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Abstract: In this report we survey quantum algorithms developed by the team in the areas
of machine learning, optimization, and simulation of physical systems. First, we consider
purely classical computational tasks such as classification problems for data with group struc-
ture, learning of Boolean functions, combinatorial optimization problems including MaxCut
and graph k-coloring, linear programming, and statistical inference based on Markov Chain
Monte Carlo algorithms. For each of these problems we give a quantum algorithm im-
proving upon the state-of-the-art. Secondly, we consider problems relevant for chemistry
and material science where the goal is to simulate certain properties of a quantum many-
body system. This includes ground state preparation for Hamiltonians describing electronic
structure of molecules and systems with a topological quantum order that host non-abelian
anyons. We show how to tackle these simulation problems more efficiently by combining
classical and quantum computational resources. Finally, we investigate computational com-
plexity of simulating quantum many-body systems at the thermal equilibrium and improve
existing algorithms for simulation of open quantum systems whose dynamics is governed by
the Lindblad master equation.
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1 Introduction

Quantum computing has remained a theoretical possibility for many years. Recent advances
in hardware enabled demonstrations of quantum circuits at a scale which is already at the
border of what can be simulated with the existing classical computers. It is therefore of
central importance to assess the potential impact of near-term quantum computers on real
problems of interest. The primary goal of this program was to design and analyze quantum
machine learning, optimization, and simulation algorithms with the emphasis on near-term
applications. Our approach is aimed at directly addressing the fact that near-term quantum
computers are subject to decoherence and lack error correction capabilities. These computers
are limited to shallow circuit depths and are unlikely to have the ability to load vast amounts
of data from a classical memory into a quantum memory. In this setting, how could a near-
term quantum algorithm look like?

Many current proposals for attaining a quantum computational advantage make several
assumptions about how the data is provided to the quantum computer. Some algorithms
require the availability of so-called quantum RAM (QRAM), where a data set can be loaded



in a coherent superposition [1]. In particular an n-qubit QRAM provides coherent access
to 2™ data points in superposition. This appears to open up the tantalizing possibility of
processing large amounts of data with only logarithmic complexity. However, this appearance
may be misleading for several reasons [2]. The process of converting classical data to quantum
data in the QRAM negates any quantum speed-up gained at a later stage. So is there still
a place where quantum algorithms can improve on the current state-of-the-art?

For a quantum algorithm to provide a meaningful advantage in machine learning we
accept that all input data is given to the programmer in a classical form and that the
programmer will most likely have to look at every sample used in the algorithm, just as in
the classical case. We adopt quantum kernels framework [3] for designing hybrid quantum-
classical learning algorithms. It is aimed at avoiding the use of quantum RAM, yet still
retaining a quantum advantage. The team has demonstrated that certain classically hard
classification problems in supervised learning can indeed be solved in polynomial time using
the quantum kernels framework [4, 5]. To this end we introduce a family of covariant quantum
kernels for data with group structure, see Section 2.

The success of machine learning algorithms in analyzing high-dimensional data, has re-
sulted in a surge of interest in applying these algorithms for studying quantum many-body
systems whose description requires dealing with an exponentially large state space [6]. One
important problem in this direction is the quantum Hamiltonian learning problem [7, 8, 9,
10, 11, 12]. Here the goal is to obtain an approximate description of the Hamiltonian of
a quantum many-body system given samples from its thermal Gibbs state. The classical
analog of this problem, known as learning graphical models or Boltzmann machines, is a
well-studied question in machine learning and statistics [13, 14, 15, 16, 17]. We present the
first efficient quantum algorithm for learning Hamiltonians with local interactions [18], see
Section 2. This algorithm was further improved in [19] achieving sample complexity O(logn)
and gate complexity O(n) for learning a local Hamiltonian describing a system of n qubits.
Our work paves the way toward a more rigorous application of machine learning techniques
to quantum many-body problems.

Boolean functions are the bread and butter of computational complexity theory. Among
their uses is to serve as simple toy models for complex problems, allowing rigorous proofs.
For instance, learning to classify data may be done effectively but heuristically with a neural
network, but the PAC learning framework [20] can prove theorems. We propose simple
toy models of learning Boolean functions with the aid of quantum computation [21]. In
particular, we give quantum learning algorithms with poly(n) query and gate complexity for
learning low-degree Boolean polynomials with n variables encoded into n-qubit phase states,
see Section 2.

QAOA optimization algorithms pioneered by Farhi et al. [22] provide a natural arena
where near-term quantum devices may have an impact. However, recent work [23] indicates
that QAOA based on bounded-depth variational circuits do not compare favorably to anal-
ogous "local” classical optimizers. On the other hand, it has been shown that multi-level
QAOA based on deep variational circuits can replicate the quantum speedup achieved by
Grover search algorithm [24]. Unfortunately, multi-level QAOA may be beyond the reach of
near-term devices. Furthermore, its performance on practically relevant problems is hard to
assess due to the difficulty of classical simulation and the lack of analytic tools.

Instead, here we study QAOA with O(1) levels and examine whether its computational
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power can be enhanced using a novel technique which we call variable elimination [25].
Specifically, we seek to mimic classical optimization algorithms based on rounding of linear
programming relaxations. Instead of rounding individual variables obtained by solving a
suitable relaxation of the problem, we propose rounding correlations among variables ob-
tained from the optimal QAOA solution. Applying the correlation rounding method to cost
functions describing MaxCut and Max-k-Cut optimization problems allows one to eliminate
variables reducing a problem instance with n variables to the one with n — 1 or fewer vari-
ables [25, 26]. This leads to a recursive version of QAOA described in details in Section 3.
We also present a twisted version of QAOA in which an extra classical processing step is
folded into the definition of the cost function Hamiltonian [27]. The twisted QAOA comes
with rigorous performance guarantees, see Section 3.

A key development that may lead to faster quantum optimization algorithms is the
discovery of quantum linear system algorithms that can be much faster than their classical
counterpart under suitable conditions [28, 29]. Here we study applications of quantum linear
system algorithms for classical convex optimization. More specifically, we study the simplex
method for solving linear programming problems — one of the most important algorithms in
the history of optimization, that is still widely used today, see Section 3. For problems with a
well-conditioned sparse constraint matrix we give a quantum pricing algorithm that achieves
a provable asymptotic speedup over best known classical algorithms [30]. Importantly, this
speedup does not depend on the data being available in a ”quantum form” such as QRAM;
the input of our quantum subroutines is the natural classical description of the problem, and
the output is the index of the variables that should leave or enter the basis.

Simulating quantum systems is an especially hard task for classical computers, making
the realization of quantum computers potentially revolutionary for the study of chemistry,
materials science, and fundamental physics. However, techniques like quantum phase estima-
tion, which promises accurate chemical simulations, require hardware well beyond the present
state of the art. While hardware capabilities continue to steadily advance, limitations on both
quantity and quality of qubits are giving rise to a new family of algorithms that leverage ad-
ditional classical resources to assist quantum computations(31, 32, 33, 34, 35, 36, 37, 38, 39].
Section 4 reports new examples of such classically enhanced quantum simulation algorithms.

First, we propose entanglement forging method for simulating ground state properties of
quantum many-body systems [40]. It works by partitioning a problem into weakly interacting
clusters and classically correlating the simulation results measured on each cluster. A range
of important systems naturally possess suitable partitions, including low-energy eigenstates
of chemical [41] and lattice-model [42, 43, 44] Hamiltonians, systems embedded in a quantum
bath [45, 46|, and static correlations associated with chemical bond-breaking processes [47,
48, 49].

Secondly, we consider simulation of exotic phases of matter harboring non-abelian anyons.
In contrast to ordinary particles such as bosons or fermions whose state can be fully specified
by the position (or momentum) of each particle, a quantum state describing non-abelian
anyons features non-local topological degrees of freedom. The latter serve as a quantum error
correcting code with a macroscopic distance. Braiding a pair of non-abelian anyons can enact
a non-trivial unitary transformation on the topological degrees of freedom. This motivates
proposals for using non-abelian anyons for reliable quantum information processing [50].
We present constant-depth quantum circuits for preparing the ground state of topologically
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ordered systems and realizing braiding of non-abelian anyons [51]. To overcome known no-
go results, our approach relies on dynamic circuits [52]. These are quantum circuits that
combine regular unitary gates with mid-circuit measurement, real-time classical computing,
and feed-forward such that each gate in the circuit can be classically controlled by the
outcomes of all previous measurement outcomes. These results demonstrate that the ability
to run quantum and classical computation in parallel can help reducing quantum circuit
depth required for simulation of non-abelian anyons. We note that several groups have made
similar proposals culminating in the recent experimental demonstration of a non-abelian
braiding statistics [53], see Section 4 for the literature review.

Many properties of a quantum many-body system in thermal equilibrium are determined
by the Helmholtz free energy proportional to the logarithm of the partition function. The
ability to calculate the free energy and its derivatives with respect to the temperature and
Hamiltonian parameters such as external fields is instrumental for mapping out the phase
diagram of the system and predicting physical properties of each phase. Accordingly, the
problem of estimating the free energy has been extensively studied in the physics community.
Here we examine this problem through the lens of quantum Hamiltonian complexity theory,
see Section 4. We show that a suitably formalized version of the free energy problem is
computationally equivalent to Quantum Approximate Counting — estimating the number
of accepting witnesses for a QMA verifier [54]. We establish a surprising connection between
the free energy problem and the one of computing the Kronecker coefficients of the symmet-
ric group [55]. We also give an efficient quantum algorithm for computing the Kronecker
coefficients in a certain special case.

These and several related results by the team members are described in greater detail in
the following sections that cover machine learning algorithms (Section 2), optimization prob-
lems (Section 3), and simulation of physical systems (Section 4). Each section is equipped
with a short introduction serving as a guide for more technical sub-sections focusing on
specific computational problems and quantum algorithms. A complete list of publications,
preprints, and patents that resulted from the program can be found in Section 5.

2 Quantum machine learning algorithms

Much attention has been drawn towards establishing a quantum advantage in machine learn-
ing due to its wide applicability [56, 57, 58, 59, 60]. In this direction there have been several
quantum algorithms for machine learning tasks that promise polynomial and exponential
speed-ups. A family of such quantum algorithms assumes that classical data is encoded in
amplitudes of a quantum state, which uses a number of qubits that is only logarithmic in
the size of the dataset. These quantum algorithms are therefore able to achieve exponential
speed-ups over classical approaches [61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. However, it is not
known whether data can be efficiently provided this way in practically relevant settings. This
raises the question of whether the advantage comes from the quantum algorithm, or from the
way data is provided [2]. Indeed, recent works have shown that if classical algorithms have
an analogous sampling access to data, then some of the proposed exponential speed-ups no
longer exist [71, 72, 73, 74, 75, 76].

Consequently a different class of quantum algorithms has been developed which only



assumes classical access to data. Most of these algorithms use variational circuits for learn-
ing, where a candidate circuit is selected from a parameterized circuit family via classical
optimization [77, 78, 79, 80, 81]. Although friendly to experimental implementation, these al-
gorithms are heuristic in nature since no formal evidence has been provided which shows that
they have a genuine advantage over classical algorithms. An important challenge is therefore
to find one example of such a heuristic quantum machine learning algorithm, which given
classical access to data can provably outperform all classical learners for some learning prob-
lem. Our work [4, 5], summarized in Sections 2.1, 2.2 address this challenge using quantum
kernel methods.

Section 2.3, based on Ref. [18], gives the first sample-efficient algorithm for the quantum
Hamiltonian learning problem. In particular, it shows that polynomially many samples in
the number of particles (qudits) are sufficient for learning the parameters of a geometrically
local Hamiltonian, given samples of the thermal Gibbs state.

A natural next question is: what are other classes of quantum states ubiquitous in quan-
tum computing can be learned efficiently? Known examples of efficiently learnable states
include Matrix Product States describing weakly entangled quantum spin chains [82], out-
put states of Clifford circuits [83], symmetric states invariant under qubit permutations [84],
see the recent survey [85] for other examples. Section 2.4, based on Ref. [21], provides a
new class of efficiently learnable quantum states: phase states associated with (generalized)
Boolean functions. Such states have the form [¢r) =272 37 o110 (=1)/@)|z), where f(x)
is a low-degree Boolean polynomial. We show that an unknown polynomial f of bounded
degree can be learned by performing measurements on poly(n) copies of the phase state |¢¢).

2.1 Provable quantum advantage in machine learning

In the work [4] we show that an exponential quantum speed-up can be obtained via the
use of a quantum-enhanced feature space [86, 87], where each data point is mapped non-
linearly to a quantum state and then classified by a linear classifier in the high dimensional
Hilbert space. To efficiently learn a linear classifier in feature space from training data, we
use the standard kernel method in support vector machines (SVMs), a well-known family
of supervised classification algorithms [88, 89]. We obtain the kernel matrix by measuring
the pairwise inner product of the feature states on a quantum computer, a procedure we
refer to as quantum kernel estimation (QKE). This kernel matrix is then given to a classical
optimizer that efficiently finds the linear classifier that optimally separates the training data
in feature space by running a convex quadratic program.

The advantage of our quantum learner stems from its ability to recognize classically
intractable complex patterns using the feature map. We prove an end-to-end quantum
advantage based on this intuition, where our quantum classifier is guaranteed to achieve
high accuracy for a classically hard classification problem. We show that under a suitable
quantum feature map, the classical data points, which are indistinguishable from having
random labels by efficient classical algorithms, are linearly separable with a large margin in
high-dimensional Hilbert space. Based on this property, we then combine ideas from classic
results on the generalization of soft margin classifiers [90, 91, 92, 93] to rigorously bound
the misclassification error of the SVM-QKE algorithm. The optimization for large margin
classifiers in the SVM program is crucial in our proof, as it allows us to learn the optimal



separator in the exponentially large feature space, while also making our quantum classifier
robust against additive sampling errors.

Our classification problem that shows the exponential quantum speed-up is constructed
based on the discrete logarithm problem (DLP). We prove that no efficient classical algorithm
can achieve an accuracy that is inverse-polynomially better than random guessing, assuming
the widely-believed classical hardness of DLP. In computational learning theory, the use
of one-way functions for constructing classically hard learning problems is a well-known
technique [94]. Rigorous separations between quantum and classical learnability have been
established using this idea in the quantum oracular and PAC model [95, 57], as well as in the
classical generative setting [96]. There the quantum algorithms are constructed specifically
to solve the problems for showing a separation, and in general are not applicable to other
learning problems. Based on different complexity-theoretic assumptions, evidences of an
exponential quantum speed-up were shown for a quantum generative model [97], where the
overall performance is not guaranteed.

Quantum kernel estimation. The core component in quantum kernel methods [86, 87]
that leads to its ability to outperform classical learners is the quantum feature map, which
maps a classical data point z € R? non-linearly to a m-qubit quantum state ®(z) =
|p(z))(p(x)|. Here the feature state is the projector onto |p(x)) = U(z)|0") and is con-
structed by a parameterized circuit family {U(z)}. In practice, given an arbitrary dataset,
one can heuristically choose a parameterized circuit family to construct the feature map,
and then run the training procedure described below to learn a linear classifier in feature
space. Therefore, quantum kernel methods represent a family of general-purpose supervised
learning algorithms that is widely applicable, just like classical kernels being ubiquitous in
real world applications [98].

In learning algorithms, feature maps play the role of pattern recognition: the intrin-
sic labeling patterns for data, which are hard to recognize in the original space, become
easy to identify once mapped to a high-dimensional feature space. The idea of applying
a high-dimensional feature map to reduce a complex pattern recognition problem to linear
classification is not new, and has been the foundation of a family of supervised learning
algorithms called support vector machines (SVMs) [89]. Consider a general feature map
® : X — H that maps data to a feature space H associated with an inner product (-, -)%.
To find a linear classifier in H, we consider the convex quadratic program

min 3 ol + 252 sty (Blar) why > 1- & (1)

where & > 0. Here A > 0 is a constant, {(z;,7:)}™, € R? x {£1} is the training set, w is
a vector normal to a hyperplane in H which defines a linear classifier y = sign ((®(x), w)y),
and &; are slack variables used in the soft margin constraints. Intuitively, this program
optimizes for the hyperplane that maximally separates +1/-1 labeled data. Note that (1) is
efficient in the dimension of H. However, once we map to a high-dimensional feature space,
it takes exponential time to find the optimal hyperplane. The main insight which leads to
the success of SVMs is that this problem can be solved by running the dual program of
Eq. (1). Tt reads

max F'(a) (2)

a€RT



log,(Zy) z, log,(Z, )

pA 12 py L2

[ (z:))

Figure 1: Learning the concept class C by a quantum feature map. (a) After taking the
discrete log of the data samples, they become separated in log space by the concept s.
(b) However, in the original data space, the data samples look like randomly labeled and
cannot be learned by an efficient classical algorithm. (c) Using the quantum feature map,
each x € Zj; is mapped to a quantum state |¢(z))(¢(x)|, which corresponds to a uniform
superposition of an interval in log space starting with log, z. This feature map creates a
large margin, as the 41 labeled example (red interval) has high overlap with a separating
hyperplane (green interval), while the —1 labeled example (blue interval) has zero overlap.

with

Fla)=>) a;— % > gy K (wi,;) — % > ai, (3)
i=1 ij=1 i=1
where K(z;,x;) = (®(z;), ®(z;))n is the kernel matriz. This dual program, which returns
a linear classifier defined as y(z) = sign (> ", o;y; K(z,2;)), is equivalent to the original
program as guaranteed by strong duality. Effectively, this means that we can do optimization
in the high-dimensional feature space efficiently, as long as the kernel K(x;,z;) can be
efficiently computed.

The same insight can be applied to quantum feature maps: to utilize the full power
of the quantum feature space, it suffices to compute the Hilbert-Schmidt inner products
Tr[®T(2;)®(z;)] = |(d(x;)|é(x;))|? between the feature states. To estimate such an inner
product using a quantum computer, we simply apply U'(z;)U(z;) on input |0™), and estimate
the probability of the 0" output. We call such a procedure quantum kernel estimation (QKE),
highlighting the fact that this procedure is subject to small additive noise in each kernel entry
due to finite sampling. The overall procedure for learning with quantum feature map is now
clear. On input a set of m labeled training examples S = {(z;,y;)}!",, run QKE to obtain
the m xm kernel matrix, then run the dual SVM Eq. (2) on a classical computer to obtain the

solution a.. To classify a new example z, run QKE to obtain K (z,x;) for each i =1,...,m,
then return
y = sign <Z oy K (, xz)) : (4)
i=1

Throughout the entire SVM-QKE algorithm, QKE is the only subroutine that requires a



quantum computer, while all other optimization steps can be performed classically. A de-
tailed description of the algorithm can be found in [4].

