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1. Introduction

The use of machine learning (ML) for the development of material models is a
rapidly growing area of study within computational structural mechanics. This fol-
lows the rapid rise in ML across many fields of science and engineering made pos-
sible, in part, by the ecosystem of user-friendly and robust Python packages. These
Python packages enable users to quickly design, train, test, and refine ML models.
ML theory lacks the maturity to identify the appropriate model architecture, hyper-
parameters, and training set composition a priori, making an iterative design process
crucial to ML model development. Modern Python packages simplify and often au-
tomate the process of optimizing architecture, hyperparameters, and training data
for particular applications.

Unfortunately, the integration of ML-based material models into finite element anal-
ysis (FEA) tools is time consuming and labor intensive, breaking the ML devel-
opment paradigm of rapidly iterating through potential models. Most FEA codes
require reimplementation of ML models, either directly into the source code, if
available, or through a supported subroutine interface such as the Abaqus Vector-
ized User MATerial (VUMAT) interface.1 In either case, the ML model must be
reimplemented from scratch, typically in C, C++, or Fortran. Given the complexity
of modern ML architectures, this can be a long and error-prone task. In addition,
the significant investments by major tech companies to optimize Python-based ML
models for CPUs and graphics processing units (GPUs) are lost when forced to
reimplement the models. Furthermore, loading the trained weights of an ML model
within an FEA simulation is nontrivial. Models consist of a complex hierarchy of
layers containing thousands to billions of parameters.

To bring rapid and agile ML material model development to FEA applications, we
have developed the Python Vectorized User MATerial (PyVUMAT) framework to
enable direct integration of Python-based material models. Models created with
PyVUMAT are compatible with any FEA tool supporting the Abaqus VUMAT in-
terface. Material model developers can now leverage the functionality, usability, and
performance of modern Python packages, drastically reducing the iterative design
process for ML model development. PyVUMAT may also provide significant re-
ductions in time and effort in the development of non-ML material models through
the use of packages such as NumPy and SciPy to simplify equation-based models
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or Pandas for models relying on lookups and interpolations of complex databases.

Sections 2- 5 of this guide constitute the required reading to start developing PyVU-
MAT models. Sections 6 and 7 go into detail on design and performance consider-
ations to improve PyVUMAT models. While beneficial to getting the most out of
PyVUMAT, new users should not be intimidated by the additional content and can
save it until after they have gained experience with PyVUMAT.

2. Overview

This user’s guide assumes a general familiarity with writing and executing tradi-
tional VUMAT models. The reader is directed to the Abaqus documentation2 and
numerous online resources for details on the VUMAT interface and usage. This
user’s guide focuses on aspects of writing and executing a PyVUMAT model that
differ from traditional VUMATs.

The PyVUMAT consists of three components:

1. A Python function created by the user that defines the material model func-
tion.

2. A Python class called Driver (defined in pyvumat/driver.py) that
calls the user-defined Python model.

3. A C++ function (defined in pyVUMAT.cpp) that interfaces with the FEA
code through the standard VUMAT interface. This function creates an in-
stance of the Driver class, sends the VUMAT input arguments to Python
through the Driver class, converts the return arguments from Python, and
sends the return arguments to the FEA code through the VUMAT interface.

The majority of the effort in creating a Python-based material model with PyVU-
MAT is in developing component 1. Minor modifications are required of the Python
Driver class. Sections 3 and 6 provide basic and detailed guidance, respectively,
for creating a new model and modifying the Driver class. The C++ function
(component 3) should be treated as a black box by the user; no modifications are
required to this function when developing new models.

The user-defined material model function (component 1) can be quite general. The
only constraints are the format of the input arguments provided by the C++ function
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and the format of the return values expected by the C++ function. The inputs are
passed as a Python dictionary, with a function declaration similar to:

def user_function(**kwargs):

where the keys of the kwargs dictionary are the parameter names in the VUMAT
interface and the values are scalars or NumPy arrays with the corresponding data.
Stress and strain tensors are passed as flattened vectors with ordering [11, 22, 33,
12, 23, 31] for symmetric tensors and [11, 22, 33, 12, 23, 31, 21, 32, 13] for non-
symmetric tensors. This is standard for all VUMAT models. The size of the arrays
are not explicitly passed to the Python function; they can be inferred by the NumPy
arrays. Array sizes include:

• N = number of material points provided by the VUMAT function call

• ndir = number of direct components in a symmetric tensor

• nshr = number of indirect components in a symmetric tensor

• nfield = number of user-defined external field variables

• nprops = number of user-defined properties

• nstate = number of user defined state variables.

