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                                                                  ABSTRACT 
One of the most vital cognitive skills to possess is the ability to make sense of objects, events, 
and situations in the world. In the current paper, we offer an approach for creating artificially-
intelligent agents with the capacity for sensemaking in novel environments. First, sensemaking is 
represented as sign relations embedded within and across frames (i.e., schemata). Such sign relations 
are represented as probabilities in a Bayesian Network to reflect uncertainty. Moreover, 
synthesized patterns can arise from an interplay among different sources of knowledge—a feature 
of distributed representations—thus, synthesized patterns could be recognized as signs during the 
sensemaking process in a novel environment. Finally, those aspects of memories that get 
synthesized can be determined via an unconscious, embodied simulation process that aligns 
different combinations of attributes from different memories to find a solution to the sensemaking. 
In sum, we offer a novel approach by suggesting that attributes across memories can be shared 
and recombined in novel ways to create synthesized signs, which can denote certain outcomes in 
novel environments (i.e., sensemaking).  
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1.0 INTRODUCTION 
One of the most important cognitive skills to possess is the ability to make sense of objects, 
events, and situations in the world. The capability for sensemaking is critical when 
comprehending everyday situations, such as when individuals engage in social interaction with 
coworkers, make critical decisions at work, navigate through traffic during rush hour, or avoid 
injury in dangerous situations. It is likely that all other cognitive processes, such as perception, 
attention, and memory, act in the service of sensemaking ([1], [2]). Sensemaking is important for 
biology as a whole ([3]). 
Despite sensemaking’s importance for biology, and general agreement that it entails the 
cognitive process of utilizing past experiences to interpret new situations, the concept has not 
been consistently defined in the literature. For instance, Russell, Stefik, Pirolli and Card ([4]) 
argued that sensemaking is the process of encoding data in a representation to answer task-
specific questions. In doing so, representations are chosen and changed to reduce the cost of 
information processing. On the other hand, Dervin ([5]) suggested that sensemaking is a label for 
the process of how people construct sense of their worlds, and how they use information during 
that process. In this case, sensemaking is defined as both internal (i.e. cognitive) and external 
(i.e. procedural) behavior. Weick, Sutcliffe and Obstfeld ([6]) posited that sensemaking is a 
process in which circumstances and situations are understood in explicit language that enables 
rationalizing what one is doing. Thus, sensemaking helps inform and constrain identity and 
action. Finally, Lebiere, Pirolli, Thomson, Paik, Rutledge-Taylor, Staszewski and Anderson ([7]) 
defined sensemaking as the mental process of constructing a ‘meaningful’ representation of some 
complex aspect of the world. These authors also assumed that sensemaking involved 
information-foraging and hypothesis-updating processes.  
Many of these approaches, discussed above, may contain useful elements for defining and 
conceptualizing sensemaking in certain situations, such as the potential need for information-
foraging or hypothesis updating. Yet many of these approaches contains elements that are too 
narrow (e.g., answering task-specific questions) or too vague (e.g., constructing meaningful 
representations) to be useful for our purposes. We wish to employ an approach toward 
sensemaking that is precise enough to enable predictions yet flexible enough to apply to many 
different types of context and situation. Therefore, in the present case, we present a precise, yet 
flexible, unified framework for sensemaking ([1],[8]) and consider novel environments in which 
sensemaking can be particularly challenging. In novel environments, context is confusing—
which elements in a scene should be attended to and which elements can be ignored? In novel 
environments, cause and effect may be unknown—which variables are related and which 
variables are independent?  
Given the importance of sensemaking in novel environments, the present paper offers the 
following innovative ideas: (a) a unified framework for sensemaking in which sensemaking is 
represented as sign relations embedded within and across frames (i.e., schemata), the former of 
which are represented as probabilities in a Bayesian Network to reflect uncertainty; (b) the 
interplay among different sources of knowledge—a feature of distributed representations—can 
create synthesized patterns, each of which could be recognized as a sign during the sensemaking 
process in a novel environment; (c) distributed representations; and (d) embodied simulations 
that attempt to align different combinations of attributes from different memories to find a 
solution to the sensemaking. We also offer an actual example of sensemaking and end with 
discussion. We begin with a unified framework for sensemaking.  
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2.0 UNIFIED FRAMEWORK FOR SENSEMAKING 
The capability to make sense of our environment would seem to require sophisticated cognitive 
processing. As Fuster [2] notes, in humans, all cognitive functions are interdependent: language 
depends on perception, attention, and memory, and intelligence depends on perception, attention, 
memory, language, and reasoning. The neural foundation of these cognitive functions is 
amazingly complex. The human brain typically contains slightly less than 100 billion neurons 
and has approximately 150 trillion synapses [9]. This complexity entails systems containing 
thousands of non-linear feedback loops, both positive (self- reinforcing) and negative (self-
correcting) feedback, coupled to one another with multiple time delays, non-linearities, and 
accumulations, which can generate very complex endogenous behavior in a system ([10]; [11]). 
Such complex behavior implies that it will be very challenging to model human sensemaking.  
2.1 Sensemaking 
2.1.1 Sign Relations 
Sensemaking can be conceptualized as sign interpretation, which is called ‘meaning making’ in 
the field of semiotics, a field originating from the writings of Peirce [12] and de Saussure ([13]; 
see also [14], [15], [16], [17]). Peirce [12] treated meaning making as sign interpretation—the 
meaning of a given thought occurs due to a triadic relation among the thought, the interpretation of 
the thought as a sign (its meaning), and a determining thought that the sign denotes. In simpler 
terms, the meaning or sense of an object or event is found in its interpretation as a sign denoting 
some other (determining) object or event, which can be causal or correlational. Bains [17] 
discussed how sensemaking entails relations that function as signs—sign relations. The 
interpretation of such relations as signs is based on knowledge about situated patterns, which 
includes the grounding of objects or events to the real world ([18], [19]). For example, making 
sense of a traffic jam during a morning commute—due to an accident—would be found in its 
interpretation as a sign denoting that the person will be late for work. 
2.1.2 Frames  
Sensemaking can also be conceptualized as involving ‘frames,’ as suggested by Minsky ([20]; 
see also [21], [22]). Minsky argued that when a new situation is encountered, a mental data-
structure or mental model for representing stereotypical situations, called a frame, is retrieved 
from memory. The context of a given situation is represented by higher, fixed levels of a frame 
whereas the specifics of the situation are represented by arguments that fit within the frame (i.e., 
details of a frame are adapted to fit within current environmental context). According to Minsky 
[20], the relations among the lower-level terminals and their frame denote meaning. The concepts 
of scripts and plans, which are designed for representing sequences of events, are similar to frames 
[23]; [24]). Another concept closely allied to that of a frame is a schema (plural: schemata), 
which refers to a flexible mental data structure representing context-dependent relations among 
concepts in memory ([25]; [26]; [27]; [28], [29]; [30]). 
2.1.3 Signs Embedded Within/Across Frames 
Sign relations can be bound together  in a frame. That is, within any given frame, a given 
element of the frame may serve as a sign denoting another element of the same frame (within-
frame sign relation). For example, recall the commuter who is stuck in traffic during a morning 
commute due to an accident. Being stuck in traffic could activate a traffic-accident frame 
composed of elements like injuries, ambulance, debris, and stalled or stationary traffic. The 
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presence of injuries would serve as a sign denoting the arrival of an ambulance, while the 
significant debris on the road would serve as a sign denoting stationary traffic. The ambulance 
itself could also serve as a sign denoting the possibility of stationary traffic. These are within-
frame sign relations. 
Moreover, an element of a given frame may serve as a sign denoting an element of a different 
frame (across-frame sign relation). The stationary traffic of this traffic-accident frame would 
serve as a sign denoting that the commuter will be late for work, which would activate a new 
late-for-work frame. Thus, the stationary traffic (of the traffic-accident frame) and the late for 
work event (of the late-for-work frame) would comprise an across-frame sign relation. The late- 
for-work frame could be composed of elements such as missed meeting, work late, unfinished 
projects, and boss unhappy. The missed meeting could serve as a sign (its sense) denoting the need 
to work late, while the unfinished projects could serve as a sign (its sense) denoting an unhappy 
boss. The working late itself could also serve as a sign denoting the possibility of an unhappy boss. 
These latter relationships would be within-frame sign relations. See Figure 1.  
 

