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ABSTRACT

CACHE-AWARE REAL-TIME VIRTUALIZATION

Meng Xu

Insup Lee

Linh Thi Xuan Phan

Virtualization has been adopted in diverse computing environments, ranging from

cloud computing to embedded systems. It enables the consolidation of multi-tenant

legacy systems onto a multicore processor for Size, Weight, and Power (SWaP) ben-

efits. In order to be adopted in timing-critical systems, virtualization must provide

real-time guarantee for tasks and virtual machines (VMs). However, existing virtual-

ization technologies cannot offer such timing guarantee. Tasks in VMs can interfere

with each other through shared hardware components. CPU cache, in particular, is

a major source of interference that is hard to analyze or manage.

In this work, we focus on challenges of the impact of cache-related interferences

on the real-time guarantee of virtualization systems. We propose the cache-aware

real-time virtualization that provides both system techniques and theoretical anal-

ysis for tackling the challenges. We start with the challenge of the private cache

overhead and propose the private cache-aware compositional analysis. To tackle the

challenge of the shared cache interference, we start with non-virtualization systems

and propose a shared cache-aware scheduler for operating systems to co-allocate

both CPU and cache resources to tasks and develop the analysis. We then inves-

tigate virtualization systems and propose a dynamic cache management framework

that hierarchically allocates shared cache to tasks. After that, we further investigate

the resource allocation and analysis technique that considers not only cache resource

but also CPU and memory bandwidth resources. Our solutions are applicable to

commodity hardware and are essential steps to advance virtualization technology

into timing-critical systems.

vi
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Chapter 1

Introduction

Timing is critical for safety-critical systems, including automotive, avionics, manu-

facturing, and medical devices. These safety-critical systems directly interact with

physical objects, their responses to physical events must strictly satisfy their timing

requirements. For instance, the airbag must be deployed within 30µs for mitigat-

ing casualties in a car crash [8]. The correct timing behavior is a pre-requirement

for a safety-critical system to be deployed in the real world, which is regulated by

industrial standards, such as the automotive safety standard ISO-26262. The worst-

case response time of tasks in these systems must be analyzed in design time and

guaranteed at runtime for the correctness of their safety-critical functionalities.

Safety-critical systems are becoming increasingly complex and demanding. For

example, in automotive systems, carmakers are now racing to bring more and more

new features – including over-the-air update, advanced driver assistant systems

(ADAS), and connectivities, into vehicles, for attracting more customers. These

features are computation intensive and often dynamic. For example, ADAS un-

derstands the world around the car with image processing applications, which no-

toriously require lots of computation power to operate correctly and has dynamic

resource demand in different driving scenarios: high in city streets and low in high

way. In addition, these features are from different manufacturers, making the safety-
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critical systems multi-tenancy systems that require functional and timing isolation

among different features. The automotive infotainment systems from manufacturer

A should never affect the functional and timing properties of the engine control sys-

tems from manufacturer B, although both features are integrated to run on the same

car. In the trend of increasing resource demand and complexity of multi-tenancy

safety-critical systems, how can we satisfy the demand without violating the timing

constraints?

Conventional approach that adds one-to-multiple computation units for each new

feature is no longer an answer to the above question because it is not scalable. Adding

a computation unit, which is called Electrical Control Unit (ECU) in automotive

systems, introduces extra cost of wires, space, weight, and power consumption, in-

creasing the cost of entire systems. More importantly, as the number of new features

increases rapidly, it will eventually be impossible to add extra computation units,

due to space and weight constraints.

Fortunately, the microprocessor industry is offering more computation power in

the form of an exponentially growing number of cores on a single chip. Enabling an

extra core on a chip introduce no extra cost of wires, weight or space because cores

are embedded on and connected through an integrated circuit. Hence, it is becoming

more and more common to run multiple system components on the same multicore

platform, rather than to deploy them separately on different single-core processors.

This shift towards shared multicore computing platforms enables system designers

to reduce cost and increase performance; however, it also makes it significantly more

challenging to achieve functional separation and to maintain correct timing behavior.

Virtualization has been widely adopted from data centers to embedded systems

to integrate and consolidate multiple system components onto a shared (multicore)

hardware without violating functional separation requirement. Virtualization is a

promising technique to move safety-critical systems from single core platforms to-

wards powerful multicore platforms. Multiple system components with different
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functionalities that were initially running on single-core processors can be deployed

in virtual machines (VMs) on a shared multicore platform. These VMs provide a

clean functional isolation between each other that one VM cannot view or modify

the functionality of another VM. However, existing virtualization platforms are de-

signed to provide good average performance – they are not designed to guarantee

the worst-case performance of tasks or VMs. To make virtualization applicable for

safety-critical systems, real-time virtualization that ensures tasks in each VM meet

their worst-case performance requirements is required.

Real-time virtualization is challenging on multicore platforms due to the un-

predictable interference from shared hardware components. Tasks within the same

or different VMs can compete for the shared hardware resources, such as shared

last level cache, incurring unpredictable interference to each other, increasing tasks’

worst-case execution time (WCET), and potentially causing tasks’ violating their

timing requirements. Besides, a task may frequently migrate from one core to an-

other, taking extra time to restore its per-core state, such as its content in private

cache, from the old core to the new core at each migration. The task migration

on a multicore platform also increases the task’s WCET, putting the task’s timing

requirement at risk. Amongst shared resources on a multicore platform – such as

CPU, and memory bus – cache, which is a fast and small memory between CPU and

main memory that is designed to be shared and invisible to software, is the primary

challenge in realizing real-time virtualization on multicore platforms.

The goal of this dissertation is to manage and analyze the cache effect on the

timing guarantee of tasks in virtualization systems. In particular, this dissertation

focuses on two questions fundamental to real-time virtualization on a cache-based

multicore platform: (i) can the timing requirement be satisfied under the cache-

related interferences; (ii) how to manage cache to mitigate the impact of cache

interferences.
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1.1 Real-time virtualization

Before we study the cache effect on real-time virtualization, we need to understand

what real-time virtualization is. In this section, we describe and discuss the archi-

tecture of virtualization, the concepts of real-time systems, and the compositional

analysis, based on which we define real-time virtualization.

1.1.1 Virtualization

Virtualization concept was initially introduced in the 1960s as a method of logically

dividing system resources of mainframe computers, e.g., IBM System/370, to var-

ious applications. It has become a widely adopted technique to support multiple

Operating Systems (OS) on the same hardware.

In virtualization, hypervisor, which is also called Virtual Machine Monitor (VMM),

allows multiple VMs to execute on the same computer hardware concurrently. De-

pending on where the hypervisor runs, hypervisors can be classified into two types:

(i) Type-1 hypervisors that run directly on the bare metal; and (ii) Type-2 hypervi-

sors that run on a host OS. Type-1 hypervisors are more suitable for providing the

predictable performance to VMs than Type-2 hypervisors do, because Type-1 hyper-

visors directly interact with the hardware and have full control on hardware resources

allocated to VMs. In contrast, the extra host OS layer between the hardware and

the hypervisor in Type-2 hypervisors can introduce unexpected and unpredictable

delay to the hosted hypervisor and then to the VMs on the hypervisor. Among

open-source Type-1 hypervisors, Xen [14] is the most popular one that is powering

many commercial cloud computing platforms, including Amazon AWS. We use Xen

as a prototype platform for our studies in this dissertation. Our solutions can also

be extended to other hypervisors.

The Xen scheduling architecture is illustrated in Fig. 1.1. Each VM has tasks

scheduled by the guest OS’s scheduler on the Virtual CPUs (VCPUs) of the VM.
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Figure 1.1: Xen scheduling architecture.

The Xen scheduler schedules all VCPUs of all domains on physical cores. Xen has

an administration VM, called dom0, and multiple guest VMs, called domU.

Xen introduces a real-time scheduler, called Real-Time Deferrable Server (RTDS)

scheduler, in Xen 4.5.0. The RTDS scheduler is built to provide guaranteed CPU

capacity to guest VMs on symmetric multiprocessing (SMP) machines.

Each VCPU is implemented as a deferrable server in the RTDS scheduler. A

VCPU is represented as V Pi = (Πi,Θi), where Πi is period and Θi is budget, indi-

cating the VCPU is supposed to run for Θi time in every Πi time. The deferrable

server mechanism defines how a VCPU’s budget is managed: a VCPU’s budget lin-

early decreases in terms of running time only when the VCPU is running on a core; a

VCPU V Pi’s budget is replenished to Θi in every Πi period; and a VCPU’s remaining

budget is discarded at the end of the current period.

1.1.2 Real-time constraints

Task execution in real-time systems must satisfy predefined temporal constraints.

For instance, the image processing task of ADAS in automotive systems must finish

processing an image before the next image is captured by camera. In addition, many

5



Release	.me	 Deadline	

Deadline	di	

Period	pi	

WCET	

t	

Figure 1.2: Explicit-deadline periodic task model.

real-time tasks are recurrent tasks – they do not terminate during operation. For

example, the image processing task keeps running as long as the camera keeps taking

images.

Real-time tasks. Liu and Layland [44] introduce the explicit-deadline periodic task

model to capture the execution pattern of tasks in real-time systems. The task model

has ever since been widely adopted in the real-time community as the foundation to

obtain the analytical results. As illustrated in Fig. 1.2, each task τi releases a job in

each period pi, which executes for at most worst-case execution time (WCET) time

and should finish its execution by its deadline di. An explicit-deadline periodic task

τi is defined by τi = (pi, ei, di), where pi is the period, ei is the WCET, and di is

the relative deadline of τi. We require that 0 < ei ≤ di ≤ pi for all τi. A real-time

system consists of a set of tasks, which is represented as a task set τ = {τ1, ..., τn}.
The utilization of task τi is defined as ui = ei

pi
, specifying how much processor

time the task needs in the worst case in each of its periods. The utilization of a task

set τ is the sum of the utilizations of all tasks in the task set: u =
∑

τi∈τ
ei
pi
.

The response time of a job is the delay from the time when the job is released to

the time when the job finishes execution. The response time of a task is the longest

response time of all jobs of the task.

A job misses its deadline if its response time is larger than its deadline – that is,

the job finishes its execution after its deadline. A task misses its deadline if there

exists at least one job of the task missing its deadline.
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Figure 1.3: Hierarchical systems and compositional analysis.

A task is schedulable if none of its jobs misses deadline – all of its jobs finish

before their deadlines. A system (or a task set) is schedulable if all of its tasks are

schedulable. A hard real-time (HRT) system requires no deadline miss for its tasks.

In contrast, a soft real-time (SRT) system allows some deadline misses of tasks. In

this dissertation, we focus on HRT requirement, although our proposed system can

work for SRT requirement as well.

The schedulability test or schedulability analysis provides the sufficient condition

for determining whether a system is schedulable. If a system is claimed schedulable

by a schedulability test, all of its tasks are schedulable even in the worst case.

1.1.3 Compositional analysis

Virtualization systems distribute hardware resources, such as CPU resource, to VMs

in a hierarchical manner. Hypervisor (which is the root component) has all hard-

ware resources. Using the scheduling algorithm it has, the hypervisor allocates the

resources to VMs (which are child components); each VM further redistributes its

allocated resources to its tasks.
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In order to guarantee the schedulability of a virtualization system, system de-

signers must determine the total amount of resources required by the entire system

and the amount of resource required by each VM. Conceptually, tasks in a VM are

schedulable if the resource demand of the tasks is no larger than the resource supply

of the VM. And the entire system is schedulable if the resource requirement of the

hypervisor is no larger than the total amount of resource provided by the hardware.

Compositional analysis provides a method to compute the resource requirement

of each VM in a compositional manner [69] [41]. Under compositional analysis illus-

trated in Fig. 1.3, each VM has a resource interference, such as Periodic Resource

Model [57] and Multicore Periodic Resource (MPR) model [56], which specifies the

amount of resource the VM can provide to its tasks. The compositional analysis first

independently abstracts the resource demand of tasks in each VM into the resource

interface of the VM. Then the analysis transfers the resource interface of each VM

into interface tasks (which are VCPUs) of the hypervisor and further abstracts the

resource demand of those interface tasks into the resource interface of the hypervisor.

1.1.4 Requirements of real-time virtualization

A real-time virtualization system is a virtualization system that satisfies the real-

time constraints – that is, real-time tasks in each VM are schedulable. Real-time

virtualization requires (i) analysis techniques to tell whether a virtualization system

is schedulable under given hardware resources in the worst case, and (ii) system

techniques to guarantee that a virtualization system claimed schedulable by analysis

will never witness a task’s missing deadline.

Compositional analysis is an analysis technique that can be used to compute

the amount of CPU hardware resource required to guarantee the schedulability of a

virtualization system. If the provided hardware resource is no less than the required

resource, the virtualization system will be claimed schedulable by the compositional

analysis. A number of compositional analysis techniques for multicore systems have
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been developed (e.g., [16], [31], [43]), but existing theories assume a somewhat

idealized platform in which all overhead is negligible. In practice, the platform

overhead – especially the cost of cache misses – can substantially interfere with

the execution of tasks. As a result, the computed interfaces can underestimate the

resource requirements of the tasks within the underlying components. One goal of

this dissertation is to remove this assumption by accounting for the cache overhead

in the interfaces.

Real-time schedulers are a system technique that has been used to guarantee

the configured CPU resource for VMs (when implemented in hypervisor) and tasks

(when implemented in VMs). A number of real-time schedulers have been designed

and implemented (e.g., [68], [69], [27], [24]), but real-time schedulers manage only

the CPU resource, not the other hardware resources – especially the cache resource

that may lead to extra cache misses to tasks. As a consequence, tasks can interfere

with each other through the other resources which are neither considered in analysis

nor eliminated by system techniques, causing tasks to miss deadline even when the

system is claimed schedulable by analysis. The other goal of this dissertation is to

design and implement cache management techniques to mitigate the impact of cache

on systems’ real-time constraints.

1.2 Cache challenges for real-time virtualization on

multicore

In order to bridge the speed gap between processor and memory without sacrific-

ing the memory capacity, a hierarchy of cache, each of which has a smaller capacity

but faster speed than the following, is built on the multicore platform. An example

is shown in Fig. 1.4. Each core has a private cache that is only accessible by the

core. The processor has a shared cache that is accessible by all cores.
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Figure 1.4: Cache hierarchy.

1.2.1 Cache interference

When two code sections are mapped to the same cache set, one section can evict the

other section’s cache blocks from the cache, which causes a cache miss when the latter

accesses the evicted cache block. If the two code sections belong to the same task,

this cache miss is an intrinsic cache miss; otherwise, it is an extrinsic cache miss [18].

The interference due to intrinsic cache misses of a task can typically be statically

analyzed or profiled based solely on the task; however, extrinsic cache misses depend

on the interference between tasks during execution. In this dissertation, we assume

that the tasks’ WCETs already include intrinsic cache-related interference, and we

will focus on the extrinsic cache-related interference.

Cache interference can be categorized into private cache overhead and shared

cache interference, depending on at which level of cache the extra cache misses occur:

• Private cache overhead occurs when a task resumes execution and reloads its

contents into private cache that are evicted by another task while the task is

not running. A task may experience one private cache overhead whenever the

task resumes: the one private cache overhead is the latency of multiple extra

cache misses the task experience at its resumption. The total amount of private

cache overheads a task experience in each of its periods is determined by the

value of one private cache overhead and the number of private cache overheads

in the period. The private cache overhead is avoided if each job keeps running

10



until it finishes execution.

• Shared cache interference occurs when a running task reloads its contents into

shared cache that are evicted by another concurrently running tasks on another

core. In the worst-case scenario, each cache hit access of a task can be turned

into cache miss access due to the shared cache interference. Shared cache

interference is avoided if each cache area can only be accessed by one core at

any time.

1.2.2 Challenges of cache-aware analysis

Cache-aware analyses study the effect of cache interference on the real-time perfor-

mance of multicore virtualization systems. If a system is claimed schedulable by

cache-aware analysis, the system should be schedulable under the presence of cache

interference in practice.

Analyzing the private cache overhead on multicore virtualization systems is chal-

lenging because virtualization introduces additional overhead that is difficult to pre-

dict. For instance, when a VCPU resumes after being preempted by a higher-priority

VCPU, a task executing on it may experience a cache miss, since its cache blocks

may have been evicted from the cache by the tasks that were executing on the pre-

empting VCPU. Similarly, when a VCPU is migrated to a new core, all its cached

code and data remain in the old core; therefore, if the tasks later access content that

was cached before the migration, the new core must load it from memory rather than

from its cache

Another challenge comes from the fact that cache misses that can occur when a

VCPU finishes its budget and stops its execution. For instance, suppose a VCPU

is currently running a task A that has not finished its execution when the VCPU

finishes its budget, and that A is migrated to another VCPU of the same domain

that is either idle or executing a lower priority task B (if one exists). Then A can

incur a cache miss if the new VCPU is on a different core, and it can trigger a cache
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miss in B when B resumes. This type of overhead is difficult to analyze, since it is

in general not possible to determine statically when a VCPU finishes its budget or

which task is affected by the VCPU completion.

Analyzing the shared cache interference is theoretically challenging. Since concur-

rent running tasks can access any cache line at any time, in the worst-case scenario,

concurrent running tasks always access the same cache line, turning each cache hit to

cache miss. Due to the fact that the task information in one VM is not available to

another VM, the analysis has to assume the worst-case scenario to upper bound the

impact of shared cache interference, which leads to a pessimistic analysis. Further,

even if precise analyses were possible, they would still not mitigate the shared cache

interference.

1.2.3 Challenges of cache management

Cache management aims to mitigate the cache interference incurred to tasks for im-

proving the real-time performance of the entire system. At the high level, cache man-

agement techniques divide cache into cache partitions and allocate non-overlapped

cache partitions to tasks. Since each task has its own dedicated cache partitions,

cache interference is mitigated, potentially increasing the system’s real-time per-

formance. However, since each task can only use a fraction of cache under cache

management, instead of the entire cache without cache management, the WCET of

each task may increase, potentially decreasing the system’s real-time performance.

A cache management technique is useful if it can improve systems’ real-time perfor-

mance over no cache management in general.

Cache management mainly focuses on the shared cache, instead of private cache,

because partitioning a small private cache to mitigate the cache interference is of-

ten "not required but instead detrimental to the provable system performance" as

demonstrated in [12]. This is because the cost of increased WCET with private

cache partitioning is often larger than the cost of private cache overhead without
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cache management.

Managing shared cache is challenging because hardware exposes limited func-

tionalities to system software, such as OS and hypervisor, to directly manage the

cache. Although recent COTS processors allow system software to divide cache into

equal-size partitions, the supported number of partitions is very limited, making each

cache partition relatively large. For instance, the Intel Cache Allocation Technology

(CAT) [6] can divide the 20 MB cache on Intel Xeon 2618L v3 processor into only

20 equal-size cache partitions. Each cache partition is 1 MB. When a 1 MB cache

partition is reserved for a task, the task may not use all cache areas in the cache

partition and the unused cache areas cannot be re-used by other tasks, wasting the

scarce cache resource.

In addition, the hardware-based cache partitioning introduces constraints for

system software to manage the cache. For instance, the Intel CAT only allows con-

tinuous cache partitions to be allocated to tasks. Since unallocated cache partitions

may not be contiguous, fragmentation of cache partitions may happen, causing low

cache resource utilization.

Managing shared cache for virtualization systems is even more challenging due

to the extra abstraction layer introduced by virtualization. OS in each VM is de-

privileged in virtualization for VM isolation – preventing a VM from affecting another

VM’s functionality. However, privilege is required for OS to control the cache. Hy-

pervisor must provide a mechanism for OS to manage the cache for its tasks without

breaking the VM isolation provided by virtualization.

1.3 Contributions and organizations

This dissertation proposes cache-aware real-time virtualization that provides real-

time guarantee to tasks in virtualization systems under the presence of cache inter-

ferences. The cache-aware real-time virtualization provides (i) private cache-aware
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compositional analysis that analyzes the impact of private cache overhead on the

timing guarantees; (ii) dynamic shared cache management and analysis that mit-

igates the shared cache interference and that analyzes the overhead introduced by

the shared cache management; (iii) a holistic framework that integrates shared cache

allocation with memory bandwidth regulation mechanisms to mitigate potential in-

terference among concurrent tasks.

In Chapter 3, we present the private cache-aware compositional analysis. Specif-

ically, we introduce DMPR, a deterministic extension of the multiprocessor resource

periodic model to better represent component interfaces on multicore virtualization

platforms; we present a DMPR-based compositional analysis for systems without

cache-related overhead; we characterize different types of events that cause cache

misses in the presence of virtualization; and we propose two approaches, task-centric

and model-centric, to account for the cache-related overhead. Based on the results,

we develop the corresponding cache-aware compositional analysis methods.

In Chapter 4, we explore the dynamic cache management and analysis for non-

virtualized systems, which can later be used inside a VM in virtualization systems.

We investigate the feasibility of global preemptive scheduling with dynamic job-level

cache allocation. We present gFPca, a cache-aware variant of the global preemptive

fixed-priority (gFP) algorithm, together with its implementation and analysis. gFPca

allocates cache to jobs dynamically at run time when they begin or resume, and it

allows high-priority tasks to preempt low-priority tasks via both CPU and cache

resources. It also allows low-priority tasks to execute when high-priority tasks are

unable to execute due to insufficient cache resource, thus further improving the

cache and CPU utilizations. Since preemption is allowed, tasks may experience

cache overhead – e.g., upon resuming from a preemption, a task may need to reload

its cache content in the cache partitions that were used by its higher-priority tasks;

therefore, we develop a new method to account for such cache overhead.

In Chapter 5, we present vCAT, a dynamic cache management framework for
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virtualization systems that can deliver strong shared cache isolation at both VM

and task levels, and that can be configured for both static and dynamic allocations.

vCAT virtualizes the Intel CAT in software for achieving hypervisor- and VM-level

cache allocations. To illustrate the feasibility of our approach, we provide a proof-

of-concept prototype of vCAT on top of Xen and LITMUSRT .

In Chapter 6, we propose vC2M, a holistic solution towards timing isolation in

multicore virtualization systems. On the system angle, vC2M integrates both the

shared cache and memory bandwidth management to provide better isolation among

tasks and VMs; this is done by leveraging the vCAT in Chapter 5 and a new mem-

ory bandwidth regulation mechanism for virtualization. On the theory side, vC2M

provides an efficient resource allocation policy for tasks and VMs that can mini-

mize resources while guaranteeing schedulability. Specifically, given a set of tasks

on the VMs and a given hardware configuration, vC2M will compute both (i) the

assignment of tasks to virtual CPUs (VCPUs) and VCPUs to cores, and (ii) the

amount of CPU, cache, and bandwidth resources for each task and each VCPU, to

guarantee schedulability while minimizing resource usage. We have implemented a

Xen-based prototype of vC2M. We evaluated vC2M, showing that it can be imple-

mented with minimal overhead, and that it provides substantial benefits in reducing

tasks’ WCETs.

We discuss the related work in cache-aware analysis and management in Chap-

ter 2, before we present the details of our cache-aware real-time virtualization in

Chapter 3 to Chapter 6. In the end, we conclude this dissertation with discussion of

future work.
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Chapter 2

Related work

2.1 Cache-aware analysis

Cache-aware analyses primarily focus on analyzing the impact of private cache on

systems’ schedulability. Private cache-aware analyses, from a high-level perspective,

consist of two steps: (i) obtaining the cost of one private cache overhead for a task

at the task’s resumption event; (ii) accounting each private cache overhead of each

task into the overhead-free schedulability analysis.

We first review the approaches of obtaining the cost of one private cache overhead;

we then discuss the private cache-aware schedulability tests.

2.1.1 Cost of one private cache overhead

Precise analysis is a common approach to obtain the cost of one private cache

overhead. Lee et al. [40] introduced the concept of Useful Cache Block (UCB) and

Evicting Cache Block (ECB): a memory block m is a UCB at a program point ρ if

(a) the memory block m may be cached at ρ and (b) the memory block m may be

reused as a cache hit by the program after ρ. When the preemption occurs at the

program point ρ, only the UCBs at the program point ρ may need additional reloads.

An ECB is a memory block accessed during the execution of a preempting task. The
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cost of reloading a cache block, which is also called as a cache line, is specified as

BRT .

The cost of one private cache overhead can be analyzed with four approaches: (i)

the ECB-only approach [26] [61] that uses the ECBs of the preempting task to bound

the cost; (ii) the UCB-only approach [40] that uses the number of UCBs to bound

the cost; (iii) the UCB-Union approach [60] that considers both the preempting and

preempted task to calculate the cost; and (iv) the ECB-Union approach [11] that

considers the union of ECBs of preempting tasks to calculate the cost.

Measurement is another approach to obtain the cost of one-private cache overhead.

There exist two types of measurement approaches to measure the cost of one private

cache overhead: trace-driven memory simulation approach and real hardware based

measurement approach.

The trace-driven memory simulation approach [58] [51] uses a simulation frame-

work to record the execution trace of tasks and examine the private cache overhead

based on the collected execution trace. The strength of trace-driven memory sim-

ulation approaches is that they can control simulation environment to evaluate the

effect of different cache configurations on the cache interference. The weakness of

this type of approaches is that it replies on accurate architectural models, which may

not be available for Commercial Off-The-Shelf (COTS) hardware, and representative

memory traces, which are difficult to collect.

The real hardware based measurement approach [42] [29] [62] [17] directly mea-

sures the cost of one private cache overhead on a real COTS hardware. This type

of measurement approaches does not require the model of the hardware and can be

applied to many COTS processors. However, the measurement approach can not

provide a safe upper bound of the cache overhead since it has no guarantee that the

worst-case scenario of cache overhead will always occur in the measurement.
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2.1.2 Private cache-aware schedulability test

Private cache-aware schedulability tests integrate the cost of private cache overhead

into the overhead-free schedulability test to determine if a task set is schedulable

under the influence of private cache overhead.

The first approach of private cache-aware schedulability tests [26] [33] [24] ex-

tends each task’s WCET with the cost of one private cache overhead of the task and

applies the overhead-free schedulability test for the task set with extended WCETs.

The cost of one private cache overhead for a task can be obtained with one of the ap-

proaches discussed above. This approach can be easily applied to existing overhead-

free schedulability test. However, this approach may significantly overestimate the

overall cost of private cache overhead.

The second approach observes that each additional cache overhead of a task may

result in a smaller cost than the previous one. Instead of upper bounding the cost

of one private cache overhead, the second approach [59] [11] [47] directly computes

the total cost of all private cache overheads a task may experience and extends the

overhead-free schedulability test by considering the total private cache overhead as

a special workload.

2.2 Cache management

Cache management techniques first use cache partitioning techniques to divide shared

cache into partitions and then allocate cache partitions to cores/tasks. Cache parti-

tioning techniques can be grouped into software-based approach and hardware-based

approach, depending on if the cache partitioning technique replies on any special

hardware.
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2.2.1 Software-based cache partitioning techniques

Cache controller uses part of memory address bits, denoted as index-bits, to locate

cache sets. We can calculate the number of index-bits, as illustrated in Fig. 2.1, as

follows: suppose we have an α-way-associative shared cache on an m core platform;

the shared cache consists of multiple s-byte equal-size cache slices, connected by the

ring bus among cores; and the cache line size is 2l bytes. We can calculate that each

cache slice has s
α×2l

cache sets and that the number of index-bits is c = log s
α×2l

. For

example, Intel Xeon E5-2618L v3 processor has a 20-way-associative shared cache

on 8 cores; each core has one 20MB
8

= 2560KB cache slice whose cache line size is 26

bytes. The number of index-bits is calculated as c = log 2560KB
20×26B

= 11.

The software-based cache partition techniques divide cache into partitions by

grouping cache sets based on parts of their index-bits. The memories that map to

the same cache partition are grouped together. In order to allocate a specific cache

partition to a task, the software-based techniques always allocate the memories from

the corresponding memory group.

The software-based cache partitioning can be achieved by a page-coloring tech-

nique and a compiler-based technique.

Figure 2.1: Software-based cache partition mechanism. On Intel Xeon
E5-2618L v3 processor, l = 6, c = 11, p = 12.
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Page coloring technique

The page coloring technique controls a task’s memory page allocation in order to

control which cache area the task will use. We describe operating systems’ paging

mechanism before we explain the page coloring technique.

Paging mechanism. Modern operating systems use the paging mechanism to transfer

a virtual address va to a physical address pa. The virtual address va consists of two

non-overlapped parts as illustrated in Fig. 2.1: the virtual page number, which is

denoted as Bits[v, p], and the page offset, which is denoted as Bits[p − 1, 0]. The

paging mechanism transfers the virtual page number to the physical page number

by looking up the page table. The page offset of the virtual address is the same with

that of the corresponding physical address. The paging mechanism constructs the

physical address pa for the virtual address va by concatenating the physical page

number and the page offset.

Page coloring. As illustrated in Fig. 2.1, the physical page number has c+ l− p bits

overlapped with the cache’s index-bits. We call these overlapped bits as cache-color-

bits. We divide the cache into 2c+1−p non-overlapped areas and call a cache area as a

cache color. The cache sets in the same cache color are indexed by the same cache-

color-bits. The page coloring technique organizes the memory pages whose addresses

have the same value of the cache-color-bits into the same cache-color group. The

memory pages in different groups are mapped to different cache colors.

In order to allocate a specific cache color to a task, OS allocates memory pages

from the cache-color group to the task. If a cache color is allocated for only one

task, the task will not be interfered by other tasks in that cache color. Fig. 2.2(a)

illustrates an example that uses the page coloring-based technique to divide the cache

into two partitions.
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(a) Page coloring partition (b) Compiler-based partition

Figure 2.2: Example of dividing the cache into two partitions by software-
based partition techniques. A color represents a partition.

Compiler-based partition technique

The compiler-based cache partition technique [52] controls the page offset bits, in-

stead of the page number bits, to control which cache area a task can use.

As shown in Fig. 2.1, the page offset of a virtual address has p− l bits overlapped
with the cache’s index-bits. These overlapped bits are cache-partition-bits. We divide

the cache into 2p−l non-overlapped cache partitions based on the cache-partition-bits.

We categorize the virtual memory addresses with the same cache-partition-bits into

the same cache-partition group. In order to allocate a cache partition to a task, the

compiler rearranges the task’s virtual memory layout when it compiles the task, so

that the task will use the virtual memory from the cache-partition group. Fig. 2.2(b)

illustrates an example that uses the compiler-based technique to divide the cache into

two partitions.

2.2.2 Hardware-based cache partitioning techniques

There exist two hardware-based cache partitioning techniques on COTS processors:

(1) the Cache Allocation Technology for Intel processors; (2) the Lockdown-by-

Master (LbM) technology for ARM processors. In this section, we first review

these two hardware-based cache partitioning techniques; we then discuss the Col-
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oredLockdown technique that combines both the page coloring technique and the

LbM technique to provide finer-granularity cache partitioning.

Intel Cache Allocation Technology (CAT)

Intel introduces the Cache Allocation Technology (CAT) that allows system software

(such as OS, hypervisor or VMM) to control the allocation of the shared cache to

each core. Intel CAT divides the shared cache into N non-overlapped equal-size cache

partitions; for instance, N = 20 for the Intel Xeon E5-2618L v3 processor. System

softwares can allocate a set of such cache partitions to a core by programming two

model-specific registers (MSR): (1) the Class of Service (COS) register, which has

an N-bit Capacity Bitmask (CBM) field to specify a particular cache partition set,

and (2) the IA32_PQR_ASSOC (PQR) register of each core, which has a COS field

for linking a particular COS to the core; when the COS field is set to the ID of

a COS register, all cache allocation requests from the core will be enforced to the

cache partitions specified by the CBM of the COS register. For example, to allocate

partitions 0 to 3 to a core, we set 1s for the bits 0 to 3 (and zeroing the remaining)

of the CBM field of the associated COS register.

According to the Intel 64 and IA-32 Architectures Software Developer’s Manual

(SDM) [2] and the experimental studies [6] [72], Intel CAT has the following con-

straints: (1) the number of cache partitions per core must be at least two 1 and should

not exceed the number of available partitions; (2) the partition set of a core can only

be made of contiguous cache partitions; and (3) the CAT only controls cache alloca-

tion requests (i.e., cache miss requests) and does not control cache lookup requests

(i.e., cache hit requests).

According to [1], Intel CAT is available for 6 types of Intel Haswell processors

and all Intel Xeon processor D CPUs. Intel CAT is not backward compatible. Al-

though Intel Skylake processors are one-generation newer than Intel Xeon processor
1This constraint may not exist for some Intel processors. For example, Intel broadwell processors

allow one cache partition per core.
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D processors, the Intel Skylake processors do not support the Intel CAT technology.

ARM Lockdown-by-Master (LbM) technology

The Lockdown-by-Master technology, supported by the PL310 cache controller on

ARM processors, can be used to partition the last level cache into 16 non-overlapped

equal-size partitions. The LbM allows certain ways to be marked as unavailable

for allocation, such that the cache allocation (which allocates cache lines for cache

misses) only happens in the remaining ways that are not marked as unavailable.

Each core Pi has a per-core lockdown register Ri, where a bit q in Ri is one if the

cache allocation cannot happen in the cache way q for the memory access from the

core Pi, and zero otherwise.2

The PL310 cache controller is widely used on ARM Cortex A9 processors, which

implements the ARMv7-A architecture. The PL310 cache controller is not backward

compatible either. None of current ARMv8-A architecture-based processors, such as

ARM Cortex A53, implements the PL310 cache controller.

Recent studies [49] [38] [70] use the LbM technology to achieve isolation in the

shared cache.

Colored Lockdown technique

The Colored Lockdown technique [49] divides the shared cache into equal-size cache

partitions by using both the page coloring technique and the LbM technique.

The Colored Lockdown technique first uses the page coloring technique to divide

the shared cache into cache colors and groups the memory pages based on their

assigned cache colors. In order to allocate cache lines in the cache way i for a

memory page PF with the cache color c, where PF is accessed by the core P , the

Colored Lockdown technique conducts the following steps: (1) it first ensures none

of the lines in the page PF are cached in any level of caches by flushing the memory
2To be precise, each core has two separate registers for instruction and data access respectively
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page PF from the cache; this step makes sure the following accesses to the page

PF are cache misses; (2) it locks all ways but the way i for the core P , so that

the following cache misses from the core P can only happen in the way i; (3) it

sequentially reads the page PF , with preemption disabled, on the core P , so that

the page PF is deterministically loaded in the way i; (4) it restores the cache way

lock status for the core P as it was before the step (2). After the step (4), the access

to the page PF will always be cache hit in the specific cache way i.

2.2.3 Comparison of partition techniques

We evaluate a cache partition technique based on the following metrics:

• COTS hardware support: COTS hardware is usually cheaper than specialized

hardware. A technique with COTS hardware support is more cost-effective

than the one without such support.

• Super-page support: because super page technique (which usually uses 2MB

or 1GB page) can dramatically reduce TLB misses and improve performance

for many applications, modern OSs (e.g., Linux) support the super page tech-

nique. If a partitioning technique cannot support the super page technique,

the partitioning technique is expected to introduce extra performance penalties

(such as extra TLB misses) for applications that may benefit from the super

page technique.

• No memory copy for reconfiguring partitions for a task: memory copy is much

slower than cache access. If a cache partitioning technique requires copying

memory to reconfigure a task’s partitions, the technique may not be suitable

for dynamic cache partitioning managements. The software-based approach,

which requires changing tasks’ memory layouts to partition the cache, usually

requires memory copy for reconfiguring cache partitions.
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• The maximum number of partitions: given a cache with fixed size, the more

partitions a partition technique can support, the finer-granularity control we

can have over the cache.

We compare the cache partition techniques, discussed in this section, in Table 2.1.

Table 2.1: Comparison of cache partition techniques

Metrics Software-based Hardware-based

Page coloring Compiler-based CAT LbM Colored
Lockdown

Hardware
support COTS COTS Intel 3 ARM 4 ARM 5

Super-page
support No Yes Yes Yes No

No memory
copy for cache
reconfiguration

No No Yes Yes Yes-No6

Number of
partitions 327 648 20 16 5129

3It is supported on some Intel processors.
4It is supported on ARM processors with the PL310 cache controller.
5It is supported on ARM processors with the PL310 cache controller.
6It does not requires memory copy for reconfiguring cache ways for tasks, but it requires memory

copy for reconfiguring cache colors.
7We assume 4KB memory page and 2MB 16-way-associative cache slice.
8We assume 4KB memory page and 64B cache line. Each page can be mapped to 4KB

64B = 64
different cache lines

9Colored lockdown can partition cache into 32 colors and 16 ways independently. The total
number of partitions is 32× 16 = 512.
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Chapter 3

Private cache-aware compositional

analysis

We have agreed that real-time virtualization on multicore platforms is a solution to

satisfy the increasing resource demand, to reduce the system complexity, to provide

the functional isolation, and to achieve the real-time constraints for the multi-tenancy

safety-critical systems. We also realize that cache interference is a major challenge

in realizing real-time virtualization. In this chapter, we will present a private cache-

aware compositional analysis technique that can be used to ensure timing guarantees

of tasks scheduled on a multicore virtualization platform under the presence of pri-

vate cache overhead. Our technique improves on previous multicore compositional

analyses by accounting for the cache-related overhead in the VMs’ interfaces, and

it addresses the new virtualization specific challenges in the overhead analysis. To

demonstrate the utility of our technique, we report results from an extensive evalu-

ation based on randomly generated workloads.
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(a) Task and VCPU scheduling.
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(b) Scheduling of VCPUs.

Figure 3.1: Compositional scheduling on a virtualization platform.

3.1 System descriptions

The system we consider consists of multiple real-time components that are scheduled

on a multicore virtualization platform, as is illustrated in Fig. 3.1(a). Each compo-

nent corresponds to a domain (virtual machine) of the platform and consists of a

set of tasks; these tasks are scheduled on a set of virtual processors (VCPUs) by the

domain’s scheduler. The VCPUs of the domains are then scheduled on the physical

cores by the hypervisor, which is also specified as virtual machine monitor (VMM).

Each task τi within a domain is an explicit-deadline periodic task, defined by

τi = (pi, ei, di), where pi is the period, ei is the worst-case execution time (WCET),

and di is the relative deadline of τi. We require that 0 < ei ≤ di ≤ pi for all τi.

Each VCPU is characterized by VPj = (Πj,Θj), where Πj is the VCPU’s period

and Θj is the resource budget that the VCPU services in every period, with 0 ≤ Θj ≤
Πj. We say that VPj is a full VCPU if Θj = Πj, and a partial VCPU otherwise.

We assume that each VCPU is implemented as a periodic server [55] with period

Πj and maximum budget time Θj. The budget of a VCPU is replenished at the

beginning of each period; if the budget is not used when the VCPU is scheduled to

run, it is wasted. We assume that each VCPU can execute only one task at a time.

Like in most real-time scheduling research, we follow the conventional real-time task
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model in which each task is a single thread in this work; an extension to parallel

task models is an interestin g but also challenging research direction, which we plan

to investigate in our future work.

We assume that all cores are identical and have unit capacity, i.e., each core pro-

vides t units of resource (execution time) in any time interval of length t. Each core

has a private cache10, all cores share the same memory, and the size of the memory

is sufficiently large to ensure that all tasks (from all domains) can reside in memory

at the same time, without conflicts.

Scheduling of tasks and VCPUs. We consider a hybrid version of the Earliest

Deadline First (EDF) strategy. As is shown in Fig. 3.1, tasks within each domain

are scheduled on the domain’s VCPUs under the global EDF (gEDF) [15] scheduling

policy. The VCPUs of all the domains are then scheduled on the physical cores under

a semi-partitioned EDF policy: each full VCPU is pinned (mapped) to a dedicated

core, and all the partial VCPUs are scheduled on the remaining cores under gEDF.

In the example from Fig. 3.1(b), VP1 and VP3 are full VCPUs, which are pinned

to the physical cores cpu1 and cpu2, respectively. The remaining VCPUs are partial

VCPUs, and are therefore scheduled on the remaining cores under gEDF.

Private cache-related overhead. We consider the private cache-related overhead

in this chapter. We use ∆crpmd
τi

to denote the maximum time needed to re-load all

the useful cache blocks (i.e., cache blocks that will be reused) of a preempted task

τi when that task resumes (either on the same core or on a different core).11 Since

the overhead for reloading the cache content of a preempted VCPU (i.e., a periodic
10In this chapter, we assume that the cores either do not share a cache, or that the shared cache

has been partitioned into cache sets that are each accessed exclusively by one core [72] [39]. We
believe that an extension to shared caches is possible, and we plan to consider it in our future work.

