time, where a depends on the number of multiplications, divisons, and calls to

library functions in the computation of f, and b depends on the number of additions and

subtractions required. In any case, interval evaluation of exactly the same recurrence

relations yields the corresponding interval inclusions Fo(X, H),...,Fp(X, H) such that

(2.10) fk(x,h)EFk(X,H), k=O,1,...,p,

for all x E X and h E H 1151, 1161. Thus, the desired interval inclusion

(2.11) enf E E,f C,,H . Fr(X,H)

- *...., .,.,. . -.. * -,.. .....-..--..-...-........ ......-...-..... ...............



can be computed automatically, given intervals C,,. H. X E IS such that c, E C,, h E H,

and !a.bi C X. (It is assumed that a < b; the contrary case can be handled easily.) It

follows from the above that

(2.12) If E Rf -t Ef c, dl,

a formula for automatic, self-validating numerical quadrature. Once again, if f is a poly-

nomial of degree p- I or less, then Fp(X,H) - 10,0], so that If E Rf, and the width of

ic, d] depends only on the roundoff error in the calculation of rf.

This approach was the basis of an actual computer program [9j, which met the accu-

racy criteria (1.2), if possible, by choosing H sufficiently small [18]. However, the problem

of efficiency was not addressed.

Instead of splitting the numerical integration formula (2.3) into a rule of numerical

integration (2.4) and an error term (2.5), it will be helpful later to consider it to represent

the scalar product of the augmented function-value vector

(2.13) f= (f(xl),...,f(x,),fp( ,h)),

and the augmented weight vector

(2.14) w = (wI,...,wn, ch),

which is independent of the integrand f and depends only on the specific formula (2.3)

used. Thus,

(2.15) I = w fE W .F = J,

where

(2.16) F (F(X 1 ),..., F(X,), F(X, H))

and

(2.17) W (W 1 , 1 .. ,Wn.CH)
.6
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are the corresponding interval inclusions of f, w. This allows the computation to use re-

cently developed methods for highly accurate calculation of real and interval scalar prod-

ucts j12j. This results in a considerable decrease in width due to roundoff error in the

computed value of J.

The integration formula (2.3) can be interpreted as a single-panel rule, or as a multi-

panel rule, meaning that a simpler formula on m points is applied k times to the corre-

sponding number of subintervals of X = [a, b], with n < kn. Denoting the subintervals of

X by X1 , i = 1,2,. .. , k, this means that an integration formula

(2.18) f(x)dx = Zwif(xij) + cimhi" fp(tjhi),

holds in each subinterval, where hi = w(Xi). It has been shown [18] that

(2.19) kci mw(Xj)F(P)(X ) w(X)P C cw(X)F(P)(X) , w(X)P
p, - I '

In addition to the decrease in width of Fp(X, w(X)) by a factor of w(X) P as w(X) becomes

small, the width of F(P)(X) will overestimate the width of f(P)(X) by less as w(X) , 0

for f(P)(z) continuous [15]. Thus, the gain in calculating the error terms over smaller

subintervals can be substantial. Roundoff error in adding a number of interval inclusions

of one-panel rules (2.18) can again be reduced considerably by expressing the result as the

scalar product of the extended augmented function-value vector

(2.20) F = (F(X,. .. ,F(Xim),Fp(XI,HI), ..., F(Xkl),.. .,F(Xk),Fp(Xk, Hk))

with the extended augmented weight vector

(2.21) W = (w,...wm,CmH... ,Wk.. . . Wkm,CkmHk).

7
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* Taylor Series Methods

he seminal paper by Moore [14i also provides the basis for self-validating numerical inte-

ation by the use of Taylor series, although the techniques presented by him in this case

-e directed toward the solution of the initial-value problem for ordinary differential equa-

ns. For numerical integration, Taylor series are more appropriate than fixed quadrature

rmulas for interval-valued endpoints of intervals of integration, as will be discussed in §6.

irthermore, Taylor series support the rigorous approach to automatic recognition and

eatment of singularities described in §5.

Of course, one could consider (1.1) to be the solution If = y(b) of the initial-value

oblem

.1) y'(x) f(X), y(a) = 0.

d apply Moore's methods directly. However, since f(x) in (3.1) is independent of y,

like the usual case in differential equations, it is simpler to use the capability to generate

segment of the Taylor series and the interval remainder term automatically to perform

;elf-validating calculation of the desired integral.

In particular, instead of expanding the solution y(x) of (3.1) at x = a as in the case

a differential equation, it is advantageous to expand f(x) at the midpoint c = (a + b)/2

the interval X = la, b] of integration. It will be assumed that the integrand f has p > 0

7ivatives in the interval of integration. For h = (b - a)/2, one has

f(x) f(C) + f'(c)(x - c) + f"(c) + )2 -+ (c) (n
2!(n 1)!

2)

+ f(n)()(i-c)"+! f

n < p, where C E X is between c and x. Let F(") be an interval inclusion of f(n) on

Then, f(n)( ) G F(n)(X), which is an interval-valued constant. From (3.2),

(X- C)(n-) (X -c)"
) f(x) E f(c) + f'(c)(x - c) f'-)(c)-- F(n)(X) .. - - .(n - 1)! ,

8
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Let

(3.4) g(x) = f(c)(x - c) + f(c) 2! ±)± 1  ( -c)g X)f C)( C f'()2 +" + f-() -n !

be an indefinite integral of the Taylor polynomial of degree n - I of f(x). Then,

f(x)dx F (x) - F (X) ( -n,

where
n-1 Hi+1

n 2 E F()(C)
=)

i even

(3.6) H " + ' ___

. { ( ( Hn1)! -F(n ) ( ) for nodd,+ I (X (n + 1)! (n( + 1)!, n

+ Hn~

2F (n + 1)!' for n even.

Note that subtraction does not "cancel" equal intervals in general. One has [u, vi - [u, v) =

[u -- v,v - u# 10,0] unless u = v, in which case the interval consists of a single point [1],

1151, [16]. If the series were expanded at x = a instead of x = c, then the width of the

interval remainder terms would be increased by a factor of 2 n"1 .

Formulas (3.5)-(3.6) resemble (2.12) for ordinary quadrature rules, with the evaluation

of the integrand at n points replaced by its value and the values of its first n - 1 derivatives

at a single point. If f is a polynomial of degree n - I or less, then F(')(X) - [0,0], and

only roundoff error effects the width of jn.

J, can be computed directly from the automatically generated interval Taylor coeffi-

cients Fk(C, H) and Fk(X, H) of f, k = 0.1... ,n < p.

Since

(3.7) If = fa f(x)dxC Jn, n =0,1,-,p,

the intersection principle 18', 9' can be used. One has

(3.8) If 5 fl J.