 
 

Figure 1.  Diagram depicting Two Frames, Traffic-Accident frame and Late-for-Work 
Frame, and their Within-Frame Sign Relations and an Across-Frames Sign Relation. 

The links shown in the traffic-accident frame T→I, D; I→A; D→S; A→S; and the links shown in the late-for-work 
frame L→M, U; M→W; U→B; W→B; represent within-frame sign relations. The link S→L represents an across-

frame sign relation. 

Sensemaking also affords humans the opportunity to look back and interpret the potential causes 
of events. For example, the traffic-accident frame could have been preceded by a speeding- cars 
frame, which would have served as a sign denoting the traffic-accident frame; and the late- for-
work frame could be followed by a possible-demotion frame, which would be denoted by the 
late-for-work frame. The sense derived from these within- and between-frame sign relations 
would allow humans to generate predictions about potential future events, which could influence 
subsequent decision making ([1],[8]). 
2.1.4 Bayesian Network (BN) Modeling 
A BN can be used to represent our framework of sensemaking. BNs are a form of probabilistic 
graphical model that employ a directed acyclic graph for encoding multi-dimensional probability 
distributions [31]. Bayesian networks represent information about a given domain using 
variables to symbolize propositions and directed edges to convey dependencies [32]. 
Probabilities are employed to quantify variables. Representing sensemaking and its attendant 
sign relations as probabilities in a BN reflects uncertainty [33], a natural feature of sensemaking 
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in any realistic domain due to a lack of absolute knowledge. Such sign relations reflect 
conditional dependency. 
Returning to the traffic-accident frame and late-for-work frame (Figure 1), but now represented 
as a BN with associated hypothetical conditional probability tables (CPT) as in Figure 2. We 
simulated the BN model shown in Figure 2 with a software tool called Hugin (version 8.9; [34]). 
 

 
 

Figure 2.  Diagram Depicting Two Frames, Traffic-Accident Frame and Late-for-Work 
Frame, and their Within-Frame Sign Relations and An Across-Frames Sign Relation, 

Previously Depicted in Figure 1.  
In the present figure, each of these two frames are shown as a Bayesian network with its conditional probability 

table. 