11We are aware that using a constant maximum value to bound the cache-miss overhead of a
task may be conservative, and extensions to a finer granularity, e.g., using program analysis, may
be possible. However, as the first step, we keep this assumption to simplify the analysis in this
work, and we defer such extensions to our future work.
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server) upon its resumption is insignificant compared to the task’s, we will assume

here that it is either zero or is already included in the overhead due to cache misses

of the running task inside the VCPU.

Objectives. In the above setting, our goal is to develop a cache-aware compositional

analysis framework for the system. This framework consists of two elements: (1) an

interface representation that can succinctly capture the resource requirements of a

component (i.e., a domain or the entire system); and (2) an interface computation

method for computing a minimum-bandwidth cache-aware interface of a component

(i.e., an interface with the minimum resource bandwidth that guarantees the schedu-

lability of a component in the presence of cache-related overhead).

Assumptions. We assume that (1) all VCPUs of each domain j share a single

period Πj; (2) all Πj are known a priori; and (3) each Πj is available to all domains.

These assumptions are important to make the analysis tractable. Assumption 1

is equivalent to using a time-partitioned approach; we make this assumption to

simplify the cache-aware analysis in Section 3.7, but it should be easy to extend

the analysis to allow different periods for the VCPUs. Assumption 2 is made to

reduce the search space, which is common in existing work (e.g., [31]); it can be

relaxed by first establishing an upper bound on the optimal period (i.e., the period

of the minimum-bandwidth interface) of each domain j, and then searching for the

optimal period value based on this bound. Finally, Assumption 3 is necessary to

determine how often different events that cause cache-related overhead happen (c.f.

Section 3.5), which is crucial for the cache-aware interface computation in Section 3.6

and 3.7. One approach to relaxing this assumption is to treat the period of the

VCPUs of a domain as an input parameter in the computation of the overhead that

another domain experiences. Such a parameterized interface analysis approach is

very general, but making it efficient remains an interesting open problem for future
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research. We note, however, that although each assumption can be relaxed, the

consequence of relaxing all three assumptions requires a much deeper investigation.

3.2 Improvement on multiprocessor periodic resource

model

Recall that, when representing a platform, a resource model specifies the character-

istics of the resource supply that is provided by that platform; when representing a

component’s interface, it specifies the total resource requirements of the component

that must be guaranteed to ensure the component’s schedulability. The resource

provided by a resource model R can also be captured by a supply bound function

(SBF), denoted by sbfR(t), that specifies the minimum number of resource units that

R provides over any interval of length t.

In this section, we first describe the existing multiprocessor periodic resource

(MPR) model [56], which serves as a basis for our proposed resource model for

multicore virtualization platforms. We then present a new SBF for the MPR model

that improves upon the original SBF given in [56], thus enabling tighter MPR-based

interfaces for components and more efficient use of resource.

3.2.1 Background on MPR

An MPR model Γ= (Π̃, Θ̃,m′) specifies that a multiprocessor platform with a num-

ber of identical, unit-capacity CPUs provides Θ̃ units of resources in every period of

Π̃ time units, with concurrency at most m′ (in other words, at any time instant at

most m′ physical processors are allocated to this resource model), where Θ̃ ≤ m′Π̃.

Its resource bandwidth is given by Θ̃/Π̃.

The worst-case resource supply scenario of the MPRmodel is shown in Fig. 3.2 [31].

Based on this worst-case scenario, the authors in [31] proposed an SBF that bounds
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Fig. 3 Schedule of µ w.r.t. sbfµ(t)

Definition 1 (Multiprocessor periodic resource model (MPR)) A multiprocessor pe-
riodic resource model µ = 〈!,",m′〉 specifies that an identical, unit-capacity mul-
tiprocessor platform collectively provides " units of resource in every ! time units,
where the " units are supplied with concurrency at most m′; at any time instant at
most m′ physical processors are allocated to this resource model. "

! denotes the re-
source bandwidth of model µ.

It is easy to see from the above definition that a feasible MPR model must satisfy
the condition " ≤ m′!. The supply bound function of a resource model (sbf) lower
bounds the amount of processor supply that the model guarantees in a given time
interval. Specifically, sbfR(t) is equal to the minimum amount of processor capacity
that model R is guaranteed to provide in any time interval of duration t . In uniproces-
sor systems, sbf is used in schedulability conditions to generate resource model based
component interfaces. Extending this approach to multiprocessors, in this paper we
derive similar schedulability conditions to generate MPR model based component
interfaces. Hence we now present the sbf for a MPR model µ = 〈!,",m′〉. Figure 3
shows the schedule for µ that generates this minimum supply in a time interval of
duration t , where α = % "

m′ & and β = " − m′α. As can be seen, length of the largest

Figure 3.2: Worst case resource supply of MPR model.

the resource supplied by the MPR model Γ= (Π̃, Θ̃,m′), which is defined as follows:

˜sbfΓ(t) =


0, if t′ < 0⌊
t′/Π̃

⌋
Θ̃ + max{0,m′x− (m′Π̃− Θ̃)}, if t′ ≥ 0 ∧ x ∈ [1, y]⌊

t′/Π̃
⌋
Θ̃ + max{0,m′x− (m′Π̃− Θ̃)} − (m′ − β), if t′ ≥ 0 ∧ x /∈ [1, y]

(3.1)

where α =
⌊ Θ̃

m′

⌋
, β = Θ̃−m′α, t′ = t−

(
Π̃−
⌈ Θ̃

m′

⌉)
, x = t′−Π̃

⌊ t′
Π̃

⌋
and y = Π̃−

⌊ Θ̃

m′

⌋
.
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3.2.2 Improved SBF of the MPR model

We observe that, although the function ˜sbfΓ given in Eq. (3.1) is a valid SBF for

the MPR model Γ, it is conservative. Specifically, the minimum amount of resource

provided by Γ over a time window of length t (see Fig. 3.2) can be much larger than
˜sbfΓ(t) when (i) the resource bandwidth of Γ is equal to its maximum concurrency

level (i.e., Θ̃/Π̃ = m′), or (ii) x ≤ 1, where x is defined in Eq. (3.1). We demonstrate

these cases using the two examples below.

Example 3.1. Let Γ1 = 〈Π̃, Θ̃,m′〉, where Θ̃ = Π̃m′, and Π and m′ are any two

positive integer values. By the definition of the MPR model, Γ1 represents a multipro-

cessor platform with exactly m′ identical, unit-capacity CPUs that are fully available.

In other words, Γ1 provides m′t time units in every t time units. However, according

to Eq. (3.1), we have α =
⌊

Θ̃
m′

⌋
= Π̃, β = Θ̃ −m′α = 0, t′ = t −

(
Π̃ −

⌈
Θ̃
m′

⌉)
= t,

x = t′ − Π̃
⌊
t′

Π̃

⌋
, and y = Π̃−

⌊
Θ̃
m′

⌋
= 0. Whenever x /∈ [1, y], for all t = t′ ≥ 0,

˜sbfΓ1(t) =
⌊
t′/Π̃

⌋
Θ̃ + max{0,m′x− (m′Π̃− Θ̃)} − (m′ − β) = m′t−m′.

As a result, ˜sbfΓ1(t) < m′t for all t such that x /∈ [1, y].

Example 3.2. Let Γ2 = 〈Π = 20,Θ = 181,m′ = 10〉 and consider t = 21.1. From

Eq. (3.1), we obtain α = 18, β = 1, t′ = t − 1 = 20.1, x = 0.1, and y = 2. Since

x /∈ [1, y], we have

˜sbfΓ2(t) = b t
′

Π̃
cΘ̃ + max{0,m′x− (m′Π̃− Θ̃)} − (m′ − β)

= b20.1

20
c181 + max{0, 10× 0.1− (10× 20− 181)} − (10− 1) = 172.

We reply on the worst-case resource supply scenario of the MPR model shown in

Fig. 3.2 to compute the worst-case resource supply of Γ2 during a time interval of

length t. We first compute the worst-case resource supply when t = 21.1 based on

Case 1 in Fig. 3.2:
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• t starts at the time point s1;

• During the time interval [s1, s1 + (Π̃ − α − 1)], i.e., [s1, s1 + 1], Γ2 supplies 0

time unit;

• During the time interval [s1+(Π̃−α−1), s1+(Π̃−α−1)+Π̃], i.e., [s1+1, s1+21],

Γ2 supplies = 181 time units;

• During the time interval [s1 + (Π̃ − α − 1)+, s1 + t], i.e., [s1 + 21, s1 + 21.1],

Γ2 supplies 0 time unit.

Therefore, Γ2 supplies 181 time units during a time interval of length t = 21.1 based

on Case 1 in Fig. 3.2.

Next, we compute the worst-case resource supply when t = 21.1 based on Case 2

in Fig. 3.2:

• t starts at the time point s2;

• During the interval [s2, s2 + (Π̃ − α)], i.e., [s2, s2 + 2] Γ supplies β = 1 time

unit;

• During the interval [s2 + (Π̃−α), s2 + 2(Π̃−α)], i.e., [s2 + 2, s2 + 4], Γ supplies

β = 1 time unit;

• During the interval [s2 + 2(Π̃ − α), s2 + t], i.e., [s2 + 4, s2 + 21.1], Γ supplies

(21.1− 4)×m′ = 171 time units.

Therefore, Γ2 supplies 1 + 1 + 171 = 173 time units during any time interval of

length t based on Case 2 in Fig. 3.2. Because the two cases in Fig. 3.2 are the only

two possible worst-case scenarios of the MPR resource model [31], the worst-case

resource supply of Γ2 during any time interval of length t = 21.1 is 173 time units.

Since sbfΓ2(t) = 172, the value computed by Eq. (3.1) under-estimates the actual

resource provided by Γ2.
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Based on the above observations, we introduce a new SBF that can better bound

the resource supply of the MPR model. This improved SBF is computed based on

the worst-case resource supply scenarios shown in Fig. 3.2.

Lemma 3.1. The amount of resource provided by the MPR model Γ = 〈Π̃, Θ̃,m′〉
over any time interval of length t is at least sbfΓ(t), where

sbfΓ(t) =



0, t′ < 0⌊
t′

Π̃

⌋
Θ̃ + max

{
0,m′x′ − (m′Π̃− Θ̃)

}
, t′ ≥ 0 ∧ x′ ∈ [1− β

m′
, y]

max
{

0, β
(
t− 2(Π̃− b Θ̃

m′
c)
)}

t′ ∈ [0, 1] ∧ x′ 6∈ [1− β
m′
, y]

b t′′
Π̃
cΘ̃ + max

{
0,m′x′′ − (m′Π̃− Θ̃)− (m′ − β)

}
, t′ ≥ 1 ∧ x′ 6∈ [1− β

m′
, y]

(3.2)

where

α = b Θ̃

m′
c; β =

Θ̃−m′α, Θ̃ 6= Πm′

m′, Θ̃ = Πm′
; t′ = t− (Π̃− d Θ̃

m′
e); t′′ = t′ − 1;

x′ = (t′ − Π̃b t
′

Π̃
c); x′′ = (t′′ − Π̃bt

′′

Π̃
c) + 1; y = Π̃− b Θ̃

m′
c.

Proof. We will prove that the function sbfΓ(t) is a valid SBF of Γ based on the

worst-case resource supply patterns of Γ shown in Fig. 3.2.

Consider the time interval of length t′ (called time interval t′) and the black-out

interval (during which the resource supply is zero) in Fig. 3.2. By definition, x′ is the

remaining time of the time interval t′ in the last period of Γ, and y is half the length

of the black-out interval plus one. There are four cases of x, which determine whether

sbfΓ(t) corresponds to the resource supply of Γ in Case 1 or Case 2 in Fig. 3.2:

• x′ ∈ [1, y]: It is easy to show that the value of sbfΓ(t) in Case 1 is no larger

than its value in Case 2. Note that if we shift the time interval of length t in

Case 1 by one time unit to the left, we obtain the scenario in Case 2. In doing
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so, sbfΓ(t) will be increased by β time units from the first period but decreased

by at most β time units from the last period. Therefore, the pattern in Case

2 supplies more resource than the pattern in Case 1 when x′ ∈ [1, y].

• x′ ∈ [1− β
m′
, 1]: As above, if we shift the time interval of length t in Case 1 by

one time unit to the left, we obtain the scenario in Case 2. Recall that x′ is the

remaining time of the time interval of length t′ in the last period, x′ ≤ 1 and

y ≥ 1. In shifting the time interval of length t, sbfΓ(t) will lose (1−x′)m′ time

units while gaining β time units from the first period. Because x′ ≥ 1 − β
m′
,

β − (1 − x′)m′ ≥ 0. Therefore, sbfΓ(t) gains β − (1 − x′)m′ ≥ 0 time units in

transferring the scenario in Case 1 to the scenario in Case 2. Hence, Case 1 is

the worst-case scenario when x′ ∈ [1− β
m′
, 1].

• x′ ∈ [0, 1− β
m′

): It is easy to show that Γ supplies less resource in Case 2 than

in Case 1 when we shift the time interval of length t of Case 1 to left by one

time unit to get Case 2. Therefore, Case 2 is the worst-case scenario when

x′ ∈ [0, 1− β
m′

].

• x′ > y: We can easily show that sbfΓ(t) is no larger in Case 2 than in Case 1.

Because x′ > y, when we shift the time interval t of Case 1 to left by one time

unit to get the scenario in Case 2, Γ loses m′ time units from the last period

but only gains β time units, where β ≤ m′. Therefore, Case 2 is the worst-case

scenario when x′ > y.

From the above, we conclude that Case 1 is the worst-case resource supply scenario

when x′ ∈ [1 − β
m′
, y], and Case 2 is the worst-case resource supply scenario when

x′ 6∈ [1− β
m′
, y].

Based on the worst-case resource supply scenario under different conditions above,

we can derive Eq. 3.2 as follows:

• When t′ < 0: It is obvious that sbfΓ(t) = 0 because Γ supplies no resource in

the black-out interval.
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• When t′ ≥ 0 and x′ ∈ [1 − β
m′
, y]: Based on the worst-case resource supply

scenario in Case 1, Γ has b t′
Π̃
c periods and provides Θ̃ time units in each period.

Γ has x′ remaining time in the last period, which provides max{0,m′x′′−(m′Π−
Θ)−(m′−β)} time units. Therefore, Γ supplies b t′

Π̃
cΘ̃+max{0,m′x′′−(m′Π−

Θ)− (m′ − β)} time units during time interval t.

• When t′ ∈ [0, 1] and x′ 6∈ [1− β
m′
, y]: Because t′ ∈ [0, 1], t ∈ [−d Θ̃

m′
e,−d Θ̃

m′
e+1].

Therefore, t < 2(−d Θ̃
m′
e) + 2, where 2(−d Θ̃

m′
e) is the length of the black-out

interval. Hence, the worst-case resource supply of Γ during time interval t is

max{0, β(t− 2(Π− b Θ
m′
c))}.

• When t′ > 1 and x′ 6∈ [1 − β
m′
, y], the worst-case resource supply scenario is

Case 2. Γ has b t′′
Π̃
c periods and provides Θ̃ time units in each period. Γ supplies

max{0,m′x′′−(m′Π̃−Θ̃)−(m′−β)} time units during its first and last periods.

Therefore, sbfΓ(t) = b t′′
Π̃
c+ max{0,m′x′′ − (m′Π̃− Θ̃)− (m′ − β)}.

The lemma follows from the above results.

It is easy to verify that, under the two scenarios described in Examples 3.1

and 3.2, sbfΓ1(t) and sbfΓ2(t) correspond to the actual minimum resource that Γ1

and Γ2 provide, respectively. It is also worth noting that, for the scenario described in

Example 3.1, the compositional analysis for the MPR model [31] is compatible12 with

the underlying gEDF schedulability test under the improved SBF but not under the

original SBF in Eq. (3.1). In the next example, we further demonstrate the benefits

of the improved SBF in terms of resource bandwidth saving.

Example 3.3. Consider a component C with a taskset τ = {τ1 = · · · = τ4 =

(200, 100, 200)} that is scheduled under gEDF, and the period of the MPR interface

of C is fixed to be 40. Following the interface computation method in [31], the
12We say that a compositional analysis method is compatible with the underlying component’s

schedulability test it uses if whenever a component C with a taskset τ is deemed schedulable on
m cores by the schedulability test, then C is also deemed schedulable under an interface with
bandwidth no larger than m by the compositional analysis method.
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corresponding minimum-bandwidth MPR interfaces, Γ1 and Γ2, of C when using the

original SBF in Eq. (3.1) and when using the improved SBF in Eq. (3.2) are obtained

as follows: Γ1 = 〈40, 145, 4〉 and Γ2 = 〈40, 120, 3〉. Thus, the MPR interface of C

corresponding to the improved SBF can save 145/40−120/40 = 0.625 cores compared

to the interface corresponding to the original SBF proposed in [31].

3.3 Deterministic multiprocessor periodic resource

model

In this section, we introduce the deterministic multiprocessor resource model (DMPR)

for representing the interfaces. The MPR model described in the previous section is

simple and highly flexible because it represents the collective resource requirements

of components without fixing the contribution of each processor a priori. However,

this flexibility also introduces some extra overhead: it is possible that all proces-

sors stop providing resources at the same time, which results in a long worst-case

starvation interval (it can be as long as 2(Π̃− dΘ̃/m′e) time units [31]). Therefore,

to ensure schedulability in the worst case, it is necessary to provide more resources

than strictly required. However, we can minimize this overhead by restricting the

supply pattern of some of the processors. This is a key element of the deterministic

MPR that we now propose.

A DMPR model is a deterministic extension of the MPR model, in which all

of the processors but one always provide resource with full capacity. It is formally

defined as follows.

Definition 3.1. A DMPR µ= 〈Π,Θ,m〉 specifies a resource that guarantees m full

(dedicated) unit-capacity processors, each of which provides t resource units in any

time interval of length t, and one partial processor that provides Θ resource units in

every period of Π time units, where 0 ≤ Θ < Π and m ≥ 0.
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By definition, the resource bandwidth of a DMPR µ= 〈Π,Θ,m〉 is bwµ = m + Θ
Π
.

The total number of processors of µ is mµ = m+1, if Θ > 0, and mµ = m, otherwise.)2,5.2,6()',,( =ΘΠ m

Figure 4 Worst case resource supply of DMPR 
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t 

Figure 3.3: Worst-case resource supply pattern of µ = 〈Π,Θ,m〉.

Observe that the partial processor of µ is represented by a single-processor pe-

riodic resource model Ω = (Π,Θ) [57]. (However, it can also be represented by

any other single processor resource model, such as EDP model [30].) Based on this

characteristic, we can easily derive the worst-case supply pattern of µ (shown in

Figure 3.3) and its supply bound function, which is given by the following lemma:

Lemma 3.2. The supply bound function of a DMPR model µ = 〈Π,Θ,m〉 is given

by:

sbfµ(t) =


mt, if Θ = 0 ∨ (0 ≤ t ≤ Π−Θ)

mt+ yΘ + max{0, t− 2(Π−Θ)− yΠ}, otherwise

where y =
⌊ t−(Π−Θ)

Π

⌋
, for all t > Π−Θ.

Proof. Consider any interval of length t. Since the full processors of µ are always

available, µ provides the minimum resource supply iff the partial processor pro-

vides the worst-case supply. Since the partial processor is a single-processor pe-

riodic resource model Ω = (Π,Θ), its minimum resource supply in an interval of

length t is given by [57]: sbfΩ(t) = 0, if Θ = 0 or 0 ≤ t ≤ Π − Θ; otherwise,

sbfΩ(t) = yΘ + max{0, t− 2(Π−Θ)− yΠ} where y =
⌊ t−(Π−Θ)

Π

⌋
. In addition, the m

full processors of µ provides a total of mt resource units in any interval of length t.

Hence, the minimum resource supply of µ in an interval of length t is mt + sbfΩ(t).

This proves the lemma.
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It is easy to show that, when a DMPR µ and an MPR Γ have the same period,

bandwidth, and total number of processors, then sbfµ(t) ≥ sbfΓ(t) for all t ≥ 0, and

the worst-case starvation interval of µ is always shorter than that of Γ.

3.4 Overhead-free compositional analysis

In this section, we present our method for computing the minimum-bandwidth

DMPR interface for a component, assuming that the cache-related overhead is negli-

gible. The overhead-aware interface computation is considered in the next sections.

We first recall some key results for components that are scheduled under gEDF [31].

3.4.1 Component schedulability under gEDF

The demand of a task τi in a time interval [a, b] is the amount of computation that

must be completed within [a, b] to ensure that all jobs of τi with deadlines within

[a, b] are schedulable. When τi = (pi, ei, di) is scheduled under gEDF, its demand in

any interval of length t is upper bounded by [31]:

dbfi(t) =
⌊t+ (pi − di)

pi

⌋
ei + CIi(t), where

CIi(t) = min
{
ei,max

{
0, t−

⌊t+ (pi − di)
pi

⌋
pi

}}
.

(3.3)

In Eq. (3.3), CIi(t) denotes the maximum carry-in demand of τi in any time interval

[a, b] with b − a = t, i.e., the maximum demand generated by a job of τi that is

released prior to a but has not finished its execution requirement at time a.

Consider a component C with a taskset τ = {τ1, ...τn}, where τi = (pi, ei, di), and

suppose the tasks in C are schedulable under gEDF by a multiprocessor resource

with m′ processors. From [31], the worst-case demand of C that must be guaranteed

to ensure the schedulability of τk in a time interval (a, b], with b − a = t ≥ dk is
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bounded by:

DEM(t,m′) = m′ek +
∑
τi∈τ

Îi,2 +
∑

i:i∈L(m′−1)

(Īi,2 − Îi,2) (3.4)

where Îi,2 = min
{

dbfi(t)− CI i(t), t− ek
}
, ∀ i 6= k,

Îk,2 = min
{

dbfk(t)− CI k(t)− ek, t− dk
}

;

Īi,2 = min
{

dbfi(t), t− ek
}
, ∀ i 6= k,

Īk,2 = min
{

dbfk(t)− ek, t− dk
}

;

and L(m′−1) is the set of indices of all tasks τi that have Īi,2 − Îi,2 being one of the

(m′− 1) largest such values for all tasks.13 This leads to the following schedulability

test for C:

Theorem 3.3 ([31]). A component C with a task set τ = {τ1, ...τn}, where τi =

(pi, ei, di), is schedulable under gEDF by a multiprocessor resource model R with m′

processors in the absence of overhead if, for each task τk ∈ τ and for all t ≥ dk,

DEM(t,m′) ≤ sbfR(t), where DEM(t,m′) is given by Eq. (3.4) and sbfR(t) gives the

minimum total resource supply by R in an interval of length t.

3.4.2 DMPR interface computation

In the absence of cache-related overhead, the minimum resource supply provided by

a DMPR model µ = 〈Π,Θ,m〉 in any interval of length t is sbfµ(t), which is given

by Lemma 3.2. Since each domain schedules its tasks under gEDF, the following

theorem follows directly from Theorem 3.3.

Theorem 3.4. A domain D with a task set τ = {τ1, ...τn}, where τi = (pi, ei, di), is

schedulable under gEDF by a DMPR model µ = (Π,Θ,m) if, for each τk ∈ τ and
13Here, dk and t refer to Dk and Ak +Dk in [31], respectively.
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for all t ≥ dk,

DEM(t,mµ) ≤ sbfµ(t), (3.5)

where mµ = m+ 1 if Θ > 0, and mµ = m otherwise.

We say that µ is a feasible DMPR for D if it guarantees the schedulability of D
according to Theorem 3.4.

The next theorem derives a bound of the value t that needs to be checked in

Theorem 3.4.

Theorem 3.5. If Eq. (3.5) is violated for some value t, then it must also be violated

for a value that satisfies the condition

t <
CΣ +mµek + U +B

Θ
Π

+m− UT
(3.6)

where CΣ is the sum of the mµ − 1 largest ei; U =
∑n

i=1(pi − di) eipi ; UT =
∑n

i=1
ei
pi
;

and B = 2Θ
Π

(Π−Θ).

Proof. The proof follows a similar line with the proof of Theorem 2 in [31]. Recall

that DEM(t,mµ) is given by Eq. (3.4). According to Eq. (3.4), we have

Îi,2 ≤ b
t+ (pi − di)

pi
cei ≤

t+ (pi − di)
pi

ei ≤ t
ei
pi

+
pi − di
pi

ei.

Therefore,
n∑
i=1

Îi,2 ≤
n∑
i=1

t
ei
pi

+
n∑
i=1

pi − di
pi

ei = tUT + U.

Because the carry-in workload of τi is no more than ei, we derive
∑

i:i∈L(mµ−1)

(Īi,2 −

Îi,2) ≤ CΣ. Thus,

DEM(t,mµ) ≤ mµek + tUT + U + CΣ.

Further, sbfµ(t) gives the worst-case resource supply of the DMPR model µ =

〈Π,Θ,m〉 over any interval of length t. Based on Lemma 3.2, the resource supply of
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µ is total resource supply of one partial VCPU (Π,Θ) and m full VCPUs. From [57],

the resource supply of the partial VCPU (Π,Θ) over any interval of length t is at

least Θ
Π

(t − 2(Π − Θ)). In addition, the resource supply of m full VCPUs over any

interval of length t is mt. Hence, the resource supply of µ over any interval of length

t is at least mt+ Θ
Π

(t− 2(Π−Θ)). In other words,

sbfµ(t) ≥ mt+
Θ

Π
(t− 2(Π−Θ)).

Suppose Eq. (3.5) is violated, i.e., DEM(t,mµ) > sbfµ(t) for some value t. Then,

combine with the above results, we imply

mµek + tUT + U + CΣ > mt+
Θ

Π
(t− 2(Π−Θ)),

which is equivalent to

t <
CΣ +mµek + U +B

Θ
Π

+m− UT
.

Hence, if Eq. (3.5) is violated for some value t, then t must satisfy Eq. (3.6). This

proves the theorem.

The next lemma gives a condition for the minimum-bandwidth DMPR interface

with a given period Π.

Lemma 3.6. A DMPR model µ∗ = 〈Π,Θ∗,m∗〉 is the minimum-bandwidth DMPR

with period Π that can guarantee the schedulability of a domain D only if m∗ ≤ m for

all DMPR models µ = 〈Π,Θ,m〉 that can guarantee the schedulability of a domain

D.

Proof. Suppose m∗ > m for some DMPR µ = 〈Π,Θ,m〉. Then, m∗ ≥ m + 1 and,

hence, bwµ∗ = m∗+Θ∗/Π ≥ m+1+Θ∗/Π ≥ m+1. Since Θ < Π, bwµ = m+Θ/Π <

m+ 1. Thus, bwµ∗ > bwµ, which implies that m∗ cannot be the minimum-bandwidth

DMPR with period Π. Hence the lemma.

42



Computing the domains’ interfaces. Let Di be a domain in the system and Πi

be its given VCPU period (c.f. Section 3.1). The minimum-bandwidth interface of

Di with period Πi is the minimum-bandwidth DPRM model µi = 〈Πi,Θi,mi〉 that
is feasible for Di. To obtain µi, we perform binary search on the number of full

processors m′i, and, for each value m′i, we compute the smallest value of Θ′i such

that 〈Θ′i,Πi,m
′
i〉 is feasible for Di (using Theorem 3.4).14 Then mi is the smallest

value of m′i for which a feasible interface is found, and, Θi is the smallest budget Θ′i

computed for mi.

Computing the system’s interface. The interface of the system can be obtained

by composing the interfaces µi of all domains Di in the system under the VMM’s

semi-partitioned EDF policy (c.f. Section 3.1). Let D denote the number of domains

of the platform.

Observe that each interface µi = 〈Πi,Θi,mi〉 can be transformed directly into an

equivalent set of mi full VCPUs (with budget Πi and period Πi) and, if Θi > 0, a

partial VCPU with budget Θi and period Πi. Let C be a component that contains

all the partial VCPUs that are transformed from the domains’ interfaces. Then the

VCPUs in C are scheduled together under gEDF, whereas all the full VCPUs are

each mapped to a dedicated core.

Since each partial VCPU in C is implemented as a periodic server, which is

essentially a periodic task, we can compute the minimum-bandwidth DMPR interface

µC = 〈ΠC,ΘC,mC〉 that is feasible for C by the same technique used for domains.

Combining µC with the full VCPUs of the domains, we can see that the system must

be guaranteed mC +
∑

1≤i≤Dmi full processors and a partial processor, with budget

ΘC and period ΠC, to ensure the schedulability of the system. The next theorem

directly follows from this observation.

14Note that the number of full processors is always bounded from below by bUic, where Ui is the
total utilization of the tasks in Di, and bounded from above by the number of tasks in Di or the
number of physical platform (if given), whichever is smaller.
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Theorem 3.7. Let µi = 〈Πi,Θi,mi〉 be the minimum-bandwidth DMPR interface of

domain Di, for all 1 ≤ i ≤ D. Let C be a component with the taskset

τC = {(Πi,Θi,Πi) | 1 ≤ i ≤ D ∧ Θi > 0},

which are scheduled under gEDF. Then the minimum-bandwidth DMPR interface

with period ΠC of the system is given by: µsys = 〈ΠC ,ΘC ,msys〉, where µC = 〈ΠC,ΘC,mC〉
is a minimum-bandwidth DMPR interface with period ΠC of C and msys = mC +∑

1≤i≤Dmi.

Based on the system’s interface, one can easily derive the schedulability of the

system as follows (the lemma comes directly from the interface’s definition):

Lemma 3.8. Let M be the number of physical cores of the platform. The system is

schedulable if M ≥ msys + 1, or, M = msys and ΘC = 0, where 〈ΠC ,ΘC ,msys〉 is the
minimum-bandwidth DMPR system’s interface.

The results obtained above assume that the cache-related overhead is negligible.

We will next develop the analysis in the presence of cache-related overhead.

3.5 Cache-related overhead scenarios

In this section, we characterize the different events that cause cache-related overhead;

this is needed for the cache-aware analysis in Sections 3.6 and 3.7.

Cache-related overhead in a multicore virtualization platform is caused by (1)

task preemption within the same domain, (2) VCPU preemption, and (3) VCPU

exhaustion of budget. We discuss each of them in detail below.

3.5.1 Task-preemption event

Since tasks within a domain are scheduled under gEDF, a newly released higher-

priority task preempts a currently executing lower-priority task of the same domain,
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if none of the domain’s VCPUs are idle. When a preempted task resumes its ex-

ecution, it may experience cache misses: its cache content may have been evicted

from the cache by the preempting task (or tasks with a higher priority than the

preempting task, if a nested preemption occurs), or the task may be resumed on a

different VCPU that is running on a different core, in which case the task’s cache

content may not be present in the new core’s cache. Hence the following definition:

Definition 3.2 (Task-preemption event). A task-preemption event of τi is said

to occur when a job of another task τj in the same domain is released and this job

can preempt the current job of τi.

Fig. 3.4 illustrates the worst-case scenario of the overhead caused by a task-

preemption event. In the figure, a preemption event of τ1 happens at time t = 3

when τ3 is released (and preempts τ1). Due to this event, τ1 experiences a cache

miss at time t = 5 when it resumes. Since τ1 resumes on a different core, all the

cache blocks it will reuse have to be reloaded into new core’s cache, which results in

cache-related preemption/migration overhead on τ1. (Note that the cache content of

τ1 is not necessarily reloaded all at once, but rather during its remaining execution

after it has been resumed; however, for ease of exposition, we show the combined

overhead at the beginning of its remaining execution).
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Figure 3.4: Cache-related overhead of a task-preemption event.

Since gEDF is work-conserving, tasks do not suspend themselves, and each task
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resumes at most once after each time it is preempted. Therefore, each task τk

experiences the overhead caused by each of its task-preemption events at most once,

and this overhead is bounded from above by ∆crpmd
τk

.

Lemma 3.9. A newly released job of τj preempts a job of τi under gEDF only if

dj < di.

Proof. Suppose dj ≥ di and a newly released job Jj of τj preempts a job Ji of τi.

Then, Jj must be released later than Ji. As a result, the absolute deadline of Jj is

later than Ji’s (since dj ≥ di), which contradicts the assumption that Jj preempts

Ji under gEDF. This proves the lemma.

The maximum number of task-preemption events in each period of τi is given by

the next lemma.

Lemma 3.10 (Number of task-preemption events). The maximum number of

task-preemption events of τi under gEDF during each period of τi, denoted by N1
τi
, is

bounded by

N1
τi
≤

∑
τj∈HP(τi)

⌈di − dj
pj

⌉
(3.7)

where HP(τi) is the set of tasks τj within the same domain with τi with dj < di.

Proof. Let τ ci be the current job of τi in a period of τi, and let rci be its release time.

From Lemma 3.9, only jobs of a task τj with dj < di and in the same domain can

preempt τ ci . Further, for each such τj, only the jobs that are released after τ ci and

that have absolute deadlines no later than τ ci ’s can preempt τ ci . In other words, only

jobs that are released within the interval (rci , r
c
i +di−dj] can preempt τ ci . As a result,

the maximum number of task-preemption events of τi under gEDF is no more than∑
τj∈HP(τi)

⌈
di−dj
pj

⌉
.

46



3.5.2 VCPU-preemption event

Definition 3.3 (VCPU-preemption event). A VCPU-preemption event of VPi

occurs when VPi is preempted by a higher-priority VCPU VPj of another domain.

When a VCPU VPi is preempted, the currently running task τl on VPi may

migrate to another VCPU VPk of the same domain and may preempt the currently

running task τm on VPk. This can cause the tasks running on VPk experiences cache-

related preemption or migration overhead twice in the worst case, as is illustrated in

the following example.

Example 3.4. The system consists of three domains D1-D3. D1 has VCPUs VP1

(full) and VP2 (partial); D2 has VCPUs VP3 (full) and VP4 (partial); and D3 has one

partial VCPU VP5. The partial VCPUs of the domains – VP2(5, 3), VP4(8, 3) and

VP5(6, 4) – are scheduled under gEDF on cpu1 and cpu2, as is shown in Fig. 3.5(a).

In addition, domain D2 consists of three tasks, τ1(8, 4, 8), τ2(6, 2, 6) and τ3(10, 1.5, 10),

which are scheduled under gEDF on its VCPUs (Fig. 3.5(b)).
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(a) Scheduling scenario of VCPUs.
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(b) Cache overhead of tasks in D2.

Figure 3.5: Cache overhead due to a VCPU-preemption event.

As is shown in Fig. 3.5(a), a VCPU-preemption event occurs at time t = 2, when

VP4 (of D2) is preempted by VP2. Observe that, within D2 at this instant, τ2 is

running on VP4 and τ1 is running on VP3. Since τ2 has an earlier deadline than τ1,
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it is migrated to VP3 and preempts τ1 there. Since VP3 is mapped to a different core

from cpu1, τ2 has to reload its useful cache content to the cache of the new core at

t = 2. Further, when τ1 resumes at time t = 3.5, it has to reload the useful cache

blocks that may have been evicted from the cache by τ2. Hence, the VCPU-preemption

event of VP4 causes overhead for both of the tasks in its domain.

Lemma 3.11. Each VCPU-preemption event causes at most two tasks to experience

a cache miss. Further, the cache-related overhead it causes is at most ∆crpmd
C =

maxτi∈C ∆crpmd
τi

, where C is the component that has the preempted VCPU.

Proof. At most one task is running on a VCPU at any time. Hence, when a VCPU

VPi of C is preempted, at most one task (τm) on VPi is migrated to another VCPU

VPj, and this task preempts at most one task (τl) on VPj. As a result, at most

two tasks (i.e., τm and τl) incur a cache miss because of the VCPU-preemption

event. (Note that τl cannot immediately preempt another task τn because otherwise,

τm would have migrated to the VCPU on which τn is running and preempted τn

instead.) Further, since the overhead caused by each cache miss in C is at most

∆crpmd
C = maxτi∈C ∆crpmd

τi
, the maximum overhead caused by the resulting cache

misses is at most 2∆crpmd
C .

Since the partial VCPUs are scheduled under gEDF as implicit-deadline tasks

(i.e., the task periods are equal to their relative deadlines), the number of VCPU-

preemption events of a partial VCPU VPi during each VPi’s period also follows

Lemma 3.10. The next lemma is implied directly from this observation.

Lemma 3.12 (Number of VCPU-preemption events). Let VPi = (Πi,Θi)

for all partial VCPUs VPi of the domains. Let HP(VPi) be the set of VPj with

0 < Θj < Πj < Πi. Denote by N2
VPi

and N2
VPi,τk

the maximum number of VCPU-

preemption events of VPi during each period of VPi and during each period of τk
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inside VPi’s domain, respectively. Then,

N2
VPi
≤

∑
VPj∈HP(VPi)

⌈Πi − Πj

Πj

⌉
(3.8)

N2
VPi,τk

≤
∑

VPj∈HP(VPi)

⌈ pk
Πj

⌉
. (3.9)

3.5.3 VCPU-completion event

Definition 3.4 (VCPU-completion event). A VCPU-completion event of VPi

happens when VPi exhausts its budget in a period and stops its execution.

Like in VCPU-preemption events, each VCPU-completion event causes at most

two tasks to experience a cache miss, as given by Lemma 3.13.

Lemma 3.13. Each VCPU-completion event causes at most two tasks to experience

a cache miss.

Proof. The effect of a VCPU-completion event is very similar to that of a VCPU-

preemption event. When VPi finishes its budget and stops, the running task τm on

VPi may migrate to another running VCPU VPj, and, τm may preempt at most

one task τl on VPj. Hence, at most two tasks incur a cache miss due to a VCPU-

preemption event.

Lemma 3.14 (Number of VCPU-completion events). Let N3
VPi

and N3
VPi,τk

be

the number of VCPU-completion events of VPi in each period of VPi and in each

period of τk inside VPi’s domain. Then,

N3
VPi
≤ 1 (3.10)

N3
VPi,τk

≤
⌈pk −Θi

Πi

⌉
+ 1 (3.11)

Proof. Eq. (3.10) holds because VPi completes its budget at most once every period.

Further, observe that τi experiences the worst-case number of VCPU-preemption
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events when (1) its period ends at the same time as the budget finish time of VPi’s

current period, and (2) VPi finishes its budget as soon as possible (i.e., Bi time

units from the beginning of the VCPU’s period) in the current period and as late as

possible (i.e., at the end of the VCPU’s period) in all its preceding periods. Eq. (3.11)

follows directly from this worst-case scenario.

VCPU-stop event. Since a VCPU stops its execution when its VCPU-completion

or VCPU-preemption event occurs, we define a VCPU-stop event that includes both

types of events. That is, a VCPU-stop event of VPi occurs when VPi stops its

execution because its budget is finished or because it is preempted by a higher-

priority VCPU. Since VCPU-stop events include both VCPU-completion events and

VCPU-preemption events, the maximum number of VCPU-stop events of VPi during

each VPi’s period, denoted as N stop
VPi

, satisfies

N stop
VPi

= N2
VPi

+N3
VPi
≤

∑
VPj∈HP(VPi)

⌈Πi − Πj

Πj

⌉
+ 1 (3.12)

Overview of the overhead-aware compositional analysis. Based on the above

quantification, in the next two sections we develop two different approaches, task-

centric and model-centric, for the overhead-aware interface computation. Although

the obtained interfaces by both approaches are safe and can each be used indepen-

dently, we combine them to obtain the interface with the smallest bandwidth as the

final result.

3.6 Task-centric compositional analysis

This section introduces two task-centric analysis methods to account for the cache-

related overhead in the interface computation. The first, denoted as baseline,

accounts for the overhead by inflating the WCET of every task in the system with

the maximum overhead it experiences within each of its periods. The second, denoted
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as task-centric-ub, combines the result of the first method using an upper bound

on the number of VCPUs that each domain needs in the presence of cache-related

overhead. We describe each method in detail below.

