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Measurement Resolution in Multi-Atom Atomic Clocks

Christopher C. Gerry and Richard J. Birrittella Jr.

August 17, 2020

Abstract

The goal of this work rests primarily towards enhancing measurement resolution in atomic spectroscopy
for frequency standards where our principal focus lies in quantum-enhanced improvement of atomic
clock precision and stability. For atomic frequency standards, the transition frequency serves as a
reliable ’master pendulum’ whose oscillations mark the passage of time. This is because this transition
frequency is incredibly stable. In general radiation is not precisely at resonant frequency, but instead
is spread over a frequency range ∆ω. The precision to which the resonant frequency can be measured
is proportional to the quality factor Q = ω0/∆ω, where larger Q signifies a more stable atomic clock.
Enhancing measurement resolution would lead to a smaller frequency uncertainty and thus result in a
more accurate and stable atomic clock. In this work we consider two means of achieving this: first,
we consider the use of multi-atom ensembles over the usual single-atom input. In our studies, we
consider both the readily available unentangled atomic coherent state (ACS) as well as the entangled
and spin-squeezed Ĵz-operated ACS. We find that for the same selection of detection observables, the
spin-squeezed state yields greater measurement resolution over the ACS which in turn yields greater
resolution over the usual means of using a single-atom input. Second, we consider the use of detection
observables that have no classical analog. To this end, we introduce the atomic analog of the parity
operator, which in the context of quantum optical interferometry is known to saturate the quantum
Cramer-Raó bound, making it the optimal detection observable to minimize phase uncertainty. We go
on to show that for any input state, atomic parity yields the greatest measurement resolution.
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Introduction

Figure 1: Ramsey method of separated fields for a single two-level atom.(left) A schematic tracking the
atomic state through each operation. (right) a diagram detailing the experimental procedure. Figures
taken from: Itano and Ramsey Scientific American 269 1 (1993) pp. 56-65.

We consider the Ramsey spectroscopy technique of separated oscillatory fields with ensembles of two-
level atoms but with new detection schemes that yield much more highly resolved Ramsey fringes than is
possible in the usual implementation of the Ramsey technique; we were interested in producing Ramsey
fringes that are much narrower than those normally obtained. The usual approach in atomic frequency
standards, see Fig. 1 is to consider the use of a single two-level atom, initially prepared in its ground
state. The first π/2-pulse, performed via optical pumping, places the atom in a superposition state of
its two internal degrees of freedom. Afterwards, the atom undergoes a period of free evolution, resulting
in a phase shift of φ =

(
ω − ω0

)
T where ω, ω0, and T correspond to the resonant frequency of the two

energy levels, the frequency of the radiation and free evolution time, respectively. The final π/2 pulse,
if the resulting radiation is on resonance, will result in the atom being found in its excited state with a
probability PExcited = 1. See Figure 2 for a Bloch sphere representation of the process.

 / 2yR   / 2yR  0zR T   

Figure 2: Bloch sphere representation for single-atom spectroscopy. The atom is intially in its ground
state. The first π/2-pulse places the atom in a superposition state while the free evolution corresponds
to a rotation in the x − y plane. The final π/2-pulse, if on resonance, places the atom in the excited
state. For a frequency-spread in radiation ∆ω the state will be nearly at the north pole of the Bloch
sphere.

In what follows, we present our work in the area of atomic interferometry where each atom is assumed to
possess only two relevant energy levels (degrees of freedom), ground and excited, and where transitions
between these levels are driven by classical coherent radiation fields (or microwave fields in the case of
trapped ions). Of specific interest is the use of atomic parity, defined with respect to the excited state,

as a detection observable. This can be expressed both in terms of the boson operators {â†, b̂†}, which
creates an atom in the excited and ground state, respectively, as well as the Schwinger realization of the

SU(2) algebra as Π̂ = (−1)
â†â

= (−1)
Ĵ0−Ĵ3 , where Ĵ0(3) = 1

2

(
â†â± b̂†b̂

)
. This detection observable has

no classical analog; it is a purely quantum mechanical construct.

It is worth discussing the underlying SU(2) alegbra involved in the representation of multi-atom atomic
states and how the relevant parity operators (be it with respect to excited- or ground state occupation)

2
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are defined in terms of the SU(2) operators. We begin with the definitions of the Dicke operators for a
collection of N -atoms according to

Ĵ3 =
1

2

N∑
i=1

(|e〉i 〈e| − |g〉i 〈g|) =
1

2

N∑
i=1

σ
(i)
3 (1)

Ĵ+ =

N∑
i=1

|e〉i 〈g| =
N∑
i=1

σ
(i)
+ (2)

Ĵ− =

N∑
i=1

|g〉i 〈e| =
N∑
i=1

σ
(i)
− (3)

Ĵ0 =
1

2

N∑
i=1

(|e〉i 〈e|+ |g〉i 〈g|) =
1

2

N∑
i=1

I(i), (4)

where these operators satisfy the usual angular momentum, or SU(2), algebra and where Ĵ0 commutes
with all the other operators. We can define the atomic parity operator as

Π̂e = (−1)
Ĵ0+Ĵ3 = exp

[
iπ
(
Ĵ0 + Ĵ3

)]
. (5)

For a Dicke state |j,m〉, where j = N/2, we have

Π̂e |j,m〉 = (−1)
j+m |j,m〉 , (6)

where j +m is an integer and where

Ĵ0 + Ĵ3 =

N∑
i=1

|e〉i 〈e| ≡ Ne, (7)

which represents the number of atoms in their excited states. That is, for a Dicke state |j,m〉, j +m is

the number of atoms in the excited state. Thus, we can define 〈Π̂e〉 = (−1)
Ne . It is also worth pointing

out that this detection observable can be defined with respect to the ground state population, that is,
〈Π̂G〉 = (−1)

NG . That is, we define parity with respect to the number of atoms found in their ground

state. The two are related by 〈Π̂Excited〉 =
(
− 1
)2j 〈Π̂Ground〉.

a


0
b

ˆ
b

a a

b b

BS 1 BS 2

Figure 3: Use of optical parity as a detection observable employed experimentally for classical light
in Cohen et al. (2014) 22 10 along with a schematic of the set-up used as well as the expectation
value of the parity operator. Note that the narrowing of the peak corresponds to an enhancement in
measurement resolution.

