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wToïTÏÏÂ I», li„„r or non.to rcsraton 

are observations, each subject to random error greater in number thin ?h °r ^ ,ntlePcndent variables. Given 
on the dependent variable and the related values of the indenenHen? th PMa.Tteru "lthe reSression equation, 
or may also be subject to random error Related nroblems ire th va_riable(s), which may be known exactly 
tendency and dispersion of the observations The best Solutions choos'"e the measures of central 
Jion of the random errors. If one assumes ,hm the val ,h n™ T*'™ depend upon ,he distr¡bu- 
Jnd that the errors in the observadonsTn the denenden °fr ^.,ndePCI7den7 variable(s) are known exactly 
inown that the mean is the best measure of cLÎaTteX distributed, then it is well 
dispersion and the method of least squares is the best method’of 5,;. dard dcv'.al‘on is the best measure of 
lions lead to different choices. Most practitioners haie mnded m n ^’ i™85'0".^nation. Other assump¬ 
to worry about the consequences when it is not justified Anmher nr^f he assuurnpt,°n of normality and not 
by spurious observations (outliers) which come from dkiHh ^ problem arises when the data are contaminated 
deviations. Many methods haveleen proposed 7oT îéSneond v”1 dlffere"'means and/- 'arger standard 
After summarizing (chronologically) the voluminous liJrit„r8 ‘ ers or modifying them (or their weights), 
.he method of least squares Ld ntm™ of™l tendency and dispersion, 

author recommends a simple and reasonably .obus, set of pr^edures * ^ estimation> ,he 

ï L 1. Introduction 
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coordinates are pairs of associated vaines of .wo re,„ed vanafe 

as far as Galiieo Galilei (1632). Tins one may wish .0 find 
finding the best linear équation in wo va three-dimensional space) or in more 

r=r f ä Ss^rr 
rr^rÄ^”ofs^. Statisticians speah of these 

problems as those of linear and non-linear regression. ceritral tendency and the best 
p The problems of determining the bes, problem of 

linear or non-linear regression equation "e ' rij.m Tll(. vl,utl0„s 0r all three problems 
choosing the best measure of \anabil y (deviations of the observed values 
depend upon the distribution o tie error^ b d of statistical theory which treats 
from those predicted by the regression equ‘lt «n)' Tl c J dy f f ,lowi sections we shall 
all these related problems is called the theory -J f0 the present day. 

trace the development of the theory of er nineteenth century when it was first 

eminetiM is'deserve^aniíwhen'other'rrmthcds'are theoretically”uperior to the method 

squares. 

r-sriîïr:,-i: 
oti“^ rr r=,nïïin«^ 

observations were exact, the distance cou mirine the observers in all possible ways 
observers, and the 78 determinations ma e ^ _ sub¡ect to error) 78 different distances 

would all give the same result. Since t e o se^ ranging from a value less than the radius 
of the star from the centre of the earth ^ impossible GaUleo states 

of the earth to infinity and beyond. observers being capable, and having erred 
(p. 290 of the English translation)^ corrected for us to get the best possible information 
for all that, and their errors nee mg apply the minimum amendments 
from their observations, it from impossi- 

and smallest corrections that we J ^ statement we see the beginnings of the theory 

of errors^ wh“pu ÄrmineYhe troth from inconsistent observations by minimizing 

"ÄÄ ÍÂ m—"frm^piob^ 

sror^ie eir ,hpe 
b„, does “S'^ttonnílbLÍMayer (1750), working independently, developed 

Leonhard Euler (1749) ana jonann ' for fitting a linear equation to observed 
what has come to be known as the Method of Ave ages tor fitting * as there 

data. In this method the observational to the values of (one of) 
are coefficients to be determine , e ivi^ values of this variable being grouped 
the independent variable(s), those aving g TheM the equations in each group are 

ÄÄ wS iÄrÄng to each subset the condition of zero sum of 
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residuals inherent in the method of Cotes for equal uncertainties of the observations. The 
resulting equations, whose number is equal to the number of coefficients to be determined, 
are then solved simultaneously. Mayer gives a numerical example in which he uses 27 observa¬ 
tions on the position of a moon spot to write 27 equations each containing three unknown 
quantities (the coefficients in the equation to be fitted), which he divides into three groups of 
nine equations each. Then he adds all the equations in each group and solves the resulting 
three equations simultaneously to obtain the three unknown coefficients. A drawback of 
this method is that the results depend on the way in which the observational equations are 
divides into subsets and are therefore somewhat arbitrary and subjective. Euler (articles 122- 
123 of the cited work) is also credited with being the first to use the minimax principle (mini¬ 
mization of the maximum residual error) for solving a redundant system of linear equations. 

Christopher Maire and Roger Joseph Boscovich (1755) report on the results of an expedition 
undertaken by the two authors under the auspices of Pope Benedict XIV to measure two 
degrees of meridian and correct the map of the Papal State. On pages 499-501, the author 
(Boscovich) attempts to determine the best value of the ellipticity of the earth from five 
measurements of degrees of meridian (the new one by Maire and himself reported earlier in 
the volume and four others) which he considers most reliable among a large number of 
available measurements. If the earth were exactly an ellipsoid of revolution and if the measure¬ 
ments were perfectly accurate, any two measurements of degrees of meridian made at different 
latitudes would determine its ellipticity exactly. But because the measurements are subject to 
error, each of the 10 pairs of measurements yields a different value of the ellipticity, which is 
directly proportional to the excess of the polar degree over the equatorial. If the ellipticity 
is computed from the arithmetic mean of all ten excesses, the result is 1/255, but if the two 
most discrepant values of the excess (one of which is actually negative) are discarded and the 
ellipticity is computed from the arithmetic mean of the eight remaining ones, the result is 
1/195. Boscovich gives both of these results, but is not satisfied with either. 

Thomas Simpson (1756) points out that the practice of taking the mean of a number of 
observations, while common among astronomers, has been questioned by some persons of 
considerable note who have maintained that a single observation, taken with due care, is as 
reliable as the mean of a great number. In order to refute that position, he determines the 
distributions of the mean errors of // independent observations from a discrete uniform 
(rectangular) distribution and from a discrete isosceles triangular population. He then 
compares these distributions with those of single observations from the same populations, and 
shows that the probability is less that the error of the mean of n observations equals or exceeds 
a given value than that the error of a single observation equals or exceeds the same value, 
the more so the greater the value of n. 

Boscovich (1757) summarizes the measurement of a meridian arc near Rome and re¬ 
evaluates the data on this and previous measurements given by Maire and Boscovich (1755). 
He proposes for the first time two criteria for determining the best-fitting straight line y - 
a + bx through three or more points: (1) the sums of the positive and negative residuals (in 
the ^-direction) shall be numerically equal; and (2) the sum of the absolute values of the 
residuals shall be a minimum. His first criterion requires that the best-fitting straight line 
pass through the centroid (x, ÿ) of the observations, whose coordinates are the arithmetic 
means of the x’s and of the y's, respectively. The second criterion is then applied subject to 
the restriction imposed by the first. He proceeds to apply these criteria to the data of Maire 
and Boscovich but gives no indication of the method of solving the resulting equation for 
the best value of the slope b. 

Simpson (1757) repeats the material of his earlier paper, with two notable additions. At 
the beginning he states explicitly for the first time the assumptions that the error distribution 
is (1) symmetric (positive and negative errors of the same magnitude are equally likely) and 
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(2) limited in extent (with limits depending on the goodness of the instrument and the skill 
of the observer). Four pages of new material at the end are devoted to extension to a con¬ 
tinuous isosceles triangular error distribution of the results previously given for the cor¬ 
responding discrete distribution. 

Boscovich (1760) gives (pp. 420-425) a geometric method of solving the equations resulting 
from the criteria stated in his earlier paper to the problem of finding the straight line y = a + bx 
ot best fit to a number of points which are not coilinear and applies this method to the same 
five meridian arcs, obtaining the value 1/248 for the ellipticity of the earth. This method is 
based on the ordered slopes 0, ^b^b^b^b, of the lines connecting the five observational 
points (.V,, >’(), /= 1, 2, . . ., 5 to their centroid (x, p). 