Prior probabilities of the model shown in Figure 2 are calculated as the following: T (traffic 
accident): 1.0; I (injuries): 0.7; A (ambulance): 0.7; D (debris): 0.8; S (stationary traffic): 0.81; L 
(late for work): 0.75; M (miss meeting): 0.75; W (work late): 0.61; U (unfinished projects): 0.73; 
and B (boss unhappy): 0.68. Thus, when the probability of debris is 80%, probability of being 
late for work is 75% and probability of boss being unhappy is 68%. The 80% probability of 
debris serves as a sign denoting that the commuter is more likely to be late than on time, the 
latter of which serves as a sign denoting that the boss is more likely to be unhappy than happy. 
When the probability of debris is 0%, the posterior probability of being late for work is 27% and 
the posterior probability of the boss being unhappy is 41%. Here, the absence of debris serves as 
a sign denoting that the commuter is more likely to be on time than late, the latter of which 
serves as a sign denoting that the boss is more likely to be happy than unhappy.     
2.1.5 Sensemaking in Artificial Intelligence (AI) Systems 
Concepts similar to sign relations and frames have been implemented in current systems in a 
variety of ways, often under different names. For example, Garcia et al. [35] used a 
reinforcement learning paradigm, along with encoded and decoder networks, to learn an 
emergent language between two agents given a categorization task. This two-component system 
may implement a version of probabilistic sign relations as described above. More broadly, 
representations such as large language models have been shown to have predictable implicit 
semantics ([36]). Nonetheless, the functional limitations of artificial cognition suggest that such 
‘sensemaking’ falls well short of the successes seen with human sensemaking in naturalistic 
environments (see also [37]).  
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3.0 PATTERN SYNTHESIS AND MEMORY RECOMBINATION 
Sensemaking in novel situations may entail a form of pattern synthesis. Differences between a 
current novel situation and previous situations can be significant and sensemaking may require 
the synthesis of different attributes from different memories rather than retrieval of a single 
memory (Patterson & Eggleston, [1], [8]). Such pattern synthesis would entail interactions 
among knowledge structures.  
3.1 Interactions Among Knowledge Structures 
The generation of synthesized patterns as signs would require the interplay among various 
sources of knowledge. Based on this idea, knowledge structures would interact with each other to 
capture the generative capacity of human understanding in novel situations [38]. In humans, 
several types of memory have been identified [39]; [40]; [41]; [42], [43]): declarative memory, 
the conscious recollection of facts and events; and nondeclarative memory, which includes 
procedural memory (unconscious memory of invariant, relational knowledge supporting skill and 
behavioral dispositions), priming, and classical conditioning. The generation of synthesized 
patterns as signs may entail the interaction among two or more of these memory systems. 
3.2 Insight and Sensemaking 
Pattern synthesis and memory recombination during sensemaking is revealed by the insight 
literature. Insight refers to the sudden conscious realization of a problem solution (i.e., its sense) 
following a period of impasse, which typically occurs with nonroutine problem solving (e.g., 
[44]; [45]; [46]). Wallas [47] gave the original description of the phenomenon and suggested four 
stages of insight, which he called ‘illumination’: (1) preparation—conscious investigation of a 
problem; (2) incubation—unconscious processing; (3) illumination—“Aha” experience or sudden 
conscious insight due to previous unconscious processing during incubation; and (4) 
verification—conscious assessment of the insight. The first and fourth stages entail conscious 
processing whereas the second and third stages involve unconscious processing. Specifically, 
incubation is where the person recognizes the sense of a problem solution intuitively ([1], [8]). 
Insight problem solving is unconscious and intuitive as shown by studies revealing that (1) 
cognitive processing leading to the problem solution during incubation was largely unconscious 
(e.g., [48]); (2) performance on insight problems was not linked with executive functions 
associated with working memory ([49]); and (3) participants with impaired neurology in a region 
of cortex associated with working memory solved 50% more insight problems than healthy 
participants ([50]). Disconnection from consciousness and working memory is a feature of 
intuitive cognition. 
3.3 Maier’s (1931) Study  
In a classic study of insight by Maier [51], which is discussed by Patterson and Eggleston ([1], [8]), 
participants had to tie together ends of two long cords hung from the ceiling of a room and 
separated by a large distance. A solution was to make one cord a pendulum by tying an object 
(pliers) to its end and swinging it closer to the other cord so the person could grab both cords 
simultaneously. Some participants discovered the pendulum solution only after seeing the 