The main differences between quantum kernel methods and classical SVMs are two-fold.
First, as quantum computers are exponentially more powerful than classical computers, we
expect quantum feature maps to be more expressive than classical counterparts, which leads
to better performance in pattern recognition and classification tasks. Second, quantum
kernels are subject to small additive noise from the estimation procedure, while classical
kernels can be computed exactly. Therefore, a demonstration of quantum advantage with
the SVM-QKE algorithm needs to take advantage of the expressivity of quantum feature
maps, while remaining robust against finite sampling noise.

While quantum kernel methods are very general and flexible, it is unclear that they
have any provable advantage over classical algorithms. Indeed, previous analysis [86, 87]
only establish evidence that parts of the algorithm cannot be efficiently simulated classically
(for example, by definition we know that the quantum kernel estimation procedure is BQP-
complete in general), but this does not imply that quantum kernel methods can have an
advantage against all classical algorithms in a classification task. Here we provide a solution
to this challenge by constructing a classification problem and rigorously prove that the SVM-
QKE algorithm can solve it in polynomial time, while no classical polynomial time algorithm
can perform better than random guessing for this task.

We shall now define a learning problem that we use to establish a quantum advantage.
Recall that the task of supervised classification is to assign a label y € {—1,1} to a datum
x € X from data space X according to some unknown decision rule f (usually referred to as
a concept), by learning from labeled examples S = {(z;,v;) }i=1,.m that are generated from
this concept, y; = f(x;). Given the training set .S, an efficient learner needs to compute a
classifier f* in time that is polynomial in the size of S, with the goal of achieving high test
accuracy,

ace;(f) = P [f*(x) = f(2)], (5)

the probability of agreeing with f on unseen examples. Here we assume that the datum
x is sampled uniformly random from X, in both training and testing, and the size of S is
polynomial in the data dimension.

An important ingredient of machine learning is prior knowledge, i.e., additional infor-
mation given to the learning algorithm besides the training set. In standard computational
learning theory [94, 99], this is modeled as a concept class — a (often exponentially large) set
of labeling rules, and the target concept is promised to be chosen from the concept class. A
concept class C is efficiently learnable if for every f € C, an efficient algorithm can achieve
a high test accuracy (say, at least 0.99) by learning from examples labeled according to f
with high success probability.

Classically hard learning problem. Our concept class that separates quantum and
classical learnability is based on the discrete logarithm problem (DLP). For a large prime
number p and a generator g of Z;, = {1,2,...,p—1}, it is a widely-believed conjecture that no
classical algorithm can compute log, z on input = € Z;, in time polynomial in n = [log,(p)],
the number of bits needed to represent p. Meanwhile, DLP can be solved by Shor’s quantum
algorithm [100] in polynomial time.

Based on DLP, we define our concept class C = { fs}sez;; over the data space X = Z; as



follows,

+1, if log, z € [s,s + 23],
@) = AR ©)
—1, else.

Each concept fs : Zy — {—1,1} maps half the elements in Z; to +1 and half of them to —1.

To see why the discrete logarithm is important in our definition, note that if we change
log, = to x in Eq. (6), then learning the concept class C is a trivial problem. Indeed, if
we imagine the elements of Z; as lying on a circle, then each concept fs corresponds to a
direction for cutting the circle in two halves (Fig. 1a). Therefore, the training set of labeled
examples can be separated as two distinct clusters, where one cluster is labeled +1 and
the other labeled —1. To classify a new example, a learning algorithm can simply decide
based on which cluster is closer to the example. On the other hand, due to the classical
intractability of DLP, the training samples for the concept class C look like randomly labeled
from the viewpoint of a classical learner (Fig. 1b). In fact, we can prove that the best a
classical learner can do is randomly guess the label for new examples, which achieves 50%
test accuracy. These results are summarized below.

Theorem 1. Assuming the classical hardness of DLP, no efficient classical algorithm can

achieve % + m test accuracy for C.

Our proof of classical hardness of learning C is based on an average-case hardness result
for discrete log by Blum and Micali [101]. They showed that computing the most significant
bit of log, z for % + m fraction of x € Z; is as hard as solving DLP. We then reduce
our concept class learning problem to DLP using this result, by showing that if an efficient
learner can achieve %—i— m test accuracy for C, then it can be used to construct an efficient

classical algorithm for DLP, which proves Theorem 1.

2.2 Covariant quantum kernels for data with group structure

A natural question is whether the quantum advantage established in the previous section can
be observed in practically relevant settings. Our work [5] takes steps to address this quesdtion
by identifying a class of learning problems that provide a natural fit for QKE and generalize
the result of the previous section. What these learning problems have in common is that
the data space &X' is a subset of some group GG. The study of data with group structure has
a long tradition in statistics [102]. Important learning problems such as ranking [102, 103]
can be expressed as the learning of permutations [104, 105]. Other examples are learning
problems in coset spaces such as partial rankings, Q-sort data, error correcting codes and
homogeneous spaces [102]. We consider a general class of feature map circuits that we call
covariant feature maps and that can be used for data space with a group structure. The
corresponding quantum feature maps are intimately related to covariant measurements [106].
The covariant feature map is defined relative to a unitary representation D : G — U(2") and
a fiducial state [¢0) of n qubits such that the datum z € G is mapped to ®(z) = D, |¢) (1| D].
The covariant quantum kernel is then estimated as the fidelity K (x,2') = |(¢| D] D./|¥)]?.
We assume the fiducial state |[¢)) = V'|0™) can be prepared by applying an efficient quantum
circuit V. Likewise, it is important to also assume that the representation D, of any element
x € G can be implemented efficiently on a quantum computer. In this case, the QKE
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routine reduces to estimating the transition amplitude K(z,y) = [(0"|V DID,V|0")[?, and
the feature map circuit becomes U(z) = D,V. The kernel as defined here is left-invariant
under the group action. The learning problem from the previous section corresponds to a
special case G = Z; (integer multiplication modulo p) and reduces to the discrete logarithm
problem. The corresponding kernel is group covariant while the fiducial state is the uniform
superposition of group elements obtained from applications of the generator to a suitable
interval.

While the aforementioned fiducial state produces a kernel that can lead to an efficient
learning algorithm for the concept class defined in Eq. (6), a fiducial state ¢ that is given by
one of computational basis states would lead to an identity kernel, matrix which is well-known
to have extremely poor performance. This illustrates that the choice of ¢ is essential for the
performance of the quantum kernel. If sufficient structural knowledge about the problem is
present, a suitable fiducial state can be chosen a priori. However, we also want a method to
optimize the fiducial state subject to the available data, if no prior knowledge is available.
The objective of this optimization will depend on the learning problem. We consider a binary
classification problem with SVMs. For other types of kernel functions, objectives have been
proposed [107, 108] that are motivated by quantum information theoretic insights. Here,
we will follow a method commonly used in the classical literature referred to as kernel
alignment [109, 110]. We consider fiducial states of the form [iy) = V,|0™), where V) is a
variational quantum circuit on n qubits that depends on a vector of variational parameters
A. This yields a parametrized quantum kernel K (x,y) with feature map circuit D, V). The
parameters A\ are optimized with kernel alignment according to

A = arg m}n max F'(a, \) (7)

where F'(a, \) is defined similarly to the dual objective function in Eq. (3), except that
the kernel K is replaced by K,. The minimization over A ranges over the chosen class of
variational circuits V). The maximization over « is subject to constraints of the feasible set
0 < o; < C, where C' is the box parameter, and > " y;o; = 0. We present a stochastic
algorithm for this optimization problem, which is an iterative algorithm with kernel ma-
trices evaluated on a quantum processor and continuous parameters updated with classical
optimization routines, see [5] for details.

In the quantum experiment we want to benchmark both the accuracy of a learner with
access to covariant quantum kernels, as well as the performance of the physical hardware.
To this end we introduce a learning problem called labeling cosets with error (LCE) that
serves as an abstraction of common learning problems on coset spaces. Learning problems
on coset spaces are frequently considered in the literature [102, 104], for example when
considering partial rankings [103] or for manifolds that arise as homogeneous spaces [102].
In LCE we are given a (continuous) group G, a subgroup S C G, and generate data from
two left-cosets, c+S C G determined by representatives c,,c_ € G. Every datum taken
from cosets is perturbed with a small error € so that the data is not part of the coset any
longer. After seeing sufficient data, the learner is asked to classify to which coset a previously
unseen datum belongs. We implemented LCE with the groups G and S motivated by our
physical hardware, namely, G = SU(2)®" with n = 27. The subgroup S was chosen as
the stabilizer group of the 27-qubit graph state for the qubit coupling graph describing the
device connectivity. Details of this demonstration can be found in [5].
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2.3 Learning of quantum many-body systems

Quantum many-body systems consist of many quantum particles (qudits) that locally inter-
act with each other. The interactions between these particles are described by the Hamilto-
nian of the system. Even though the interactions in the Hamiltonian are local, the state of
the whole system can be highly entangled. This is not only true at low temperatures when
the system is in the lowest energy eigenstate of its Hamiltonian (the ground state), but
remains true even at finite temperatures when the state is a mixture of different eigenstates
of the Hamiltonian known as the Gibbs or thermal state. While the underlying fundamental
interactions in these systems are long known to be given by Coulomb forces between elec-
trons and nuclei, they are too complicated to be grasped in entirety. Physicists are primarily
interested in “effective interactions” that, if accurately chalked out, can be used to describe
a variety of properties of the system. How can such effective interactions be learned in a sys-
tem as complicated as, for example, the high temperature superconductor? Algorithms for
Hamiltonian learning can directly address this problem and provide a suitable approximation
to the effective interactions.

Hamiltonian Learning Problem Suppose A is a regular D-dimensional lattice with n
sites. We consider k-local geometrically local Hamiltonian H acting on n qudits located at
sites of A. In general, we can parameterize such Hamiltonian as

H(p) = Z ek
/=1

where pu, are real coefficients and F, are linearly independent Hermitian operators acting
non-trivially on at most k£ qudits such that the support of E, has a constant diameter r. We
assume that k, D, r are constants independent of n. For example, F, could be tensor products
of k single-qubit Pauli operators acting on spatially contiguous blocks of sites. We let the
vector pt = (1, ..., pm) be the vector of interaction coefficients. In our setup, without loss
of generality we assume the Hamiltonian is traceless, i.e., for the identity operator F, = I,
the coefficient pp, = 0. At a inverse-temperature (3, the qudits are in the Gibbs state defined

as
e~ BH (1)

ps(p) = m-

In the learning problem, we are given multiple copies of pg(p) and can perform arbitrary
local measurements on them. In particular, we can obtain all the k-local marginals of ps(p)
denoted by

ep = tr[ps(p)E,] for £ € [m].

The goal is to learn the coefficients i, of the Hamiltonian H using the result of these measure-
ments. We call this the Hamiltonian Learning Problem. This problem has been the focus of
many recent theoretical and experimental works [7, 8, 9, 10, 11, 12]. The classical analogue
of this problem plays the central role in machine learning and modern statistical inference,
known as learning graphical models or Boltzmann machines (aka Ising models). Classically,
understanding the learnability of Boltzmann machines was initiated by the works of Hinton
and others in the 80s [111, 112]. In the past few years, there has been renewed interest in
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this subject and has seen significant progress resulting in efficient provable learning algo-
rithms for graphical models with optimal sample and time complexity especially for sparse
and bounded-degree graphs [13, 14, 15, 16, 17]. Thus far, a rigorous analysis of the quantum
Hamiltonian learning problem with guaranteed sample complexity has been lacking.

Main result. Let H(u) be a geometrically local Hamiltonian defined above. We are
given N copies of the Gibbs state ps(u) at a fixed inverse-temperature 8. Our goal is to
obtain an estimate ft = (fi1, .. ., fl;,) of the coefficients p, such that with probability at least
1—9,

= All2 <€

where || — fi||2 is the f3-norm of the difference of p and fi.
Our main result is a sample-efficient algorithm for the Hamiltonian Learning Problem

that requires
ﬁC
— € . 3 . —m
N0<56€2 m log<5>) (8)

copies of the Gibbs state ps(u), where ¢,é > 1 are constants that depend on the geometry
of the Hamiltonian. For geometrically local Hamiltonians the number of interaction terms
m scales as O(n). Hence, the result implies a sample complexity polynomial in the number
of qudits.

The number of samples in Eq. (8) increases as f — oo or f — 0. As the temperature
increases (8 — 0), the Gibbs state approaches the maximally mixed state independent of the
choice of parameters p. At low temperatures (8 — o0), the Gibbs state is in the vicinity of
the ground space, which for instance, could be a product state |0)®™ for the various choices
of p. In either cases, more sample are required to distinguish the parameters p.

Ideally, one would like to have an algorithm for the Hamiltonian Learning Problem that
requires small number of samples, but also has a polynomial running time. Satisfying both
these constraints for all inverse temperatures [ even in the classical learning problems is
quite challenging, as it requires approximating the partition function which is NP-hard [113].
There are recent results on efficiently computing the partition function of quantum many-
body systems under various assumptions [114, 115, 116] that may enable efficient Hamilto-
nian learning in some special cases.

Proof overview. Let S(o,n) = Tr[o log o] — Tr[o log n] be the relative entropy of density
matrices ¢ and 7. Let S(0) = —Tr[ologo]| be the von Neumann entropy. Recall that
S(o,n) > 0 for all o,n with the equality iff o = 1. Substituting o = pg(p) and n = pg(A)
one infers that

S(ps(n)) <log Zs(A) + BTx[ps(p) H (N)] (9)
for any A € R™ with the equality iff A = . Here

Zg(\) ="Tr [e_BH(’\)}

is the quantum partition function. Expressing the expected value of H(\) in Eq. (9) in terms
of the marginals e, = Tr[ps(u) E¢] one concludes that

= arg ggﬂl@% log Zg()\) + 0 ; Av€y. (10)
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If one knows the exact marginals e, and leaves aside the computational complexity, one
can find the desired coefficients p by solving the optimization problem Eq. (10). Given N
samples of the Gibbs state pz(u), the best one can hope for is to approximate the marginals
e, within the statistical error of order N=%/2. We denote these approximate marginals é,.
Instead of solving the problem Eq. (10), our strategy is to solve its empirical version

ji = arg min log Z5()) + 3 > Neée, (11)

The main technical challenge is proving that the optimization problem Eq. (10) is robust in
against the statistical error in the marginals e, in the sense that | — | is small whenever
|é; — €] is small for all £. To this end we show that the logarithm of the quantum partition
function considered as a function of A exhibits the strong convexity property, namely,

Vilog Zs(\) > al, o= ~os) 0 (12)
m

Here V2 is the Hessian of the function log Z(\) with respect to A € R™ and I is the m x m

identity matrix. The operator inequality in Eq. (12) means that the matrix V2log Zs(\) —al

is positive semi-definite. Showing that the error in estimating p is small whenever the

statistical error of the marginals is small relies crucially on the strong convexity Eq. (12).

Specifically, we show that the optimal solution of Eq. (11) satisfies
D) 6m1/2

I — il < e (13)
Proving the strong convexity property Eq. (12) is the main technical contribution of our
work. The proof begins by expressing the minimum eigenvalue of the Hessian in terms of
the energy variance. For any a vector v € R™, we show that

Z Vil 8; log Zs(p) > B*Var[W], (14)

,j=1

where W = ey ngNE, the variance of W is defined with respect to the Gibbs state ps(p),
and the operators E, are defined as

E~'g = / fﬁ(t)e_iH(M)tEgeiH(u)tdt.

Here f5(t) is a certain filter function that decays exponentially for large t. The Lieb-Robinson
bound [117, 118, 119] asserts that the unitary dynamics generated by a geometrically local
Hamiltonian can propagate information only within a lightcone of radius proportional to the
evolution time. This implies that E, can be well approximated by a sum of local operators,
that is, W is a quasi-local Hamiltonian. We obtain a lower bound on the variance of W

using the quantum belief propagation method developed in [120, 121, 122] and a recent
result by Arad et al. [123] connecting global and local energy distributions in geometrically
local quantum Hamiltonians. It shows that matrix elements of a local observable between
eigenstates of a local Hamiltonian which are well-separated in energy are exponentially small.
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2.4 Learning quantum phase states

By definition, an n-qubit, degree-d phase state has the form

[y =272 3 (1)), (15)

z€{0,1}"

where f : {0,1}" — {0, 1} is a degree-d polynomial, that is,

fla)y=">Y" aJij (mod 2), (16)

for some coefficients oy € {0, 1}. Phase states associated with homogeneous degree-2 poly-
nomials f(z) coincide with graph states that play a prominent role in quantum information
theory [124]. Such states can be alternatively represented as

Wf H CZ%JH‘

(i,5)eE

where n qubits live at vertices of a graph, F is the set of graph edges, CZ, ; is the controlled-
7 gate applied to qubits i,7, and |+) = (|0) + |1))/+/2. It is known that the output state
of any Clifford circuit is locally equivalent to a graph state for a suitable graph [125]. Our
results imply that graph states can be efficiently learned using only single-qubit gates and
measurements. The best previously known protocol for learning graph states [83] requires
entangled measurements across two copies of |¢;). Other examples of circuits producing these
states include measurement-based quantum computing [126] and IQP circuits (Instantaneous
Quantum Polynomial-time), which correspond to degree-3 phase states [127]. IQP circuits
are prevalent in quantum-advantage experiments [128, 129] and are believed to be hard to
simulate classically.

Apart from being natural states to learn, phase states have appeared in several recent
works: [130, 131] showed phase states are efficiently preparable and statistically indistinguish-
able from a Haar random state (for a polynomial-time quantum algorithm), subsequently
there have been followup works using phase states for cryptosystems [132]; Irani et al. [133]
showed that in order to construct the witness to a QMA complete problem, say the ground
state |¢) to a local-Hamiltonian problem, it suffices to consider a phase state which has
a good overlap to |¢); level-3 phase states are universal for measurement based quantum
computing [126, 134].

