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1.0 SUMMARY 

Cyber-Physical Systems (CPS) are systems where the functionality emerges from the networked 
interaction of computational and physical processes. The tight interaction of physical and compu-
tational processes turns the design of these systems into a multi-domain co-design problem that 
integrates traditionally separated design domains into a coupled Design Space Construction 
(DSC), Design Composition (DC), and Design Space Exploration (DSE) process. Traditionally, 
these processes and the key design domains are targeted by separate groups of subject matter ex-
perts using highly different engineering approaches, design representations, and tools. These do-
main-focused models and fragile, semi-manual integration interfaces are one of the primary rea-
sons for conservative choices in the overall system architecture and a very slow turnaround time 
in design iterations. Thus, design optimization is restricted to a small fraction of the feasible design 
space. The Defense Advanced Research Projects Agency’s (DARPA's) Adaptive Vehicle Make 
(AVM) program was aimed at this problem by building horizontal models, tools, execution inte-
gration platforms, and end-to-end design automation tool suites. Our goals in this DARPA Sym-
biotic Design for Cyber Physical Systems (SDCPS) program were synthesizing, exploring, and 
optimizing such multi-domain executable models with artificial intelligence (AI) based ap-
proaches. 

The most important challenge throughout the project was the lack of large and coherent engineer-
ing models - using the same design tools, language, and format. The CPS design space is highly 
fragmented - even compared to the software development domain. To mitigate these issues, we 
developed several tools and technologies for generative synthesis and automatic evaluation of such 
models and tried to capture conceptual design considerations (i.e., "back of the envelope" models 
- but still supported by exact tools and high-level parameters). The more refined models (e.g.,
computational fluid dynamics (CFD), finite element method (FEM)) required us to develop and
train surrogate approximations to speed up the design exploration phase. Most importantly, we
developed a constraint programming framework, which served as an integration platform for all
these elements. By using a common design parameter / performance metric / constraint interface,
the approach enabled us to rapidly find feasible design alternatives and drive the exploration pro-
cess towards the Pareto-front using a pruning and pushing approach.

This overall architecture and the individual tools enabled us to rapidly adapt to changing domain 
constraints and mission requirements, and our team consistently delivered highly competitive re-
sults - compared to both human-engineered solutions and to other performers' designs - in both 
challenge domains. 

The lack of readily available engineering models drove us to develop an alternative domain - be-
yond the core challenge problems of the program. Independent of the Unmanned Aerial Vehicle 
(UAV) / Urban Air Mobility (UAM) and Unmanned Underwater Vehicle (UUV) design applica-
tions, we developed a web-based electronic circuit design tool. By leveraging a large set of open-
source circuit models, the tool was extended with AI-assistant capabilities to suggest new additions 
/ missing elements throughout the design process. Even with an open-source dataset of ~5k sam-
ples, it is relatively modest to learn engineering patterns for this autocompletion task. Thus, this 
tool was extended with a human-assisted AI-based technology to rapidly parse circuit models from 
images or portable document format (PDF) datasheets for dramatically increasing the size of future 
datasets. 
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2.0 INTRODUCTION 

Design Space Exploration and the synthesis of correct-by-construction designs require a large up-
front engineering investment to produce a consistent library of multi-domain component models. 
One practical answer is to start this exploration with back-of-the-envelope calculations and incom-
plete high-level conceptual models. One of the prevailing approaches in practice is to capture the 
key design parameters, performance metrics, and fundamental constraints in spreadsheets. The 
value of such "design representation" should not be underestimated. It enables system-level human 
reasoning and very quick "what-if" analysis. Unfortunately, the spreadsheet approach breaks down 
fast as more and more design variables and constraints - rooted in physics and in the requirements 
- are added. Furthermore, design space exploration - by changing cell values and observing the 
ripple effects - is highly manual, error-prone, and follows a single linear exploration and evaluation 
path. Our constraint programming approach provides a more systematic approach by capturing the 
same conceptual level parameters 
and relationships of the model but 
automating with a massively paral-
lelized model the exploration task. It 
also creates a bridge towards refin-
ing the conceptual design and inte-
grating more detailed and accurate 
analysis models. 

This framework allows for integrat-
ing multi-domain knowledge using 
symbolic expressions and / or using 
data-driven surrogate models. Thus, 
it is an ideal integration platform for 
driving the entire design space ex-
ploration process. As shown in Fig-
ure 1 and Figure 2, the domain, and 
mission-specific parts are "factored 
out" in the Graph Design phase, 
where domain-specific tools (Sym-
CAD / SymDesign and 
UAVAnalyzer / GraphOps) trans-
late the application domain and re-
lated surrogate models to the com-
mon language of the constraint pro-
gramming framework. 

Our constraint solver framework is 
built on SymPy for capturing the formal expressions and constraints of the design. These expres-
sions are automatically translated to PyTorch computational graphs for implementing a vectorized 
solver and design filters operating on thousands of design points concurrently. The solver and filter 
steps are executed iteratively (5-10 steps) and concurrently (1000-5000 design points) to find rep-
resentative designs near the Pareto-optimal surfaces. 