experimenter casually bump into and sway one of the cords while walking across the room (“help 
1”). For 85% of the successful participants (with or without the help), the pendulum solution was 
discovered suddenly and intuitively, from unconscious processing, and with insight (“Aha” 
experience). For the successful participants, sensemaking of the pendulum would entail its 
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interpretation as a sign denoting a solution to the two-cord problem. 
The pendulum solution, as noted by Maier [51], was derived from a conceptual reorganization 
(pattern synthesis) of the weight of the pliers, length and position of the cord, and (for those who 
needed the help) the cord-swaying aspect of “help 1”. Such synthesis of pattern to derive sense 
likely entailed memory recombination: knowledge about (1) how a length of cord behaves when 
weighted on one end, and (2) what a pair of pliers would weigh, would be retrieved and 
recombined from procedural memories (unconscious relational knowledge supporting skill 
development and behavioral tendencies tuned through experience; [42], [43]). 
Memory recombination supporting intuitive situational pattern synthesis was fundamental to the 
insightful creation of the pendulum and its interpretation as a sign (its sense) denoting a solution 
to the two-cord problem. Other studies on insight can be interpreted analogously (e.g., [44],[48]). 
3.4 Compositional AI 
The ability to recombine learned concepts, behaviors, and skills has long been recognized as a 
critical ability for AI systems (e.g., see descriptions of necessary functionality in the original 
proposal on artificial intelligence by McCarthy, Minsky, Rochester, and Shannon [52]). 
Particularly in reinforcement learning, there is extensive literature on recombination of 
behaviors, including Sutton et al. [53] on learning policies over low level options as well as more 
recent work on multi-task learning by Andreas et al. [54]. In computer vision, many approaches 
have attempted to explicitly model the decomposition and recombination of conceptual 
primitives (e.g., deformable part-based object recognition; [55]). Yet, such necessary 
functionality is usually shown to be less effective in machine systems than more simplistic 
methods; [56]; see also [57]).   
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4.0 DISTRIBUTED NETWORK REPRESENTATIONS 
Cognitive processing frequently entails an interplay between various sources of knowledge in 
memory. For example, the insightful creation of the pendulum and its interpretation as a sign 
denoting a solution to the two-cord problem, discussed above, was derived from a memory 
recombination process supporting intuitive pattern synthesis. Interactive processing, involving an 
interplay between bottom-up and top-down information, has been recognized in humans as being 
critical for behavior as well as for consciousness ([58]; [59]; [60]). This interplay among 
different sources of knowledge is a feature of distributed representations [61]. 
4.1 Distributed Representation and Content Addressable Memory (CAM) 
The existence of a distributed network representation assumes numerous highly interconnected 
units and no central processing center [62]. Theoretically, in one kind of distributed 
representation involving CAM, each memory involves network units that have mutually 
excitatory interactions with units signifying each of its properties. Thus, activating an attribute of 
the memory would tend to activate the whole memory; and activating the whole memory would 
tend to activate all of its attributes. There would also be mutually inhibitory interactions between 
mutually incompatible attribute units. Thus, different memories would correspond to different 
patterns of activity over the same hardware units ([63], [64]). One key feature of human memory 
is that it is content addressable—we can access information in memory based on most, if not all, 
attributes of the representation we are trying to retrieve [65]. The presence of distributed 
representations has been directly observed in human brain [66]. 
The results of the study by Maier [51] can be viewed in a distributed network representation 
scheme as shown in Figure 3. In Panel A, we have distributed representations of activated 
memories  of a cord (e.g., with attributes strength, color, length, hung, knot on end) and of a pair 
of pliers (e.g., with attributes shape, weight, grip, color). As indicated in the figure, we 
hypothesize that the memory of the cord came from rope climbing in a gym class; and memory 
of the pliers came from carpentry work. In Panel B, we have the same representation as in Panel 
A except that we have added a new (non-activated) memory of a pendulum (which 
hypothetically came from seeing clocks) which has the attribute of ‘cord sways’ and also shares 
the attributes of ‘weight’, ‘hung’, and ‘length’ with the other memories. We call this a ‘shared 
attribute’ principle of distributed representations. In Panel B, we assume that the memory of the 
pendulum is not yet activated.  
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Figure 3.  Diagram Depicting Memories as a Set of Distributed Network Representations of 