We also consider generalized degree-d phase states

[y =272 Y e d W), (17)

z€{0,1}"

where ¢ > 2 is an even integer and f : {0,1}" — Z, is a degree-d polynomial, that is,

f(z :ZaJHa:j (mod q) (18)

JCn]  JeJ
|J]<d
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for coefficients ay € Z, = {0,1,...,¢ — 1}. It is known that the output state of a ran-
dom n-qubit Clifford circuit is a generalized ¢ = 4, degree-2 phase state with a constant
probability [135, Appendix DJ. It is also known that generalized degree-d phase states with
q = 2¢ can be prepared from diagonal unitary operators [136] in the d-th level of the Clifford
hierarchy [137]. These states have also found applications in cryptography [130, 131], and
complexity theory [133].

In this work, we consider learning phase states through two types of tomography protocols
based on separable and entangled measurements. The former can be realized as a sequence
of M independent measurements, each performed on a separate copy of |¢s). The latter per-
forms a joint measurement on the state |1;)®. Interestingly, our learning protocols based
on separable measurements require only single-qubit gates and single-qubit measurements
making them well suited for near-term demonstrations. Our goal is to then derive upper and
lower bounds on the sample complexity M of learning f, as a function of n and d.

We first introduce some notation before giving an overview of our contributions. For
every n and d < n/2, let P(n,d) be the set of all degree-d polynomials of the form Eq. (16).
Let Py(n,d) be the set of all degree-d Z,-valued polynomials of the form Eq. (17). By
definition, Py(n,d) = P(n,d). To avoid confusion, we shall refer to states defined in Eq. (15)
as binary phase states and in Eq. (17) as generalized phase states. Our learning protocol
takes as input integers n,q,d and M copies of a degree-d phase state |¢);) with unknown
f € P,(n,d). The protocol outputs a classical description of a polynomial g € P,(n,d) such
that f = g with high probability.

Our work reports optimal algorithms for learning phase states, both in the case of sepa-
rable and entangled measurements. Prior to our work, it was only known how to efficiently
learn degree-2 phase states. Here, we show that if allowed separable measurements, the
sample complexity of learning binary phase states and generalized phase states is O(n?). If
allowed entangled measurements, we obtain a sample complexity of O(n¢"!). We further
consider settings where the function f we are trying to learn is known to be sparse, has a
small Fourier-degree and when given noisy copies of the quantum phase state. In Table 1,
we summarize all our main results (except the first two rows, which include the main prior
work in this direction?).

!Montanaro [138] considered learning multilinear polynomials f, assuming we have query access to f,
which is a stronger learning model than the sample access model that we assume for our learning algorithm.
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Sample complexity | Measurements
Binary phase state Fo-degree-1 o(1) Separable
[139]
Binary phase state Fo-degree-2
183, 140] O(n) Entangled
Binary phase state Fa-degree-d O(n?) Separable
Binary phase state Fo-degree-d O(n? 1) Entangled
Generalized phase states degree-d O(n?) Separable
Generalized phase states degree-d O(nd1) Entangled
Sparse Binary phase state d
Fa-degree-d, Fo-sparsity s O(2%n) Separable
Binary phase state Fo-degree-2 140(c)
with global depolarizing noise € " Entangled
Binary phase state Fo-degree-2 n
with local depolarizing noise € O —)") Entangled
Binary phase state Fourier-degree-d 0(229) Entangled

Table 1: Upper and lower bounds on sample complexity for exact learning of n-qubit degree-d
phase states.

Next we discuss a couple of motivations for considering the task of learning phase states
and corresponding applications.

Quantum complexity. Recently, there has been a few results in quantum cryptogra-
phy [130, 132, 131] and complexity theory [133] which used the notion of phase states.
Ji et al. [130] introduced the notion of pseudorandom quantum states as states of the form
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lp) = \/%7 > refo1yn e~ @) |z) where F is a pseudorandom function.? Ji et al. showed that
states of the form |¢) are efficiently preparable and statistically indistinguishable from a Haar
random state, which given as input to a polynomial-time quantum algorithm. A subsequent
work of Brakerski [131] showed that it suffices to consider |¢') = \/%7 er{o,l}n(—l)F(z) |)
(where F' again is a pseudorandom function) and such states are also efficiently preparable
and statistically indistinguishable from Haar random states. Subsequently, these states have
found applications in proposing many cryptosystems [132]. Although none of these works
discuss the degree of the phase function F', our result shows implicitly that when F' is low-
degree, then |¢) is exactly learnable and hence distinguishable from Haar random states,
implying that they cannot be quantum pseudorandom states.

Learning quantum circuits. Given access to a quantum circuit U, the goal of this learn-
ing task is to learn a circuit representation of U. The sample complexity for learning a general
n-qubit quantum circuit is known to be 2 [141, 142], which is usually impractical.

If we restrict ourselves to particular classes of quantum circuits, there are some known
results for efficient learnability. Low [143] showed that an n-qubit Clifford circuit can be
learned using O(n) samples. However, this result was only an existential proof and requires
access to the conjugate of the circuit. Constructive algorithms were given in Low [143],
and Lai and Cheng [144], both of which showed that Clifford circuits can be learned using
O(n?) samples. Both these algorithms require entangled measurements with the former
algorithm using pretty-good measurement [145], and the latter using Bell sampling. In this
work, we show that Clifford circuits producing degree-2 binary phase states, can be learned
in O(n?) samples, matching their result but only using separable measurements (in fact,
using only single-qubit measurements). Moreover, Low [143] also gave an existential proof
of algorithms for learning circuits in the d-th level of the Clifford hierarchy, using n!
samples. In this work, we give constructive algorithms for learning the diagonal elements
of the Clifford hierarchy in n? samples (resp. n¢~! samples) using separable measurements
(resp. with entangled measurements). A direct result of this is that IQP circuits, which are
believed to be hard to simulate [128, 146], are efficiently learnable. Our learning result thus
gives an efficient method for verifying IQP circuits that may be part of quantum-advantage
experiments [129, 147].

Learning hypergraph states. We finally observe that degree-3 (and higher-degree) phase
states have appeared in works [126, 134] on measurement-based quantum computing (MBQC),
wherein they refer to these states as hypergraph states. These works show that single-qubit
measurements in the Pauli X or Z basis performed on a suitable degree-3 hypergraph state
are sufficient for universal MBQC. Our learning algorithm gives a procedure for learning
these states in polynomial-time and could potentially be used as a subroutine for verifying
MBQC.

Our work leaves open a few interesting questions.

Improving runtime. While our algorithms for learning phase states are optimal in terms
of the sample complexity, their runtime scales polynomially with the number of qubits only

2We do not discuss the details of pseudorandom functions here, we refer the interested reader to [130].
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in the case of binary phase states and separable measurements. It remains to be seen whether
a polynomial runtime can be achieved in the remaining cases, i.e., learning degree-d binary
phase states using O(n?~1) samples with entangled measurements and generalized phase
states with either separable or entangled measurements.

Quantum advantage. Recall that a Boolean function f : {0,1}" — {0,1} is called a
bent (maximally non-linear) function if there exists a Boolean function g : {0,1}" — {0,1}

such that
(_1)g(y) — 9—n/2 Z (_l)x-y+f($)
ze{0,1}"

for all y € {0,1}". The function g is called the dual of f. If f is a bent function as above
then n-qubit states [¢y) and H®|¢y) = |1),) are both binary phase states. Here H is the
Hadamard gate. Consider the problem of learning f given a classical description of the dual
function ¢g. This problem can be solved efficiently using our algorithm whenever both f and
g are low-degree polynomials. Indeed, in this case one can efficiently prepare the state [¢)
by first preparing the phase state |1, (using the known classical description of ¢ by a low-
degree polynomial) and then applying bit-wise Hadamard operation H®" which maps |¢)
to |14). Now one can learn ¢ using the algorithms reported in our work. We leave as an open
question whether the task of learning a bent function f starting with a classical description
of the dual bent function g is classically hard. We note that a closely related hidden shift
problem for bent function is known to be classically hard in the query complexity sense [148].

Property testing. What is the sample complexity of property testing phase states? Given
M copies of an n-qubit state |¢) with the promise that either |¢) is a degree-d phase state
or e-far from the set of degree-d phase states, what is an upper and lower bound on M? For
d = 1, we can learn the entire state using M = 1 copy and for d = 2, Gross et al. [149]
showed that M = 6 copies suffice for the property testing. For larger d, understanding the
complexity of testing phase states is an intriguing open question left open by our work. In
particular, does the sample complexity of testing n-qubit degree-d phase states scale as n¢=2
(for d > 2) or does it scale as poly(c?,n) for some ¢ > 17

Learning more expressive quantum states. We leave as an open question whether our
learning algorithms can be extended to binary phase states with a small algebraic degree.
Such states have amplitudes proportional to (—1)*F(®) where F(z) = Zf:o a;z’ is a degree-
d polynomial with coefficients a; € Fan and tr : Fon — Iy is the trace function defined
as tr(zr) = Z;:& 1% . Here all arithmetic operations use the field Fy.. What is the sample
complexity of learning n-qubit states produced by circuits containing non-diagonal unitaries
in the k-th level in the Clifford hierarchy, on the |[+)" input? Similarly, what is the complexity
of learning a state which has stabilizer rank k7?3 Similarly can we PAC learn these classes of
quantum states in polynomial time?*

3We know how to learn stabilizer states and stabilizer-rank 2 states in polynomial time, what is the
complexity as a function of rank-k?

4For stabilizer circuits, we have both positive and negative results in this direction [150, 151] but for more
generalized circuits, it remains an open question.
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3 Quantum optimization algorithms

Variational quantum optimization (VQO) has recently received significant attention as a
candidate application of near-term quantum processors. The basic proposal is appealingly
simple: the output state of a parameterized quantum circuit is used as a variational wave-
function to minimize the expected energy of a given Hamiltonian [152]. Depending on the
envisioned application, the Hamiltonian may govern electronic interactions in a molecule or
material of interest [153], or encode a classical cost function whose minimum is to be approx-
imated [154]. Rotation angles that define individual gates in the state preparation circuit
serve as variational parameters. These parameters are adjusted via a classical feedback loop
that aims to minimize the expected energy.

The central question common to all VQO proposals is whether the chosen variational
class of states is expressive enough to provide a good ground state approximation. Let us
point out two factors that can limit the expressive power of VQO.

First, the state preparation quantum circuit must have a small depth to enable reliable
implementation on near-term noisy devices lacking error correction. This means that highly
entangled ground states may be out of scope for near-term VQO using gate-based devices.
For example, preparing ground states of Kitaev’s toric code [50] starting from a product
state requires a circuit depth growing at least polynomially in the system size using nearest-
neighbor gates [155], and logarithmically using non-local gates [156]. Therefore, near-term
VQO is unlikely to attain the ground state energy for such Hamiltonians.

Secondly, the number of variational parameters in the state preparation circuit must be
small to enable efficient energy minimization. While this is not a serious concern for proof-
of-principle experiments with a handful of qubits, it is anticipated that large-scale VQO
with an extensive number of variational parameters may give rise to intractable optimiza-
tion problems, for example due to the barren plateau (vanishing gradient) effect [157, 158].
Algorithmic limitations of this kind may prevent VQO from approximating even very simple
unentangled ground states associated with classical cost functions.

Section 3.2, based on Ref. [159], elaborates on the limitations of VQO by establishing
formal no-go results for the Quantum Approximate Optimization Algorithm (QAOA) [154].
It is shown that the symmetry and the locality of QAOA variational states severely limit
its performance. A surprising consequence of our results is that the classical Goemans-
Williamson algorithm [160] outperforms QAOA for certain instances of MaxCut, at any
constant level.

Sections 3.3,3.4 based on Refs. [159, 26, 161], show how to overcome the no-go result es-
tablished above. To this end we augment QAOA by a variable elimination step which results
in a new VQO-type algorithm which we call a Recursive QAOA (RQAOA). We benchmark
RQAOA for medium-size optimization problems with about 200 variables including Max-
Cut and graph coloring problems observing that RQAOA is strictly more powerful than the
standard QAOA. Surprisingly, for certain problem instances we found that level-1 RQAOA
outperforms the Goemans-Williamson algorithm for MaxCut and its generalization to graph
coloring problems due to Frieze and Jerrum [162]. To enable efficient numerical simulations,
we propose polynomial-time classical algorithms for computing mean values of observables
on QAOA states.

VQO algorithms typically use classical processing only for the choice of variational pa-
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rameters, for example, following gradient descent. Section 3.5, based on Ref. [27], shows
that for certain combinatorial optimization problems, such algorithms can be hybridized
further, thus harnessing the power of efficient non-local classical processing to a greater
extent. Specifically, we consider combining a quantum variational ansatz with a greedy clas-
sical post-processing procedure for the MaxCut-problem on 3-regular graphs. We show that
the average cut-size produced by this method can be quantified in terms of the expected
energy of a modified problem Hamiltonian on the original variational state. This motivates
the consideration of an improved algorithm which variationally optimizes the energy of the
modified Hamiltonian over the original class of variational states. We call this a twisted
hybrid optimization algorithm since the additional classical processing step is folded into
the definition of the problem Hamiltonian. We exemplify the viability of this method using
the quantum approximate optimization algorithm (QAQOA), giving analytic lower bounds
on the expected approximation ratios achieved by twisted QAOA.

Markov Chain Monte Carlo (MCMC) methods provide a general approach to sampling
from high-dimensional probability distributions. They have many applications in machine
learning for Bayesian inference [163], in theoretical computer science for counting prob-
lems [164], volume estimation of convex bodies [165], approximation of the permanent [166],
or in statistical physics for estimating thermodynamic properties of systems [167, 168]. It is
known that quantum algorithms can provide quadratic speedups over classical algorithms for
a variety of tasks related to MCMC, such as amplitude amplification and estimation [169] and
spectral gap amplification of Markov Chains [170]. Even though a general quantum speedup
for MCMC methods is not known, quantum algorithms for the computation of partition
functions using simulated annealing have been previously proposed [171, 172]. Section 3.6
based on Ref. [173], improves upon the prior work and derives the currently best known
quantum algorithm for this problem.

Section 3.8, based on Ref. [30], describes quantum subroutines for the simplex method
— one of the most impactful algorithms of the past century which is still widely used in a
variety of applications. The simplex algorithm solves a linear program min, ¢’z subject to
Ax =0b, x > 0, by keeping track of a basis — a set of linearly independent columns of A and
repeatedly moves to a different basis that defines a solution with better objective function
value. The basis change (called a pivot) is performed by determining a new column that
should enter the basis, and removing one column from the current basis. Choosing the new
column is called pricing, and it is asymptotically the most expensive step, as it involves a
matrix inversion. For problems with a well-conditioned sparse constraint matrix A we give
a quantum pricing algorithm that achieves a provable asymptotic speedup over best known
classical algorithms. Importantly, this speedup does not depend on the data being available
in some “quantum form” such as QRAM; the input of our quantum subroutines is the natural
classical description of the problem, and the output is the index of the variables that should
leave or enter the basis.

3.1 Quantum Approximate Optimization Algorithm

In the next few sections we consider Quantum Approximate Optimization Algorithm (QAOA)
proposed in [22]. This algorithm aims to approximate the maximum of a classical cost func-
tion C'(x) that depends on n binary variables, © = (x1,...,2,). The cost function is encoded
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into an n-qubit diagonal Hamiltonian

C= Z C(z)|z) (x|

z€{0,1}"

QAOA variationally maximizes the expected energy of C' over n-qubit quantum states of the

form [154]
»

() = [ [P+ (19)
a=1

where (3,7, are variational parameters, |[+") is the tensor product of n single-qubit states
[+) = (10)+]1))/v2 and B = Y7, X is the transverse magnetic field operator. The integer
p, called the QAOA level, controls the expressive power of the variational ansatz. Finally,
QAOA outputs a bit string x obtained by preparing the optimal variational state |1(3,~))
and measuring each qubit in the standard basis. The expected value of C(z) coincides
with the variational energy (¢¥(8,7)|C|¥(8,7)). The performance of QAOA is commonly
quantified by an approzimation ratio defined as the ratio between the maximum variational
energy and the maximum value of the cost function Cp.x = max, C(z).

3.2 Limitations of QAOA

A paradigmatic test case for QAOA is the Maximum Cut (MaxCut) problem [154]. Suppose
G = (V, E) is a graph with a set of n vertices V' labeled by integers j = 1,...,n and a set of
edges E. Given an n-bit string z, let cut(z) be the set of edges (j, k) € E such that x; # xy.
The cost function to be maximized is the cut size, C'(z) = |cut(z)|. The corresponding
n-qubit Hamiltonian is

C== Y (I-2Z). (20)

(j,k)eFE

Here Z; is the Pauli Z operator applied to a qubit j and I is the identity. The state
preparation circuit defined in Eq. (19) has depth ~ pD, where D is the maximum vertex
degree of the graph G and p is the QAOA level [174]. To keep the circuit depth and the
number of variational parameters small, below we focus on the regime when p and D are
constants or slowly growing functions of n.

Our first result is an upper bound on the maximum variational energy attained by level-p
states. Namely, we show that for any constant D > 3 and all large enough n there exist a
degree-D graph GG with n vertices such that

(L (BNICIP (B, 7))
Cmax

D—-1
3D

5
< 5 + (21)
for any 3,7 € R? as long as p < (1/3 logyn — 4)(D + 1)~'. This result severely limits the
performance of QAOA with any constant level p independent of n. Indeed, the right-hand
side of Eq. (21) is approximately 5/6 ~ 0.833 for large vertex degree D. For comparison, the
best-known classical algorithm for MaxCut due to Goemans and Williamson [160] achieves
the approximation ratio at least 0.878 on an arbitrary graph. Thus QAOA with a constant
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level p cannot outperform classical algorithms. We note that upper bounds on the QAOA
approximation ratio were previously known only for p = 1 [154]. Followup work [175, 176]
established analogous limitations of QAOA applied to MaxCut and Maximum Independent
Set for random regular graphs [175, 176]. These results exploit the locality of QAOA and
its uniformity: reduced states on isomorphic local subgraphs are identical. In contrast, our
focus is on Zy-symmetry and locality, and our statements also apply to non-uniform local
algorithms. We refer to [177] for numerical studies of QAOA applied to MaxCut investigating
how the approximation ratio scales with the level p.

Similar concerns about limitations of QAOA have previously been voiced by Hastings [178]
who showed analytically that certain local classical algorithms match the performance of
level-1 QAOA for Ising-like cost functions with multi-spin interactions. Hastings also gave
numerical evidence for the same phenomenon for MaxCut with p = 1, and argued that this
should extend to p > 1 [178].