See Table 1 for a brief description of all key/value pairs passed through the input
argument. Users familiar with writing Fortran VUMATs should note that the di-
mensions of 2-D arrays are reversed, with N being the size of the second dimension
rather than the first. This is due to conversion from column-major arrays in Fortran
to row-major arrays in C. The reader is referred to the VUMAT documentation for
additional information on the physical meaning of the input parameters.

The function’s return arguments are four separate NumPy arrays, not a Python dic-
tionary. The return statement should follow the form

return stressNew, stateNew, enerInternNew, enerInelasNew

where the names of the variables are up to the user but the order of the quantities
must be consistent. See Table 2 for a brief description of the output parameters. The
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Table 1. Input quantities passed from the VUMAT to PyVUMAT through a dictionary argu-
ment

Key Value Type Size
charLength Characteristic element length 1-D array N
coordMp Material point coordinates 2-D array ndir ×N
defgradNew Deformation gradient at the

end of the increment
2-D array (ndir+2nshr)×N

defgradOld Deformation gradient at the
start of the increment

2-D array (ndir+2nshr)×N

density Density 1-D array N
dt Time increment Scalar 1
enerInelasOld Dissipated inelastic energy at

start of increment
1-D array N

enerInternOld Internal energy at start of in-
crement

1-D array N

fieldNew Values of user-defined field
variables at end of increment

2-D array nfield ×N

fieldOld Values of user-defined field
variables at start of increment

2-D array nfield ×N

lanneal Flag indicating call is during
annealing process

Scalar 1

props User-defined properties 1-D array nprops

relSpinInc Incremental relative rotation
vector

2-D array nshr ×N

stateOld State variables at start of in-
crement

2-D array nstate ×N

stepTime Time since start of step Scalar 1
strainInc Strain increment 2-D array (ndir +nshr)×N
stressOld Stress at start of increment 2-D array (ndir +nshr)×N
stretchNew Stretch tensor at end of incre-

ment
2-D array (ndir +nshr)×N

stretchOld Stretch tensor at start of incre-
ment

2-D array (ndir +nshr)×N

tempNew Temperature at end of incre-
ment

1-D array N

tempOld Temperature at start of incre-
ment

1-D array N

totalTime Current time Scalar 1
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reader is referred to the VUMAT documentation for additional information on the
physical meaning of the output parameters.

There is tremendous flexibility in the functionality of the model beyond these con-
straints on the input and output argument formats. The examples in this user’s guide
only scratch the surface of the capabilities and flexibility provided by a PyVUMAT
model.

Table 2. Output arguments that must be returned from any PyVUMAT model

Variable Value Type Size
stressNew Stress at end of increment 2-D array (ndir +nshr)×N
stateNew State variables at end of in-

crement
2-D array nstate ×N

enerInternNew Internal energy at end of
increment

1-D array N

enerInelasNew Dissipated inelastic energy
at end of increment

1-D array N

3. Quick-Start Guide to Creating a PyVUMAT Model

This section describes the process of creating a simple PyVUMAT model. After
reading, a user should have a basic understanding of developing a model; however,
the reader is encouraged to read Sections 6 and 7 for additional tips and consid-
erations to improve the functionality, flexibility, and performance of PyVUMAT
models.

As described in Section 2, the primary task in developing a PyVUMAT material
model is the creation of a Python function that can be called by the Driver to com-
pute the output arguments listed in Table 2. In practice, encapsulating this function
in a class is an easy way to store a “state” from one function call to the next. This
simplifies the process of performing one-time initialization tasks such as parsing
an input file or loading an ML model. However, this is not required; a standalone
function is fully compatible with PyVUMAT.

Figure 1 contains the source code for a simple ML model to demonstrate the key
features. In this example, the material model is a pretrained fully connected neu-
ral network (FCNN) with one hidden layer containing 100 nodes. The FCNN is
designed to predict the six components of the symmetric 3-D corotational Cauchy
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stress tensor given the six components of the symmetric 3-D stretch tensor. The
code starts with the declaration of the class in line 8, which can take any name.
Lines 9–26 define the constructor, always called __init__() in Python, which
is evaluated once during the first call to the VUMAT from the FEA code. The con-
structor can take a file path as an argument, which is a configuration file specified
by the user at run time to provide additional parameters to the PyVUMAT func-
tion (see details in Sections 5 and 6). In this example, the constructor performs the
one-time task of loading the pretrained model. First, the FCNN is defined in line 12.
PyTorch is employed here, but any ML Python package should be compatible. Then
the configuration file is parsed to find the location of a file containing the pretrained
weights in lines 18–20. An initialization (INI) file format is assumed, containing
a section called [Model] with a property key called modelfilepath. This is
explained in more detail in Section 6. The pretrained weights are loaded into the
FCNN in line 23. Finally, the FCNN is set to “eval” mode in preparation for infer-
ence evaluations, completing the initialization.