3.6.1 baseline: Analysis based on WCET-inflation

As was discussed in Section 3.5, the overhead that a task experiences during its

lifetime is composed of the overhead caused by task-preemption events, VCPU-

preemption events and VCPU-completion events. In addition, when one of the above

events occurs, each task τk experiences at most one cache miss overhead and, hence, a

delay of at most ∆crpmd
τk

. From [24], the cache overhead caused by a task-preemption

event can be accounted for by inflating the higher-priority task τi of the event with

the maximum cache overhead caused by τi. From Lemmas 3.12 and 3.14, we conclude

that the maximum overhead τk experiences within each period is

δcrpmd
τk

= max
τi∈LP(τk)

{∆crpmd
τi
}+ ∆crpmd

τk
(N2

VPi,τk
+N3

VPi,τk

)
where LP(τk) is the set of tasks τi within the same domain with τk with di > dk and

VPi is the partial VCPU of the domain of τk. As a result, the worst-case execution

time of τk in the presence of cache overhead is at most

e′k = ek + δcrpmd
τk

. (3.13)

Thus, we can state the following theorem:

Theorem 3.15. A component with a taskset τ = {τ1, ...τn}, where τk = (pk, ek, dk),

is schedulable under gEDF by a DMPR model µ in the presence of cache-related

overhead if its inflated taskset τ ′ = {τ ′1, ...τ ′n} is schedulable under gEDF by µ in the

absence of cache-related overhead, where τ ′k = (pk, e
′
k, dk), and e′k is given by Eq. 3.13.

Based on Theorem 3.15, we can compute the DMPR interfaces of the domains
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and the system by first inflating the WCET of each task τk in each domain with the

overhead δcrpmd
τk

and then applying the same method as the overhead-free interface

computation in Section 3.4.2.15

3.6.2 task-centric-ub: Combination of baseline with an

upper bound on the number of VCPUs

Recall from Section 3.5 that, VCPU-preemption events and VCPU-completion events

happen only when the component has a partial VCPU. Therefore, the taskset in

a component with no partial VCPU experiences only the cache overhead caused

by task-preemption events. Recall that when a task-preemption event happens,

the corresponding lower-priority task τi experiences a cache miss delay of at most

∆crpmd
τi

. Thus, the maximum cache overhead that a high-priority task τk causes to

any preempted task is maxτi∈LP(τk) ∆crpmd
τi

, where LP(τk) is the set of tasks τi within

the same domain with τk that have di > dk. As a result, the worst-case execution

time of τk in the presence of cache overhead caused by task-preemption events is at

most

e′′k = ek + max
τi∈LP(τk)

∆crpmd
τi

, (3.14)

where τi ∈ LP(τk) if di > dk. This implies the following lemma:

Lemma 3.16. A component with a taskset τ = {τ1, ..., τn}, where τk = (pk, ek, dk),

is schedulable under gEDF by a DMPR model µ̄ = 〈Π, 0, m̄〉 in the presence of cache-

related overhead if its inflated taskset τ ′′ = {τ ′′1 , ..., τ ′′n} is schedulable under gEDF by

µ′′ = 〈Π,Θ′′,m′′〉 in the absence of cache-related overhead, where τ ′′k = (pk, e
′′
k, dk),

e′′k is given by Eq. 3.14, and m̄ = m′′ + dΘ′′

Π
e. Further, the maximum number of full

VCPUs of the interface of the taskset τ in the presence of cache overhead is m̄.

Proof. First, observe that the inflated taskset τ ′′ safely accounts for all the cache
15Note that we inflate only the tasks’ WCETs and not the VCPUs’ budgets, since δcrpmd

τk
includes

the overhead for reloading the useful cache content of a preempted VCPU when it resumes.
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overhead experienced by τ . This is because (1) inflating the worst-cache execution

time of each task τk with maxτi∈LP(τk) ∆crpmd
τi

is safe to account for the cache overhead

delay caused by task-preemption events (as was proven in [24]), and (2) the DMPR

model µ̄ has no partial VCPU and thus, τ does not experience any cache overhead

caused by VCPU-preemption events or VCPU-completion events. Further, based on

Lemma 3.2, one can easily show that the resource supply bound function sbfµ(t) of

a DMPR model µ = 〈Π,Θ,m〉 is monotonically non-decreasing with the budget of

µ when the period of µ is fixed. In other words, sbf µ̄(t) ≥ sbfµ′′(t) for all t. Combine

the above observations, we imply that τ is schedulable under the resource model µ̄

in the presence of cache overhead if τ ′′ is schedulable under the resource model µ′′

in the absence of cache overhead. This proves the first part of the lemma.

Since τ is schedulable under the resource model µ̄ in the presence of cache over-

head, the number of full VCPUs of the overhead-aware interface of τ is always less

than or equal to the ceiling of the bandwidth of µ̄, which is exactly m̄.

Note that the maximum number of full VCPUs given by Lemma 3.16 can be

larger or smaller than the interface bandwidth computed by the baseline method,

as is illustrated in the following two examples.

Example 3.5. Consider a system Sys1 consisting of two domains, C1 and C2, with

workloads τC1 = {τ 1
1 = · · · = τ 3

1 = (100, 40, 100)} and τC2 = {τ 1
2 = · · · = τ 3

2 =

(100, 40, 100)}, respectively. Suppose that Sys1 employs the hybrid EDF scheduling

strategy described in Section 3.1; the periods of DMPR interfaces of C1, C2 and Sys1

are set to 80, 40 and 20, respectively; and the cache overhead per task is 1. Then,

the DMPR cache-aware interface of C1 computed using the baseline method is

µC1 = 〈80, 76, 1〉, which has a bandwidth of 1 + 76/80 = 1.95.

In contrast, if we only consider the cache overhead caused by task-preemption

events, then the interface of the system is given by µ′′C1
= 〈80, 64, 1〉. Based on

Lemma 3.16, the maximum number of full VCPUs of C1 is 1 + 64/80 = 2, and the

corresponding DMPR interface is µ̄C1 = 〈80, 0, 2〉. Thus, the interface computed by
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the baseline method has a smaller bandwidth than the maximum number of full

VCPUs given by Lemma 3.16.

Example 3.6. Consider a system Sys2 that is identical to the system Sys1 in Ex-

ample 3.5, except that the cache overhead for each task is 5 instead of 1. In this

case, the cache-aware interface of C1 computed using the baseline method is µ̄C1 =

〈80, 72, 2〉, which has a bandwidth of 2 + 72/80 = 2.9. In contrast, if we consider

only the cache overhead caused by task-preemption events, then the interface of the

system is given by µ′′C1
= 〈80, 74, 1〉. Based on Theorem 3.16, the maximum number

of full VCPUs is 1 + 74/80 = 2. Therefore, the interface computed by the baseline

method has a larger bandwidth than the maximum number of full VCPUs given by

Lemma 3.16.

Since the interface µ̄ given by Lemma 3.16 does not always have a smaller band-

width than the interface computed using the baseline method, we combine the

two interfaces to derive the minimum-bandwidth DMPR interface in the presence of

overhead, as is given by Theorem 3.17. The correctness of this theorem is derived

directly from the correctness of Lemma 3.16 and Theorem 3.15.

Theorem 3.17. Let C be a component with a taskset τ = {τ1, ..., τn} that is schedu-
lable by the gEDF scheduler, where τk = (pk, ek, dk) for all 1 ≤ k ≤ n. Suppose

µ′C = 〈Π,Θ′,m′〉 is the feasible DMPR interface given by Theorem 3.15, and m′′ is

the maximum number of full VCPUs of C given by Lemma 3.16. Then, the compo-

nent C is schedulable under the DMPR interface µC, where µC = µ′C if m′′ > m′+ Θ′

Π
,

and µC = 〈Π, 0,m′′〉 otherwise.

Interface computation under the task-centric-ub method: Based on the

above results, the overhead-aware interface for a system can be obtained by first com-

puting the interface for each domain using Theorem 3.17, and then computing the

system’s interface by applying the overhead-free interface computation in Section 3.4.
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3.6.3 task-centric-ub vs. baseline

As was discussed in Section 3.6.2, the interface of a domain computed by the task-

centric-ub method always has a bandwidth no larger than the bandwidth of the

interface computed by the baseline method. We will show that this relationship

also holds for the interfaces at the system level. We first define the dominance

relation between any two analysis methods as follows:

Definition 3.5. A compositional analysis method CSA is said to dominate another

compositional analysis method CSA′ iff for any system S, the interface bandwidth of

S when computed using CSA is always less than or equal to the interface bandwidth

of S when computed using CSA′.

Lemma 3.18. The task-centric-ub method always dominates the baseline

method.

Proof. Consider a system S with D domains, {C1, ..., CD}. Let µCi = 〈Πi,Θi,mi〉
and µ′Ci = 〈Πi,Θ

′
i,m

′
i〉 be the minimum-bandwidth DMPR interfaces of Ci under

the task-centric-ub method and the baseline method, respectively. We have

the following:

• Under the task-centric-ub method, the system has a set of partial VCPUs,

VPpart = {VP1 = (Π1,Θ1), ...,VPD = (ΠD,ΘD)}, and (m1 + ... + mD) full

VCPUs. Based on the analysis in Section 3.4, the minimum-bandwidth DMPR

interface of S is given by µS = 〈ΠC ,ΘC ,mS〉, where µC = 〈ΠC ,ΘC ,mC〉 is the
minimum-bandwidth DMPR interface for VPpart and mS = mC +

∑
1≤i≤Dmi.

• Under the baseline method, the system has a set of partial VCPUs, VP′part =

{VP′1 = (Π1,Θ
′
1), ...,VPD = (ΠD,Θ

′
D)} and (m′1 + ... + m′D) full VCPUs.

Therefore, the minimum-bandwidth DMPR interface system is given by µ′S =

〈ΠC ,Θ
′
C ,m

′
S〉, where µ′C = 〈Π,Θ′C ,m′C〉 is the minimum-bandwidth DMPR

interface of the partial VCPU set VP′part, and m′S = m′C +
∑

1≤i≤Dm
′
i.
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From Theorem 3.17, there are two cases for the relationship between µCi and µ′Ci :

1. Θi = Θ′i and mi = m′i, if the interface bandwidth computed by the baseline

method is less than or equal to the maximum number of full VCPUs of Ci

given by Lemma 3.16 (i.e., m′i +
Θ′i
Π
≤ mi + Θi

Π
);

2. Θi = 0 and mi ≤ m′i, otherwise.

We can conclude from the above cases that for all partial VCPUs VPi and VP′i

computed respectively by the task-centric-ub method and the baseline method,

VPi = VP′i, or VPi has budget equal to 0 whereas VP′i has budget larger than 0. In

other words, VPpart ⊆ VP′part.

Because VPpart is only a subset of VP′part, we can derive from Eq. (3.4) that

the resource demand of VPpart is always less than or equal to the resource demand

of VP′part. Therefore, if VP′part is schedulable under the DMPR interface µ′C , then

VPpart is also schedulable under µ′C . Because µC is the bandwidth-optimal DMPR

interface of VPpart, the bandwidth of µC is no larger than the bandwidth of µ′C , i.e.,
ΘC
ΠC

+ mC ≤ Θ′C
ΠC

+ m′C . In addition,
∑

1≤i≤Dmi ≤
∑

1≤i≤Dm
′
i, because mi ≤ m′i.

Hence, the bandwidth of µS, which is equal to ΘC
ΠC

+mC+
∑

1≤i≤Dmi, is no larger than

the bandwidth of µ′S, which is Θ′C
ΠC

+m′C +
∑

1≤i≤Dm
′
i. This proves the lemma.

3.7 Model-centric compositional analysis

Recall from Section 3.5 that each VCPU-stop event (i.e., VCPU-preemption or

VCPU-completion event) of VPi causes at most one cache miss overhead for at most

two tasks of the same domain. However, since it is unknown which two tasks may be

affected, the baseline method in Section 3.6 assumes that every task τk of the same

domain is affected by all the VCPU-stop events of VPi (and thus includes all of the

corresponding overheads in the inflated WCET of the task). While this approach is

safe, it is very conservative, especially when the number of tasks or the number of

events is high.
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In this section, we propose an alternative method, called model-centric, that

avoids the above assumption to minimize the pessimism of the analysis. The idea is

to account for the total overhead due to VCPU-stop events that is incurred by all

tasks in a domain, rather than by each task individually. This combined overhead is

the overhead that the domain as a whole experiences due to VCPU-stop events under

a given DMPR interface µ of the domain (since the budget of the partial VCPU of

a domain is determined by the domain’s interface). Therefore, the effective resource

supply that a domain receives from a DMPR interface µ in the presence of VCPU-

stop events is the total resource supply that µ provides, less the combined overhead.

3.7.1 Challenge: Resource parallel supply problem

Based on the overhead scenarios in Section 3.5, at first it seems possible to account

for the overhead of the VCPU-preemption and VCPU-completion events by inflat-

ing the budget of an overhead-free interface with the cache-related overhead caused

by the VCPU-preemption and VCPU-completion events that occur within a period

of the overhead-free interface. However, this interface budget inflation approach is

unsafe, due to the resource parallel supply under multicore interfaces. We illustrate

this via the following scenario.

Example 3.7. Consider a system with a single component C that has a workload

τ = {τ1 = τ2 = (2, 0.1, 2), τ3 = (2, 1.81, 2)}, which is scheduled under gEDF . We

assume that ties are broken based on increasing order of tasks’ indices, i.e., a task

with a smaller index has a higher priority. Suppose the cache overhead for each task

is given by ∆crpmd
τ1

= ∆crpmd
τ2

= 0.05 and ∆crpmd
τ3

= 0.2. (The time unit is ms.) In

this example, we consider only the cache overhead caused by VCPU-preemption and

VCPU-completion events and assume that there are no other types of overhead.

Based on the overhead-free anlaysis in Section 3.4, the taskset τ is schedulable

under the DMPR interface µ = 〈2, 1.01, 2〉. Since the interface has only one partial
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VCPU and this partial VCPU is not preempted by any other (full) VCPUs, the taskset

τ in C experiences no VCPU-preemption event. In addition, at most one VCPU-

completion event happens in a period of the DMPR interface µ. Further, based on

Section 3.5, each VCPU-completion event causes at most two tasks to experience a

cache miss. Therefore, the total cache overhead delay in a DMPR interface’s period

is at most 2 max1≤i≤3{∆crpmd
τi
} = 0.4.

Suppose we inflate the budget of the overhead-free DMPR interface µ with the total

cache overhead delay of 0.4. Then, we obtain the DMPR interface µ′ = 〈2, 1.41, 2〉.
However, the taskset τ is not schedulable under µ′, as is illustrated by Fig. 3.6.

Fig. 3.6(a) shows the resource supply pattern of µ′, and Fig. 3.6(b) shows the

release and schedule patterns of the tasks in τ . Here, the tasks τ1, τ2, and τ3 are

released at t = 1.01. τ3 migrates from VCPU3 to VCPU2 at t = 1.41 and occurs a

delay of ∆crpmd
τ3

= 0.2 time units to reload its cache content (because VCPU3 completes

its budget at t = 1.41). τ3 keeps running on VCPU2 for 1.41 time units and finishes

its execution at t = 3.02. Since τ3’s absolute deadline is t = 3.01, τ3 misses its

deadline.

The flaw in the cache-aware analysis approach that naïvely inflates the interface’s

budget comes from the resource parallel supply problem of the global multicore

scheduling. In the above scenario, when τ3 experiences cache overhead, its worst-case

execution time is enlarged and thus, it needs more CPU time to execute. However,

inflating the budget of the interface cannot guarantee that τ3 receives the inflated

budget, e.g., when part of the inflated budget is assigned to a VCPU that supplies

resource in parallel with the VCPU on which τ3 is running. Because τ3 is not a

parallel task and cannot execute on two cores at the same time, τ3 does not fully

utilize the inflated budget. As a result, although the extra budget is enough to

account for the cache overhead τ3 experiences, the inflated budget is not enough to

guarantee the schedulability of the taskset under the resource model with inflated

budget.
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Figure 3.6: Scenario of unsafe analysis of inflating interface’s budget.

It is worth noting that the above overhead-aware analysis based on interface bud-

get inflation is only safe under the assumption that the resource demand of a taskset

is independent of the resource supply of the interface. However, this assumption is

incorrect in the multicore setting: both the resource demand of a taskset in Eq. 3.4

and the resource supply of a resource mdoel in Lemma 3.2 depend on the number of

VCPUs of a component, and they are coupled in terms of the number of VCPUs.

In the next section, we present an alternative approach that explicitly considers

the effect of cache overhead on the SBF of the interface of each VCPU.

3.7.2 Cache-aware effective resource supply of a DMPRmodel

We first analyze the effective resource supply of a DMPR model µ, i.e., the supply it

provides to a domain in the presence of the overhead caused by VCPU-stop events.

We then combine the results with the overhead caused by task-preemption events to

derive the schedulability and the interface of a domain.
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Consider a DMPR interface µ = (Π,Θ,m) of a domain Di, and recall that µ

provides one partial VCPU VPi = (Π,Θ) and m full VCPUs to Di. Then, in the

presence of overhead due to VCPU-stop events, the effective resource supply of µ

consists of the effective resource supply of VPi and the effective resource supply of

m full processors. Here, the effective budget (resource) of a VCPU is the budget

(resource) that is used solely to execute the tasks running on the VCPU, rather than

to handle the cache misses that are caused by VCPU-stop events. We quantify each

of them below.

For ease of exposition, we say that a VCPU incurs a CRPMD if the task running

on the VCPU incurs the overhead caused by a VCPU-stop event, and we call a time

interval [a, b] an overhead interval of a VCPU if the effective resource the VCPU

provides during [a, b] is zero. (Note that the first overhead interval of VPi in a pe-

riod cannot start before VPi begins its execution.) Finally, we call [a, b] a black-out

interval of a VCPU if it consists of overhead intervals or intervals during which the

VCPU provides no resources.

Effective resource supply of the partial VCPU VPi of µ. Recall that N stop
VPi

denotes the maximum number of VCPU-stop events of VPi during each period Π.

The next lemma states a worst-case condition for the effective resource supply of

VPi:

Lemma 3.19. The worst-case effective resource supply of VPi in each period occurs

when VPi has N stop
VPi

VCPU-stop events.

Proof. Because VPi has a constant budget of Θ in each period Π, the more cache-

related overhead it incurs in a period, the fewer effective resources it can supply to

(the actual execution of) the tasks in the domain. Since the overhead that a domain’s

tasks incur in a period of VPi is highest when VPi stops its execution as many times

as possible, the worst-case effective resource supply of VPi in a period occurs when

VPi has the maximum number of VCPU-stop events, which is N stop
VPi

events. Hence,
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the lemma.

Based on this lemma, we can construct the worst-case scenario during which the

effective resource supply of VPi is minimal, and we can derive the effective supply

bound function according to this worst-case scenario.

Lemma 3.20. The effective resource supply that VPi provides during I is minimal

when (1) VPi provides its budget as early as possible in the current period and as

late as possible in the subsequent periods, (2) VPi has as many VCPU-stop events

as possible in each period, and (3) the interval I begins in the current period of VPi

and the total length of the black-out intervals that overlap with I is maximal.

Proof. Suppose VPi provides Θ resource units in each of its period. Denote by

ScenarioA and ScenarioB the effective resource supply scenarios described in Claim

1 and the worst-case supply scenario. Further, denote by sbfstop
VPi

(t) and sbfstop
VPi

(t)

the effective resource supply of VPi over any interval of length t in ScenarioA and

ScenarioB, respectively. Then, sbfstop
VPi

(t) ≥ sbfstop
VPi

(t). Let the effective resource supply

in each period of VPi in ScenarioB be Θ∗. Because there is at most N stop
VPi

cache misses

during each period of VPi, Θ∗ ≥ Θ − N stop
VPi

∆crpmd
VPi

= Θ∗, where Θ∗ is the effective

budget that VPi provides in each period in ScenarioA. There are two cases:

Case 1) Θ ≤ N stop
VPi

∆crpmd
VPi

: We have sbfstop
VPi

(t) = 0. Because sbfstop
VPi

(t) ≤ sbfstop
VPi

(t),

VPi can provide at most Θ∗ effective budget in each period under ScenarioB, where

Θ∗ = Θ−N stop
VPi

∆crpmd
VPi

. In other words, Θ∗ ≤ Θ∗. Since Θ∗ ≤ Θ∗, we obtain Θ∗ = Θ∗.

Case 2) Θ > N stop
VPi

∆crpmd
VPi

: There are five sub-cases, as follows:

(a) t ≤ x + z: We have sbfstop
VPi

(t) = 0. Because sbfstop
VPi

(t) ≤ sbfstop
VPi

(t), VPi in

ScenarioB must provide its budget as early as possible in the current period

and as late as possible in the next period (as is shown in the interval [t3, t5] in

ScenarioA), so that it can guarantee that sbfstop
VPi

(t) = 0. Further, because VPi

must provide at most Θ∗ time units during each period Π, VPi always provides

61



effective resource when t is enlarged. Therefore, the maximum length of the

black-out interval is x+ z.

(b) x+z < t ≤ x+z+Θ∗: Since VPi provides Θ∗ resource units in each period and

the whole second period of ScenarioB overlaps with the interval I, VPi must

provide Θ∗ resource units at the end of the Θ∗ time unit interval of the second

period. Thus, ScenarioB is the same as ScenarioA during the interval [t5, t6].

(c) x + z + Θ∗ < t ≤ x + 2z + Θ∗: sbfstop
VPi

(t) = Θ∗ and VPi in ScenarioA provides

no effective resource during [t6, t7]. Therefore, VPi in ScenarioB also provides

no effective resource during [t6, t7] (since sbfstop
VPi

(t) ≤ Θ∗).

(d) x + 2z + Θ∗ < t ≤ x + 2z + 2Θ∗: Similar to the sub-case (b) above, VPi

in ScenarioB must provide Θ∗ time units during [t7, t8] (because otherwise, it

cannot provide Θ∗ time units in each period).

(e) By repeating the sub-cases (c) and (d), we can prove that VPi in ScenarioB

provides no less effective resource than that in ScenarioA.

From the above, we imply that ScenarioA is the worst-case effective resource supply

scenario of VPi. Hence, the lemma.

Lemma 3.21. The effective supply bound function of the partial VCPU VPi = (Π,Θ)

of a resource model µ = (Π,Θ,m) of a component C is

sbfstop
VPi

(t) =

yΘ∗ + max{0, t− x− yΠ− z}, if Θ > N stop
VPi

∆crpmd
VPi

0, otherwise
(3.15)

where ∆crpmd
VPi

= max
τi∈C
{∆crpmd

τi
}, Θ∗ = Θ−N stop

VPi
∆crpmd

VPi
, x = Π−∆crpmd

VPi
−Θ∗, y = b t−x

Π
c

and z = Π−Θ∗.
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Proof. Let I be any interval of length t. We will prove the lemma based on the

worst-case resource supply scenario given by Lemma 3.20.

Fig. 3.7 illustrates the worst-case scenario described in Lemma 3.20, where I
begins at time t3 and the intervals during which VPi provides effective resources are

[t2, t3], [t5, t6] and [t7, t8]:
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Figure 3.7: Worst-case effective resource supply of VPi = (Π,Θ).

In the figure, the first overhead interval of VPi in a period starts when VPi first

begins its execution in that period. This first overhead interval is caused by the

VCPU-completion event of VPi that occurs in the previous period. Recall from

Lemma 3.19 that the maximum number of VCPU-stop events of VPi in a period Π

is N stop
VPi

. Further, according to the gEDF scheduling of component C, any task in C

may run the partial VCPU and experience the cache overhead caused by the VCPU-

stop event. Therefore, the maximum overhead a task in component C experiences

due to a VCPU-stop event of V Pi is ∆crpmd
VPi

= max
τi∈C
{∆crpmd

τi
}. As a result, the effective

budget is Θ∗ ≥ Θ−N stop
VPi

∆crpmd
VPi

. Further, we have:

t3 − t2 ≥ Θ− (N stop
VPi
− 1)∆crpmd

VPi
− (t2 − t1) = Θ∗ + ∆crpmd

VPi
− (t2 − t1);

x = t4 − t3 = (t4 − t1)− (t3 − t2)− (t2 − t1) ≤ Π−∆crpmd
VPi

−Θ∗;

z = t7 − t6 = (t8 − t6)− (t8 − t7) ≤ Π−Θ∗.

Based on this information, we can derive the minimum effective resource supply

during the interval I as follows: if Θ ≤ N stop
VPi

∆crpmd
VPi

, then Θ∗ = 0 and sbfstop
VPi

= 0;

otherwise, sbfstop
VPi

(t) = yΘ∗+max{0, t−x−yΠ−z}. In addition, sbfstop
VPi

(t) is minimal
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when Θ∗ = Θ−N stop
VPi

∆crpmd
VPi

and x = Π−∆crpmd
VPi
−Θ∗. Therefore, Equation 3.15 gives

the minimum effective resource supply of the worst-case effective resource supply

scenario described in Lemma 3.20. This proves the lemma.

Effective resource supply of all m full VCPUs of µ. Similar to the partial-

VCPU case, we can also establish a worst-case condition for the total effective re-

source supply of the full VCPUs:

Lemma 3.22. The m full VCPUs provide the worst-case total effective resource

supply when they incur N stop
VPi

CRPMDs in total during each period Π of the partial

VPi of µ.

Proof. Because the total resource supply of m full VCPUs in any interval of length t

is always mt, these VCPUs together provide the least effective resource supply when

they incur the maximum number of CRPMDs. Recall from Section 3.5 that, when

a VCPU-stop event of the partial VCPU VPi of a domain Di occurs, it causes one

CRPMD in a full VCPU of the same domain. Hence, the total number of CRMPDs

that these full VCPUs incur together is the number of VCPU-stop events of the

partial VCPU VPi of the same domain. The lemma then follows from a combination

with Lemma 3.19.

The next lemma gives the worst-case supply scenarios of m full VCPUs. Fig. 3.8

illustrates one of the conditions under this worst-case scenario.
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Figure 3.8: Worst-case resource supply of m full VCPUs of µ.
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Lemma 3.23. The worst-case effective resource supply of m full VCPUs of µ in

any interval I of length t occurs when (1) all the N stop
VPi

CRPMDs are experienced by

one full VCPU VPf in each period Π of VPi, (2) VPf incurs the overhead as late as

possible in the first period and as early as possible in the rest of periods of VPi, (3)

the maximum overhead cost of each CRPMD overhead is ∆crpmd
VPi

, and (4) the interval

I begins when the first CRPMD occurs in the first period.

Proof. We denote the effective resource supply scenario given by Lemma 3.23 (see

Fig. 3.8) by ScenarioA, and let ScenarioB be a worst-case effective resource supply

scenario of the m full VCPUs. Let x = N stop
VPi

∆crpmd
VPi

. We will prove that the m full

VCPUs provides no less effective resource in ScenarioB than in ScenarioA with the

following arguments:

1. While a full VCPU VPf is experiencing a CRPMD, the resource provided by

any other full VCPU VPj is unavailable to the task currently running on VPf

(since this task cannot execute on more than one VCPUs at any given time).

Since it is unknown which exact task in the domain is running on VPf , it is

unknown whether VPj is available to a given task. Hence, we consider VPj

as unavailable to every task while VPf is experiencing the overhead, so as to

guarantee the safety of the schedulability analysis. Recall from Lemma 3.22

that, all m full VCPUs incur N stop
VPi

CRPMDs in each period. The unavailable

intervals of each period Π is maximized when all these N stop
VPi

CRPMDs are

incurred by one full VCPU V Pf in each period Π of VPi. Hence, ScenarioB

must obey Condition (1).

2. The maximum total length of the unavailable intervals ofm full VCPUs in each

period is x = N stop
VPi

∆crpmd
VPi

. The maximum black-out interval happens when the

unavailable intervals in two periods are consecutive and the maximum cost

of each CRPMD is ∆crpmd
VPi

. Therefore, the full VCPU V Pf should incur the

overhead as late as possible in the first period and as early as possible in the
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second period of VPi in order for the black-out interval to be maximized. In

addition, the interval I should begin when the first CRPMD occurs in the first

period. Hence, ScenarioB should obey the conditions (3) and (4), and the m

full VCPUs provide no less effective resource in ScenarioB than in ScenarioA

when t ≤ 2x.

3. When x + kΠ < t < 2x + kΠ (k ∈ N), because m full VCPUs must provide

m(Π− x) effective resource units in each period and the interval t has k peri-

ods, the m full VCPUs in ScenarioB should provide at least km(Π−x) effective

resource units during a time interval of length t. Because t > x + kΠ, the m

full VCPUs in ScenarioB have already provided km(Π − x) effective resource

units during the interval of length x + kΠ. Therefore, they must provide no

effective resource in the remaining time interval of length t − (x + kΠ) (oth-

erwise, the m full VCPUs would provide more effective resource in ScenarioB

than in ScenarioA.) Hence, VPf should incur the overhead as early as possible

in all periods (except for the first period) of VPi. Hence, by combining the

the arguments (2) and (3), we imply that ScenarioB must obey Condition (2)

and the m full VCPUs provide no less effective resource in ScenarioB than in

ScenarioA when x+ kΠ < t < 2x+ kΠ.

4. When 2x + kΠ < t < x + (k + 1)Π (k ∈ N), the m full VCPUs in ScenarioB

provides no effective resource during [x+kΠ, 2x+kΠ] according to the argument

(3). In addition, them full VCPUs in ScenarioB must providem(Π−x) effective

resource units during [x + kΠ, x + (k + 1)Π], i.e., the (k + 1)th period of VPi,

in order to guarantee m(Π − x) effective resource units during the (k + 1)th

period of VPi. Therefore, the m VCPUs in ScenarioB always provides the

same effective resource during [2x+ kΠ, x+ (k + 1)Π] as in ScenarioA. Hence,

they provide no less effective resource in ScenarioB than in ScenarioA when

2x+ kΠ < t < x+ (k + 1)Π.
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Because the m full VCPUs provide no less effective resource in ScenarioB than in

ScenarioA, and ScenarioB is a worst-case effective resource supply scenario, we imply

that ScenarioA is also a worst-case effective resource supply scenario of the m full

VCPUs. Hence, the lemma.

The next lemma gives the effective SBF of the m full VCPUs of µ based on the

worst-case scenario described in Lemma 3.23.

Lemma 3.24. The effective resource supply bound function of the m full VCPUs of

µ is given by:

sbfstop
VPs(t) =

m
(
yΘ′ + max{0, t− yΠ− 2x}

)
if Θ 6= 0

mt if Θ = 0

(3.16)

where x = N stop
VPi

∆crpmd
VPi

, y = b t−x
Π
c and Θ′ = Π− x.

Proof. The effective resource supply bound function sbfstop
VPs(t) of the resource supply

scenario given by Lemma 3.23 is given by: When t < 2x , sbfstop
VPs(t) = 0; When

x + kΠ < t < 2x + kΠ, sbfstop
VPs(t) = km(Π− x); When 2x + kΠ < t < x + (k + 1)Π,

sbfstop
VPs(t) = km(Π − x) + m(t − 2x − kΠ). Equation 3.16 is derived by rearranging

the equations of sbfstop
VPs(t). Since the resource supply scenario given by Lemma 3.23

is a worst-case scenario, sbfstop
VPs(t) is the effective resource supply bound function of

the m full VCPUs of µ.

Effective resource supply of a DMPR model The next lemma gives the effec-

tive resource supply that a DMPR interface µ = (Π,Θ,m) provides to a domain Di
after having accounted for the overhead due to VCPU-stop events. The lemma is a

direct consequence of Lemmas 3.21 and 3.24.

Lemma 3.25. The effective resource supply of a DMPR interface µ = 〈Π,Θ,m〉 of
a domain Di after having accounted for the overhead due to VCPU-stop events is
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given by:

sbfstop
µ (t) = sbfstop

VPi
(t) + sbfstop

VPs(t), ∀ t ≥ 0. (3.17)

Here, sbfstop
VPi

(t) is the effective resource supply of the partial VCPU VPi = (Π,Θ),

which is given by Eq. (3.15), and sbfstop
VPs(t) is the effective resource supply of the m

full VCPUs of µ, which is given by Eq. (3.16).

Proof. Since the resource supply of a DMPR interface is the total effective resource

supply of its partial VCPU and full VCPUs, the lemma directly follows from the

definition of sbfstop
VPi

(t) and sbfstop
VPs(t). %

Note that, when no partial VCPU exists for interface µ = 〈Π, 0,m〉, the effective

resource supply of µ is equal to the resource supply of µ, i.e., sbfstopµ (t) = mt.

3.7.3 DMPR interface computation under model-centric

method

Based on the effective supply function, we can develop the component schedulability

test as follows.

Theorem 3.26. Consider a domain Di with a taskset τ = {τ1, ...τn}, where τk =

(pk, ek, dk). Let τ ′′ = {τ ′′1 , ...τ ′′n}, where, for all 1 ≤ k ≤ n, τ ′′k = (pk, e
′′
k, dk) and

e′′k = ek + maxτi∈LP (τk)∆
crpmd
τi

(and recall that LP(τk) = {τi|di > dk}) . Then, Di
is schedulable under gEDF by a DMPR model µ in the presence of cache-related

overhead, if the inflated taskset τ ′′ is schedulable under gEDF by the effective resource

supply sbfstop
µ (t) in the absence of overhead.

Proof. Since τ ′′ includes the overhead that τ incurs due to task-preemption events,

if sbfstop
µ (t) is sufficient to schedule τ ′′ assuming negligible overhead, then it is also

sufficient to schedule τ in the presence of task-preemption events. As sbfstop
µ (t) gives

the effective supply that µ provides to τ after having accounted for the overhead due
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to VCPU-stop events, µ provides sufficient resources to schedule τ in the presence

of the overhead from all types of events. This proves the theorem.

Based on the above results, we can generate a cache-aware minimum-bandwidth

DMPR interface for a domain in the same manner as in the overhead-free case, except

that we use the effective resource supply and the inflated taskset in the schedulability

test. Similarly, the system’s interface can be computed from the interfaces of the

domains in the exact same way as the overhead-free interface computation.

3.8 Hybrid cache-aware DMPR interface

Recall from Section 3.6 that the task-centric-ub method always dominates the

baseline method. However, neither of these analysis methods dominates the model-

centric method, and vice versa. We demonstrate this using two example systems,

where the task-centric-ub method gives a smaller interface bandwidth in the

first system but a larger interface bandwidth in the second system compared to the

interface bandwidth given by the model-centric method.

Example 3.8. Let Sys1 be a system consisting of two domains C1 and C2 that

are scheduled under the hybrid EDF scheduling strategy (c.f. Section 3.1) and that

have workloads τC1 = {τ 1
1 = ... = τ 4

1 = (200, 100, 200)} and τC2 = {τ 1
2 = τ 2

2 =

(200, 100, 200)}, respectively. By applying the analysis in Sections 3.6.2 and 3.7, the

interfaces of the system under task-centric-ub and under model-centric are

computed to be µSys1 = 〈20, 17, 5〉 and µ′Sys1
= 〈20, 19, 5〉, respectively. Thus, the

system’s interface under task-centric-ub has a smaller bandwidth than that of

the interface computed under model-centric.

Example 3.9. Let Sys2 be a system consisting of two domains C1 and C2 that

are scheduled under the hybrid EDF scheduling strategy and that have workloads

τC1 = {τ 1
1 , ..., τ

5
1 = (100, 5, 100)} and τC2 = {τ 1

2 , ..., τ
5
2 = (100, 5, 100)}, respectively.
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The interfaces of this system under task-centric-ub and under model-centric

are given by µSys2 = 〈20, 0, 4〉 and µ′Sys2
= 〈20, 14, 3〉, respectively. Thus, the system’s

interface under task-centric-ub has a larger bandwidth than that of the interface

computed under model-centric.

One can also show that neither model-centric nor baseline dominates one

another. For instance, consider the system Sys1 in Example 3.8. The interface of the

whole system under the baseline method is µ′′Sys1
= 〈20, 17, 5〉, which has a smaller

bandwidth than the interface µ′Sys1
computed using the model-centric method.

Further, since the task-centric-ub method dominates the baseline method but

not the model-centric method, the baseline method also does not dominate the

model-centric method.

From the above observations, we can derive the minimum interface of a com-

ponent from the ones computed using the task-centric-ub and model-centric

methods (since task-centric-ub method always dominates baseline), as stated

by Theorem 3.27. The theorem is trivially true, since both interfaces computed us-

ing the task-centric-ub and model-centric methods are safe. We refer to this

analysis as the hybrid method.

Theorem 3.27 (Hybrid cache-aware interface). The minimum cache-aware

DMPR interface of a domain Di (a system S) is the interface that has a smaller

resource bandwidth between µtask and µmodel, where µtask and µmodel are the minimum-

bandwidth DMPR interfaces of Di (S) computed using the task-centric-ub and

the model-centric methods, respectively.

Discussion. We observe that the schedulability analysis under gEDF in the absence

of overhead (Theorem 3.3) is only a sufficient test, and that its pessimism degree

varies significantly with the characteristics of the taskset. For instance, under the

same multiprocessor resource, one taskset with a larger total utilization may be

schedulable while another with a smaller total utilization may not be schedulable.
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As a result, it is possible that the overhead-aware interface of a domain (system)

may require less resource bandwidth than the overhead-free interface of the same

domain (system).

3.9 Evaluation

To evaluate the benefits of our proposed interface model and cache-aware compo-

sitional analysis, we performed simulations using randomly generated workloads.

We had five main objectives for our evaluation: (1) determine how much resource

bandwidth the interfaces computed using the improved SBF (Section 3.2.2) can save

compared to the interfaces computed using the original SBF proposed in [31]; (2)

determine how much resource bandwidth the DMPR model can save compared to

the MPR model; (3) evaluate the relative performance of the hybrid method and

the baseline method; (4) study the impact of task parameters (e.g., the range of

taskset utilization, the distribution of task’s utilization, the period range of tasks)

on the interfaces under the hybrid and baseline methods; and (5) evaluate the

performance of the hybrid analysis when using a cache overhead value per task and

when using the maximum cache overhead value for the entire system.

3.9.1 Experimental setup

Key factors. We focus on the following five key factors that can affect the perfor-

mance of a cache-aware compositional analysis:16:

• Utilization of a task set. Tasks with larger utilizations tend to have a larger

number of tasks; thus, each task tends to experience more cache overhead

during its lifetime because there are more other tasks that can preempt it.
16We assume other factors are same when we discuss one factor’s impact on the cache-aware

analysis
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• Distribution of task utilizations. High-utilization tasks are more sensitive to

cache overhead and can more easily become unschedulable because of this

overhead than tasks with small utilization.

• Periods of the tasks. If two tasks have the same utilization and experience the

same cache overhead, the task with the smaller period has a higher probability

of missing its deadline because of the overhead than the task with the larger

period because the former has a smaller relative deadline. Therefore tasks with

smaller period are more sensitive to cache overhead.

• Number of tasks in a task set. In the baseline approach and the task-centric

approach from Section 3.6, when a VCPU-stop event happens, each task’s

worst-case execution time is inflated by the cache overhead caused by this

event, even though at most two tasks actually experience the cache overhead

that the event has caused. Hence, these two approaches will become more and

more pessimistic as the number of tasks increases.

• Cost of cache overhead per event. If the cost of cache overhead increases,

tasks will experience longer delays when task-preemption or VCPU-stop events

occur.

Workload. In order to evaluate the impact of the above five factors on the per-

formance of overhead-free and overhead-aware compositional analysis, we generated

a number of synthetic real-time workloads with randomly generated periodic task

sets that span a range of different parameters for each of these factors. Below, we

explain how the parameters were chosen.

We picked the task set utilizations from the interval [0, 24], with increments of

0.2, to be consistent with the ranges used in [22] and [24]. However, we observed that

a smaller interval is sufficient to demonstrate the relative performance of overhead-

free and overhead-aware compositional analysis; hence, we used the range [0, 5],
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again with increments of 0.2, when evaluating the impact of the other factors on

overhead-aware compositional analysis.

The tasks’ utilizations were drawn from one of four distributions: one uniform

distribution over the range [0.001, 0.1] and three bimodal distributions; in the lat-

ter, the utilization was distributed uniformly over either [0.1, 0.5) or [0.5, 0.9], with

respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and

5/9 (heavy). These probabilities are consistent with the ones used in [17] and [24].

The periods of the tasks were drawn from a uniform distribution over one of the

following three ranges: (350ms, 850ms), (550ms, 650ms), and (100ms, 1100ms); all

periods were integer. These distributions are identical to those used in [41]. The

number of tasks in a task set ranged from [0, 300] with increments of 20.