QAOA states possess a certain symmetry that plays a crucial role in our analysis. Namely
the state [¢)(5,)) is invariant under a global spin flip,

XE(B, 7)) = [b(B,7))- (22)

Indeed, the Hamiltonians B, C' commute with the symmetry operator X®", while the initial
state |+") is a +1 eigenvector of X®". More generally, let us say that an n-qubit state
|¢) is Zo-symmetric if it is a +1 eigenvector of X®™. Our proof of Eq. (21) combines two
observations: (i) the symmetry forces good variational states to be highly entangled, and
(ii) low-depth circuits are not capable of preparing highly entangled states.

To elaborate on the role of the Zs-symmetry, suppose z € {0,1}" is an optimal cut such
that Chnax = C(z). Let T be the bit-wise negation of z. Note that C(Z) = C(z). Although
the state |z) has no entanglement whatsoever, its Z,-symmetric version (|z) + [Z))/v/2 is a
highly entangled state, locally equivalent to the n-qubit GHZ state (]0™) + |1"))/+/2, which
cannot be prepared by a low-depth circuit [155].

The fact that symmetry may prevent one from preparing ground states of certain Hamil-
tonians by low-depth circuits, even if the Hamiltonian has a ground state with only short-
range entanglement, is well-known in the theory of topological quantum order under the
name symmetry protection [179, 180, 181]. In this language, the bound Eq. (21) asserts that
the Hamiltonian C' exhibits a particularly strong version of the symmetry protection that
extends to all states with energy density above a certain constant threshold.

We shall now argue that for a suitable family of graphs G all good variational states are
qualitatively similar to the GHZ state. Specifically, the results of [182, 183, 184] show that
for any constant D > 3 there exists an infinite family of bipartite degree-D graphs G such
that

C(z) = |eut(x)| > hmin{|z|,n — |z|} (23)

for any x € {0,1}", where h is a constant satisfying
D
h > 5 D—-1 (24)

and |z| is the Hamming weight of z. Such graphs, known as Ramanujan expander graphs,
have the peculiar feature that the spectral gap of their adjacency matrix takes the largest
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possible value among all degree-D graphs. For example, random D-regular bipartite graphs
are known to approach the bound Eq. (24) with high probability [185].

Let G be a bipartite graph as above and zo, € {0,1}" be an optimal solution of the
MaxCut problem. By definition, the maximum cut of a bipartite graph includes all edges, so
that Crnax = C(%opt) = |E|. The assumption that G is bipartite also implies that the optimal
solution o is unique up to the bit-wise negation and

O() + Claon & 2) = | (25)

for all z € {0,1}". Here @ denotes the bit-wise XOR. Set € = h/6 and consider a level-p
QAOA state such that

(B, MIC[W(B,7)) = |E| — en. (26)

Let x be a random n-bit string sampled from the distribution P(z) = [{x|(8,7))|*. Markov’s
inequality and Eq. (26) show that C(x) > |E| — 2en with probability at least 1/2. From
Eq. (25) one infers that C(zon®x) < 2en with probability at least 1/2. Let dist(x, y) = |z®y|
be the Hamming distance between bit strings x and y. Combining Eq. (23) and the bound
C(2opt ® ) < 2en one gets

min {dist (zope, 2), dist (Fomp, )} < 267” -2 (27)
with probability at least 1/2. This shows that the state [)(/3, 7)) has a non-negligible weight
on bit strings close to zox and on those close to ZTope. Here closeness means being within a
Hamming distance of at most n/3.

Finally, we employ a fascinating result by Eldar and Harrrow stated as Corollary 43
in [186]. It asserts that the output distribution of a low-depth circuit cannot assign a non-
negligible weight to subsets of bit strings that are far apart in Hamming distance. Namely,
suppose [1) is an n-qubit state that can be prepared starting from a product state by a
depth-d quantum circuit composed of one- and two-qubit gates. The state |1)) does not
have to be symmetric in any sense. Define a distribution P(z) = |(z|)|?>. Given a subset
S C{0,1}", let P(S) = >, cq P(x). Ref. [186] showed that for any subsets S, 5" C {0,1}"
one has

Ap}/293d/2
min { P(S), P(S")}
Here dist(S, S") = min,es mingeg dist(z,y) is the minimum number of bit flips required to
get from S to S’. Choose S and S’ as the sets of n-bit strings = such that dist(zep, z) < n/3
and dist(ZTopt, ©) < n/3 respectively. Then dist(S,S") = n/3. Choose |[¢) = |[(8,7)). The
Zo-symmetry of QAOA states gives P(x) = P(Z) and thus P(S) = P(S’). We have already
shown that P(SUS’) > 1/2, see Eq. (27), that is, P(S) = P(S’) > 1/4. Combining this and
Eq. (28) one arrives at 1 < 48n~1/2234/2_ This gives a lower bound on the depth d required
to approximate the maximum value Cpax = |E| within a ratio

dist(S, ") < (28)

1y h < 5 n D -1

|E| = 3D~ 6 3D
Here we recalled that e = h/6, |E| = Dn/2, and used Eq. (24). In Appendix A we show that
the level-p QAOA circuit has depth d < p(D + 1) whenever G is a bipartite degree-D graph.
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Thus 1 < 48n~1/2234/2 implies p > (1/3 logyn — 4)(D + 1)~!. This concludes the proof of
Eq. (21).

3.3 Recursive QAOA for Ising-type cost functions

Motivated by the limitations established above, we propose a non-local modification of
QAOA which we call the recursive quantum approximate optimization algorithm (RQAOA).
This is a VQO-type algorithm based on the variational ansatz Eq. (19) with a constant level
p. The key new feature of RQAOA is a variable elimination step. The latter transforms a
cost function with n variables to one with n — 1 variables by examining correlations present
in the optimal variational state and identifying strongly correlated clusters of variables. To
describe this formally, suppose the cost function C'(x) describes the Ising model on a graph
G = (V, E) with n vertices. The corresponding n-qubit Hamiltonian is

C= > JiuZiZ. (29)
(J,k)eE

Here J; ), are arbitrary real coefficients. As before, our goal is to maximize C(x) = (x|C|x).
The RQAOA consists of the following steps.

First, maximize the expected value (¢(5,7)|C|¢(5,7)) over 8,7 € RP. For every edge
(4, k) € E, compute the mean value M;;, = (Y(8,7)|Z; Zi|¢(B,7))-

Next, find an edge (7, j) € E with the largest magnitude of M; ; (breaking ties arbitrarily).
The corresponding variables Z; and Z; are correlated if M,; > 0 and anti-correlated if
M; ; < 0. Impose a parity constraint

and substitute it into the cost function C' to eliminate the variable j. For example, a term
JikZ;Zy, with k ¢ {1, j} gets mapped to J;xsgn(M; ;)Z;Zy,. The term J; ;Z;Z; gets mapped
to a constant energy shift J; ;sgn(M; ;). All other terms remain unchanged. This yields a new
Ising cost function C’ that depends on n — 1 variables. The underlying interaction graph G’
with n — 1 vertices is obtained from G by contracting the edge (4, j) . The maximum energy
of C" coincides with the maximum energy of C' over the subset of assignments satisfying the
constraint Eq. (30).

Next, call RQAOA recursively to maximize the cost function C’. Each recursion step
eliminates one variable from the cost function. The recursion stops when the number of
variables reaches some specified threshold value n. < n. The remaining instance of the
problem with n. variables is then solved by a purely classical algorithm (for example, by a
brute force method). Thus the value of n. controls how the workload is distributed between
quantum and classical computers.

Finally, assign a value to all eliminated variables Z; by backtracking the steps of the
algorithm and applying the parity constraints Eq. (30) imposed at each step. This results
in a tentative solution = € {0, 1}" of the original problem with n variables.

Recall that contraction of an edge (i, j) in a graph G is an operation that removes the edge (i,5) from
G and identifies the vertices i, j.

25



Importantly, the limitations established above for QAOA with a constant level p on
bounded degree graphs do not apply to its recursive version. Indeed, each variable elimi-
nation step performed by RQAOA results in a contraction of some edge in the graph. The
contraction of edges tends to increase the maximum vertex degree, thereby increasing the
circuit depth of level-p variational states. In other words, RQAOA overcomes the locality
restriction of the standard QAOA without increasing the number of variational parameters
that have to be optimized at each step.
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Approximation ratios achieved by the level-1 RQAOA, QAOA, the Goemans-
Williamson (GW) algorithm [160], and the greedy algorithm (the classical limit of RQAOA)
for 15 instances of the Ising cost function C'=>_ ;) p J;xZ;Z;. We consider three choices
of the interaction graph: (a,b) the 2D toric grid of size 16 x 16, (c) random degree-3 graphs.
In case (b) the graph has an extra vertex connected to every grid point. This is equivalent to
the 2D Ising model with external fields. We choose J;; = +1 at random. The threshold value
for RQAOA and the greedy algorithm is n, = 20. Each run of the GW algorithm includes
256 rounding attempts. The exact maximum energy was computed using the integer linear
programming.
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We report a numerical comparison between the level-1 QAOA, RQAOA, and the Goemans-
Williamson algorithm for the Ising cost function Eq. (29) with random coefficients .J; ;, = £1.
Three types of interaction graphs are considered:

(a) 2D toric grid of size 16 x 16
(b) 2D toric grid of size 16 x 16 with one extra vertex connected to each grid point
(c¢) random degree-3 graphs with n = 256 vertices

Case (b) is equivalent to the 2D Ising model with random 41 external fields. The problem
of maximizing the energy C(x) admits an efficient algorithm in the 2D case in the absence
of external fields and is NP-hard with external fields [187]. To compute the mean values
(WW(B,Y)NZ;Zil(B, 7)) for medium-size problems with a few hundred variables, we proposed
a fast classical algorithm for simulating level-1 QAOA, as detailed in Section ?7?. Figure 2
shows approximation ratios achieved by each algorithm for 15 random problem instances. In
all three cases we observed that RQAOA is considerably more powerful that the standard
QAOA. Surprisingly, in many cases RQAOA also outperforms the Goemans-Williamson
algorithm.

A natural question is whether local classical algorithms discussed by Hastings [178] aug-
mented by the variable elimination step can outperform RQAOA. To address this concern,
we consider a greedy algorithm obtained from the level-1 RQAOA by taking the limit v — 0
in the variational state. A simple calculation shows that

Mij = (W(B, V)| ZiZ;1h(8.7)) = vsin (48)Ji,; + O(7?).

Thus M;; ~ J;; in the limit v — 0. The greedy algorithm follows the same steps as the
level-1 RQAOA except that the maximally correlated pair of variables Z;, Z; is chosen as the
one maximizing |J; ;|. We observed that RQAOA tends to outperform the greedy algorithm
with the largest performance gain in the case (a), see Figure 2.

Finally, we showed analytically that RQAOA with the level p = 1 finds the optimal
solution for the so-called ring of disagrees model, see Appendix D of [159]. Meanwhile,
the standard level-p QAOA achieves approximation ratio at most (2p + 1)/(2p + 2) for this
model [188]. This proves that in certain cases RQAOA is strictly more powerful than QAOA.

3.4 Recursive QAOA for graph coloring problems

In this section we apply RQAOA to the Maximum k-Cut problem which is an optimization
version of the graph k-coloring problem. Suppose G = (V, E) is a graph with n = |V| vertices
and e = |E| edges. Given an integer k > 2, the goal is to find an approximate k-coloring of
vertices of G which maximizes the number of edges whose endpoints have different colors.
For each vertex j € V introduce a variable x; € [k] which represents a color assigned to j.
The k-coloring cost function is defined as

Cla)= Y (1=0ua), x€[k]" (31)

(i,7)EFE
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It can also be viewed as an anti-ferromagnetic k-state Potts model. The standard MaxCut
problem corresponds to k = 2. Consider first a special case when G is a k-colorable graph.
Clearly, a random uniform assignment of colors x achieves an approximation ratio of 1 —1/k
on average. For the case where k is a power of two, Cho, Raje and Sarrafzadeh [189]
constructed an O((e + n)logk)-time algorithm which achieves an approximation ratio of
1—1/k(1—1/n)*e* improving upon a deterministic O(enk)-time algorithm [190] achieving
the same ratio 1 — 1/k as random coloring (and obtained by derandomizing the latter). In
the general case, when G may not be k-colorable, Frieze and Jerrum [162] gave an algorithm
achieving an approximation ratio 1 —1/k+2log (k)/k? for sufficiently large k. This is known
to be close to optimal since no polynomial-time algorithm can achieve an approximation
ratio better than 1 — 1/(34k) unless P = NP [191]. Frieze and Jerrum’s algorithm is based
on an SDP relaxation and a randomized rounding scheme inspired by Goemans-Williamson
algorithm for MaxCut. It comes with detailed estimates for the approximation ratio o =
E(C(z))/Cmax for small k, namely

g > 0.878567

as > 0.800217

ay > 0.850304

as > 0.874243
Here the bound on ay matches the Goemans-Williamson algorithm for MaxCut. This was
further improved by Klerk et al. [192] to

asg > 0.836008 (32)

oy > 0.857487 . (33)

We extend RQAOA to Max-k-Cut as follows. Consider a system of n k-dimensional
qudits and a cost function Hamiltonian

C= > Y J;(0,b) (34)
(’L',j)EE beZy,
where J; ;(b) are real coefficients and

(b) = Y la)(a| @ |a -+ b){a + bl

a€Zly,

is a diagonal projector acting on C* ® C*. Here and below the addition of color indices is
performed modulo k. The subscripts 4, j in 11, ;(b) indicate the pair of qudits acted upon by
the projector I1(b). By definition, II; ;(b) = IL; ;(—b). The k-coloring cost function is a special
case of Eq. (34) when J; ;(b) = 1 — dp0. We shall see the family of Hamiltonians defined in
Eq. (34) is closed under the variable elimination. The Hamiltonian Eq. (34) commutes with
the symmetry operator X®", where

X =) |b+1)(|
beZy,

is the generalized Pauli-X operator. This is analogous to the Zs-symmetry discussed in
Section 3.2.
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Figure 3: We consider the Max-3-Cut problem on 20 random instances of 3-colorable graphs
with n € {30, 60,150} vertices. Approximation ratios achieved by the level-1 QAOA (red),
RQAOA (green), and the SDP relaxation method by Frieze and Jerrum [162] (blue) are

shown. Left: 4-regular graphs, Right: 6-regular graphs.
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We shall now generalize the QAOA ansatz to qudits. Let |+) € C* be the +1 eigenvector
of X, that is, |+) = k™23 ., la). Given a real vector § = (8',..., 5¥), define a unitary
B(B) : C* — C* which is diagonal in the X-basis such that

B(B) =" e |¢a){(dal,  |a) = Z°+).

a€Zy,

The level-p QAOA variational state for k-dimensional qudits is defined as

[0(8.7)) = [[ BB+ (35)

t=1

where 3; € RF and 7; € R are variational parameters. Note that each term B(3;) contains
only k — 1 parameters, since the overall phase of B(/3;) is irrelevant. Thus the total number
of parameters is (k — 1)p + p = kp. This reduces to the standard definition Eq. (19) in the
case k = 2. The RQAOA consists of the following steps.

First, maximize the expected value (¢|C|¢)) with |¢) = [(3,)) over § and . For every
edge (i,j) € E compute the mean value M, ;(b) = (¢|IL; ;(b)|¢). Note that 0 < M, ;(b) <1
since II, ;(b) is a projector.

Next, find an edge (i,j) € £ and a color b € [k] with the largest magnitude of M; ;(b)
(breaking ties arbitrarily). Impose a constraint

r;j=x;+b (mod k) (36)

which is analogous to the parity constraint Eq. (30). Note that |¢) has support on basis
states satisfying the constraint Eq. (36) iff M; ;(b) = 1. Substitute the constraint Eq. (36)
into the cost function Hamiltonian to eliminate the variable x;. To this end, use the identity

IL; ; (0)IL; (@) = 11; ;(b)1L; n(a — D)

which holds for any h ¢ {i,j}. Thus II; 4(a) = II;,(a — b) on the subspace satisfying the
constraint. Replacing I1; ;(a) by II; ,(a — b) in the cost function for all h ¢ {i, j} one gets a
new cost function C” of the form Eq. (34) acting on n — 1 variables. The maximum energy
of C' coincides with the maximum energy of C' over the subset of assignments satisfying the
constraint Eq. (36).

Finally, call RQAOA recursively, in the same fashion as was done for the Ising cost
functions, see Section 3.3.

We benchmarked level-1 RQAOA for random D-regular graphs generated as follows.

1. Pick a partition V' = V;V,V5 such that |Vi| = |Va| = |V3| = n/3.

2. For each r,s such that 1 < r < s < 3 join V, and V; by a random bipartite (D/2)-
regular graph with vertex set V. U V.

3. Check if the obtained graph contains a triangle. If no triangle is found, start over.
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Steps 1-2 ensure that the resulting graph is 3-colorable while Step 3 ensures that the graph
cannot be colored with fewer than three colors.

Our numerical results for 20 random instances of Max-3-Cut constructed as above are
presented on Figure 3. The plots show approximation ratios achieved by QAOA and RQAOA
with the level p = 1, and the SDP relaxation method by Frieze and Jerrum [162]. It can be
seen that RQAOA achieves the best performance among all considered algorithms.

A natural question is how much the performance of RQAOA improves as one goes from
the level p = 1 to higher levels. A preliminary work shows that expected values of local
observables associated with the level-2 QAOA states can be computed classically in time
poly(k,n) for any planar graph. Since the variable elimination is equivalent to contraction
of edges in the underlying graph, it preserves the planarity. Thus level-2 RQAOA can be
simulated classically in time poly(k,n). We are planning to perform a numerical simulation
of the level-2 RQAOA for medium-size problems in the future work.