Figure 1.  Design Space Exploration with Constraint 
Programming. 
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Figure 2.  Multi-Objective Constrained Optimization. 

We successfully applied the constraint-
based approach in both SDCPS design 
challenges and used the iterative opti-
mization process to find a large set of 
Pareto-efficient design points for vari-
ous mission-level requirements. The 
benefits of the constraint programming 
approach are: (1) well-defined formal 
models even at the conceptual phase, 
(2) the incremental refinement of
multi-domain constraints, (3) rapidly
generating large sets of feasible de-
signs with a vectorized solver, (4) iter-
ative pruning of the design space for
sparse, Pareto-optimal designs. Figure
3 shows a representative example of
the Pareto-mapping process in the 
Southwest Research Institute (SwRI) 
Air Taxi (Hybrid or Electric) aeronautical Simulation (ATHENS) design problem. 

Figure 3.  Example Pareto-front search results. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 SwRI / ATHENS CHALLENGE 

Figure 4 shows the detailed workflow for UAV / UAM design ATHENS Challenge. The UAV 
analysis tool captures the most important domain concepts and properties of the available compo-
nent library (batteries, motors, propellers, parametric wing and fuselage models) and by translating 
the high-level relationships among design parameters and system-level metrics (weight, lift, drag, 
thrust), it utilizes the constraint programming framework to identify valid and optimal combina-
tions of these. The results are used by the GraphOps tool, which synthesizes the concrete vehicle 
assembly and executes the Southwest Research Institute analysis tools in an optimization loop. 
The current (refined) optimization uses a genetic algorithm-based approach due to the rugged and 
very highly sensitive error and performance surfaces. 

 
Figure 4.  AI-assisted design workflow for UAV / UAM. 

 



Approved for Public Release, Distribution Unlimited. 

5 

The UAV analysis tool, with example output shown in Figure 5, is a command-line interface (CLI) 
program, and its primary purpose is to find good candidates for downstream exploration. Thus, at 
this stage, we are not concerned about the concrete vehicle geometry, just highly approximate 
models, trying to find balanced solutions. 

Figure 5.  Pareto-front analysis for the SwRI UAV design corpus. 

3.1.1 Design Space Construction / Design Composition 

ATHENS-graphops is a tool designed to interface with the DARPA Symbiotic Design for Cyber-
Physical Systems UAV corpus tools created by the Southwest Research Institute ATHENS team. 
The ATHENS tool retrieves specified UAV and air taxi designs from a JanusGraph setup and runs 
system performance simulations using integrated tools to measure the flight performance of the 
design and report the results of provided parametric studies. 

The base corpus database (using JanusGraph) is provided by the ATHENS team and identifies the 
available components used to build the system. These components are assembled to create unique 
designs. The ATHENS-graphops tool is used to programmatically create these designs with user-
developed platform specifications which indicate how the components are interconnected. Para-
metric values for design elements are identified to allow variation across multiple portions of the 
structure and to explore ranges of value adjustments within a system simulation run. Each platform 
definition can be designed to allow exploration of multiple variations of parts and their configura-
tion values, with some limited topological variability (e.g., randomly choosing the number of pro-
pellors to attach and their positioning on the wings). 
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Figure 6.  Combinatorial design space with the ATHENS corpus. 

 
Given a platform definition, the base code will convert the desired design into a set of corpus 
components and build a design graph that can be retrieved with the ATHENS tools for evaluation. 
This base code set includes graph queries that manage core component connections and parameter 
configurations specific to each component type. Each component type is defined by a component 
schema with multiple options (sometimes hundreds) for known component types available (based 
on off-the-shelf components and their specifications), as shown in Figure 6. Using the schema, the 
ATHENS-provided corpus database can be scanned for inconsistencies to allow feedback to the 
SwRI team. 

In addition to the designs that are created and placed in the JanusGraph database, parameter studies 
configuration files used by the ATHENS tool are comma separated value (.csv) files that can be 
created by defining a YAML Ain’t Markup Language (YAML) file that outlines the desired flight 
parameters and the ranges of design parameters desired in the explorations. The tool also allows 
the specification of the workflow to run during evaluations of a platform design. 

3.1.2 Design Space Exploration 

The overall goal of this piece of the project, Stringer, was to design, implement, and utilize an 
efficient unmanned aircraft design system focused on using the generative power of a string-based 
grammar. 

  



Approved for Public Release, Distribution Unlimited. 

7 

Specifically, this was broken down into three parts: 

1. Creating a coherent and effective string-based grammar for the easy and concise descrip-
tion of unmanned aerial vehicles.

2. Creating a design actualization pipeline that accepts valid grammar strings and produces
testable 3D-modeled designs, specifically for Creo Parametric (CREO).