9
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e interval-valued. One strategy for handling interval-valued endpoints is to allow the

icertainties in the locations of the endpoints to be carried over into uncertainties in the

cations of the nodes, as in INTE 19]. For example, using a one-panel Simpson's rule on

decimal digit machine gives

1 3.1,3.21 (B-A
]13z'3"2 f(x)dx (F(0,0.1 + 4F(11.55,1.65]) + F(13.1,3.2))

7(B - A) 5

2880

'here A = [0,0.11, B = [3.1,3.21. For f(x) = sinx, (6.7) yields [1.880,2.214 using the

ccurate scalar product, while the correct answer is )1.994,2.0001.

A better strategy is to concentrate the uncertainty at the ends:

[3 11[3.2 p0.13. 132
5.8) f (x)dx = 0.1(x)dx + f(x)dx +3 f(x)dx.

'he middle part is handled as an RR integral as described in §§3-4, while the other two

ritegrals, of the types IR and RI, respectively, will be treated in the manner to be described

Pelow. In this example, we can get 11.984,2.073). As the widths of the endpoints increase,

he advantage of the second strategy becomes more pronounced.

The general case (6.3) can be expressed in terms of integrals of the above types. This

ase in turn splits into six subcases, according as A and B are (i) disjoint, (ii) overlapping,

or (iii) one is contained in the other. More precisely, for A = [AL,AR), B = [BL,BR[,

uppose that AR < BR. Then we have:

Case 1. AR < BL (disjoint interval endpoints). Here, the integral (6.3) can be written

B BL 1 BL,Br]
6.9) /f(x)dx= f(x)dx f(x)dx / f(x)dx,

JAJAL,AII fA BL

Lnd thus is the sum of integrals of types IR, RR, and RI. respectively.

Case 2. AL < BL < AR < BR (overlapping interval endpoints). Here,

B BL f3L~~,A,. A 49 '
6.10) L (x)dx J f(xadx - f (x)dx - f(x)dx,

AL.BLI ABi At.

21
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ie natural interval inclusions Fk(X. C1.... ,C,) of f and its Taylor coefficients on an

erval X E IS are again obtainable on a computer by using interval computation and

tomatic differentiation. In particular, for an interval polynomial (6.2), FF,(X, H) = [0, 0]

p ? m, just as in the real case. The definition

4) f(x;Cl,...,Cm)dx {J f(x, c,... cm)dx c1 E Cl,...,cm E Cm

cribes the type of integrals to which the methods of this paper apply. It is assumed that

B and the coefficient intervals C, all belong to IS, and hence are machine-representable.

kecessary, outward rounding can be used to obtain them from real intervals, preserving

lusion of the desired integral.

On the basis of (2.3), it is to be expected that the best results will be obtained for

:grands f which are very smooth as functions of x. However, one can always compute

interval Riemann sum F(X) . w(X). This is self-validating, because

) f(x)dx C F(X) .w(x),

is inaccurate and slow to converge [4], 20]. It is important to be able to confine bad

avior of the integrand to very small intervals for (6.5) to be useful.

The meaning of tolerance for problems with interval-valued endpoints requires some

ification. Consider the problem

1,I,1 rf dx 1 1x) .1
o 1tx 2  1 x 2 ' 2 x 4 "

. compute J = [-0.004,0.791, for example, then w(J) 0.794. although the estimate

ach endpoint is in error by less than 0.005. Hence, a requested tolerance must be large

.gh to accomodate the uncertainties which are inherent in the problem being solved.

The cases that one or both endpoints of integration are nondegenerate intervals in

fill now be considered. The possible situations will be denoted by IR, RI. and II,

ctively. according as the lower, upper, or both endpoints of the interval of integration

20
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6. Extension to Interval Values

The definition of the integral (1.1) h-.s been extended to arbitrary interval-valued inte-

grands f [4], 120]. For smooth, real-valued functions such as those considered in §2, the

interval integral and the Riemann integral coincide. The concept of interval integration

is useful in connection with integrands which have jump discontinuities or singularities of

various kinds. The definition given in 141 can be extended to the case that the limits of

integration are interval-valued:

(6.1) f{(x)dx f (x)dx a E A, b c B

for A, B E IR, the set of all finite intervals with real endpoints.

There are several reasons to want to be able handle interval endpoints of integration.

First of all, some real numbers, such as 7r, cannot be represented exactly in S, and have

to be replaced by the corresponding small intervals such as [Vir, Air] in IS. Secondly, the

limits of integration may come from measurements other estimates, and thus are known

to lie between certain limits even though their exact values are uncertain. Finally, one can

be interested in bounds for the value of the integral (1.1) over ranges of values of limits

of integration. In this case, rather than satisfy an accuracy criterion such as (1.2), it is

usually desired to find an interval J containing (6.1) which is as small as possible.

Similar considerations apply to interval-valued integrands. The case which usually

arises in practice is that the integrand f is a function not only of the independent variable

x, but also several parameters c1,c 2 ,. . . ,Cm. For example, f could be a polynomial of

degree m - 1 with coefficients determined by observations,

(6.2) f(X) = C1 + C 2x + + Cm Tm- , Ci E IS, i = 1,2,...,m.

In general, given intervals C 1, C 2 , ... , Cm, it is natural to define

(6.3) f(x;C... .,C) = {f(X;c,...'Cm) Ci C Ci,...,Cm C Cm}.

19
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then the integrand cannot be handled by this method. and a message to that effect is sent

to the user.

These methods for recognizing and handling certain singularities extend the domain

of applicability of the program to include many integrands which arise in applications.

However, their usefulness is somewhat limited. For one thing, the location of the singu-

larity must be known in advance, or guessed. For popular sets of test problems, guessing

one or both endpoints usually works. For real problems, locations of singularities may be

unknown. However, the method given here validates correct guesses. The endpoints to be

investigated for the presence of singularities must be machine numbers, not intervals. If

an interval-valued endpoint is even one machine number wide, then the problem contains

integrands which are unbounded on a set of positive measure. If a singularity is in the

interior of the interval of integration, then we can determine its location to within one or

two machine numbers. From this, its contribution to If could be estimated, but the possi-

bility that the integrand is unbounded on a set of positive measure cannot be eliminated.

Since a validated answer cannot be produced in this case, an error return is selected. If

the user knows that the singularity occurs at a machine number, then the integral should

be calculated as the sum of two integrals, with the singularity at one endpoint of each.

18
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Suppose that the integrand has the form

(5.9) f(x) = (a- x)- (x),

where O(x) is analytic at x = a. If c is chosen closer to a than any other singularity, then

the series for f expanded at x = a is asymptotic to the series for v(x) = (a - x) - 8. The

Taylor coefficients vi = vi(a, h) of v satisfy the recurrence relation

vi+ 1  Vi + -)!

(5.10)

= (Vi+, h -)i+ 1v \i Rc

where Rc is the radius of convergence of the series. If f cannot be evaluated on Ia, b], then

one attempts to find constants KL, KR, SL, SR such that

(511) KL(a - X) - L < f(z) < KR(a - x)

for x near a. If such constants can be found and (5.11) validated, then we proceed. If

SL > 1, then the program can guarantee that If does not exist. We know of no other

numerical quadrature routine which can validate nonexistence of an integral. If sR < 1,

then

(5.12) KL (a - a')'L a f(x)dx < KR (a -a')' - 'r

I - SL I I - s)

These bounds can be made as tight as desired by taking a' close enough to a. The interval

!a, a' is placed on the list of subintervals, and processing continues on the subinterval

a',b.