Lines 28–55 of Fig. 1 show the definition of the material model function. The func-
tion can take any name, but must be consistent with the function call in the PyVU-
MAT Driver class. In line 31, the required input arguments from the VUMAT
are extracted from the dictionary kwargs. In this simple model, the current stretch
tensor is the only required input, but all quantities listed in Table 1 are available to
the user. The stretch tensor from the VUMAT input arguments must be transposed
such that the first dimension corresponds to the material point to take advantage
of batch processing of the FCNN model. The specifics of the input preprocessing
will depend on the ML package employed in the model. In practice, the inputs are
likely to be scaled, but that is ignored in this simple example. The output of the
FCNN model is computed in line 41 and converted to the format expected by the
VUMAT in line 46. Note the use of contiguous() to ensure the variable’s data
is stored in memory as the transpose of the PyTorch output. Without this function
call, the stressNew variable would only be a reference to the original data with the
stride swapped. Once again, the specifics of this postprocessing will depend on the
Python package and the scaling that was performed during training of the FCNN
weights. All of the output parameters listed in Table 2 must be returned by the ma-
terial model. In this simple example, the energy terms are not updated and there are
no state variables associated with the model. Therefore, the function simply returns
the corresponding input values from the start of the time increment.
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1 # File: pyvumat/simple_ML_vumat.py

2 #

3 # Import necessary modules

4 import numpy as np

5 import torch

6 import configparser

7

8 class UserVumat:

9 def __init__(self,config_file):

10

11 # Create the ML model

12 self.ml_model = torch.nn.Sequential(torch.nn.Linear(6,100),

13 torch.nn.ReLU(),

14 torch.nn.Linear(100,6))

15

16 # Parse the INI config file and get the file path

17 # to the trained weights

18 parser = configparser.ConfigParser()

19 parser.read(config_file)

20 model_file = parser.get('Model','modelfilename')

21

22 # Load the trained weights

23 self.ml_model.load_state_dict(torch.load(model_file))

24

25 # Set model to eval mode

26 self.ml_model.eval()

27

28 def evaluate(self, **kwargs):

29

30 # Extract the required arguments from the keywords

31 stretchNew = kwargs['stretchNew']

32

33 # Evaluate the predicted output

34 with torch.no_grad():

35

36 # Dimension of arguments from VUMAT are in [n, num_points].

37 # Transpose to [num_points, n] as required in pytorch

38 input = torch.from_numpy(stretchNew.T)

39

40 # Predict stress

41 output = self.ml_model(input)

42

43 # Update new stress. Output of the ML model has dimension

44 # [num_points, n] as required in pytorch. Transpose to

45 # [n, num_points] as expected in the VUMAT

46 stressNew = output.t().contiguous()

47

48 # Only the stress is updated in this simple model so we

49 # return the old values for the other terms

50 stateOld = kwargs['stateOld']

51 enerInternOld = kwargs['enerInternOld']

52 enerInelasOld = kwargs['enerInelasOld']

53

54 # Return the output arguments of the VUMAT

55 return stressNew, stateOld, enerInternOld, enerInelasOld

1

Fig. 1. A simple PyVUMAT model using an FCNN in PyTorch to predict stresses. A file like
this would be created by a PyVUMAT user to develop their own Python-based material model.
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This model illustrates the ease at which ML material models can be implemented,
requiring fewer than 25 lines of code when ignoring comments. It also illustrates
the ease at which users could test multiple models in FEA simulations. One could
train a number of models with the same architecture but different learning rates,
optimization schemes, or training datasets without requiring any changes to this
function. The user only has to change the modelfilename parameter in the con-
figuration file. Even more powerful, the architecture can be changed with a single
line of code. The width and depth of the FCNN, the types of layers, and the activa-
tion functions can be changed simply by modifying line 12. These changes would
require significant effort if developed from scratch in a C, C++, or Fortran function.