The cost of cache overhead per event was chosen based on the cache overhead

ratio, which we define as the cache overhead of a task τi divided by the worst-case

execution time of τi. We picked the cache overhead ratio from the range [0, 0.1]

with increments of 0.01. This range was chosen based on measurements of the L2

cache miss overhead of tasks on our experimental platform; we found that the cost of

missing the L2 private cache but hitting the L3 shared cache was 0.02ms when the

working set size was 256KB (the L2 private cache size). Because the L3 cache hit

latency is very small (less than 100 cycles), the cache overhead per task-preemption

or VCPU-stop event is only 0.02ms. Therefore, the cache overhead ratio was less

than 0.02 for any task we measured that had a worst-case execution time of more

than 2ms.

Overhead measurements. For our measurements, we used a Dell Precision

T3610 six-core workstation with the RT-Xen 2.0 platform [69]; each domain was

running LITMUSRT 2012.3 [27] [24]. The scheduler was gEDF in the domains and

semi-partitioned EDF in the VMM, as described in Section 3.1. We allocated a full-

capacity VCPU to one domain and pinned this VCPU to a physical core of its own;

this was done to avoid interference from domain 0 (the administrative domain in RT-
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Xen), which was pinned to a different core. We measured the cache overhead of the

cache-intensive program ρ as follows. First we warmed up the cache by accessing all

the cache content of the program; then we used the time stamp counter to measure

the time lhit it takes to access the same content again. Because the cache was warm,

lhit is the cache hit latency of this program. Next, we allocated an array of the same

size as the private L2 cache and loaded this into the same core’s L2 cache in order

to pollute the cache content of ρ. Finally, we again accessed all the cache content of

ρ and recorded the cache miss latency lmiss. The cache overhead of the program ρ

per task-preemption or VCPU-stop event is then lmiss − lhit.

3.9.2 Overhead-free analysis

We begin with an empirical comparison of the overhead-free analyses. For this

purpose, we set up four domains with harmonic periods, and we randomly generated

tasks and uniformly distributed them across the four domains. To be consistent

with [54], we generated 25 task sets per task set utilization or task set size.

MPR with improved SBF vs. MPR with original SBF. To estimate the

impact of the improved SBF, we generated 625 tasksets with taskset utilizations

ranging from 0.1 to 24, with increments of 0.2. The task utilizations were drawn from

the bimodal-light distribution as described earlier; the tasks’ periods were uniformly

distributed across [350ms, 850ms]. For each taskset we generated, we distributed

the tasks into one domain, and we then computed the overhead-free interface of

the domain using MPR with the improved SBF, as well as using the original MPR.

Fig. 3.9(a) shows the average bandwidth savings due to the improved SBF. We

observe that, across all taskset utilizations, MPR with the improved SBF always

requires either the same or less resource bandwidth than MPR with the original

SBF. We also observe that MPR with the improved SBF saves over 0.8 cores when

the taskset utilization is larger than 5. Fig. 3.9(b) and 3.9(c) show the average

resource bandwidth savings with the other two bi-modal distributions; we observe
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that, in all three cases, MPR with the improved SBF consistently outperformed

MPR with the original SBF.

DMPR vs. MPR with the original SBF. To compare DMPR to MPR with the

original SBF on the whole system, we distributed the tasks in each taskset over four

domains and we then computed the overhead-free interface of the whole system

using both DMPR and MPR with the original SBF. Fig. 3.10(a) shows the average

bandwidth savings of DMPR for different taskset utilizations. Our results show that

DMPR consistently saves bandwidth relative to MPR with the original SBF for up

to 16 cores. There are very few data points beyond this point because we can only

compute the average bandwidth savings when both analyses return valid interfaces

for the same taskset; however, for taskset utilizations above 16, MPR generally fails

to compute a valid interface for the system.

As shown in Fig. 3.11(a), the fraction of tasksets with valid interfaces under MPR

with the original SBF decreases with increasing taskset utilization. This is because

the original SBF of MPR is pessimistic and cannot provide m′t time units with

interface Γ = 〈,m′,m′〉. Once the interfaces of the leaf components (i.e., domains)

have been computed, these interfaces are transferred to VCPUs as the workload of

the top component. When some of those VCPUs have utilization 1, the resource

demand increases faster than the resource supply of MPR with the original SBF;

hence, MPR cannot find a valid interface. DMPR does not have this problem because

it can always supplym′t time units with bandwidthm′; hence, the fraction of tasksets

with valid interfaces is always 1. As Fig. 3.11(b) and Fig. 3.11(c) show, the results

for the other two bimodal distributions are similar: DMPR is consistently able to

compute interfaces for all tasksets, whereas MPR with the original SBF finds fewer

and fewer interfaces as the taskset utilization increases.
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(a) Bimodal-light.
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(b) Bimodal-medium.
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(c) Bimodal-heavy.

Figure 3.9: Average resource bandwidth saved: MPR with improved SBF
vs. MPR with original SBF.
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(b) Bimodal-medium.
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(c) Bimodal-heavy.

Figure 3.10: Average resource bandwidth saved: DMPR vs. MPR with
original SBF.

3.9.3 Comparison of hybrid cache-aware analysis vs. base-

line cache-aware analysis

Next, we compared the performance of the two overhead-aware analysis approaches.

For this we used the same tasksets and system configuration as for the previous

experiment, but we additionally computed DMPR interfaces for each taskset using

the respective approach.

Impact of taskset utilization. Fig. 3.13(a) shows the average resource bandwidth

savings of the hybrid approach compared to the baseline approach for each taskset

utilization. We observe that a) hybrid reduced the resource bandwidth in all cases,

and that b) more and more cores are being saved as the taskset utilization increases.

Note that, as the taskset utilization increases, the interface bandwidth can sometimes
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Figure 3.11: Fraction of taskset with valid interfaces: DMPR vs. MPR
with original SBF.
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(b) Bimodal-medium.
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(c) Bimodal-heavy.

Figure 3.12: Average resource bandwidth saved: hybrid vs. baseline.

decrease. One reason for this is that the underlying gEDF schedulability test is only

sufficient, and is not strictly dependent on the taskset utilization; in other words,

it is possible that a taskset with a high utilization is schedulable but another with

a lower utilization is not. We also observe that, as discussed earlier, the relative

performance of the hybrid and baseline analyses is easy to see even for small

taskset utilizations; this is why we only compare the two overhead-aware analysis

for taskset utilizations [0, 5] instead of the larger [0, 24] range.

Impact of task utilization. Fig. 3.13(a)-Fig. 3.13(c) show the average resource

bandwidth savings for different taskset utilizations and each of the three bimodal

distributions. We observe that, in all three cases, the hybrid approach consistently

outperformed the baseline approach. Further, as the taskset utilization increases,

the savings also increase and remain steady at approximately one core once the

77



50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Task set size

A
ve

ra
g

e 
re

so
u

rc
e 

b
an

d
w

id
th

 s
av

ed

(a) Bimodal-light.

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Task set size

A
ve

ra
g

e 
re

so
u

rc
e 

b
an

d
w

id
th

 s
av

ed

(b) Bimodal-medium.
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(c) Bimodal-heavy.

Figure 3.13: Average resource bandwidth saved: hybrid vs. baseline.
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(a) Task period: [100, 1100]ms.
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(b) Task period: [350, 850]ms.
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(c) Task period: [550, 650]ms.

Figure 3.14: Average resource bandwidth saved under different ranges of
tasks’ periods

taskset utilization has reached 10.

Impact of taskset size. We investigated the impact of the number of tasks (i.e., the

taskset size) on the average bandwidths saving of the hybrid approach compared

to the baseline approach. For this experiment, we generated a set of tasksets

with sizes between 4 to 300, with increments of 20, and with 25 tasksets per size. As

before, we tried each of the three bimodal distributions we discussed in Section 3.9.1.

Fig. 3.13(a)-Fig. 3.13(c) show the average resource bandwidth savings for different

taskset sizes with each of the three bi-modal distributions. We observe that a)

the hybrid approach consistently outperforms the baseline approach, and b) the

savings increase with the number of tasks. This is expected because the baseline

technique inflates the WCET of every task with all the cache-related overhead each

task experiences; hence, its total cache overhead increases with the size of the taskset.
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Figure 3.15: Average bandwidth saving under different ratios of cache
overhead to task WCET.

Impact of task period distribution. We further investigated the impact of the

distribution of tasks’ periods on the average bandwidth savings of the hybrid ap-

proach compared to the baseline approach. For this experiment, we generated a

number of tasksets with taskset utilizations in the range [0, 5] with increments of 0.2,

and, as usual, 25 tasksets per taskset utilization. The individual tasks’ utilizations

were drawn from the bi-modal light distribution. For the tasks’ periods, we tried

each of the three distributions that were discussed in Section 3.9.1. Fig. 3.14(a)-

Fig. 3.14(c) show the average resource bandwidth saving for three different distribu-

tion of tasks’ periods; in all three cases, the hybrid approach consistently outper-

forms the baseline approach.

Impact of cost of cache overhead. We first generated 25 tasksets with taskset

utilization 4.9 and uniformly distributed the tasks of each taskset over four do-

mains with harmonic periods. The tasks’ utilizations were uniformly distributed

in [0.001, 0.1], and their periods were uniformly distributed in [350ms, 850ms]. We

then modified the cache overhead of tasks of the 25 tasksets and generated a set of

tasksets with cache-related overhead ratio [0, 0.1] with increments of 0.01 based on

the 25 tasksets. Recall from Section 3.9.1 that we define the cache-related overhead

ratio of a task τi to be the cost of one cache-related overhead of τi divided by the

worst-case execution time of τi.
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Figure 3.16: Average bandwidth saving of hybrid with cache overhead
per task over hybrid with maximum cache overhead of system (Ratio of
overhead over wcet is uniformly in [0,0.1])

Fig. 3.15 shows the average resource bandwidth savings of the hybrid approach

over the baseline approach for each cache overhead ratio. We observe that the hy-

brid approaches saves more resources as the cache-related overhead ratio increases.

This is expected because tasks’ utilizations are uniformly distributed over [0.001, 0.1]

and a taskset has more tasks than the number of VCPUs. Since the baseline ap-

proach inflates the WCET of every task with all the cache-related overheads any task

can experience, its total cache overhead increases as the cost of one cache-related

overhead increases.

Impact of per-task cache overheads. When different tasks can have different

costs for cache-related overheads, it is pessimistic to simply use the largest cache

overhead in the system, as we did in [74]. To evaluate the impact of considering

cache overheads per task, we generated tasks with different cache-related overhead

ratios, drawn from an uniform distribution over [0, 0.1]. We then calculated the

system’s interface with the hybrid analysis using the following two approaches: (1)

Using a per-task cost of cache overheads to compute the hybrid analysis, as we did

in this work; and (2) Using the upper bound for the cache overhead in the system

as the cost for each task, as we did in [74].

Fig. 3.16 shows the average resource bandwidth savings of the hybrid approach

with per-task cache overheads relative to the more pessimistic approach. We observe
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that the hybrid approach with per-task cache overheads consistently outperformed

the pessimistic approach; however, the saving does not increase as the taskset uti-

lization increases. This is because the task-centric-ub approach only considers

the cache overhead caused by task-preemption events, and each task’s WCET is only

inflated with one cache overhead. Therefore, the pessimistic hybrid analysis with

system’s maximum cache overhead may have the same upper-bounded number of

full VCPUs as the hybrid analysis with cache overhead per task. When both anal-

yses use the upper-bounded number of full VCPUs as the components’ interface, the

hybrid analysis with per-task cache overheads will have the same interface band-

width as the pessimistic analysis and thus saves no resources; however, (2) if both

hybrid analyses choose the interfaces computed by the model-centric analysis,

the hybrid analysis with per-task cache overheads will save resources relative to

the pessimistic approach because every time one cache-related overhead happens,

the pessimistic approach will have more cache overhead.

3.9.4 Performance in theory vs. in practice

We also validated the correctness of the cache-aware interfaces (and the invalidity of

the overhead-free interfaces) in practice. For this experiment, we first computed the

domains’ interfaces, and we then ran the generated tasks on our RT-Xen experimen-

tal platform. The periods and budgets of the domains in RT-Xen were chosen to be

those of the respective computed interfaces. We then computed the schedulability

and deadline miss ratios of the tasks, based on the theoretical schedulability test and

the measurements on the RT-Xen platform. Table 3.1 shows the schedulability and

deadline miss ratios of these methods.17

We observe that the overhead-free MPR and DMPR interfaces significantly un-

derestimate the tasks’ resource requirements: even though the tasks were claimed
17We note that the interfaces given by the hybrid method and the baseline method are the

same as the interfaces given by the cache-aware hybrid analysis method and task-centric analysis
method proposed in the conference version [74], respectively.
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Schedulable Deadline miss ratio
Theory RT-Xen Theory RT-Xen

Overhead-free MPR Yes No N/A 78%
Overhead-free DMPR Yes No N/A 78%

hybrid No No N/A 0.07%
baseline No No N/A 7%

Table 3.1: Performance in theory vs. in practice.

to be schedulable by the computed interfaces, 78% of the jobs missed their dead-

lines. The experimental results also confirm that our cache-aware analysis correctly

estimated the resource requirements of the system in practice: the theory predicted

that the tasks would not be schedulable, and this was confirmed in practice by the

nonzero deadline miss ratio, which was 0.07% for the hybrid approach and 7% for

the task-centric approach. We also observe that the hybrid approach had fewer

deadline misses than, and thus outperformed, the task-centric approach.

3.10 Conclusion

In this chapter, we have presented a private cache-aware compositional analysis

technique for real-time virtualization multicore systems. Our technique accounts for

the cache overhead in the component interfaces, and thus enables a safe application

of the analysis theories in practice. We have developed three different approaches,

baseline, task-centric-ub and model-centric, for analyzing the cache-related

overhead and for testing the schedulability of components in the presence of cache

overhead. We have also introduced an improved supply bound function for the MPR

model and a deterministic extension of the MPR model, which improve the interface

resource efficiency, as well as accompanying overhead-aware interface computation

methods. Our evaluation on synthetic workloads shows that our improved SBF and

the DMPR interface model can help reduce resource bandwidth by a significant factor

compared to the MPR model with the existing SBF, and that a hybrid of task-
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centric-ub and model-centric achieves significant resource savings compared

to the baseline method (which is based solely on WCET inflation).

83



Chapter 4

Shared cache-aware scheduling and

analysis for operating systems

We have solved the analysis challenge of the private cache overhead; we now arrive

at the challenge of the shared cache interference. Before we explore the shared cache

management techniques for virtualization systems in the next chapter, we start with

the non-virtualized systems, which is simpler than virtualization systems and can be

applied as the cache management technique in VMs for virtualization systems.

As discussed in Section 1.2, although shared cache can help increase the average

performance, it also makes the worst-case timing analysis much more challenging

due to the complex inter-core shared-cache interference: when tasks running simul-

taneously on different cores access memories that are mapped to the same cache set,

they may evict each other’s cache content from the cache, resulting in cache misses

that are hard to predict.

One effective approach to bounding the inter-core cache interference is cache

partitioning, which can be done using mechanisms such as page coloring [35] or way

partitioning [49]. The idea is to divide the shared cache into multiple cache parti-

tions and assign them to different tasks, such that tasks running simultaneously on

different cores always use different cache partitions. Since tasks running concurrently
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never access one another’s cache partitions in this approach, the cache interference

due to concurrent cache accesses can be eliminated, thus reducing the overall cache

overhead and improving the worst-case response times of the tasks.

In this chapter, we investigate the feasibility of global preemptive scheduling with

dynamic job-level cache allocation. We present gFPca, a cache-aware variant of

the global preemptive fixed-priority (gFP) algorithm, together with its analysis and

implementation. gFPca allocates cache to jobs dynamically at run time when they

begin or resume, and it allows high-priority tasks to preempt low-priority tasks via

both CPU and cache resources. It also allows low-priority tasks to execute when

high-priority tasks are unable to execute due to insufficient cache resource, thus

further improving the cache and CPU utilizations. Since preemption is allowed,

tasks may experience cache overhead – e.g., upon resuming from a preemption, a

task may need to reload its cache content in the cache partitions that were used by

its higher-priority tasks; therefore, we develop a new method to account for such

cache overhead.

4.1 System model

We consider a multi-core platform with M identical cores and a shared cache that

is accessible by all cores. The cache is partitioned into A equal cache partitions; we

achieved this using the way partition mechanism [49]. The latency of reloading one

partition is upper bounded by the maximum cache partition reload time, denoted by

PRT. The value of PRT can be derived from the number of cache lines per partition

and the maximum reloading time of one cache line. As a first step, this paper focuses

on the shared-cache interference and considers only data caches; we assume that the

effects of other resource interferences, such as that of private caches and memory

bus, are negligible or have been included in the tasks’ WCETs.

The system consists of a set of independent explicit-deadline sporadic tasks, τ =
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{τ1, ..., τn}. Each task τi is defined by τi = (pi, ei, di, Ai), where pi, ei and di are the

minimum inter-arrival time (which we refer to as the period), worst-case execution

time (WCET) and relative deadline of τi, and Ai is the number of cache partitions

that τi can use. Note that different values of Ai may lead to different values of ei;

our analysis holds for any given value of Ai and corresponding ei. (In our numerical

evaluation, Ai was chosen to be the smallest number of cache partitions that leads

to the minimum WCET for τi.) In addition, although the number of partitions

allocated to τi is fixed, under our scheduling approach, the exact partitions allocated

to each job of τi may change whenever it begins its execution or resumes from a

preemption.

We require that 0 < ei ≤ di ≤ pi and Ai ≤ A for all τi ∈ τ , where A is the

total number of partitions of the shared cache. Each task has a fixed and unique

priority; without loss of generality, we assume that the tasks in τ are sorted by their

priorities, i.e., τi has higher priority than τj iff i < j.

Cache-related overhead. We assume that the WCET of each task already includes

intrinsic cache-related overhead, and we focus on the extrinsic cache overhead. By

abuse of terminology, throughout the paper, we refer to one cache overhead of a task

as the time the task takes to reload its evicted cache content when it resumes from a

preemption, and total cache overhead of a task as the total amount of time the task

takes to reload its evicted cache content throughout the execution of a job of the

task. We assume that the operating system does not affect the shared cache state

of tasks; for example, one way to avoid the shared cache interference between the

OS and tasks is to dedicate a specific area of the cache to the OS. In this paper, we

consider only the shared cache overhead and defer the incorporation of the private

cache overhead to future work.

ECP and UCP. We say that a task accesses a partition if it accesses any line(s)

within that partition. We define an Evicting Cache Partition (ECP) of a task to

be a cache partition that the task can access, and we denote by ECPk the set of
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ECPs of τk during an uninterrupted execution interval of τk. Note that ECPk varies

across different continuous execution intervals of τk, but |ECPk| ≤ Ak by definition.

In addition, we define a Useful Cache Partition (UCP) of τk to be a cache partition

that τk accesses at some time point and later accesses again as cache hit, when

τk executes alone in the system. The set of UCPs of τk is denoted by UCPk; by

definition, UCPk ⊆ ECPk.

4.2 gFPca scheduling algorithm

We now present the gFPca algorithm. Like global fixed priority (gFP) scheduling,

gFPca also schedules tasks based on their priorities; however, a task is only executed

if there are sufficient cache partitions for it (including also the partitions obtained

by preempting one or more lower-priority tasks), and low-priority tasks can execute

if all pending high-priority tasks are unable to execute.

Specifically, gFPca makes scheduling decisions whenever a task releases a new job

or finishes its current job’s execution (or is blocked or unblocked via resources other

than cache and CPU). At each scheduling point, it tries to schedule pending tasks

in decreasing order of priority. For each pending task τi:

Step 1) First, gFPca looks for an idle core; if none exists, it considers the core

that is executing the lowest-priority task among all currently executing tasks with

lower priority than τi, if such tasks exist. If no such core is found, it returns.

Step 2) Next, gFPca tries to find Ai cache partitions for τi, considering the idle

partitions first and then the partitions obtained by preempting τi’s lower-priority

tasks (chosen in increasing order of priority). If successful, it will reserve those Ai

partitions for τi, preempt the lower-priority tasks that are using those partitions or

using the core chosen in Step 1, and schedule τi to run on the chosen core. (When

more than Ai partitions are found, gFPca gives preference to the ones that still

hold the cache content of the task τi.) Otherwise, gFPca will move to the next
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task and repeat the process from Step 1. gFPca imposes no constraints among

the partitions allocated to a task; however, both its cache allocation and analysis

can easily be modified to incorporate potential constraints, e.g., one that imposes

contiguous partitions. Due to space limitation, we omit the details here.

Under gFPca, cache partitions are allocated to each job dynamically at run time

when it begins its execution and when it resumes. Whenever this occurs, the system

maps some or all of the memory accesses of the task to the allocated partitions (which

may include those previously belonged to a preempted task). When a preempted

task resumes, it needs to reload its information from the memory to the cache,

if this information has been polluted by higher-priority tasks or if it is assigned

new cache partitions. Our analysis considers the costs of mapping the memory

accesses and reloading the memory content into the cache. In our implementation,

reassigning partitions can be done by simply resetting the registers that control the

cache partitions (without the need to copy memory pages), which takes only about

a few cycles; therefore, we consider the overhead of reassigning partitions as part of

the context switch overhead in our analysis.

4.3 Implementation

We implemented gFPca within LITMUSRT on the Freescale I.MX6 quad-core eval-

uation board, which supports way partitioning through the PL310 cache controller.

For comparison, we also implemented the existing non-preemptive nFPca in [32] and

the cache-agnostic gFP schedulers.

4.3.1 Dynamic cache control

We utilized the Lockdown by Master (LbM) mechanism, supported by the PL310

controller, for our cache allocation (using a similar approach as [49, 65]). The LbM

allows certain ways to be marked as unavailable for allocation, such that the cache
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allocation (which allocates cache lines for cache misses) only happens in the remain-

ing ways that are not marked as unavailable. Each core Pi has a per-CPU lockdown

register Ri, where a bit q in Ri is one if the cache allocation cannot happen in the

cache way q for the memory access from the core Pi, and zero otherwise. (To be

precise, each core has two separate registers for instruction and data access, but we

focus on data access in this paper.)

Challenge. To reserve the set of cache partitions Sk (represented as a bitmask)

for a task τk on a core, we set the lockdown register of the core to be the bitwise

complement of Sk. However, this alone cannot guarantee that τk will not access

cache partitions outside Sk, because the LbM cannot control where the cache lookup

(i.e., cache hit) occurs. As a result, tasks running concurrently on different cores

may still access each other’s cache partitions, even if the register is set.

Approach: Recall that the actual cache partitions allocated to a task varies from

one preemption point to the next (even within the same job of the task). One way to

address the above challenge is to flush the partitions allocated to each task τk when

it completes a job or is preempted [65]. However, this approach prevents a task from

reusing its content in the cache when possible: if a partition reserved for τk has not

been used by any other task when τk resumes or releases a new job, then τk should

be able to reuse the content inside that partition; this would not be possible if we

had flushed the task’s partitions when it was preempted or finished its previous job.

Since the cost of flushing a cache way is relatively expensive compared to other

scheduler-related overhead18, we minimized cache flushes through selective flushing.

The idea is to select from the reserved partitions of τk all the partitions that may hold

the content of other tasks, and only flush the selected partitions when τk resumes or

releases a new job.

To flush a cache partition, we leveraged the hardware cache maintenance opera-

tions to clean and invalidate the specific cache ways that need to be flushed. (This
18The cost of flushing one cache way depends on the contention on components of the cache

controller. Our measurement shows that the worst-case cost of flushing one cache way is 0.12ms.
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Figure 4.1: Scheduling architecture. Dotted-line boxes enclose software
components. Solid-line boxes enclose hardware comp.

is different from the approach in [65], which loads pages to the cache partitions to

evict the previous content from the cache.) Our approach guarantees cache isolation

among concurrently running tasks (since no task can use the reserved cache par-

titions of another task), and it helps to minimize the cache management overhead

(since a task may use the previously – rather than currently – reserved partitions

until they are reserved and flushed by another task). Note that when the cache

content of a task τk is flushed from its previously reserved partitions (by another

task), then τk may need to reload its content to its current reserved partitions; we

account for such overhead in our analysis.

4.3.2 Scheduling architecture

Fig. 4.1 shows a high-level overview of the scheduling architecture for gFPca. Our

implementation extended various components in LITMUSRT to incorporate gFPca’s

cache management and scheduling behavior. Most notable extensions include: (1)

RT Task: We extended the rt_params field, which holds the timing information of
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a real-time task, with the cache information (i.e., the number of cache partitions,

the set of currently used partitions, and the set of previously used partitions). (2)

RT-Context: We extended the cpu_entry data structure, which holds the real-time

context of a core, with a new field called preempting to indicate whether the core

is preempted via cache. (3) Scheduling real-time domain, which holds all (global)

information of the cores and real-time tasks, such as the release and ready queues

(not shown in Fig. 4.1). We extended the scheduling domain to include two new

components: CP-bitmap and CPtoTask-map. CP-bitmap is a bitmap that indicates

whether a cache partition is locked (i.e., reserved for some task). CPtoTask-map

maps each partition to a task that it belongs (if any). The architecture also in-

cludes the PL310 cache controller that controls the 16 cache partitions of the L2

shared cache. For synchronization, we used three global spin locks: one for the

release queue; one for the ready queue, RT-Context, and CP-bitmap; and one for

CPtoTask-map and the cache controller’s registers.

The gFPca scheduler: The steps in Fig. 4.1 illustrates how the scheduler on a core

works in a nutshell. Specifically, when a scheduling event (task-release, task-finish,

task-blocked on other resources such as I/O, or task-unblocked event) arrives at a

core (e.g., P1), the scheduler on that core will be invoked. Once being invoked, the

scheduler performs Steps 1–3:

Step 1) Executes the check_for_preemption function, which implements the

gFPca algorithm (described in Section 4.2), to determine: the highest-priority ready

task that can execute next, the core to execute the task, the cache partitions to re-

serve for the task, and the currently running tasks to be preempted. The scheduler

then continues to the next highest-priority ready task, until no more ready task can

be scheduled. For the example in Fig. 4.1, the scheduler on P1 decides to preempt

the tasks currently running on P0 and P2 (say τi and τj, respectively) and schedule

the ready task (say τk) on P0.

Step 2) Updates CP-bitmap to reflect the new locked cache partitions, and up-
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dates the RT-Context of the preempted cores and the core(s) that will run the

scheduled tasks. In Fig. 4.1, P1’s scheduler modifies CP-bitmap by unmarking the

cache partitions that were assigned to τi and τj and then marking the partitions that

will be reserved for τk. In addition, it updates P0’s linked task (i.e., the real-time

task to execute next) to be τk, P2’s linked task to be NULL and P2’s preempting

field to be true (to indicate that P2 is preempted via cache only).

Step 3) Sends an Inter-Processor Interrupt (IPI) to each preempted core and

each core that will run a scheduled task, to notify the preempted core to preempt

its currently running task and the scheduled core to execute its linked task (e.g., P0

to preempt τi and run τk, and P2 to preempt τj).

When a core receives the above IPI, the scheduler on that core will be invoked,

and it will perform the next three steps:

Step 4) Moves the linked task (configured in Step 2) to the core, and updates

the scheduled task of the core to be the linked task. (If the linked task is NULL,

the scheduler will pick a non-real-time task to execute on the core. We assume that

non-real-time tasks do not interfere with the real-time tasks.)

Step 5) Determines which of the cache partitions reserved for the linked task

should be flushed (i.e., if used by other tasks), flushes those partitions, and updates

CPtoTask-map to reflect the new mapping of partitions to tasks.

Step 6) Starts executing the linked task.

4.3.3 Run-time overhead

We used the feather-trace tool to measure the overheads, as in earlier LITMUSRT -

based studies (e.g., [23, 24]). Since the tool uses the timestamp counter to track

the start and finish time of an event in cycles, we first validated that the timestamp

counter on our board has a constant speed (necessary for precise conversion from

cycles to nanoseconds). Since the timestamp counter on each core of the board is

not synchronized, we also modified the tool to use the system-wide monotonically-
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increasing timer (in nanosecond) to trace the Inter-Processor Interrupt (IPI) delay.

We randomly generated periodic tasksets of size ranging between 50 to 450 tasks,

with a step of 50. We generated 10 tasksets per taskset size (i.e., 90 tasksets in total)

under each scheduler. Under each scheduler, we traced each taskset for 30 seconds,

and measured all size types of overhead: release overhead, release latency, scheduling

overhead, context switch overhead, IPI delay, and tick overhead (as defined in [5]).

We removed the outliers using the method in [23] and computed the worst-case and

average-case overheads.

Taskset size: 50 Taskset size: 450
gEDF gFPca nFPca gEDF gFPca nFPca

Release 5.72 5.86 4.74 7.73 23.92 5.45
Sched 8.64 7.75 7.57 11.88 20.07 15.25
CXS 4.23 138.72 142.46 7.31 159.84 162.93
IPI 4.06 3.64 4.12 3.92 3.84 4.03

Table 4.1: Average overhead (µs) under different schedulers with cache-
read workload.

Table 4.1 shows the average overheads for taskset size of 50 and 450 under the

gFPca and nFPca schedulers, as well as the existing gEDF scheduler in LITMUSRT

for comparison. The results show that the release, scheduling, and IPI delay over-

heads of the gFPca and nFPca schedulers are similar to that of gEDF . However,

gFPca and nFPca have a larger context switch overhead than gEDF does, which is

expected because they may need to flush cache partitions during a context switch,

as described in the implementation description. The gFPca scheduler incurs higher

worst-case overheads than the gEDF scheduler, which is not surprising because the

scheduling algorithm gFPca has a higher complexity than gEDF . All measured

overhead values can be found in [71].

In the coming sections, we present the schedulability analysis of gFPca, first

assuming the absence of overhead and then considering all types of the overhead. As
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the analysis of the cache-related preemption and migration delay (CRPMD) overhead

is most challenging, we focus on the analysis of the CRPMD overhead in the main

context and present the extension to the remaining types of overhead in Section 4.5.7.

Note that our evaluation considered all these overheads.

4.4 Overhead-free analysis

The overhead-free schedulability analysis of gFPca can be established using a similar

idea as that of nFPca [32]. As usual, the processor demand of a task τi in any interval

[a, b] is the amount of processing time required by τi in [a, b] that has to complete at

or before b. When task τi is scheduled under gFPca, τi has the maximum amount of

computation in a period of another task τk when the first job of τi starts executing

at the release time of τk and the following jobs of τi execute as early as possible, as

illustrated in Fig. 4.2. Hence, the worst-case demand of τi in a period of τk is given

by [20]:

W k
i = NJ ki · ei + min{dk + di − ei − NJ ki · pi, ei}, (4.1)

where NJ ki = bdk+di−ei
pi
c is the maximum number of jobs of τi that have the entire

executions falling within a period of τk.

Figure 4.2: Worst-case demand of τi in a period of τk scenario.

The length of τk’s busy interval, denoted by Bk, is the total length of all subin-

tervals in a period of τk during which it cannot execute. The busy interval of τk

can be grouped into two categories: (1) CPU-busy interval, during which all cores

are busy executing other higher-priority tasks; and (2) cache-busy interval, during
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which at least one core is available (i.e., idle or executing a lower-priority task) and

at least A− Ak + 1 cache partitions are assigned to τk’s higher-priority tasks.

Consequently, the workload of τi in a period of τk consists of two types: (1)

CPU-interference workload, αki , which is the workload of τi when it executes in

the CPU-busy interval of τk; and (2) cache-interference workload, βki , which is the

workload of τi when it executes in the cache-busy interval of τk. Since τk cannot ex-

ecute when its higher-priority tasks collaboratively keep the CPU busy, and because

the system has M cores, the length of the CPU-busy interval of τk is bounded by
1
M

∑
i<k α

k
i . Because each higher-priority task executes βki time units with Ai cache

partitions occupied, and because higher-priority tasks only need to occupy A−Ak+1

cache partitions to prevent τk from execution, the combined cache resources (i.e., the

number of partitions occupied in an interval multiplied by the interval length) that

need to be used by all other tasks to block τk from execution during τk’s cache-busy

interval is bounded above by
∑

i<k min{Ai, A − Ak + 1}βki . Therefore, the length

of the cache-busy interval of τk is bounded above by
∑

i<k
min{Ai,A−Ak+1}

A−Ak+1
βki . Since

the length of the busy interval of τk is no more than the sum of the length of the

CPU-busy interval and the length of the cache-busy interval, it is bounded above

by: ∑
i<k

(
1

M
αki +

min{Ai, A− Ak + 1}
A− Ak + 1

βki

)
.

Further, in each period of τk, the CPU/cache-interference workload of a higher-

priority task τi must satisfy the following constraints: (1) the combination of the

CPU-interference workload and cache-interference workload of τi cannot exceed the

workload of τi, i.e., αki + βki ≤ W k
i ; and (2) the CPU/cache-interference workload of

all τi should be no more than the length of the CPU/cache-busy interval of τk, i.e.,

αki ≤
∑

i<k
1
M
αki and βki ≤

∑
i<k

min{Ai,A−Ak+1}
A−Ak+1

βki .

Based on the above discussion, we obtain the following:

Lemma 4.1. The maximum length Bk of the busy interval of τk is bounded by B̂k,
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where B̂k is the optimal solution of the following Linear Programming (LP) problem:

maximize
∑
i<k

(
1

M
αki +

min{Ai, A−Ak + 1}
A−Ak + 1

βki

)

subject to αki + βki ≤W k
i , ∀i < k

αki ≤∑i<k
1
Mα

k
i

βki ≤∑i<k
min{Ai,A−Ak+1}

A−Ak+1 βki

Proof. The lemma holds by construction as discussed above.

The next theorem follows as a result of Lemma 4.1.

Theorem 4.2. A taskset τ is schedulable under the gFPca algorithm if each task τk

in τ satisfies B̂k ≤ dk − ek.

Proof. Suppose τ is unschedulable. Then, there exists a task τk that is unschedulable,

which implies that the length of its busy interval (Bk) is larger than the length of its

slack interval, i.e., the maximum waiting or blocking time that τi can accommodate

before missing its deadline, which is given by di − ei. In addition, we can easily

show that the CPU-interference workload αki and the cache-interference workload

βki of each high-priority task τi within a period of τk satisfy the constraints in the

above LP formulation; therefore, the maximum length of the busy interval (i.e., B̂k),

calculated by the LP, is no less than Bk. In other words, B̂k ≥ Bk > dk − ek. By

contraposition, we imply the theorem.

Theorem 4.3. Given a taskset τ̃ = { τ̃1, ..., τ̃n }, where τ̃i = (pi, ẽi, di, Ai) for

all 1 ≤ i ≤ n. Let τ = {τ1, ..., τn} be any task set with τi = (pi, ei, di, Ai) and ei ≤ ẽi

for all 1 ≤ i ≤ n. Then, τ is schedulable under the gFPca algorithm if τ̃ satisfies the

gFPca schedulability conditions given by Theorem 4.2.

Proof. We will show that if τ is unschedulable under gFPca, then τ̃ will be deemed

unschedulable under Theorem 4.2.

96



Indeed, if τ is unschedulable under gFPca, then there exists a task τk ∈ τ that

misses its deadline. Let Bk be the maximum length of the busy interval of τk. Then,

B̂k ≥ Bk due to Lemma 4.1. Since τk misses its deadline, Bk > dk − ek. Combining

this with ẽi ≥ ei and B̂k ≥ Bk, we obtain B̂k > dk − ẽk. Thus, the taskset τ̃ is

deemed unschedulable by Theorem 4.2.

4.5 Overhead-aware analysis

Insight. We observe that under gFPca, the cache effects τi has on a lower-priority

task τk comes from not only direct preemption (i.e., τi is released and preempts τk)

but also indirect preemption: when τi is released, it is possible that τi and τk are

scheduled to run whereas an intermediate-priority τj (i < j < k) is blocked due to

insufficient cache for it; when τi finishes, τk is preempted by τj because there is now

sufficient cache for τj to execute. Due to this behavior, existing approaches, such

as [61], cannot be applied.

Our idea is to account for the overhead by analyzing the source events that cause

cache overhead, and analyze the combined total overhead they cause to a task. As

not every task experiences (extrinsic) overhead, e.g., the highest-priority task, we

also derive the necessary conditions under which a task may experience overhead.

Specifically, we first identify the cache-related task events and establish the necessary

conditions under which these events cause a task to experience overhead. These

conditions are then used to derive the set of tasks that may preempt a task τk via

CPU or cache resource. Finally, we analyze the total overhead of τk that is caused by

the cache-related events of other tasks and include it into τk’s WCET, then we apply

the overhead-free schedulability analysis on the inflated taskset. For simplicity, we

will simply write ‘overhead’ in place of ‘cache overhead’.
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4.5.1 Overhead analysis challenges

Existing overhead accounting approaches [13, 48, 24, 54, 74] typically work as follows:

• first, analyze for each task τi either (a) the maximum cache overhead, θi, that

τi causes to its lower-priority tasks, or (b) the maximum cost of one cache

overhead, ∆i, that τi incurs upon resuming from a preemption;

• then, incorporate the overhead into the analysis by inflating the tasks’ WCETs

based on the obtained θi or ∆i.

It seems intuitive at first to apply the same approach for gFPca; unfortunately, a

naïve computation of θi or WCET inflation based on ∆i can lead to unsafe analysis

results for gFPca. (Note: these apply only to gFPca, not gFP.) We will show this

using an example.

Naïve WCET inflation based on θi. We first compute θi for each task τi (i < n)

and then inflate τi’s WCET by the overhead θi. For this, we extend the method

used in the uniprocessor setting [61]. Specifically, when a higher-priority task τi

preempts τk on a uniprocessor, the cache lines that τi may evict from the cache must

be the cache lines it can access, i.e., its ECBs (c.f. Section 6.4). Let BRT be the

maximum latency of reloading one cache line and ECBi be the ECBs of τi. Thus,

the private-cache overhead caused by τi is bounded by [61]: θuni
i = BRT× |ECBi|. It

seems intuitive to apply the same idea to gFPca by using the ECPs of τi, since the

partitions that τi evicts should be the partitions it can access. Recall that PRT is

the latency of reloading one cache partition and ECPi is τi’s ECPs. Then, the cache

overhead caused by τi is bounded by θi = PRT × |ECPi|. However, this bound is

unsafe when applied to gFPca, as shown in the example below.

Counter Example 1. Consider a taskset τ = { τ1, τ2, τ3 }, with τ1 = (12, 2, 10, 2),

τ2 = (12, 4, 11, 7), τ3 = (12, 6, 12, 5)}, and priority order τ1 � τ2 � τ3. Suppose τ is

scheduled using gFPca on a dual-core platform with 8 cache partitions, and τ1, τ2,
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(a) Actual execution in the presence of overhead.

(b) Inflating WCETs of high-priority tasks τi with θi.

Figure 4.3: Actual execution and unsafe overhead accounting scenarios
for Counter Example 1.

and τ3 are released at time 4, 2, and 0, respectively. Suppose PRT = 0.2. Then, as

illustrated in Fig. 4.3(a), τ3 finishes at t = 12.4 and thus misses its deadline.

However, from θi = PRT× |ECPi|, we obtain θ1 = 0.4 and θ2 = 1.4. If we inflate

τ1 and τ2 with θ1 and θ2, respectively, then their inflated WCETs are e′1 = 2.4 and

e′2 = 5.4. As illustrated in Fig. 4.3(b), this leads to τ3 finishing at t = 11.4 and

meeting its deadline. Clearly, the inflated WCETs are insufficient to account for the

actual overhead τ3 experiences.

Alternatively, if we inflate the WCET of each low-priority task (τ2 and τ3) with

the total cache overhead caused by all of its higher-priority tasks, the inflated WCET

of each task will be: e1 = 2, e′2 = e2 + dp2/p1e × θ1 = 4.4; and e′3 = e3 + dp3/p1e ×
θ1 + dp3/p2e × θ2 = 7.8. Then τ3 would finish at t = 12.2 which is earlier than its

actual finish time.
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As Fig. 4.3(a) illustrates, under gFPca the cache effects τi has on a lower-priority

task τk comes from not only direct preemption (i.e., when τi is released and preempts

τk) but also indirect preemption: when τi is released, it is possible that τi and τk

are scheduled to run whereas an intermediate-priority τj (i < j < k) is blocked due

to insufficient cache; when τi finishes, τk is preempted by τj because there is now

sufficient cache for τj to execute. Therefore, the number of cache partitions of τk

that are evicted can be as large as |ECPj ∪ ECPi| (which is more than |ECPi|).