A singularity at b can be handled similarly.

If KL. KR, sL, SR cannot be found, or if

(5.13) SL < I < SR,

17
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because of its width. All other subintervals can be processed using higher-order rules. This

strategy applies to singularities in f' which occur anywhere in the interval of integration,

and not just at endpoints. It also works for singularities in higher derivatives, whose

presence might not even be known to the user. Once a singularity of this type has been

confined to a sufficiently small subinterval, it is possible to meet reasonable requirements

for accuracy, with self-validation.

5.2. Jump discontinuities

If the integrand is given by an ordinary mathematical expression, then it is difficult to

represent a function which has jump discontinuities, and yet can be evaluated at every point

in the interval of integration. However. the user can supply a subroutine for evaluation

of the integrand which produces jump discontinuities. These appear to the program as

singularities in f'. On any subinterval which contains a jump, only the Riemann sum

is available, and its width will lead to frequent selection of this subinterval for further

processing, as before. No special algorithms are needed in this case.

This behavior is similar to CADRE b2j. Upon recognizing a jump, CADRE subdi-

vides the interval and uses a low-order rule.

5.3. Some removable singularities

The Taylor series method permits handling of some removable singularities. Consider

the problem

(5.8) If = sindx,
x

in which the integrand has a removable singularity at x = 0. In this case, the integrand A

cannot be evaluated directly on any interval containing 0, but f can be expanded at x = 0

using l'H6spital's rule, which can be applied automatically 16]. A short Taylor series with

remainder for f at 0 is sufficient to bound If near 0, and the rest of the interval of

integration is processed in the normal manner.

5.4. Some algebraic singularities at endpoints

16

-.. , ..-..-.. ...- .. '. " .. .. .. .- .. .- .-... '.. . - .. ',. . ..- , ..- ,.- .. ', .',. ..- " -- -,... ...-. ..- ..-. '....."........ .. ,-..•.. ...-.. . ..-. .,..
• ..,-... . -. ..-.. :..- ... '.'.'........'......-.... ........ '....-....."...... ...-.... . . ....-......-.-

.w. •o.. ......- . . .,•j....o.-. -9..°... -, .- , u a. -. ... .. °- . .-. 0 •...



Although the original problem (5.2) is well-behaved, the interval integral in (5.3) contains

integrals such as

(5.4) z d'r,

and consequently does not exist. Hence, the correct response is that (5.3) cannot be

evaluated on the entire interval of integration, just on jo, V r], for example. This suggests

that standard numerical quadrature routines, which avoid evaluation of the integrand at

endpoints, can be fooled into returning values for integrals such as//
(5.5) Vj1 r - -(- x dx

for c sufficiently small, instead of informing the user of possible difficulty. The types of

singularities which can be handled by the techniques presented here will now be described.

5.1. Singularities in derivatives of f.

The integrand f may not have enough derivatives for some rules which the integration

program can apply. In the process of automatic generation of interval Taylor coefficients

on an interval X, the nonexistence of a derivatives of f beyond a certain order is detected

and reported. As long as f itself can be evaluated on the entire interval of integration,

the order adaptation strategy handles singularities in the derivatives of f. For example,

consider the problem

(5.6) If J V/x- dx  3.
3

The first derivative f' is undefined at x = 0, so the only rule that can be applied to the

entire interval of integration is the Riemann sum

(5.7) /-xdx E [min V/, max Vx] = 10,81.
1 [0,4] 10,41

At this point the subinterval adaptive strategy takes over. At each step, the subinterval

containing 0 requires a Riemann sum, and thus is frequently selected for further processing

15
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5. Treatment of Singularities

Among the quadrature routines which provide estimates for If, the more successful ones

have special provisions to handle and perhaps recognize certain types of singularities.

QUADPACK [17], for example, can handle integrals of the form

(5.1) f(x - a) (b - x) 3 v(x)f(x)dx,

where a,fl > -1 and v(x) = 1, log(x - a), log(b - x), or log(x - a) log(b - x), provided

the user supplies a, 0, and the form of v. CADRE [3] attempts to detect and verify the

presence of jump discontinuities or xz-type singularities in the integrand. The program

described here attempts to recognize and handle automatically

(1) singularities in derivatives of f,

(2) some removable singularities,

(3) jump discontinuities, and

(4) some algebraic singularities at endpoints.

Since guaranteed bounds are computed for If, the task of such a program is more

difficult than for methods which yield only an estimate. For example, Gaussian quadrature

can be used in the neighborhood of an endpoint singularity, because the integrand need

not be evaluated at the endpoint. To give guaranteed bounds, however, requires that the

function, or some of its derivatives, be evaluated on the entire interval. Hence, the price

of the guarantee is a restriction on the applicability of the program. Either it verifies that

the integrand is in its domain of applicability, or, if it cannot deliver guaranteed bounds,

it notifies the user with an indication of the difficulty.

An example will indicate what can go wrong at endpoints. For example,

(5.2) If = r - x dx = 7r

o3

could be presented to the computer as

(5.3) 12f f v/IV7r, An- x dx.

14
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Because of the difference between the remainder terms in (3.6) for odd and even n, it

is prudent to calculate at least one extra value of J., However, the conditions above

guarantee that no more than two series terms will be computed beyond the one which

gives the narrowest In.

Another important strategy for order adaptation involves the case that the integrand

has singularities in a certain derivative in the given subinterval. This will be discussed

more fully in the next section. If a certain derivative cannot be evaluated, this will be

detected, and the method will be restricted to rules or orders of Taylor expansion which

use only the derivatives which can be evaluated.

The strategy for subinterval adaptation retains all subintervals. At each step, the

subinterval which makes the largest contribution to the width of J is processed by breaking

it into further subintervals. This processing continues until

(i) w(J) is small enough to satisfy the accuracy requirement (1.2),

(ii) the noise inherent in function evaluation limits further reduction of w(J), or

(iii) more than the maximum number M of function evaluations have been performed.

The second termination criterion in this list is particularly important. If the noise in the

function evaluation is large relative to the accuracy requested, eventually the width of the

truncation error Ef is made so small that it adds nothing to the width of the rule Rf

alone. At this point, further increase in accuracy is not possible. Without the guaranteed

bounds provided by the interval computation, many standard methods cannot recognize

when this point has been reached, and the calculation should be terminated. Malcolm

and Simpson 113] observe that the strategy of processing the worst subinterval results

in local errors of roughly equal magnitude. Rice [231 calls this an ordered list interval

collection management component, and lists some advantages and disadvantages which

will be discussed in more detail in §7.

13
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Alternatively, the actual approximate integrals Ji could be examined, but this requires

more computation than use of the error terms alone. Suppose that U denotes the maximum

value of the width w(F(C)) of the interval evaluation of f at a node C of the integration

formula being used. The total cost can be taken to be proportional to n, • w(Ji), where n,

is the number of function evaluations. The width w(J) can be estimated by P -t w(En,f).

and thus i can be chosen as the minimizer of

(4.2) m(i) = min{w(Jo),n,(p + w(Enf)}.