According to Sheynin (1966), three works of Johann Heinrich Lambert (1760 1765a b) 
.n,0,n.e)°ffwl'lch the present author has seen> contain: (1) the first general outline since Galilei 
( 632) of the properties of errors of observations; and (2) a rule for estimating the precision 
of measurements by comparing the means taken with and without the most extreme observa¬ 
tion. In the first work (1760), Lambert uses the principle of maximum likelihood for which 
he gives a graphical method of solution; Sheynin notes, however, that Lambert did not regard 
this principle as useful in practice and never returned to it. In the second work (1765a) 
Lambert states that the objectives of the theory of errors are to find the relations between 
errors, their consequences, the conditions of observation and the accuracy of instruments. 
He also undertakes a study of the errors of functions of the observations and endeavours to 
determine the “true value” of the observed quantity and to estimate the accuracy of the 
observations. He gives rules for fitting straight lines and curves by dividing the observations 
into groups and taking their centres of gravity instead of the original observations. In the 
third work (17656), Lambert gives a justification for preferring an arithmetic mean to a single 
observation, a derivation of a semicircular probability density function for the distribution of 
errors, and a statement of the minimax principle (minimizing the maximum residual error), but 
confesses that he does not know how to use this principle in a general and straightforward manner 

James Short (1763) endeavours to determine the parallax of the sun from observations, at 
various points, of a transit of Venus, on the basis of comparisons of (1) observed durations, 
(2) least distance at centres and (3) internal contact at egress. In doing so he makes exvensive 
use of what modern statisticians call trimmed means, i.e. means of the observations remaining 
after rejection of those differing from the mean of all the observations by more than a specified 
amount. r 

After solving several problems concerning averages of observations having discrete error 
distributions which are reminiscent of Simpson (1756, 1757), Joseph Louis Lagrange (1774) 
states and solves his Problem X : “One supposes that each observation is subject to all possible 
errors between the two limits p and -q, and that the facility of each error x, that is the 
number of cases in which it can occur, divided by the total number of cases, is represented 
by any function whatever of x designated by y- one requires the probability that the mean 
error of « observations shall be included between the limits r and -j.” He applies the result 
to two examples: (1) y = X (a constant) [uniform or rectangular distribution of error]; 
U) y K(p X ), (-p, p) [parabolic distribution of error]. He remarks (p. 228) that the 
latter appears to be “the simplest and most natural which one can imagine”. He also considers 
a Problem XI, which is essentially a third example of Problem X with y = Ä" cos x (-a/2 
ti/2) [cosine distribution of error]. In each case the mean error of n observations has smaller 
dispersion (the more so the larger ri) than the error of a single observation. 

Pierre Simon Laplace (1774) considers the problem of determining the best average of three 
observations. He proposes two criteria: (1) the average should be such that it is equally likely 
to fall above or below the true value; and (2) the average should be such that the sum of the 
products of the errors and their respective probabilities is a minimum. He demonstrates that 
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the two criteria lead to the same average. Let ^ *2 =£ Ar3 be the three observations, and let 

X*-X' an^ XiZX2' SUPPOSe that the true value is then the probability 
lllS t íh l ee observations (assumcd ‘o have come from a symmetric distribution^ 
rnl l í ! PO,ntí¡ ^11. and WiM b°fMAP-mP+<,-x), Where/(.r) is the probability 
[density] that a single observation will fall at a distance a: from the true value Now construct 
a curve whose equation is y = f(x)f(p-x)f(p+g-x). in order to satisfy Laplaces criteria it 
is necessary to find the value of .v such that an ordinate erected at the abscissa .v (measured 
from X,) divides the area under this curve equally. The solution depends, of course, on fix). 

aplace takes fix, - (m/2)e m|x| [the density function of what we now call Laplace’s first 
distribution] and finds the solution * = p+(l/m)ln[l+(1/3)^^-(1/3)^^] which an- 
proaches the arithmetic mean (2p+9)/3 as m-O and the median as w^oo; for 0<;«<oo 
it lies between the arithmetic mean and the median. ’ 

Daniel Bernoulli (1778) questions the practice common to astronomers of rejecting com¬ 
pletely observat.ons judged to be too wide of the truth, but assigning equal weights to all 
those retained He advocates rejection of observations only if an accident occurred which 
rendered an observation open to question. He proposes a semicircular distribution of error, 
and discusses the choice of diameter. As limiting cases, the choice of an infinite diameter 
leads to taking the arithmetic mean as the average of the observations, while diminishing the 
diameter as much as possible without contradiction leads to taking the midrange. He proposes 
what has come to be known as the method of maximum likelihood to determine the average 
of a number of observations. For two observations, the result is equal to the arithmetic mean 
For three observations, the result is greater than, equal to, or less than the 
arithmetic mean (xt+x2+x3)ß according as the median *2 is less than, equal to, or greater 
than the midrange (x,+^)/2. For more than three observations, the method becomes un¬ 
wieldy, since for n observations it requires solution of an equation of degree (2«-!) In 
commenting on Bernoulli’s paper, Euler (1778) proposes maximizing the sum of the fourth 
powers of the probability densities of the errors of the observations instead of maximizing 
their jproduct (the likelihood function). He advances certain unconvincing arguments for the 
use of his criterion instead of Bernoulli’s, and works out two examples based on real observa¬ 
tions. The really vulnerable part of Bernoulli’s method, as Isaac Todhunter (1865) has pointed 
out, ;s not the principle of maximum likelihood but the particular law of probability assumed. 

Laplace (1781) extends the theory given in his earlier paper to any number of observations 
and generalizes it to the case in which each observation may have a different law of facility 
of error. He states that one can make infinitely many choices of an average according as one 
impose5 various criteria, of which he enumerates four: (1) one may require that average such 
that the sum of the positive errors equal the sum of the negative errors [the arithmetic mean] • 
(2) one may require that the sum of the positive errors multiplied by their respective probabilities 
equal the sum of the negative errors multiplied by their respective probabilities; (3) one may 
require that the average be the most probable true value [Daniel Bernoulli’s maximum likeli¬ 
hood criterion]; or (4) one may require that the error be a minimum, i.e. that the sum of the 
products of the errors (taken without regard to sign) and their respective probabilities be a 
minimum. He «nows that criterion (4), which he regards as the fundamental one, is equivalent 
to criterion (2) He also shows that criterion (4) leads to the arithmetic mean and hence agrees 
with criterion (1), when the following conditions are satisfied: (1) the law of facility of error 
is the same for all the observations; (2) positive and negative errors of the same magnitude 
are equally probable; and (3) errors can be infinite, but the probability of an error x tends to 
zero as|x|-+00. 

u 785)’ in an artic,e on avcrages’ refers to the methods of Boscovich 
(1757, 1760) and Lambert (1765a) and gives fuller accounts of the memoirs of Lagrange (1774) 
and Daniel Bernoulli (1778), the latter differing somewhat from the published version. The 
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version published in 1778 but .he «hod of iikeMorjdjs no. - 

cenlrelTtheS«mkirelePIl!d'determine the cen.re of gravity of the area corresponding to the 
rrvatiot.“ "e Ih's point as the centre of a new senricrcle, and repeat the opera.,on untt, 

thUpre°t7^r^n^Ltri0rn:n" of ohservat.ons of two variahies. 

!íd V o o«^ testing the adequacy of the linear relation y - u + i>a b, firs, determ.mng 
* “nd ¿ ¿ os to minimi/c the maxinrun, absolute deviation from the htted straight bne, then 
rtpcidini» subjectively whether a deviation of this magnitude is consistent with the limits of 
lí Í rors to which the observations are susceptible. He gives a procedure for determining 

BtirTÄ 
hv B^övich 1757V Laplace develops an analytic procedure bared on these entena while 
the procedure used by Boscovich (17¿0| was geometric. Laplace applies both his methods to 
tu, on TenShs of degrees of meridian and on lengths of the seconds pendulum, bo h ot 
tliTch he ures to determine the earth's ellipticity. In the second volume of h,s two-volume 
trcaUse on celestial mechanics, Laplace (1799) summarizes the results of hts earto papere; 

. in nrnnnsinu the same two methods for determining the straight line y = a+b\ whi 
Ü.81*! tv tVrrpp or more points (x, y,) whose coordinates are pairs of related observations. 
0) minimizing the maximum residual; and (2) minimizing the sum of the absdute residuaU 
subject to the restriction that the sums of the positive and negative residuals shall be numerically 

Tlspard Clair François Marie Riche Prony (1804) gives a geometric interpretation of the 
, c , „„lap» /17001 applies them to actual data, and compares the results with 

teotofned by aîhird method (his own) based on the idea that the deviation to be expected 

should be proportional to the independent variable a:, or almost so. 
jean Trembley (1804), after brief mention of the work of Lambert, Laptace and Dame 

Bernoulli on tlufmost advantageous method of taking averages of observations, turns to t 
work of Lagrange (1774) on the same problem. He states that his purpose is to use combma- 
Tor a. theory ^obtain the same results which Lagrange obtained by the use of integral cal- 

èuîüs He suy “eeds in using combinatoriid theory to obtain résolu f»' 
lions which Lagrange found with the aid of differential calculus and Simpson (1756, 1 ) 
by series expansions. He does not treat the case of continuous error distributions, which . 

the only one for which Lagrange employed integral calculus. 