There is some precedent in the use of parity as a detection observable in the optical case. In the context
of quantum optical interferometry, parity has been shown to enhance measurement resolution as well as
being the optimal detection observable which saturates the quantum Cramer-Raó bound, maximizing the
quantum Fisher information. For the case of input coherent light mixed with a vacuum inside a Mach-
Zehnder interferometer (MZI), parity has been successfully experimentally employed in measurements

3
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of the phase uncertainty ∆φ, yielding the well known limit for classical light: the standard quantum
limit (or shot-noise limit). A schematic of the experimental set-up and measurement resolution, taken
from Cohen et al. 22 10 (2014), is given in Fig. 3. As motivation, we will begin by detailing the most
extreme of ideal cases: using atomic parity as a detection observable while having the state after the
firstπ/2-pulse be an atomic N00N state.

1 Ideal Case − Parity-based resolution for an initial atomic
N00N state

To aid in motivating the subject of this work, we first consider the most ideal of cases, that is, we analyze
the measurement resolution obtained in a Ramsey interferometer using parity-based detection, where
the state after the first π/2-pulse is the atomic N00N state, given by

|ψ〉N00N =
1√
2

(
|j, j〉+ eiλ |j,−j〉

)
, (8)

where the Dicke states |j,m〉, are defined in terms of the individual atomic states as |j, j〉 = |e〉⊗N=2j

and |j,−j〉 = |g〉⊗N=2j
with intermediate steps consisting of superpositions of all permutations with

consecutively more atoms being found in the ground state all the way down to |j,−j〉, where all atoms
are in the ground state. With this in mind, the state given in Eq. 8 is simply a superposition of all
atoms found in the ground- or all atoms found in the excited- state. This can be expressed as a finite
sum over all Dicke states as

|ψ〉N00N =

j∑
m=−j

Λ(j)
m |j,m〉 , (9)

where the coefficients Λ
(j)
m are given by

Λ(j)
m =

1√
2

(
δm,j + eiλδm,−j

)
. (10)

This state is of interest as it is the atomic analog of the optical N00N state |ψ〉N00N = 1√
2

(
|N, 0〉 +

eiλ |0, N〉
)
, which yields the lower bound on phase uncertainty in quantum optical interferometry: the

Heisenberg limit. This follows from the heuristic uncertainty relation between photon number and phase
∆φ∆N ' 1, where the N00N state maximizes the uncertainty in photon number, that is, ∆N = N →
∆φ ' 1/∆N = 1/N . The action of the interferometer is once again given by

|ΨF〉 = e−i
π
2 Ĵye−iφĴz |ψ〉N00N , (11)

where we assume some means of experimentally generating the atomic N00N state is employed prior to
free evolution. Here we introduce the atomic parity operator as Π̂ = Exp

[
iπ
(
Ĵ0 + Ĵ3

)]
, with respect to

the number of atoms found in the excited state. This is simply (−1) raised to the number of atoms in
the excited state. We can likewise define atomic parity in terms of the number of atoms found in the
ground state. The relationship between the two being 〈Π̂Ground〉 = (−1)

2j 〈Π̂Excited〉. This is sensible,
since if N is even and 2n atoms are excited then 2n′ atoms must also be in the ground state where
n, n′ ∈ Z+. A similar argument can be made for 2n+ 1 exicted atoms. Likewise, if N were odd and 2n
atoms are excited, then 2n′+1 must be in the ground state, resulting in a sign difference in parity. With
this, we can derive an expression for the expectation value of the parity operator for the state given by
Eq. 11 using the identity in Eq. 28 to find

〈Π̂〉N00N = (−1)
2j

j∑
m=−j

Λ(j)
m Λ

(j)∗
−me

−i2φm

= (−1)
N

cosNφ, (12)

where N = 2j, the total number of atoms. Note the fact the expression in Eq. 12 does not depend on
the phase λ defined in Eq. 8. Once again we see a narrowing of the peak centered at the origin for
increasing numbers of atoms N . This results in finer measurement resolution and ultimately enhanced
phase sensitivity in interferometric measurements. This state would serve as the ideal, as it is maximally
entangled and yields the greatest measurement resolution for a given detection observable. The problem,

4
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̂



1/ 2j 

100j 

100, 1000j 

1000j 

Figure 4: Parity-based resolution with a resultant atomic N00N state after the first π/2-pulse in a
Ramsey interferometer for j = 1/2, 100, 1000.

however, is atomic N00N states are incredibly difficult to make. We endeavor to find means of enhancing
measurement resolution by considering different detection observables as well as states that are readily
available experimentally.

2 Resolution using 〈Ĵz〉 as a detection observable

Consider a general atomic state expressed in terms of a superposition of all Dicke states |j,m〉, where
the Dicke states are defined relative to the individual atomic states in the previous section, given by

|ψ′〉 =

j∑
m=−j

C(j)
m |j,m〉 . (13)

Let Eq. 13 describe the state after the first π/2-pulse in a Ramsey interferometer, where C
(j)
m are the

probability amplitudes for obtaining the each |j,m〉. The state after the time evolution and the final
π/2-pulse is given by

|Ψ〉 = e−i
π
2 Ĵye−iφĴz |ψ′〉

=

j∑
m′=−j

[
j∑

m=−j
C(j)
m e−iφmdjm′,m

(
π
2

) ]
|j,m′〉

=

j∑
m′=−j

C̃
(j)
m′ |j,m′〉 , (14)

where C̃
(j)
m′ are defined within the square brackets of Eq. 14 and djm′,m (β) are the usual Wigner-d matrix

elements given by 〈j,m′|e−iβĴy |j,m〉. We consider the measurement resolution obtained for this general
case when using 〈Ĵz〉 as our detection observable. Physically, this corresponds to taking the difference
between the number of atoms in the ground and excited states, respectively. The optical analog would
be taking the difference in intensity between the two output modes of an MZI. The expectation value of
Ĵz is given by

5
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ˆ
zJ



3j 

1/ 2j 

Figure 5: 〈Ĵz〉 versus φ for a couple of j values. Note that we do not see a change in resolution for larger
numbers of atoms.