Thus, more nodes are used in a given subinterval only if a significant reduction in width

of the approximate integral results. It should also be noted that a given integration rule

can be used in several integration formulas having remainder terms of different orders.

For example, Stroud and Secrest 1241 give error terms for Gaussian integration rules on n

nodes which have orders I < p < 2n. In certain cases, the error terms corresponding to

smaller than maximum p can be narrower (for exarn-l- for highly oscillatory integrands),

and the use of these formulas instead of the standard ones will minimize w(Jn).

In the case of Taylor series, the intersection (3.9) procedure can result in approxima-

tions In which are considerably better than Jn given by (3.6), which can be viewed as the

sum of a rule and an error term. The intervals In are monotone decreasing in width, so

the increase in accuracy has to be balanced against the cost in time (2.9) of generating

more terms of the series. The constants a, b, c in (2.9) can always be determined for a

given integrand, so the corresponding heuristic can be based on the function

(4.3) 8(n) = W(In) . (an 2 + bn + c).

Generation of the Taylor series can be stopped when

(i) in-2 - -In-I = In

(ii) O(n - 2) _< 8(n), or

(iii) n = p.

12
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4. Adaptive Strategies

The computer program INTE 19] demonstrated the reality of automatic, self-validatingN numerical quadrature using Newton-Cotes and Gaussian integration formulas in the way

discussed in §2. (Euler-Maclaurin integration was added to the capabilities of INTE later

1101.) However, there was no attempt to address the problem of efficiency, a defect reme-

died in the program described later. In order to satisfy the accuracy criterion (1.2), if

* possible, INTE simply divided the interval of integration into a sufficient number of equal

*" subintervals [9], [181. By contrast, popular numerical integration packages such as CADRE

" [3] and QUADPACK 17] use information obtained about the behavior of the integrand to

attempt to reduce the number of function evaluations to a minimum. The method given

here uses similar strategies, except that estimates of the error based on evaluation of the

integrand at a finite set of points are replaced by guaranteed bounds. This eliminates the

* need for "safety factors" [23].

Adaptive strategies fall into the categories of order adaptation, which relates to the

choice of the formula used in each subinterval, and subinterval adaptation, which de-

termines how the original interval of integration is broken up into subintervals. Order

• .adaptation is somewhat simpler than subinterval adaptation, and will be considered first.

For methods based either on standard quadrature formulas or Taylor series, order zero

refers to the interval Riemann sum F(X) . w(X), which always contains fX f(x)dx 14).

Given a suite of numerical integration formulas of the form (2.3), suppose that X E IS

is the current subinterval of integration. Specifically, suppose that the given rules are of

order i for i = 0,1, .... k on ni points. Once the interval Taylor coefficients FI(X, H) have

been formed, then the order p f k of the most accurate rule can be chosen to be the value

of i for which the width of the error term

(4.1) E,,f = C,,H. FI(X,H)

is minimum, i= 0, 1,..., k.

' 11
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Alternatively, the actual approximate integrals Ji could be examined, but this requires

more computation than use of the error terms alone. Suppose that jA denotes the maximum

value of the width w(F(C)) of the interval evaluation of f at a node C of the integration

formula being used. The total cost can be taken to be proportional to n* w(J,), where n,

is the number of function evaluations. The width w(Ji) can be estimated by p + w(En,),

and thus i can be chosen as the minimizer of

(4.2) m(i) = min{w(Jo),ni(p + w(En,f)}.

Thus, more nodes are used in a given subinterval only if a significant reduction in width

of the approximate integral results. It should also be noted that a given integration rule

* can be used in several integration formulas having remainder terms of different orders.

*-.For example, Stroud and Secrest 1241 give error terms for Gaussian integration rules on n

nodes which have orders I < p < 2n. In certain cases, the error terms corresponding to

"- smaller than maximum p can be narrower (for example, for highly oscillatory integrands),

*: and the use of these formulas instead of the standard ones will minimize w(Jn).

* In the case of Taylor series, the intersection (3.9) procedure can result in approxima-

* ,q.. tions In which are considerably better than J, given by (3.6), which can be viewed as the

sum of a rule and an error term. The intervals In are monotone decreasing in width, so

the increase in accuracy has to be balanced against the cost in time (2.9) of generating

- more terms of the series. The constants a, b, c in (2.9) can always be determined for a

,. given integrand, so the corresponding heuristic can be based on the function

(4.3) 0(n) = w(In) (an2 + bn + c).

Generation of the Taylor series can be stopped when

(i) n-2 : , I I :

* (ii) O(n - 2) <(n), or

(iii) n = p.
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4. Adaptive Strategies

The computer program INTE 19] demonstrated the reality of automatic, self-validating

numerical quadrature using Newton-Cotes and Gaussian integration formulas in the way

discussed in §2. (Euler-Maclaurin integration was added to the capabilities of INTE later

'10o.) However, there was no attempt to address the problem of efficiency, a defect reme-

died in the program described later. In order to satisfy tL %ccuracy criterion (1.2), if

possible, INTE simply divided the interval of integration into a sufficient number of equal

subintervals [9], 118]. By contrast, popular numerical integration packages such as CADRE

13] and QUADPACK 17] use information obtained about the behavior of the integrand to

* attempt to reduce the number of function evaluations to a minimum. The method given

here uses similar strategies, except that estimates of the error based on evaluation of the

integrand at a finite set of points are replaced by guaranteed bounds. This eliminates the

need for "safety factors" 123].

Adaptive strategies fall into the categories of order adaptation, which relates to the

choice of the formula used in each subinterval, and subinterval adaptation, which de-

termines how the original interval of integration is broken up into subintervals. Order

adaptation is somewhat simpler than subinterval adaptation, and will be considered first.

For methods based either on standard quadrature formulas or Taylor series, order zero

refers to the interval Riemann sum F(X) .w(X), which always contains fX f(x)dx [4].

Given a suite of numerical integration formulas of the form (2.3), suppose that X E IS

is the current subinterval of integration. Specifically, suppose that the given rules are of

order i for i = 0, 1, ... k on n, points. Once the interval Taylor coefficients F1 (X, H) have

been formed, then the order p < k of the most accurate rule can be chosen to be the value

of i for which the width of the error term

(4.1) E,, f = C,,H . F,(X,H)

is minimum, i 0, 1,-..., k.

11
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This intersection can be calculated as the corresponding interval Taylor coefficients of the

integrand are generated:

(.) { 1= J:,, (a Riemann sum),

in I n-, nJn, n = 112, .... Ip.

This provides a means to determine the highest useful term of the Taylor expansion, since

the calculation can be terminated when effective decrease in the widths of the intervals

{In} ceases, or when the desired tolerance is met.