3. Creating a design space explorer to automatically generate thousands of unique designs
without human input that are able to be processed by the aforementioned pipeline.

Methods: 

• Goal 1 (string grammar): A detailed string grammar was designed, tested, and refined that
was capable of expressing an incredibly large amount of vehicles of varying sizes and de-
signs. The grammar can encapsulate the majority of the information regarding part type
and orientation of a design in a string of 10-20 characters, depending on the size of the
design. This grammar was utilized as the backbone for what was done in the rest of the
project.

• Goal 2 (actualization pipeline): A fully automated pipeline consisting of an interpreter that
would receive string definitions of designs and produce detailed JavaScript Object Nota-
tion (JSON) outputs was designed that was paired with an ATHENS-graphops designer
that would accept these JSON files to create a testable three-dimensional (3D) model of
the created design.

• Goal 3 (automated design exploration): A Programming in Logic (PROLOG) script was
written for the automatic generation of valid strings as defined by the grammar, see Figure
7. Though this script was able to both generate valid strings and explore the space proce-
durally, methods for more efficient space exploration were being developed at the time of
the project cancellation and could not be developed further.
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Stringer grammar description: 

[vvvv][lv(hh)(hh)vl][wfw][lv(hh)(hh)vl][vvvv] 

 
Stringer grammar description: 

[hh][w(vvvv)w][wfw][w(vvvv)w][hh] 
Figure 7.  Example vehicle architectures automatically generated by Stringer. 

 
3.2 SYSTEMS & TECHNOLOGY RESEARCH LLC (STR) / NAUTILUS CHAL-

LENGE PROBLEM 

Using the constraint programming framework we successfully integrated several key engineering 
domains (mechanical, structural, CFD, propulsion / energy, control / navigation) to deliver and 
adapt optimal solutions to rapidly changing mission requirements. 
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Figure 8.  AI-assisted Design Workflow for UUV. 

As shown in Figure 8, the developed core technology tools were SymCAD - a generic constrained 
geometric assembler, SymDesign - vehicle assembly driven by domain and mission constraints, a 
multi-fidelity level CFD surrogate and optimization toolbox, a structural strength surrogate model 
based on FEM and using physics-guided neural networks (NN). Additional domains (optimal bat-
tery packing, and total energy estimation based on Monte-Carlo simulation runs) were handled 
with simpler model fitting approaches. 

This automated toolchain was capable of evaluating hundreds of design candidates in a matter of 
minutes and generating the final Computer Aided Design (CAD) assembly model of the vehicle - 
using a fixed set and concrete and parametric component models. 

3.2.1 Design Space Construction / Design Composition 

3.2.1.1 SymCAD 

SymCAD is a Python library that combines symbolic model creation, orientation, and assembly 
with concrete CAD representations and manipulations. It allows users to programmatically design 
individual shape-based parts, ranging from the very simple and generic to the complex and spe-
cific, while allowing parameters related to the geometry, orientation, and placement of a part to be 
expressed symbolically. 

The library allows for use of either scripted or modeled parts, where a scripted SymCAD part is a 
part whose CAD representation is generated programmatically using the FreeCAD Python 
backend. A modeled SymCAD part is a part whose CAD representation is pre-created by the user 



Approved for Public Release, Distribution Unlimited. 

10 

in the FreeCAD format and stored in a well-known directory. Any existing CAD model can also 
be imported and used as a SymPart within SymCAD as if it were a built-in part. If the existing 
CAD model is in the FreeCAD format and follows a specific set of rules, the model can even be 
parametric and contain symbolic free parameters. 

The following list of physical properties may be retrieved from a SymCAD part at any time by 
simply requesting the property method on the corresponding part: mass, material volume, dis-
placed volume, surface area, unoriented center of gravity, oriented center of gravity, unoriented 
center of buoyancy, oriented center of buoyancy, unoriented length, oriented length, unoriented 
width, oriented width, unoriented height, and oriented height. 

Two assembly modes are supported for the creation of composite parts or assemblies: assembly-
by-placement and assembly-by-attachment. Assembly-by-Placement is used to allow for complete 
control over the precise placement and orientation of every part within an assembly. This mode is 
the default for all SymPart components which do not contain predefined attachment points or ex-
plicit connections to other parts. In this case, the placement of a part will be represented by three 
symbolic parameters representing the origin / center-of-placement of the part in its own coordinate 
space, as well as three additional symbolic coordinates representing the placement of the origin of 
the part in the global coordinate space. 

Assembly-by-Attachment is used to automate the process of placing rigidly attached parts within 
an assembly. Using this placement method, the intricacies of part placement can be relegated to 
the SymCAD library, which may greatly simplify the number of free variables in the resulting 
symbolic assembly. In order to use this methodology, individual SymPart components must define 
one or more attachment points, which defines a point in the local coordinate system of the part that 
can be rigidly attached to other parts. The available properties for an assembly include mass, ma-
terial volume, displaced volume, surface area, center of gravity, center of buoyancy, length, width, 
and height. 