〈Ĵz〉 =

j∑
m=−j

j∑
p=−j

C(j)∗
p C(j)

m eiφ(m−p) ×

[
j∑

m′=−j
m′djm′,p

(
π
2

)
djm′,m

(
π
2

) ]

=

j∑
m=−j

j∑
p=−j

C(j)∗
p C(j)

m eiφ(m−p) × Γm,p
(
π
2

)
, (15)

where the function Γm,p (λ) can be simplified to

Γm,p (λ) =

j∑
m′=−j

(
m′djm′,m (λ) djm′,m+1 (λ) δp,m+1+

+m′djm′,p+1 (λ) djm′,p (λ) δp+1,m +m′djm′,p (λ) djm′,p (λ) δp,m

)
. (16)

Plugging this back into Eq. 15 and assuming, without loss of generality, the coefficients C
(j)
m are real,

we obtain the result

〈Ĵz〉 = γ(j) cosφ+ α(j), (17)

where

γ(j) = 2

j∑
m=−j

j∑
m′=−j

C(j)
m C

(j)
m+1d

j
m′,m

(
π
2

)
djm′,m+1

(
π
2

)
m′ (18)

α(j) =

j∑
m=−j

j∑
m′=−j

∣∣∣C(j)
m djm,m′

(
π
2

) ∣∣∣2m′. (19)

For the limiting case of the atomic coherent state, this yields the well known result

〈Ĵz〉ACS = j cosφ, (20)

which we plot in Fig. 5 for several values of j. Similarly, by playing the same game for 〈Ĵ2
z 〉, we obtain

the result

〈Ĵ2
z 〉 = Ω(j) cos 2φ+ κ(j), (21)

where

6
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Ω(j) = 2

j∑
m=−j

j∑
m′=−j

C
(j)
m+2C

(j)
m m′2djm′,m+2

(
π
2

)
d

(j)
m′,m

(
π
2

)
(22)

κ(j) =

j∑
m=−j

j∑
m′=−j

∣∣∣C(j)
m djm′,m

(
π
2

)
m′
∣∣∣2. (23)

Note that in neither case do we see a narrowing of the peak regardless of the state used. The phase
dependency goes as a cosine function regardless of the state coefficients and number of atoms used. This
particular detection observable cannot yield enhanced measurement resolution regardless of the initial
state under consideration.

3 Resolution using 〈Π̂〉 as a detection observable

Let us assume our state is initially prepared with all atoms in the ground state, that is |in〉 = |j,−j〉.
The action of the Ramsey interferometer is to transform an initial state |ψ′〉 by

|ΨF〉 = e−i
π
2 Ĵye−iφĴze−i

π
2 Ĵy |ψ′〉

= e−i
π
2 Ĵye−iφĴz |ζ = −1, j〉 , (24)

where the state |ζ = −1, j〉 is an atomic coherent state in which all of atoms are in the superposition
state 1√

2

(
|e〉 − |g〉

)
, that is,

|ζ = −1, j〉 =
1

2N/2
(|e〉 − |g〉)⊗N=2j

= 2−j
j∑

m=−j

(
2j

j +m

)1/2

(−1)
j+m |j,m〉 , (25)

where in the last term we express the state in terms of the Dicke states. Let us recover the known result
for parity-based detection for an atomic coherent state. The final state after the interferometer is

|ΨF〉 = 2−j
j∑

m=−j

j∑
m′=−j

(
2j

j +m

)1/2

(−1)
j+m

e−iφmdjm′,m

(
π
2

)
|j,m′〉 , (26)

and the expectation value of the parity operator can be expressed as

〈Π̂〉 = 2−2j

j∑
m=−j

j∑
p=−j

(
2j

j +m

)1/2(
2j

j + p

)1/2

eiπ(2j+m+p)e−iφ(m−p)×

×

[
j∑

m′=−j
(−1)

j−m′
djm′,m

(
π
2

)
djm′,p

(
π
2

) ]
, (27)

where the atomic parity operator Π̂ is defined explicitly in the previous section. The term in the square
brackets, expressed below as Fm,p (λ), can be simplified to

Fm,p (λ) =

j∑
m′=−j

(−1)
j−m′

djm′,m (λ) djm′,p (λ)

= (−1)
2j
∑
m′

djm′,−m (π − λ) djm′,p (λ)

= (−1)
2j
∑
m′

djp,m′ (−λ) djm′,−m (π − λ)

= (−1)
2j
djp,−m (π − 2λ) . (28)

Plugging this back into Eq. 27, noting Fm,p
(
λ→ π

2

)
= (−1)

2j
δ−m,p, we find

〈Π̂〉 = 4−j
j∑

m=−j

(
2j

j +m

)
e−i2φm (−1)

4j
= dj−j,−j (2φ) = cos2j φ, (29)

7
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̂



1/ 2j 

1j 

3 / 2j 

5j 

50j 

Figure 6: Expectation value of the parity operator for an initial atomic coherent state. Note the increased
resolution as the number of atoms is increased.

which is the known result, plotted in Fig. 6. Note that we see an increase in measurement resolution
as the number of atoms increases. Let’s consider the case where we act with the Ĵz operator after the
first π/2-pulse. The resulting state is both entangled on the atomic-state level and displays a quality
known as spin-squeezing which has been shown to reduce projection noise in high-precision population
spectroscopy. In this case the initial state is transformed by

|ΨF〉 = e−i
π
2 Ĵye−iφĴz Ĵze

−i π2 Ĵy |in〉

= e−i
π
2 Ĵye−iφĴz |ζ = −1, j; 1〉 , (30)

where the state

|ζ = −1, j; 1〉 ∝ Ĵz |ζ = −1, j〉

=
(
22j−1j

)−1/2
j∑

m=−j

(
2j

j +m

)1/2

(−1)
j+m

m |j,m〉 . (31)