3, Eighty Years of Least Squares (1805-1884) 

Adrien Marie Legendre (1805), while no. the firs. 'a« 
first to Publish it. He starts with the linear form £ = a+bx+cy+..., mere a, o, c. 
ifnnwn coefficients which vary from one equation to another and x, y,... are unknowns which 
musTbe XSL by t^idition thaUhe value of £ reduces, for each ^-tion«rp 
or a verv small number. He derives the normal equations without the explicit use of calculus 
w ntulrip^ng the tor form in the unknown» by the coefficient of ureh of .heunknown, 

and summing over all the observations, then setting the sums equal to zero. If t * 
when substituted in the normal equations, produce one or more errors judged too large 
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be admissible, he recommends rejecting the equations which produced them, and determining 
the unknowns from the remaining equations. Though he offers no mathematical proof of 
the method of least squares, Legendre makes the following claim for its superiority: “Of all 
the principles which one can propose for this object, I think that none is more general, more 
exact, or easier to apply than the one which we have used in the preceding research, which 
consists in making the sum of the squares of the errors a minimum. By this means, a’sort of 
equilibrium among the errors is established which, preventing the extremes from prevailing, 
is most proper to make known the state of the system nearest to the truth.” [Translation by 
present writer of statements on pp. 72-73.] 

Puissant (1805) gives a theoretical discussion of the method of least squares, followed by 
an application to the determination of the ellipticity of the earth from measures of degrees 
of meridian. He mentions the method of conditional equations [method of averages] proposed 
by Mayer and the [Boscovich] method (preferred, he says, by Delambre) which gives “the 
least errors of latitude, half positive, half negative”. He also applies the method of least squares 
to the determination of the ellipticity of the earth from the lengths of seconds pendulums^ 
and compares the results with those obtained by Mathieu by minimizing the maximum 
discrepancy between observed and fitted values, as proposed by Laplace (1799), 

S van berg (1805), in the preliminary discourse of a book describing the measurement of a 
meridian arc in Lapland by Svanberg and three colleagues, compares the results obtained by 
applying the two methods proposed by Laplace (1799) to the determination of the earth’s 
ellipticity from 15 measurements of the length of seconds pendulums and of degrees of meridian 
by various observers at different latitudes. No mention is made of the method of least squares; 
it is reasonable to assume that, at the time of writing, the author had not heard of it. The same 
assumption is probably valid in the case of von Zach (1805), who expresses the opinion that 
little reliance can be placed on the arithmetic mean when it does not stand equally far from 
the extremes. He reviews the work of Lambert (1765a) and Daniel Bernoulli (1778), but 
expresses a preference for the modification of Bernoulli’s procedure due to Euler (1778), 
which he applies to data on terrestrial refraction and barometric pressure. 

Jean Baptiste Joseph Delambre ( 1806-10) gives a three-volume report on a vast undertaking, 
carried out under the auspices of the Académie des Sciences with the support of the French 
government, to establish the base of the metric system (1 metre = one ten-millionth of the 
distance from the Equator to the North Pole) by measuring the meridian arc between the 
parallels of Dunkerque and Barcelona (over 9°). On page 117 of the first volume Delambre 
places himself squarely on the side of those who never suppress an observation or assign it 
a smaller weight simply because it deviates from other observations of the same kind. On 
pages 92 and 110 of the third volume he compares values of the earth’s eccentricity (ellipticity) 
calculated from the observations of Delambre and Méchain by Laplace (1799), by Legendre 
(1805) and by himself. Laplace [by minimizing the maximum deviation] obtained the value 
1/150; Legendre [by the method of least squares], 1/148; and Delambre [by an unspecified 
method, probably that of Delambre (1813)], 1/139. However, by combining the observations 
of Delambre and Méchain with those made by Bouguer in Peru about 60 years earlier, the 
task force obtained the value 1/334, which agrees much better with results obtained from 
measurements of the length of a pendulum of known period and with those predicted by the 
theory of nutation and precession. This latter value was used in determining the length of 
the standard metre. 

Carl Friedrich Gauss (1806) claims priority in the use (though not in the publication) of 
the method of least squares in the following words (p. 184): “I still have not seen Legendre’s 
[(1805)] work. I have purposely not taken the trouble to do so, in order that the work on my 
method shall remain entirely my own ideas. Through a few words, method of least squares, 
which de Lalande let fall in the last History of Astronomy, 1805, I arrive at the supposition 
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,0f “'¡s fundamental theorem is also^mp^Td", UaentoTr^f 
of portion quoted by Mern'man (1877), pp 162-163] y ^ Sencire- [Translation 

anaiy,k r”m <"« "’«hod 
in the determination S ,7e eihp^ met di „ He'doi 1 '“S‘ Sq,,a,eS’ a"d ^ »».h 
ofthe ,too method, ho, mpo^^^r^d 

(.^r:n^Â~ an,d of 

observations]; (2) Given the observed nnsitirmc r. ^ • Cd ^°5- thc arithmet'c mean of the 
position of the point [Ans the centre of cravitv nf 'n S^aCe’t0 find the most Probable 
dead reckoning at sea, by Tn P°SÍtlons3; <3> To correct the 
previously used, which he hopes will be'abandonctll^Î) anSW7 differS fr°m a11 rules 
mentions that he has also used the same nrinrini , u T c°rrect a survey. The author 
the earth's ellipticity These last residí P P t0 determine the most probable value of 
(1818a)]. P y‘ heSC ,aSt reSUltS Were not Publisbed until ten years later [Adrian 

»y rirr ^ p“-'- »,*„ 
most probable value is their arithmetic mean u k " un^nown quantity Jr are given, the 

n*d b, him since ^95 (tsT, M "" meth°d °f ,eaSt S<lua^ 
Gaussian law of error If one dnec ^ ,., f°dows as a consequence of the 
2/ith powers of the errors for « = 1 2 Tut n aW’ he m‘8ht minimize the sum of the 
of their squares („ = 1) is Lplest LettinP0,?tS °Ut that minimizinH ^ sum 
by Laplace, the maximum e^TÒne S^nd “ 'T^' °S 
also mentions Laplace's other princinte first nr ” ,ve’ eSual in magmtude). Gauss 
the absolnte values of the deviaZs a mlS„P m y Boscovich. »f n>aldng the sum of 
proposed to minimize the sum of the absolute values nfth a.pp^rently unaware that Boscovich 
that the sums of the positivZud neua ^ 
restriction as one addZrUpte He dZ „m he sp“b “f ^ 
aware of it, tha, this ‘I rb0" ff !' lhoueh he "“y ^ been 
the arithmetic mean instead of from the median Th * SUm °f thC abso,ute deviations from 
the sum of the 2,„h powers ^” the ch^ IfT 
instead of the arithmetic mean th f the midrange as an average 

mMn^ftmd* klrewn^spUmlotl Th^the dishlbtrtion26: ^ 
pension 1/^ times that of the paTnt d^stribu^ T"8 haS mean ^ and dis- 
[which Laplace does not state explicitly] on the parent the°dS TT ßeneral conditions 
to normality as the sample size /increases As Eart (iCl 5“/°" tTP'e meanS tends 
greatly strengthen the justification given by Gauss flSOQt fo/t/ 0Ut’theSe results 
squares, especially when dealing with a laree nuiher nf USe °f the method of ,east 
Laplace shows that when the law of error is the normal la °b?iervatlonf; ,n a supplement, 
method” [Laplace (178111 the methnd r a aw’ bis own 'most advantageous 

(1778¾. and 0.77(¾ '."„'d The7U,Í7ZrJikeUhr7!. (l778)' ^ 
reference to either Legendre (1805) or Gauss nanov/ qUares [whlch he introduces without 

0fFrTedarTÏ7;b TT* 
Friedrich Wtlhelm Bes«, (,8,0, us» the m„hod 0f lœt squ„es to derermine ,h. orbit of 

-:. j 

u-,..mr -.. u ^' u;^. ; -w ■- .. ..^ . 
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a comet and Gauss (1811) uses it to determine the orbit of the asteroid Pallas. Gauss obtains 
12 equations involving six unknown corrections to the elements of the orbit. Because the 
nature of the observations which furnish the tenth of these equations does not inspire con¬ 
fidence. he discards that equation and determines the unknowns from the other 11. Merriman 
(1877), page 166, notes: “We find here for the first time the notation [a h] = a'b'+a"b" + 
d"b"' + ... and also the algorithm for the solution of normal equations by successive substi¬ 
tution, since universally followed in lengthy computations....” 