Items from a Study by Maier [51]. 
Panel A shows activated memories of a cord (attributes of strength, color, length, hung, knot on end) and of 

a pair of pliers (e.g., attributes of shape, weight, grip, color). In Panel B, a new (non- activated) memory of a 
pendulum has been added, which has the attribute of ‘cord sways’ and which also shares the attributes of ‘weight’, 

‘hung’, and ‘length’ with the other memories. In Panel C, a new (activated) memory of the hint has been added, 
which shares the attribute of ‘experimenter brushes cord’ with the memory of the cord, and also shares the attribute 
of ‘cord sways’ with the memory of a pendulum. In Panel D, the pendulum memory has become activated, due to the 
presence of the hint and the activation of the attribute ‘cord sways’ being added to the coactivation of the attributes 

of ‘length’, ‘hung’, ‘weight’. 

In Panel C, a new (activated) memory of the hint (which came from seeing the experimenter 
brush against the cord) is added, which shares the attribute of ‘experimenter brushes cord’ with 
the memory of the cord, and also shares the attribute of ‘cord sways’ with the memory of a 
pendulum. In Panel D, the pendulum memory has now become activated due to the presence of 
the hint and the activation of the attribute ‘cord sways’ being added to the coactivation of the 
attributes of ‘length’, ‘hung’, and ‘weight’. In short, the memory of the hint interacts with the 
memories of the cord and the pliers to cause the dormant representation of the problem solution 
(pendulum) to become activated, and the participant has the ‘Aha’ (insight) experience. 
4.2 Hypothetical Example 
Now consider a hypothetical example of sensemaking adopted from Patterson and Eggleston [1]. 
Imagine that an individual is on her way to work in the morning and stopped at a traffic light 
next to a gas station. Suddenly she sees a large dump truck speeding down a nearby steep hill. 
The truck is out of control and will likely strike the gas pumps. The site of the truck speeding 
toward the gas pumps would indicate that she could be injured by an explosion, and she would 
try to escape the situation. Yet how would she know about the danger of exploding gas pumps 
given that she has never experienced such an event in the past?  
Because that exact event has never been previously experienced, the recognized danger could not 
be based on any single memory. Rather, the sight of the truck speeding toward the gas pumps 
would serve as a cue for the synthesis of a new frame that would entail a sign involving 
exploding gas pumps, derived from different memories from past experiences, and what the sign 
denoted, which would be the possibility of being injured. See Figure 4. 
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Figure 4.  Diagram Depicting Memories as a Set of Distributed Network Representations 
During Sensemaking (Sign Interpretation) Involving a Hypothetical Accidental Explosion 

(adapted from Patterson & Eggleston [1]). 
Assume that an individual is stopped at a traffic light next to a gas station and suddenly sees an out-of-

control speeding dump truck that will likely strike the gas pumps. At the moment the out-of-control dump truck is 
sighted, different attributes from various memories—such as a collision involving a moving vehicle (panel A: from 
memory of severe accident on an interstate), trying to stop one’s own car on a steep hill (panel B: from memory of 
trip to San Francisco), being close to exploding material (panel C: from memory of getting burned at 4th of July 

celebration), and gasoline presenting a danger (panel D: memory from chemistry class)—would be synthesized into 
a meaningful pattern, a sign, of exploding gas pumps (panel E). This synthesis of sign would be based on the ‘shared 
attribute’ principle of distributed representations (see also Rumelhart & McClelland, 1986, vol. 1, p. 28-30). The 

sign of potential exploding gas pumps would denote possible injury (its sense) and the individual would immediately 
leave the situation. 