Once again, we use Eq. 28 to find the expectation value of the parity operator

〈Π̂〉 = −
(
22j−1j

)−1
j∑

m=−j

(
2j

j +m

)
m2e−i2φm

= − 2

π

Γ
(
j + 1

2

)
Γ (j + 2)

e−i2φ
[

3F2

(
2, 2, 1− j; 1, j + 2;−e−i2φ

)
+ ei4φ3F2

(
2, 2, 1− j; 1, j + 2;−ei2φ

) ]
,

(32)

where 3F2 is the hypergeometric function given by

pFq (a1, ..., ap; b1, ..., bq; z) =

∞∑
n=0

(a1)n ... (ap)n
(b1)n ... (bq)n

zn

n!
, (33)

where we use the Pochhammer symbol to express (x)n = x (x+ 1) (x+ 2) ... (x+ n− 1) for n ≥ 1. For
several different values of j, we use Eq. 32 to find

8
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j = 1/2 → 〈Π̂〉 = − cosφ

j = 1 → 〈Π̂〉 = − cos 2φ

j = 3/2 → 〈Π̂〉 = − 1
2 cosφ (3 cos 2φ− 1)

j = 2 → 〈Π̂〉 = − cos2 φ (2 cos 2φ− 1)

j = 5/2 → 〈Π̂〉 = − 1
2 cos3 φ (5 cos 2φ− 3)

j = 3 → 〈Π̂〉 = − cos4 φ (3 cos 2φ− 2)

j = 7/2 → 〈Π̂〉 = − 1
2 cos5 φ (7 cos 2φ− 5)

j = 4 → 〈Π̂〉 = − cos6 φ (4 cos 2φ− 3) .

(34)



5 / 2j 
ACS

̂

ˆ -op
ˆ

zJ


(a)



15j 
ACS

̂

ˆ -op
ˆ

zJ


(b)

Figure 7: Resolution obtained via parity-based detection for the Ĵz-operated atomic coherent state and
the atomic coherent state for: (a) j = 5/2 and (b) j = 15. Note that in each case, the resolution obtained
via the Ĵz-operated atomic coherent state exceeds the resolution obtained via the atomic coherent state
for the same value of j..

So we see that the presence of spin-squeezing, in this case the Ĵz-operated atomic coherent state, we
get greater resolution with increasing increasing number of atoms. This yields an improvement of
measurement resolution over the standard unentangled atomic coherent states.

4 Resolution using Ground/Excited state detection

Another detection observable that displays greater resolution for increasing numbers of atoms is the

ground-state projection operator P̂
(j)
−j = |j,−j〉 〈j,−j|. This operator is the atomic analogue to the

optical ’no-photon detection’ measurement, which was proven to be a useful post-selection technique for
enhancing phase sensitivity in quantum optical interferometry. Starting from the output state of the
Ramsey interferometer, given by Eq. 30, the expectation value of the ground state projection operator
is

〈P̂ (j)
−j 〉ACS

=
∣∣∣2−j j∑

m=−j

(
2j

j +m

)1/2

(−1)
j+m

e−iφmdj−j,m
(
π
2

) ∣∣∣2. (35)

In Fig.(8), we compare the resolution obtained by way ground-state detection and parity-based detection.
In both cases we see enhanced resolution for increasing j, though parity-based detection outperforms
ground-state detection.
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̂
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1/ 2j 

(a)

̂

GroundP̂
5j 

(b)

Figure 8: Ground state detection versus parity-based detection for: (a) j = 1/2 and (b) j = 5. Note
that in each case, the resolution is enhanced for increasing j.

We can also explore the use of ground-state detection when we have an initial spin-squeezed state such as
the Ĵz-operated atomic coherent state. In this case, the expectation value of the ground-state projection
operator is given by

〈P̂ (j)
−j 〉Ĵz-op

=
∣∣∣ (22j−1j

)−1/2
j∑

m=−j

(
2j

j +m

)1/2

(−1)
j+m

me−iφmdj−j,m
(
π
2

) ∣∣∣2. (36)

We plot a comparison of the resolution obtained via ground-state detection and parity-based detection
in Fig.(9) for j = 15. Once again we see enhanced resolution for larger numbers of atoms. An important
note should be made here: rather than projecting onto the state in which all atoms are found in the
ground state, we can project onto the state in which all atoms are found in the excited state. This corre-

sponds to the projection operator P
(j)
j = |j, j〉 〈j, j| and the expectation value of this projection operator

is related to the expectation value of the ground state projection operator by PE (φ) = PG (φ± π) where

〈P (j)
j 〉 = PE (φ) , 〈P (j)

−j 〉 = PG (φ) . (37)

10
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̂

GroundP̂15j 


Figure 9: Ground state detection versus parity-based detection for an initial Ĵz-operated atomic coherent
state for j = 15.

5 A comparison of detection observables

Here we consider several of the ’detection observables’ discussed previously. For a given number of atoms
corresponding to j = N/2 = 15, we plot the following:

〈Π̂〉 = Expectation value of the parity operator,

〈Π̂Even〉 = Probability of finding an even number of atoms in the excited state,

〈Π̂Odd〉 = Probability of finding an odd number of atoms in the excited state,

PE (φ) = 〈P (j)
j 〉 = Probability of detecting all atoms in the excited state, (38)

PG (φ) = 〈P (j)
−j 〉 = Probability of detecting all atoms in the ground state,

〈Ĵz〉 /2j = Scaled difference between number of atoms in excited and ground states,

WInversion = PE (φ)− PG (φ) = Difference between probability of finding all atoms in excited and ground states.

11
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〈Jz〉/2j

WInversion=PE(ϕ)-PG(ϕ)

(b)

Figure 10: Measurement resolution for each detection observable for (a) N = 2j = 1 and (b) N = 2j =
30.