The final step in creating a new PyVUMAT model is to modify the Driver class
in pyvumat/driver.py to call the new function. Figure 2 shows an implemen-
tation of the Driver class to call the simple ML model described above. First,
the PyVUMAT model must be imported, as done in line 2. In this example, the
model was created in a file called simple_ML_vumat.py and placed within the
pyvumat package directory. However, the file can be placed anywhere, as long
as the PYTHONPATH environment variable is set or another mechanism is in place
to ensure it can be imported successfully. In the constructor of the Driver class,
the class defining the PyVUMAT material model is instantiated. If the model is
implemented as a standalone function, Driver.__init__() can be left blank.
Finally, in line 10, the specific user-defined function to compute the VUMAT output
arguments must be specified. This is all that is required to integrate a Python-based
PyVUMAT model into the standard VUMAT interface. Section 6 contains an ex-
ample and discussion of options to increase the functionality of the Driver class.

1 # Import module with user-defined VUMAT

2 from pyvumat.simple_ML_vumat import UserVumat

3

4 class Driver:

5 def __init__(self,config_file):

6 # Instantiate object of user-defined class

7 self.vumat_model = UserVumat(config_file)

8

9 def evaluate(self, **kwargs):

10 user_function = self.vumat_model.evaluate

11 return user_function(**kwargs)

1

Fig. 2. An example implementation of the pyvumat/driver.py file to use the PyVUMAT
material model from Fig. 1
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4. How to Build

Common FEA codes have three methods of incorporating user-defined VUMAT
functions:

1. Compiled separately as a library that is linked into the FEA tool at run time

2. Compiled into the source code of the FEA tool

3. Compiled by the FEA tool at run time

The user is directed to the documentation of the specific FEA tool to determine the
appropriate method and for details on the procedure. This section focuses on the
aspects of these procedures that are specific to the PyVUMAT.

For any of the three methods listed above, the critical task is providing the paths to

• The include directory containing Python.h. This directory will be referred
to as <PYTHON_INC_DIR>. This can be determined by the command
python -c ''from sysconfig import get_path;

print(get_path('include'))''.

• The include directory containing numpy/arrayobject.h. This directory
will be referred to a <NUMPY_INC_DIR>. This can be determined by the
command python -c 'from numpy import get_include;

print(get_include())'.

• The library directory containing libpythonX.Y.sowhere X and Y are the
major and minor versions, respectively, of the Python build. This directory
will be referred to as <PYTHON_LIB_DIR>. Typically, this will be located
in <PYTHON_INC_DIR/../../lib>. If unsure, start by searching the
parent directories of the paths listed as outputs from the command python
-c ''import sys; print('\n'.join(sys.path))''.

How these paths are passed during compilation will depend on the system, com-
piler, and FEA code. A makefile is provided in the PyVUMAT source to compile
the standalone library for method 1. The makefile is located in the top-level source
directory of PyVUMAT. The variables described above must be set to the appropri-
ate paths at the top of the makefile. After editing the makefile to set the appropriate
paths, run make at the top-level source directory. The build was successful if the
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library file libPyVUMAT.so was created. This library can be used by FEA tools
that link to external libraries to incorporate a user-defined VUMAT.

The process of compiling PyVUMAT into the FEA source code (method 2) will de-
pend on the specifics of the FEA code. Most likely, pyVUMAT.cpp will be copied
into the FEA source directory (and possibly renamed) prior to compilation of the
FEA tool. Adding the include and library paths, discussed above, to the compiler
will depend on the build system of the FEA code.

Abaqus is an example of an FEA tool that uses run-time compilation (method 3). At
run time, the pyVUMAT.cpp file is passed as an argument to the execution com-
mand with user=<full path to pyVUMAT.cpp>. See the Abaqus manual
for more details on the user argument. The additional include and library di-
rectories can be passed via a local abaqus_v6.env file by appending flags to
the compile_cpp and link_sl parameters. The default values for a particular
Abaqus installation are found through the command abaqus information=

environment. Copy the lines associated with compile_cpp and link_sl

from the output of this command to a new file called abaqus_v6.env. In this
local environment file, append '-I<PYTHON_INC_DIR>',
'-I<NUMPY_INC_DIR>' to the end of the flags of the compile_cpp param-
eter. Append '-L<PYTHON_LIB_DIR>','-lpythonX.Y' to the end of the
link_sl flags, where X and Y are the major and minor versions, respectively, of
the Python build. If this abaqus_v6.env is in the user’s home or working di-
rectory, it will overwrite the default parameters used by Abaqus. See the Abaqus
manual for more information on environment files.