Laplace (181 la) considers, in his Articles VI and VII, the problem of choosing the average 
to take of « observations in order to correct an element already known approximately. He 
finds that the normal (Gaussian) law is the only one of the form /(x) = Ke~g(xl) where 
g(x2) is continuous, for which the arithmetic mean is the “most advantageous” in the sense 
of Laplace (1781). However, because of the rudimentary form the central limit theorem given 
by Laplace (1810), choice of the arithmetic mean is advantageous when the number of observa¬ 
tions is large or when one is taking the average of results each based on a large number of 
observations, and hence in these cases one may use the method of least squares, which Gauss 
(1809) developed from the postulate that the arithmetic mean is the best average of a number 
of observations. In his Article VIII [reprinted as Laplace (18110)], Laplace extends these 
results to the case of correcting two unknown elements [regression coefficients]. His analysis 
is already quite laborious for this case, but he indicates that the results hold for any number 
of unknown elements whatever. 

I ,aplace (1812), in his monumental work on the analytic theory of probabilities, summarizes 
the results of his study spanning almost four decades. Articles 20-24 of his Book II, Chapter 
iv, which is entitled “Of the probability of errors of the mean results of a large number of 
observations, and of the most advantageous mean results”, contain most of the relevant 
material. Articles 20 and 21, which deal respectively with the correction of one or two elements, 
already known approximately, by the aggregate of a large number of observations, and which 
contain Laplace’s “proof” of the method of least squares, follow closely the treatment of 
Laplace ( 181 la, 6). Article 22, which deals with the case in which the facility of positive errors 
is not the same as that of negative ones [the distribution of errors is not symmetric] follows 
Laplace (1810). Article 23, unlike the preceding ones, deals with the case in which the observa¬ 
tions have already been made. The idea of the “most advantageous” average as the abscissa 
corresponding to the ordinate which divides equally the area under the [joint] probability 
[density] curve [likelihood curve] of the observations goes back to two of Laplace’s earliest 
memoirs [Laplace (1774, 1781)]. The author also summarizes the results of the supplement 
of Laplace (1810) and gives a more straightforward proof than that of Laplace (181 la) of the 
fact that the normal law of error is the only one of the form /(x) = Ke~,(x2) for which the 
arithmetic mean is most advantageous. In Article 24, the author mentions various other methods 
of averaging observations, including the one proposed by Cotes (1722) and applied by Euler 
(1749) and Mayer (1750), and the one based on minimizing the sum of the 2nth powers of 
the deviations, which for n-*oo is equivalent to minimizing the maximum deviation, as 
proposed by Laplace (1786, 1799). He concludes that the best choice of method depends on 
the law of error when the number of observations is small, but that the method of least squares 
proposed by Legendre (1805) and Gauss (1809) is best whenever the number of observations 
is large. [The latter conclusion is unwarranted; see Lejeune Dirichlet (1836).] In the second 
supplement (first published in 1818), Laplace examines the method proposed by Boscovich 
(1757, 1760) [see also Laplace (1793, 1799)] based on minimizing the sum of the absolute 
values of the deviations, to which he gives the name “method of situation”. For an odd 
number of observations on a single variable, this method leads to the median as the best 
average, while his own “most advantageous method” leads to the arithmetic mean. By finding 
the respective probabilities that the two averages are in error by a given amount, he determines 
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a condition (on the law of error) under which the median is preferable to the arithmetic mean 
and. given the error law, explores the possibility of finding a weighted average of the two 
which is more precise than either. 

Delambre (1813) returns to the question [see Delambre (1806-10)] of determining the eccen¬ 
tricity of the earth from inconsistent observations on the lengths of meridian arcs. On page 608 
he advocates a method, which is probably the one he used in his earlier work, in the following 
words: “It seems that one should seek neither the least sum of errors nor the least sum of 
squares, but the least errors, half negative, half positive.” Since the least sum of absolute 
deviations is achieved when the deviations are taken from the median, in which case half the 
deviations are negative and half positive, it appears that the author, perhaps without realizing 
it, is advocating the Boscovich-Laplace method without the restriction that the sums of the 
positive and negative deviations be equal in magnitude, which requires that deviations be 
taken from the arithmetic mean rather than from the median. On pages 607-608, Delambre 
applies his method to the determination of the earth’s eccentricity from the Delambre-Méchain 
observations. 

Claude Louis Mathieu (1813-14) uses 13 measurements made by a Spanish expedition, 
composed of two frigates, at various points on the globe, on the length of a seconds pendulum, 
to compute, by the method of least squares, the eccentricity of the earth. He obtains the values 
1/323 2, 1/31 1-5 and 1/323-3 from the 9 points in the northern hemisphere, the 7 points in 
the southern hemisphere, and all 16 points, respectively. He also computes the eccentricity 
from 15 similar observations given by Laplace (1799), from which Laplace foundjthe values 
1/321-5 and 1/335-8 by minimizing respectively the maximum error and the sum of the absolute 
values of the errors (subject to the restriction that the sums of positive and negative errors 
be equal in magnitude). Mathieu finds 1/323-3 by the former method and 1/319-0 by the method 
of least squares. The maximum residual of 0-132 millimetre (well within the limits of error 
to which measurements of the length of the pendulum are susceptible) in the former case is 
attained at three points (the Equator and Lapland with negative signs and the Cape of Good 
Hope with positive sign) as required by theory. For the method of least squares, the maximum 
residual is +0-174 mm at the Cape of Good Hope. Mathieu remarks that there is a very small 
difference between the eccentricities obtained by the two methods. 

Legendre (1814) sets the stage for a quotation from pages 72-75 of his earlier work [Legendre 
(1805)] by stating that Laplace (1812?) has found by considerations based on the calculus 
of probabilities that the method of least squares should be used in preference to^all others 
to find the most exact average value of one or of several unknown elements among all those 
which are given by different observations. In so doing, he overstates, as Laplace himself and 
many later writers have done, the generality of what Laplace actually proved about the method 
of least squares, which is that the method of least squares is efficient for the normal error 
law and is consistent for other error laws satisfying certain conditions. 

Jan Frederik van Beeck Calkoen (1816) discusses the average value of a certain number of 
quantities or of separate observations. For several observations of a single quantity he advocates 
the use of the arithmetic mean. If one of the observations differs from the mean by an amount 
greater than the assumed limit of error, that observation is discarded, and the arithmetic 
mean of the remaining ones is taken. For observations on two related quantities, he proposes 
two methods of determining the best fitting straight line. The first, which he attributes to 
Lambert (1765a), involves dividing the points representing the pairs of observed (x, >’) values 
into two groups (as nearly as possible equal in number), one containing the points with the 
smallest abscissas and the other those with the largest abscissas, and joining the centres of 
gravity of the two sets of points. The other method is based onjthe use of the Boscovich 
criteria, which the author attributes to Laplace (1799). By taking x2 or ^x rather than x as 
the independent variable, the author obtains curvilinear regression equations of the forms 
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y = a + ß-*1 and y = a+ ^v/x as well as the linear regression equation of the form ^ = a + ßx. 
He advocates using that power of .v which gives the best fit in the sense that the sum of the 
absolute deviations of the observed points from the fitted curve is smallest, subject to the 
condition that the algebraic sum is zero. It is interesting to note that he makes no mention 
of the method of least squares, although the work of Legendre (1805), Gauss (1809) and 
Laplace (1812) was already widely known. 