A plot for detailing the measurement resolution for each observable is given in Fig. 10 for several values
of j (note: for the j = 15 case, the purple curve line follows the orange curve, except staying zero when
the orange curve dips to −1). All measures except 〈Ĵz〉 /2j narrow with increasing numbers of atoms,
however nothing gets as narrow as the expectation value of the parity operator 〈Π̂〉. The only remaining
question is: what does the expectation value of the parity operator mean exactly, in this context?

6 Projection onto the ’half atoms excited’ state

Next we consider projection onto the ’half atoms excited and half atoms ground’ state. This corresponds
to projection onto the |j, 0〉 state, that is we define

P
(j)
M = |j,M〉 〈j,M | → PM (φ) = 〈P (j)

M 〉 , (39)

which are simply the projection onto an arbitrary atomic state and corresponding probability of obtain-
ing said state, respectively. Obviously in order for this to be well defined, an even number of atoms must
be present. This corresponds to integer values of j. For M = j, we project onto the state in which all
atoms are in the excited state and M = −j all atoms in the ground state. These have been discussed in
early sections. The case of immediate interest is projection onto the state in which half the atoms are
in the excited state and half the atoms are in the ground state. This corresponds to M = 0 for integer
values of j.

In Fig. 11 we plot several expectation values, including that of projection onto the |j, j〉 (all atoms
excited) state, |j, 0〉 (half atoms excited, half ground) state, and parity for reference. Note that a π/2-
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
〉

PM= j (ϕ)
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Figure 11: A plot of measurement resolution versus phase φ for projection onto several different atomic
states.

phase shift is included for the projection onto the |j, 0〉 state to place the peak at φ = 0. Included in
Fig. 11 is a scaled projection onto the |j, 0〉 state, that is we plot

PM=0 (φ± π/2) /maxφ [PM=0 (φ)] , (40)

which is simply the probability of obtaining the |j, 0〉 scaled to peak at one. A few things of note: first,
for increasing values of j, the max probability of detecting the |j, 0〉 state decreases. For example, for
j = 30, the maximum probability of obtaining this state is ∼ 10%. Secondly, there does seem to be an
enhancement in measurement resolution for increasing j, that is, the peak narrows. Thirdly, and most
interestingly, the scaled projection onto the |j, 0〉 seems to agree perfectly with the expectation value of
the parity operator, 〈Π̂〉. This seems to only be true for the case of an atomic coherent state generated
after the first π/2-pulse. This will not work for the case of the spin-squeezed atomic coherent state,
Ĵz |−1, j〉. In summary, for the atomic coherent state, we can write

〈Π̂〉ACS =
P

(ACS)
M=0 (φ± π/2)

maxφ

[
P

(ACS)
M=0 (φ)

] =
P

(ACS)
M=0 (φ± π/2)

P
(ACS)
M=0 (±π/2)

. (41)

It seems to be relevant as the usual means of measurement relies on the detection of the excited state.
If the probabilities can be monitored, and the maximum probability of obtaining the |j, 0〉 state can
be concluded (perhaps through repeated trials), then this may provide a means of determining the
expectation value of the parity operator experimentally without requiring a means of generating more
exotic spin-squeezed states. The subject of the next section will delve a bit more deeply into possible
experimental methods of performing a quantum non-demolition measure of atomic parity.

7 Quantum non-demolition measure of atomic parity

Here we will discuss several methods of performing a QND measure of atomic parity through the use of
coupling between the atomic system with an ancillary subsystem. We begin by defining the even/odd
atomic parity projection operators. That is, we define the operators that project the atomic state into
even/odd numbers of excitations only. These are given by

Π̂even =

j∑
m=−j

cos2
[ (j +m)π

2

]
|j,m〉 〈j,m| , (42)

Π̂odd =

j∑
m=−j

sin2
[ (j +m)π

2

]
|j,m〉 〈j,m| . (43)
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These projection operators satisfy the POVM condition
∑
i Π̂i = Î and can be used to express the

atomic parity operator by

Π̂ =
∑
i

λiΠ̂i = Π̂even − Π̂odd, (44)

where λi are the eigenvalues of the parity operator, respectively. It can be shown, obviously, that

〈Π̂even〉 =
1

2

(
1 + 〈Π̂〉

)
, (45)

〈Π̂odd〉 =
1

2

(
1− 〈Π̂〉

)
, (46)

where 〈Π̂odd〉+ 〈Π̂even〉 = 1. We note here that ’parity’ is defined with respect to the number of atoms
found in the excited state. That is, ’even’ parity denotes an even number of atoms found in the excited
state and ’odd’ parity denotes and odd number of atoms found in the excited state. The same projection
operators can be formed when defining parity with respect to the ground state. The two are related
by 〈Π̂excited〉 = (−1)

2j 〈Π̂ground〉. Next we introduce an ancillary atomic system |ζ, jb〉b as well as the
coupling Hamiltonian and corresponding evolution operator:

Ĥ = ~χ
(
Ĵa0 + Ĵa3

)(
Ĵb0 + Ĵb3

)
→ Û = e−itĤ/~, (47)

where χ is the coupling strength. This interaction Hamiltonian is analogous to the field coupling cross-
Kerr interaction. Presently, it is unknown whether this interaction has an atomic analogue. We define
the initial state as

|initial〉 = |ψ〉a ⊗ |ζ, jb〉 =

ja∑
m=−ja

C(ja)
m |ja,m〉a ⊗

(
1 + |ζ|2

)−jb jb∑
m′=−jb

(
2jb

jb +m′

)
ζjb+m′

|jb,m′〉b . (48)

Note that we wish to make a projective measurement on the ancillary atomic system (b-system) in order
to determine the atomic parity of the target system (a-system). The final state is then

|final〉 = e−itĤ/~ |initial〉

=

ja∑
m=−ja

C(ja)
m |ja,m〉a ⊗ |ζe

−itχ(ja+m), jb〉 . (49)

For the choice of χt→ π, this becomes

|final〉 = |ψeven〉a |ζ, jb〉b + |ψodd〉a |−ζ, jb〉b

=

ja∑
m=−ja

{cos2
[

(ja +m)π/2
]
|ζ, jb〉b + sin2

[
(ja +m)π/2

]
|−ζ, jb〉b} C

(ja)
m |ja,m〉

=

ja∑
m=−ja

C(ja)
m |ja,m〉a |Φm〉b (50)