3.5 Twisted QAOA

For the problem of finding (or approximating) the maximum of a combinatorial cost function
C :{0,1}" — R (given by polynomially many terms), typical hybrid algorithms proceed by
defining the cost function Hamiltonian

Ho= ) C(2)2){| (37)

z€{0,1}m

and a parametrized family {Ug(0)}sco of m-qubit unitary circuits. The later might be
parametrized by the underlying graph G of the cost function or in case of hardware-efficient
algorithms tailored to the physical device [193]. The parametrized family give rise to varia-
tional ansatz states

W(0)) = Us(6) |0)*" . (38)

that can be prepared with Ug/(6) from a product state [0)*". Measuring ¥(6) in the computa-
tional basis then provides a sample z € {0,1}" from the distribution p(z) = |(z|¥(6))]?* such
that the expectation value of the associated cost function is equal to the energy E [C(2)] =
(U(6)] Ho |W(0)) of the state W(A) with respect to He. Thus the problem of maximizing C'
is translated to that of finding a value of the (vector of) parameters # maximizing the energy
of ¥(6). The latter step is envisioned to be performed e.g., by numerical gradient descent
or a similar classical procedure prescribing (iteratively) what parameters 6 to try. The com-
putation of this prescription (according to obtained measurement results) is the classical
processing part of the quantum algorithm leading to the term hybrid. We will refer to this
form of algorithm as a “bare” hybrid algorithm in the following.

The potential utility of this approach hinges on a number of factors. Of primary impor-
tance — beyond questions of convergence or efficiency — is whether the family {W¥(6)}pco of
states is sufficiently rich to variationally capture the (classical) correlations of high-energy
states of Ho. There is an inherent tension here between the requirement of applicability
using near-term devices, and the descriptive power, i.e., required complexity of these states:
On the one hand, each unitary Ug(6) is supposed to be realized by a low-depth circuit with
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local gates (making it amenable to experimental realization on a near-term device), and the
dimensionality of the parameter or “search” space © should be low to guarantee fast conver-
gence e.g., of gradient descent. On the other hand, states having high energy with respect
to Ho and belonging to the considered family of variational states may have intrinsically
high circuit complexity, and, correspondingly, may also require a large number of variational
parameters to approximate. The unavoidability of this issue has been demonstrated using
the MaxCut-problem on degree-d expander graphs with n vertices and the quantum approx-
imate optimization algorithm (QAOA) at level p: Here the parameter space is © = [0, 27)%
and the corresponding circuits Ug(#) have depth O(pd). Locality and symmetry of the ansatz
imply that achievable expected approximation ratios are upper bounded by a constant (be-
low that achieved by Goemans-Williamson) unless p = (log n) [25], see Section 3.2. In fact,
the locality of the ansatz alone implies that for smaller values of p, the achieved expected
approximation ratio is not better then of a random guessing for random bipartite graphs, as
shown in [194].

These fundamental limitations of “standard” hybrid algorithms are tied to the assumption
that an increased complexity of the required quantum operations is unacceptable and/or
infeasible in the near term. Under these circumstances, the only way forward appears to
be to use alternative, possibly more powerful (e.g., non-local) efficient classical processing
which could exploit the limited available quantum resources more effectively. One example
where a classical post-processing is used is [195], where QAOA is combined with a greedy
“pruning” method to produce an independent set of large size. Here post-processing is
needed, in particular, to ensure that the output is indeed an independent set. Another
proposal in this direction is the idea of “warm-starting” QAOA with a solution provided
by the Goemans-Williamson algorithm [196] (see also [197]). The warm-starting approach
has the appeal that — by construction — the Goemans-Williamson approximation ratio can
be guaranteed in this approach (assuming convergence of the energy optimization). An
alternative is the recursive QAOA method [159, 26] which uses QAOA states to iteratively
identify variables to eliminate, see Sections 3.3,3.4. This effectively reduces the problem size
but increases the connectivity and thus the circuit complexity of the iteratively obtained
subproblems. Furthermore, analytical bounds on the expected approximation ratios are
unknown except for very special examples [25]. For both warm-starting QAOA as well
as RQAOA, one deviates from the original QAOA ansatz, leading to different variational
states and corresponding quantum circuits.

Main results. Here we consider arguably more minimal adaptions of hybrid variational
algorithms for the MaxCut-problem on 3-regular graphs. For a given bare hybrid algorithm A
involving a family {W()}gco of variational ansatz states as described above, we show how
to construct a modified algorithm A* which uses the same family of states {¥(0)}gco. The
algorithm A™ will be called twisted-A. It requires a set of quantum operations that are
comparable (in number and complexity) to that of A. In particular, it involves preparing
the states {¥(0)}pco. In addition, A" uses extra local measurements because the hybrid
optimization step is modified: the energy to be optimized is given by a modified problem
Hamiltonian H} rather than the MaxCut-problem Hamiltonian H associated with the
considered graph G. The modified Hamiltonian H( is either a 3- or 4-local Hamiltonian and
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(as Hg) diagonal in the computational basis. In particular, this means that measurements of
up to 4 qubits at a time in the computational basis are sufficient to determine the (expected)
cost function.

By construction, the algorithms A and A" achieve (expected) cut sizes (for any fixed
instance G) related by the inequalities

E [cutsize (A(G))] < E [cutsize (AT (G))] (39)

for any (bare) hybrid algorithm .4, assuming that the optimal parameters are found in the
optimization step. Indeed, (39) follows because, denoting with

0. = argmax (V(0)| He [V(0)) (40)

the optimal parameters for the Hamiltonian H¢, we have by definition of the algorithms that

E [cutsize (A(G))] = (V(0.)| He [P (6,)) (41)
E [cutsize (AT(G))] = maxy (V(0)| HS |¥(0)) ,
and
Hé— = Hg+ Aq , (42)

where A is a sum of non-negative local operators. These considerations apply to any bare
hybrid algorithm A.

Our modified algorithms are directly motivated by the work of Feige, Karpinski, and
Langberg [198] (referred to as FKL in the following). These authors propose an algorithm for
the MaxCut problem on 3-regular graphs which proceeds by solving a semidefinite program
relaxation (similar to Goemans and Williamson), and subsequently improving the rounded
solution by a simple greedy post-processing technique. We also consider the improvement
by Halperin, Livnat, and Zwick [199] (referred to as HLZ below) which involves a more
non-local greedy procedure.

Consider a simple motivational example of a greedy post-processing procedure that can
improve a given cut. The input will be a 3-regular graph G = (V, E) and a cut. We say
that a vertex is unsatisfied when all three of its neighbours lie in the same partition of the
cut as it does. The algorithm will repeatedly run through the vertices and check whether
some of them are unsatisfied. If it finds an unsatisfied vertex it moves it to the opposite
side of the cut and repeats the process with the updated cut until none of the vertices is
unsatisfied. Since moving one vertex increases the cut size by 3 and potentially lowers the
number of unsatisfied vertices by 4, one can show that this procedure improves the cut size
by at least % times the number of unsatisfied vertices in the initial cut. Let us apply this
greedy procedure to a random cut, which has an expected approximation ratio of 1/2. A
vertex will be unsatisfied with probability 272, From the linearity of expectation we have
that the greedy procedure will improve the cut by at least 7%[V|. Since |V| = 2|E|, we
achieve approximation ratio at least % + % = 0.5625 in expectation.

We combine these techniques with a hybrid algorithm A such as level-p QAOA (in
the following denoted by QAOA,), giving a “twisted” hybrid algorithm A*. The algo-
rithm A™ proceeds by using the variational family of states defined by the algorithm A
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to obtain an approximate cut, but this step is modified or “twisted”, as discussed below.
The algorithm A then attempts to enlarge the cut size of the obtained cut by applying
a classical post-processing procedure: We perform either the post-processing procedure by
Feige, Karpinski, and Langberg (obtaining an algorithm FKL-A") or the post-processing
procedure by Halperin, Livnat, and Zwick (giving an algorithm HLZ-A™).

Let us now describe the sense in which A" is a “twisted” form of A and not merely a
hybrid algorithm augmented by a subsequent classical post-processing step. This terminol-
ogy stems from the fact that in the quantum subroutine of the algorithm, the variational
parameters (angles) are not optimized with respect to the original problem Hamiltonian Hg.
Instead, one can express the expected cut size produced by measuring a state W(#) and
using classical post-processing by the expectation value of a modified Hamiltonian H/, (for
both FKL and HLZ) in the variational state U (). The twisted algorithm A™ thus optimizes
the angle 6 with respect to the modified Hamiltonian H/,. Importantly, this does not change
the ansatz/variational family of states used. This allows us to make a fair comparison (in
terms of quantum resources and, especially, the number of variational parameters) to the
original algorithm A.

We specialize our considerations to QAOA, and establish lower bounds on the approx-
imation ratio for bare and twisted QAOA, i.e., we consider the algorithms QAOA, and
QAOA. Specifically, we consider low values of p for 3-regular graphs, triangle-free 3-
regular graphs and high girth 3-regular graphs. We denote the expected approximation
ratio achieved by an algorithm A on a graph G with maximum cut size MaxCut(G) by

E [cutsize (A (G))]
MaxCut(G)

(6 7€ (.A) = (43)

In the following, we will refer to the expected approximation ratio achieved by an algorithm A
simply as the approximation of A (omitting the term “expected”) unless specified otherwise.
In the case of A = QAOA,, E|[cutsize (A (G))] is defined as in (41), but with the level-p
QAOA trial function V¢ (5,7), 5,7 € [0,27)? instead of ¥(O).

Our results are summarized in Figure 4, which gives our lower bounds on the approxi-
mation ratio for each of these methods. For comparison, we also state the following known
bounds on bare QAOA for any 3-regular graph G,

ag (QAOA,) > 0.6924 established in [200]
ag (QAOA,) > 0.7559 conjectured in [200], established in [201] (44)
ag (QAOA,) > 0.79239 conjectured in [201].

Also shown in Figure 4 are the guaranteed approximation ratios of the best-known classical
algorithms: This includes the Goemans-Williamson algorithm (GW) for general graphs
(which is optimal when assuming the unique games conjecture [202]) which achieves

aq(GW) > 0.8785 for any graph G (see [203]) . (45)

For 3-regular graphs, the best efficient classical algorithms are the algorithm by Feige,
Karpinski, and Langberg [198] which relies on a semidefinite program whose solution is then
improved by a simple greedy post-processing technique, and a refinement of this technique
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by Halperin, Livnat, and Zwick [199]. They achieve

aq (FKL) > 0.924 see [198]
0o (HLZ) > 09326 for any 3-regular graph G see [199]. (46)
0.95
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Bare QAOA, || 0.6924 [200] 0.7559 [201]| 0.7923 [201]| 0.8168 | 0.8363 | 0.8498
FKL-QAOA || 0.7443 0.7887 0.8146 0.8323 | 0.8457 | 0.8564
HLZ-QAOA} || 0.7548 0.7954 0.8191 0.8358 | 0.8482 | 0.8582

Figure 4: The main results of this work. We compare the provably guaranteed approxima-
tion ratios of bare QAOA,, FKL—QAOA; and HLZ—QAOA; for the MaxCut problem
specialized to 3-regular graphs with girth greater than 2p + 2. Numbers written in boldface
also apply to general 3-regular graphs. All quantities are rounded down to four decimals.
Guaranteed approximation ratios which have been established in other work are indicated
with citations.

We find that going from the original QAOA to its twisted version leads to a significant
improvement, roughly saving one level p: We approximately have

ag (QAOA;_l) 2 ag (QAOAP) for p=2,...,6. (47)
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Open questions. One potential avenue to obtaining improved approximation ratios with
hybrid algorithms is to use a different variational family of ansatz states. Here our work
gives clear guidance when this is combined with classical post-processing: For a graph G, the
energy of a modified cost function Hamiltonian H/, = Hz+Ag should be optimized instead of
that of Hg. In particular, since Ag is a sum of 3-local terms in the case of FKL and a sum of
4-local terms in the case of HLZ, this motivates introducing new terms (e.g., proportional to
these terms) in the QAOA ansatz such that entangling layers exp [—ivy;H¢] in the variational
circuit are replaced by exp [—iv;HZ]. Such a modification of the algorithm is superficially
related to the fact that the classical (randomized rounding-based) algorithms of [198, 199]
also use additional (3-variable) constraints in the SDP compared to the Goemans-Williamson
algorithm. We note, however, that using different variational ansatz states will require a
different accounting of resources (e.g., circuit depth). In contrast, our twisted algorithms
use the same circuits to prepare ansatz states as their bare version.

Another promising approach may be to combine warm-starting-type ideas with classical
post-processing. Here one could consider algorithms that first solve the SDP underlying the
classical algorithms [198, 199], and subsequently prepare a corresponding quantum state.
One may hope that — similar to [196] — suitably designed approaches give a guaranteed
approximation ratio matching that of these classical algorithms.

Moving beyond combinatorial optimization problems, it is natural to ask if variational
quantum algorithms for many-body quantum Hamiltonian problems (e.g., quantum ana-
logues of MaxCut as considered in [204]) can be improved by similar greedy (quantum)
post-processing procedures.

3.6 Quantum algorithms for classical partition functions

Recall that the Gibbs distribution of a classical Hamiltonian H : 2 — R, where (2 is a finite
set, at inverse temperature [ is defined as

ps(x) = (1/Z(B)) exp(—BH(x))
for x € . Below we assume that
0<H(z)<n
for all z € Q. The normalization factor Z(3) := > g
We study algorithms for computing multiplicative approximations to Z(f3): given an inverse

temperature § and a precision parameter € > 0, our algorithms produce an estimate Z such
that

e PH(*) is the partition function.

(1-e)Z(B) < Z < (1+6Z(B)
using as few samples from the Gibbs distribution as possible. In the quantum setting we
assume to have access to gsamples, i.e., coherent encodings of the Gibbs distribution

lug) =Y\ ns(@)lz).

e

Simulated annealing is a MCMC algorithm that approaches this problem by expanding the
target partition function into a telescoping product:

Z(P) = Z(0) - (£2(b1)/Z(0)) - (£(b2)/Z(b1)) - - - (Z(B) /2 (be)),

37



where 0 < by < by < --- < s a sequence of inverse temperatures called the cooling schedule.
If each term in the telescoping product can be approximated sufficiently well, then we obtain
Z to the required precision. The key idea of the simulated annealing algorithm is to estimate
each term by random (or quantum) sampling. We propose classical and quantum simulated
annealing algorithms and achieve the following:

1. We give a quantum algorithm based on the simulated annealing scheme of [164] (Al-
gorithm @1). This is a major improvement compared to the previously best known
approach of Montanaro [172]: Montanaro relies on the classical cooling schedule com-
putation procedure of [164], while our work gives a quantum algorithm for the same
task. Our key technical ingredient is a non-destructive version of the amplitude esti-
mation algorithm of [169] which may be of independent interest.

2. We simplify the classical algorithm of [164], improving their sample complexity to
almost match that of the current classical state of the art. The key ingredient of our
method is the paired-product estimator of Huber [205]. We subsequently quantize
this algorithm and obtain the best known quantum algorithm for computing partition
functions of classical Hamiltonians (Algorithm (Q2).

Our quantum algorithms achieve two improvements compared to classical ones: a quadratic
speedup both in the spectral gap of the Markov chain and the precision, as well as a shorter
cooling schedule. Algorithm )2 is the best known algorithm for approximating Gibbs parti-
tion functions in terms of sample complexity. Our results are summarized below.

Algorithm Type Sample Complexity Cooling schedule length

SVV [164] Classical | O(In|Q] - (InIn|Q] + Inn)> - e72) O(/In|Q| - Inn-Inln Q)
Huber [205, 206] | Classical | O(In|Q| - Inn -&72) In Q)

( o(

Montanaro [172] | Hybrid O(ln Q|- (Inln Q| +1Inn)*2-e71)* | O(y/In|Q|-Inn - Inln |Q))
Algorithm Q1 Quantum | O(In|Q| - (Inln Q] +1Inn)>? -7 | O(v/In|Q| - Inn-Inln|Q|)
Algorithm Q2 Quantum | O(In|Q|-Inn-e71) O(y/In|Q] - Inn)

Table 2: Sample complexity and cooling schedule length of our algorithms and selected
prior work. Montanaro’s algorithm [172] uses the classical SVV algorithm [164] to generate
a cooling schedule. As a consequence, its time complexity scales as 1/0, where J is the
minimum spectral gap of the Markov chains. In contrast, Algorithms Q1 and Q2 compute
the cooling schedule quantumly and achieve the time complexity 1/ V3.

Algorithm @1 is a quantum simulated annealing algorithm for approximating partition
functions with quadratically better dependence on the Markov chain spectral gap than any
classical algorithm. We build on two previous algorithmic results. The first is the Quantum
Simulated Annealing (QSA) algorithm of [171] that shows that, given a series of ¢ Markov
chains such that the first Markov chain is easy to gsample, all the spectral gaps are lower
bounded by ¢, and the stationary states have constant overlap, gsampling from the last
Markov chain can be performed using O(£/+/5) Markov chain steps. As was noted in [164],
a better sequence of Markov chains can be found if we choose them adaptively;, based on
information extracted from samples as we run the algorithm. Using this observation, they
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gave a classical algorithm for finding sequences of Markov chains with an almost quadratic
improvement in the sequence length compared to the best non-adaptive solution. As the
early quantum simulated annealing algorithms [171, 207, 208] were discovered before the
invention of adaptive simulated annealing, it is natural to ask whether this observation
can be used to design better quantum simulated annealing algorithms. At first, adaptive
algorithms appear difficult to quantize since extracting information from gsamples — say
in order to determine the adaptive sequence — will generally damage the states, seemingly
increasing the sample complexity. Indeed, the only quantum algorithm that previously
considered adaptive schedules was Montanaro’s [172] algorithm that computed the cooling
sequence classically. Our work circumvents this deficiency by fully quantizing the cooling
schedule generation part of [164]. This way, we obtain a schedule matching the length from
SVV but also retain the scaling with 1/\/5 from previous QSA algorithms [207, 208, 171].
In doing so we show that amplitude estimation [169] can be made nondestructive using a
state restoration scheme inspired by [209]. We believe that this result will be useful in its
own right.

Algorithm Q2is based on the paired-product estimator of [205] that allows us to use shorter
cooling schedules. A major advantage of this improvement is that it clearly decouples the
cooling schedule generation from the final partition function approximation. In [164], the
final sample complexity is a product of two main terms — the complexity of the schedule
generation algorithm, independent of ¢ and the complexity of estimating the ratios in the
telescoping product. In our algorithm, these terms are added. As it is reasonable to assume
that € is “reasonably small” in practice, the complexity is dominated by the term which
depends only on the length of the cooling schedule and e: the time to generate the schedule
becomes asymptotically negligible. We quantize this improved classical algorithm to obtain
the fastest known algorithm for partition function approximation. First, we show that there
is a simple procedure based on binary search for obtaining a cooling schedule of length
O(y/In|Q| -Inn) for any inverse temperature 3. This is a vInn factor shorter than the
classical cooling sequence and matches the ©(1/In || - Inn) complexity conjectured to be
optimal in [164]. To estimate the ratios in the telescopic product, we give a simple quantum
algorithm for the estimation of the expected value of random variables with bounded relative
variance. In particular, for a distribution D, and a random variable V' sampled from D
satisfying E[V?]/E[V]? < B, we describe a quantum algorithm that uses O(B) copies of a
gsample [¢p) = > /D(z)|x), and O(\/E/e) reflections about [¢p), to obtain with high
probability an e-relative approximation of E[V]; additionally, the algorithm restores one
copy of |[¢p). Our algorithm is based on the work of Montanaro [172] and improves upon its
scaling from O(B/¢) to O(v/B/e).