Gauss (1816) points out that it is not necessary to know the precision /t[ = 1 /(7,/2, where 
a is the standard deviation] of the observations in order to apply the method of least squares, 
and that the relation of the precision of the results to that of the observations is independent 
of /j, but that the value of // is itself interesting and instructive. He then proceeds to give 
various methods of determining //, including methods based on the nth root of the sum of 
the nth powers of the absolute errors (deviations from the true value) for n = 1, 2, 3, 4, 5, 6, 
and an alternate method based on the median M of the absolute values of the errors. He 
shows that the method based on n = 2 gives the greatest precision for samples from a normal 
population, 100 observations for n = 2 yielding the same precision as 114 for n = 1, 109 for 
n = 3, 133 for n = 4, 178 for n = 5, 251 for n = 6, or 249 [actually 272 - see comments 
below] for the alternate method based on M, but notes that the last method and the one 
based on n = I are arithmetically more convenient. Although he gave the correct mathematical 
expression for the probable error of the median absolute error Af, Gauss made a mistake in 
calculating the value of the numerical coefficient. Several later authors, including Hauber 
(1830), Encke (1832-34) and Jordan (1869), have given the correct value, but it is interesting 
to note that the first two, writing during the lifetime of Gauss, did so without mentioning his 
mistake, which remains uncorrected in his collected works. 

Adrain (1818«) calculates the earth’s ellipticity by the method of least squares from data 
on the lengths of pendulums vibrating seconds at different latitudes given by Laplace (1799). 
He compares the results not only with those obtained by Laplace, based on the criteria of 
Boscovich ( 1760), but also with the results obtained by that method after correcting two errors 
made by Laplace. He finds that most of the discrepancy between Laplace’s results and his 
own is due to those errors. The corrected results of applying the Boscovich-Laplace method, 
based on minimizing the sum of the absolute values of the residuals subject to the restriction 
that the algebraic sum of the residuals shall be zero, differ by less than 1 per cent from those 
obtained by the method of least squares. In another paper, Adrain (1818//) uses the method 
of least squares to find the diameter of the sphere (7918-7 miles) which most nearly coincides 
in various specified peculiarities with the actual terrestrial spheroid, given measurements of 
degrees of meridian. 

In 1821 there appeared an anonymous paper whose authorship Czuber (1891«, 1899) 
attribute^ to Svanberg. The author gives a discussion, which is as much philosophical as 
mathematical, of the problem of finding the best average of a number of observations. He 
distinguishes between two cases, one in which the observations are all made on the same 
identical object and thus differ only because of errors of observation and the other in which 
observations are made on a quantity which is itself variable. He traces the history of the 
problem from the time when the arithmetic mean was used without question, through the 
period in which students of the theory of probability (among whom he mentions Boscovich, 
D. Bernoulli, Lambert and Lagrange) questioned its use, to the time when wide acceptance 
of the method of least squares developed by Legendre (1805) and Gauss (1809) led to the belief 
that the arithmetic mean is indeed the most probable value. He pleads for further examination 
of the question, raising objections to the use of the arithmetic mean when the observations 
are not closely bunched, especially if they are so asymmetric that there are many more on 
one side of the arithmetic mean than on the other, or when there is reason to believe that they 
are not all equally reliable. He mentions a number of other possible averages, such as the 
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n variables to a set of m observed points {m >n) so as to minimize (1) the maximum absolute 
deviation or (2) the average absolute deviation. Fourier gives, for the case « = 2, a geometric 
solution of the first problem which is equivalent to the analytic solution of a system of in¬ 
equalities. The latter can easily be extended to larger values of n. He states that the second 
problem can be solved in an analogous manner. Both are formulated as what we would now 
call linear programming problems, i.e. minimization of an objective function (the largest 
absolute deviation or the average absolute deviation) subject to constraints in the form of 
linear inequalities. The method used by Fourier has come to be known as Fourier’s method 
of descents. This method is also given in his posthumous book [Fourier (1831)]. 

Two memoirs by Poisson (1824, 1829), large parts of which are reproduced in a later work 
Poisson [(1837)] are, according to Merriman (1877), pages 175-176, a commentary on the 
fourth chapter of Laplace (1812). Merriman quotes Todhunter(1869) to the effect that Poisson 
confines himself to the case in which one element is to be determined from a large number 
of observations, but treats it in a more general manner than Laplace, dropping the assump¬ 
tions that positive and negative errors are equally likely and that the law of facility of error is 
the same for every observation. 

James Ivory (1825, 1826) gives four demonstrations of the method of least squares. His 
first paper is divided into three parts. In the first part he gives two of his demonstrations, 
neither of which is based on the theory of probability, which he considers irrelevant. In the 
second part he discusses the probability of errors, failing to recognize that the probability 
of any definite error for a continuous distribution must be an infinitesimal, and making no 
distinction between true errors and residuals. In the third part he attempts to show that the 
method of least squares cannot give the most advantageous or probable results unless the law 
of facility ot error is the normal law <¡> (x) = ce~hlxl. On page 165, he makes the following 
statement concerning the demonstration of Laplace (1812), Book II, Ch. iv, Art. 20: “... what¬ 
ever merit it may have in other respects, [it] is neither more nor less general than the other 
solutions of the problem”. Later authors have regarded Ivory’s demonstrations as unsatis¬ 
factory, and the present writer shares this opinion. Glaisher ( 1872) has analysed Ivory’s criticism 
of Laplace, which he regarded as a result of Ivory’s failure to understand the demonstration 
of Laplace. It appears to the present writer that Glaisher was guilty of the same fault. In 
modern terminology, what Laplace actually asserted in the article cited by Ivory [see also 
Laplace (1810, 181 la)] is that the method of least squares [s asymptotically most advantageous 
tor any error distribution which is well enough behaved so that its mean is asymptotically 
normally distributed. He did not claim to have shown that it is most advantageous [best] for 
any finite number of observations from a non-normal error distribution, but recommended 
it as advantageous [good] and computationally convenient whenever the number of observa¬ 
tions is large. Ivory’s second paper contains his fourth demonstration, regarded by Ellis (1844) 
as no more satisfactory and by Merriman (1877) as still more absurd than the previous ones. 

Georg Wilhelm Muncke (1825) gives an exposition of the method of least squares based 
largely on the demonstration of Gauss (1823). He proposes the use of the arithmetic mean 
of the observations remaining after those farthest from the mean have been excluded. Gauss 
(1828) gives a method of solving the normal equations which arise in carrying out the method 
of least squares. Whittaker and Robinson (1924) state that this method is substantially 
equivalent to reduction of a quadratic form to a sum of squares. 

Carl Friedrich Hauber (1830a) extends the work of Gauss (1816, 1823) on the estimation 
of the precision of observations to the case of s observations arising from populations having 
(possibly) different dispersions. The situation in which all come from the same population is 
included as a special case. He considers estimators based on the square root of the mean of 
the squares of the errors, the mean absolute error, and the median absolute error. He compares 
the precision of these estimators when the law of the facility of error is the normal (Gaussian) 
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lions. The details of this criterion and others proposed by later authors will be omitted. Rider 
(1933) gives an excellent summary of those proposed up to that time. 

Cauchy (1853«) maintains that his method of interpolation [Cauchy (1837)] can be used to 
determine several unknown quantities from a redundant system of equations, with results 
nearly as accurate as by the method of least squares. Bienaymé (1853«) argues, however, 
that the two methods are completely different and even that a contradiction exists. Cauchy 
(18536) maintains that in many investigations his method of interpolation is preferable to 
the method of least squares. Cauchy (1853c) claims that his method is the shortest, and 
that the method of least squares gives the most probable results only under certain conditions 
which are, according to Cauchy (1853i/, e), that the law of facility of error is the same for all 
the errors, that no limits can be assigned to the magnitude of an error, and that the probability 
of an error is proportional to Cauchy (1853/) shows that the most probable values 
may sometimes differ from those found by the method ol least squares. Bienaymé (18536) 
reviews some of Cauchy’s articles [Cauchy (1853¿, e,/)] and maintains that the mean sum of 
squares of errors is under all circumstances a measure of precision of the observations. Cauchy 
(1853(/) shows that the system of weights which makes the largest error to be feared in a mean 
as small as possible often differs considerably from that given by the method of least squares. 