Once created, it may be necessary to obtain the physical or geometric properties of only a subset 
of the parts within an assembly. In order to achieve this, parts can be grouped into so-called col-
lections. Once added to one or more collections, the geometric properties of the SymPart compo-
nents contained in any number of these collections may be accessed by specifying the collections 
of interest in the corresponding property accessor of the assembly object. 
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The approach that SymCAD takes to achieve its above-stated goals includes: 

• Utilizes the Python sympy library for symbolic manipulation of parameters.
• Utilizes the FreeCAD Python backend for CAD file processing and manipulation.
• Works with both scripted and modeled CAD designs.
• Provides two methods of model construction:

1. Assembly-by-Placement: Part placement is explicitly defined.
2. Assembly-by-Attachment: Part placement is implicit based on rigidly attached

parts.
• Includes a built-in library of generic parts.
• JSON-based Graph application programming interface (API) for design representation.
• Specification of center-of-placement / origin for each part.
• Custom attachment and connection points for each part.
• Part-based physical property retrieval:

1. Based on closed-form equations (concrete or symbolic).
2. Based on CAD representations (concrete).
3. Based on pre-trained neural networks (concrete or symbolic).

• Assembly-based cumulative physical property retrieval.
• Physical properties include: mass, material volume, displaced volume, surface area, cen-

ter of gravity, center of buoyancy, length, width, and height.
• Part importation from existing CAD models (FreeCAD, Standard for Exchange of Prod-

uct Data (STEP), or Stereolithography (STL)).
• Interference detection for parts within an assembly.
• Easy-to-create custom parts (scripted or modeled).
• Automatic separation of regular and displacement models.
• Parts and assemblies exportable to FreeCAD, STEP, or STL.
• State-based physical properties for assemblies.
• Simple interface for concretizing free parameters in a symbolic design.
• Symbolic parameters can auto-combine or concretize based on attachments.
• Auto-generated and updated documentation upon GitHub commit (documentation located

at https://symbench.github.io/SymCAD).
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Figure 9.  Design Space Construction w/ SymDesign & SymCAD. 

3.2.1.2 SymDesign 

The process of Design Space Construction is shown in Figure 9, where SymDesign is a Python-
based tool for exploring a feasible design space given a set of mission-based requirements, an 
available listing of parts, and any user-specified design constraints. It makes use of both SymCAD 
and the Constraint Solver Tool to quickly generate a large number of concrete designs (vehicle-
based in the current state) along with their corresponding CAD models and mass properties (both 
static and dynamic). 

The expected process for using this tool is the following: 

• Define a set of mission parameters and requirements based on the distinct “mission seg-
ments” that a target vehicle is expected to navigate.

• Enumerate the list of possible concrete sensors and attachments that are available for use
on the target vehicle.

• Specify a set of possible discrete parameter options for various components (e.g., battery
cell type and size, engine type, etc.).

• Auto-instantiate a set of feasible symbolic representations for the target vehicle (i.e., ge-
neric ordering and placement of components may be indicated, but concrete placement
values, attachments, sizing, and other properties remain symbolic).

• Generate design point clouds that satisfy the mission requirements, which allows you to:
o Enable, disable, or alter free variables.
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o Change search bounds.
o Add or remove constraints.
o Explore trade spaces and design spaces.
o Regenerate point clouds at increased levels of resolution.

The above process is made possible through the use of “hierarchical symbolic design” in which 
every component in the design process is derived from a general base “Component” class with 
increasing levels of concreteness. For example, second-level derived component classes might in-
clude “attachment”, “buoyancy component”, “pitch component”, “roll component”, or “static 
component”, where each class defines additional characteristics and derived values that all sub-
components will share (for example, the displaced volume of a buoyancy component at its mini-
mum, neutral, and maximum buoyancy levels). 

The shape, size, and assembly of all components is relegated entirely to the SymCAD tool, and 
the constraint-based solution of constraining equations and requirements is relegated to the Con-
straint Solver Tool. In essence, this tool provides the glue between defining mission requirements, 
obtaining symbolic equations for feasible designs and models, and solving a system of equations 
that satisfy all specified constraints and requirements. 

The approach taken by this tool is to provide a clear separation of concerns regarding: 1) design 
representation, 2) constraint solution, and 3) surrogate modeling. All design representations and 
modeling are handled by the SymCAD library, all constraint solving is handled by the Constraint 
Solver Tool, and all surrogate modeling is handled within this tool itself. 

The surrogate models currently implemented in this tool include: oceanic and atmospheric models, 
packing models, pressure vessel models, and lift and drag (CFD-based) models. 