As in the case of (2.12), formula (3.6) can be evaluated as the scalar product of the

vectors

(3.10) F = (Fo(C, H), FI(C, H),..., Fn- 1 (C,H), Tn(C,H)),

where Tn(C,H) = Fn(C,H) - Fn (C,H) or Tn(C,H) = 2Fn(C,H) according as n is odd

or even, and the vector

(3.11) W =(Wo, Wg,...,Wn-in),

-. where

%H

. (3.12) Wk k+1' k = 0, 1,...,n.

The width of Jn can also be reduced somewhat if the expansion is about C = [c,c],

c E S. In this case, the interval stepsize H might have to be increased a very small

amount to maintain inclusion of the subinterval of integration. In §5, it will be noted that

expansion about an endpoint, as in (3.1), or some other point in the interval of integration,

can be helpful if the integrand has removable singularities.
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the sum of integrals of types IR, 11, and RI.

Case 3. BL < AL < AR < BR (A is properly contained in B). Here,

B AL IIAL,API )d +f A,,Bn1j
(6.11) f(x)d - f(x)d AP f (x)dx,

JAJ,~,AL., JAL.,A~r. a JAp

again the sum of integrals of types IR, I1, and R].

The other three cases are obtained for BR < AR by reversing the r6les of A and B in the

preceding.

Case 1 is undoubtedly the one which is encountered most often in practice. To illus-

trate Case 3, consider

(6.12) /f_[o5] f(x)dx f - f(x)dx + f (x)dx + f(z)dx.

j 2, 3] f ,21 fj2,3i

We are not aware of physical problems which give rise to integration problems other than

Case 1 (except to bound the values of integrals over ranges of endpoints), but provision

* for these cases adds little to the machinery which is required to handle Case 1.

Integrals of types RI, IR, and II can be handled by Gauss or Newton-Cotes formulas

with interval-valued nodes, but this leads to wide interval bounds. The method of Taylor

series, as outlined in §4, applies as easily to the cases of one or both endpoints interval-

valued as to RR type integration. Hence, the program uses Taylor polynomials for integrals

of types RI, IR, and I1, even if the user has chosen Gauss or Newton-Cotes formulas for

use on type RR subintervals.

Using the same notation as in §3, g(x) denotes an indefinite integral (3.4) of f(x).

The one-panel form of the various integration formulas are then:

Type RI:

ala,b, a,b! (X - )n+1 jab

(6.13) fa f(x)dx C g(x) a F(I(a'b]) (n+ 1)! a

Type IR:

(X - C)n~' l
(6.14) -f( )dx C la,t,: F C a b ) (n + 1)! 1, l'
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Type 11:

j.jla,b]) (a M n la,b]

f (6.J5) f(x)dx C g(x + F,)(Ia,bI) (n +
J "(nb) 1 1

Each uses intersections of subsequent estimates and order adaptation as the RR algorithm

does.

Formulation of the multipanel forms for the above types requires some care. Suppose

"*" the nodes a = x 0 < x, < ... < xk = b are selected, and set Y1 = Lxj_,xi for i =

1,2,... ,k. For type II integrals, let j
(6.16) lyf = f (x)dx,
,f .

* which is symmetric about 0. If s, t E Y1, then

* (6.17) f f(x)dx E Ig, f _ k'i f.

" If sE Yi andtE Yj with i<j,then

f f(x)d= J f (x)dx + f(x)dx +'. + f(x)dx
xi+ J-

(6.18) E f(x)dx + f(x)dx +"" + f, f(x)dx

k
i J~i f

- C Ez l, f.

-. Hence,

ja,bJ k
/(6.19) fJ(x)dx Cf (x)dx.
Jlab=

The subintervals Yi are chosen by the same subinterval adaptive strategy as used for type

"" RR integrals. Thus, the algorithm for type 1) integrals is the same as for type RR. except

"" that the integral on each subinterval is computed using the one-panel type II rule, equation

*(6.15), with intersection.
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,I.

iI

The multipanel rules for types RI and IR do not lend themselves to subinterval adap-

tation. By definition,

f a'5]f(x)dx faff(x)dx t E [a,b]}

U faLt f()dx it E Yi}

(6.20) = f (x)dx

+ f(x)dx + f(x)dx+

Sa
+ f(x)dx + f(x)dx ±* + j f(x)dx

Z Y'I k-i

Once the endpoints of a subinterval are chosen, that subinterval can be subdivided only

with great difficulty. We observe that

rla,bIj r Iab]
(6.21) ] f(x)dx C f (x)dx,

fa la,b]

so the type II algorithm gives bounds using adaptation. If those bounds are not small

enough, then we apply the algorithm given by equation (6.20) using a fixed stepsize equal

to the smallest stepsize chosen adaptively by the type II algorithm.

Type IR integrals are done similarly.

In the general case of the integral (6.3), the allowable tolerances and the maximum

. number of function evaluations must be apportioned among three distinct, independent

integrations. These are given in proportion to the width of the respective subintervals. If

r(X,) denotes the tolerance allowed on the subinterval Xi, r* is the tolerance remaining,

then

(6.21) (Xi) = r * (X-)

T(X2) w(X)

If the integral on the first subinterval is narrower than its share of the total tolerance

requires, then the tolerances on the other subintervals are relaxed so that the total tolerance

24
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can be met more efficiently. On the other hand, if the integral on the first subinterval

is a little too wide, then the integrals on the remaining subintervals can sometimes be

commuted accurately enough that the total tolerance can still be satisfied.

7. Implementation Details

It follows from the above discussion that realization of adaptive, self-validating quadrature

routines on a computer requires that the following features be supported:

(i) Interval computation (arithmetic operations and standard library functions).

(ii) Subroutines for automatic generation of Taylor coefficients.

(iii) Accurate scalar product of interval vectors (to minimize width due to roundoff

error).

The program INTE [9] was written in FORTRAN for the Sperry 1100, on which

only (i) 125] and (ii) were supported. As mentioned above, INTE performs self-validating

numerical integration without adaptation. The microcomputer language Pascal-SC 122]

and the ACRITH package for the IBM 370 series of computers support (i) and (iii), to which

the routines (ii) have been added. The implementation described in 161 for Pascal-SC is

immediately adaptable to ACRITH. The program described here is written in FORTRAN

for use with ACRITH. In particular, the following operators and library functions are

supported:

+ SIN SINH EXP

COS COSH LOG=LN

, TAN TANH LOG 10

/ COTAN=COT COTANH=COTH ERF
** constant ASIN ASINH ERFC

ABS ACOS ACOSH GAMMA

SQR ATAN ATANH LGAMMA

SQRT ACOTAN=ACOT ACOTNH=ACOTH
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The Taylor series terms Fn(C,H) and Fn(X,H) are calculated by using the well-

known recurrence relations 1151, 116j, ;191 for the operators and functions given above. In

this application, the "point" of expansion and the stepsize are interval-valued to give the

desired inclusions, but the recurrence relations remain the same. It is possible for the user

to augment the list of library functions given above if the required recurrence relation for

Taylor coefficients of the new function is known.