3.7 Space-efficient quantization of reversible Markov chains

In a seminal paper [170] Szegedy showed how to construct a quantum walk W (P) for any
reversible Markov chain P such that its eigenvector with eigenphase 0 is a quantum sample
of the limiting distribution of the random walk and its eigenphase gap is quadratically larger
than the spectral gap of P. This quadratic gap amplification is at the heart of the quantum
speed-ups of many classical random walk based algorithms. The standard construction of
Szegedy’s quantum walk requires an ancilla register of Hilbert space dimension equal to the
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size of the state space of the Markov chain. The team showed [210] that it is possible to
avoid this doubling of state space for certain Markov chains that arise naturally in many
applications. For such Markov chains, we presented a quantization method which requires
an ancilla register of dimension equal to only the number of different energy values, which is
often significantly smaller than the size of the state space. This could help realize quantum
walk based algorithms on smaller quantum hardware. To reduce the required quantum
memory, the team developed a novel technique for block encoding Hadamard products of
matrices which may be of wider interest for designing quantum algorithms.

3.8 Quantum subroutines for the simplex algorithm

The simplex method solves the following linear optimization problem: minimize ¢’z over

x € R" subject to Axr = band x > 0, where A € R™*", ¢ € R", b € R™. Let us first introduce
some notations and terminology. We assume that m < n and A has rank m. A basis is a set
of m linearly independent columns of A. Given a basis B, assume that it is an ordered set
and let B(j) be the j-th element of the set. A variable z; is called basic if k € B. A feasible
solution x is called basic if z;, = 0 for k¥ ¢ B. We write A, for the k-th column of A. The
set N:={1,...,n}\ B is called the set of nonbasic variables. We denote by Ap the square
invertible submatrix of A corresponding to columns in B, and Ay the remaining submatrix.
The term “basis” may refer to B or Apg, depending on context. It is well-known that an
optimal solution can always be chosen as x = A'b for some basis B such that z > 0. The
simplex method can be described compactly as follows; see, e.g., [211] for a more detailed
treatment.

e Start with any basic feasible solution x. Let B be the current basis, N the nonbasic
variables, z = AZ'b the current solution.

e Repeat the following steps:

1. For each nonbasic variable k € N compute its reduced cost ¢, . The reduced cost
vector is defined as ¢y = ¢\ — cp Az  An. If ey > 0 the basis is optimal and the
algorithm terminates returning the current solution x. Otherwise, choose k € N

such that ¢, < 0. This step is called pricing.

2. Compute u = AZ'Ay. If u < 0, the optimal cost is unbounded from below and
the algorithm terminates.

3. If at least one component of u is positive, compute

r*= _ min T5G). (48)

j=1,...m:u;>0 Uj

This step is called ratio test.

4. Let ¢ be such that r* = xB“) . Form a new basis replacing B(¢) with B(k). Update
the feasible solution accordmg to x <— x — r*u. This step is called a pivot.

To perform the pricing step, we compute an LU factorization of Ap; this requires time
O(d%™m'® + m*t°W)) using fast sparse matrix multiplication techniques [212], where d, is
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the maximum number of nonzeros per column of A. (In practice, the traditional O(m?)
Gaussian elimination is used instead, but the factorization is not computed from scratch
at every iteration.) Then, we can compute the vector cg Az and finally perform the O(n)
calculations ¢} — cfA5' A for all k € N; this requires an additional O(d.n) time, bringing
the total time to O(d%"m'® + m2+°(") + d.n). To perform the ratio test, we need the vector
u = Ag'Ay, which takes time O(m?) assuming the LU factorization of Ap is available
from pricing. Finally, since the calculations are performed with finite precision, we use an
optimality tolerance ¢ and the optimality criterion becomes ¢y > —e.

Quantum subroutines. Similar to other papers in the quantum optimization literature,
we use a classical algorithm (the simplex method) and accelerate the subroutines executed
at each iteration of the simplex. Specifically, we aim to obtain a quantum advantage for
the pricing step. However, our asymptotic speedup does not depend on the availability of
qRAM or of the data in “quantum form”. The key insight to obtain an asymptotic speedup
even with classical input and output is to interpret the simplex method as a collection of
subroutines that output only binary or integer scalars, avoiding the cost of extracting real
vectors from the quantum computer. Indeed, the simplex method does not require explicit
knowledge of the full solution vector Az'A; associated with a basis, or of the full simplex
tableau A5' Ay, provided that we are able to:

e Identify if the current basis is optimal or unbounded;

e Identify a pivot, i.e., the index of a column with negative reduced cost that enters the
basis, and the index of a column leaving the basis.

While subroutines to perform these tasks require access to Aglb and /or A;AN, we will
show that we can get an asymptotic speedup by never computing a classical description of
AG', AS'b or A" Ay, This is because extracting vectors of real numbers from a quantum
computer is much more expensive than obtaining integer or binary outputs, as these can be
encoded directly as basis states and read from a single measurement with high probability
if the amplitudes are set correctly.

Throughout this section we assume that the LP data is properly normalized. The nor-
malization can be carried out as a classical preprocessing step, and the running time of this
step is negligible compared to the remaining subroutines.

Our first objective is to implement a quantum oracle that determines if a column has
negative reduced cost, so that we can apply Grover’s search to this oracle. To reach this goal
we rely on the Quantum Linear System Algorithm (QLSA) [29]. Using that algorithm, with
straightforward data preparation we can construct an oracle that, given a column index k
in a certain register, outputs ‘A,}lAk> in another register. We still need to get around three
obstacles: (i) the output of the QLSA is a renormalization of the solution, rather than the
(unscaled) vector Az'Ay; (ii) we want to compute ¢, — ¢ A5' Ag, while so far we only have
access to !A;AQ; (iii) the output has to be a binary yes/no condition (i.e., not just an
amplitude) so that Grover search can be applied to it, and we are not allowed to perform
measurements. We overcome the first two obstacles by: extending and properly scaling the
linear system so that ¢ is suitably encoded in the QLSA output; and using the inverse of
the unitary that maps {0ﬂogm+ﬂ> to |(—cp, 1)) to encode ¢, — ¢ Az' Ay in the amplitude of
one of the basis states. To determine the sign of such amplitude, we rely on interference to
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create a basis state with amplitude « such that |a| > % if and only if ¢; — cgAZ A > 0.
At this point, we can apply amplitude estimation [169] to determine the magnitude of o up
to precision e. This requires O(1/¢) iterations of the amplitude estimation algorithm. We
therefore obtain a unitary operation that overcomes the three obstacles. A similar scheme
can be used to determine if the basis is optimal, i.e., no column with negative reduced cost
exists.

Runtime scaling. Runtimes quoted below depend on the following parameters:

e d.: maximum number of nonzero entries in any column of A.

e d,: maximum number of nonzero entries in any row of Ag.

:= max{d., d,}: sparsity of Ap.

k: ratio of largest to smallest nonzero singular value of Ap.

e: error tolerance. The pricing subroutine returns a column with the reduced cost < e.
The optimality is declared when all reduced costs are at least —e.

Our first result is

Theorem 2. There exist quantum subroutines to identify if a basis is optimal, or determine
a column with negative reduced cost, with running time O(:\/n(kd.n+r*d*m)). The runtime

can be reduced to O(%/{l'g’d\/d_cn\/ﬁ) if the ratio n/m is larger than 2”“d—dc2.

Recall that the classical cost of the pricing step is O(d%"m! + m?*°(M) 4 d.n). Thus
the quantum subroutine offers a polynomial speedup. For example, if m ~ n and all other
parameters have a poly-logarithmic dependence on n, the classical runtime is O(n2+°(1)) while
the quantum runtime is O(n*?). The regime with large n/m is interesting because it includes
many natural LP formulations; e.g., the LP relaxations of cutting stock problems, vehicle
routing problems, or any other formulation that is generally solved by column generation
[213]. Note that the running time of the quantum subroutines depends explicitly on the
condition number of the basis and the precision of reduced costs € is fixed, while classically
k is not explicit when using Gaussian elimination, but the e obtained would depend on it
(because the basis inverse could be inaccurate).

If pricing is performed via our quantum subroutine, we obtain the index of a column
that has negative reduced cost with arbitrarily high probability. To determine which col-
umn should leave the basis, we have to perform the ratio test. Using techniques similar to
those used for the pricing step, we can identify the column that leaves the basis in time
O~(§n2d2m1'5), where ¢ and ¢ are suitable precision parameters of this step, see [30] for de-
tails. Classically, the ratio test requires time O(m?) in the worst case, because the basis
inverse could be dense even if the basis is sparse (although it is unlikely in practice). We
summarize this result below.

Theorem 3. There exists a quantum subroutine to perform the ratio test in time O(§ﬁ2d2m1'5).
There also exists a quantum subroutine to identify if a nonbasic column proves unboundedness
of the LP in time O(5:*d*m*9).
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It is known that for most practical LPs the maximum number of nonzeroes in a column is
essentially constant; for example, on the entire benchmark set MIPLIB2010, less than 1% of
the columns have more than 200 nonzeroes (and less than 5% have more than 50 nonzeroes).
Similarly, the number of nonzeroes per row of the basis is small: on MIPLIB2010, looking
at the optimal bases of the LP relaxations, less than 0.01% of the rows have more than 50
nonzeroes. As m, n increase, so typically does the sparsity. For example, the largest problem
available in the benchmark set MIPLIB2017 has m ~ 7.1 x 10%,n ~ 3.9 x 107, and 99.999%
of the columns have less than 30 nonzero elements; for the second largest problem, which
has m ~ 2.0 x 10", n ~ 2.1 x 107, 99.998% of the columns have this property. Hence, we
expect many bases to be extremely sparse, and it is interesting to look at the scaling of the
running time under the assumption that the sparsity parameters are constant, or at most
polylogarithmic in m and n. In this case, the running time of the oracle for the reduced costs
in the gate model without qRAM is O(%(/ﬁ;n +k?m)), giving a total running time for pricing
of O(%\/ﬁ(fm + k*m)). Hence, for a well-conditioned basis and under the assumption (often
verified in practice) that d = O(logmn), we obtain running time O(%\/ﬁ(n + m)) for the
quantum pricing subroutine, which can be reduced to O(%n\/ﬁ) if the ratio n/m is large;
and running time O(tm!?) for the quantum ratio test subroutine.

4 Quantum simulation algorithms

Here we report several results pertaining to simulation of quantum many-body systems and
quantum Hamiltonian complexity theory. We show how to overcome limitations of near-term
variational algorithms by employing embedding algorithms and adaptive circuits. On the
complexity-theoretic side, we study the problem of approximating the partition function of
a local Hamiltonian system and relate this problem to a classical combinatorial problem —
approximating the Kronecker coefficients of the symmetric group.

Section 4.1, based on Ref. [40], introduces a scheme we call classically forged entangle-
ment, which represents a 2N-qubit wavefunction as multiple N-qubit states embedded in a
classical computation. Beyond the reduction in requisite qubit number, offloading entangle-
ment synthesis to classical processing permits the constituent N-qubit quantum circuits to
be shallower, relaxing requirements on gate error and connectivity, at the cost of an increased
number of circuit executions.

Section 4.2, based on Ref. [51], focuses on the ground state preparation problem for
quantum many-body systems with non-abelian topological quantum order. Such states are
notoriously hard to prepare by regular quantum circuits composed of two-qubit unitary
gates. In the case of 2D topologically ordered systems considered here, the circuit depth
required for the state preparation is known to scale at least linearly with the lattice size [155].
A natural alternative is to consider adaptive quantum circuits that include intermediate
measurements and classical feedback such that each operation may depend on the outcomes
of earlier measurements. It is well-known that certain families of deep unitary quantum
circuits can be implemented by a constant-depth adaptive circuit using ancillary qubits.
Notable examples include Clifford circuits [214], CNOT+T circuits [215, 216], and controlled
gates with multiple control qubits [217]. This motivates the question of whether adaptiveness
can facilitate simulation of exotic phases of matter with a non-abelian particle statistics. Our
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work [51] answers this question in affirmative by presenting constant-depth adaptive circuits
for the ground state preparation and manipulation of anyons in a large class of topologically
ordered 2D systems known as quantum double models. Our results apply to the quantum
double of any finite solvable group G. Constant-depth adaptive circuits are well suited for
implementation on a noisy hardware since it may be possible to execute the entire circuit
within the qubit coherence time. Thus our results enable an experimental study of systems
with non-abelian anyons, see [53] for a recent experimental demonstration. We also show
that adaptiveness is essential for our circuit construction. Namely, braiding of anyons cannot
be realized by non-adaptive constant-depth local circuits for any non-abelian group G. This
is in a sharp contrast with abelian anyons which can be created and moved over an arbitrary
distance by a depth-1 circuit composed of generalized Pauli gates.

Predicting properties of a quantum many-body system that emerge from its microscopic
description in terms of constituent particles and interactions among them is a fundamental
problem in physics. Many properties of a system in thermal equilibrium are determined by
the partition function

Z = Tr[e PH],

where [ is the inverse temperature and H is the Hamiltonian describing the system. The
partition function appears as a normalization factor in the Gibbs state p = e #/Z and
determines the Helmholtz free energy

F=—(1/8)log Z. (49)

The ability to calculate the free energy and its derivatives with respect to the temperature
and Hamiltonian parameters such as external fields is instrumental for mapping out the
phase diagram of the system and predicting physical properties of each phase. Accordingly,
the problem of estimating the free energy has been extensively studied, both in the physics
and computer science communities. Section 4.3, based on Ref. [54], investigates this problem
for k-local Hamiltonians [218] that describe a system of n qubits with interactions among
subsets of at most k qubits. Despite its fundamental significance, little is known about the
computational complexity of estimating the free energy of a local Hamiltonian to a given
additive error (or equivalently the partition function to a given relative error). We estab-
lish polynomial-time equivalence between the problem of approximating the free energy of
local Hamiltonians and several other natural tasks ubiquitous in condensed-matter physics
and quantum computing, such as the problem of approximating the number of input states
accepted by a polynomial-size quantum circuit. These results suggest that the simulation of
quantum many-body systems in thermal equilibrium may precisely capture the complexity
of a broad family of computational problems that have yet to be defined or characterized
in terms of known complexity classes. Finally, we summarize state-of-the-art classical and
quantum algorithms for approximating the free energy and show how to improve their run-
time and memory footprint.

Section 4.4, based on Ref. [55], describes a surprising connection between quantum parti-
tion functions and a purely classical combinatorial problem — computing Kronecker coeffi-
cients of the symmetric group S,. Recall, that Kronecker coefficients g,, , » associated with a
triple of irreducible representations of S, is defined as the multiplicity of the trivial represen-
tation of S, in the tensor product p®v ® A. By definition, g, is a non-negative integer. A
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longstanding open problem in algebraic combinatorics stated as Problem 10 on Stanley’s list
[219] is to find a combinatorial formula for g, , . Such a formula would express g,,,, as the
cardinality of some natural set of combinatorial objects that admits an efficient membership
test. In this way we are led to the complexity-theoretic question [220, 221, 222, 223, 224]:
does Kronecker coefficient g, admit a #P formula, i.e., does it count the number of accept-
ing witnesses of an NP verifier? While this question remains largely open, our work shows
that Kronecker coefficient g,,,,x can be represented as the number of accepting witnesses for
a quantum (QMA) verifier. Accordingly, the problem of approximating g, . falls into the
same complexity class as the one of approximating quantum partition function of a local
Hamiltonian. We also give an efficient quantum algorithm that computes Kronecker coeffi-
cient g, exactly, assuming that at least one of the representations p, v, A has dimension
at most poly(n). We are not aware of an efficient classical algorithm for this task.

Section 4.5, based on Ref. [225], addresses the problem of simulating open quantum
systems whose dynamics is governed by the Lindblad master equation. It shows how to
generalize the Szegedy walk unitary [170] from classical stochastic matrices to quantum
channels (trace preserving completely positive maps) satisfying a certain detailed balance
condition.

4.1 Entanglement forging

Here we sketch main ideas behind the entanglement forging method, see Ref. [40] for details.
We begin with Schmidt decomposition, a standard application of singular value decomposi-
tion that allows one to write any state |¢)) of a bipartite N + N qubit system as

2N

) = (U V)Y A lba) @ [b) - (50)

n=1

Here |b,,) are the N-qubit bitstring states, also known as computational basis states, U, V are
unitary operators respective to the two subsystems, and the Schmidt coefficients A\, may be
taken to be non-negative. The flatter the distribution of Schmidt coefficients, the stronger
the entanglement; a uniform distribution A, = 1/ V2N indicates the two halves of the system
are maximally entangled, while only one nonzero coefficient corresponds to no entanglement.

Mixing classical and quantum information, entanglement-forging is more naturally ex-
pressed using density operators rather than wavefunctions, even for pure states such as |¢).
As shown in Ref. [40], one can write the density operator as

|¢><¢|=<U®V>Z(A2|b b|®2+ZM > (116h4, 000k, 1) U @ V), (51)

PEZLy

where we have used the definition |¢? s = (lz) + 22 y) )/V2 with p € {0,1,2,3} = Z,. For
example, in the minimal case of two qubits (Fig. 5B), |¢f;) correspond to four equatorial
points on Bloch sphere, rewriting a quantum superposition of product states in terms of
classical products of superposition states. Eq. (51) generalizes methods proposed in [226,
227, 31], and is connected to tensor network representations of quantum circuits [228, 38],
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Figure 5: Schematic overview of the entanglement forging protocol. A, A state
|¥) of a bipartite quantum system, here labeled with arrows alluding to spin polarization,
can be defined by gates F, U, and V, where F outputs a combination of bitstring states
|b,) |bn). B, A two-qubit entangled state can be rewritten using one-qubit superposition
states. Changing labels 0,1 — b,,b,, gives a transformation acting on components of the
2N-qubit state. C, |¥) can be reconstructed from N-qubit circuits initialized as bitstrings
and pairwise superpositions thereof. Circuits associated with small \,\,, can be estimated
adequately from few samples. D, Rapid (slow) decay of the leading Schmidt coefficients in
the decomposition of a molecular ground state signals weak (strong) entanglement between
spin-up and spin-down particles.

variational simulation of open quantum systems [229], and the encoding of open-shell singlet
and triplet states [230]. The expectation of a 2N-qubit operator O = O; ® O, is now

N
(0) = >~ (X2(balO1lby) - (b Oalon)
"~ (52)
+ZA Ao D2 (=16, O1l6] 1, ) (0,1, 102168,4,.)).
PEZLy

where 01 = U'O,U and 02 = V'O,V, and each constituent requires only N qubits to
evaluate.