4.5.2 Cache-related task events

Under gFPca, the system has five types of task events: task-release, task-finish,

task-preemption, task-resumption, and task-migration events. Because the cache is

shared by all cores, no overhead is incurred when a task migrates from one core to

another; therefore, a task-migration event of a task does not lead to any overhead

and we only need to consider the other four types of task events.

Figure 4.4: Causal relations of task events.

A task-preemption event of τk occurs when the CPU or cache resource allocated

to τk is reduced. Because new jobs are released when task-release events occur and

existing jobs resume when task-resumption events occur, a higher-priority task τi

with the task-release or task-resumption event may take the CPU and/or cache

resource from τk, thus leading to a task-preemption event of τk. Similarly, because

running jobs may stop at task-preemption and task-finish events, and the released

CPU or cache resource may be allocated to τk, both task-preemption and task-finish

events of τi may lead to a task-resumption event of τk. Further, a task-preemption

event may lead to a task-resumption event and vice versa.
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If the arrival of a task event A may lead to the arrival of another task event B,

then we say A causes B, denoted as A→ B. The causal relations of task events are

illustrated in Fig. 4.4. It is clear from the figure that the task-release and task-finish

events are the root causes of the other events. Since a task experiences overhead

only at its task-resumption events, which are caused by task-release and task-finish

events of other tasks, if the task-release and task-finish events are eliminated, the

overhead will also be eliminated.

Lemma 4.4. Task-release events and task-finish events are the source events that

cause overhead in a system.

Proof. As illustrated in Fig. 4.4, other task events, i.e., task-resumption event and

task-preemption event, are caused by the task-release event and the task-finish event.

If there is no task-release event or task-finish event in a system, the other task events

will not exist and hence the overhead will not occur.

Based on Lemma 4.4, if we can compute a bound on the overhead that each

task-release event and each task-finish event of a higher-priority task τi cause to a

lower-priority task τk, then we can safely account for the total overhead of τk. To

derive this bound, we will analyze the set of tasks that can preempt τk based on the

necessary conditions of task-preemption events, which we now establish.

4.5.3 Conditions of task-preemption events

The overhead that a task τk experiences come from its preemption events, which

are caused by the task-release and task-finish events of its higher-priority tasks.

A higher-priority task τi may preempt τk via either CPU and/or cache resources;

however, no task-preemption event of τk occurs if the number of cores is larger than

the number of tasks in the system and the number of cache partitions of the platform

is sufficient for all tasks. The next lemmas state the conditions of a preemption via

CPU and cache resources, respectively.
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Lemma 4.5. If a task τi preempts a task τk’s CPU resource at time t, then τi must

have higher priority than τk and the number of tasks with higher priority than τk

must be at least the total number of cores in the system, i.e.,
∑

j<k 1 ≥M .

Proof. Suppose the number of tasks with higher priority than τk is smaller than

M , there must exist a core that is either idle or executing a lower-priority task τl

(k < l) at time t. Then τi should either execute on the idle core or preempt the

CPU resource of τl instead of preempting the CPU resource of τk. This contradicts

the fact that τi preempts τk. Therefore, this lemma holds.

Lemma 4.6. If τi preempts τk’s cache resource at t, then τi must have higher priority

than τk and the total number of cache partitions of τj with j < k must be larger than

A− Ak, where A is the number of cache partitions of the cache.

Proof. Suppose
∑

j≤k |ECPj| ≤ A, the set of tasks whose priority are no smaller

than τk can reside in the cache at the same time without interfering each other.

Therefore, τi should not preempt τk’s cache resource. This contradicts to the fact

that τi preempts τk’s cache resource.

Let ρk and κk be the maximum sets of tasks that may preempt τk via CPU and

cache resources, respectively. Due to the above lemmas, we have:

ρk = {τi | i < k and
∑
j<k

1 ≥M} (4.2)

κk = {τi | i < k and
∑
j≤k

Aj > A} (4.3)

As a result, the set of tasks that may preempt τk via either CPU or cache or both

resources is ρk ∪ κk.

4.5.4 Overhead caused by a task-release event

Based on the established conditions of a task-preemption event of τk, we can analyze

the overhead of τk that is caused by one task-release event of a higher-priority task
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τi.

Observe that when τi releases a job at time t1, the cache partitions τi may access

and pollute are in ECPi. If τk is preempted at the task-release event of τi, τi can

directly evict all cache partitions in ECPi that τk may use in the worst case.

Further, another higher-priority task τj of τk may release a job at time t1 as well.

Although such a task-release event may also cause overhead to τk, this overhead will

be considered as the overhead caused by τj’s task-release events (rather than by τi’s).

Further, under gFPca, a lower-priority task τl may also pollute the cache partitions

of τk while τk is being preempted due to a task-release event of τi. However, not

every lower-priority task τl can pollute the cache partitions of τk.

Lemma 4.7. When a release-event of τi occurs, if τk is preempted but a lower-

priority task τl (k < l) either resumes from a preemption or releases a new job and

this job is executed, then the number of cache partitions of τl must be less than that

of τk, i.e., Al < Ak.

Proof. Suppose Al ≥ Ak and τk is preempted at t0 and resumes at t3, where t0 < t3.

Because τl starts running either by release a new job or resuming from preemption

during [t0, t3], τl must be able to acquire Al cache partitions and one core to run dur-

ing [t0, t3]. However, because Al ≥ Ak and l > k, τk should preempt τl and resumes

from preemption during [t0, t3] based on the gFPca scheduling. This contradicts to

the fact that τk is not running during [t0, t3].

Let φri,k denote the set of useful cache partitions of τk that may be polluted due

to a task-release event of τi. When a task-release event of τi occurs, there are three

scenarios: (1) τi does not preempt τk (as there are sufficient CPU and cache resources

for τi), in which case τk experiences no overhead due to this task-release event of τi;

(2) τi preempts τk by taking only τk’s CPU resource, in which case only the lower-

priority tasks of τk may pollute the UCPs of τk; and (3) τi preempts τk by taking

τk’s cache resource, in which case both τi and lower-priority tasks of τk may pollute
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the UCPs of τk. Therefore, φri,k can be calculated as follows:

φri,k =


UCPk ∩

(
ECPi ∪ ( ∪

k<l,Al<Ak
ECPl)

)
, if τi ∈ κk

UCPk ∩
(

∪
k<l,Al<Ak

ECPl
)
, if τi 6∈ κk ∧ τi ∈ ρk

∅, if τi 6∈ {κk ∪ ρk}

(4.4)

Given any two sets S1 and S2, we have |S1 ∪ S2| ≤ |S1| + |S2| and |S1 ∩ S2| ≤
min{|S1|, |S2|}. Hence,

|φri,k| ≤



min{|UCPk|, |ECPi|+
∑

k<l,Al<Ak

|ECPl|}, if τi ∈ κk

min{|UCPk|,
∑

k<l,Al<Ak

|ECPl|}, if τi 6∈ κk ∧ τi ∈ ρk

0, if τi 6∈ {κk ∪ ρk}

(4.5)

Denote by ∆r
i,k the overhead of τk that is caused by a task-release event of τi,

where i < k. Then,

∆r
i,k ≤ PRT · |φri,k|. (4.6)

4.5.5 Overhead caused by a task-finish event

When a task τi finishes its execution at time t2, the overhead that task τk may

experience due to this task-finish event falls into the following cases:

Case 1) τk is not running at t2: If τk finishes before or at t2, then clearly the

task-finish event causes no overhead to τk. If it has not finished its execution at t2,

this task-finish event also does not bring any overhead to τk, because even though τi

might have polluted τk’s cache before t2, the pollution is caused by other task-release

or task-finish events of τi and should be accounted in the cost of those events.

Case 2) τk is running at t2: If τk continues to run after t2, then it incurs no

overhead as it is not preempted. However, if τk is preempted at t2, then it must be

preempted by another higher-priority task τj that is resumed at t2 when τi finishes,
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in which case τj can access and pollute any cache partitions in ECPj. However, as

stated in the next two lemmas, at most one task τj with i < j < k can resume and

preempt τk at t2, and the number of cache partitions this task can access should be

more than that of τk.

Lemma 4.8. If a task τj, where i < j < k, resumes and preempts τk at a task-finish

event of τi, then Aj > Ak.

Proof. We will prove this lemma by contradiction. Suppose Aj ≤ Ak. Let the task-

finish event of τi occur at t2. Because τk is preempted by τj at t2 when τj resumes,

τk must be running at t2 − ε, where ε is an infinite small time interval. Because

Aj ≤ Ak and τk is running at t2 − ε, τj should preempt τk and resumes at t2 − ε

based on the gFPca scheduling. This contradicts to the fact that τj resumes at t2.

Hence, it is proved.

Lemma 4.9. There exists at most one task τj with i < j < k that can resume and

preempt τk at a task-finish event of τi.

Proof. Suppose there exist two tasks τj and τ ′j at the task-release event of τi at

t2, such that both tasks resume and preempt the low priority task τk. When a task

preempts another task, the preempting task has to acquire the cpu or cache partition

resource from the preempted task. Because both τj and τ ′j preempt τk at t2, both τj

and τ ′j should preempt parts of τk’s resource.

Suppose either τj or τ ′j does not preempt any cache partition resource from τk.

Either τj or τ ′j only preempts the cpu resource from τk. Then we can switch the cpu

used by τj and τ ′j so that the task that only preempts τk’s cpu resource will no longer

preempts any resource from τk. Because this reduces the number of preemption, the

gFPca scheduling will always choose to let only one such task preempt the τk in this

situation. Therefore, this situation contradicts to the hypothesis that both tasks

preempt τk.
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Suppose both τj and τ ′j preempt the cache partition resource from τk. τj acquires

Akj cache partitions from τj and Aj − Akj cache partitions from the system, and τ ′j

acquires Akj
′ cache partitions from τj and A′j −Akj

′ cache partitions from the system.

If Akj ≤ (A′j − Akj
′
), we can just let τj and τ ′j exchange Akj cache partitions so that

τj will have no cache partitions from τk. Therefore, τj will no longer preempt τk,

which contradicts to the fact that both τj and τ ′j preempts τk. If Akj > (A′j − Akj
′
),

then Akj + Akj
′
> A′j. Because Ak ≥ Akj + Akj

′, we have Ak > A′j. Because τ ′j
resumes and preempts τk at the task-finish event, A′j > Ak according to Lemma 4.8,

which contradicts to the fact Ak > A′j we derived from the hypothesis. Hence, it is

proved.

In addition, when τk is preempted, lower-priority tasks of τk may also resume or

release new jobs and these jobs are executed, and thus they may pollute the cache

partitions of τk. According to Lemma 4.7, only lower-priority tasks τl with k < l and

Al < Ak may pollute τk’s cache partitions while τk is being preempted. When a task

τj (i < j < k) resumes and preempts τk at the occurrence of the task-finish event

of τi, the set of useful cache partitions of τk that may be polluted, denoted by φfi,j,k,

is the same with the set of useful cache partition of τk that may be polluted at the

task-release event of τj. Therefore, φfi,j,k = φrj,k and the size of φfi,j,k is |φfi,j,k| = |φrj,k|.
Let ∆f

i,k denote the overhead of τk that is caused by a task-finish event of τi,

where i < k. Because any task τj ( i < j < k and Ak < Aj) may resume and

preempt τk at the task-finish event of τi, we obtain

∆f
i,k ≤ max

i<j<k,Ak<Aj
PRT · |φfi,j,k|. (4.7)

4.5.6 Overhead-aware schedulability analysis

In the previous sections, we have computed the maximum overhead that each task-

release event and each task-finish event of a higher-priority task τi causes to a lower-

priority task τk. To account for the overall overhead τk experiences, we need to
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compute the number of task-release and task-finish events of higher-priority tasks in

each period of τk.

Since each job of a task has one task-release event and one task-finish event,

it may seem at first that an upper bound on the total number of task-release and

task-finish events of all higher-priority tasks in the period of τk is
∑

i<k 2ddk
pi
e + 2.

While this bound is safe, it is not tight because not every task-release event or task-

finish event of each job of higher-priority tasks can cause overhead to τk, as stated

by Lemma 4.10.

Lemma 4.10. If a task τk is preempted at the release time t1 and again at the finish

time t2 of the same job of a higher-priority task τi, then τk must have been resumed

at some time t3 during the interval (t1, t2) when some other higher-priority task τj

(j < k) releases or finishes.

Proof. Because τk is preempted at t1, τk is running at t1−ε and not running at t1 +ε,

where ε is an infinite small time interval. Similarly, τk is running at t2 − ε and not

running at t2 + ε, since τk is preempted at t2. Because τk is not running at t1 + ε

but runs at t2− ε, where t1 < t2, τk must resume from the not-running status to the

running status during [t1 + ε, t2 − ε]. As discussed in Section 4.5.2, a task resumes

only when a task-release event or a task-finish event of a high priority task occurs.

It is proved.

Thus, instead of accounting for the overhead caused by each task-release and

each task-finish event of higher-priority tasks, we account for the overhead of τk that

is caused by each job of its higher-priority tasks in a period of τk, as follows:

If only one of the task-release and task-finish events of the same job of τi may

cause overhead to τk, the overhead caused by each job of τi is max{∆r
i,k,∆

f
i,k}. In

contrast, if both the task-release and task-finish events of the same job of τi may

cause overhead to τk, the maximum overhead of τk that is caused by each job of τi is

the total overhead caused by the task-release and task-finish events of the job minus
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the minimal overhead caused by the task-release event or the task-finish event of

a high-priority task τj (j < k and j 6= i), i.e., ∆r
i,k + ∆f

i,k − minj<k,j 6=i{∆r
j,k,∆

f
j,k}.

Hence, the overhead of τk that is caused by one job of a higher-priority task τi is

bounded by

δki
def
= max{∆r

i,k,∆
f
i,k,∆

r
i,k + ∆f

i,k − min
j<k,j 6=i

{∆r
j,k,∆

f
j,k}}.

Further, the number of jobs of τi in a period of τk that have both release and

finish events causing τk to resume is at most NI ki
def
= ddk

pi
e. Since the finish event of

the carry-in job of τi and the release event of the carry-out job of τi in a period of

τk may also lead to one task-resumption event of τk, we imply that the overhead of

τk that is caused by all of its higher-priority tasks is upper bounded by

δk =
k−1∑
i=1

δki · NI ki + ∆f
i,k + ∆r

i,k (4.8)

The overhead-aware analysis can now be done by first inflating the WCET of

each task τk with δk, and then applying the overhead-free analysis (Section 4.4) on

the inflated taskset.

Theorem 4.11. A taskset τ = {τ1, ..., τn}, where τk = (pk, ek, dk, Ak), is schedulable

under gFPca in the presence of cache overhead if τ ′ = {τ ′1, ..., τ ′n} satisfies Theo-

rem 4.2, where τ ′k = (pk, e
′
k, dk, Ak) and e′k = ek + δk for all 1 ≤ k ≤ n.

Proof. We will prove the theorem by contradiction. Suppose τ is unschedulable,

i.e., there exists τk that misses its deadline, in the presence of overhead. Then, the

maximum length of the busy interval of τk in the presence of overhead, denoted by

Bca
k , must be larger than dk − ek. Since e′i is a safe upper bound of the worst-case

execution time of τi in the presence of cache overhead for all 1 ≤ i ≤ n, the worst-

case demand of task τ ′i within a period of τ ′k in the absence of cache overhead is

greater than or equal to the worst-case demand of task τi within a period of τk in the
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presence of cache overhead. Similar to the proof of Theorem 4.3, we can therefore

establish that the maximum length of the busy interval of τ ′k in the absence of cache

overhead – i.e., the optimal solution B̂′k of the LP formulation for the task set τ ′

(c.f. Section 4.4) – is a safe upper bound of the length of the busy interval of τk in

the presence of overhead. Thus, B′k ≥ Bca
k > dk − ek, which in turn implies that τ ′

does not satisfy the schedulability conditions given by Theorem 4.2. This proves the

theorem.

4.5.7 Extension to other overhead types

Real-time tasks typically experience six major sources of overhead [22]: release,

scheduling, context-switching, IPI overhead, cache related preemption and migration

(CRPMD), and tick overheads. We specify the cost of each of these six overheads

as ∆rel,∆sched,∆cxs,∆ipi,∆crpmd, and ∆tick. Since the tick overhead is quite small

(< 11µs for 450 tasks on our board) and does not involve any scheduling-related

logic under all three (event-driven) schedulers (gFPca, nFPca, and gFP), we exclude

it from the analysis and focus on the other five types of overhead. (Our analysis

does not consider blocking overhead.) We first analyze the overhead when a task

executes alone, and then account for all types of preemption-related overhead. We

then perform WCET inflation, and apply the overhead-free schedulability analysis

on the inflated taskset. The overhead values of each scheduler are measured based

on our implementation.

Overhead accounting when a task executes alone. We observe that a task τk

always incurs one release overhead, one IPI delay overhead, one scheduling overhead,

and one context switch overhead, when it executes alone in the system under any of

the three schedulers. Therefore, the execution time ēk = ek+∆rel+∆ipi+∆sched+∆cxs

is a safe bound on the execution time ek of τk in the presence of the overhead when

the task executes alone.

Overhead accounting under gFPca. Fig. 4.5 illustrates the preemption-related

109



Figure 4.5: Overhead scenario when four tasks, τ1 � τ2 � τ3 � τ4, are scheduled
under gFPca on three cores. Task τ1, which requires all system’s cache partitions,
releases a job and preempts τ2, τ3 and τ4 at t1. When τ1 finishes execution at t3,
the other three tasks resume. Note that the cost of the context switch overhead
and the CRPMD overhead depends on the task that releases a new job or that
resumes.

overhead under gFPca. We observe that at each task-resumption event of τk, τk ex-

periences all three types of overhead, CPRMD, scheduling, and context switch once.

Hence, we can account for preemption-related scheduling and context switch over-

heads using the same approach as the CRPMD overhead accounting in Section 4.5.

Specifically, the number of task-resumption events of a task τk in each of its period

is bounded by NRk =
∑k−1

i=1 (ddk
pi
e+ 2). The total preemption-related scheduling and

context switch overhead is thus at most γk = NRk × (∆sched + ∆cxs). Hence, the

execution time of τi with all five overhead types is bounded by

e′k = ek + ∆rel + ∆ipi + ∆sched + ∆cxs + δk + γk. (4.9)

Overhead accounting under gFP. When a preemption event of τk occurs un-

der gFP, τk incurs one scheduling overhead, one context switch overhead, and one

CRPMD overhead, similar to the preemption-related overhead scenario under gEDF

shown in [22]. Since gFP does not provide cache isolation, concurrently running tasks

may still evict out the cache content of each other. Since it is difficult to predict
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or analyze which cache content of a task may be evicted out by another currently

running task, we assume all cache accesses incur cache misses to safely account for

the shared-cache overhead under gFP. Let αk be the fraction of the WCET of a task

τk that is spent on cache hit without the shared-cache interference, and hit_latency

and miss_latency be the cache hit and miss latency of the shared cache, then the

shared-cache overhead of τk under gFP is

δk = d(αk × ek)/hit_latencye × (miss_latency − hit_latency)

Therefore, the inflated execution time of τk that accounts for five types of over-

head is bounded by

e′k = ek + ∆rel + ∆ipi + 2×∆sched + 2×∆cxs + ∆crpmd + δk (4.10)

Overhead accounting under nFPca. Because no preemption occurs under nFPca,

the WCET of each task τk that accounts for all five types of overhead under nFPca

is bounded by e′k = ek + ∆rel + ∆ipi + ∆sched + ∆cxs.

Overhead-aware analysis. For each scheduler (i.e., gFPca, nFPca and gFP), the

overhead-aware analysis can now be achieved by applying its overhead-free analysis

to the inflated taskset with the inflated WCET computed above.

4.6 Numerical evaluation

Our evaluation was based on randomly generated real-time workloads and our imple-

mentation platform, which has four cores and a 1MB shared cache that is partitioned

into 16 equal partitions. We had two main objectives: (1) Evaluate the accuracy of

the overhead-aware analysis for gFPca, by comparing to the overhead-free analysis

and a baseline overhead-aware analysis; intuitively, the closer the overhead-aware

schedulability results are to the overhead-free schedulability results, the closer the
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overhead accounting is to an optimal overhead accounting method. (2) Investigate

the performance of gFPca in comparison to gFP and nFPca.

4.6.1 Baseline Analysis

For the baseline, since no existing overhead-aware analysis can be directly applied to

gFPca, we used an extension of existing approach that works as follows: first inflates

the WCET of each task τi (i > 1) with the total overhead it experiences during an

entire execution of a job and then applies gFPca’s overhead-free analysis.

This baseline method performs WCET inflation based on the cache overhead

∆i that each task τi incurs upon resuming from a preemption. However, instead

of inflating the WCET of each high-priority task with the maximum of one cache

overhead of its lower-priority tasks (which is unsafe), it inflates the WCET of each

τi with its total cache overhead (i.e., the overhead it experiences during the entire

execution of a job).

Computing the total overhead of τi: The cache overhead that τi experiences

when it resumes from a preemption is upper bounded by ∆i ≤ PRT× |UCPi|. Since
a cache partition of τi may be evicted from the cache only when another task τj uses

the same cache partition, we can tighten ∆i by considering the cache partitions used

by other tasks:

Lemma 4.12. The cache overhead a task τi experiences when it resumes from

one preemption is upper bounded by ∆i = PRT × |UCPi ∩ ∪j 6=iECPj| ≤ PRT ×
min{|UCPi|,

∑
j 6=i |ECPj|}.

Proof. When a task τi is preempted, any other executing task τj may access and

pollute the cache partitions in ECPj that may be used later by τi.

If | ∪j 6=i ECPj| ≥ A, then the other tasks may collectively evict out all cache

partitions of the cache. Therefore, |UCPi ∩ ∪j 6=iECPj| = |UCPi|. Because ∆i ≤
PRT × |UCPi|, the lemma holds.
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If | ∪j 6=i ECPj| < A, then the cache partitions of all tasks except for τi can be

accommodated in the cache. Each job of τj will always use the cache partitions in

ECPj, because the latter job of τj may benefit from the cache partitions loaded by

the previous job of τj. Therefore, the set of cache partitions of the task set ∪j 6=i{τj}
is ∪j 6=iECPj. Because a useful cache partition of τi will not be evicted unless the

same cache partition is used by other tasks when τi is not executing, the maximum

number of useful cache partitions of τi that may be evicted during the preemption

of τi is upper bounded by |UCPi ∩ ∪j 6=iECPj|. The maximum cache overhead τi

experiences when it resumes is PRT× |UCPi ∩ ∪j 6=iECPj|.
Given two sets A and B, we have |A∪B| ≤ |A|+ |B| and |A∩B| ≤ min{|A|, |B|}.

Therefore, it is easy to derive that ∆i ≤ PRT×min{|UCPi|,
∑

j 6=i |ECPj|}.

To bound the total cache overhead of τi, we next derive the maximum number of

times that τi resumes (i.e., number of resumption events of τi) in each job’s execution.

Lemma 4.13. A task τi resumes only when one of the following two events hap-

pens: a higher-priority task of τi finishes its execution, or a higher-priority task of

τi releases a new job.

Proof. A task τi resumes only when τi can acquire the CPU or cache resource that

were preempted by higher-priority tasks. A higher-priority task τl can release the

CPU and/or cache resource to τi when it finishes its execution or when it releases a

new job and preempts a medium-priority task, which will then release the resources

that τi needs. Although there exist other two cache-related task events in the system,

i.e., the task-preemption event and the task-migration event, neither of them is the

source event that may release the CPU or cache resource to τi. Hence, the lemma

holds.

Lemma 4.14. The maximum number of task-resumption events of τi during each

period is at most NS i =
∑

j<i 2d dipj e+ 2.
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Figure 4.6: Task resumption event is caused by task release event or task
finish event

Proof. Suppose a taskset τ = {τ1 = (7, 1, 7, 2), τ2 = (8, 1.7, 8.3), τ3 = (10, 1.8, 10, 2)}
is scheduled by the gFPca algorithm on a platform with two cores and four cache

partitions. The release and scheduling patterns of the three tasks are illustrated in

Fig. 4.6. Under gFPca, the priority order of the three tasks is τ1 > τ2 > τ3.

As illustrated in the figure, task τ3 resumes at t = 2 when the higher-priority

task τ1 releases a new job and at t = 4 when the higher-priority task τ2 finishes its

execution. We observe that both the task-release event and the task-finish event of

a higher-priority task may cause τi to resume from a preemption.

Based on this observation, the number of task-resumption events of τi will be

no more than the total number of task-release events and task-finish events of its

higher-priority tasks. Because a higher-priority task τj has at most d di
pj
e jobs whose

release time and finish time are in the problem window of τi, one carry-in job whose

finish time is in the problem window of τi, and one carry-out job whose release time is

114



Figure 4.7: Number of task resumption event in worst case

in the problem window of τi (based on the worst-case scenario in Fig. 4.7), the total

number of the task-resumption events of τi in each of its periods is upper bounded by

2d di
pj
e+ 2. By combining the number of task-resumption events of τi that are caused

by each higher-priority task in the problem window of τi, we obtain the lemma.

Since τi only incurs (extrinsic) cache overhead whenever it resumes, the total

overhead of τi is therefore at most NS i ×∆i.

Overhead-aware analysis: Since the total overhead of τi is at most NS i×∆i, the

WCET of τi in the presence of cache overhead is at most e′i = ei + NS i ×∆i. As a

result, the overhead-aware analysis can be established by applying the overhead-free

analysis on the inflated workload.

4.6.2 Experiment setup

Workload. Each workload contained a set of randomly generated implicit-deadline

sporadic task sets. The tasks’ utilizations followed the uniform distribution within

the range [0.5, 0.9] as used in [66] [74]. The number of ECPs of a task was uniformly

distributed in [1, 8] by default. The number of UCPs was set equal to the number of

ECPs (i.e., we considered the conservative case of our theory, where the UCPs and

ECPs of a task are the same).

Overhead values. For the CRPMD overhead, the latency of reloading one cache

line measured on our board was 90.89ns. The size of each cache line is 32B, and

thus each cache partition has 1MB
32B×16

= 2048 cache lines. Hence, it takes at most
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Figure 4.8: Analysis accuracy

90.89ns × 2048 ≤ 0.19ms to reload one cache partition. Hence, we set the cache

partition reloading time PRT = 0.19ms.

We measured the remaining overheads for each scheduler (gFPca, nFPca, gFP),

and used monotonic piece-wise linear interpolation to derive the upper-bounds of

each overhead under each scheduler as a function of the taskset size. For gFPca,

the context switch overhead also includes the overhead for (re)assigning cache parti-

tions, which we derived from the measured maximum latency of flushing one cache

partition. (Details of the overhead values are available in [71]).

4.6.3 Evaluation of the overhead-aware analysis

We generated 4000 tasksets with taskset utilization ranging from 0.1 to 4, with a step

of 0.1. For each taskset utilization, there were 100 independently generated tasksets;

the task utilizations were uniformly distributed in [0.5, 0.9]; the task periods were

uniformly distributed in [10, 40]ms. (These parameters followed existing work such

as [66] [74].) Fig. 4.8 shows the fraction of schedulable tasksets under each analysis.

The results show that our overhead-aware analysis (shown as gFPca) is substan-

tially tighter than the baseline; for example, when the taskset utilization is 2.5, the
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Figure 4.9: Generic.

baseline analysis claimed that only 5% of the tasksets are schedulable, even though

64% of the tasksets are schedulable under our overhead-aware analysis.

The results also show that the fractions of schedulable tasksets under our overhead-

aware analysis and the overhead-free analysis are very close across all taskset utiliza-

tions. This means that our overhead-accounting technique is very close to an optimal

overhead-accounting technique, which can be explained from its novel strategies for

bounding the overhead.

We also evaluated the impacts of core and cache configurations, and the results

further confirm these observations.

4.6.4 Evaluation of gFPca’s performance.

We generated 4000 tasksets as before. The number of cache partitions of each task

was uniformly distributed in [1, 12]. The period range that each task chooses was

uniformly distributed in [550, 650] (this was chosen based on [41]). We analyzed the

schedulability of each taskset under gFPca, nFPca, and gFP.
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Cache access information for gFP analysis. The overhead-aware analysis for gFP

needs to consider the shared cache interference among concurrent tasks (which are

eliminated in gFPca and nFPca). We derived the overhead that a task experiences

from the cache hit latency (55.77ns), miss latency (146.66ns), and the hit_time_ratio

of the task (i.e., the ratio of the time it spends on cache hit accesses to its execu-

tion time when executing alone). To generate different cache access scenarios, the

hit_time_ratio of tasks was uniformly distributed in [0.1, 0.3] (cache light), (0.3,

0.6] (cache medium), and (0.6, 0.9] (cache heavy). The generated hit_time_ratio

values were then used for the analysis under gFP.

Fig. 4.9 shows the fractions of schedulable tasksets under each algorithm. The

lines with the labels gFP-H, gFP-M and gFP-L represent the results under gFP for

the cache light, cache medium, and cache heavy scenarios, respectively.

Benefits of cache-aware scheduling: As Fig. 4.9 shows, both gFPca and nFPca

perform much better than the cache-agnostic gFP under the cache medium and cache

heavy configurations, and for most taskset utilizations under the cache light config-

uration. This is expected, because gFP does not protect concurrently running tasks

from cache interference, which is more obvious for more cache-intensive workloads.

On the contrary, both gFPca and nFPca mitigate such interference via cache par-

titioning and cache-aware scheduling, and thus they can significantly improve the

schedulability of the tasksets.

Comparing the fractions of schedulable tasksets under gFP when the generated

hit_time_ratio of tasks is in the cache light, cache medium and cache heavy sce-

narios, we observe that as the hit_time_ratio of tasks increases, the performance of

gFP decreases. One reason for this trend is that tasks with a larger hit_time_ratio

have more cache hit accesses when they execute alone, and hence they are more

sensitive to the shared cache interference under gFP. Note that under gFP, we had

to assume every cache hit access when it executes alone may be polluted by tasks

running concurrently on other cores when it is scheduled with other tasks; therefore,
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Figure 4.10: nFPca-favor.
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Figure 4.11: nFPca-oppose.

a higher number of cache hit accesses leads to a larger extrinsic cache overhead.

Benefits of gFPca over nFPca: We observe in Fig. 4.9 that gFPca outperforms

nFPca in terms of the fraction of schedulable tasksets across all but one taskset

utilizations. This is because gFPca avoids undesirable priority inversions and allows

low-priority tasks to execute if high-priority tasks are unable to, and thus it utilizes

the system’s resources better.

The number of cache partitions and task priority relation: Because nFPca

does not allow lower-priority tasks to execute when any higher-priority task is blocked

by cache resource, it performs better on tasksets in which higher-priority tasks re-

quire a smaller number of cache partitions and worse on tasksets in which higher-

priority tasks require a higher number of cache partitions. Recall that the maxi-

mum number of partitions a task can have is 12. To investigate the impact of the

relation between the number of cache partitions and the task priority on the per-

formance of the algorithms, we generated two kinds of tasksets: (1) the so-called

nFPca-favor tasksets (i.e., tasksets that favor nFPca in comparison to gFPca), which

have |Ai| = b pi−min_period
max_period−min_period ·12c for each τi, and (2) the so-called nFPca-oppose

tasksets, in which |Ai| = b12 − (pi−min_period)·12

max_period−min_periodc for each τi. Other parameters
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of the tasks were generated in the same manner as above.

The fractions of schedulable tasksets are shown in Fig. 4.10 and 4.11. On the

nFPca-favor tasksets, nFPca performs better than gFPca but only slightly, although

the tasksets favor nFPca. We attributed this to the work-conserving nature of gFPca,

which allows it to better utilize the system’s resource. In contrast, the results in

Fig. 4.11 show that gFPca can schedule many more tasksets than nFPca does on

the nFPca-oppose tasksets. We also observe that the performance improvement that

gFPca achieves over nFPca increases as the tasksets move from the nFPca-favor to

the nFPca-oppose, i.e., as the number of cache partitions used by the higher-priority

tasks increases.

4.7 Empirical evaluation

We used synthetic workloads to illustrate the applicability and benefits of gFPca

based on our implementation platform (with four cores, 16 cache partitions). We

focused on tasks that are sensitive to shared cache interferences (for which cache iso-

lation is critical), and evaluated four algorithms: gFP (cache-agnostic global schedul-

ing), pFP (partitioned scheduling with static core-level cache allocation), nFPca

(cache-aware non-preemptive global scheduling with dynamic task-level cache alloca-

tion), and gFPca (cache-aware preemptive global scheduling with dynamic job-level

cache allocation).

Workload generation. We first constructed two real-time programs in our imple-

mentation: the first randomly accesses every 32 bytes (the size of a cache line) in

a 960KB array for 200 times, which was used for the highest-priority task; and the

second randomly accesses every 32 bytes in a 192KB array for 2000 times, which

was used for each lower-priority task. We separately measured the WCET of each

program under the gFPca scheduler when it was allocated different numbers of cache

partitions; the results are shown in Fig. 4.12.

120



We then constructed a reference taskset τref with n = 5 tasks, with τ1 � τ2 �
· · · � τn, where τ1 = (p1 = 5000, d1 = 500) and τi = (pi = 5000, di = 1550) for all

1 < i ≤ n. (We observed similar results when varying the number of tasks.)
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Figure 4.12: Measured WCET vs. Number of cache partitions.

Analysis of WCET and the number of cache partitions. Fig. 4.12 shows

that the WCET of τ1 is 430ms with 16 cache partitions and 501ms with 15 cache

partitions. Since its deadline is 500ms, τ1 needs all 16 cache partitions to meet its

deadline. Each lower-priority task has a WCET of 800ms with 4 cache partitions,

a WCET of 1059ms with 3 cache partitions and a WCET of 1958ms with 0 cache

partition.

From the above analysis, we could feasibly assign the number of partitions of

each task under gFPca and nFPca, i.e., A1 = 16 and Ai = 4 (i > 1). We set the

WCET of each task to be an upper bound of the WCET measured under the assigned

number of partitions19, i.e., e1 = 500 and ei = 1050; this was used in our experiment

investigating the impact of task density. (Note that, these WCETs are safe under

gFP as well, since gFP allows every task to access the entire cache.)
19The upper bound is to account for potential sources of interference, such as TLB overhead, and

variable actual program execution time.
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Observation: No feasible static partitioning strategy exists. Under pFP,

tasks are statically assigned to cores (e.g., as done in [36, 65]) and shared-cache

isolation is achieved among tasks on different cores via static cache partitioning.

However, this static approach cannot schedule the example workload. Specifically,

since τ1 requires all of 16 cache partitions to meet its deadline, if we allocate less

than 16 partitions to its core, then it will miss its deadline. If we allocate all 16

cache partitions to τ1’s core, then either (i) some lower-priority task will have zero

cache partition (if it is assigned to a different core) and will miss its deadline, or

(ii) all tasks must be packed onto the same core as τ1’s, in which case the taskset

is unschedulable (since the core utilization is more than 1). In other words, no

partitioning strategy exists for the workload.

Experiment. The reference taskset illustrates the scenario where the high-priority

task has a very high density (ratio of WCET to deadline) and thus is extremely

sensitive to interference. To investigate the impact of task density on the performance

of the algorithms, we varied the density of τ1 from 1 to 0.1 by increasing its deadline

(while keeping all the other parameters unchanged), which produced 10 tasksets. The

number of cache partitions were assigned for gFPca and nFPca as above (A1 = 16

and Ai = 4, with i > 1). Although our analysis shows that no feasible partitioning

strategy exists for pFP, for validation we evenly distributed four low-priority tasks

and 16 cache partitions to the four cores, and assigned τ1 to any of the four cores.

We ran each generated taskset for one minute under each of the four schedulers

(gFPca, nFPca, gFP, pFP) schedulers, collected their scheduling traces, and derived

the observed schedulability under each scheduler.

Table 4.2: Impact of task density on schedulability.

Density ≥ 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
gFPca Yes Yes Yes Yes Yes Yes Yes Yes
gFP No No Yes Yes Yes Yes Yes Yes
nFPca No No No No No No No Yes
pFP No No No No No No No No
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Results. Table 4.2 shows the observed schedulability of each taskset under each

scheduler. The results show that the gFPca scheduler performed best: it was able

to schedule all tasksets. The gFP scheduler performed well when the high-priority

task’s density is low; however, as the task’s deadline becomes tighter, its tolerance

to cache interference from other tasks is decreased, and thus it began to miss its

deadline. The results also show that the nFPca scheduler performed very poorly –

it was able to schedule only one taskset; we attribute this to its poor utilization of

cache and CPU resources due to its non-preemptive nature. As predicted in our

analysis, the pFP scheduler could not schedule any tasksets.

4.8 Conclusion

We have presented the design, implementation and analysis of gFPca, a cache-aware

global preemptive fixed-priority scheduling algorithm with dynamic cache allocation.

Our implementation has reasonable run-time overhead, and our overhead analysis in-

tegrates several novel ideas that enable highly accurate analysis results. Our numer-

ical evaluation, using overhead data from real measurements on our implementation,

shows that gFP improves schedulability substantially compared to the cache-agnostic

gFP, and it outperforms the existing cache-aware nFPca in most cases. Through our

empirical evaluation, we illustrated the applicability and benefits of gFPca. For fu-

ture work, we plan to enhance both gFPca and its implementation to improve their

efficiency and performance.
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Chapter 5

Dynamic shared cache management

for virtualization systems by

virtualizing Intel CAT

We have developed the shared-cache management and analysis solution for non-

virtualization systems to allocate non-overlapped cache partitions to tasks; we now

explore the solution for virtualization systems. The natural question one may ask

is: can we simply apply the shared cache management solution developed for non-

virtualized systems in Chapter 4 to the hypervisor for mitigating the shared-cache

interference in virtualization systems? The shared cache management solution can

be applied to the hypervisor to allocate the shared cache partitions to VMs, but

tasks within the same VM still use the same cache area allocated to the VM and

will still suffer from the shared-cache interference.

In order to mitigate the shared-cache interference, concurrently running tasks

must be allocated with non-overlapped cache areas. Recall that resources are dis-

tributed hierarchically in virtualization systems: a type of hardware resource (say

CPU resource) is first distributed to VMs by the hypervisor and then redistributed to

tasks by OS in VMs. Observing that cache is not managed in virtualization systems,
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we need to establish a hierarchical cache allocation framework in order to allocate

non-overlapped cache areas for tasks in virtualization systems.

Recent work has developed a hierarchical cache allocation framework for allo-

cating non-overlapped cache areas for tasks in virtualization systems using page

coloring (e.g., [75, 37]); however, it is restricted to static cache partitioning, where

a fixed set of partitions is statically assigned to each task at initialization. While

this approach is simple and easy to implement, it can substantially under-utilize the

cache and CPU resources, and it does not work well for systems where the tasks’

timing constraints and CPU/cache demands vary dynamically at run time, such as

in multi-mode systems (as we shall illustrate in Section 5.4.4).

To bridge this gap, we present a new approach to cache management of real-time

virtualization systems that can deliver strong (shared) cache isolation at both VM

and task levels, and that can be configured for both static and dynamic allocations.

Unlike existing work, which is software-based, our approach takes advantage of the

Cache Allocation Technology (CAT), a hardware feature recently added in Intel

multicore hardware for achieving core-level cache partitioning; therefore, it is much

more efficient than software-based techniques. Since CAT only provides core-level

cache isolation, we introduce vCAT, a novel design for CAT virtualization that can

be used to achieve hypervisor- and VM-level cache allocations. Our approach to

virtualizing cache partitions is analogous to memory virtualization: as the hardware

provides a number of (indistinguishable) physical partitions, we can expose some

number of “virtual partitions” to each VM and then transparently map them to

physical partitions in the hypervisor; each VM can then allocate its virtual partitions

to its tasks statically or dynamically at runtime.
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5.1 Experimental study of Intel Cache Allocation

Technology (CAT)

The Intel’s CAT is a new hardware feature that allows the OS or hypervisor to

control the allocation of the shared last-level cache to the physical cores. In this

section, we present a study of its behavior in the current hardware, and highlight its

implications on the design of CAT virtualization. Our study was performed using

the Intel MSR tool [3] on an Intel Xeon E5-2618L v3 processor, which has a 20MB

shared cache.