Given an integrand of the type considered, for example,

(7.1) f(x) 4

the program first parses it into a code list 119]:

Operator Operand I Operand 2 Result

SQR x (=Templ) Temp4

4 1 (=Temp2) Temp4 Temp5

/ 4 (=Temp3) Temp5 F

In order to compute the series for f expanded at C with stepsize H, this code list is

interpreted to obtain the sequence of calls

Tempi := (C,H) {The series for x.}

Temp2 := (1) {Constant series.}

Temp3 := (4) {Constant series.}

Call ITSQR(Templ.Temp4)

Call ITADD(Temp2.Temp4,Temp5)

Call ITDIV(Temp3,Temp5,F).

The result is an array which contains the interval-valued series for f and an indication of

how many terms were computed. For example. the subroutine ITSQR(U, V) computes the
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series for V = U1, given the series for U, by means of the recurrence relations

2 * ZUj * j + ISQR(Ui ), i odd,

(7.2) Vi i/2

2 * >1Uj * Ui-j1 i even,
j=1

where Vi = Vi(C, H) and Uj = U,(C, H) denote the ith Taylor coefficents of U and V,

respectively [19], p. 49. The interval function ISQR computes ISQR(X) = X 2 instead of

X X, which is preferable in general, since, for example, 1-1, 112 = 10, 11 while [-1, 1]

1-1,11 = [-1, 1]. The parsing and interpretation at runtime described above is unnecessary

in Pascal-SC, because the compiler generates the required code [6].

The interval Taylor coefficients F1 (X, C), F2(X, C), ... are maintained in a record-like

structure. If "F" is the name of the function being expanded, then

LF Index of last known nonzero term;

MF Index of last known term;

OFL Vector of series terms-left (lower) bound;

OFR Vector of series terms-right (upper) bound.

The designations for other variables replace "F" in the above.

The algorithms used depend on whether the endpoints of the interval X of integration

are elements of S, that is, machine numbers, or whether they are intervals. The basic

algorithm is for the case X = la, b] E IS, and is called the RR (REAL-REAL) algorithm:

1. Compute the integral on [a, bl;

2. Add [a, b] to the list of subintervals;

3. Loop

4. Find the subinterval on which the width of the integral is largest;

5. Bisect it;

6. Compute the integral on the left subinterval;
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7. Add the left subinterval to the list;

8. Compute the integral on the right subinterval;

9. Add the right subinterval to the list:

10. Compute the integral on la, b] by summing the integrals on all the subintervals;

11. Exit when accuracy tolerance is met;

12. Exit with warning when

13. no further improvement in accuracy is possible,

14. or M function evaluations are exceeded;

15. End loop.

Each subinterval X is maintained in a data structure of the following form:

XA Left endpoint of the subinterval;

XB Right endpoint of the subinterval;

OPTORD Order of the derivative used to compute the remainder;

WIDINT Width of the integral on this subinterval;

SINT Interval-valued integral on this subinterval;

WEGHT Vector of interval valued

weights (Gauss and Newton-Cotes),

stepsize (Taylor);

FNVAL Vector of interval-valued

function values (Gauss and Newton-Cotes),

series terms (Taylor);

FNTRN Vector of interval-valued

function values (Gauss and Newton-Cotes),

series terms (Taylor),

including remainder terms.

At steps 1, 6, and 8, the integral is computed on the subinterval jXA,XBI using one-

panel versions of Gauss, Newton-Cotes, or Taylor polynomials as outlined in Sections 2 and
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3. The weight vectors and functions are arranged in the vectors WEGHT and FNTRN,

respectively, in such a way that the interval inclusion

(7.3) J = WEGHT, * FNTRN,
i

of f f(x)dx is computed as a single inner product. Similarly,

(7.4) Rf = WEGHT, * FNVALi.

At step 13, if J C Rf, then the loop is exited. In this case, further reduction of the width

of the truncation error cannot reduce w(J). For Gauss and Newton-Cotes formulas, SINT

is used only to give WIDINT. For Taylor polynomials, -i SINTi is intersected with (7.3).

SINT, is computed using the intersection principle discussed at the end of §3. For a few

subintervals, -i SINTi is narrower than (7.3), while the situation is usually reversed for a

large number of subintervals, because (7.3) uses the accurate scalar product.

The arrangement of subintervals in the arrays listed above must be relatively straight-

forward to allow J to be computed by a single scalar product operation. Each iteration of

the loop from step 3 to step 15 removes one subinterval from the list and replaces it with

two subintervals. Subintervals are not otherwise deleted from the list. Hence, the follow-

ing simple allocation scheme works: On the ith pass through the loop, the information

about the left subinterval is stored in the locations previously used by its parent, and the

information about the right subinterval is stored in the (i + 1)st locations, following the

already computed values. Hence, insertion requires no searching. The widest subinterval

is found at step 4 by a sequential search of the array WIDINT(I..i).

By contrast, QUADPACK [17] maintains its list of pending subintervals in sorted

order, so no search is necessary for the next subinterval to be processed. However, new

subintervals are inserted at locations found by a sequential search, followed by changing

pointers to all following entries in the -list. For each subinterval processed, the program

does one sequential search, while QUADPACK does two. In addition, QUADPACK uses

two sets of pointer adjustments.
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For integration using Taylor polynomials. the maintenance of list of subintervals is

somewhat more complicated, because the program reuses the series which it has previ-

iusly computed. To illustrate the ideas, consider the first execution of the loop at step 3.

At that point, the list of subintervals contains only one: X = ja, b] itself. FNTRN contains

OPTORD- I terms of the series for f expanded at c = (a + b)/2 and the truncation error

term involving F(OPTORD)(X) given by equation (4.6). Provided that the requested tol-

erance exceeds the noise inherent in the function evaluation, a stepsize h can be computed

which is small enough that the requested tolerance per unit step is satisfied on the interval

[c - h,c + hi. Notice that if a relative tolerance is requested, then this requires a current

estimate for J. The value of the integral on this subinterval can be computed at a cost

proportional to OPTORD, instead of a cost proportional to OPTORD2 , which would be

required to generate J directly by using the recurrence relations for f. Following this, the

two subintervals la,c - h] and Ic + h, b] are processed directly. Consequently, this method

breaks the subinterval of integration into three parts, rather than bisecting it.

Thus, for integration by Taylor polynomials, step 5 of the RR algorithm is replaced

5y

5.0' Compute h such that the tolerance is satisfied on [c - h,c -4- h];

5.1' Compute the integral on :c - hc + hl from information in FNVAL;

5.2' "left subinterval" := XA. c - hi;

5.3' "right subinterval" := IC + h, XB].