The oceanic models are National Oceanic and Atmospheric Administration (NOAA) based models 
allowing for the calculation of gravitational acceleration based on latitude and pressure at arbitrary 
ocean depths, water density at arbitrary pressure, temperature, and salinities, freshwater absolute 
viscosity, and seawater absolute and kinematic viscosity. The packing model is currently only used 
to pack cylindrical shapes (like batteries) and is based on a trained neural network dedicated to 
this task. The pressure vessel models use well-known equations (such as hoop-stress equations, 
etc.) for determining the minimum required cylindrical thickness, spherical thickness, or flat 
endcap thickness based on material type, maximum depth, and pressure vessel radius. The lift and 
drag models are currently based on neural networks trained on the output of computationally ex-
pensive CFD models for a known set of fairing shapes. Each of these models has a well-defined 
interface, allowing for them to easily be replaced, updated, or changed without affecting the 
runtime properties of the tool. 

Using these surrogate models along with symbolic design representations generated by SymCAD, 
we can create a set of symbolic constraint equations which are passed to a Newton-Raphson-based 
solver within the Constraint Solver Tool to both solve for and optimize a large number of valid 
designs, optionally identifying and pruning the design space based on one or more Pareto fronts, 
as specifiable by the user. 
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3.2.2 Design Space Exploration 

3.2.2.1 Constrained Bayesian Optimization for UUV hull design 

The process of optimizing the hull design for Unmanned Underwater Vehicles, as shown for our 
case in Figure 10, is a multifaceted engineering task aimed at producing a UUV hull with optimal 
characteristics tailored to specific requirements. This procedure first necessitates the incorporation 
of complex engineering simulation tools that are computationally intensive. Secondly, it demands 
the amalgamation of an optimization framework that efficiently utilizes sample data with the com-
prehensive suite of integrated tools. In pursuit of this, we have amalgamated the computer-aided 
design software, FreeCAD, with the computational fluid dynamics tool, OpenFOAM, for the au-
tomated assessment of designs. For the optimization phase, Bayesian optimization (BO) was se-
lected. BO is recognized for its effectiveness in optimizing simulations that are both costly and 
time-intensive, and it is notably efficient in its sample use, as evidenced in various scenarios such 
as tuning of hyper-parameters and design of experiments. The optimization sequence is crafted to 
accommodate constraints for unviable designs within the process. By merging a domain-specific 
suite of tools with AI-driven optimization, we have automated the hull design optimization for 
underwater vehicles. To empirically assess our approach, we applied it to two distinct real-world 
underwater vehicle design cases to confirm the functionality of our tools. The scripts for conduct-
ing the experiments and the necessary steps for setting up the toolchain are available at this GitHub 
repository: https://github.com/vardhah/ConstraintBOUUVHullDesign. 

 

 
Figure 10.  Constrained Bayesian Optimization for UUV hull design. 
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3.2.2.2 Sample efficient surrogate modeling 

In computer-aided engineering design optimization, particularly when dealing with simulators that 
are known for their complexity and lengthy computation times, a common strategy is to employ a 
surrogate model. This model serves as a less computationally expensive approximation of the sim-
ulator's performance. The primary hurdle in developing such surrogates is the extensive data re-
quired, which necessitates running resource-intensive simulations. 

To address this, Active Learning (AL) strategies are employed, which are designed to understand 
the relationship between inputs and outputs while reducing the need for labeled samples. The pre-
vailing method in AL, especially for regression tasks, is Bayesian learning, which can be compu-
tationally demanding, especially when paired with Deep Neural Networks (DNNs). Despite this, 
DNNs are adept at capturing highly non-linear relationships in complex and high-dimensional data 
sets. 

In an effort to harness the superior learning abilities of DNNs, while avoiding the computational 
intensity of Bayesian methods, we introduce a straightforward and scalable active learning tech-
nique. This method cleverly determines which samples require labeling through strategic selection. 
It operates on a student-teacher framework to educate the surrogate model. Using our novel 
method, we have managed to attain comparable levels of accuracy in our surrogate models with 
up to a 40% reduction in the number of required samples compared to traditional methods. Our 
method has been empirically tested across various engineering applications of interest, including 
finite element analysis, computational fluid dynamics, and propeller design. 

3.2.2.3 Anvil 

Our contribution is the development of an open-source integrated CAD-CFD solution by combin-
ing FreeCAD for CAD modeling and OpenFOAM for CFD analysis. This solution is further aug-
mented with AI-powered sample-efficient optimization methods such as Bayesian optimization 
among other algorithms. We have named this toolkit Anvil, positioning it as a versatile scientific 
machine learning instrument for shape optimization, operable in data generation, CFD evaluation, 
and shape optimization modes. In the data generation mode, Anvil autonomously executes CFD 
studies and collates data for surrogate model training based on a parametric CAD seed design, set 
design space boundaries, computational limits, and predefined budgets. In the optimization mode, 
it navigates the design space to pinpoint the optimal shape, guided by specified objectives, con-
straints, and budget allocations. To utilize Anvil, users must supply a JSON configuration file 
along with a parametric CAD seed design. Anvil is designed to examine solid-fluid dynamics un-
der any subsonic flow conditions, whether underwater, terrestrial, or aerial. A notable advantage 
of Anvil is its Python integration, which facilitates the incorporation of additional optimization 
and sampling strategies like GFlowNet, Open Multi-Disciplinary Design Analysis and Optimiza-
tion (OpenMDAO), and others. We validate the utility of Anvil across various simulation scenarios 
and for an optimization case study. The open-source code, installation instructions, resources such 
as CAD seed designs and sample STL models, results from experiments, and comprehensive doc-
umentation can all be accessed at https://github.com/symbench/Anvil. 
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Figure 11.  Surrogate-based design optimization for UUV. 