5.1.1 Background on CAT

The CAT divides the shared cache into N non-overlapped equal-size cache partitions;

for instance, N = 20 for our experimental platform. A set of such cache partitions

(specified as an N -bit mask) can be allocated to a CPU (core) by programming two

model-specific registers: (1) The Class of Service (COS) register, which has an N -bit

Capacity Bitmask (CBM) field to specify a particular cache partition set, and (2)

the CPU’s IA32_PQR_ASSOC (PQR) register, which has a COS field for linking

a particular COS to the CPU; when this field is set to the ID of a COS register,

CAT enforces that all cache allocation requests from the CPU will only happen in

the cache partitions specified by the CBM of that COS register. For example, to

allocate partitions 0 to 3 to a CPU, we set 1’s for the bits 0 to 3 (and zeroing the

remaining) of the CBM field of the associated COS register.

We conducted a series of experiments to validate the operation of the Intel’s CAT.

Our experiments confirmed that the Intel’s CAT specification is correct in stating

the following constraints and in the way CAT works as advertised: (1) The current

CAT implementations only support an allocation with at least two partitions; (2)

the number of cache partitions per CPU should not exceed the number of available

partitions (which varies across processors); and (3) the partition set of a CPU can
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only be made of contiguous cache partitions.

5.1.2 Effects of cache partition configuration on WCET

To validate that any combination of contiguous partitions with the same number

of partitions has the same effect on the task’s worst-case execution time (WCET),

we constructed a task that sequentially accesses every 64 bytes in a 1MB array

for 100 times, and executed the task alone on a CPU. We enumerated all possible

combinations of two contiguous partitions; for each combination, we allocated the

corresponding partitions to the CPU, and measured the WCET of the task across

25 runs. The results show the same WCET for the task with the same array across

all combinations.

Finding 5.1. Any set of contiguous partitions with the same number of partitions

have the same effect on WCET.

5.1.3 Cache lookup control

Under dynamic cache allocations, the partitions allocated to a task can change over

time. When this happens, the task should only be allowed to access the cache lines

in the newly assigned partitions and not the old ones. The CAT ensures that the

task’s new cache allocations (which happen in cases of cache misses) will happen in

the new partitions, but the SDM does not specify the CAT behavior for cache lookup

requests (which happen in cases of cache hits), which suggests that a task may still

be able to read from the old partitions. If so, the task can interfere with another

task that is currently using the old partitions. To examine whether CAT controls the

cache lookup requests, we performed the following experiment using the Intel MSR

tool on Linux 3.10.31 on our implementation platform, which has 20 cache partitions

of size 1MB each.

Experiment. We reserved cache partitions 0–7 (CBM bitmask 0×000FF) to CPU1
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Figure 5.1: No cache lookup control in CAT.

and partitions 8–15 (CBM bitmask 0×0FF00) to CPU2. We flushed the entire

cache initially, and mitigated potential interference to CPU1 and CPU2 by moving

all system services to the remaining cores and assigning to them the remaining

partitions (partitions 16–19). We created a periodic task that sequentially accesses

a 4MB array. We executed the first 10 jobs of the task on CPU1; upon completion,

we migrated it to CPU2 and continued its execution until completing the next 10

jobs. Using the Intel Cache Monitoring Technology [1], we measured the occupied

cache size in each CPU’s cache partition set when each job finished.

Results. As shown in Fig. 5.1(a), the size of the occupied cache in CPU1’s partitions

is always approximately the same as the array size (4MB), whereas the size of the

occupied cache in CPU2’s partitions is close to zero, even when the task executed on

CPU2. This can be explained as follows. When the first job accessed the array, it

experienced compulsory cache misses and thus was allocated cache lines in CPU1’s

partitions (as enforced by CAT). However, since the entire task’s array (4MB) fits

within CPU1’s partitions (8MB), the subsequent jobs would experience cache hits

and access the array directly from these partitions. Our experimental results show

that this happened even when the task was already migrated to CPU2 (and should

no longer use CPU1’s partitions), which shows that CAT does not control the cache

lookup.
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Finding 5.2. The CAT does not control cache lookup requests, and thus does not

guarantee that cache accesses happen only in the currently assigned partitions.

Challenge. Due to the lack of cache lookup control, when a partition that was

owned by a task A is re-assigned to a task B, the previous cached items of A in this

partition are simply looked up as before. As a result, if B (the current owner) does

not happen to evict these cached items of A from the partition, then A will continue

to reference its cached items in B’s partition.

To ensure that tasks have complete control of their partitions, in certain situations

it is necessary to flush the content of a task in its old partitions when the task’s

partitions are changed. Our CAT virtualization uses this approach for real-time

tasks, thus providing strong isolation among them. Our design also supports shared

partitions (disjoint from those of real-time tasks) for best-effort tasks, where tasks

can share the same set of partitions and no flushing is necessary.

Validation. To validate the effect of flushing, we performed the same experiment as

above, except that we flushed the cache immediately after migrating the task from

CPU1 to CPU2. As shown in Fig. 5.1(b), the size of the occupied cache in CPU1’s

partitions is dropped to nearly zero as soon as the task migrates to CPU2, whereas

the size of occupied cache in CPU2’s partitions increased to 4MB. This confirms

that, with flushing, the task only accesses its newly assigned partitions.

5.2 CAT virtualization design

In this section, we describe the design of vCAT, as well as the necessary changes to

the guest kernel and the hypervisor.

5.2.1 Overview and roadmap

At a high level, our approach to virtualizing cache partitions is similar to classical

virtual memory; however, there are also several important differences. We begin

129



0	 1	0	 1	 2	 3	 4	 5	

Hardware 

ID 

0	 1	 2	 3	

VM1 (Most critical) 
Global CPU scheduling 

0	 1	 2	 3	

VM2 (Medium critical) 
Partitioned CPU scheduling 

VM3 (Low critical) 
Global CPU scheduling 

VM4 (Best effort) 
Global CPU scheduling 

s	 s	

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 2 2 2 2 3 3 3 3 4 4 

s	 s	

VM 

Tasks 

VMM 

OS 

 T1      T2       T3 

 T1 

 T2 

 T3 

 T4 
 T1       T2       T3  T1       T2       T3 

Physical 
partitions 

Virtual 
partitions 

2 

2 2	

2	

2 

2	 2	

2	 4	 4	

Figure 5.2: Dynamic cache management with CAT virtualization. Tasks
in green (white) are currently running (waiting). Partitions in orange
(yellow) are isolated (shared) partitions.

with the similarities: the hardware provides a fixed number of physical cache parti-

tions that can be allocated to tasks, just like it provides a fixed number of physical

memory pages, and—just like physical memory pages—the individual partitions are

indistinguishable from each other, so it should not matter to a task which specific

partitions it is using. Thus, we can simply expose some number of “virtual par-

titions” to each VM (Section 5.2.2) and then transparently map them to physical

partitions in the hypervisor, using a data structure that somewhat resembles a page

table (Section 5.2.3), and each VM can then allocate its virtual partitions to tasks

dynamically at run time (Section 5.2.4). Fig. 5.2 shows an example of a system with

CAT virtualization.

However, there are also two key differences. First, although cache partitions

can be “preempted” just like physical pages the hypervisor needs not – and, indeed,

cannot – save the contents of the partition it is preempting. Instead, it can rely on

the tasks to repopulate the partitions they are being assigned. Second, the CAT

specification contains a requirement that allocations are contiguous. This needs to

be taken into account when allocating partitions, and it requires a procedure for

handling partition fragmentation (Section 5.2.5).

The technical approach is similar to virtual memory: allocations are enforced at
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a per-core level, using the COS registers, just like each core has a separate page-

directory base register (CR3), and the hypervisor is able to request traps on accesses

to these registers to perform a “partition context switch” (Section 5.2.6). When the

hypervisor or guest kernel changes the partition allocations to the VMs or tasks, it

may need to flush the partitions if necessary (Section 5.2.7).

5.2.2 API changes

In order to implement a virtual CAT, we need to make four changes to the API: (1)

the VMM must be able to tell the guest kernel how many partitions are available;

(2) tasks must be able to request partitions from the guest kernel; (3) the guest must

have a way to report the allocation, as well as any changes, to the VMM; and (4)

the operator must have a way to control how partitions are divided up between the

various VMs and to set/modify the mapping from virtual to physical partitions for

each VM. We describe each in turn.

Since the hardware already contains a mechanism for reporting the number of

available partitions (via the cpuid instruction), we can simply repurpose this mech-

anism to achieve the first goal: the hypervisor can trap on the cpuid instruction

– which Xen already does – and change the relevant value. We do not see a good

reason for reporting more partitions than are physically available, but there may

be good reasons to report fewer, e.g., if the operator has divided up the available

partitions between multiple VMs. If the guest kernel were to allocate more virtual

partitions than the hypervisor is willing to give it, this would lead to many expensive

preemptions, so it may be preferable to report the smaller number right away.

The current Linux API does not contain a system call for requesting cache par-

titions, so we added a call of our own that simply takes a requested number of

partitions as its argument. Taking a COS-style bitmask seemed unnecessary be-

cause a task should not need to know which specific partitions it is being given –

much like a task normally should not need to know which physical memory pages it
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is using.

We achieve the third goal by providing virtual COS registers. Thus, the guest

kernel can use the same procedure to allocate partitions, whether it is running in a

VM or on bare hardware. A hypercall could be added if the guest needs to commu-

nicate richer information to the VMM, e.g., to request a temporary increase in the

number of partitions it can use.

To achieve the fourth goal, we added several hypercalls that can influence the

partition-to-VM allocation (which we describe next), and we provided a small command-

line utility for the operator to use.

5.2.3 Hypervisor-level partition allocation

When allocating partitions to VMs, the hypervisor can take three basic approaches:

first, it can divide up the available physical partitions, which guarantees each VM

that its partitions will not need to be preempted; second, it can allow the partitions

to become oversubscribed, which can lead to preemptions; or, third, it can allow

partitions to be transparently shared between VMs. The first two options are similar

to physical memory, whereas the third is unique to the cache.

The first approach is clearly preferable for tasks and VMs with strict real-time

requirements, since it achieves very good isolation; however, given the very small

number of partitions that are available on current CPUs, it seems practical for only

the most critical tasks and VMs (e.g., VM1 in Fig. 5.2). We expect the second

approach to be the default choice (e.g., VM2 and VM3 in Fig. 5.2). The third

approach could be used for best-effort tasks: for instance, the operator could reserve

15 of the 20 partitions for hard real-time tasks and share the remaining five among

all the non-real-time tasks. This would prevent the latter from interfering with the

former. In Fig. 5.2, this approach was used for tasks in VM4.

Internally, the hypervisor requires only two data structures to implement these

policies: (1) for each VM i, a mapping from virtual partition numbers v to physical
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partition numbers Pi(v), and (2) a flag for each physical partition to indicate whether

the partition is shared. For example, the system in Fig. 5.2 set the shared flags

(denoted as S in the figure) for partitions 12 and 13. In Section 5.2.6, we describe

how these data structures are used during a partition context switch.

To meet the CAT specification, we enforce that the number of partitions allo-

cated to each VM i must be at least two, and the partition numbers Pi(v) must

be contiguous. In our current prototype, these data structures must be configured

manually by the operator. (The operator can use the provided utility to modify

these data structures at run time, e.g., when a new VM is created or an existing

VM is destroyed.) However, we note that there is a rich literature on working-set

estimation [79, 28] and on memory management for real-time tasks [34, 50], which

can be adapted for use with cache partitions.

5.2.4 Guest-level partition allocation

Just like the hypervisor, the guest kernel must allocate the available partitions to

its tasks, based on the requests they have made. However, unlike the partition-

to-VM allocation which does not change frequently, the partition-to-task allocation

is done dynamically as tasks are scheduled. In our prototype, we simply allocate

the partitions to real-time tasks based on either a first-come-first-served basis or

criticality, and we share any unallocated partitions among all the best effort tasks.

Since allocating zero partitions would effectively disable the cache, which would lead

to an enormous slowdown, the kernel reserves a small number of partitions for these

tasks and does not allow these partitions to be reserved by the real-time tasks. The

kernel always allocates at least two, and always contiguous, virtual partitions to a

task.
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5.2.5 Partition defragmentation

Although future hardware may no longer need the contiguous partition allocations,

current hardware does. This raises the possibility of “partition fragmentation”: it

could be that there are k total partitions available but not with contiguous partition

numbers, which would prevent a request for k partitions from being satisfied at that

point. This problem can appear both in the hypervisor and in the guest kernel.

However, there is an easy way to fix this problem when it appears: the kernel

or hypervisor can “defragment” the partitions by preempting some allocations and

by replacing them with others, so that the unallocated partition numbers are again

contiguous. The caveat is that this can cause a temporary loss of performance as the

tasks are repopulating their preempted partitions, which can lead to deadline misses.

This can be alleviated somewhat by moving the partitions of less critical tasks first,

or by carefully configuring the virtual-to-physical mappings. In our prototype, we

disable automatic defragmentation in the highly critical VMs and at the hypervisor

(since reallocating partitions to VMs requires flushing the addresses of some VMs);

the operator can trigger defragmentation manually when she considers it to be safe.

5.2.6 Partition context switch

In order to enforce the partition allocation at the VM level, the hypervisor must

update the COS registers whenever it performs a partition context switch. To this

end, the hypervisor maintains, for each physical partition n, the ID I(n) of the VM

that is currently using that partition.

A partition context switch from a VCPU of VM i to a VCPU vcpuj of VM j is

done as follows: the hypervisor first iterates over all of the target’s virtual partition

numbers n = 0 . . . k; if the nth bit of vcpuj’s virtual COS is set, the hypervisor

looks up the corresponding physical partition number Pj(n) and checks whether (1)

I(Pj(n)) 6= j, and (2) the partition Pj(n) is not shared. If the preemption-based

strategy is set and VM j has higher criticality than every VM I(Pj(n)) for which
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both conditions (1) and (2) hold, then the hypervisor preempts the VCPU that is

currently using Pj(n) and clearing all bits of the COS register of the core on which

that VCPU is running. Next, the hypervisor updates the physical COS register of

the core on which vcpuj is scheduled (by setting only Pj(n), n = 0 . . . k and clears

all the other bits), setting the ID I(Pj(n)) = j for all n = 0 . . . k. In addition, if

it did preempt a VCPU, it also then invokes a rescheduling event to the scheduler.

Notice that a preemption happens only in cases where a partition is assigned to

more than one VM, but is not shared. In Fig. 5.2, physical partitions 6 and 7 are

oversubscribed by both VM2 and VM3; since VM2 has higher criticality than VM3,

its VCPUs can preempt VM3’s VCPUs. Here, the hypervisor preempts the VCPU

currently executing T1 of VM3, and switches the partitions’ owner to the VCPU on

which T3 of VM2 will execute.

If the guest kernel is not CAT-aware, it will not modify its virtual COS from the

default value (all partitions active), and the above process is sufficient. If the guest

does modify the virtual COS (e.g., during a guest-level partition context switch), the

kernel must intercept these accesses and modify the physical COS register and the

ID of the physical partitions. Fortunately, the COS registers are machine-specific

registers; they are updated with the wrmsr instruction, which is privileged and causes

a guest exit when invoked. When the hypervisor intercepts an access, the procedure

is analogous to an inter-VM partition context switch. Notice that the hypervisor

cannot know whether the guest kernel is reassigning a partition from one task to

another; hence, the guest must keep ownership information for the virtual partitions

similar to the hypervisor’s I(n).

5.2.7 Flushing

At first glance, it may seem that, when a cache partition is reassigned from one

VM or task to another, updating the COS register is all that is required. However,

as discussed in Section 5.1.3, if the new owner does not happen to evict all cached
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content of the previous owner from the partition, the previous owner will continue

to reference its cached items and prevent the new owner from gaining full control

over the partition. To reliably avoid this, it is necessary to flush the previous owner’s

content from the cache when it is assigned a new set of partitions that is not a superset

of its previous partitions, if the previously-assigned partitions are not shared.20

For this purpose, we maintain for each task τi its currently assigned set of virtual

partition numbers Si. A flushing is initiated when τi is scheduled to run and if it

is assigned a new set of partition numbers S ′i such that S ′i + Si and there exists

v ∈ Si − (Si ∩ S ′i) where the shared flag of v is 0. Consider VM1 in Fig. 5.2,

for instance, which has two VCPUs. Suppose T3 was previously assigned partitions

S3 = {0, 1}, but it is preempted by T1. Suppose later, T2 finishes, then the kernel will

assign partitions S ′3 = {2, 3} + S3 to T3. Since T3 may still access its old partitions

0 and 1 via cache hits, which are now owned by T1, we need to flush the content of

T3 in these partitions.

Notice that partitions are only re-allocated at the hypervisor level when a map-

ping of virtual-to-physical partition numbers changes; therefore, flushing at the hy-

pervisor level happens only very infrequently (i.e., during defragmentation or trig-

gered by the operator when a VM joins or leaves the system, or when some VMs

request more partitions).

Ideally, we would like to simply flush the specific partition whose ownership is

changing (e.g., partitions 0 and 1 in the above example). However, the current CAT

does not provide a way to do this, so our only option is to flush the cache contents of

the entire VM or task that is being replaced. The Intel CPUs offer two ways to do

this: the clflush instruction, which flushes the cache line that contains a specific

linear address, and the wbinvd instruction, which writes back any modified data in

the cache and then invalidates the entire shared cache. (A third option, the invd

20If the previous owner’s new partitions include all of its old partitions, it experiences cache hits
only in its own (old/new) partitions, and thus cannot access the partitions currently assigned to
another running task.
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instruction, would simply discard modified cache lines, so it is not an option here.)

When the clflush instruction is used to flush the cache content of a task, it is issued

on all valid linear addresses (not the entire virtual address space) of the task, with

a step of a cache line (i.e., 64B). The linear addresses of a task can be found in the

task’s control block.

Neither option is strictly better than the other: clflush can avoid side effects

on other tasks by flushing specific content, and it is potentially faster than wbinvd if

the previous owner’s working set is small; however, it can also be slower if there are

a lot of addresses to be flushed. For simplicity, our implementation uses wbinvd for

the hypervisor-level flushing. At the guest level, it uses a simple heuristic to choose

the option to use: if the previous owner’s working set is smaller than a threshold

Thresh, it uses clflush, otherwise wbinvd. In Section 5.3, we will discuss in more

detail how this threshold can be chosen.

5.3 Implementation

Next, we describe a prototype of vCAT that we have built for our experiments. Our

prototype extends the Xen hypervisor (version 4.6) and LITMUSRT 2015.1 guest

kernel, running on top of the Intel Xeon CPU E5-2618L v3 processor.

5.3.1 Extended data structures and API

We extended the task structure to include a field for specifying the number of parti-

tions a task requests, a execOnFewer flag that is set when the task can execute even

if it receives fewer (non-zero) partitions than the requested number, and a set of

currently allocated partition numbers. By default, a real-time task can only execute

if it is allocated partitions, and concurrently running real-time tasks do not share

partitions to ensure isolation. We added a system call that allows a task (or the

operator) to request a different number of partitions from the guest kernel at run
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time.

A VCPU’s virtual COS register in a VM has the same format (bit mask) and

operation as that of a physical COS register, except that it specifies the virtual

partitions allocated to the VCPU’s currently running task. Like physical partitions,

each virtual partition has a shared flag that is set if the partition can be shared among

concurrent tasks; this is useful for allocating a shared set of virtual partitions to

concurrent tasks (e.g., the standard global EDF scheduling without cache allocation

within a VM).

5.3.2 Partition allocation and partition context switch

Hypervisor-level allocation: We implemented a command-line utility for the

operator to configure the virtual-to-physical mappings Pi and the shared flags of the

physical/virtual partitions.21 For simplicity, we require the operator to configure

these data structures when a new VM is created; she can also modify them at run

time if desired. To fully utilize the cache, our prototype allows the physical partitions

oversubscribed by VMs (and performs a VM partition context switch, if needed).

We also implemented a hypercall that allows a guest to release some unused

partitions or request more partitions at run time. In our prototype, the hypervisor

simply puts the released partitions in an unused pool and later allocates them to any

VM that requests additional partitions. Internally, whenever there is a change in the

virtual-to-physical mappings, the hypervisor invokes the mapping procedure, which

updates the mapping Pi for each (relevant) VM and the physical COS registers, as

well as performs a VM partition context switch and/or flushes the cache, if necessary

(c.f. Sections 5.2.6 and 5.2.7, respectively).

Guest-level allocation: The kernel allocates the VM’s available virtual partitions

to tasks based on their requests. It reserves a small (configurable) number of par-
21Determining the best number of partitions to reserve for each VM is an interesting but orthog-

onal research question; one promising direction here is to extend the cache-aware compositional
analysis in [70].
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titions to be shared among all best-effort tasks, and uses all the rest for real-time

tasks. We implemented two strategies for allocation: the first allocates partitions to

tasks in a first-come-first-served basis, as they are scheduled on the VCPUs; and the

second gives priority to a more critical task, i.e., allows it to preempt lower-criticality

tasks to acquire sufficient partitions, similar to the approach used in [70]. In both

cases, if the task’s execOnFewer flag is set, and if the VM has some but fewer than

the requested number, the kernel simply allocates the available partitions to the

task (and let it execute) to maximize core utilization and to minimize preemption

overhead.

Whenever the kernel of VM i (re-)allocates partitions to a task, it would update

the relevant data structures (the task’s assigned partition set, the ID I(v) of each

allocated virtual partition v the task is assigned), and flush the task’s content in

the old partition sets if required (c.f. Section 5.2.7). If necessary, it would also

modify COS registers of its VCPU and the VCPUs of the preempted tasks (if any)

by executing the wrmsr instruction. We extended the hypervisor to trap on this

instruction and modify the physical COS registers of these VCPUs’ cores (based on

the mapping Pi). Notice that, when the physical partitions are oversubscribed, it is

possible that VM i might set a virtual COS bit representing a virtual partition that

is mapped to a physical partition currently used by another VM j. If the partition is

not shared, the hypervisor simply returns failure to VM i by default, thus allocating

the oversubscribed partitions in a first-come-first-served basis. However, we also

implemented a preemption-based mechanism, where the hypervisor preempts VM j

and reassigns the partition to VM i, if VM i has higher priority than VM j, according

to some algorithm. Our prototype uses static priority when this choice is configured,

but it can easily be extended to include other algorithms for deciding the priority.

When a preemption occurs, the hypervisor will perform a VM-level partition context

switch (as described in Section 5.2.6).

139



5.3.3 Flushing heuristics

For simplicity, our prototype always uses the wbinvd instruction for the hypervisor-

level flushing, since this operation often involves flushing the working sets of several

tasks in one or more VMs and thus clflush can take a long time. At the guest

level, we implemented a simple heuristics that uses clflush if the working set size

(WSS) of the task is smaller than a threshold Thresh, and uses wbinvd otherwise.

Intuitively, Thresh is the smallest WSS for which the overhead when using clflush

is larger than that when using wbinvd. (If the strong isolation requirement flag is

set, we always use clflush at the guest level. Otherwise, we use the heuristic.)

At a high level, the overhead of each approach includes (1) the latency of the

cache flush operations, and (2) the extra latency when tasks access the content that

was but is no longer in the cache because of flushing. For clflush, our empirical

evaluation shows that the overhead of cache flush operation is approximately linear

to the task’s WSS, and the cache reload overhead is linear to the WSS but converges

to DreloadLLC (the overhead of reloading the entire cache) once the WSS exceeds the

cache size. Thus, the estimated overhead is

Overhead(clflush)= Dclflush + DreloadLLC

≈ k1 ·WSS + min{k2 ·WSS, DloadLLC}.

where k1 ≈ 1.58 (ms/MB), k2 = 1.65 (ms/MB), and DloadLLC = 26.63 (ms) on our

platform.

For wbinvd, the cache flush operation overhead depends on the status of the cache

when the instruction is invoked, and our evaluation shows that it is upper bounded

by DwbFflush = 0.7 (ms). Since wbinvd flushes the entire cache, and without knowledge

of which data need to be reloaded, we assume the worst-case scenario where we need

to reload the entire cache; thus, the overhead is at most DloadLLC. In other words, the

overhead when using wbinvd is approximately Overhead(wbinvd) ≈ DwbFlush + DloadLLC.
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Based on the above analysis, we can derive Thresh as the smallest WSS such that

Overhead(clflush) > Overhead(wbinvd), i.e.,

Thresh ≈ max{(DwbFlush + DloadLLC)/(k1 + k2), DwbFlush/k1}.

On our experimental platform, Thresh ≈ 8.46 (MB).

5.3.4 Overhead introduced by CAT virtualization

We ran a series of micro benchmarks to evaluate the extra overhead introduced by

CAT virtualization based on our prototype. The results show that our design in-

troduces only minimal overhead in terms of partition context switch and partition

allocations (within a few microseconds), and the overhead caused by flushing and de-

fragmentation in general depends on the tasks’ WSS but is always less than 27.35ms

on our experimental platform (which has a 20MB shared cache).

We consider five different (but intertwined) types of overhead that our design

introduces: cache flush, cache reload, context switch, partition allocations, and de-

fragmentation. We describe each in turn.

Cache flush operation latency. Recall that Intel CPUs offer two ways for cache

flushing: the clflush instruction, which flushes the cache line that contains a specific

linear address; and the wbinvd instruction, which writes back any modified data in

the cache and then invalidates the entire shared cache. We measured the latency for

each operation, as follows.

Latency of the clfush approach. We created a synthetic task that sequentially

accessed (i.e., either read or write) an array. We varied the task’s array size from 1MB

to 40MB with a step of 1MB. The task first accesses its array, and then the system

flushes the task out of the cache by using the clflush instruction. We achieved this

by enumerating all linear addresses of the task, and invoked the clflush instruction

on all these addresses. We measured the latency of the cache flush operation when
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Figure 5.3: Cache flush overhead.

the task either reads from or writes to its array. The result is shown in Fig. 5.3.

The measured result shows that the latency of the cache flush operation with the

clflush approach, denoted as Dclflush, is proportional to the task’s working set size

(WSS), i.e.,

Dclflush = k1 ·WSS

where k1 = Dclflush/WSS ≤ Dclflush/array_size_i ≤ 62.89ms/40MB ≤ 1.58ms/MB.

Latency of the wbinvd approach. We repeated the same experiment as above, but we

used wbinvd (instead of clflush) to flush the task. The results show that the latency

of the cache flush operation with the wbinvd approach, denoted as DwbFflush, is not

affected by the task’s WSS, and DwbFflush ≤ 0.7ms.

Cache reload latency. The cache reload latency is determined by the size of the

content that was but is no longer in the cache because of flushing. The size of the

content to reload is upper bounded by the shared cache size.

We created a synthetic task that uses a linked list to access (i.e., read or write)

every 64 bytes in an array for three times. The task does the following steps se-
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Figure 5.4: Cache reload over-
head without MLP (Access via
linked list).
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Figure 5.5: Cache reload over-
head with MLP (Access via array
index)

quentially: (1) access the entire array for two consecutive times; (2) flush the task’s

content out of the cache; and (3) access the entire array for the third time. We

measured the latency of accessing the array at the second time (i.e., when the array

is already cached) and at the third time (i.e., when the array is not cached). Then,

the time difference between the two measured latencies is the cache reload latency

because of flushing. We varied the size of the array from 1MB to 20MB (i.e., the

shared cache size) with a step of 1MB, and we measured the cache reload latency

under each array size. The result is shown in the Fig. 5.4.

We also repeated the same experiment but changed the synthetic task to use

array index to iterate the same array. The result is illustrated in Fig. 5.5.

We observed that the cache reload latency is proportional to the size of the

content to reload. When a task is flushed, the cache reload latency for the task,

denoted as DreloadLLC, is upper bounded by

DreloadLLC ≤ min{k2 ·WSS, DloadLLC}

Where k2 = DreloadLLC/WSS ≤ DreloadLLC/array_size_i ≤ 24.64ms/15MB ≤ 1.65ms/MB,

and DloadLLC = 26.63ms is the maximum latency of reloading the entire LLC.
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Table 5.1: Partition context switch overhead (µs).

Taskset size: 50 Taskset size: 450
Vanilla vCAT Overhead Vanilla vCAT Overhead

VM 5.49 5.74 0.25 5.02 5.17 0.15
VMM 0.8 0.81 0.01 0.7 0.73 0.03

We also observe, by comparing Fig. 5.4 and Fig. 5.5, that the cache reload over-

head drops by 89.67% (from 26.63 ms to 2.75 ms) when the task changed the way

of accessing its array from linked list to array index. This is because changing from

linked list to array index for the task eliminates the data dependence in accessing

each element of the task’s array. Therefore, the task can benefit from the Memory

Level Parallelism (MLP) in accessing or reloading its array.

Partition context switch overhead. We measured the partition context switch

overhead both in the vCAT and in the vanilla LITMUSRT/Xen system. The overhead

difference is the extra context switch overhead the vCAT introduces in managing the

partition context.

We boot 4 guests, each with 4 full-capacity VCPUs. We randomly generated

periodic task sets whose size is 50 or 450 tasks, for each domain. We generated

10 task sets per task set size. Under each environment, we used the feather-trace

tool [25] to measure the context switch overhead in a VM (running LITMUSRT ), as

in earlier LITMUSRT -based studies [37] [17]. We used the Xentrace tool to measure

the context switch overhead in the VMM (i.e., Xen), as in earlier RT-Xen study [69].

The result is shown in Table 5.1.

We observe the extra context switch overhead incurred by our vCAT prototype

is very small (upper bounded by 0.25µs).

For completeness, we also measured other types of scheduling-related overhead in

VM and VMM. Table 5.2 shows the task release overhead (REL) and the scheduling

overhead (SCH1) within a VM, as well as the scheduling overhead (SCH2) in the

VMM. The results show that vCAT incurs negligible extra overhead for all these
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Table 5.2: Average scheduling-related overhead (µs).

Taskset size: 50 Taskset size: 450
Vanilla vCAT Overhead Vanilla vCAT Overhead

REL 1.77 1.96 0.19 1.13 1.31 0.18
SCH1 2.74 2.80 0.06 3.23 3.33 0.10
SCH2 0.37 0.39 0.02 0.32 0.33 0.01

three types.

Partition allocation and deallocation overhead. In order to measure the par-

tition allocation and deallocation overhead, we extended the feather-trace tool by

adding these two overhead events in LITMUSRT .

We booted one VM with 4 full-capacity VCPUs pinned to 4 cores. We randomly

generated periodic task sets whose size is 50 or 450 tasks. We generated 10 task sets

per task set size. We measured the average and the maximum latency the vCAT

takes to allocate or deallocate cache partitions for tasks. The result is shown in

Table. 5.3.

We observed that the partition allocation and deallocation overheads are negligi-

ble. The cache allocation and deallocation overheads are respectively upper bounded

by 550ns and 318ns.

Table 5.3: Partition allocation and deallocation overhead (ns).

Taskset size: 50 Taskset size: 450
Average Maximum Average Maximum

Allocation 175 550 178 463
Deallocation 102 318 96 301

Defragmentation overhead. When the defragmentation procedure happens, it

involves two operations: (1) Reallocating partitions for tasks, which involves deallo-

cating old partitions and then allocating new partitions for tasks; this overhead is

upper bounded by the sum of the maximum allocation and deallocation overheads,
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i.e., 550ns + 318ns = 868ns. (2) Flushing the entire cache, which has an overhead

of at most DwbFflush ≤ 0.7ms.

The defragmentation overhead is the sum of the overhead of reallocating parti-

tions for tasks and the overhead of flushing the entire cache. Therefore, it is upper

bounded by 868ns+ 0.7ms ≤ 0.701ms.

5.4 Performance evaluation

To illustrate the applicability and benefits of CAT virtualization, we conducted an

extensive set of experiments on our prototype using the PARSEC benchmarks [21]

and synthetic workloads. Our goal is to evaluate (i) how well task-level cache isola-

tion using CAT virtualization can protect a task’s WCET from other concurrently

running tasks, and (ii) how much CAT virtualization can improve the system’s real-

time performance in two use cases (static and dynamic cache allocations).

5.4.1 Experimental setup

Hardware. Our prototype ran on a CAT-capable Intel Xeon CPU E5-2618L v3

processor, which has a 20MB 20-way set-associative L3 shared cache (divided into

20 partitions of 1MB each) and 32GB main memory, and with four cores enabled.

Like in most existing real-time research [37], we disabled hyper-threading, SpeedStep,

and hardware cache prefetcher features to avoid non-deterministic timing behavior.

To minimize interference with the experimental workload, we shut down all non-

essential system services during our experiments.

System configuration. We booted the hypervisor with the RTDS scheduler and

the VMs with LITMUSRT as the guest kernel, which uses the PSN-EDF scheduler.

We created two user VMs, benchVM and polluteVM, which execute the tasks under

evaluation and the interfering tasks, respectively. benchVM’s tasks are statically

partitioned into two full-capacity VCPUs, each of which is pinned to a dedicated
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Figure 5.6: WCET vs. Number of allocated cache partitions.

core. Similarly, polluteVM’s are also statically assigned into two full-capacity VC-

PUs, which are pinned to two remaining cores. To minimize interference to benchVM,

we allocated two VCPUs to the high-privilege VM (Domain 0) and directly pinned

them to the two cores used by polluteVM. (Further necessary details will be described

in the relevant evaluation.)

Workload. We considered two types of workload: the PARSEC benchmark suite [21]

and synthetic workload. For the PARSEC benchmarks, we used simsmall as the

default input for our WCET-related evaluation. For our real-time performance eval-

uation, for each benchmark, we first explored the influence of different input sets

provided by the benchmark suite (i.e., test, simdev, simsmall, simmedium, and sim-

large) on the WCET performance, and then selected the one that most influences

the WCET performance for using in the schedulability evaluation.

The synthetic workload consists of two types of programs (similar to the ones

used in [64]): (1) cache-bench, which uses a linked list to sequentially access every 64

bytes (i.e., cache line size) of an 8MB array for 50 times; and (2) cache-bomb, which

uses the array index to sequentially access every 64 bytes of a 40MB array for 240

times.

To evaluate the relationship between the number of partitions and WCET, we

measured the WCET of each workload program across 25 runs when the number of

partitions it is allocated varies. The results are shown in Fig. 5.6.
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As expected, as the number of allocated partitions increases, task’s WCET also

tends to decrease, which is the case for the canneal benchmark and the cache-bench

program. Note, however, that the WCET of the cache-bomb program is relatively

stable regardless of the number of partitions; this is because its array size is twice

the entire cache’s size, and thus all accesses to its array elements are cache misses

even if it is allocated the entire cache. This observed relationship between WCET

and the allocated number of partitions provides useful information for selecting, or

dynamically modifying, the number of partitions allocated to each task to optimize

the overall system’s performance (e.g., schedulability).

5.4.2 Benefits of task-level cache isolation on WCET

Experiment. This experiment aims to evaluate how well task-level cache isolation

with CAT virtualization can protect a task’s WCET from being affected by con-

current accesses to the cache by other co-running tasks. For this, we executed the

task-under-test (a PARSEC benchmark or a cache-bench task) alone on one VCPU

of benchVM, and we executed a cache-bomb task in the second VCPU of benchVM

and in each of polluteVM’s VCPUs. (Recall that these four VCPUs are pinned to

four different cores.) We configured the cache allocation data structures in our pro-

totype to statically allocate 14 exclusive partitions for the task-under-test and 2

exclusive partitions for each of the three cache-bomb tasks. We then measured the

WCET of the task-under-test across 25 runs, which we refer to as WCET under the

PolluteCAT setting.

For comparison, we conducted the same experiment for (i) the Alone setting,

where we disabled all three cache-bomb tasks; and (ii) the Pollute, where we ran the

tasks in vanilla LITMUSRT/Xen, which does not support cache allocation and thus

all tasks share the entire cache.

Results for PARSEC benchmarks. Fig. 5.7 shows the slowdown factor of each

PARSEC benchmark task for the three settings, where the slowdown factor for a
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Figure 5.7: Measured WCETs of PARSEC benchmarks.

setting is the ratio of the task’s WCET obtained in that setting to that was obtained

in the Alone setting. The results show that the WCET of the benchmark task can

increase substantially (up to 1.65×) in the Pollute setting; this is because there is

no cache management in this setting and thus other co-running tasks may interfere

with the benchmark task by accessing the cache. It is also worth noting that the

obtained slowdown factor is with respect to a default input and not the worst-case

slowdown. In contrast, the benchmark task has approximately the same or only

slightly increased WCET in the PolluteCAT setting as in the Alone setting across

most benchmarks. (One reason for the slight increase in WCET could be because

we did not isolate the main memory in our experiments and thus, tasks may still

interfere with one another due to memory bus or bank contention.) In summary,

the results demonstrate that cache isolation with CAT virtualization can effectively

avoid the WCET slowdown caused by cache interference.

Results for the synthetic workload. Fig. 5.8 shows the WCET slowdown of

the cache-bench task under each setting when we varied the task’s array size from

1MB to 40MB. The results further confirm that, without cache management, the

shared cache interference can increase the task’s WCET by a significant factor, e.g.,
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Figure 5.8: Measured WCETs of the cache-bench workload.

up to 7.2× (when the array size is between 3MB and 5MB). On the contrary, CAT

virtualization can effectively mitigate this problem, as evident by the slowdown factor

of close to 1. Notice that when the array size is larger than the cache size (20MB), the

task begins to experience cache misses even when it executes alone; as a result, the

WCET in the Alone setting begins to increase, leading to a decrease in the slowdown

in the Pollute setting.

5.4.3 Real-time performance: static cache management

Next, we evaluate how much CAT virtualization can help improve the system’s

schedulability compared to the cache-agnostic vanilla LITMUSRT/Xen system. To

this end, we consider two use cases of CAT virtualization: one for static cache

management, and the other for dynamic cache management. We focus on the former

in this section.

Allocation configuration. Our experiments used task sets that each consist of two

workload types: (1) either the PARSEC benchmark or the cache-bench program, and

(2) the cache-bomb program. We used the same configuration as in the preceding ex-

periment: the benchmark (cache-bench) tasks are scheduled on one VCPU (pinned

to a dedicated core) with 14 partitions; the cache-bomb tasks are statically parti-
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Figure 5.9: Schedulability of PARSEC benchmarks. The x-axis shows
the VCPU utilization, and the y-axis shows the fraction of schedulable
tasksets.

tioned into three VCPUs, each of which is allocated 2 partitions. We measured the

WCET of each PARSEC benchmark, cache-bench, or cache-bomb task under this

cache allocation.

Task set creation. We first converted the PARSEC benchmarks into LITMUSRT -

compatible real-time tasks. While doing so, we found that three benchmarks (facesim,

vips and freqmine) contained memory leak bugs; unfortunately, we could not fix the

bug in the freqmine benchmark and thus could not use it for our schedulability exper-

iments. In addition, the facesim benchmark took too long to complete; we omitted

it due to time constraints. We conducted the schedulability experiments for all the

remaining ten PARSEC benchmarks.

To generate a real-time task τi, we first randomly generated a harmonic period

pi, and then computed the task’s utilization ui based on both pi and its WCET

(determined above).
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Figure 5.10: Schedulability of synthetic benchmarks.

A task set for the benchmark VCPU was created based on a chosen target VCPU

utilization Uvcpu. Specifically, we randomly generated real-time tasks for the bench-

mark VCPU until the total utilization of the generated tasks reaches Uvcpu. We

repeated this generation 10 times to create 10 task sets per Uvcpu, where Uvcpu ranges

from 0.1 to 1.0, with a step of 0.1; this led to a total of 10 × 10 = 100 task sets. For

each task set, we executed it for two minutes both on the vanilla LITMUSRT/Xen

and on our prototype, and we measured the schedulability of the task set in each

setting.

Benchmark results. Fig. 5.9 shows the fraction of schedulable task sets of the

PARSEC benchmarks when varying the target VCPU utilization.22 The results

across all benchmarks show that our vCAT cache management can substantially

improve the system’s schedulability. It can also be observed from Fig. 5.9(a) that,

for the streamcluster benchmark, on the vanilla LITMUSRT/Xen, the fraction of

schedulable task sets begins to decrease quickly once the target VCPU utilization

Uvcpu is more than 0.3, and all task sets become unschedulable when Uvcpu ≥ 0.4.

In contrast, with static cache allocation, all task sets remain schedulable even when

each VCPU’s utilization is at 1.0. The static management in vCAT can increase
22We omit the results of the dedup benchmark, since all task sets are schedulable across all

utilizations for both techniques.
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system utilization by up to 1.0
0.3

= 3.3×.