Pafnutil L’vovich Chebyshev (1854) observes that if one wants the best polynomial approxi¬ 
mation (of a given degree) to a continuous function f{x) in the neighbourhood of a- = «, 
one should use the sum of the appropriate terms in the Taylor series expansion in powers of 
X — «, but that if one wishes to find the best such approximation in the interval («-6, a+/j), 
one should prefer another polynomial, whose maximum deviation from /(a) in the given 
interval is less than for any other polynomial of the same degree, as proposed by Poncelet 
(1835). If (7 is a polynomial of degree n with [/1+ 1] arbitrary coefficients, and if one chooses 
these coefficients so that the difference/(a) — (/, from a = a —6 to a = a+6, remains within 
these limits the closest to 0, he shows that the difference/(a)-(/ has the property that, 
among the largest and smallest values of the difference/(a)- (/ between the limits a = «-A 
and a = « + 6, one finds the same numerical value at least /i +2 times. The analogous property 
for the case of fitting a polynomial to a finite number of points was known already to Laplace. 
For the continuous case, Chebyshev gives a method of finding the abscissas of the n + 2 points 
where the absolute error should take its maximum value. This method and the theory of 
approximation based upon it are, for reasons that should be obvious, not applicable to the 
case of a finite number of points and hence not directly relevant to the present study. 

Joseph Bertrand (1855) offers certain historical and critical remarks on presenting a copy 
of his translation into French of the Latin memoirs of Gauss. An English translation by 
Hale F. Trotter ( 1957) has since been prepared from Bertrand’s French translation. 

Benjamin Apthorp Gould, Jr. (1855) gives tables for Peirce’s criterion which are more 
extensive than those of Peirce (1852) and include two more significant figures. He reworks 
Peirce’s two examples, and in one case concludes that only one observation should be rejected, 
whereas Peirce rejected two; however, Rider (1933) has pointed out that neither result is 
trustworthy, since Gould uses Peirce’s incorrect value of the standard deviation. 

Humphrey Lloyd (1855) advocates, in effect, the use of the midrange in averaging meteoro¬ 
logical observations. This average is still used by meteorologists today, the so-called mean 
daily temperature being the arithmetic mean of the highest and lowest temperatures recorded 

during a 24-hour period. 
George Bidwell Airy (1856), after studying the papers of Peirce (1852) and Gould (1855) 

on Peirce’s criterion for the rejection of doubtful observations, summarizes his conclusions 
as follows: “(1) The mathematical theory of probabilities fails in all questions applying to 
errors of extreme magnitude. (2) No considerations of the magnitude of residual errors per 
se will justify us in rejecting a result. (3) We are justified in rejecting a result only when, from 

!,,,ïvmmWÊmM mm* mmmu-1m 2: 



164 

the best estimate that we can form of the extent of -.ninn .i,„ 

^i*üi mÊËÊËÊÈm SpSS2=SS=¿= 
» three'H 0ra SCrieS “f 

sssiisllllpi wth ordered observation, where m = ,,/2 Rv defines. for a sample of size n, as the 

ChAirSyS(18e6n th °bSCrVatÍOns (/ = ^ 2> "■> vX where^^T^+T)! ^ ^ ^ 

i 8r i: Änr our “r-8 a- 
[Air, (1856)] on (hc rejection of doubtful observations h,S Carl,Cr ^ 

on Ä »ÜÄ 

method to actual observations in the fields of physics and chemistry “ 

criterion for the rejection of doubtful observations'am/nrnnns h' aUth°r Peir“'s 
a single observation. The latter is based on the nr P |P ,es hls own cntenon for rejecting 

numerically grea.er than that may be expected to ocír L wXeTvatiLsT^ ^ 

2«J 4> (0 dt = nip (k), 

than'so^should be rejected "If the^unn'thv 'T lllC mCan by an a",oun' grcmr 
a greater pwb.W^X^.Tr“ #-#tS T r SUCh “ have 
separately in 1868. PPendix and related tables were reprinted 

of oEa“oD„: fcm,^Sbï,r^e„ri,hr‘iCTa'’iS ,he beS'averasc » “ri‘s 
Which we have no knowledae ari‘hn,C"C mran plus '’»"“lions of 

Todhunter (1865), m his history of probability, summarizes the work of various 
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wnt„s on U,. --- 
(1778). Euler (1778), J. Bcr"ou'11 ( 10 1811 h 1812). The last four of these deal pnman y 

- - -—“l're,ï 

given observer and a given class of o ser oposes a criterion lor rejection of observa 
which that person makes with »“ m J observations, is equivalent to Chauvenet s. 
lions which, with m - 2u, where » ts the number ot for ^„„.¡„g the probable error 

Wilhelm Jordan 11869) entends Gauss mean „r the „,h powers of the absolute 
and its probable uncertainty from trough » = 10 and corrects Gauss factors for 

^iwhSX^ ghie a slightly less (rather than more, precise esttmate than 

Other method for n =■ 6 or lhc method of least squares and demon- 

itrT“ m.6of tV"hS Laplace obtained for the case of two elements hold for 

points out that although Legendre (1805) was tl t independently developed 
S U since 1995 (though he did '^f Admin's origina, investigation, 
by Adrain (1808) in Amer.ea The author rep summarizes the results of two of h.s 
gives interesting hiograPhlcal ^ ^ the n,ethod of least squares. G. Zacharrae 
later papers [Adrain (1818a, )J ihe method of least squares. 
(1871) gives an excellent textbook rea a history of least squares, including n 

James Whitbread Lee Gla,sher ( contributions of Legendre, Adrain, Gauss, Laplace, 
account and a critical evaluation of the "^‘Xrnative to the rejection of observations 
Ivorv, Ellis. De Morgan and others. weights of the observations are adjus cd 
in the form of an iterative Pro^dure m wh. h h ^ but not least) he proves that if 
after each iteration as proposed by Dc Morgan ( J = (w/2) e-”lxll the median of 
errors are distributed according to Laplace^fi 1 ^ show¡ng that the probability 

ofTn odd number of obseivctions « any value between 

the middle two of an even number o'observations].^ ^ ^ book ^ the adjustment computa- 

Friedrich Robert Helmert (1872), in following that of Gauss (1816), that the 
tion b, the method of least ^a^ve “ .proo , Jollo ^ ^ ^ ^ a numb r 

probable error can be determined more distribu,io„) than from the mean of 
of observations (assumed m have com^ ^ adds , section on the theory of 

maxîmuin error “and its use ^ “-“^tte^tio» of observations proved m 

hisearlier'paper [Glaisher to” ground^O) any rejection 
for the rejection of outlying obscrvati , -d of thc arithmetic mean is '"consistent 
criterion based on the supposition of the valí y ^ mc and is impractical because 
(2) even among such criteria Stone s ,snot of ¡t being assumed that the observer 
of the practical impossibility of determ mi g published the same year, Stone (1873a, ) 
makes one mistake in n observaU°nSa 1 d ^ normal law of error on the basis of the axiom 

Ä Íirecrmeasurerare'of^qual value and examines in detail the objections raised 
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relatively insensitive'frobust^a/rnodern'staUstici^ns^^^HdHC j,0ÍntS °Ut t,lat his criterion is 
>n «. He insists that even if Glaisher's assumptions Z 'Sa-Vi'0 aiodcrate,y 'arge variations 
the right expression, and hence has not found the m • .gran fd’ Glaisher has not maxin;...ed 
notes by Glaisher (1874) and Stone (1874) appear toTav^’8^ °bservations- Farther 

Charles Sanders Peirce (1877) shows that the ° havefgenerated more heat than light, 
for all observations, is valid only when ce „re - ^ ^ SqUareS’ with equal weights 
standard deviation) is the same fcr J. t e obTeZLT"5 tn"1 ^ = ^ ^ ^ 
‘he «Nervations must be proportional to the square "r the ^ WeightS assigned to 
But since the true precision constants are almost a I wav, i reSpectIve Precision constants, 
mated from the observations themselves Since the o ^ n(°Wn' t,le weights must be esti¬ 
lhe errors of observation being normally distributed Pei ^ SqUareS a,S0 dcpends 
merit performed to test the validity of this assumnr’ P ce,reports l,le results of an experi- 
for a previously untrained observer to respondTá "' i'u' expcrimcnt the time required 
measured (in thousandths of a second) about 500 t ^ pressing a te,cgraph key was 
that the response times on a given day are ann^ 5, T ^ ^ 24 da^ concludes 
is evidence of an increase in precision IVornH TT normal,y distributed, though there 
effect,. Peirce also discusses theTjécTn oTiscordanTbs ^ ^ OUtset ('earning 
in accordance with the method of least squares He -iH ,erVJtl°nS’ Wh‘Ch he says 1S entirely 
by his father, Benjamin Peirce (1852). * ' v°eates use of the criterion proposed 

on methods used to find thVeJuTon 'th^b^T'3'^ Boscovich and Laplace, 
the determination of the ellipticity of the earth f f ^ beSt'flt,ing stra'ght line involved in 
and lengths of a seconds PeSdu.uTat wid^TeramdT"?2"15 f ^ of vidian 
writes: ‘i presume that neither of the methods whávh i 0 n r* °n the earth’s surface. He 
be practically used in such calculations but the methnH "r T ^1799^ discusses would now 