 
3.2.2.4 Surrogate-based design optimization 

Physics-based simulations present a significant computational hurdle in the optimization of com-
puter-aided design for engineering tasks. Thus, to integrate precise yet computationally demanding 
simulations into the design optimization workflow, one must employ either a highly efficient op-
timization algorithm or develop swift surrogate models that can emulate the outcomes of lengthy 
simulations. 

In our research, we embrace the latest advancements in both optimization and artificial intelligence 
to explore these avenues within the framework of optimizing the design of an unmanned under-
water vehicle, as shown in Figure 11. 

We begin by evaluating various optimization methods for their ability to efficiently use samples 
and their convergence trends when combined with a standard computational fluid dynamics solver. 
Following this, we craft a deep neural network that serves as a surrogate to estimate drag forces, 
which would typically require direct numerical simulations using the CFD solver. This surrogate 
is then integrated into the hull design optimization loop. 

Our findings indicate that the Bayesian Optimization with Lower Condition Bound (BO-LCB) 
approach outperforms other methods in terms of sample efficiency and convergence. 

Furthermore, our DNN surrogate model closely predicts drag forces, aligning with results from 
CFD simulations with a mean absolute percentage error (MAPE) of just 1.85%. By leveraging 
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these insights, we achieve a remarkable hundredfold increase in the speed of the design optimiza-
tion process, while maintaining accuracy utilizing the surrogate model. 

To the best of our knowledge, this study is first of its type that applies Bayesian optimization and 
DNN surrogates to UUV design optimization. We contribute to the community by making our 
tools available as open-source software. 

3.2.2.5 Surrogate Modeling using Physics-guided Learning 

Computer simulation models are used extensively in scientific and engineering problems for com-
plex design tasks and decision processes. Surrogate models generated using data-driven techniques 
can approximate the behavior of complex simulation models with high fidelity and can accelerate 
the design process. We developed a physics-guided learning architecture, see Figure 12, that inte-
grates parameters extracted from physics-based simulations into the intermediate layers of a neural 
network to constrain the learning process during the training of surrogate models and to improve 
their generalization. The architecture is used to develop a surrogate model for evaluating the struc-
tural integrity of the hull of an unmanned underwater vehicle. It is shown that physics-guided 
learning can improve generalization in less explored regions of the design space compared to 
black-box models. In addition, the architecture improves the explainability of the model predic-
tions using physics-based parameters, see Table 1, which allows the designer to make decisions 
based on the input and physics-based intermediate parameters. 

Figure 12.  Surrogate Modeling using Physics-guided Learning. 
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Table 1:  Example physics-based parameters for learning architecture. 

3.3 CIRCUIT MAKER - AI-ASSISTED ELECTRONIC DESIGN AUTOMATION 

The ambitious goals of the circuit maker project were to work toward the synthesis of electronic 
circuits. This effort was split into smaller milestones, including curating a dataset of electronic 
circuits, autocompletion of electronic circuits, and developing a labeling tool to assist in the recog-
nition of electronic circuits from schematic diagrams. The first milestone, curating a dataset of 
electronic circuits, focused on collecting public electronic circuits in the form of Simulation Pro-
gram with Integrated Circuit Emphasis (SPICE) netlists. We started with netlists packaged with 
LTspice, including example and demo circuits then proceeded to scraping public circuits from 
GitHub. Basic statistics on these datasets were collected and are available at SPICE Netlist Dataset 
Metrics (symbench.github.io). 

The second milestone used the data collected in the first milestone to explore the autocompletion 
of electronic circuits. We formalized the task as a graph classification task where we preprocessed 
the original dataset by removing a single component and using that as the class label. Then we 
explored various graph classification algorithms, including multiple graph neural network (GNN) 
architectures and using graph descriptors based on control theory. This work was published in 
Neural Computing and Applications. We also developed an electronic circuit design tool using 
Web-based Generic Modeling Environment (WebGME), a generic framework for developing do-
main-specific design tools, integrating this work to be able to evaluate the tool interactively. 
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Figure 13.  AI-assisted Electronic Circuit Recognition. 