Synthetic results. Fig. 5.10(a) shows the schedulability results for task sets with

the cache-bench workload, which further highlights the performance benefits of and

the needs for static cache allocation. Without cache management, tasks begin to

miss deadlines as soon as Uvcpu > 0.1, whereas a task is only become unschedulable

when Uvcpu > 0.7 under cache allocation. In other words, the static cache allocation

enabled by our CAT virtualization can help increase schedulable utilization by up

to 7 times.

5.4.4 Real-time performance: dynamic cache management

In the previous use case, cache allocation is performed statically, where each task is

always allocated a fixed number and a fixed set of partitions (and thus has a fixed

WCET). While this approach is a preferred and more efficient choice in systems with

relatively static timing behavior, it may substantially underutilize the cache when

the task’s timing constraints (such as deadline, period, and cache demand) vary

dynamically at run time. In this section, we investigate the performance benefits of

our dynamic cache management enabled by CAT virtualization, using a multi-mode

system use case.

Dual-mode task sets. We constructed multi-mode tasks based on unimodal cache-

bench tasks as follows. We first generated a unimodal cache-bench task as in the

static use case, and then created two dual-mode versions: the cache-bench-mm1

version uses the same unimodal task parameters for both modes, except that the

task period (deadline) in Mode 2 is K times the unimodal period; and the cache-

bench-mm2 version also uses the unimodal parameters for both modes, except that

the period in Mode 1 is K times the unimodal period. Intuitively, K captures the

degree of dynamism in the task’s WCET when varying the number of allocated cache

partitions. We setK to be the ratio of the WCET of cache-bench when requesting two
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(the minimum possible) partitions to its WCET when requesting 20 (the maximum

possible) partitions; in our experiments, K = 707
114
≈ 6.202. In addition to multi-mode

cache-bench tasks, we also used the unimodal cache-bomb tasks generated as in the

static use case.

All cache-bench-mm1 tasks and all cache-bench-mm2 tasks are executed on the

first VCPUs of benchVM and polluteVM, respectively. We statically partitioned the

cache-bomb tasks into the second VCPUs of both VMs. We generated 10 task sets

for each target VCPU utilization, using the same procedure as in the static use case.

Experiment. We ran each task set for two minutes on our prototype with dynamic

cache allocation and measured its schedulability. The cache allocation was configured

dynamically as follows. Each VCPU running cache-bomb tasks is always allocated

two partitions. We configured each multi-mode task to execute in Mode 1 during the

first minute, but in Mode 2 during the second minute. The VCPU running cache-

bench-mm1 tasks is allocated 14 partitions in Mode 1 and 2 partitions in Mode 2,

whereas the VCPU running cache-bench-mm2 tasks is allocated 2 partitions in Mode

1 and 14 partitions in Mode 2. This configuration was chosen to balance the VCPU

utilization across the two modes.

For comparison, we also ran each task set on Vanilla LITMUSRT/Xen and on our

prototype with static allocation, where we statically allocated 8 partitions to each

VCPU running multi-mode tasks, and 2 partitions to each VCPU running cache-

bomb tasks.

Results. Fig. 5.10(b) shows the fraction of schedulable task sets per VCPU uti-

lization for each of the three settings. As expected, both static and dynamic cache

management can help improve the schedulability of the task sets substantially. The

results also show that dynamic cache management outperforms static management

by a substantial factor in terms of improving schedulable utilization (3×), which is

expected since it is much more effective in handling workloads with dynamic timing

constraints.
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5.5 Conclusion

We have presented a novel approach to shared cache management in multicore vir-

tualization systems, through an integration of Intel CAT and cache partition virtu-

alization. Our CAT virtualization design is highly general: it can be configured to

provide strong isolation among tasks and/or VMs, to support both real-time tasks—

potentially with different criticality levels – and best-effort tasks, and to achieve both

static and dynamic cache allocations. We implemented a prototype of the design on

top of Xen and LITMUSRT . Experimental results using both PARSEC benchmarks

and synthetic workloads show that our prototype introduces only a small overhead

while improving both the WCET and the schedulability of the system significantly.

The results also show that dynamic allocation is much more effective in improving

schedulability than static allocation, especially under dynamic task sets. In future

work, we plan to apply our design to several other settings, as well as develop new

compositional analysis techniques for cache-aware schedulability test and VM inter-

faces’ computation.
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Chapter 6

Holistic resource allocation and

analysis

We have developed the shared cache management technique for mitigating the

shared cache interference on the multicore virtualization platform. While the shared

cache management technique in Chapter 5 brings us closer to achieving timing isola-

tion, it does not consider the memory bandwidth interference, which ultimately in-

troduces unaccountable extra latency. In addition, it does not address the allocation

policy and analysis questions, such as what is the right number of cache partitions

to allocate to a task (or a core), or how to formally analyze the schedulability of the

system.

The problem of memory bandwidth interference has been addressed in non-

virtualization systems [77, 64, 10]. For instance, MemGuard [77] provides a way

to regulate the memory bandwidth that each core (or task) can access in Linux,

and thus it can ensure that each core is guaranteed to receive the allocated amount

of bandwidth. In principle, this idea should work in the virtualization setting as

well; however, the existing regulation mechanisms cannot be directly applied here,

due to inherent differences between the two settings. For instance, software-based

approaches such as [77] [64] rely on the perf monitoring tool provided by Linux and
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they are implemented as device drivers, neither of which is supported in production

hypervisors such as Xen.

To bridge the above gap, we propose vC2M, a holistic solution towards timing

isolation in multicore virtualization systems. On the system angle, vC2M integrates

both the shared cache and memory bandwidth management to provide better isola-

tion among tasks and VMs; this is done by leveraging the existing cache allocation

system vCAT [72] and a new memory bandwidth regulation mechanism for virtual-

ization.23 On the theory side, vC2M provides an efficient resource allocation policy

for tasks and VMs that can minimize resources while guaranteeing schedulability.

Specifically, given a set of tasks on the VMs and a given hardware configuration,

vC2M will compute both (i) the assignment of tasks to virtual CPUs (VCPUs) and

VCPUs to cores, and (ii) the amount of CPU, cache, and bandwidth resources for

each task and each VCPU, to guarantee schedulability while minimizing resource

use.

To the best of our knowledge, vC2M is the first to consider CPU, cache, and

memory bandwidth allocation in a holistic manner for resource allocation in real-

time multicore virtualization systems.

6.1 Design

6.1.1 System architecture and overview of vC2M

The platform consists of multiple VMs running on a shared multicore processor by a

hypervisor, such as Xen. Each VM executes a number of real-time tasks using some

real-time OS, such as LITMUSRT [27, 24]. Tasks within each VM are scheduled on a

set of virtual CPUs (VCPUs) by the VM’s scheduler, and all VCPUs are scheduled

on the physical cores by the hypervisor’s scheduler. We assume that partitioned
23We note that the memory bank interference is another non-negligible source of overhead, which

we do not consider in this work; however, there exists prior result on this topic [76], which can be
incorporated into vC2M.
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scheduling is used at both the VM and hypervisor levels.

To achieve cache and memory bandwidth isolation among concurrently running

tasks, vC2M provides cache and memory bandwidth allocation at the core level.

Specifically, it divides the shared cache into multiple partitions, and allocates a dis-

joint subset of partitions to each core; this is done by leveraging vCAT [72], an

existing cache allocation system based on Intel’s Cache Allocation Technology. To

provide bandwidth allocation, vC2M introduces a new memory bandwidth regula-

tion mechanism that enables the run-time monitoring of memory requests and the

enforcement of a given bandwidth to a core in the virtualization setting. In the

following, we discuss the latter new component in detail.

6.1.2 Memory bandwidth regulation

Approach. Our memory bandwidth regulation relies on hardware performance

counters to monitor the number of memory requests from each core in each regu-

lation period (a small configurable interval, e.g., 1ms). Whenever a core exceeds a

configured number of memory requests (i.e., its bandwidth budget), we throttle the

core by notifying the hypervisor to leave the core idle for the remaining time of the

regulation period. When a new period begins, we un-throttle the core by triggering

the hypervisor to execute a VCPU on the core. With this mechanism, each core is

always guaranteed to receive its configured budget in each period, and it never is

allowed to use more bandwidth than it is allocated.

Relation to existing work. Conceptually, the idea is similar to that of Mem-

Guard [77], a bandwidth regulation mechanism in the non-virtualization setting.

However, our approach differs in several aspects: First, our bandwidth regulation

is a built-in feature of the hypervisor instead of a loadable module, which is not

always supported by a hypervisor such as Xen. Second, unlike MemGuard which

relies on Linux’s perf tool for monitoring and notification, ours works directly with

the low-level hardware components to monitor the memory requests and to configure
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the interrupt that notifies a core when it runs out of its bandwidth budget; hence,

it can reduce the extra overhead introduced by a performance monitoring tool. (We

note also that, due to security concerns, perf is not available in production Xen

virtualization system [7].) Finally, MemGuard keeps the throttled core busy by run-

ning a CPU-intensive dummy task on it, which consumes energy unnecessarily. In

contrast, by modifying the hypervisor to be aware of the throttled cores and to stop

scheduling VCPUs on them, these cores are always kept idle in our system.

Core components. Modern Intel processors come with several general performance

counters (PC) on each core for monitoring cache misses. We use an unused PC

counter to monitor the number of last-level cache misses, which can be treated as the

number of memory requests [77, 46]. Each core has a Local Advanced Programmable

Interrupt Controller (LAPIC), which can be configured to deliver the PC counter

overflow interrupt to the core. All cores can access an overflow status register that

specifies which PC counters overflowed and an overflow control register that can clear

the overflow status register.

A high-level architecture of our bandwidth regulator is shown in Fig. 6.1.

Setup. The setup component is responsible for configuring the system upon

initialization, including (ii) configuring an unused general PC counter on each core

to monitor the number of memory requests from the core, and preseting its value

so that it will overflow when the core runs out of its memory bandwidth budget;

(i) configuring the LAPIC on each core to deliver the performance counter overflow

interrupt to the core when its PC counter overflows; (iii) creating a periodic timer to

periodically replenish each core’s memory bandwidth budget; and (iv) clearing the

overflow status register that indicates which PC counters overflow.

Regulation. Once the regulator has been initialized and enabled, the PC counter

will begin counting the number of memory requests from each core. When a core’s

PC counter overflows, the LAPIC delivers the performance counter overflow interrupt

to the BW enforcer handler running on the core (Steps 1○ and 2○ in Fig. 6.1). Upon
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Figure 6.1: Architecture of memory bandwidth regulation in vC2M.

receiving the interrupt, the BW enforcer handler invokes the hypervisor’s scheduler

to de-schedule its currently running VCPU (Step 3○). The hypervisor’s scheduler

was modified to be aware of the throttled cores; this is necessary to ensure that

it will never schedule a VCPU onto a throttled core. In addition, the bandwidth

replenishment handler (BW refiller) periodically replenishes the budget for each core

and invokes the scheduler on each throttled core to schedule a VCPU onto the core

at the beginning of each regulation period (Step 4○).

User-level administration tool. vC2M also includes a user-level tool for system

operators (in the privilege VM) to configure the memory bandwidth allocated to

each core.

6.2 Implementation

We now describe a prototype of our design which will be used for our experiments.

Our prototype extends the Xen hypervisor (version 4.8.0) and LITMUSRT 2015.1
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guest OS, running on top of the Intel Xeon CPU E5-2618L v3 processor. The

Xen hypervisor has a real-time scheduler called RTDS, which we extended for our

implementation.

6.2.1 Implementation of the memory bandwidth regulation

We leveraged the various hardware components (PC counters, LAPIC controllers,

overflow status register, and overflow control register) for the memory request moni-

toring and notification as described earlier. We created two software data structures

for allocation purpose: (1) a per-core rt_context, which records the maximum allo-

cated memory bandwidth budget and remaining bandwidth budget of the core in the

current regulation period before it is throttled, and (2) a bitmask of throttled cores,

which specifies the cores that have used up their allocated budgets; this bitmask is

accessible by all cores, and it is protected by a spinlock (see Fig. 6.1). We modified

Xen’s RTDS scheduler to consider the bitmask of throttled cores in making scheduling

decisions.

At initialization, the setup component configures the LAPIC controllers, sets up

the PC counter 3 (which is unused by the system) of each core to count the cache

miss events, and clears the PC counter 3’s bit in the overflow status register. It

also creates on core 0 a periodic timer to invoke the BW replenish handler in every

regulation period (e.g., 1 ms).

We implemented two interrupt handlers for the regulation: BW enforcer handler,

which handles the performance counter overflow interrupt; and BW refiller handler,

which performs budget replenishments. When triggered, the BW enforcer handler

checks whether the interrupt was raised by the PC counter 3 by reading the overflow

status register. (This is necessary, as the handler is also triggered when other PC

counters overflow.) If so, it clears the corresponding bit in the register, sets the

core’s bit in the bitmask of throttled cores, and invokes the scheduler on the core to

reschedule. When the (modified) RTDS scheduler is invoked by the BW enforcer

161



handler, it de-schedules the currently running VCPU on the core and leaves the core

idle. Whenever the scheduler is invoked by a scheduling event, it checks the bitmask

of throttled cores and leaves the core idle until the core is cleared in the bitmask.

The BW refiller handler is invoked every configurable regulation period by the

periodic timer created at setup. Whenever the handler is invoked, it refills the

memory bandwidth budget for each core by resetting the PC counter 3’s value, and

then invokes the scheduler on each throttled core to schedule a VCPU onto the core.

6.3 Empirical evaluation

To evaluate the implementation overhead and benefits of vC2M, we performed a

series of experiments on our prototype using both PARSEC benchmarks [21] and

synthetic workloads. Our objectives are to evaluate (i) the impact of disabling cache

on WCET, (ii) the effectiveness of vC2M in mitigating cache and memory bandwidth

interferences, (iii) the impact of resource allocation on WCET, and (iv) the overhead

introduced by vC2M.

6.3.1 Experimental setup

Hardware. Our prototype ran on a machine with a CAT-capable Intel Xeon E5-

2618L v3 processor, with a 20MB 20-way set-associative L3 shared cache and an 8GB

PC-2133 DDR4 DRAM. The cache can be divided into 20 equal partitions (using

vCAT [72]), and a core must be allocated at least 2 partitions (due to hardware

constraints). The maximum guaranteed bandwidth was 1.4GB/s (obtained using

the same method as in [78]. For our experiments, we divided the bandwidth into 20

partitions of 70MB/s each, and the maximum bandwidth budget allocated to a core

was always equal to (the size of) one or multiple partitions.

System configuration. We booted the hypervisor with the RTDS scheduler, and

two guest VMs with LITMUSRT . Each VM has two full-capacity VCPUs, each of
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which is pinned to a dedicated core. The first VM, benchVM, runs the tasks under

evaluation on one VCPU and interference tasks on its other VCPU. The second VM,

polluteVM, runs interference tasks on both of its VCPUs.24

Workload. We considered two types of workloads: the PARSEC benchmark suite [21]

and a synthetic workload. For the PARSEC benchmarks, we use simsmall as the

default input. For the synthetic workload, we have two types of programs (similar

to the ones used in [68] and [72, 64], respectively): (1) cpu-bench, which performs

a specified amount of add operations on a full-capacity VCPU; and (2) cache-bomb,

which uses an array index to sequentially access every 64 bytes of a 40MB array until

it is terminated.

6.3.2 Impact of disabling cache on WCET

Experiment. Without cache and memory bandwidth resource management, we

can still avoid cache interference by disabling cache and upper bound the impact of

the memory bandwidth interference by assuming the worst-case memory bandwidth.

This no-resource-management approach is intuitive and straightforward, but it may

lead to very pessimistic WCETs for tasks, which are significantly larger than tasks’

WCETs with resource management.

To evaluate the impact of the no-resource management approach on a task’s

WCET, we need to measure the task’s WCET with and without resource manage-

ment supports. The ideal approach to get the task’s WCET under the no-resource-

management approach is to disable all three levels of caches on the Intel processor

by setting the 30th bit in the CR0 register [2]. However, this approach is not prac-

tical because system becomes extremely slow after its cache is disabled. Instead,

we choose to estimate a task’s WCET under the no-resource-management approach

by measuring the task’s cache hit and miss requests and calculating the extra de-
24To minimize the interference from the administration VM (domain 0), we allocated to it one

VCPU, which was pinned to a separate core.
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lay when all of its cache hit requests become cache misses and when the memory

bandwidth is always the worst-case bandwidth.

Given a task τi’s measured WCET with cache support and its numbers of cache

hit requests, we calculate the task’s WCET e′i without cache support by

e′i = ei +N l2hit
i · (latl3miss − latl2hit) +N l3hit

i · (latl3miss − latl3hit) (6.1)

where ei is the task’s measured WCET with cache support; N l2hit
i and N l3hit

i respec-

tively are the numbers of cache hit requests on L2 and L3 caches for τi; and latl3miss,

latl2hit, and latl3hit are the L3 cache miss latency, the L2 cache hit latency, the L3

cache hit latency respectively.

Given a task τi’s calculated WCET e′i without cache support and the task’s total

number of cache misses Nmiss
i , we calculate the task’s WCET e′′i under the worst-case

memory bandwidth as

e′′i = e′i +Nmiss
i · (1/BWworst − 1/BWbest) (6.2)

where BWworst and BWbest respectively are the worst-case and best-case memory

bandwidths supported by the hardware, and 1/BWworst and 1/BWbest respectively

are the average worst-case and best-case cache miss latencies, whose difference is the

extra latency each cache miss takes in the worst-case scenario.

The above method of estimating a task’s WCET under the no-resource-management

approach favors the no-resource-management approach – the calculated WCET of

a task is likely smaller than the actual WCET without cache support. This is be-

cause the calculated WCET does not include the following extra latencies that are

included in the actual WCET: (i) the latency of extra cache misses when L1 cache

hit requests become cache misses; 25 and (2) the extra latency the CPU pipeline

experiences when it waits for the data.
25We cannot obtain the number of L1 cache hit requests due to the hardware limitation.
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We run a PARSEC benchmark task with simlarge input on one core without

disabling cache and measured the task’s WCET across 25 runs. In each run, we

measured the task’s numbers of cache hit requests on L2 and L3 caches by using

Intel hardware performance counter. We calculated the task’s WCET under the

no-resource-management approach by using Eq. 6.2.
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Figure 6.2: Slowdown of PARSEC benchmarks without resource manage-
ment.

Results. Fig. 6.2 shows the slowdown factor of each PARSEC benchmark task

with and without resource management. The slowdown factor in a setting is the

ratio of the benchmark task’s calculated execution time with Eq. 6.2 to the task’s

measured WCET with cache enabled. The results show that the execution time

of the benchmark task without resource management support is significantly larger

than that with resource management support (up to 6.50×). This demonstrates

that disabling cache to avoid cache interference can introduce significant pessimism in

estimating a task’s WCET, impeding the system’s schedulability. This also motivates

us to manage the cache-related resources to achieve resource isolation and to better

utilize the resources to improve the system’s schedulability.
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6.3.3 Benefits of resource isolation with vC2M

Experiment. To evaluate how well vC2M can protect a task’s WCET from being

affected by concurrent running tasks, we ran a PARSEC benchmark task on one

VCPU in benchVM, and ran a cache-bomb task on each of the other three VCPUs.

We allocated 14 cache partitions and 17 bandwidth partitions to the benchmark

core (i.e., which executed the benchmark task), and allocated 2 cache partitions and

1 bandwidth partition to the other three cores. We measured the WCET of the

benchmark task across 25 runs, which we refer to as PolluteCAM. For comparison,

we conducted the same experiment for two additional settings: (i) the PolluteCA

setting, where we only managed the cache; and (ii) the Pollute setting, where all

tasks shared the entire cache and memory bandwidth without any management.
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Figure 6.3: Measured WCETs of PARSEC benchmarks.

Results. Fig. 6.3 shows the slowdown factor of each PARSEC benchmark task

for the three settings. The slowdown factor in a setting is the ratio of the bench-

mark task’s WCET to its WCET obtained in the PolluteCAM setting. The results

show that the WCET of the benchmark task in the Pollute setting is substantially

larger than that of the PolluteCAM setting (up to 1.26×). This demonstrates that by

managing both cache and memory bandwidth, we can effectively mitigate the inter-
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Figure 6.5: Cache impact.

ferences and improves the WCET. Further, the WCET of the benchmark task in the

PolluteCA setting can increase by up to 1.11× (for facesim benchmark) compared to

the PolluteCAM setting, which suggests that it is important to manage both cache

and memory bandwidth resources to achieve better timing isolation.

6.3.4 Impact of cache and bandwidth allocation on WCET

Experiment. To evaluate the impact of cache and memory allocation on WCET,

we ran the canneal benchmark on one full-capacity VCPU in benchVM, and we

configured the corresponding core with different numbers of cache partitions and

bandwidth partitions. We measured the benchmark task’s WCET across 25 runs,

and calculated its resource slowdown factor under a cache and bandwidth allocation

configuration (as the ratio of the measured task’s WCET to its WCET when it is

allocated all cache and bandwidth partitions).

Results. Figs. 6.4 and 6.5 show the impact of bandwidth and cache resource alloca-

tion on the task’s WCET, respectively. Fig. 6.4 shows that the canneal benchmark

task’s slowdown varies from 15× to 2.57× when the task is allocated 1 bandwidth

partitions; in contrast, the slowdown does not change substantially when the task is

allocated 20 memory bandwidth partitions. A similar trend can also be observed in

Fig. 6.5. In general, we can make the following observation:
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Observation 6.1. The relation between a task’s WCET and the amount of cache

(resp. memory bandwidth) resource it receives is highly dependent on the amount of

memory bandwidth (resp. cache) it receives. In particular, a task’s WCET is more

sensitive to the cache allocation when it is allocated a smaller amount of memory

bandwidth, and vice versa.

This behavior is expected, as the more cache space a task receives, the fewer

cache misses it incurs, and thus the frequency that it is throttled also decreases.

Similarly, when a task receives less memory bandwidth, it runs out of budget more

quickly and becomes throttled more frequently, which in turn makes it more sensitive

to its allocated cache space.

We repeated the experiment with each PARSEC benchmark to examine the effect

of the workload characteristics. Our results show that the above observed pattern

varies across benchmarks.

Observation 6.2. The relations between a task’s WCET and its allocated cache

and memory bandwidth resources vary across different benchmark tasks. Some tasks

(e.g.,canneal benchmark) are sensitive to both cache and bandwidth resources, whereas

others are sensitive to only one (e.g., facesim benchmark) or none (e.g., swaptions

benchmark) of the resources.

These results motivate the need for considering the relations between CPU, cache

and memory bandwidth resources in allocation to achieve better utilization and

schedulability.

6.3.5 Overhead

We measured the overhead of vC2M using the same approach as in [69].

Memory bandwidth regulator overhead. The regulator introduces two types

of overhead: (i) throttle overhead, throttle_oh, when a core is throttled; and (ii)

memory bandwidth budget replenish overhead, mem_repl_oh, when the bandwidth
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budgets are refilled for all cores. To measured these, we booted a VM with 4 full-

capacity VCPUs, each of which is pinned to a dedicated core. We allocated a band-

width budget of 140 MB/s to each core. We ran the cache-bomb on each core to

trigger the memory regulator as frequently as possible, and measured the two types

of overhead. As shown in Table 6.1, our memory bandwidth regulator introduces

only a very small overhead.

Table 6.1: Memory bandwidth regulator overhead (µs).

throttle_oh mem_repl_oh
min average max min average max
0.33 0.37 1.15 8.81 52.22 108.65

Scheduler overhead. The RTDS scheduler in Xen 4.8.0 is an event-driven sched-

uler [4]. The modified RTDS scheduler has three types of overheads: (i) budget

replenishment overhead, repl_oh, for replenishing a VCPU’s budget; (ii) scheduling

overhead, sched_oh, for de-scheduling a VCPU that runs out of budget; and (iii)

context switch overhead, cxs_oh, for switching the currently running VCPU on a

core with another. Using a similar overhead measurement method as in [69], we

measured the scheduler overheads when the system has 24 VCPUs and 96 VCPUs,

respectively. The results are shown in Table 6.2. We can observe that the maximum

scheduling-related overhead is minimal, and it increases slowly as the number of VC-

PUs increases; for example, when the number of VCPUs increases by 96/24 = 4×,
the overhead increases by only up to 3.73/2.95 ≈ 1.26×.

Table 6.2: Scheduler overhead (µs).

VCPU set size: 24 VCPU set size: 96
min average max min average max

repl_oh 0.29 0.74 2.95 0.34 1.26 3.73
sched_oh 0.13 0.57 1.73 0.13 0.55 2.03
cxs_oh 0.04 0.23 32.07 0.04 0.27 24.67

In the next two sections, we present a formal model of the system and a resource

allocation algorithm for vC2M.

169



6.4 Theoretical modeling and goal

The system we presented so far provides mechanisms for resource allocation in vir-

tualization systems. However, one important question remains: How to compute

the exact allocation of CPU, cache, and memory bandwidth for tasks and VCPUs

to maximize schedulability? To solve this problem, we focus on a concrete setting of

vC2M, which we now formalize.

Platform model. The platform consists of M identical cores, with a shared cache

and a shared memory bus that are accessible by all cores. The cache is divided

into Ncp equal-size cache partitions, and the memory bandwidth is divided into Nbw

equal-size memory bandwidth partitions. Cache and bandwidth allocation is done at

the core level: each core is allocated a distinct set of cache partitions and a certain

number of bandwidth partitions, all of which will be available to any task (VCPU)

currently running on the core. To accommodate hardware constraint, we denote by

Nmin
cp and Nmin

bw the minimum numbers of cache partitions and bandwidth partitions

that a core is allocated, respectively. The hypervisor’s scheduler schedules VCPUs

on the cores using the partitioned Earliest Deadline First (pEDF) algorithm, and

the VM’s scheduler schedules its tasks on the VCPUs also according to pEDF.

VCPU model. We assume that a VCPU is implemented as a periodic server,

which is the case for Xen’s RTDS scheduler when we run a background CPU-

intensive task on each VCPU [69]. The VCPU j of the VM i is specified as V P j
i =

(Πj
i ,Θ

j
i (vcp

j
i , vbw

j
i )), where Πj

i is the VCPU’s period, Θj
i (vcp

j
i , vbw

j
i ) is the VCPU’s

execution time budget when it is allocated vcpji cache partitions and vbwji memory

bandwidth partitions. With this model, each V P j
i always provides Θj

i (vcp
j
i , vbw

j
i )

CPU time in every period of Πj
i time units, and it guarantees that any task running

on it is allocated vcpji cache partitions and vbw
j
i memory bandwidth partitions. The

CPU bandwidth of V P j
i is defined as Θj

i/Π
j
i .

We assume tasks and VCPUs partitioned on a core with cpi cache partitions

and bwi memory bandwidth partitions can always get cpi cache partitions and bwi
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memory bandwidth partitions. This is the case, e.g., when tasks and VCPUs are

scheduled at the boundary of the regulation period.

Application model. The workload consists of multiple components, each of which

is executed in a VM and contains a set of real-time tasks.

We consider independent periodic tasks with implicit deadlines26, but extend it

to capture the relationship between the task’s WCET and its cache and memory

bandwidth allocation. Specifically, a task τi is modeled as τi = {pi, di, ei(cpi, bwi) |
Nmin
cp ≤ cpi ≤ Ncp ∧ Nmin

bw ≤ bwi ≤ Nbw}, where pi is the period, di(= pi) is the

deadline, and ei(cpi, bwi) is the task’s WCET when it is assigned cpi cache partitions

and bwi memory bandwidth partitions. We assume that ei(cpi, bwi) is known a priori

(which can be obtained by analysis or measurements), and that it is monotonically

decreasing with cpi and bwi (a common assumption in existing research [19, 63]).

We consider harmonic task sets. A task set τ = (τ1, ...τn) is harmonic iff for any two

tasks τi and τj, where pi ≤ pj, pj mod pi = 0.

For analysis purpose, we refer to rei = ei(Ncp, Nbw) as the reference WCET of τi

(i.e., the task’s WCET when it is allocated all cache and memory partitions in the

system). In addition, we define τi’s reference utilization to be rui = rei/pi. By abuse

of notation, we use the term assigned WCET and assigned utilization to denote the

WCET and utilization of a task, respectively, when it is already assigned a fixed

number of cache partitions and a fixed number of bandwidth partitions.

The set of tasks in a VM i is given as τ i = {τ i1, ..., τ in}, where n is the number

of tasks in the VM. Further, we denote by τ i,j = {τ i,j1 , ..., τ i,jl } the set of tasks

that run on VCPU j of VM i, where l is the number of tasks on this VCPU. We

require that any task in a VM i must be assigned to one of the VM’s VCPUs (i.e.,

τ i = ∪1≤j≤N i
C
τ i,j and τ i,j ∩ τ i,j′ = ∅) and any VCPU must be assigned to a core.

As usual, we say that a task is schedulable iff it always finishes execution before

its deadline, and the system is schedulable if all tasks in all VMs are schedulable.
26We follow this model for simplicity; it should be straightforward to extend the algorithm to

constrained deadline tasks.
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Problem statement. Given the above model, our goal is to develop an algorithm

and associated schedulability analysis for computing (i) a mapping of tasks to VCPUs

and VCPUs to cores, and (ii) the number of cache partitions, the number of memory

bandwidth partitions (per regulation period), and the CPU budget for each VCPU

in the system, so that the system is schedulable while minimizing the total utilization

of all tasks. Note that the number of cache (memory bandwidth) partitions to be

allocated to a core can be computed trivially as the maximum among that of its

VCPUs.

Challenge. Achieving both effectiveness and efficiency is challenging in our setting

due to two reasons: (1) the abstraction overhead in compositional analysis may cause

inefficient use of CPU resource and negatively affect the cache and memory band-

width resource allocation; (2) there exists inter-dependence between WCET, cache

allocation, and memory bandwidth allocation, which also varies across tasks. The

resource allocation problem we consider is, in fact, more general than the traditional

packing of tasks to cores, which is known to be NP-hard. In the next two sections,

we present an abstraction-free compositional analysis for harmonic tasks and a novel

resource allocation approach that uses a combination of clustering and bin-packing

heuristics.

6.5 Analysis

Given a resource allocation of vC2M on a platform, we need an analysis technique to

tell if the system is schedulable. In this section, we first review a Periodic Resource

Model (PRM) based compositional analysis technique that is used for analyzing real-

time virtualization systems [41]; we then propose an improved analysis for harmonic

tasks that removes abstraction overhead (which will be defined later) and introduce

a cache-aware analysis that considers the cache overhead among tasks on the same

core.
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6.5.1 Background on PRM-based compositional analysis

Recall that a PRM-based resource interface is represented as Ω = (Π,Θ), specifying

that the resource interface provides Θ time units for every Π time units. A PRM-

based resource interface can be naturally and directly transformed into a VCPU’s

parameters, where the VCPU’s period and budget are Π and Θ, respectively.

We can use the PRM-based compositional analysis to analyze the schedulability

of a vC2M system as previous work did in [41]: we first compute each VCPU’s

parameters by abstracting resource demand of tasks on the VCPU into a PRM-

based resource interface; we then check the system’s schedulability by testing if the

total utilization of VCPUs on each core is no larger than 1.

To compute a VCPU’s parameters, we need the resource demand bound function

(dbf) of tasks, which represents the maximum resource demand of these tasks in

a time interval, and the resource supply bound function (sbf) of the VCPU, which

specifies the minimum resource supply of the VCPU in a time interval. The dbf

of a set of implicit-deadline tasks τi = (τ 1
i , ...τ

n
i )—each task’s period is equal to its

deadline—is Eq. 6.3.

dbfτi(t) =
∑
τ ji ∈τi

b t
pji
c · eji (6.3)

The sbf of a PRM-based VCPU V P = (Π,Θ) is Eq. 6.4.

sbfΩ(t) =

x ·Θ + max{0, t− 2y − x · Π}, t ≥ y

0, otherwise

(6.4)

where x = b t−(Π−Θ)
Π
c, and y = Π−Θ.

The schedulability of tasks on a VCPU can be checked with the following Theo-

rem [57]:

Theorem 6.1. A task set τi is schedulable under EDF on a VCPU with a PRM
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model Ω iff dbfτi(t) ≤ sbfΩ(t) for all 0 < t ≤ LCM, where LCM is the least common

multiplier of pji for all τ ji in τi.

When a VCPU V Pi’s period Πi is given, we can compute the VCPU’s minimum

budget to guarantee the schedulability of its tasks by searching each budget in (0,Πi]

that satisfies the Theorem 6.1 and choosing the minimum one.

Discussion on abstraction overhead. Abstraction overhead of a VCPU V Pi

is the difference between the VCPU’s bandwidth and the total utilization of the

VCPU’s tasks, which is calculated as ∆abs
V Pi

= Θi
Πi
−∑τ ji ∈τi

eji
pji
.

The abstraction overhead for a PRM-based VCPU can be very high. For example,

we have one task τ 1
i = (10, 1) scheduled under EDF on a VCPU V Pi with period

equal to 10. To schedule the task, the VCPU’s minimum budget is 5.5 – calculated by

CARTS tool [53] – incurring the abstraction overhead ∆abs
V Pi

= 5.5/10− 1/10 = 0.45,

which is 0.45/0.1 = 4.5× of the task workload.

The high abstraction overhead is caused by the fact that we do not know the exact

resource supply of a PRM-based VCPU and that we have to assume the worst-case

resource supply pattern which rarely or even never happens.

We observe that VCPUs with harmonic periods may have well-regulated resource

supply patterns, which enables us to remove the abstraction overhead for VCPUs. 27

6.5.2 Removal of abstraction overhead in PRM-based com-

positional analysis

We first introduce well-regulated VCPUs before we discuss how to remove abstraction

overhead in compositional analysis for the vC2M systems.
27The abstraction-free compositional analysis is inspired from the discussion with Jin Hyun Kim.
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Well-regulated VCPUs

Definition 6.1. A VCPU has well-regulated resource supply pattern iff the resource

supply patterns in each of its periods are the same. We call such a VCPU as a

well-regulated VCPU.

In other words, if a well-regulated VCPU V Pi does (or does not) execute at t1,

the VCPU will (or will not) execute at t1 + k · Πi, where Πi is the VCPU’s period

and k ∈ N .

Theorem 6.2. VCPUs are well-regulated VCPUs if they satisfy the following con-

ditions: (1) they use periodic server mechanism to manage their budgets; (2) their

periods are harmonic and their release offsets are the same; (3) they are scheduled

under EDF scheduling and are schedulable; (4) the scheduler uses a deterministic

priority-tie breaking policy: for two VCPUs with the same deadline, the VCPU with

a smaller period has higher priority; if they still have the same priority, the VCPU

with a smaller index has higher priority.

Proof. We will prove each VCPU satisfying the conditions has a well-regulated re-

source supply.

Because of the condition (1) and (2), the EDF scheduling becomes the fixed-

priority scheduling: a VCPU with a smaller period and a smaller index always has

higher priority.

For the highest-priority VCPU V P1, it always executes immediately when it

starts a new period. So it has a well-regulated resource supply pattern.

For the second-priority VCPU V P2, we will prove it has a well-regulated resource

supply pattern by contradiction. Suppose t1 is the first time when the VCPU supplies

differently at t1 and t2 = t1 + k · Π2, where k ≥ 1. It has two cases: the VCPU

executes at t1 but does not executes at t2 and vice versa. In the first case, because

the VCPU still has budget at t1 and t1 is the first time when the VCPU’s supply

pattern changes, the VCPU should also have budget at t2. So the fact that the VCPU
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V P2 does not execute at t2 is because the highest-priority VCPU V P1 executes at

t2. The fact that the VCPU V P2 executes at t1 indicates that the highest-priority

VCPU V P1 does not execute at t1. Because VCPUs are harmonic and V P2 has

larger period than V P1, we have Π2 = m · Π1, where m ∈ N and m ≥ 1. Since

t2 = t1 +k ·Π2 = t1 +k ·m ·Π1, the VCPU V P1 should have the same resource supply

at t1 and t2, which contradicts to the observation that the V P1 supplies differently

at these two time points. So the first case does not occur. Similarly, we can prove

that the second case does not happen either. So it is proved.

By induction, we can prove each VCPU has a well-regulated resource supply.

VCPUs in vC2M can be configured to well-regulated VCPUs with minor modifi-

cations to Xen RTDS scheduler.

The Xen RTDS scheduler, which is used in vC2M for scheduling VCPUs, does

not satisfy the condition (4) in Theorem 6.2: the scheduler breaks the priority-tie

in an arbitrary order. We add the deterministic priority-tie breaking policy into the

Xen RTDS scheduler with 20 lines of change. With the modified RTDS scheduler,

the vC2M system satisfies the condition (4).

The Xen RTDS scheduler uses EDF scheduling. By ensuring the total utilization

of VCPUs on each core is no larger than 1, vC2M satisfies the condition (3).

The release offsets of VCPUs under the Xen RTDS scheduler are always 0. By

configuring VCPUs’ periods to be harmonic, vC2M satisfies the condition (2).

Although VCPUs are implemented as deferrable server under the Xen RTDS

scheduler, vC2M can run a background CPU-intensive task on each VCPU to turn

them to periodic servers as in [69]. The condition (1) is satisfied.

Abstraction overhead-free analysis

We use properties of well-regulated VCPUs to remove the abstraction overhead for

the analysis of vC2M.
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Lemma 6.3. A well-regulated VCPU V Pi with a PRM model Ωi = (Πi,Θi) always

provides Θi time in any time interval with length Πi.

Proof. We consider a time interval [t1, t1 + Πi] for the VCPU V Pi. If t1 is the start

of a period of the VCPU V Pi, the VCPU provides Θi time in the time interval,

according to the VCPU’s definition.

If t1 is in the middle of a period, we define t0 as the start of the period where ti

resides and let t1 = t0 + η. We split the time interval [t1, t1 + Πi] to two intervals

[t0 +η, t0 +Πi] and (t0 +Πi, t0 +η+Πi]. Because the VCPU’s resource supply repeats

in each period, the resource supply in the second interval (t0 + Πi, t0 + η + Πi] is

the same with the interval (t0, t0 + η]. By combining the interval (t0, t0 + η] and

the interval [t0 + η, t0 + Πi], we get the interval [t0, t0 + Πi], which provides Θi time.

The VCPU provides the same amount of time in the time interval [t0, t0 + Πi] and

[t1, t1 + Πi]. It is proved.

Lemma 6.4. The resource supply bound function of a well-regulated VCPU V Pi with

a PRM model Ωi = (Πi,Θi) is

sbfV Pi(t) =

x ·Θi + max{t− x · Πi − y, 0}, t ≥ Πi −Θi

0, otherwise

where x = b t
Πi
c and y = Πi −Θi.

Proof. According to Lemma 6.3, a well-regulated VCPU V Pi always provides Θi

time for any time interval with length Πi. Let the start time of t as the start time

of a hypothetical resource supply period of V Pi, which has length Πi but does not

necessarily overlap with the period of V Pi. The worst-case resource supply occurs

when the VCPU services its resource as late as possible in its hypothetical resource

supply period.

When t < Πi − Θi, the VCPU provides 0 time, according to the worst-case

scenario.

177



When t ≥ Πi−Θi, there are b tΠi c full hypothetical periods of V Pi, each of which

provides Θi time. In the last partial hypothetical period of t, the VCPU provides no

resource for Πi − Θi time before it provides continuous resource for the rest of the

period. Therefore, the VCPU provides max{t− b t
Πi
c · Πi − (Πi −Θi), 0} in the last

hypothetical period. In total, the VCPU provides b t
Πi
c · Θi + max{t − b t

Πi
c · Πi −

(Πi −Θi), 0} resource when t > Πi −Θi.

With the tighter resource supply bound function for well-regulated VCPUs, we

can remove the abstraction overhead in computing a VCPU’s parameters from its

tasks’ resource demand.

Theorem 6.5. A harmonic task sets τi = {τ 1
i , ...τ

n
i }, where τ ji = (pji , e

j
i ), is schedu-

lable under EDF on a well-regulated VCPU V Pi with a PRM model Ωi = (Πi,Θi) if

Πi = minτ ji ∈τi
pji and

Θi
Πi

=
∑

τ ji ∈τi
eji
pji
.

Proof. We first prove a widget to be used later: for any value a and k ≥ 1, k · ba
k
c ≤

bac. Let a = k · m + r, where m is the largest possible integer for which r is

nonnegative. We have bac ≥ k · m. Because a
k

= m + r
k
, we get m = ba

k
c, and

k ·m = k · ba
k
c. So bac ≥ k · ba

k
c.