Now we look specifically at the ancillary atomic system, |Φm〉b. Obviously the system is entangled such
that a projection onto the ancillary atomic system yielding the ACS characterized by parameter −ζ
will project out odd atomic states in the target system and projection onto the ACS characterized by
parameter +ζ will project out even atomic states in the target system. What we require is a means of
determining which state the ancillary atomic system is in. Let’s assume the ancillary atomic coherent
is prepared such that ζ = −1; this corresponds to a separable state in which all atoms of the ancillary
atomic system are in the same superposition state

e−i
π
2 Ĵ2 |j,−j〉 = |−1, j〉 = |ψ−〉⊗N =

1

2N/2
(|g〉 − |e〉)⊗N . (51)
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Similarly, we can also define the phase-rotated atomic coherent state

e−i
π
2 Ĵ2 |j, j〉 = |1, j〉 = |ψ+〉⊗N =

1

2N/2
(|g〉+ |e〉)⊗N . (52)

With this, we can rewrite the state |Φm〉b, assuming ζ = −1, as

|Φm〉b = cos2
[

(ja +m)π/2
]
|−1, jb〉b + sin2

[
(ja +m)π/2

]
|1, jb〉b

= cos2
[

(ja +m)π/2
]
e−i

π
2 Ĵ

b
2 |jb,−jb〉b + sin2

[
(ja +m)π/2

]
e−i

π
2 Ĵ

b
2 |jb, jb〉b . (53)

Performing a single π/2-pulse yields the ancillary atomic system in the state

ei
π
2 Ĵ

b
2 |Φm〉b = cos2

[
(ja +m)π/2

]
|jb,−jb〉b + sin2

[
(ja +m)π/2

]
|jb, jb〉b . (54)

The final state of the ancillary atomic system is a superposition of all atoms in the exicted state and
all atoms in the ground state. A measure of a single atom of the ancillary system is all that would be
required in order to project the target atomic system into even/odd states. Note that this works for an
arbitrary value of jb; that means the ancillary atomic system can consist solely of a single atom. Next
we will discuss a method involving a known coupling Hamiltonian.

Consider coupling to a field state. The interaction Hamiltonian is

Ĥ = ~χb̂†b̂Ĵ3 → Û = e−i
t
~ Ĥ , (55)

where {b̂, b̂†} are the usual boson annihilation and creation operators, respectively. Consider an ancillary
field state, given by the usual coherent state

|α〉b = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉b . (56)

The coupling Hamiltonian yields the final state

|final〉 = Û |initial〉 =

j∑
m=−j

C(j)
m |j,m〉 ⊗ |(−1)

m
α〉b . (57)

This is a bit messier, as the final entangled state will depend greatly on the value of j. More specifically

|final〉 =



|ψodd〉a |−α〉b + |ψeven〉a |α〉b j = 0, 2, 4..., N = 0, 4, 8, ...

|ψeven〉a |−α〉b + |ψodd〉a |α〉b j = 1, 3, 5..., N = 2, 6, 10, ...

|ψeven〉a |−iα〉b + |ψodd〉a |iα〉b j = 1
2 ,

5
2 ,

9
2 ..., N = 1, 5, 9, ...

|ψodd〉a |−iα〉b + |ψeven〉a |iα〉b j = 3
2 ,

7
2 ,

11
2 ..., N = 3, 7, 11, ...

(58)

In order for this procedure to be applicable, the total number of atoms involved must be known with
certainty, as the resulting superposition state and subsequent detection scheme will greatly depend on
having this information.

8 Signal-to-noise ratio: 〈Ĵz〉 vs. 〈Π̂〉 for the ACS and Ĵz-op ACS

A useful metric for comparing the level of desired signal with the amount of background noise present
is the signal-to-noise ratio (SNR). The SNR for an arbitrary detection observable D̂ is given by

SNR =
〈D̂〉

〈
(
∆D̂

)2〉 . (59)

We wish to compare the SNR when using parity-based detection as well as the when measuring the
atomic inversion, while considering two different states: the atomic coherent state |ζ = −1, j〉 and the
Ĵz-operated atomic coherent state |ζ = −1, j; 1〉. In terms of these detection observables, the respective
SNRs simplify to
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(SNR)Ĵz =
〈Ĵz〉√

〈Ĵ2
z 〉 − 〈Ĵz〉

2
(60)

(SNR)Π̂ =
〈Π̂〉√

1− 〈Π̂〉
2
. (61)

Note that the expectation values in Eqs.60 and 61 can be calculated for both states in question using the
expressions found in Eqs.18 and 19 as well as Eqs.22 and 23. We plot 10Log10 (SNR) against N = 2j,
the total number of atoms in the system, in Fig.12 for both initial states.

N
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0[S
N
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(a)

N
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R]

ˆ
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̂

ˆ -operated Atomic Coherent StatezJ

(b)

Figure 12: SNR in decibel scale plotted against total number of atoms N = 2j for (a) an initial atomic
coherent state and (b) an initial Ĵz-operated atomic coherent state.

9 Measurement resolution for the Ĵ2
z -operated atomic coherent

state

Next we consider a comparison of the resolution achieved when comparing parity-based detection and
ground-state detection for the case of the Ĵ2

z -operated atomic coherent state as the state just prior to
time evolution. Once again, the action of the Ramsey interferometer on the initial state |in〉 = |j,−j〉 is
given by

|ΨF〉 = e−i
π
2 Ĵye−iφĴz Ĵ2

z e
−i π2 Ĵy |in〉

= e−i
π
2 Ĵye−iφĴz |ζ = −1, j; 2〉 , (62)

where the state in the last line is given by

|ζ = −1, j; 2〉 ∝ Ĵ2
z |ζ = −1, j〉

=

[
4jj

4
(3j − 1)

]−1/2 j∑
m=−j

(
2j

j +m

)1/2

(−1)
j+m

m2 |j,m〉 . (63)

Using Eq. 28, we can find the expectation value of the parity operator to be

〈Π̂〉Ĵ2
z -op =

[
4jj

4
(3j − 1)

]−1 j∑
m=−j

(
2j

j +m

)
m4e−i2mφ, (64)

and the expectation value of the ground-state projection operator

〈P̂ (j)
−j 〉Ĵ2

z -op
=

∣∣∣∣∣
[

4jj

4
(3j − 1)

]−1/2 j∑
m=−j

(
2j

j +m

)1/2

m2 (−1)
j+m

eiφmdj−j,m
(
π
2

) ∣∣∣∣∣
2

. (65)

Once again, unsurprisingly, we find a somewhat greater resolution for parity-based detection. Note that
for both of these detection observables, one obtains greater resolution for larger numbers of atoms.
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Figure 13: Ground state detection versus parity-based detection for an initial Ĵ2
z -operated atomic co-

herent state for j = 15.