Our work on the second milestone exposed one shortcoming of the collected dataset: many of the 
circuits were either 1) toy examples or 2) low quality. Although there is no standard exchange 
format, datasheets for commercial components include highly optimized circuits in the form of a 
schematic diagram. To this end, our third milestone focused on the automatic conversion of these 
schematics to a meaningful, machine-readable representation. First, we scraped thousands of sche-
matic diagrams from Texas Instruments. Then, we designed a structured representation to capture 
the knowledge conveyed in these schematics (as they were a superset of SPICE and included a lot 
of informal notations). Next, we developed a configurable labeling tool for the formally repre-
sented labels (using WebGME). This tool was designed to make the herculean task of labeling the 
schematic diagrams tractable for our small team and incorporated many AI tools to facilitate au-
tomation, including automatic detection of components within an image from a single label and 
integrated optical character recognition (OCR), see Figure 13. 

Using the data collected from the labeling tool, we trained object detection models for detecting 
the components from images and began exploring how we can leverage machine teaching to inte-
grate expert knowledge and purely statistical models into the program, shown in Figure 14. To this 
end, we were developing a compiler to create ensembles of intelligent models from a knowledge 
specification provided by a domain expert. This was a superset of the prior approach as training 
object detectors could be performed by simply specifying a component via a set of examples. In 
this case, a You Only Look Once (YOLO) model was trained as before. However, this approach 
was designed to enable designers to specify the task in a variety of other ways - as they may when 
conveying the knowledge to another person. These heuristics are then automatically ensembled 
alongside the statistical models to bootstrap the overall labeling models. 
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Figure 14.  Circuit Classification with Machine Teaching. 

We also demonstrated the feasibility of using graph neural networks for design completion tasks 
with circuit models, shown in Figure 15. Given an incomplete netlist, the goal was to predict the 
missing component(s) and links in the circuit. We transformed each circuit into a graph where 
nodes correspond to components and edges correspond to their connectivity. We then removed 
each component from the graph one by one, stored, and labeled the graph with the removed com-
ponent. 

We adopted a graph machine learning approach to predict the missing component. We applied 
both graph descriptors and graph neural networks and compared the results. 

Figure 15.  Graph Neural Network-based Circuit Completion. 
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4.0  RESULTS AND DISCUSSION 

4.1 UAV / UAM Design Results 

In both Hackathons and for the Phase 1 Demonstration, we managed to generate several airworthy 
vehicle designs (i.e., completing all flight paths). Indeed, all of our submitted AI-driven solutions 
outperformed the manually crafted technical area (TA) 3 seed designs. 

In Hackathon 1, we were able to automate the component selection process only. By the second 
Hackathon, we managed to explore several distinct (and auto-generated) vehicle topologies. Our 
design submission received the second-best overall score (8271), see Table 2, among all TA 1 
performers. The most significant result was to reach a stable 40 m/s trim state – something that 
seemed unattainable with human intuition or manual tweaking. 

Table 2:  UUV Design Performance Scores - Hackathon2. 

Design Interferences 
Score 

Loaded Unloaded Total 
FalconSM4Rotated 0 2763 2751 8271 
FalconS8RotatedCargoCase 0 2757 2746 8254.5 
FalconS4RotatedCargoCase 0 2741 2735 8214 
FalconS4 0 2727 2721 8172 
FalconM4RotatedCargoCaseb 0 2650 2643 7939.5 
FalconM4b 0 2636 2636 7908 
UnoInlineUAV 0 2573 2616 7783.5 
TIE4 0 2567 2566 7699.5 
FalconM4 0 2560 2560 7680 
FalconT8 0 2444 2457 4901 
FalconLight 0 2395 2395 4790 
TiltieTailed 0 2153 2158 4311 
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Figure 16.  Final UUV Designs - Hackathon2. 

Figure 16 shows the variability of the submitted final designs. 

4.2 UUV Design Results 

One of the most significant results in this design domain was the speed of design studies during 
Hackathons and at the end of the Phase 1 demo. By using SymCAD / SymDesign - and the under-
lying constraint programming toolbox, we managed to explore 140 alternative vehicle layouts and 
identify 19 feasible topologies, resulting in 9 unique parametric design points. Each parametric 
design point had ~100 sizing options. The final design was identified on the Pareto-front by human 
decision (trade-off). All of these steps required a few hours of execution time. Our end of Phase1 
slides contain a short video of this exploration process. In the Hackathon2, the same approach 
demonstrated extremely fast (1 day, most of the time) adaption required for challenge perturbations 
to be captured as changed / additional mission requirements. 

The Figure 17 and Figure 18 show the auto-generated CAD geometry at the end of Hackathon2, 
with Table 3 listing the UUV performance characteristics. 



Figure 17.  Design Drawing of UUV - Hackathon2. 

Figure 18.  Auto-generated UUV CAD geometry – Hackathon2. 
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Dry 
Mass 
(kg) 

Displace-
ment (m3) 

Volume 
(m3) 

Length 
(m) 

Min 
Pitch (ᐤ) 

Max 
Pitch (ᐤ) 

Propulsion 
Energy 
(kWh) 

Baseline 1758 2.364 2.680 3.879 27.25 88.55 — 

Internal 
Sensor Ar-

ray 
2099 2.941 3.222 4.534 87.66 86.37 110.77 

Towed Sen-
sor Array 1760 2.372 2.690 3.891 30.21 87.95 87.54 

4.3 Circuit Completion – Missing Component Prediction 

The results of various GNN and Graph Descriptor methods for classifying a missing component 
in a circuit model are shown in Table 4 and Table 5. 