In synthesizing this new frame, there could be an episodic memory of not stopping one’s car on a 
steep hill during a previous trip to San Francisco; another episodic memory of a collision 
involving a moving vehicle on an interstate (truck can’t stop → collision, a within-frame sign 
relation); declarative memory of gasoline being a dangerous liquid during chemistry class; and 
an episodic memory of a friend being too close to exploding material and getting burned during a 
4th of July celebration (collision + gasoline danger → explosion, a within-frame sign relation). 
This synthesized element ‘explosion’ would serve as a new sign and its sense, or what that sign 
denoted, would be the possibility of injury (an across-frame sign relation). Thus, what we have is 
sign relations produced by interaction among different representations of knowledge involving 
different kinds of memory. See Figure 4. The idea of being injured would set up a new injury 
frame (not shown). Recognition of potential injury would be posted to consciousness as a feeling 
of fear. 
We can represent this synthesized exploding-gas-pumps frame and attendant sign relations in a 
BN. The associated CPTs are given in Figure 5 (with the values hypothesized to come from 
previous memories), and this BN model was simulated with the software tool Hugin (version 8.9 
[34]). In our simulation, the prior probability of an explosion is 0.73 and the prior probability of 
an injury is 0.58. However, if the probability of an explosion becomes 100% (i.e., the explosion 
variable is instantiated), then the posterior probability of an injury becomes 0.80. 
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Figure 5. Diagram Depicting an Exploding Gas-Pumps Frame, Synthesized from Different 

Memories. 
. Hypothetically, an individual sees that a large dump truck is out of control as it speeds down a steep hill 

and will strike nearby gas pumps. The sight of the truck speeding toward the gas pumps would serve as a cue for the 
synthesis of a new frame with a sign involving an explosion. This synthesized frame and sign would be derived from 

aspects of the individual’s various memories (e.g., unable to stop one’s car on a steep hill; collision involving a 
moving vehicle; gasoline presenting a danger; getting burned from exploding material). The sense of this sign called 
‘explosion’ would be the possibility of being injured. The links D→T, G; T→C; G→E; C→E represent within-frame 

sign relations. The link E→I represents an across-frame sign relation. 

In summary, the frame and accompanying sign relations used to inform sense making in humans 
can arise from a mental pattern-synthesis and memory-recombination operation carried out in 
novel environments. The benefit of this distributed network of knowledge for artificial agents is 
that it would allow for improved dynamic assessment of novel situations and better AI decision-
making. This structure would afford AI more flexibility and ameliorate the problem of brittleness 
from supervised learning approaches, such as the problem of subtle superficial changes in image 
appearance leading to AI classification errors [67].  
We now address the following issue: when sensemaking in novel situations, how does an 
individual determine which aspects of which memories are to be synthesized?   
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5.0 EMBODIED SIMULATION 
How does an individual determine which aspects of which memories are to be synthesized? We 
propose that each individual engages in a set of unconscious, embodied, intuitive simulations 
that attempt to align different combinations of various attributes from different memories until a 
solution to the sense of a given object, event, or situation is found; that sense is posted to 
consciousness as a certain gut feeling. With embodied cognition, the same neural substrate that 
underlies perception and action also underlies central cognitive processing ([68],[69],[70]). 
Embodied cognitive processes can be conceptualized as high-level “simulators” operating within 
modal systems of representation ([71], [72]).  
This idea of unconscious embodied intuitive simulation stands in opposition to standard 
cognitive theories based on the concept that representations in modal systems (e.g., vision) are 
transduced into amodal symbols for representing knowledge. In an amodal cognitive system, 
perceptual and motor systems would not be playing any significant role in “central” cognitive 
processing ([68]; [69]). However, the problem with amodal cognitive systems is that their 
symbols are arbitrary and lack grounding in the natural world—and grounding may be a 
necessary precondition for sensemaking ([18], [19]). A solution to the symbol grounding 
problem is to make cognition embodied [70]. We now consider an actual example.  
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6.0 ACTUAL EXAMPLE 
Now contemplate the following actual example that involved measuring human sensemaking 
using the approach that we are currently advocating (i.e., sign relations embedded within and 
across frames). To determine whether certain human-machine systems improve the sensemaking 
capability of intelligence analysts, Frame, Maresca, Christensen-Salem and Patterson [31] 
investigated Project Maven, a machine learning-based recognition aid developed for the US 
Department of Defense. Project Maven automates the process of analyzing drone surveillance 
video by classifying objects, such as vehicles or people, in a scene ([73],[74]). Frame et al. tested 
the idea that, by embracing detection and identification, Project Maven may alleviate the 
cognitive workload of analysts so that their sensemaking would be enhanced.  
Frame et al. [31] measured sensemaking by creating a set of ten simulated intelligence, 
surveillance and reconnaissance (ISR) compound overwatch scenarios (3-minutes each) viewed 
as full-motion-video. Each scenario depicted a plot in a terrorist narrative that served as a 
sensemaking frame (e.g. hostage taking). Sensemaking was measured by event prediction and 
sign identification—that is, by determining how well the participants (n = 73) could: (1) predict 
the final ending of each of the ten scenarios (‘prediction’) after seeing its beginning; and (2) 
identify the initial sign or cue that denoted the final ending of each scenario (‘identification’).  
Five overwatch scenarios contained signs that were people and/or vehicles and 
highlighted/tracked by simulated Maven: Improvised Explosive Device (IED) explosion (sign: 
digging by road); people attacking hospital (sign: someone stealing ambulance); school bus 
explosion (sign: someone tampering with school bus); attack on first responders (sign: slum lit 
on fire); and running into protesters (sign: someone stealing car). Five overwatch scenarios 
contained signs that were not people/vehicles and not highlighted/tracked by simulated Maven: 
hostage taking (sign: rope); quick change evasion (sign: laundry/clothing); blowing up building 
(sign: gas canisters); taking over ambulance (sign: injured bodies); shooting at market (sign: 
dead drop gun). The results showed that having Project Maven direct the participants’ attention 
to people or vehicles serving as a sign did improve the participants’ ability to predict the final 
ending of the scenarios and thus enhance sensemaking. 
  