The middle subinterval Ic - h, c + h] is maintained on the list of subintervals so that

ts contribution to J is included in the scalar product in (7.3). This has the helpful side

ffect that h can be chosen somewhat optimistically. If the choice is too optimistic, then

- h, c + hl will be selected later for further processing as the worst subinterval, at which

ime it will be broken into three parts. One of the new subintervals will occupy the place

f the parent interval in the list maintained, while the other two will be added to the end

f the list.
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A further refinement could be implemented. The stepsize h computed at step 5.0' has

the following property: On each subinterval of length 2h which is contained in IXA,XBj,

the use of a Taylor polynomial of degree OPTORD- I yields an integral which satisfies the

requested tolerance. The integration on such a subinterval can be done with half the usual

work. No series for the truncation error needs to be computed because the truncation

error can be bounded by using the global remainder term on [XA,XB]. If IXA,XB can

be covered by a few subintervals of length 2h, then this could be done, and division

into three parts would be needed only when the middle part is relatively small. This

refinement could improve the efficiency of the program. However, the improvement would

likely be modest, because the advantages of intersecting subsequent estimates on each

small subinterval would be lost, and the number of subintervals added to the list would

no longer be constant. The program also does not reuse function evaluations required by

Gauss or Newton-Cotes formulas, although it could be modified to do so.

8. Numerical Examples

We give four examples to illustrate the accuracy and the reliability of the program. All

computations were done in double precision on an IBM 4341 computer, using calls to

ACRITH routines for all necessary interval calculations, including scalar products.

Example 1.1 j - jdx.
Interval bounds for the answer can be computed in three ways:

(8.1) 1 = Iog(I - 0.6) - log(1 - 0.7),

(8.2) 1 = log(4/3),

or by adaptive, self-validating quadrature.

Neither 0.6 nor 0.7 are machine numbers, so they are converted to intervals which

are one machine number wide. All three methods give the interval 10.2876820724517808.
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876820724517811j, but the results are 20, 13, and 14 machine numbers wide. respec-

dly. That is, the program is capable of accuracies comparable to evaluation of the

dytic expression for the answer. This result required 43 equivalent function evaluations

18 subintervals. In order to appreciate the accuracy achieved by the program, we must

sider some details at the level of machine numbers. If (8.1) is evaluated without sim-

ication using interval calculations, the result is the hexadecimal interval IZ 4049 A588

)3 6E41, Z 4049 A588 44D3 6E55], which is 20 machine numbers wide. Using (8.2), the

4 hexadecimal digits are 1Z... 6E45, Z ... 6E521, which is 13 machine numbers wide.

adaptive, self-validating quadrature program gives JZ ... 6E44, Z ... 6E521, which is

nachine numbers wide.

Example 2. J ./xdx 16 (see §5.1).
3 

This example illustrates the order adaptation required to handle the nonexistance of

). The program gave the interval 15.33333 33333 27, 5.33333 33333 36J. It stopped when

d used 400 effective function evaluations on 226 subintervals. Most of the subintervals

clustered near the origin. Away from 0, as many as 13 series terms were used.

j {0, x <0.3, 'g

Example 3. f f(x)dx, where f(x) =03
1 x < 0.3.

This example illustrates integration of a simple discontinuous function. The parser

not accept a piece-wise definition, so this function was coded by hand. Table 1 shows

esults for tolerances 0.0 and 1.OE-15, and for recognizing that the function has a

larity on the interval of integration.
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Width of Function Subintervals

Integral Evaluations

Tolerance = 0.0

10, 1] 2.50E-16 218 146

10, 0.3] + [0.3, 11 2.78E-17 22 29

Tolerance = 1.OE-15

10, 1] 7.77E-16 194 130

[0, 0.3] + 10.3, 1] 1.39E-16 10 5

Table 1. Integrating a Discontinuous Function.

As is usually the case, the program performs much better when the user recognizes

the presence of a discontinuity. The performance would be even better if the discontinuity

occured at a machine number. Notice that the cost of requesting the program to do the

best it can (tolerance = 0.0) is only slightly more than the cost when a lesser tolerance

is prescribed. The table shows more subintervals than evaluations because evaluating a

series which is - 0 is not counted as an evaluation.

Example 4. 1 _ 2dx.

This example illustrates the performance of the program as the integrand varies from

very smooth to being undefined at a point in the interval of integration. These calculations
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done in single precision with an absolute error tolerance request of 1.0E-5.

Error Function Maximum Absolute

Alpha Code Evaluations Subintervals Order Error

0.00 0 2 2 3 0.0

0.05 0 8 2 20 4.4E-16

0.10 0 8 2 20 1.8E-14

0.15 0 8 2 20 6.6E-12

0.20 0 8 2 20 7.8E-10

0.25 0 5 2 15 4.1E-06

0.30 0 15 6 15 1.9E-10

0.35 0 12 6 13 4.5E-08

0.40 0 12 6 13 1.8E-07

0.45 0 21 10 15 6.1E-08

0.50 0 19 10 14 1.4E-07

0.55 0 16 10 12 7.9E-06

0.60 0 24 14 12 2.4E-07

0.65 0 35 18 15 6.4E-08

0.70 0 29 18 12 5.0E-06

0.75 0 38 22 12 1.3E-07

0.80 0 48 26 15 6.6E-08

0.85 0 43 26 12 7.5E-06

0.90 0 62 34 15 6.8E-08

0.95 0 73 42 14 1.2E-07

1.00- 66 254 150 8 3.2E-01

1.05 67 2

Table 2. Performance Profile.

n error code of 66 signals that the program was unable to meet the requested tol-

e. while 67 means that it was unable to evaluate the integrand. As the problem

ne more difficult, the program required more effective function evaluations and more

ervals.

3

34

..- ......-.. '..'.-_.,'-.'...-."..'..'.',.. . ". . . -'...-........-.'.....................,-.....,......-...,..................-.

• '.-.'..-.'''-." .- ).>'..--:."-.-a"',' - --.'--- --. . -. . . . ..-.,"-' .. . . . .. -.-. . ' .. .'-.-..- ..- ..-



4

_1

References

G. Alefeld and J. Herzberger. Introduction to Interval Computation, tr. by J. Rokne.

Academic Press, New York, 1983.

Carl de Boor. On writing an automatic integration algorithm, pp. 201-209 in Mathe-

matical Software, ed. by John R. Rice, Academic Press, New York, 1971.

Carl de Boor. An algorithm for numerical quadrature, pp. 417-449 in Mathematical

Software, ed. by John R. Rice, Academic Press, New York, 1971.

Ole Caprani, Kaj Madsen, and L. B. Rail. Integration of interval functions. SIAM J.

Math. Anal. 12, no. 3 (1981), 321-341.

G. F. Corliss and Y. F. Chang. Solving ordinary differential equations using Taylor

series. ACM Trans. Math. Software 8 (1982), 114-144.

G. F. Corliss and L. B. Rail. Automatic generation of Taylor coefficients in Pascal-

SC: Basic applications to ordinary differential equations. Transactions of the First

Army Conference on Applied Mathematics and Computing, pp. 177-209. U. S. Army

Research Office, Research Triangle Park, N. C., 1984.

P. J. Davis and P. Rabinowitz. Methods of Numerical Integration, 2nd ed. Academic

Press, New York, 1984.

Julia H. Gray and L. B. Rail. A computational system for numerical integration with

rigorous error estimation. Proceedings of the 1974 Army Numerical Analysis Confer-

ence, pp. 341-355. U. S. Army Research Office, Research Triangle Park, N. C., 1974.