10 Parity-based resolution using the Ĵqz -operated ACS for q =
3, 4, 5,...

Now we generalize to see the effect of increasing applications of Ĵz to the atomic coherent state. Note
that increasing applications does not necessarily yield greater spin squeezing: for example, the Ĵz-op
ACS is more spin-squeezed than the Ĵ2

z -op ACS. Let’s once again assume the state is initially prepared
with all atoms in the ground state, that is |in〉 = |j,−j〉. The action of the Ramsey interferometer is to
transform an initial state |in〉 by

|ΨF〉 = e−i
π
2 Ĵye−iφĴze−i

π
2 Ĵy |in〉

= e−i
π
2 Ĵye−iφĴz |ζ = −1, j〉 , (66)

Let’s consider the case where we act with the Ĵqz operator after the first π/2-pulse, where q = 2, 3, 4. In
this case the initial state is transformed by

|ΨF〉 = e−i
π
2 Ĵye−iφĴz Ĵqz e

−i π2 Ĵy |in〉

= e−i
π
2 Ĵye−iφĴz |ζ = −1, j; q〉 , (67)

where |ζ = −1, j; q〉 ∝ Ĵqz |ζ = −1, j〉, and where |ζ = −1, j〉 is the atomic coherent state. We can
calculate the expectation value of the parity operator at the output of the Ramsey interferometer for
varying values of q to be

〈Π̂〉q=2 =
(
4j−1j (3j − 1)

)−1
j∑

m=−j

(
2j

j +m

)
e2iφmm4 (68)

〈Π̂〉q=3 =
(
22j−3j

(
15j2 − 15j + 4

))−1
j∑

m=−j

(
2j

j +m

)
e2iφmm6 (69)

〈Π̂〉q=4 =
(
4j−2j (21j (5 (j − 2) j + 7)− 34)

)−1
j∑

m=−j

(
2j

j +m

)
e2iφmm8. (70)

A plot of the expectation value of the parity operator versus the phase φ can be seen in Fig.14 for
q = 1, 2, 3, 4. Not shockingly, we obtain greater resolution with successive actions of Ĵz. Note that
regardless of the number of times we act with the Ĵz operator, the expectation value of the parity
operator has the form
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Figure 14: Parity-based resolution for the state |ζ = −1, j; q〉 for q = 1, 2, 3, 4 for N = 2j = 5.

〈Π̂〉q ∝
j∑

m=−j

(
2j

j +m

)
e2iφmm2q, (71)

where the constant of proportionality is related to the normalization factor of the initial state.

11 Parity-based resolution with arbitrary atomic coherent states
generated after the first π/2-pulse

Once again, we assume a similar interferometer transformation, except now we assume the first λ-pulse
generates an arbitrary atomic coherent state |ζ, j〉

|ΨF〉 = e−i
π
2 Ĵye−iφĴze−iλÔ |in〉

= e−i
π
2 Ĵye−iφĴz |ζ, j〉 , (72)

where Ô is the operator driving the evolution of the initial state. This operator is well known in the
literature. The output state is given by

|ΨF〉 =
(
1 + |ζ|2

)−j j∑
m=−j

j∑
m′=−j

(
2j

j +m

)1/2

ζj+me−iφmdjm′,m

(
π
2

)
|j,m′〉

=

j∑
m′=−j

Bj,m′ (ζ, φ) |j,m′〉 . (73)

Note that in Eq. 72 and 73, the parameter ζ is given in terms of angles relative to the Bloch sphere by
ζ = eiσ tan θ

2 , where 0 ≤ σ ≤ 2π and 0 ≤ θ ≤ π. The expectation value of the parity operator is then
simply

〈Π̂〉 = 〈ΨF|eiπ(j−Ĵz)|ΨF〉 =

j∑
m′=−j

∣∣Bj,m′ (ζ, φ)
∣∣2eiπ(j−m′). (74)

We are interested in plotting this versus the phase angle φ and the state angle θ, in a three-dimensional
plot for set values of j and σ. The goal is to see whether the angle associated with the initial atomic
coherent state affects measurement resolution at the output; or if it simply shifts the peak from φ = 0.
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
Figure 15: Parity-based resolution for M = 0 and j = 20 (blue). For reference, a plot of the ACS,
M = −j, for the same value of j is superposed onto the plot (red).

12 Parity-based resolution for an arbitrary initial superposition
state

We assume the interferometer transforms the initial state in a similar fashion as the earlier work, however
now we assume the initial state to be some arbitrary superposition of atomic states, rather than assuming
all atoms are initially prepared in the ground state. That case would yield the atomic coherent state
with ζ = −1 after the first π/2-pulse. The output state is given by

|ΨF〉 = e−i
π
2 Ĵye−iφĴze−i

π
2 Ĵy |j,M〉

= e−i
π
2 Ĵye−iφĴz ×

j∑
m=−j

djm,M
(
π
2

)
|j,m〉

=

j∑
m′=−j

Ajm′ (φ|M) |j,m′〉 , (75)

where once again djm′,m (β) are the usual Wigner-d matrix elements given by 〈j,m′|e−iβĴy |j,m〉 and the
coefficients in the last line of Eq. 75 are given by