https://en.wikipedia.org/wiki/Military_intelligence
https://en.wikipedia.org/wiki/Surveillance
https://en.wikipedia.org/wiki/Reconnaissance
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7.0 DISCUSSION 
The ideas and observations expressed in the present paper offer unique information toward 
creating artificially-intelligent agents with the capacity for sensemaking in novel environments. 
With respect to sensemaking, our approach entails a unified framework for sensemaking that 
posits sign relations embedded within and across frames. That is, an element of a given frame 
may serve as a sign denoting an element of the same frame - i.e., within-frame sign relation. Or 
an element of a given frame may serve as a sign denoting an element of a different frame—i.e., 
across-frame sign relation. This unified framework of sensemaking is represented as a Bayesian 
network, which reflects uncertainty in the sensemaking process. 
With regard to novel environments, our approach involves the idea of creating interaction among 
various distributed-knowledge structures. This type of memory representation is a form of CAM. 
Such interaction would be mediated via shared attributes among the various memories [75]. 
Thus, activating a memory would tend to activate all of its attributes, including any shared 
attributes. Activation of those shared attributes would tend to activate other memories that also 
share those attributes (there would also be mutually inhibitory interactions between mutually 
incompatible attribute units). For those activated memories agreeing on an attribute, the node for 
that attribute would be strongly activated, which would tend to activate other representations. 
And for those activated memories not agreeing on an attribute, the different attributes would tend 
to cancel each other out and be suppressed [75]. The net response of the ensemble of network 
units would be a synthesized representation of some object, event, or situation that would serve 
as a unique sign for sensemaking in a novel environment. 
In summary, aspects and attributes across many memories can be shared and recombined in 
unique ways to create synthesized signs which then denote certain outcomes. In this way, the 
frame and accompanying sign relations used to define sensemaking can arise from a mental 
pattern- synthesis and memory-recombination operation carried out in novel environments. Such 
synthesized signs can be produced by distributed representations of interacting memories that 
share attributes. The interplay among different sources of knowledge in memory is a key feature 
of distributed representations underlying human cognitive processing. 
7.1 Markov Decision Processes (MDP) 
Currently, the ability to make sense in novel environments is outside the scope of contemporary 
computing science. For instance, consider the field of reinforcement learning (RL). RL refers to a 
computational approach for automating goal-directed learning and decision making that comes 
from the direct interaction with the environment. RL uses the formal framework of MDPs that 
entails the interaction between a learning agent and its environment in terms of states, actions, 
and rewards. This type of trial-and-error-learning involves learning how to map situations onto 
actions so as to maximize a reward signal. The concept of trial-and-error learning emerged early 
in the field of artificial intelligence ([76]; [77]; [78]). 
With MDPs, the probability of each possible value for the state and reward depends only on the 
immediately preceding state and action and not at all on earlier states and actions. This is called 
the Markov property. With the Markov property, the conditional probability distribution of future 
states depends only upon the present state; given the present, the future does not depend on the 
past. This means that the information from past memories would not be available for any pattern-
synthesis and memory-recombination operation for sensemaking in novel environments. 
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7.2 Constraint Satisfaction Network 
A distributed representation of the kind discussed in this paper can be seen as a constraint 
satisfaction network. In a constraint-satisfaction network, we have the following: (1) each unit 
represents an attribute of a memory; (2) each connection represents restrictions or constraints 
among the attributes ([75]; [79]); and (3) values for the attributes that permit simultaneous 
satisfaction of most or all of the constraints. Constraints defined by the pattern of connections 
among the units determines the set of possible stable states of the system and therefore the set of 
possible interpretations of the input [80]. 
A constraint satisfaction network processes input by moving from state to state until it eventually 
settles into an optimal stable state of ‘relaxation’ for a given input [80]. In such a state, as many 
as possible of the constraints are satisfied, with priority given to the strongest constraints. As 
noted by Hopfield [81], with symmetric weights and asynchronous updates, such systems can be 
conceptualized as always moving from a state that satisfies fewer constraints to a state that 
satisfies more constraints—the system has "settled" on a solution to the problem or settled into 
an interpretation of the input. Such systems can be conceptualized as minimizing a global 
measure of energy of the system [82]. 
7.3 Summary 
Our approach to sensemaking in novel environments entails sensemaking represented as sign 
relations embedded within and across frames. The interchange among different sources of 
knowledge—an aspect of distributed representations—can create synthesized patterns, each of 
which could be recognized as a sign during the sensemaking process in a novel environment. 
Aspects of memories that get synthesized can be determined via unconscious, embodied 
simulations. The benefit of this approach for artificial agents is that it would allow for improved 
dynamic assessment of novel situations and better AI decision-making. 
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7.0 LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS 
AI  Artificial Intelligence 
BN Bayesian Network 
CAM Content Addressable Memory 
CPT Conditional Probability Tables 
IED Improvised Explosive Device 
ISR Intelligence, Surveillance and Reconnaissance 
MDP Markov Decision Processes 
RL  Reinforcement  Learning 
 