When using PyVUMAT with Abaqus, the user should use the Python headers and
library in the Abaqus install to ensure compatibility. The include and library directo-
ries can be identified by searching within the Abaqus install directory for Python
.h, arrayobject.h, and libpythonX.Y.so (with the appropriate X and
Y version numbers). When installing additional Python packages (e.g., PyTorch,
scikit-learn), users should use a Python version as close as possible to the version
used in Abaqus. Note that Abaqus releases prior to 2024 only support Python 2. If
a user’s model requires Python 3 (as required in many modern ML packages), then
the model will only work with releases of Abaqus starting in 2024.
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5. How to Run

Running an FEA simulation tool with a PyVUMAT model will follow the same
procedure as using a traditional VUMAT model. This procedure will be specific
to the individual FEA code. In addition, the PYTHONPATH environment variable
should be prepended to include the PyVUMAT top-level source directory, which
contains pyvumat/driver.py. If the user-defined PyVUMAT model is located
in another directory, that path should be prepended to PYTHONPATH as well. The
C++ component of PyVUMAT checks for a configuration file using the environment
variable PYVUMAT_CONF_FILE. If this environment variable is defined by the
user, the file path is passed to the Driver class for use by the material model. Use
of this configuration file is shown in lines 18–20 of Fig. 1, with additional usage
discussed in Section 6.

6. Advanced Guide to Creating a Model

The flexibility provided by the PyVUMAT is too open-ended to be fully captured
in this guide. However, a use case is provided to highlight some additional func-
tionality while hopefully spurring creativity in the reader. The use case is the Saint
Venant-Kirchhoff (SVK) hyperelastic material model. Although this is a trivially
simple model, it can highlight a number of features and design choices a user may
employ to get the most out of their PyVUMAT model. It also serves as a way for
users to test PyVUMAT “out of the box” against a material model available in most
FEA tools. Both analytical and ML-based implementations are provided in the sub-
directory pyvumat/svk and discussed in this section.

6.1 Analytical Hyperelastic Model

The SVK hyperelastic material model computes the corotational Cauchy stress (σ̂)
as a function of the stretch tensor (U ), Young’s modulus (E) and Poisson’s ratio (ν)
through the following equation:

σ̂ =
USU

J

S =
E

1 + ν

[
E +

trace(E)ν

1− 2ν
I

]
E =

1

2
(UU − I)

J = det(U )

(1)
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The analytical SVK model is implemented in the file svk_vumat.py. Multi-
ple implementations for computing σ̂ by Eq. 1 are provided. These implementa-
tions, shown in Fig. 3, include varying levels of vectorization to improve perfor-
mance. The first function, compute_stress_loop(), loops over each mate-
rial point, converts the corresponding flattened representation of U with Abaqus
ordering to a 3 × 3 matrix, and then performs the various matrix operations pro-
vided in NumPy to compute σ̂. The matrix representation of σ̂ is then converted
back to the flattened representation for symmetric matrices before returning the
values. This is the most straightforward approach to implementing a model (i.e.,
without any vectorization). However, many NumPy operations can leverage vec-
torization to speed up calculations by operating on many matrices at once. The
second function, compute_stress_mat_vec(), converts the 6 × N 2-D ar-
ray of stretch tensors for all material points into a N × 3 × 3 array to take ad-
vantage of the vectorized linear algebra operations in NumPy. The third function,
compute_stress_abq_vec(), uses utility functions provided in PyVUMAT
to perform vectorized matrix–matrix multiplication (abq_mat_mult()) and vec-
torized determinant calculations (abq_det()). These utility functions maintain
the flattened structure and Abaqus ordering of 3-D symmetric and 3-D nonsym-
metric tensors, eliminating the need to convert to and from 3 × 3 matrices. Utility
functions for 2-D tensors are not available at this time, but may be provided in a
later release. The performance of these implementations is discussed in Section 7.