Ajm′ (φ|M) =

j∑
m=−j

djm,M
(
π
2

)
djm′,m

(
π
2

)
e−iφm. (76)

The expectation value of the parity operator is then given by

〈Π̂〉 =

j∑
m′=−j

∣∣∣Ajm′ (φ|M)
∣∣∣2eiπ(j−m′). (77)

Note that for the selection M = −j, we should recover the well known result

〈Π̂〉
∣∣∣
M=−j

= cos2j (φ) . (78)

We plot the expectation value of the parity operator 〈Π̂〉 versus the phase φ in Fig.15 for j = 20 and
M = 0. Note that for M = 0, we must have integer values of j; or even numbers of atoms only. Note
that while the expectation value of the parity operator is more oscillatory, it is narrower at the peak
than the case in which all atoms are initially in the ground state.
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13 Wigner function for atomic ensembles of two-level atoms

Here we discuss, for pedagogical interest, how one would define the Wigner function for an arbitrary
atomic state in terms of the multipole operator T̂K,Q. A general atomic state, written in terms of the
Dicke states |j,m〉, is given by

|ψ〉 =

j∑
m=−j

C(j)
m |j,m〉 . (79)

The Wigner function can be written as

W (θ, φ) =

√
2j + 1

4π

2j∑
K=0,1,..

K∑
Q=−K

〈T̂ †K,Q〉Y
K
Q (θ, φ) , (80)

where Y KQ (θ, φ) are the usual spherical harmonics. The Wigner function of Eq. 80 should satisfy the
normalization condition ∫ π

0

∫ 2π

0

W (θ, φ) sin θ dθdφ = 1. (81)

The Hermitian conjugate T̂ †K,Q can be written in terms of the multipole operator T̂K,Q by

T̂ †K,Q = (−1)
Q
T̂K,−Q

= (−1)
Q

j∑
p=−j

j∑
p′=−j

(−1)
j−p√

2K + 1

(
j K j
−p −Q p′

)
|j, p〉 〈j, p′| , (82)

where the matrix appearing in Eq. 82 are the Wigner-3j symbol.

14 Post-interferometer entanglement between N = 2j = 3 atoms

We investigate the entanglement between individual atomic states after the interferometer. To that end,
we consider the linear entropy, which is simply the linear first order approximation of the von Neumann
entropy. It is essentially a measure of how mixed a reduced density operator is. Consider the state after
the interferometer

|ΨF〉 = e−i
π
2 Ĵye−iφĴz ĴQz e

−i π2 Ĵy |j,−j〉

= e−i
π
2 Ĵye−iφĴz |ζ = −1, j;Q〉 , (83)

where the state in the last line of Eq. 83 is the ĴQz -operated atomic coherent state, given by

|ζ = −1, j;Q〉 = η
(Q)
j

j∑
m=−j

(
2j

j +m

)1/2

(−1)
j+m

mQ |j,m〉 ,

= η
(Q)
j

j∑
m=−j

Λ
(Q)
j,m |j,m〉 (84)

where η
(Q)
j is determined by normalization. The output state then has the form

|ΨF〉 =

j∑
m′=−j

Γ
(Q)
j,m′ (φ) |j,m′〉 , (85)

where the new coefficients are given by

Γ
(Q)
j,m′ (φ) = η

(Q)
j

j∑
m=−j

Λ
(Q)
j,me

−iφmdjm′,m

(
π
2

)
. (86)
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Once again, the Wigner-d matrix elements, djm′,m (β) is given previously in the text. Setting j = 3/2,
that is, three atoms present, and tracing out two of the atoms, we find the reduced density operator

ρ̂out,a = Ωgg |g〉 〈g|+ Ωeg |e〉 〈g|+ Ωge |g〉 〈e|+ Ωee |e〉 〈e| , (87)

where, dropping some sub- and super-scripts for notational convenience

Ωgg = |Γ−3/2|2 + 1
3 |Γ1/2|2 + 2

3 |Γ−1/2|2

Ωee = |Γ3/2|2 + 1
3 |Γ−1/2|2 + 2

3 |Γ1/2|2

Ωeg = 1√
3
Γ−1/2Γ∗−3/2 + 1√

3
Γ3/2Γ∗−1/2 + 2

3Γ1/2Γ∗−1/2

Ωge = 1√
3
Γ−3/2Γ∗−1/2 + 1√

3
Γ1/2Γ∗3/2 + 2

3Γ−1/2Γ∗1/2. (88)

Squaring the density operator yields

ρ̂2
out,a =

(
Ω2
gg + ΩgeΩeg Ωeg (Ωee + Ωgg)

Ωge (Ωee + Ωgg) Ω2
ee + ΩgeΩeg

)
, (89)

and the purity of the state is given by the usual P = Tr [ρ̂out,a] and the linear entropy is then

SLin = 1− P. (90)

This state has been shown to be more entangled for increasing values of Q, however the degree of spin
squeezing does not necessarily increase with increasing values of Q. In fact, the Q = 1 state is less
entangled but more spin-squeezed than the Q = 2.

15 Conclusion

We have shown that atomic parity Π̂ = Exp
[
iπ
(
Ĵ0 + Ĵ3

) ]
provides a substantial increase in measure-

ment resolution when used as a detection observable in multi-atom Ramsey interferometry. In addition
to this, we have demonstrated that the enhancement of measurement resolution increases with larger
numbers of atoms in the ensemble. This was done in the context of an initial atomic coherent state,
the spin-squeezed Ĵz-operated atomic coherent state and the more general Ĵqz -operated atomic coherent
state. Furthermore, we considered several other means of measurement including projection onto the
balanced |j, 0〉, valid for integer values of j. In this particular case, when scaled to unity, the measure-
ment resolution agrees with that of atomic parity.

We go on to also discuss a plausible quantum non-demolition means of implementing measurement of
atomic parity using the atomic analogue of field cross-Kerr interations by coupling the atomic system
with an ancillary system of arbitrary size. An alternative means of parity measurement can be shown
through the use of a well known atom-field coupling Hamiltonian. In this case, however, the number of
atoms must be known with certainty.
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