	1.0 INTRODUCTION
	2.0 UNIFIED FRAMEWORK FOR SENSEMAKING
	2.1 Sensemaking
	2.1.1 Sign Relations
	2.1.2 Frames
	2.1.3 Signs Embedded Within/Across Frames
	2.1.4 Bayesian Network (BN) Modeling
	2.1.5 Sensemaking in Artificial Intelligence (AI) Systems


	3.0 PATTERN SYNTHESIS AND MEMORY RECOMBINATION
	3.1 Interactions Among Knowledge Structures
	3.2 Insight and Sensemaking
	3.3 Maier’s (1931) Study
	3.4 Compositional AI


	4.0 DISTRIBUTED NETWORK REPRESENTATIONS
	4.1 Distributed Representation and Content Addressable Memory (CAM)
	4.2 Hypothetical Example

	5.0 Embodied Simulation
	6.0 Actual Example
	7.0 DISCUSSION
	7.1 Markov Decision Processes (MDP)
	7.2 Constraint Satisfaction Network
	7.3 Summary

	8.0 REFERENCES
	7.0 list of abbreviations, acronyms and symbols

	PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION: 
	1 REPORT DATE March 2024: 
	2 REPORT TYPE Final: 
	3 DATES COVERED: 
	END DATE 03 March 2024: 
	3 TITLE AND SUBTITLE Sensemaking In Novel Environments How Human Cognition Can Inform Artificial Agents: 
	5a CONTRACT NUMBER In House: 
	5b GRANT NUMBER: 
	5c PROGRAM ELEMENT NUMBER: 
	5d PROJECT NUMBER: 
	5e TASK NUMBER: 
	5f WORK UNIT NUMBER H0SJ: 
	8 PERFORMING ORGANIZATION REPORT NUMBER: 
	10 SPONSORMONITOR S ACRONYMS: 
	11 SPONSORMONITOR SREPORT NUMBERS AFRLRHWPTR20240025: 
	12 DISTRIBUTIONAVAILABILITY STATEMENT Distribution A  Approved for public release distribution unlimited: 
	15 SUBJECT TERMS: 
	16 SECURITY CLASSIFICATION OF: 
	a REPORT U: 
	b ABSTRACT U: 
	c THIS PAGE U: 
	18 NUMBER OF PAGES 26: 
	19a NAME OF RESPONSIBLE PERSON Dr Robert A Patterson: 
	19b PHONE NUMBER Include area code: 
		2024-05-30T09:47:06-0400
	PATTERSON.ROBERT.E.1282458973


		2024-05-30T10:16:18-0400
	MURDOCK.WILLIAM.P.1048742161


		2024-06-17T10:11:15-0400
	CARTER.LOUISE.ANN.1230249128