Recall that the task set τi is schedulable if it satisfies Theorem 6.1. We now prove

that the dbf of τi is always no larger than the sbf of the VCPU V Pi with the PRM

model Ωi.

Because the task set is harmonic and Πi = minτ ji ∈τi
pji , each task τ ji ’s period is

pji = kji · Πi, where kji ∈ N , and WCET is eji = uji · pji = uji · kji · Πi, where uji =
eji
pji
.

The dbf of the task set τi is dbfτi(t) =
∑

τ ji ∈τi
b t
pji
c · eji =

∑
τ ji ∈τi
b t

kji ·Πi
c ·uji ·kji ·Πj

i .

According to the proved widget above, dbfτi(t) ≤
∑

τ ji ∈τi
b t

Πi
c·uji ·Πi = b t

Πi
c·∑τ ji ∈τi

uji ·
Πi = b t

Πi
c · Θi

Πi
· Πi = b t

Πi
c ·Θi.

The sbf of the well-regulated VCPU V Pi with the PRM model Ωi satisfies

sbfV Pi(t) ≥ b tΠi c ·Θi ≥ dbfτi(t). It is proved.

Given a vC2M system, which has harmonic tasks and the mapping of tasks to
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VCPUs, we can compute each VCPU’s parameters with Theorem 6.5. We remove

the abstraction overhead because each VCPU’s bandwidth is equal to its tasks’ total

utilization.

6.5.3 Cache-aware analysis

Under the core-level cache partitioning, each core has its own cache area in the LLC.

Tasks on the same core use the same LLC area and may evict each other’s cached

content. Events that cause the cache overhead in the LLC are the same type of

events that cause the cache overhead in the private cache discussed in Chapter 3.

We first review these cache overhead-causal events before we discuss how to account

for their impact on the system’s schedulability.

Definition 6.2 (Task-preemption event.). A task-preemption event of τi occurs when

a job of another task τj on the same VCPU is released and this job preempts the

current job of τi.

Definition 6.3 (VCPU-preemption event.). A VCPU-preemption event of V Pi oc-

curs when V Pi is preempted by a higher-priority VCPU V Pj of another VM.

Definition 6.4 (VCPU-completion event.). A VCPU-completion event of V Pi hap-

pens when V Pi exhausts its budget in a period and stops its execution.

When a task τi experiences a task-preemption event, its cached contents may be

evicted by other tasks. When τi resumes and accesses the evicted cached contents, it

experiences extra cache misses. We call the latency of reloading these evicted cached

contents after each overhead-causal event (e.g., task-preemption event) as one-cache-

overhead, which is denoted as ∆crpd
τi

for the task τi. We denote the maximum one-

cache-overhead τi causes to other tasks as δcrpdτi
.

Each job of a task τi incurs at most one task-preemption event, which causes

at most one cache overhead to another task. We can inflate τi’s WCET with one
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maximum cache overhead it may cause to other tasks to safely account for the impact

of the task-preemption event as in [74] [24]. The inflated WCET of τi is

e′i = ei + δcrpdτi
(6.5)

Theorem 6.6. A set of tasks τ = {τ1, ...τn}, where τk = (pk, ek), is schedulable

under EDF on a VCPU with PRM model in the presence of cache-related overhead if

its inflated taskset τ ′ = {τ1,
′ , ...τ ′n} is schedulable under EDF on a VCPU with PRM

model in the absence of cache-related overhead, where τ ′k = (pk, e
′
k) and e′k is given

by Eq. 6.5

When a VCPU V Pi causes a VCPU-preemption event to another VCPU V Pj,

tasks on V Pi can evict cached contents of the currently running task τk on V Pj,

causing one-cache-overhead to τk on V Pj. We specify the maximum one-cache-

overhead V Pi causes to other VCPUs at each VCPU-preemption event as δcrpdvpi
.

Each job of a VCPU V Pi causes at most one VCPU-preemption event, which

causes at most one cache overhead to another VCPU. Similar to the task-preemption

event, we can inflate V Pi’s budget to account for the impact of its VCPU-preemption

event. The inflated budget of V Pi is

Θ′i = Θi + δcrpdvpi
(6.6)

When a VCPU V Pi experiences a VCPU-completion event, the running task τk

on V Pi stops and its cached content may be evicted by tasks on other VCPUs. When

V Pi resumes execution in the next period, τk resumes as well and may experience

one-cache-overhead. We denote the maximum one-cache-overhead of the running

task on V Pi at a VCPU-completion event as ∆crpd
vpi

.

Each job of a VCPU V Pi experiences a task-completion event. When it resumes,

it incurs at most ∆crpd
vpi

extra latency, whose impact can be accounted by inflating
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the VCPU’s budget with ∆crpd
vpi

as in [74] [24]. The inflated budget of V Pi is

Θ′i = Θi + ∆crpd
vpi

(6.7)

The inflated budget of V Pi, considering the cache-overhead impact caused by

VCPU-preemption and VCPU-completion events, is

Θ′′i = Θi + δcrpdvpi
+ ∆crpd

vpi
(6.8)

Theorem 6.7. Consider a set of VCPUs V P = {V P1, ...V Pn} scheduled under EDF

on a core, where V Pi = (Πi,Θi). Let V P ′′ = {V P ′′1 , ..V P ′′n}, where V P ′′i = (Π′′i ,Θ
′′
i )

and Θ′′i is Eq. 6.8 for all 1 ≤ i ≤ n. Then V P is schedulable on the core in the

presence of cache-related overhead, if the set of inflated VCPUs V P ′′ is schedulable

under EDF in the absence of overhead.

6.6 Resource allocation algorithm

The allocation algorithm in vC2M integrates the results of two schemes: a VM-

level allocation scheme that determines the tasks-to-VCPUs mapping and VCPUs’

parameters, and a hypervisor-level allocation scheme that determines the VCPUs-

to-cores mapping and each core’s allocated resources.

6.6.1 VM-level resource allocation

Basic strategies. Driven by observations for tasks in Section 6.3.4, we propose the

following high-level strategies:

Strategy 6.1. (Group by sensitivity) As tasks on the same VCPU (and on the same

core) are always allocated the same amount of cache and bandwidth resources (equal

to that of the core), grouping tasks with similar sensitivity to the cache and bandwidth
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resource allocations onto the same VCPU (and onto the same core) can help better

utilize the cache and bandwidth resources.

Towards this, we define a task’s resource-allocation slowdown under cpi cache

partitions and bwi bandwidth partitions to be t_slowdowni(cpi, bwi) = ei(cpi,bwi)
rei

,

where rei is the task’s reference WCET (defined in Section 6.4).

The next strategy simply aims to balance load across VCPUs. This strategy aims

to avoid the pathological situation that some VCPUs are overloaded and hard to be

scheduled on any core while others are underloaded.

Strategy 6.2. (Load balancing) Given an allocation of tasks to VCPUs, evenly dis-

tributing the tasks among VCPUs based on the assigned VCPUs’ utilizations can help

balance the load across VCPUs and eventually avoid under-utilized cores.

Algorithm 1 Heuristic VM-level resource allocator
Input: τ : the set of tasks in a VM, M : the number of cores, maxIterKM : the

maximum number of iterations for KMeans.
Output: V : the set of VCPUs for the VM.
1: τ ′ ← accountForTaskOh(τ) . Inflate each task’s WCET with Eq. 6.5.
2: m← min{the number of tasks,M}
3: clusters← clusterTasks(τ ′,m,maxIterKM)
4: Sort tasks in each cluster in decreasing order of tasks’ reference utilization
5: V ← binPackTaskClusters(clusters,m)
6: calcV CPUParams(V )

Overview of the algorithm. Algorithm 1 shows the high-level idea of our alloca-

tion algorithm for grouping tasks to VCPUs. The algorithm works in four phases:

(1) Phase 1 (Line 1): It inflates each task’s WCET by using Eq. 6.5 to account

for the cache-overhead impact caused by task-preemption events.

(1) Phase 2 (Lines 2–4): It first groups tasks that have similar sensitivity to

cache and memory bandwidth into the same cluster, based on Strategy 6.1. Then,

it sorts tasks in each cluster in decreasing order of tasks’ reference utilization – this

is because it is typically harder for a task with higher utilization to find a feasible

VCPU.
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(2) Phase 3 (Line 5): It packs each task in each cluster onto a VCPU, such that

the total reference utilization of tasks on each VCPU is similar (i.e., close to the

average reference utilization of all tasks), as guided by Strategy 6.2.

(3) Phase 4 (Line 6): Next it calculates each VCPU’s parameters using Theo-

rem 6.5.

Algorithm details. We now discuss the key ideas of the main procedures using

in our VM-level resource allocation algorithm: clusterTasks() and binPackTaskClus-

ters().

Algorithm 2 clusterTasks(τ , m, maxIterKM)
Input: τ : the set of tasks with inflated WCET, m: the number of clusters,

maxIterKM : the maximum number of iterations for KMeans.
Output: m clusters of tasks
1: Calculate each task’s resource-allocation slowdowns
2: Create m clusters C with m randomly picked tasks as its centroid
3: repeat
4: updated = false
5: maxIterKM = maxIterKM − 1
6: for all τi ∈ τ do
7: min_distance←∞
8: for all c ∈ C do
9: . distance(v, c) is distance between τi and c.
10: if distance(τi, c) < min_distance then
11: task_cluster = c
12: min_distance = distance(τi, c)

13: if τi 6∈ task_cluster then
14: task_cluster ← τi . Assign τi to task_cluster
15: updated = true

16: for all c ∈ C do
17: Calculate the mean of all tasks in c
18: Update the new mean as c’s new centroid
19: until updated = false or maxIterKM = 0

The clusterTasks() procedure (c.f. Algorithm 2) uses the KMeans algorithm [45]

(which is widely used in machine learning for clustering data points with similar

features) to cluster tasks that have similar sensitivity to cache and bandwidth re-
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sources. Each task τj has a Nconfig dimensional slowdown vector ~svj, where Nconfig

is the number of valid resource configurations. (A valid resource configuration is

a pair of a valid number of cache partitions and a valid number of memory band-

width partitions.) The ith element in a task’s slowdown vector is the task’s resource

allocation slowdown under the corresponding resource configuration. Formally, the

procedure aims to divide the set of tasks τ into m clusters such that the pairwise

deviation of tasks in the same cluster is minimized:

arg
C

min
m∑
k=1

1

2|Ck|
∑

τi,τj∈Ck

|| ~svi − ~svj||2 (6.9)

where |Ck| is the number of tasks in the m cluster Ck.

The clusterTasks() procedure has three steps: (1) initialization, which calculates

each task’s slowdown vector and creates an initial set of m clusters; (2) assignment,

which assigns each task to the task’s closest cluster whose mean has the least square

distance to the task; and (3) update, which calculates the new mean of each cluster

as the new centroid of the cluster. The algorithm repeats the assignment step and

the update step until all clusters’ assigned tasks are no longer changed or until after

maxIterKM iterations.

The binPackTaskClusters() procedure (c.f. Algorithm 3) packs tasks of clusters

into m VCPUs such that each VCPU’s reference utilization (i.e., the total reference

utilizations of all tasks on the VCPU) is similar. The procedure first computes

the average reference utilization meanRefU of m clusters, i.e., the total reference

utilization of all tasks divided by m. Then it uses our modified first-fit bin-packing

algorithm to pack tasks to VCPUs: for each task, it tries to pack it from core 0 to

core m− 1. It packs a task to a VCPU if the VCPU’s current reference utilization is

smaller than the average reference utilization meanRefU and the VCPU’s current

reference utilization plus the task’s reference utilization is no larger than 1. The

procedure packs a task to VCPU 0 if it cannot find any VCPU that satisfies the
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Algorithm 3 binPackTaskClusters(C, m)
Input: C: clusters of tasks, m: the number of VCPUs
Output: V : m VCPUs that have similar reference utilizations
1: Initialize V as m empty VCPUs
2: sumU ← 0
3: for all c ∈ C do
4: util← c . Get c’s reference utilization
5: sumU+ = uil

6: meanU ← sumU/m
7: for all c ∈ C do
8: for all v ∈ c do
9: vU ← v . Get v’s reference utilization
10: for i = 0; i < m; i = i+ 1 do
11: V Pi ← V . Get ith VCPU in V
12: pU ← V Pi . Get V Pi’s reference utilization
13: if pU > meanU or pU + vU > 1 then
14: continue
15: else if pU + vU ≤ 1 then
16: chosen← V Pi
17: else
18: chosen← V P0

19: chosen← v . Assign v to chosen core
20: return P
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above condition.

Complexity. The VM-level heuristic algorithm’s running time is polynomial of

the following parameters: n, the number of tasks; m, the number of cores, and

maxIterKM , the maximum number of iterations in the clusterTasks() procedure.

6.6.2 Hypervisor-level resource allocation scheme

Basic strategies. Since tasks on a VCPU have similar resource sensitivity and the

total utilization of tasks on a VCPU is always the same with the VCPU’s at each

possible combination of cache and memory bandwidth allocation, the observations

for tasks in Section 6.3.3 also hold for VCPUs. Driven by these observations, we

reuse the strategies at the VM-level resource allocation to determine the mapping

of VCPUs to cores; and we also propose a new strategy to determine the cache and

memory bandwidth allocation to cores:

We define a core i’s resource utility as the average reduced utilization per newly

allocated cache and bandwidth partition for the core:

reducedUi =

(ui − u′i)/(cp+ bw) if ui > 1

0 otherwise
(6.10)

where ui and u′i are the core’s utilization before and after it is allocated for extra

cp cache partitions and bw bandwidth partitions, respectively. To balance the load

across cores, we will find an allocation that maximizes the resource utility whenever

assigning some extra partitions to a core:

Strategy 6.3. When adding more cache and memory bandwidth resources to a core

that is unschedulable under the current allocation, allocating resources to a core that

results in the maximum resource utility can provide a more effective use of the scarce

cache and bandwidth resources.
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Algorithm 4 Heuristic hypervisor-level resource allocator
Input: V : the set of VCPUs, m: the number of cores, Ncp: the number of cache

partitions, Nbw: the number of bandwidth partitions, maxIterKM : the maxi-
mum number of iterations for KMeans, maxIterPerm: the maximum number
of iterations for permuting VCPUs.

Output: Schedulable or Unschedulable.
1: accountForVCPUOh(V) . inflate each VCPU’s budget with Eq. 6.8.
2: clusters← clusterV CPUs(V,m,maxIterKM)
3: Sort VCPUs in clusters in decreasing order of VCPUs’ reference utilizations
4: repeat
5: perm_clusters← permute(clusters) . randomly pick one permutation of
clusters

6: cores← binPackV CPUClusters(perm_clusters,m)
7: cores← allocResource(cores,m,Ncp, Nbw) . cores specify VCPUs and

resources allocated to each core
8: sched← checkSchedulability(cores) . schedulable if each core’s assigned

utilization is no larger than 1
9: if sched = schedulable then
10: break
11: oldV al←∞ . previous imbalance value
12: while true do . balance cores’ utilizations iteratively
13: val← getImbalanceV alue(cores)
14: cores← balance(cores)
15: cores← allocResource(cores)
16: sched← checkSchedulability(cores)
17: if sched = schedulable or val > oldV al then
18: break
19: oldV al← val
20: maxIterPerm← maxIterPerm− 1
21: until maxIterPerm = 0
22: return sched
23:
24: function getImbalanceValue(cores)
25: imbalance = 0
26: for all c ∈ cores do
27: if c’s assigned utilization > 1 then
28: imbalance += c′s assigned utilization − 1

29: return imbalance rounded to 2 fractional digits
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Overview of the algorithm. Algorithm 4 shows the high-level idea of our alloca-

tion algorithm for m cores. Initially, each core is allocated the minimum number of

cache and bandwidth partitions. It then works in four phases:

(1) Phase 1 (Line 1): It inflates each VCPU’s budget with Eq. 6.8 to account for

the cache-overhead impact of VCPU-preemption and VCPU-completion events.

(2) Phase 2 (Lines 2–3): It packs VCPUs to cores in a similar way as the VM-

level resource allocation does. It first groups VCPUs that have similar sensitivity

to cache and memory bandwidth into the same cluster and packs VCPUs to cores,

such that the total reference utilization of VCPUs on each core is similar.

(3) Phase 3 (Lines 5–10): It allocates the cache and memory bandwidth resources

to cores while aiming to maximize the resulting resource utility, based on the Strat-

egy 6.3. Once the resources allocated to each core are determined, it calculates the

resulting utilization of each core and checks the system’s schedulability. If the system

is schedulable, the algorithm terminates and outputs the resource allocation policy

that schedules the system; otherwise, it continues to the next phase.

(4) Phase 4 (Lines 11–19): The algorithm tries to balance the VCPU workloads

across cores (Line 14). For each unschedulable core, it migrates each of its VCPUs to

a schedulable core that will have the smallest utilization after the migration, until the

unschedulable core becomes schedulable. After the balance procedure finishes, the

algorithm re-runs the allocResource() procedure for cores and checks if the system

becomes schedulable. The algorithm keeps balancing VCPUs on cores until the

system becomes schedulable or there is no benefit in balancing (Line 17). Because

the order of the clusters may affect the bin packing result (Line 6), which may later

affect the resource allocation and balance procedure, the algorithm re-orders the

clusters and repeats the bin-packing procedure in Phase 2 and procedures in Phases

3 and 4 (Lines 4–21) for a user-specified constant number (i.e., maxIterPerm) before

it claims that the system is unschedulable.

We observe that an unschedulable system on m cores may become schedulable
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when the system has fewer cores. This could happen as fewer cores also means more

average cache and memory bandwidth resources available to a core (since each core

must have a certain minimum amount of cache and memory bandwidth resources),

which could lead to smaller tasks’ and VCPUs’ utilizations (if the tasks are sensitive

to cache and bandwidth resources), hence making the system easier to be scheduled.

Based on this observation, we use Algorithm 4 to check the system’s schedulability

on each valid number of coresm, where 1 ≤ m ≤M , andM is the maximum number

of cores supported by the hardware.

Algorithm details. The hypervisor-level resource allocation algorithm (c.f. Al-

gorithm 4 has four main procedures: clusterVCPUs(), binPackVCPUClusters(), al-

locResource(), and balance().

The clusterVCPUs() and binPackVCPUClusters() procedures use the same al-

gorithms to map VCPUs to cores at the hypervisor level as the the clusterTasks()

and binPackTaskClusters() procedures do at the VM level. We get the cluster-

VCPUs() and binPackVCPUClusters() procedures by respectively replacing task(s)

with VCPU(s) in the clusterTasks() procedure (c.f. Algorithm 2) and the binPack-

TaskClusters() procedure (c.f. Algorithm 3).

We now discuss the key ideas of the other two main procedures: allocResource()

and balance().

The allocResource() procedure (c.f. Algorithm 5) allocates cache and memory

bandwidth resources to cores for making the system schedulable with less cache and

memory bandwidth resources. The procedure first allocates the minimum number

of cache and memory bandwidth partitions to each core. Then the procedure always

allocates some or all remaining cache and memory bandwidth partitions to the core

that has the maximum resource utility, until all cores become schedulable or there

is no benefit in reducing an unschedulable core’s utilization.

The balance() procedure (c.f. Algorithm 6) migrates VCPUs from unschedulable

cores to schedulable cores so that cores’ utilizations are balanced, which makes it
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Algorithm 5 allocResource(C, m, Ncp, Nbw)
Input: C: m cores, Ncp: the number of available cache partitions, Nbw: the number

of available bandwidth partitions
Output: The number of cache and bandwidth partitions allocated for each core in

C that maximizes the reduced resource utilization
1: for all c ∈ C do
2: c← (Nmin

cp , Nmin
bw ) . Assign the minimum number of cache partitions and

bandwidth partitions to c
3: remainCP = Ncp −m ·Nmin

cp

4: remainBW = Nbw −m ·Nmin
bw

5: while remainCP > 0 or remainBW > 0 do
6: maxRU = 0 . Maximum resource utilization
7: for all c ∈ C do
8: (cMaxRU, cChosenCP, cChosenBW ) ←
getMaxResUtil(c, remainBW, remainCP )

9: if cMaxRU > maxRU then
10: maxRU = cMaxRU ; chosenCP ← cChosenCP
11: chosen← c; chosenBW ← cChosenBW

12: if chosenCP = 0 and chosenBW = 0 then
13: break . Stop due to no schedulability benefit
14: /* Allocate found resource to chosen cluster */
15: chosen← chosenCP ; chosen← chosenBW
16: remainCP− = chosenCP ; remainBW− = chosenBW

17: return C
18:
19: function getMaxResUtil(c, remainBW , remainCP )
20: for bw ← 0 to remainBW do
21: for cp← 0 to remainCP do
22: curU ← c . c’s utilization under currently allocated resource
23: newU ← c . c’s utilization if c is allocated for extra cp cache and bw

bandwidth partitions
24: if curU ≤ 1 or cp+ bw = 0 then
25: resU = 0 . No benefit for schedulability
26: else
27: resU = (curU − newU)/(cp+ bw)

28: if resU ≥ cMaxRU then
29: cMaxRU ← resU
30: cChosenCP ← cp; cChosenBW ← bw

31: return (cMaxRU, cChosenCP, cChosenBW)
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Algorithm 6 balance(C)
Input: C: m cores whose number of cache and bandwidth partitions is determined
Output: Cores whose assigned utilizations are similar
1: Create uC which holds all unschedulable cores in C
2: Sort uC in decreasing order of cores’ assigned utilizations
3: Sort VCPUs in each core in increasing order of VCPU’s assigned slowdown =

assigned utilization / reference utilization
4: for all uc ∈ uC do
5: for all v ∈ uc do
6: curU ← v . v’s assigned utilization in uc
7: /* Find a core with smallest assigned utilization after v is moved to the

core */
8: for c ∈ C do
9: if c = c then
10: continue
11: util← c ∪ v . c’s assigned utilization if v moves to c
12: if util < min_util then
13: min_util← util; dst← c

14: dst← v . Move v to dst core
15: Update assigned utilization for uc and dst core
16: if uc’s assigned utilization ≤ 1 then
17: break
18: return C . Cores’ assigned utilization are balanced
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easier to schedule the system. The input of the procedure is m cores whose VCPUs

and the number of cache and memory bandwidth partitions have been determined.

The procedure first sorts VCPUs on unschedulable cores in increasing order of VC-

PUs’ assigned slowdowns, each of which is a VCPU’s assigned utilization divided

by the VCPU’s reference utilization. For each unschedulable core, the procedure

migrates each of its sorted VCPUs to the core that has the smallest assigned utiliza-

tion after the VCPU is migrated, until the unschedulable core becomes schedulable.

The procedure terminates after all unschedulable cores in the input become schedu-

lable. Note that the schedulable cores in the input may become unschedulable after

this procedure, in which case the heuristic algorithm will call the allocResource()

procedure to re-allocate resources to cores (c.f. Algorithm 4).

Complexity. The hypervisor-level heuristic algorithm’s running time is polyno-

mial of the following parameters: n, the number of VCPUs; m, the maximum

number of cores; Ncp, the maximum of cache partitions; Nbw, the maximum num-

ber of memory bandwidth partitions; dUe, where U is the total utilization of all

VCPUs under the minimum number of cache and memory bandwidth resources;

maxIterKM , the maximum number of iterations in the clusterVCPUs() procedure;

and maxIterPerm, the maximum number of iterations in the VMM-level heuristic

algorithm.

6.7 Performance evaluation

To evaluate the effectiveness and efficiency of our resource allocation algorithm,

we conducted an extensive set of experiments using randomly generated real-time

workloads. We had three main objectives: (i) to evaluate the performance of our

algorithm in terms of schedulability; (ii) to investigate the impact of platforms’

and tasks’ parameters on the schedulability performance; and (iii) to evaluate the

efficiency of our algorithm.

192



For comparison, we also performed the same set of experiments for four other

solutions: (i) a baseline algorithm that does not use cache to avoid cache-related

overhead; (ii) an evenly-partitioned algorithm that evenly distributes the cache and

memory bandwidth to cores and uses the abstract overhead-free analysis; (iii) a

strawman algorithm that use our proposed heuristic resource allocation algorithm

but uses the original compositional analysis that has abstraction overhead, and (iv)

a flattened algorithm that directly manage the resources for tasks and has close-to-

optimal schedulability performance in native environment [73].

6.7.1 Experimental setup

Workload. Each workload contained a number of randomly generated periodic

tasksets. The tasks’ periods were harmonic and uniformly distributed in [100,

1100] [41]. A task has a Provisioned Execution Time (PET) [38], which is the

task’s estimated WCET when the task does not use cache and uses the worst-case

memory bandwidth. A task’s normalized utilization is the task’s PET divided by its

period. The tasks’ normalized utilizations followed one of four distributions: a uni-

form distribution within the range [0.1, 0.4] and three bimodal distributions, where

the utilizations were distributed uniformly over either [0.1, 0.4] or [0.5, 0.9], with re-

spective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9

(heavy). 28 Without further specification, the tasks’ normalized utilizations followed

the uniform distribution within the range [0.1, 0.4].

The tasks’ workloads were randomly selected from one of the resource-sensitive

PARSEC benchmarks (e.g., canneal and streamcluster). A task’s reference WCET

is the task’s PET divided by the task’s no-cache slowdown, which was obtained by

profiling the PARSEC benchmarks in Section 6.3.2. A task’s reference utilization is

the task’s reference WCET divided by its task. The task’s slowdown values under

different cache and bandwidth configurations were assigned to be the same with the
28The bimodal distribution probabilities are similar to the ones used in [24].
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slowdown values of the corresponding benchmark, which were obtained by profiling

on our prototype. The task’s WCET values under different cache and bandwidth

configurations were computed as the product of the task’s reference utilization and

the task’s corresponding slowdown.

We profiled the execution time of different PARSEC benchmarks with simlarge

input under different cache and bandwidth configurations using our prototype on

our empirical evaluation machine (c.f. Section 6.3). For each PARSEC benchmark,

we dedicated one core for the benchmark, configured the core with a valid cache and

bandwidth configuration, and measured the execution time of the benchmark for 25

runs. The valid number of cache partitions was ranged from 2 to 20, with a step of

1; the valid number of bandwidth partitions was ranged from 1 to 20, with a step

of 1. The set of valid cache and bandwidth configurations is a cartesian product of

the valid number of cache partitions and the valid number of bandwidth partitions.

For each PARSEC benchmark, we measured its execution time under 19× 20 = 380

valid cache and memory bandwidth configurations and calculated its slowdowns.

The obtained slowdowns were used for the tasks, as explained above.

Platform configurations. We analyzed the above generated workloads for three

platform configurations (based on the Intel Xeon 2618v3, Intel Xeon D-1528, and

Intel Xeon D-1518 processors, respectively): Platform A has 4 cores and 20 cache

partitions; Platform B has 6 cores and 20 cache partitions; and Platform C has 4

cores and 12 cache partitions. The number of memory bandwidth partitions is the

same as the number of cache partitions on each platform.

Baseline algorithm. The baseline algorithm uses tasks’ calculated execution time

without cache – the execution time we calculated by assuming the task has no cache

and uses the worst-case memory bandwidth as we did in Seciton 6.3.2–for the resource

allocation. At the VM level, the algorithm uses the best-fit bin-packing algorithm

to pack tasks to VCPUs and then computes each VCPU’s budget and period by

using the original compositional analysis in [57] with the CARTS tool [53]. At
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the hypervisor level, the algorithm uses the best-fit bin-packing algorithm to pack

VCPUs to cores. If the total assigned utilization of VCPUs on each core is no larger

than 1, the system is deemed schedulable; otherwise, it is deemed unschedulable.

Evenly-partitioned algorithm. The evenly-partitioned algorithm evenly dis-

tributes cache and memory bandwidth resources to cores. Each core has bNcp/mc
cache partitions and bNbw/mc memory bandwidth partitions, where Ncp is the total

number of cache partitions, Nbw is the total number of bandwidth partitions, and

m is the number of cores on the platform. The WCET of a task is the execution

time of the generated task under bNcp/mc cache partitions and bNbw/mc bandwidth
partitions. If a task’s assigned WCET is larger than its period, the taskset is im-

mediately deemed unschedulable. Similar to the baseline algorithm, the algorithm

uses the best-fit bin-packing algorithm to pack tasks to VCPUs at the VM level

and to pack VCPUs to cores at the hypervisor level. Different from the baseline

algorithm, the algorithm computes the VCPUs’ budgets and periods using the ab-

straction overhead-free compositional analysis in Section 6.5.

By comparing our proposed algorithm against this evenly-partitioned algorithm,

we can understand the schedulability benefit of our proposed heuristic resource al-

location algorithm.

Strawman algorithm. The strawman algorithm uses the same heuristic resource

allocation algorithm in Section 6.6 to determine the resource allocation. Different

from our proposed algorithm, the algorithm uses the original compositional analysis

in [57], instead of the improved analysis in Section 6.5, to compute the VCPUs’

budgets. A VCPU’s period is set to half of the minimum period of tasks on the

VCPU. 29

By comparing our proposed algorithm against this strawman algorithm, we can

understand the benefit of our improved abstraction-free analysis.

Flattened algorithm. The flattened algorithm removes the hypervisor layer and
29An interesting future work is to explore the optimal period for each VCPU under the strawman

solution.
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directly manages the resources for tasks. It treats each task as a VCPU and uses

the hypervisor-level resource allocation scheme (Section 6.6.2) to allocate the CPU,

cache and memory bandwidth resources directly to tasks. As shown in our previous

study [73], which compared the flattened algorithm with an optimal mixed-integer

programming based solution, the flattened algorithm has close-to-optimal perfor-

mance in terms of system schedulability.

Analysis. We analyzed the same set of tasksets for each of the five algorithms:

our algorithm (Heuristic), the baseline algorithm (Baseline), the evenly-partitioned

algorithm (Evenly-partition), the strawman algorithm (Strawman), and the flattened

algorithm (Flattened). Our analyses were performed on an Intel Xeon E5-2683 v4

processor, which has 32 cores (with hyper threading enabled) operating at 2.10GHz.

6.7.2 Schedulability performance

We generated tasksets with taskset’s reference utilization (defined in Section 6.7.1)

ranging from 0.1 to 2, with a step of 0.05. For each taskset reference utilization,

we generated 50 independent tasksets (i.e., 1950 tasksets in total), with tasks’ nor-

malized utilizations uniformly distributed in [0.1, 0.4]. We analyzed the tasksets for

Platform A using the five algorithms. Fig. 6.6 shows the fraction of schedulable

tasksets under each solution.

The results show that the fraction of schedulable tasksets under our algorithm is

very close to that of the flattened algorithm. During the taskset’s reference utiliza-

tion range [0.1, 1.3], all tasksets that are schedulable under the flattened algorithm

are schedulable under our algorithm. Among all generated tasksets, only 100 out of

1950 tasksets (5%) are schedulable under the flattened algorithm but are unschedu-

lable under our algorithm. The results also show that our algorithm significantly

outperforms the baseline algorithm. The tasksets’ reference utilization after which

tasksets start to become unschedulable is 0.5 under the baseline algorithm, while

it is 1.3 under our algorithm. This shows that our algorithm can increase system’s
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Figure 6.6: Performance on Platform A.

workload by 1.3/0.5 = 2.6× without sacrificing the system’s schedulability.

We also observe that we must combine the abstraction-free analysis and the

heuristic resource allocation algorithm together to get the satisfied performance.

If we only use the heuristic resource allocation algorithm, whose result is shown

as the strawman algorithm in purple line in Fig. 6.6, the abstraction overhead of

computing VCPUs’ parameters is too high, making VCPUs hardly schedulable at

the hypervisor level even when the taskset’s reference utilization is very small (i.e.,

0.7). If we only use the abstraction-free analysis to remove the abstraction overhead,

whose result is shown as the evenly-partition algorithm in yellow line in Fig. 6.6,

the cache and memory bandwidth resource are used ineffectively, making the system

become unschedulable when the taskset’s reference utilization is larger than 0.5.

By combining both proposed techniques, our algorithm significantly increases the

taskset’s reference utilization up to 1.3, which is 1.3/0.5 = 2.6× over the evenly-

partition algorithm ,without sacrificing the system’s schedulability.
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(a) Platform B
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(b) Platform C

Figure 6.7: Performance for different platforms.
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(a) Bimodal light
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(b) Bimodal medium

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Task set reference utilization

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 s
ch

ed
ul

ab
le

 ta
sk

se
t

 

Flatten
Heuristic
Evenly-partition
Baseline
Strawman

(c) Bimodal heavy

Figure 6.8: Performance for different taskset utilization distributions.

6.7.3 Impact of platform configurations and task parameters

We investigated the impact of the platform configurations and the tasks’ parameters

on the fraction of schedulable tasksets for all three algorithms. For this, we repeated

the above experiment on the remaining two platforms (i.e., Platforms B and C), as

well as using tasksets with the bimodal-light, bimodal-medium and bimodal-heavy

utilization distributions.

The results for Platform B and Platform C are shown in Fig. 6.7. We observe

that our algorithm performs close to the flattened algorithm on different platforms.

We also observe that the more powerful (e.g., more cores) the platform is, the more

performance benefit our algorithm is over the other three algorithms (i.e., Baseline,

Evenly-partitioned, and Strawman).
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Figure 6.9: Average computation time.

The results for tasksets with the three bimodal distributions are illustrated in

Fig. 6.8. Our observation that our heuristic solution always performs very close to

the flattened algorithm while significantly outperforming the other three algorithms

still hold across different taskset utilization distributions.

6.7.4 Running time efficiency

We measured the computation time of all five algorithms in the evaluation in Sec-

tion 6.7.2. We observed that our algorithm can efficiently analyze the schedulability

of a system: its maximum average running time is less than 3 seconds. We also

observed that our algorithm needed at most 0.40 extra second to determine the re-

source allocation for a taskset than the flattened algorithm did. This is because our

algorithm needs to compute resource allocation at two levels while the flattened algo-

rithm needs to compute only one level. When the tasksets became hardly schedulable

under large taskset reference utilization (i.e., 1.65), our algorithm took less time in

average – and up to 1.38 second – to determine a taskset is unschedulable than the

flattened algorithm did.

We also observed that both our algorithm and the flattened algorithm took more
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time than the baseline algorithm and the evenly-partition algorithm did because the

former two algorithms tried different resource allocations. The strawman algorithm

took considerable amount of computation time because the running time of the orig-

inal compositional analysis used by the algorithm was known as pseudo-polynomial

to the least common multiplier of tasks’ periods, which could be very large. This also

demonstrates that our improved abstraction overhead-free analysis not only improves

the schedulability but also reduces the computation time for harmonic tasks.

6.8 Conclusion

We have presented a holistic framework called vC2M for the co-allocation of CPU,

cache, and memory bandwidth resources on multicore virtualization systems. vC2M

provides a mechanism for memory bandwidth regulation with minimal run-time over-

head, as well as an effective and efficient resource allocation algorithm. We have

shown through extensive evaluations on our prototype that vC2M can effectively

mitigate interference among concurrent running tasks and thus substantially im-

prove tasks’ WCETs. In addition, by proposing an abstraction-free compositional

analysis and considering the interdependence among multiple resource types, its allo-

cation solution offers close-to-optimal schedulability performance while being highly

efficient, and it outperforms a baseline approach in both metrics.
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Chapter 7

Conclusions

7.1 Conclusion

In this thesis, we have presented novel system and analysis approaches to address pre-

dictable performance challenges associated with cache-related resources for multicore

virtualization systems. We have answered two questions fundamental to providing

the predictable performance to tasks on cache-based multicore virtualization sys-

tems: (i) can the timing requirements be satisfied under the cache interference; (ii)

how to manage the cache to mitigate the cache interference.

In Chapter 3, we present a cache-aware compositional analysis to analyze the im-

pact of private cache on systems’ predictable performance. We characterize different

types of events that cause cache misses in the presence of virtualization. We have

developed two approaches, task-centric and model-centric, for analyzing the cache-

related overhead and for testing the schedulability of components in the presence of

cache overhead. Our evaluation on synthetic workloads shows that the model-centric

approach achieves significant resource savings compared to the task-centric approach

(which is based on WCET inflation).

In Chapter 4, we present gFPca, a cache-aware variant of the global preemp-

tive fixed-priority (gFP) algorithm to mitigate the shared cache interference among
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tasks inside the same OS. The gFPca algorithm dynamically allocates non-overlapped

shared cache areas to running tasks to mitigate the interference of running tasks and

to improve the cache utilization for better system performance. We have developed

a cache-aware analysis to reason about the real-time performance of tasks under the

gFPca algorithm. We have also implemented the algorithm in LITMUSRT , a Linux-

based operating systems. Our evaluations, using overhead data from real measure-

ments on our implementation, show that gFPca improves schedulability substantially

compared to the cache-agnostic gFP, and it outperforms the existing cache-aware

nFPca in most cases.

In Chapter 5, we present vCAT, a dynamic cache management framework for

virtualization systems that can deliver strong shared cache isolation at both VM

and task levels, and that can be configured for both static and dynamic allocations.

vCAT virtualizes the Intel CAT in software for achieving hypervisor- and VM-level

cache allocations. To illustrate the feasibility of our approach, we provide a proof-

of-concept prototype of vCAT on top of Xen and LITMUSRT . We conduct extensive

evaluations to demonstrate that vCAT incurs reasonably small overhead and that

vCAT significantly improve systems’ real-time performance compared to no cache

management and static cache management.

In Chapter 6, we propose vC2M, a holistic solution towards timing isolation in

multicore virtualization systems. vC2M develops an abstraction-overhead free com-

positional analysis for multicore virtualization systems and proposes a novel heuristic

resource allocation algorithm that allocates CPU, shared cache, and memory band-

width in a holistic manner to tasks. We have implemented a Xen-based prototype of

vC2M. Our evaluation shows that vC2M can be implemented with minimal overhead

and that vC2M can significantly improve systems’ real-time performance compared

to approaches that consider only one type of resources.
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7.2 Future research directions

Timing is critical for cyber-physical systems (CPS). We believe that the work in this

dissertation can be used to achieve the predictable performance for CPS. Yet, there

still exists a plenty of future work in this area.

Better real-time virtualization. Shared hardware resources introduce the in-

terference among tasks that impedes systems’ predictable performance. This work

focuses on solving the challenges introduced by cache-related resources, i.e., private

cache, shared cache and memory bus. Yet, systems’ real-time performance may still

be affected by the interference from other shared hardware resources. For example,

the resource contention on cache Miss Status Holding Registers (MSHR) can signif-

icantly increase a task’s execution time on some hardware types [64]. To provide

better predictable performance, we need to regulate tasks’ access to these shared

hardware resources, such as MSHR and GPU, and provide analysis to account for

the extra delay caused by the resource regulation. Regulating these resources can

be challenging because system software may not have direct control of these hard-

ware resources. One solution to this challenge would be controlling tasks’ execution

progress to control tasks’ accesses to shared resources, similar to how our vC2M

controls memory bandwidth for each core in Chapter 6.

Shared software resources, such as shared memory and shared I/O buffer, also

introduces potential contention among tasks that can hurt systems’ predictable per-

formance. This work only focuses on independent tasks that have no shared software

resources. To push this work applicable to a broader range of applications that may

have shared software resources, we need to develop resource-sharing protocols and

corresponding analysis techniques for tasks in virtualization systems.

Real-time edge computing. Edge computing is a distributed and localized cloud

computing system that performs computation at the edge of network, near the source

of data. It is a promising technique to provide more computation power, higher

network throughput, and lower response latency for safety-critical CPS, such as
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connected cars [9]. The service scenarios of edge computing, such as intelligent

driving and vehicle-to-cloud cruise control, share the following properties: multiple

tenants share the same edge and require real-time performance for their safety-critical

applications.

Real-time virtualization is a promising technique to provide real-time perfor-

mance to tasks on a single edge. Yet, to provide real-time performance to edge-

based services, we must extend the resource management and analysis framework

to a distributed setting. One preliminary solution would be applying the resource

management techniques for real-time cloud [67] to edge computing. However, this

solution is not good enough. Achieving real-time performance in edge computing is

more challenging than in cloud because edges–which is similar to a localized cloud–

are distributed geographically and users of edges (such as vehicles) move across edges.

Solving these challenges would help safety-critical CPS benefit from edge computing.
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