The resulting summation for (O) is not obviously scalable, involving as many as 2V 1(
1) distinct N-qubit quantum circuits. Nonetheless, if one restricts to simulations of suffi-
ciently weak entanglement, (O) can be efficiently estimated by sampling each circuit in
proportion to the associated coefficients A, A, in (52), with a total number of samples for

2N+1_
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target precision € scaling as

4 -
s~ (EX o) = I s, = 3N 5

Executing a quantum circuit once provides one sample of the corresponding expectation
value, such that total runtime scales linearly with S. Since the one-norm decreases toward
1 in the limit of weak entanglement, the overhead cost of entanglement forging is smaller
for simulations of states divisible into weakly-entangled halves, such as the spin-up and
spin-down components of certain molecular ground states [40] and scales efficiently when
the one-norm is at most polynomial in the problem size. For example, in some statically
correlated ground states, S can be independent of the number of basis orbitals. Outside of the
domain of scalability, entanglement forging still enables useful heuristic simulations beyond
the standard capacity of given quantum hardware, which may be realized with precision by
truncating the list of bitstring states retained in the Schmidt decomposition.

Alternatively, this overhead may be reduced to a constant factor independent of qubit
number via a complementary scheme [40] simulating quantum correlations between subsys-
tems using those within a subsystem, rather than using classical correlations as above. This
method can be seen as an application of forging in the Heisenberg picture, reinterpreting an
observable acting on N + N qubits as a classical mixture of operators describing the forward
and backward time evolution of N-qubits, at a cost of deeper circuits. Provided certain
sampling assumptions, this method is not limited to weakly entangled states, so it may be
applicable to a wider range of systems, as recently demonstrated in [231].

In Ref. [40] we use entanglement forging for a variational simulation of the water molecule
in the minimal STO-6G basis. We freeze the core oxygen 1s and the out-of-plane oxygen
2p orbitals, leaving an active space of 10 spin-orbitals. The Jordan Wigner mapping en-
codes either the spin-up or spin-down orbitals onto each five-qubit quantum circuit, and
we simplify the problem structure by asserting V' = U per the known symmetry between
spin-polarizations in the closed-shell singlet ground state.

>

4.2 Adaptive circuits for manipulating non-abelian anyons

Kitaev’s quantum double model [232] is a paradigmatic example of an exactly solvable model
exhibiting topological order. For a finite group G, the construction provides a spin-lattice
model whose low-energy physics is described by the non-chiral topological quantum field
theory associated with Drinfeld’s quantum double D(G). Its most well-known manifestation
— the toric [232] or surface code [233] based on the abelian group G = Z, — is currently
among primary contenders when it comes to experimental realizations, see e.g., [234]. The
preeminence of this abelian model can be attributed, in part, to the fact that it falls into
a well-studied family of quantum error-correcting codes: It is a CSS-stabilizer code with
local generators. As such, it permits the application of a plethora well-studied techniques
for fault-tolerant quantum computing, including, in particular, efficient syndrome extraction
and decoding as well as magic state distillation. Futhermore, its constituent physical degrees
of freedom are qubits since |Zs| = 2, making this model especially amenable to experimental
efforts.
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Despite the promise of the surface codes for topological quantum computation, mod-
els with non-abelian anyons may still offer distinct advantages. In particular, unlike with
abelian anyons, universal computation can be achieved by purely topological means when
the associated braid group representation is sufficiently rich. The required operations are

(i) the creation/initialization of a ground (vacuum) state having no excitations
(ii) the braiding or exchange of two particles

(iii) the fusion of two particles: this amounts to bringing two anyons to the same site and
performing a measurement of the joint topological charge

(iv) the creation of specific particle-antiparticle pairs.

Mochon [235] has shown that for anyons described by D(G) with a solvable but not nilpo-
tent group G, these operations suffice to realize universal computation®. This applies, in
particular, to the group S3. The power of D(S3)-anyons to realize universal computation
has prompted the construction of explicit protocols implementing these operations, includ-
ing experimental proposals for their realization with atoms trapped in an optical lattice,
see [236, 237]. Unlike the corresponding operations for the surface code, however, the pro-
tocols proposed in [236, 237] require quantum circuits whose depth scales with the system
size, respectively the spatial separation between anyons. It is natural to ask if this increased
complexity is in fact necessary when dealing with non-abelian anyons.

To see how non-abelian and abelian anyons may differ in their (circuit) complexity of
their associated operations, consider the problem (i) of initial state preparation. There is no
significant difference here when considering unitary circuits: A circuit consisting of nearest-
neighbor two-qubit unitary gates (a unitary local circuit) preparing the ground state of the
surface code from a product state has been proposed in [238]. To prepare a ground state on
an L x L-lattice, the circuit has depth of order O(L?). An analogous result applies to the
preparation of a ground state of any quantum double model, see [237, 239]. An O(L)-depth
circuit for the surface code was given in [240], and linear depth circuits for the surface code
and certain Levin-Wen models were also obtained in [241]. In [155], it is shown that a circuit
depth of order Q(L) is necessary for any local unitary circuit. This lower bound applies to
any topologically ordered system, irrespective of whether or not the corresponding anyons are
abelian. With non-local two-qudit gates, the circuit depth can be lowered to O(log L) [242]
for any quantum double model; this matches the lower bound of [243] for G = Zo.

A more efficient way of preparing states with D(Zs)-topological order involves the use of
measurements. Indeed, as with any stabilizer code, a code state (i.e., a ground state in the
case of the surface code) is obtained from an arbitrary initial state by

(a) measuring a complete set of commuting stabilizer generators, obtaining a syndrome s

(b) applying an associated unitary correction operation C'(s) to the post-measurement state.

6Mochon additionally assumes that a supply of calibrated electric/magnetic charge ancillas is available.
This is implied by operation (iv), where in contrast to [235], we assume that the specific pair created is not
random.
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We note that such an approach could in principle also be taken for any quantum double
model. In particular, the required measurements in step (a) can also be chosen to be local
as in any commuting local projector code. The distinguishing feature of the surface code is
the simplicity of step (b): The required correction C(s) is a Pauli operator which can be
determined from s by an efficient classical decoding algorithm. In particular, application
of C(s) is easily accomplished by a depth-1 unitary circuit consisting of single-qubit Pauli
gates only. In terms of the excitations (anyons) of the surface code, this process can be
summarized as follows. The syndrome s reveals the locations of the excitations (violations
of the stabilizer constraints). The applied correction C(s) (determined, e.g., by minimal
matching as in [238]) is a product of ribbon-operators where each ribbon connects two
excitations. In the surface code, such ribbon operators are tensor products of Pauli-X,
Pauli-Y or Pauli-Z-operators along the ribbon, see [232] or [238]. The simplicity of this
preparation scheme is a consequence of the simple form of these ribbon operators for the
case G = Zo.

For a general finite group G, each anyon is labeled by an irreducible representation p of
the Drinfeld double D(G) of G. For each (open) ribbon & on the lattice, there are associated
ribbon operators {F{*}, which create a corresponding particle/antiparticle pair at the two
endpoints of £&. Here a controls degrees of freedom localized at these endpoints. We note
that a ribbon operator ng ** can also be understood as realizing a process where a pair is
created locally at one endpoint, and one of the anyons is moved to the other endpoint of
the ribbon &. In particular, for non-abelian models, such operations can have a non-trivial
logical action on encoded quantum information in the presence of other (preexisting) anyons
because of non-trivial braiding relations. The idea that — since the quantum double model is
an error-correcting code — such logical operations require a circuit depth which scales with
the length of the ribbon is folklore, see e.g., [244, Section 8] for a related argument. Our
work gives a rigorous proof of this fact for non-abelian quantum double models. It gives
the following statement, where we use the term extensive to refer to a scaling linear in the
system size (or, more precisely, the code distance as given, e.g., by the separation of holes in
the surface).

Corollary 1. For any non-abelian group G, there are ribbon operators ng;a whose imple-
mentation by a local unitary circuit requires an extensive circuit depth.

Corollary 1 is a no-go result ruling out the possibility of applying ribbon operators using
constant-depth circuits in non-abelian anyon models. This is a novel operational separation
between non-abelian and abelian topological order.

It is tempting to think that the conclusion of Corollary 1 extends to the problem (i),
preventing initialization by constant-depth quantum circuits because of the difficulty of im-
plementing the ribbon operators involved in the correction step (b). In fact, step (b) involves
the additional challenges of classical decoding the corresponding code (i.e., finding the right
product of ribbon operators to apply), a problem which is non-trivial [245]. Furthermore, in
a non-abelian model, a single application of a ribbon operator is typically not sufficient to re-
move a pair of excitations since anyon pairs do not need to fuse to the vacuum. Nevertheless,
we find that for certain non-abelian quantum double models (including the case G = S3),
efficient initialization is possible by using an approach different from (a)—(b). In fact, all op-
erations (i)—(iv) above can be realized by what we call constant-depth local adaptive circuits.
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This notion captures the operations involved in the procedures used for the surface code:
We allow a constant number of the alternating layers of

(A) constant-depth quantum circuits that may use auxiliary qubits and consist of local
unitaries and single-qubit measurements and

(B) efficient, possibly non-local classical computations (based on measurement results).

Adaptivity refers to the fact that quantum operations may be classically controlled by mea-
surement outcomes and computational results obtained in previous layers. In other words,
all involved quantum operations are local and realized by constant-depth circuits; this is
supplemented by efficient non-local classical processing.

In more detail, our result applies to any solvable group . Recall that a group G is
solvable if it can be mapped to the trivial group by iteratively factoring out normal abelian
subgroups. We show the following;:

Theorem 4. (informal) Suppose G is a solvable group. Then there is a constant-depth local
adaptive circuit for each of the following tasks:

1. Creation of a ground state from a product initial state.

2. For any anyon label p and local action specified by o, application of the ribbon operators
ng;a associated with an open ribbon & of possibly extensive length. Here the circuit has
support (i.e., acts non-trivially) only on qudits along the ribbon &.

3. Execution of the topological charge measurement of any region encircled by a closed
ribbon o (possibly of extensive length). This is given by a POVM { K¢}, whose outcomes
are anyon labels p, and whose POVM elements K? have support on the ribbon o. The
circuit realizing this measurement has support only on qudits along o.

The operations considered in Theorem 4 can be used to realize braiding/movement of
anyons by (repeated) pair creation and topological charge measurement.

Prior work. The power of measurements and adaptive operations for reducing the depth
of quantum circuits has been recognized in the seminal work by Hgyer and Spalek [246] —
some of our constructions are motivated by their fan-out gate. This work has lead to a discov-
ery of constant-depth adaptive circuits realizing any unitary in the Clifford group [247, 248],
multiple control Toffoli gate and integer arithmetic circuits [246, 249], and Quantum Fourier
Transform [246] (the latter can only be realized approximately). These are important sub-
routines employed by numerous quantum algorithms. Moreover, it is known that the entire
quantum part of Shor’s factoring algorithm [250] can be parallelized to a constant depth us-
ing adaptive circuits [251]. Measurements and adaptive operations also play a central role in
synthesizing quantum circuits over fault-tolerant gate sets using gate teleportation [247] and
repeat-until-success techniques [252]. In a recent breakthrough work Liu and Gheorghiu [253]
established an efficiently verifiable quantum advantage for certain classically hard interac-
tive tasks that can be solved by constant depth adaptive quantum circuits. The apparent
power of low-depth adaptive circuits has led Jozsa to conjecture [248] that, in fact, any
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polynomial depth quantum computation can be efficiently simulated by logarithmic depth
adaptive quantum circuits [248]. However, a more recent work [254] cast doubt on Jozsa’s
conjecture by demonstrating that the Welded Tree Problem [255] is provably hard for the
logarithmic depth adaptive circuits (as measured by query complexity) even though this
problem admits an efficient quantum algorithm based on quantum walks. Likewise, it is
not known whether the depth of quantum algorithms for simulating unitary time evolution
of many-body Hamiltonians can be significantly reduced using measurements and adaptive
operations.

In a recent work Piroli et al [256] examined constant-depth quantum circuits assisted
by LOCC (local operations and classical communication) and equivalence classes of many-
body quantum states convertible to each other by such circuits. It was demonstrated that
certain highly entangled states exhibiting topological quantum order become trivial in the
LOCC-assisted classification framework. We note however that constant depth local adap-
tive circuits considered in the present work are strictly weaker than LOCC-assisted circuits
of [256] since we only allow O(1) rounds of mid-circuits measurements whereas [256] allows
a linear number of rounds. Closer to the topic of this paper, existing non-unitary proto-
cols for preparing states with non-abelian topological order include those of [237, 239] for
creating quantum double states associated with S, as well as the work [241] which pro-
vides procedures for preparing ground states of the Levin-Wen model [257]. In contrast to
these procedures, which require extensive circuit depth, Verresen et al. [258] reported adap-
tive constant-depth circuits preparing the ground state of the quantum double D(S3) and
D(D,), where Dy is the dihedral group. Subsequently, it was observed in [259] that this
generalizes to any solvable group. Here we give explicit adaptive constant-depth circuits for
ground state preparation for arbitrary solvable groups and additionally discuss the creation
and manipulation of excited states. We note that constant-depth circuits also figure promi-
nently in [260], where braiding with non-abelian anyons in the Levin-Wen model is achieved
by constant-depth circuits by certain dynamic lattice deformations. Here we follow a differ-
ent approach and ask for implementations of “standard” braiding operations etc. without
changing the underlying lattice.

Open questions. Perhaps the most intriguing one is whether the operations realized here
for a solvable group G may also be realized with local operations in constant adaptive depth
in the case of a non-solvable group such as S;. It is conceivable that there are fundamental
complexity-theoretic obstructions to this similar to those found in [261]) related to Barring-
ton’s theorem [262]. Note however that the smallest non-solvable group has size |A5| = 60.
Thus realizing the quantum double Hamiltonian based on A5 would involve few-body inter-
actions between 60-dimensional qudits posing a challenge for experimental demonstrations.
Thus our work covers all cases of the quantum double model that can be plausibly realized
in the experiment in the near term. More generally, one may ask for more general classes of
topologically ordered systems where the considered operations (preparation, anyon creation,
braiding, and topological charge measurements) can be realized in adaptive constant depth.
For the Levin-Wen model, this amounts to identifying relevant properties of the underly-
ing tensor category. A preliminary work shows that the ground state of the double semion
model [257] can be prepared in constant adaptive depth by measuring syndromes of suitable
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augmented stabilizer generators composed from the elementary plaquette and vertex stabi-
lizers. Finally, it remains to be seen to what extent these procedures can be made robust
to noise: Without suitable error correction mechanisms, the non-local operations realized
here will likely be highly susceptible to errors. Because of their low complexity, they may
nevertheless be useful, e.g., for proof-of-principle demonstrations in the near term.

4.3 Complexity of quantum partition functions

We consider k-local Hamiltonians

where each term Hg acts non-trivially only on the subset of qubits S, and Hg = 0 unless
|S| < k where k is a constant independent of n. Below we assume that || Hg|| < poly(n) for
all S. We focus on approximating the partition function Z = Tr(e ") for a given inverse
temperature 5 < poly(n) within a relative error § > poly(1/n). Let us refer to this task as
the Quantum Partition Function (QPF) problem.

It is crucial that here we consider relative error estimation. Previous works have shown
that the less challenging problem of additively approximating the (normalized) partition
function [263, 264, 265] admits an efficient quantum algorithm and, for Hamiltonians with
locality k£ = O(log(n)), is complete for the complexity class DQC; of problems that can be
solved in polynomial time with only “one clean qubit” [266]. However, it is unclear whether
such less stringent approximation is sufficient to characterize thermal equilibrium properties
of a quantum system.

In contrast to the ground energy, the partition function Z depends on all eigenvalues
of the Hamiltonian as well as their degeneracy. Thus one can view the QPF problem as a
quantum analogue of approximate counting — a fundamental task in classical computational
complexity. In particular, it is known that the problem of approximating the partition
function of a classical local Hamiltonian with a small relative error is contained in the
complexity class BPPNP | essentially due to a fundamental result of Stockmeyer [267]. We
can interpret this result as stating that the classical version of the QPF problem is not much
harder than NP, which is surprising because computing the partition function exactly is #P-
hard. However, if we allow [ to be complex, the task of approximating Z with a constant
relative error is #P-hard [268], even for classical Hamiltonians. The discrepancy between
the problem complexity for real and complex [3’s suggests that non-negativity of the Gibbs
state should play an important role in the complexity analysis.

The fact that Stockmeyer’s approximate counting method does not generalize to the
quantum case has been observed previously [269]. This may explain why the complexity
of the QPF problem — a basic and natural question from a physics perspective — remains
largely open. A recent result by Cubitt et al. [270] introduced the notion of universal
quantum Hamiltonians and showed (among other things) that the QPF problem for k-local
Hamiltonian has the same complexity for any constant k > 2. The same universality result
also applies to specialized models such as the 2-local anti-ferromagnetic Heisenberg model
on a two-dimensional lattice of qubits and 1D qudit systems [270, 271], and extends even
to fermionic Hamiltonians relevant for quantum chemistry and material science [270]. This
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suggests that the QPF problem is complete for some complexity class that is “universal” in
the sense that it can be defined only in terms of a suitable computational model and does
not depend on details of the considered Hamiltonians, such as the locality parameter k (as
long as k > 2) or whether the underlying system consists of qubits or fermions.

Given this state of affairs, and the apparently challenging nature of characterizing the
complexity of the QPF problem in terms of known complexity classes, here we use a standard
computer science dodge — we look for other computational problems which are equivalent
to QPF under polynomial time reductions with the hope that these other problems may
ultimately be easier to understand.