The analytical SVK model is implemented in a class called SvkVumat, shown in
Fig. 4. The constructor for the SvkVumat class takes an optional configuration file
path to chose an implementation for computing stress. The evaluate() func-
tion is straightforward, with two new aspects not seen in the simple ML model of
Section 3. First, the elastic constants are stored in the props array, which must be
extracted from the input arguments. This model assumes there are two components
to the props array containing E and ν. Since Python performs bounds checking au-
tomatically, an error will be thrown if the props array defined in the input file of the
FEA tool is not large enough. These types of error handling, inherent in Python, are
another benefit of prototyping non-ML material models in Python. Second, even
though state variables are not required for the SVK model, two state variables are
updated for demonstration purposes. These values are also extracted from the input
arguments and copied to a new array so any modifications to the new state variable
values do not affect the old state variables.
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1 from pyvumat.abq_mat_utils import *

2

3 def compute_stress_loop(stretch, lame1, two_mu):

4 # Storage for temporary matricies

5 num_points = stretch.shape[1]

6 I = np.identity(3)

7 U = np.zeros((3,3))

8 E = np.zeros((3,3))

9 S = np.zeros((3,3))

10 stress_mat = np.zeros((3,3))

11 stress = np.zeros((6,num_points))

12

13 # Loop through material points and compute stress

14 for i in range(num_points):

15 U[0,0], U[1,1] = stretch[0,i], stretch[1,i]

16 U[2,2], U[0,1] = stretch[2,i], stretch[3,i]

17 U[1,2], U[2,0] = stretch[4,i], stretch[5,i]

18 U[1,0], U[2,1], U[0,2] = U[0,1], U[1,2], U[2,0]

19

20 E = 0.5*(np.dot(U,U) - I)

21 S = lame1*np.trace(E)*I + two_mu*E

22 stress_mat = np.dot(np.dot(U,S),U.T)/np.linalg.det(U)

23 stress[0,i], stress[1,i] = stress_mat[0,0], stress_mat[1,1]

24 stress[2,i], stress[3,i] = stress_mat[2,2], stress_mat[0,1]

25 stress[4,i], stress[5,i] = stress_mat[1,2], stress_mat[2,0]

26 return stress

27

28 def compute_stress_mat_vec(stretch, lame1, two_mu):

29 # Put stretch tensor (U) in [N, 3, 3] array

30 U = abq_vec_to_mat(stretch)

31

32 # Compute Green-Lagrange strain (E = 1/2 (U.U - I)

33 I = np.identity(3).reshape(1,3,3)

34 E = 0.5 * (np.matmul(U,U) - I)

35 trace_E = np.trace(E, axis1=1, axis2=2).reshape(-1,1,1)

36

37 # compute 2nd PK stress (S)

38 S = two_mu*E + lame1*trace_E*I

39

40 # Convert from 2nd PK (S) to corotational Cauchy = U.S.U/J

41 det_U = np.linalg.det(U).reshape(1,-1)

42 stress_mat = np.matmul(np.matmul(U,S),U)

43 return abq_mat_to_symm_vec(stress_mat)*(1.0/det_U)

44

45 def compute_stress_abq_vec(stretch, lame1, two_mu):

46 # Compute Green-Lagrange strain (E = 1/2 (U.U - I)

47 E = abq_mat_mult(stretch,stretch)

48 E[:3,:] -= 1.0

49 E *= 0.5

50 trace_E = np.sum(E[:3,:], axis=0)

51

52 # Compute 2nd PK stress (S)

53 stress = two_mu*E

54 stress[:3,:] += lame1*trace_E

55

56 # Convert from 2nd PK (S) to corotational Cauchy = U.S.U/J

57 J = abq_det(stretch)

58 cauchy = abq_mat_mult(abq_mat_mult(stretch,stress),stretch)/J

59 return cauchy[:6,:]

1

Fig. 3. Three methods for computing stress (σ̂) from Eq. 1
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1 class SvkVumat:

2 def __init__(self,config_file=None):

3

4 if config_file is None:

5 self.stress_func = compute_stress_abq_vec

6 else:

7 # Parse the options from the ini file

8 parser = configparser.ConfigParser()

9 parser.read(config_file)

10

11 # Chose the function to compute stress

12 func_name = parser.get('Model','StressFunction')

13 if func_name == 'loop':

14 self.stress_func = compute_stress_loop

15 elif func_name == 'matrix_vectorize':

16 self.stress_func = compute_stress_mat_vec

17 elif func_name == 'abaqus_vectorize':

18 self.stress_func = compute_stress_abq_vec

19 else:

20 print("\n Error: unknown function name \n")

21 sys.stdout.flush()

22 sys.exit()

23

24 def evaluate(self, **kwargs):

25

26 # Extract required arguments from the keywords

27 props = kwargs['props']

28 stretchNew = kwargs['stretchNew']

29 stateOld = kwargs['stateOld']

30

31 # Get the elastic properties

32 youngs_mod = props[0]

33 nu = props[1]

34 two_mu = youngs_mod/(1+nu)

35 lame1 = two_mu*nu/(1.0-2.0*nu)