Julia H. Gray and L. B. Rail. INTE: A UNIVAC 1108/1110 program for numerical

integration with rigorous error estimation. MRC Technical Summary Report No. 1428,

University of Wisconsin -Madison, 1975.

Julia H. Gray and L. B. Rail. Automatic Euler-Maclaurin integration. Proceedings

of the 1976 Army Numerical Analysis and Computers Conference, pp. 431-444. U. S.

Army Research Office. Research Triangle Park, N. C.. 1976.

35

i~ i2 il -::i' ~i~l" - i" ii- '-il i"i .. ."...-..............-....---'. "..-i. i+ . - "'.i..-ii.i"i..-
"°-+ °o- +. +" °".+ - o- ~o'. ,o+ o°..*+°°.+'.°%°. ,'.............................................................."..... .° .fo o * .
• °° +°d~o ". o °.oO°-..°.o - ,.°, -". o++o O°'.++. oO . .....-.................. •".,..................o..•......o..................."..o



11. U. W. Kulisch and W. L. Miranker. Computer Arithmetic in Theory and Practice.

Academic Press, New York, 1981.

12. U. W. Kulisch and W. L. Miranker (Eds.). A New Approach to Scientific Computation.

Academic Press, New York, 1985

13. M. A. Malcolm and R. B. Simpson. Local vs. global strategies for adaptive quadrature.

ACM Trans. Math. Software 1, no. 2 (1975), 127-146.

14. R. E. Moore. The automatic analysis and control of error in digital computation based

on the use of interval numbers, pp. 61-130 in Error in Digital Computation, Vol. 1,

ed. by L. B. Rail. Wiley, New York, 1965.

15. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966.

16. R. E. Moore. Techniques and Applications of Interval Analysis. SIAM Studies in Ap-

plied Mathematics, 2, Society for Industrial and Applied Mathematics, Philadelphia,

1979.

17. R. Piessens, E. de Doncker-Kapenga, C. W. UTberhuber, and D. K. Kahaner. QUAD-

PACK: A Subroutine Package for Automatic Integration. Springer Series in Compu-

tational Mathematics, No. 1. Springer, New York, 1983.

18. L. B. Rail. Optimization of interval computation, pp. 489-498 in Interval Mathematics

1980, ed. by K. L. E. Nickel, Academic Press. New York, 1980.

19. L. B. Rail. Automatic Differentiation: Techniques and Applications. Lecture Notes in

Computer Science, no. 120. Springer, New York, 1981.

20. L. B. Rail. Integration of interval functions 11. The finite case. SIAM J. Math. Anal.

13, no. 4 (1982), 690-697.

21. L. B. Rail. Representations of intervals and optimal error bounds. Math. of Comp.

41, no. 163 (1983), 219-227.

22. L. B. Rail. An introduction to the scientific computing language Pascal-SC. Transac-

tions of the Second Army Conference on Applied Mathematics and Computing, pp.

36

.... -"..... ", ". "-4"-' .. . """

....-..-... ..... '.-...-. ..-. . . .,-....
.- -.- .'.'.."-'. .. .. . .. . . 4..'." "..". . 4. .

,-...,. %"....'....'... .' .. o,- .r , ... ,,- * . .,. ,-.. ., ,,-..,.,",,, .'. .. -, ... '. . ' .. . . . - . '. - . ,



117-148. U. S. Army Research Office. Research Triangle Park. N. C., 1985.

*23. J. R. Rice. A metalgorithm for adaptive quadrature. J. A CM 22, no. 1 (1975), 61-82.

24. A. H. Stroud and D. Secrest. Gaussian Quadrature Formulas. Prentice-Hall. Engle-

wood Cliffs, N. J., 1966.

25. J. M. Yohe. The interval, arithmetic package. MRC Technical Sumnmary Report No.

.1755, University of Wisconsin-Madison, 1977.

37



SECURITY CLASSIFICATION OF THIS PAGE (li"eon Data gntereo.

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER -. GOVT ACCESS, NNO a IP~zNT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TPEO REPORT & PERIOD COVEREDSummary Report - no specific j
ADAPTIVE, SELF-VALIDATING NUMERICAL QUADRATURE reporting period

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(d) S. CONTRACT OR GRANT NUMBER(e)

George F. Corliss and L. B. Rall DAAG29-80-C-0041

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA 0 WORK UNIT NUMBERS

Mathematics Research Center, University of rk UNue 3MRI Work Unit Number 3-

610 Walnut Street Wisconsin Numerical Analysis and

Madison, Wisconsin 53706 Scientific Computing
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office May 1985
P.O. Box 12211 13. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 37
14. MONITORING AGENCY NAME & ADDRESS(i/ different from Controllind Office) IS. SECURITY CLASS. (of this rwport)

UNCLASSIFIED
I a. DECLASSIFICATION/DowNGR.AING

SCHEDULE

" 16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

*'. 17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

III. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse eade if necessary and Identify by block number)

Numerical quadrature, Guaranteed error bounds, Automatic Differentiation,
Interval computation

20. ABSTRACT (Continue an reverse aide if necessary and Identify by block number)
Integrals of a function of a single variable can be expressed as the sum of

a numerical quadrature rule and a remainder term. The quadrature rule is a
linear combination of function values and weights, or the integral of a Taylor

polynomial, while the remainder term depends on some derivative of the integrand
evaluated at an unknown point in the interval of integration. Numeric- quad-
rature is made self-validating by using interval computation to capture voth the
roundoff and truncation errors made when using a given rule. Necessary deriva-
tires can be generated automatically by usina well-known recurrence relations

SIF ANRM3 1473 EDITION OF I NOV 6i IS OBSOLETE0D , . =,UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

-.-%.................. . I... .. -.- , , -. . '- • . • . . . , . .. • - .. % % . , •. ., ,. % %'
,. . ," .. , " . . .. . .. ... .. .. .. '. '. '. ," .. . ....... .... . .. ............... .. . --" ... . - -" " .. . . .''

" : -• " ", 't ' " ; '{ °; ';'',' ',',' ' " ',...."".".. . .. . . . . .... . . .'....'.... . . . ... .-. "-.".



,. R TR R

20. for Taylor coefficients. In order for quadrature methods of this
type to be accurate (in the sense that small intervals containing the
exact result are produced) and efficient (to obtain results of given
accuracy in a reasonably short time), an accurate scalar product and
an adaptive strategy are required. The necessary scalar product and
support for interval arithmetic are provided in Pascal-SC (for micro-
computers) and ACRITH (for IBM 370 computers). The adaptive strategy
chooses the subintervals of integration and the order of the quadrature
formula used in each subinterval on the basis of guaranteed, rather
than estimated, information about the error of the numerical integration
in each subinterval. The program described in this report implements
standard Newton-Cotes, Gaussian, and Taylor series methods for numerical
integration. Ways to handle singularities are discussed, and comparisons
are given with a standard numerical integration method.

o



77

FILMED

9-85

DTIC
- .-, - ... .-'- A . . . .A'. " -. .-" ' -. -: : -._- 7 , " " : " ." ' '