Gustav Theodor Fechner H87d ch , h°d o1 least squares”. 
minimum when taken from the arithTtic mean^the ^ SUm o¡'squares of deviations is a 
minimum when taken from the median He mT ' °f the absolute deviations is a 
that he was unaware that the latter fact was known rtemark|.whlch leads to the conclusion 
(1812-1818 supph), von Andrae (]860) and GlajTr (187°2)TT TT [including Laplace 
which he defines as values such that the sums of n ^ 3 S° dlscusses Power means, 
taken from them, and probability laws under wfikh suT5 ,ati°nS are minimal when 

William Stanley Jevons (1874) notes that BoeT T '\°Wer nieans are valid averages, 
and Jordanus added an eleventh! bu! he ¿-usTonlv T °f means or «verges 
and harmonic means). He notes that Quetelet (1846) dkr^ (arithmetic. geometric, 
Hons of a quantity which is itself constant buí subject to mea"S of observa¬ 
it quantity which is itself variable, and that Herschel ISSmT "1J'lSUrement error’ and of 
this distinction. Jevons gives demonstrations of thT , ? } P ted °Ut the imPortance of 
and by Laplace and Quetelet. ^s^Z there^ 
errors committed in all classes of observations should folkwT'^T ^ beIiev,ng that the 
any other. He also discusses in some detail TTTT Same ,aW’ but does noi suggest 
outlying observations. He "takes rpositT'agTrSrT?81,SqUares and tho rejectionof 
tions, in the following words (page 393 of thf!" ? J y exclus'on ot discrepant observa- 

oUSh. no, bc lakce„ as coiSvc a'ir,!,: “T"c m're r“‘ 
would open the way to the fatal influence of bias VL ^ eXe.rtlon ol arbitrary choice 
prove in time to be the true one To neelect a ï T apParent<y divergent number may 
clue to a great discovery.” g'eCt a d,Vergent resuIt « to neglect the possible 

Hervé Auguste Étienne Albans Fav#* n»7<:x a- 

of kast squares. He points out that Gauss and U^TdldZ S^aTepted o'pinkn 

% \ 
\ 



that the most probable value of a quantity of which a number of observations have been 
made is their arithmetic mean, while Laplace and others justified it on the basis that the 
errors are due to a large number of causes each contributing only a small part of the resultant 
error. He insists that the law of probability of errors cannot be established a priori, on the 
basis of a hypothesis or of a generally accepted opinion, in spite of the extreme elegance of 
the proof of Gauss, but must be established a posteriori, from a direct study of the facts. He 
gives an example in which, because of a systematic error, the method of least squares gives 
an extremely misleading result; quite rightly, however, he does not blame this result on the 
method but on the observations. Hermann Laurent (1875), commenting on the same question, 
says that the Gaussian law of error should never be accepted a priori-on the contrary, one ought 
to reject it, because it assigns positive probabilities to impossibly large errors. “W ho is the 
astronomer”, he inquires, “who makes an error of 361 degrees in measuring an angle?” He 
makes a study of 1,444 measurements of an angle of approximately 16°, and concludes that 
the observations cast doubt on the exactness of the Gaussian law, and that therefore one ought 
to reject the method of least squares when one has only a small number of observations. 

Francis Gallon (1875) proposes the use of the median as a measure of central tendency 
and of the difference between the median and one of the quartiles, or the average distance 
between the median and the two quartiles, as a measure of dispersion (probable error). 

Truman Henry Saflford (1876) gives rules for good observation based on the method of 
least squares, and hints for abbreviating computations. Mansfield Merriman (1877) gives a 
chronological bibliography, containing 408 titles and covering the period 1722-1876, on the 
method of least squares and rival methods, with valuable historical and critical notes. 

Benjamin Peirce (1878) gives a fuller explanation of the criterion which he proposed over 
a quarter of a century earlier [Peirce (1852)]. Charles A. Schott (1878) makes favourable 
remarks on Peirce’s criterion, based on 20 years of use in various investigations. 

Francis Ysidro Edgeworth (1883a) questions the universal and indiscriminate use of the 
normal (Gaussian) law of error in the following words: “The Law of Error is deducible from 
several hypotheses, of which the most important is that every measurable (physical observa¬ 
tion, statistical number, &c.) may be regarded as a function of an indefinite number of elements, 
each element being subject to a determinate, although not in general the same, law of facility. 
Starting from this hypothesis, I attempt first, to reach the usual conclusion by a path which, 
slightly diverging from the beaten road, may afford some interesting views; secondly, to 
show that the exceptional cases in which that conclusion is not reached are more important 
than is vommonly supposed” (pp. 300-301). Later in the same paper (pp. 305-306), he writes: 
“I submit, in the absence of evidence to the contrary, that non-exponential [non-Gaussian] 
laws ... do occur in rerum naturâ, that the ‘ancient solitary reign’ of the exponential [Gaussian] 
law of error should come to an end”. Edgeworth (18836) begins a paper on the method 
of least squares with a philosophical discussion of the differences between the approaches 
of Gauss and Laplace, between most probable results and most advantageous results, and 
between minimizing mean square errors and mean absolute errors. He proceeds to the question 
of how to treat outlying observations. He proposes a method of weighting the observations 
which is the same as that proposed by Stone (18736). In a later paper [Edgeworth (1887a), 
p. 373 (footnote)], he acknowledges Stone’s priority, of which he was unaware at the time 
he wrote this paper. 

M. H. Doolittle (1884) in discussing the rejection of doubtful observations, divides errors 
into two classes, instructive errors (those that indicate error in other observations) and un- 
instructive errors (blunders in recording, pointing on wrong objects, etc.). He asserts that the 
larger an instructive error is the more instructive it is, and the more important it is that the 
observation containing it should not be rejected; on the other hand, the larger an uninstructive 
error is, the more important it is that the observation should bs rejected. Intelligent rejection 
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of an observation is therefore, he says, ofUie occur- 
of the occurrence of an instructive erro He criticizes Peirce’s criterion on the 

grouncHhat Pdrce^tak«6two^robabh¡ties, both functions of probabilities of instructive error, 

anTlK ye^lS^aw reStpuJbhcation of two 

method of least squares. Both authors also con ^ cl^uvenet-s criterion, but he also dis- 
observations. Mcrnman (1884) advocates d on Hilgen's deduction of the law of 
cusses two other criteria - * a"d a , ¡ should be bonie in mind that the rejection 
error. Moreover, he states (p. 169). n g ’ witb others is not usually justifiable 
of measurements for the single reason "^ieTted by the criterions. A mistake is 
unless that discordance is considerably me _ than 4,. or Sr [r = probable error] 
to be rejected, and an observation g,vm® d ^ f rejected if the notebook shows any thing 

Havford (1906)], this rule is restated in slightly modified torn . 

ifcrences (Glossary of Code Letters, page 173) fcrcnccs (Glossary OI v.oue - Tolemaico e Copernicano. Landini, 
ililci, Galileo (1632). Dialog soprai*« sys,en., ho'emaic agCopernican, 

ÍyStnhnaKfer^HhCwÓÍÂ 

-"«ÄS um seine Axe-Kosmographische 

Pon,. M.x.,u,e.pin ^-}l'^y;;^"2popeBen,ttXII'.poo'n,e,,,rerJe,.ed,,re,dnn,e,,d,,n. 