36

37 # Create storage for return values

38 num_points = stretchNew.shape[1]

39 stateNew = stateOld.copy()

40 enerInternNew = np.zeros(num_points)

41 enerInelasNew = np.zeros(num_points)

42

43 # Compute the stress using the implementation

44 # specified in the configuration file

45 stressNew = self.stress_func(stretchNew,

46 lame1,

47 two_mu)

48

49 # Update dummy state variables

50 stateNew[0,:] += 1.0

51 stateNew[1,:] -= 1.0

52

53 return stressNew, stateNew, enerInternNew, enerInelasNew

1

Fig. 4. Implementation of the analytical SVK material model in Python. This class is defined
in pyvumat/svk/svk_vumat.py.
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6.2 ML-Based Hyperelastic Model

Development of an ML-based material model starts with identifying the inputs and
outputs, which will be a subset of the input and output arguments of the VUMAT
listed in Tables 1 and 2. In practice, identifying the appropriate subset of parameters
may be nontrivial, especially when there is limited knowledge of the underlying
physics. However, in the SVK model, the subsets are known explicitly from Eq. 1.
The inputs are the six components of U and the scalars E and ν. However, Eq. 1
reveals that the stress scales linearly with E, meaning this scaling can be performed
outside of the ML model; therefore, the model requires seven input parameters. For
the purposes of this demonstration, the material model ignores the energy terms and
there are no state variables; therefore, the only outputs are the six components of
the symmetric corotational Cauchy stress tensor.

A Python script called GenSvkTraining.py is provided to generate training
input and output data. The source code is presented in Fig. 5. At the top of the file
are various arguments that can be modified by the user to control how many data
points are generated, the minimum and maximum values for U , the minimum and
maximum values for ν, and the name of the output file where the training data will
be saved. Of note in this script is the use of the analytical SVK PyVUMAT model
described above to compute the target stresses. Models developed in PyVUMAT
can be easily instantiated and called outside of traditional FEA simulations tools,
as shown in lines 23 and 40. Furthermore, only the input arguments relevant to that
model must be passed through the input dictionary, as shown in line 36. This makes
a PyVUMAT model useful in a variety of applications and significantly easier to
debug.

The options for implementing the training and inference of an ML material model
are almost limitless. The purpose of this section is to show only one such approach,
with a focus on minimizing the effort and potential for user error when iterating
over many ML architectures, training datasets, and hyperparameters. The key to
achieving this is abstracting the creation of the ML architecture and the scaling of
input and output arguments to a centralized module that will be used during train-
ing and when performing inference in the PyVUMAT model. The specifics of the
implementation will depend on the ML Python package and ML architecture cho-
sen by the user, but the general approach should apply broadly. An example of this
abstraction for an FCNN is contained in pyvumat/svk/fcnn.py and shown in
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1 import numpy as np

2 from pyvumat.svk.svk_vumat import SvkVumat

3

4 # Define Input Parameters

5 num_points = 20000

6 strain_low, strain_high = (-0.01, 0.01)

7 poisson_low, poisson_high = (0.05, 0.45)

8 youngsMod = 1.0

9

10 # Output file name

11 out_file = 'Data_SVK_strain1_20K.csv'

12

13 # Generate training data

14 # U = [Uxx, Uyy, Uzz, Uxy, Uyz, Uxz]

15 stretch = np.random.rand(num_points,6)

16 stretch = strain_low + (strain_high-strain_low)*stretch

17 stretch[:,:3] += 1.0

18 poisson = np.random.rand(num_points,1)

19 poisson = poisson_low + (poisson_high-poisson_low)*poisson

20

21 # Instantiate the model

22 config_file = None

23 model = SvkVumat(config_file)

24

25 # Evaluate stress at strains

26 stateOld = np.zeros((2,num_points))

27 stress = np.zeros((num_points,6))

28

29 # Since the Poisson's ratio (and therefore props array) is

30 # different for each point, we can not evaluate the stresses

31 # in one batch. We need to evaluate them separately, passing in

32 # the corresponding Poisson's ratio.