Table 4:  Circuit Component Classification Results of GNN Methods (F1 and standard de-
viation). 

Table 5:  Circuit Component Classification Results of Graph Descriptors and Kernel Meth-
ods (F1 and standard deviation). 

Table 3:  UUV Performance Characteristics - Hackathon2.
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5.0  CONCLUSIONS 

One of the most fundamental challenges in developing AI-assisted tools and technologies for CPS 
design is the lack of curated, homogenous, machine-readable large datasets. The problem can be 
partially mitigated by synthetic models and simulator feedback, but this approach is highly re-
source intensive – and, in complex design cases, not scalable. 

We identified the electric circuit design domain as one of the potential exceptions, where readily 
available (open source) design artifacts are available. Even in this domain, the sample size is in 
the thousands, which limits the training of really large and sophisticated AI models. 

Therefore, to tackle the UAV / UAM / UUV design challenges successfully, we used a more het-
erogeneous design flow by applying AI and machine learning (ML) selectively. First and foremost, 
the conceptual design phase was primarily supported by a multi-objective constrained optimization 
approach. The relevance of AI in this step is the PyTorch library (primarily developed for ML 
applications), which enabled us to optimize and satisfy complex functions and constraints in a 
vectorized approach on multicore central processing unit (CPU) / graphics processing unit (GPU) 
hardware. The overall approach and the runtime libraries also enabled us to integrate trained NN 
and curve-fitted models in these computational graphs. 

The most fitting area for AI / ML proved to be surrogate modeling, where these models were 
trained on synthetic / simulated data to learn some important characteristics (surfaces) of various 
analysis domains (CFD, FEA, geometric / packing, electromechanical). With a limited amount of 
computational resources, we managed to demonstrate this approach in multiple design domains, 
albeit with a limited set of degrees of freedom in the design parameter space. 

One particular area where a large set of machine-readable complete designs would (have been) 
highly beneficial is in the development of AI-assisted tools for generating practical vehicle archi-
tectures (design topologies). Even with a grammar-based approach, our current method is highly 
limited and results in overwhelmingly infeasible / impractical designs. 

Finally, the given set of analysis tools (e.g., SwRI / ATHENS Flight Dynamics Model) are ex-
tremely sensitive to small parameter changes, resulting in highly unpredictable error / cost / per-
formance surfaces. Thus, our overall approach always relied on systematic or genetic algorithm 
(GA) based methods as a final optimization step. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

.csv Comma Separated Value 
3D Three-Dimensional 
AI Artificial Intelligence 
AL Active Learning 
API Application Programming Interface 
ATHENS Air Taxi (Hybrid or Electric) aeroNautical Simulation 
AVM Adaptive Vehicle Make 
BO Bayesian Optimization 
BO-LCB Bayesian Optimization with Lower Condition Bound 
CAD Computer Aided Design 
CFD Computational Fluid Dynamics 
CLI Command-line Interface 
CPS Cyber-Physical Systems 
CPU Central Processing Unit 
CREO CREO Parametric, formerly Pro Engineer 
DARPA Defense Advanced Research Projects Agency 
DC Design Composition 
DNN Deep Neural Network 
DOD Department of Defense 
DSC Design Space Construction 
DSE Design Space Exploration 
FEM Finite Element Method 
GA Genetic Algorithm 
GNN Graph Neural Network 
GPU Graphics Processing Unit 
JSON JavaScript Object Notation 
MAPE Mean Absolute Percentage Error 
ML Machine Learning 
NAUTILUS Not an acronym, honors the first trans-Artic under-ice crossing (USS Nautilus, 

1958) 
NN Neural Network 
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NOAA National Oceanic and Atmospheric Administration 
OCR Optical Character Recognition 
OpenFOAM Not an acronym 
OpenMDAO Open Multi-Disciplinary Design Analysis and Optimization 
PDF Portable Document Format 
PROLOG Programming in Logic 
SDCPS Symbiotic Design for Cyber Physical Systems 
SPICE Simulation Program with Integrated Circuit Emphasis 
STEP Standard for the Exchange of Product Data 
STL stereolithography, sometimes called Standard Triangle Language or Standard Tes-

sellation Language 
STR Systems & Technology Research LLC 
SwRI Southwest Research Institute 
TA Technical Area 
UAM Urban Air Mobility 
UAV Unmanned Aerial Vehicle 
UUV Unmanned Underwater Vehicle 
WebGME Web-based Generic Modeling Environment 
YAML originally, Yet Another Markup Language, but overtime went to YAML Ain’t 

Markup Language.  It is a human-readable data serialization language 
YOLO You Only Look Once 
 