"ÄXSÄS«««. P.H., o, Macxkslictd. PÄ of .he 

.¡mpson, Thomas (Í757). An atiempnoshew >he »dvanug 8 ^ ™ 

w 6"5- 'N““-Lond" <the' ; : 
lonivteh, R j. 07») je "«"""J 

306) Augustae Vindelicorum, Augsburg. IKcview, “ 

der Mathematik und deren Anwendung, ■ . PP 
xii> AVI TOÏ 
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Lambert, J. H. (17656). Anmerkungen und Zusätze zur practischen Geometrie. Beyträge zum Gebrauche der 
Mathematik und deren Anwendung, Vol. 1, page nos. unknown. Berlin. (Second edition, 1792.) (Th, AV, 

MM, AM, [MR]) t J . 
Lagrange, J. L. (1774). Mémoire sur Futilité de prendre le milieu entre les résultats de plusieurs observations, 

dans lequel on examine les avantages de cette méthode par le calcul des probabilités; ctoù 1 on resoud 
differents problèmes relatifs à cette matière. Miscellanea Taurinensia for 1770-73,5, 167-232 (esp Problarie 
X, 225-229). [Reprinted in Œuvres de Lagrange, Vol. 2, pp. 173-234. Gauthier-Villars, Pans, 1868.] (TE, 

Lapl'icc P s\l774) Memoire sur la probabilité des causes par les evénemens. Mémoires de Mathématique et 
de 'Physique Presentes . . . par Divers Savons, 6, 621-657 (csp. Problème III: Déterminer le milieu que 
Ion doit prendre entre trois observations données d’un même phénomène, 634-644). [Reprinted m 
Œuvres Complètes de Laplace, Vol. 8, pp. 27-65. Gauthier-Villars, Paris, 1891.] (TE, AV, EA, AM, MD, 

Bernoulli, Daniel (1778). Dijudicalio maxime probabilis plurium observationum discrepantium atque veri- 
simillima inductio inde formanda. Acta Academiae Scientiorum Petropolitanae, 1 (I), 3-23 (Memoirs). 
[English translation by C. G. Allen, Biometrika, 4H 3-13.] (LE, AV, AM, MD, MR, ML, TO, OS) 

Euler L. (1778). Observationes in praeccdentem dissertationem. Acta Academiae Scientiorum Petropolitanae, I 
(I), 24-33 (Memoirs). [English translation by C. G. Allen, Biometrika, 48 (1961), 13-18.] (TE, AV, M4) 

Laplace, P. S. (1781). Mémoire sur les probabilités. Mémoires de l'Académie royale des Sciences de Paris, Année 
1778, 227-332 (esp. 322-332). [Reprinted in Œuvres Complètes de Laplace, Vol. 9, pp. 383-485. Gauthier- 
Villars, Paris, 1893.] (TE, AV, AM, ML, EA) . ... 

Bernoulli, Jean 111 (1785). Milieu. Encyclopédie Méthodique, Vol. Il, pp. 4®f74(i9;J^a"/l(S“on1.d.IedlItl°nvl!,89’ 
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de Paris Année 1783, 17-46. [Reprinted in Œuvres Complètes de Laplace, Vol. 11, pp. 3-32. Gauthier- 
Villars, Paris, 1895.] (TE, [AV], LR, MM, [MR]) , , c • 

Laplace, P. S. (1793). Sur quelques points du système du monde. Mémoires de I Academie royale des sciences 
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281-282 (extract); Vol. II, pp. 347-351 (complete). G. Reimer, Berlin, 1889 and 1897; reprinted by Chelsea 
Publishing Co., New York, 1969. (TE, AV, AM, MD, Dl, SD, LR, LS, LF) 

Cauchy, Augustin (1837). Mémoire sur l’interpolation. Journal de Mathématiques Pures et Appliquées (1), 2, 
193-205. [Lith. MS, 1835; English translation, Philosophical Magazine (3), 8, 459-468.] (TE, LR, NR, CM) 
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AC 
AO 
AM 
AR 
AS 
AV 
BC 
BM 

BT 
CC 
CM 
CT 

CU 
DA 
DC 
DD 
DH 
D1 

Arley’s criterion (for rejection of outliers) 
average (absolute) deviation 

Anscontbe’Tru'les (for rejection of outliers) 
average slope (of regression line) 

Benrancí-s criterion (for rejection of outliers) 
Brown-Mood estimators (of regression para¬ 

meters) 

SrXiao.^ofou.H.n) 
Pa uchv’s method (of interpolation) 
(B1 iss)-Cochran Tukey criterion (for rejection 

Cuccont”criterion (for nyection of outliers) 
discard averages [trimmed means] 
Dixon’s criterion (for rejection of outliers) 

discard deviation 
differences at half range 
dispersion (measures of) 

EA 

EM 

EX 
FC 
GA 
GC 
GE 
GG 
CM 
GR 
GS 
HA 

HC 

HL 
HM 
HO 

equal areas (under joint p.d. curve) [Laplace’s 
"most advantageous method ] 
Edgeworth’s modification (of Stone s second 

extremes (largest and smallest values in sarnie) 
Ferguson’s criterion (for rejection of outliers) 

Gastwirth estimators „<• „.„tiers) 
Glaisher’s criterion (for rejection of outliers) 
geometric midrange 
geometric range 
geometric mean 
Goodwin’s rule (for rejection of outliers) 
Grubbs’ criterion (for rejection of outliers) 
Hodges’ alternative (to Hodges-Lehmann 

Heydenreich’s criterion (for rejection of out¬ 

liers) 
Hodges-Lehmann estimator 
harmonic mean 
Hogg’s estimator 

.... 
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HS Hulme-Symms alternative (to the rejection of 

outliers) 
HU Huber's estimator 
IC Irwin's criterion (for rejection of outliers) 
IR interquartile range 
jA Jeffreys’ alternative (to the rejection of outliers) 
K.C Kudô’s criterion (for rejection of outliers) 
LA Laurent's analogue (of Thompson s criterion) 
LD largest (absolute) deviation 
LF least (absolute sum of) first (powers) (Laplace 

“method of situation”] 
LN least number of deviations (least sum of zero 

powers) 
LR linear regression 
LS least squares 
LW linearly weighted means 
MA method of averages r 
MC Merriman’s criterion (for rejection of outliers) 

MD median 
MC. method of group averages 
MK McKay’s criterion (for rejection of outliers) 
ML maximum likelihood ...., 
MM minima*method [minimizemaximum residual] 

MO mode 
MQ median-quartile average 
MR midrange 
MS method of successive differences 
MT median and two other order statistics 
MW multivariate Wilks’ criterion (for rejection of 

oulliers) • ■ r 
MZ Mazzuoli’s criterion (for rejection of outliers) 
M4 maximum (sum of) fourth (powers of p.d.f. of 

errors) 
NC Nair's criterion (for rejection of out hers 
NM Newcomb’s method (of treating outliers) 
NR nonlinear regression att\no\ 
NS Nair-Shrivastava method (of curve fitting) 
OM Ogrodnikoff’s method (of treating outliers) 
OS order statistics 

PA 

PC 
PM 
QA 
QL> 
QM 
ON 
QR 
RA 
RC 
RL 
RM 
SC 
SD 
SM 

SR 
ST 
SW 
S2 

TC 
TE 
TF 
TJ 

TM 

TO 
VC 
WA 
WC 
WH 

WI 
WM 
WR 

YE 

plus approximative méthode [most approxi¬ 
mative method] 
Peirce's criterion (for rejection of outliers) 
power means 
quadratic average (mean) 
quartile deviation [semi-interquartile range] 
quasi-midrange [quasi-median] 
quantiles 
quasi-range 

Rohnc’s criterion (for rejection of outliers) 
robust estimators of location 
range method 
Stone’s (first) criterion (for rejection of outliers) 
standard deviation [or variance MbiJ)-) 
Stewart’s method (criterion) (for rejection of 

outliers) 
semirange 
Student’s rule (for rejection of outliers) 
Switzer’s estimator „ „r 
Stone’s second criterion (for rejection of 

outliers) . . 
Tippett’s criterion (for rejection of outliers) 
theory (of) errors 
Tukey’s FUNOR-FUNOM procedure 
Topsoc-Jensen criterion (for rejection of out- 

tiers) 
Thompson’s method (c-iterion) (for rejection 

of outliers) 
treatment of outlying observations 
Vallier’s criterion (for rejection ol outliers) 
weighted average 
Wright’s criterion (for rejection of outliers) 
Wright-Hayford (criterion) (for rejection 

outliers) 
Winsorization 
Winsorized means . .. 
Walsh’s rule (criterion) (for rejection of out 

liers) 
Yanagawa’s estimator 
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est bien connu que la moyenne est la nieiUeure niesurc d 1 méthode d’ajustement d'une équation de 
de la dispersion, et la méthode des moindres carre La piupart des praticiens ont tendance 
régression*Des hypothèses frentes eondu,^ cela peu, entraîner lorsqu’elle 

admettre l’hypothèse de normalité et à ne pa. . données contiennent des observations anormales 
n’S pas justito. Un autre problème se presente « un écart-type plus grand. De nombreuses 
(aberrantes) provenant de distributions ayant une autremoyen aberranjes. L’auteur résume (chrono- 

méthodes ont été proposées pour le tendre centrale et de la dispersion la méthode 
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