Main results. Our work shows that the QPF problem is equivalent (under polynomial-
time reductions) to approximating the following quantities:

(1) The expected value of a local observable in the Gibbs state of a k-local Hamiltonian.

(2) The number of eigenvalues of a k-local Hamiltonian in a given energy interval, i.e., the
density of states.

(3) The number of witness states accepted by a quantum circuit.

We require an approximation within a small additive error in case (1) and a small relative
error in cases (2,3). Problems (1,2) are ubiquitous in condensed matter physics since expected
values of local observables and the density of states provide important insights into properties
of a quantum material. Problem (3) is defined in terms of quantum circuits rather than
Hamiltonians. We consider a polynomial-size quantum circuit followed by a measurement of
some designated output qubit. The circuit takes as input a witness state and possibly ancilla
qubits initialized in |0). A witness state is accepted if the probability of the measurement
outcome ‘1’ is above a specified threshold. The problem is to approximate the number of
linearly independent witness states accepted by the circuit. It can be viewed as a counting
analogue of the QMA-complete circuit satisfiability problem [218] where the goal is to decide
whether a quantum circuit as above accepts at least one witness state.

We also reproduce the result of Cubitt et al. [270] showing the equivalence between QPF
problems for 2-local and k-local Hamiltonians with any constant k. Our proof is slightly more
direct than the one of [270] as we do not use perturbation theory gadgets; our technique
appears to share some features of later works which used Kitaev’s circuit-to-Hamiltonian
mapping [271, 272, 273]. Note however that reducing k-local partition functions to 2-local
partition functions is simpler than showing that such Hamiltonians are universal in the sense
considered in Refs. [270, 271, 272, 273].

To state our results let us define formal versions of the considered problems.

Problem 1 (Quantum Partition Function). Given a k-local Hamiltonian H acting on n
qubits, inverse temperature 5 < poly(n), and a precision parameter § > poly(1/n). Compute
an estimate & such that

(1—0)Tr(e ") < & < (14 6)Te(e ).
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Below we refer to this problem as k-QPF. Next, define the problem of Quantum Ap-
proximate Counting (QAC). Consider a verifier circuit of the following form. It takes as
input an n-qubit state, adjoins n, < poly(n) ancilla qubits in the |0) state, and then ap-
plies a quantum circuit U of size poly(n) followed by measurement of a single output qubit.
Such a circuit implements an n-qubit two-outcome POVM {A, I — A} where the operator A
corresponds to measurement outcome ‘1’ and satisfies 0 < A < I. Formally we have

A= (T U)ol (I @ |0")).

For any n-qubit input state v, the probability that it is accepted by the verifier circuit is
given by (|Al). For any A € [0,1] we write £, for the linear subspace spanned by all
eigenstates of A with eigenvalues greater than or equal to A\, and II, for the projector onto
this subspace. The dimension of this subspace is denoted

Ny = dim(L,) = Tr(IL,). (54)
Informally, this is the number of witnesses accepted with probability at least .

Problem 2 (Quantum approximate counting). We are given a verifier circuit with n
input qubits and size poly(n), a precision parameter § > poly(1/n), and two thresholds a,b
such that 0 <b <a <1 and a—>b > poly(1/n). Compute an estimate & satisfying

(1- 0N, <E<(L+ )N, (55)

Below we use an acronym QXC which stands for Quantum approXimate Counting prob-
lem”. Our main result is as follows.

Theorem 5. For any k > 2, k-QPF is polynomial time equivalent to QXC.

We also prove polynomial-time equivalence between QQXC and two other important prob-
lems: estimating the quantum density of states for a k-local Hamiltonian and estimating
the quantum mean value of a Pauli observable for the thermal Gibbs state of a k-local
Hamiltonian.

Next, we investigate exponential-time classical and quantum algorithms which solve the
QPF problem for general k-local Hamiltonians. We show that a Clifford compression tech-
nique [274, 275] based on the unitary 2-design property of the Clifford group [276, 277] can
be used to improve the runtime of state-of-the art classical algorithms for QPF. We then
use the same technique to almost halve the memory footprint of state-of-the-art quantum
algorithms for QPF without compromising their runtime.

We give a classical algorithm that solves the QPF problem for any n-qubit k-local Hamil-
tonian H with S||H|| < b in time

O ((b+1log(1/0))e2"6~ " +n®2"6 ' +57), (56)

where £ < O(n*) is the number of non-zero k-local terms that appear in H. For example, if H
is a geometrically local Hamiltonian on a regular lattice with bounded strength interactions

"The original work [54] used an acronym QAC instead of QXC used here. Both acronyms refer to the
same computational problem.
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then ||H|| = O(n) and ¢ = O(n). For such Hamiltonians the runtime in Eq. (56) becomes
O((1 + B)n?2"/4§), ignoring terms logarithmic in 1/§ and assuming 2" > 1/§°.

To obtain the runtime Eq. (56) we use a stochastic trace estimator due to Hutchinson [278]
and its modern version known as Hutch-++ [279]. The latter algorithm approximates the
trace of a positive-semidefinite matrix A of size d x d within a relative error § by perform-
ing only O(1/6) matrix-vector multiplications for the matrix A and suitable d-dimensional
vectors. However, the overall runtime of Hutch++ has an additional term scaling as d/d§?
which has a quadratically worse dependence on . Here we show how to improve this scaling
to dlog® (d)/d, assuming that d > 1/6%. To this end we apply the original Hutch4+ algo-
rithm to a smaller matrix obtained from A using the Clifford compression. Our construction
shares some features of the methods used in Refs. [274, 275] to obtain compressed classical
descriptions of quantum states. Specializing the improved Hutch++ to the matrix exponen-
tial A = e P with a k-local Hamiltonian H gives a classical algorithm for the QPF problem
with runtime Eq. (56).

Secondly, we give a memory-efficient quantum algorithm for the QPF problem which
requires only O(log(n) + log(1/6)) ancilla qubits. This is an improvement in space require-
ments over an earlier algorithm due to Poulin and Wocjan [280] which needed an Q(n)-sized
ancilla register. The running-time of our algorithm is O(1/2"/Z - 3/6), slightly better than
that reported in Ref. [280]. But note that the improved running-time follows essentially from
new techniques for Gibbs-state preparation [281, 282 283].

The algorithm of Ref. [280] constructs a quantum circuit that prepares a purification
of a finite-temperature Gibbs state using Hamiltonian simulation and quantum phase esti-
mation as an intermediate step. The overhead of (n) ancilla qubits in this approach is a
consequence of purifying an n-qubit mixed state. We use Clifford compression to get around
this bottleneck: a similar purification step in our algorithm requires only O(log(1/0)) ancilla
qubits.

4.4 Quantum complexity of the Kronecker coefficients

The Kronecker coefficients appear as the analogues of the Clebsch-Gordan coefficients for the
symmetric group S,. Recall that a unitary representation p of S, is a homomorphism from
S, to the unitary matrices. Any such representation can be block-diagonalized into a set of
irreducible representations (irreps) as p ~ @, mypy, where the ~ stands for isomorphism,
my > 0 is a non-negative integer multiplicity of an irrep p, and the direct sum runs over all
inequivalent irreducible representations of S,.* The S, irreps can be labelled by partitions
of n.

A tensor product of two irreps can also be block-diagonalized: if we let p, and p, to be
irreps of S, labeled by partitions p, v = n, the Kronecker coefficient g, is the multiplicity
of the irrep p, in the representation p, ® p,:

Pu X py @ GuvAPx- (57)
A

A

8 As per the usual convention, we mean D, mrpr =P, p%m and not a multiplication by an integer.
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The definition Eq. (57) ensures that the Kronecker coefficients are nonnegative integers?,
but it is a longstanding open problem in algebraic combinatorics—Problem 10 on Stanley’s
list [219]—to find a combinatorial formula for them. That is, do the Kronecker coefficients
count some natural set of combinatorial objects? Let us interpret “natural” as any set of
objects where the description size is polynomial in n and such that membership in the set
can be verified efficiently using a classical computer.

We define the problem of exactly computing the Kronecker coefficients as follows; com-
pute g, for input partitions p, v, A € S, given in unary, so that the input size is O(n).

An (old) new quantum algorithm. We showed [55] that there is an efficient quantum
algorithm that gives an approximation of g,,, with additive error ed;f” in O(poly(n)/e?)
time, where d,,, d,, d, are the dimensions of the respective irreducible representations. This
algorithm is a consequence of the sieving algorithm for the non-Abelian Hidden Subgroup
problem that was discussed in Ref. [284]. The approximation obtained this way is good
enough to determine g,,» exactly if min(d,,d,,dy) < poly(n). We do not know if such
approximation can be obtained classically and, to our best knowledge, the best polynomial-
time classical algorithms for the same problem are known only in the special case when the
partitions pu, v, A have constant, or nearly constant number of parts [221].

Connection to quantum complexity. There is little doubt that computing the Kro-
necker coefficients in the general case is an extremely hard computational problem as it is
known that any problem in #P can be reduced in polynomial time to it [222]'°, and that it
is contained in the class GapP [220] of functions that can be expressed as the difference f —g¢
of two functions f and g in #P [285]. In this sense, the Kronecker coefficients are as hard
as #P, but not much harder. Pinning down their complexity is therefore entirely concerned
with the sliver of daylight between #P and GapP. Why should we care?

Aside from attacking Stanley’s problem #10 from a new direction, it has to do with the
complexity of approximating Kronecker coefficients to within a given relative error.

Problem 3 (ApproxKron). Given p,v,\ b n and e = Q(1/poly(n)), compute an estimate
g, such that:

(1 - E)gul/)\ < f] < (1 + e)gWA.

This problem is of course no harder than exact computation of g,,; but can it be much
easier? It turns out that the seemingly small difference between #P and GapP can lead
to drastic difference in the complexity of the corresponding approzimation problems. It is
known that some problems in GapP are just as hard to approximate as they are to compute
exactly (with respect to polynomial-time reductions).  On the other hand, Stockmeyer
has shown that, assuming a standard conjecture in complexity theory, the hardest functions
in #P are wvastly easier to approrimate[267]: any #P function can be approximated to a
given relative error using a polynomial-time randomized algorithm that has access to an NP
oracle, i.e., in the class FBPPN?. Computing a multiplicative approximation to a #P problem

9A negative guvx would mean that there is a negative number of blocks in a block-diagonalized matrix

Pu @ py
19See Remark 14 in Ref. [223]

56



Problem in... | Approximation problem upper bound...
Classical counting #P FBPPNP
Quantum counting #BQP QXC
Gap counting GapP #P

Table 3: Three classes of counting problems that are polynomial-time reducible to one
another. The associated approximation problems are very unlikely to be polynomial-time
equivalent. Classical counting problems in #P can be approximated within the third level
of the polynomial hierarchy via Stockmeyer’s approximate counting algorithm. In contrast,
some problems in GapP can be #P-hard to approximate. Quantum approximate counting
problems QXC lie somewhere between these two extremes.

thus cannot be #P-hard unless the polynomial hierarchy collapses, which is believed to be
unlikely.

A central message of our work [55] and Ref. [54] is that in between these two extremes
there is a rich class of approximation tasks associated with a third type of quantum approzi-
mate counting problem. In analogy to the definition of #P, Refs. [286, 287] defined the class
#BQP of functions that can be thought of, informally, as determining the dimension of the
subspace spanned by accepting witness states of a QMA verifier. This can be thought of as
the quantum analogue of counting the number of accepting witnesses. The corresponding
class QXC of quantum approximate counting problems [54] is then the approximation version
of #BQP, see Section 4.3. As noted in this section, the complexity of quantum approximate
counting is largely an open question; all we can say is that quantum approximate count-
ing is at least QMA-hard and at most #P-hard. Nevertheless, we conjecture that quantum
approximate counting is not #P-hard—i.e., that it defines an intermediate class that lies
somewhere between classical approximate counting and #P. Table 3 summarizes the three
types of counting problems discussed above, and their approximation versions.

We show the that ApproxKron is contained in QXC by giving an efficient quantum circuit
that measures a projector with rank d,d,dxg,.». Since the dimension d,, of any irreducible
representation w of S, can be computed efficiently, this shows that g, is equal to an
efficiently computable dimensional factor (d,d,dy)™" times a #BQP function. From this, we
conclude that the problem of approximating Kronecker coefficients to within a given relative
error is not harder than QXC. This furnishes a natural computational problems that is
polynomial-time reducible to quantum approximate counting (and not known to be easier)
but whose definition does not involve quantum many-body systems!!. Our proof technique
relies on Beals’ efficient quantum Fourier transform over the symmetric group [289] and its
use in the generalized phase estimation algorithm (GPE) [290] . We use GPE to construct
projectors onto irreducible representations contained in representations that can be efficiently
implemented as quantum circuits. Specifically, we give quantum circuits that project from
the regular representation into its irreducibles and another circuit that projects a three-fold
tensor copy of regular representations onto its irreps. We show that the subspace projected

'The only other problem of this kind that we are aware of involves approximating Betti numbers of a
cochain complex [288] and particular, the approximation version of the problem described in Theorem 5 of
Reference [288]
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on by these mutually commuting measurements has dimension d,d,d)g,.», which implies
the containment in QXC. We also show that deciding positivity of Kronecker coefficients is
in QMA, with perfect soundness and completeness.

4.5 Simulation of open quantum systems

Many classical algorithms based on random walks can be quantized using a generic method
developed by Szegedy [170]. An important contribution of [170] was the quantization of
any reversible (also called detailed balanced) random walk in the following sense. Let
P = (pys)syeq denote the stochastic matrix representing the reversible random walk on
state space 0 with limiting distribution 7 = (7,).cq. Szegedy showed how to construct a
corresponding quantum walk unitary W (P) such that its unique eigenvector with eigenvalue
1 (or equivalently with eigenphase 0) is the quantum sample

™) =D Vo) (58)

€

that is, a coherent encoding of w. The reason for the many quantum speed-ups is that the
phase gap of walk unitary W (P) is VA, where A denotes the spectral gap of the stochastic
matrix P. Szegedy’s construction can now be understood using the quantum singular value
transformation [291] that provides a unifying approach to many quantum algorithms and
methods.

Our work [225] gives a generalization of the Szegedy walk unitary from classical stochas-
tic matrices to quantum channels (trace preserving completely positive maps) satisfying a
certain detailed balance condition. Suppose 7T is a quantum map with fixed point 0. We
construct a unitary W (7) such that its eigenvector with eigenphase 0 is the purification

j01/%) = (o' ® 1)|2) (59)

of o, where [Q) = > _[7) ® |7) denotes the (unnormalized) maximally entangled state.
We prove that the eigenphase of W(T) is quadratically amplified compared to the spectral
gap of the quantum map 7. We also present quantum circuits that efficiently implement
W (T). To accomplish these goals we proceed as follows.

First, we develop a generic framework for quantizing continuous time purely irreversible
detailed balanced quantum maps. More precisely, we show how to quantize quantum Markov
semigroups. Let £ denote the Lindbladian, that is, the generator of a quantum Markov
semigroup with fixed point o. Assuming that L satisfies the detailed balanced condition
with respect to o, we show how to construct a unitary W (L) such that its eigenvector with
eigenphase 0 is a purification of ¢ having the above form Eq. (59). We leverage the fact
that detailed balanced Lindbladians can be expressed in a certain canonical form showing
that they essentially have the structure of Davies generators [292]. We relate the unitary
W (L) to a quantum discriminate Q, which arises from £ through a similarity transformation
defined with respect to the fixed point o. Analogously to the classical setting the quantum
discriminate Q is shown to be independent of the fixed point o and even the particular form
in which the detailed balance condition is stated (due to the non-commutative nature of
quantum mechanics, there are several natural notions of detailed balanced). Centrally, we
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prove that the phase gap of W (L) is quadratically amplified compared to the spectral gap
of L. We also discuss how the problem of quantizing detailed balanced quantum channels
reduces to the problem of quantizing detailed balanced Lindbladians.

Second, we examine for which quantum maps the above quantization method can be re-
alized efficiently on a quantum computer. We focus on the Davies weak coupling limit [292]
describing a a Markovian dynamics driving a system with a Hamiltonian H towards the equi-
librium thermal Gibbs states e % / Tr(efﬁH ) We show how to efficiently quantize Davies
generators provided that the energies of the Hamiltonian H can be resolved, for instance,
when we have access to a block-encoding of the Hamiltonian H whose energies satisfy a
rounding promise and we use the energy estimation method in [293].

The quadratic gap amplification is at the heart the quantum speed-ups of many classical
random walk based algorithms [208, 294, 295, 296]. This polynomial speed-up is measured
relative to the mixing time of the classical walk. For quantum maps, recent work [297,
298, 299, 300, 301, 302] has investigated the mixing behavior of the corresponding Markov
process. Tools have been developed to bound the mixing time and to analyze the spectral
gaps of detailed balanced quantum maps. For several explicit examples [303, 304, 305, 306,
307, 308, 309] spectral gap bounds could be obtained.

A special case of a detailed balanced quantum map was introduced in the context of the
quantum Metropolis algorithm [209] to prepare the Gibbs state of a quantum Hamiltonian
with a time evolution that can be simulated efficiently. The Gibbs state can be prepared
efficiently if the corresponding quantum map is rapidly mixing. A Szegedy walk unitary
has been constructed for the classical Metropolis-Hastings algorithm [208]. The Metropolis-
Hastings random walk prepares the Gibbs state for a Hamiltonian that is diagonal in the
computational basis. An extension of this walk algorithm to non-diagonal quantum Hamilto-
nian subject to specific assumptions has been constructed in [310]. This work assumes access
to a projective measurement that enables one to distinguish between some arbitrary but fixed
eigenvector basis of the system Hamiltonian. This assumption essentially makes it possible
to reduce the problem to a classical Metropolis random walk on the fixed eigenbasis. We
emphasize that when the system Hamiltonian has degenerate spectra such eigenbasis mea-
surement cannot be realized by measuring the energies of the Hamiltonian — even if one can
perfectly resolve the energies. This is because one cannot distinguish between some arbitrary
vectors within a degenerate eigenspace without any additional assumptions. Furthermore,
in the generic situation of energy estimation with finite resources, any quantum Hamiltonian
on an exponentially large Hilbert space with polynomial bounded operator norm will exhibit
degeneracies. The present work enables the direct “quantization” of thermalizing quantum
maps such as Davies generators and therefore does not need to make any assumptions on
the identifiabilty of some eigenbases.
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