33 for i in range(num_points):

34 props = np.array([youngsMod, poisson[i,0]])

35 stretchNew = stretch[i].reshape(6,1)

36 kwargs = {'stretchNew':stretchNew,

37 'props':props,

38 'stateOld':stateOld}

39

40 stressNew, _, _, _ = model.evaluate(**kwargs)

41

42 stress[i,:] = stressNew.reshape(6)

43

44 # Write the input and output data to a file

45 index = np.arange(num_points).reshape(-1,1)

46 data = np.hstack((index, poisson, stretch, stress))

47 header = ("Index, Poisson's Ratio, Uxx, Uyy, Uzz, Uxy, Uyz, Uxz," +

48 "Sxx, Syy, Szz, Sxy, Syz, Sxz")

49 np.savetxt(out_file,data,delimiter=', ',header=header)

1

Fig. 5. A Python script to generate training data for an ML model of SVK provided in the
source code as the file pyvumat/svk/GenSvkTraining.py
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Fig. 6. The FCNN architecture will be used for the ML-based SVK example. The
FCNN architecture is defined by the FCNN class, which takes a list containing the
number of nodes in each layer of the neural network (NN). The number of layers
and nodes per layer is adjustable, but the number of nodes in the first and last layers
must correspond to the input and output dimensions, respectively.

The second component to the module is a class to perform three primary tasks:

1. create the architecture, either from scratch to perform training or loaded from
a saved file to perform inference;

2. scale and inverse scale the input and output data; and

3. save all relevant parameters (weights, scaling constants, parameters to recre-
ate ML architecture, etc.) to a file so a trained model can be reinstantiated in
the PyVUMAT material model.

In this example, these tasks are performed in the FCNN_Driver class. The con-
structor for FCNN_Driver can take parsed command-line arguments from the
argparse module to create a new model for training. It can also take a file where the
width and depth of the NN, trained weights, and scaling constants are stored to re-
instantiate a trained model for inference. Methods are provided to process the input
and output data by converting the data to a format compatible with the ML Python
package (PyTorch in this example) and scaling the data, either by determining the
scaling constants on the fly during training or using the pretrained constants stored
in the saved model file. Note that nothing in the FCNN and FCNN_Driver classes
are specific to the SVK model. These classes could be used with any FCNN-based
material model.

The general FCNN model is trained with the Python script TrainFCNN.py. The
script has command-line arguments allowing the user to vary the architecture (num-
ber of layers and nodes per layer), training hyperparameters (minimum and maxi-
mum learning rates, number of epochs, batch size), and training dataset (file con-
taining data, training/test split). From this, a user can vary any combination of these
parameters and store the resulting trained models as separate files using the -o

command-line argument. Figure 7 contains the start and end of the source code
for TrainFCNN.py. Much of the implementation for training the ML model will
depend on the ML Python package employed and is therefore ignored in Fig. 7
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1 class FCNN(nn.Module):

2 def __init__(self, layers_sizes):

3 super(FCNN, self).__init__()

4 # construct the layers for the feed-forward NN

5 layers = []

6 for j in range(len(layers_sizes) - 1):

7 layers.append(nn.Linear(layers_sizes[j],

8 layers_sizes[j+1]))

9 layers.append(nn.ReLU())

10

11 # Remove activation from the output layer

12 layers.pop()

13 self.layers = nn.Sequential(*layers)

14

15 def forward(self, input):

16 return self.layers(input)

17

18 class FCNN_Driver():

19 def __init__(self, cmd_args=None,saved_file=None):

20 # Check for gpu

21 self.device = torch.device('cuda:0' if torch.cuda.is_available()

22 else 'cpu')

23 self.type = torch.float32

24

25 # Initialize the scalers

26 self.input_scaler = StandardScaler()

27 self.output_scaler = StandardScaler()

28

29 # Get arguments for FCNN model from the command line (cmd_args) or

30 # saved from previously trained model (saved_file)

31 if cmd_args is not None:

32 # Create the NN

33 self.layers_sizes = cmd_args.layers_sizes

34 self.nn = FCNN(self.layers_sizes)

35 elif saved_file is not None:

36 saved_model = torch.load(saved_file,

37 map_location=self.device)

38

39 # Load the size of each NN layer

40 self.layers_sizes = saved_model['layers_sizes']

41

42 # Create the NN

43 self.nn = FCNN(self.layers_sizes)

44

45 # Load weights & biases

46 self.nn.load_state_dict(saved_model['model_state'])

47

48 # Load the parameters for scaling the inputs and outputs

49 # that were fit to the training data

50 self.input_scaler.__setstate__(saved_model['input_scale'])

51 self.output_scaler.__setstate__(saved_model['output_scale'])

52 else:

53 print("Error: Constructor for FCNN_Driver requires either",

54 "cmd_args or saved_file argument")

55 sys.exit(1)

56

57 # Convert model to appropriate type

58 self.nn.to(self.type).to(self.device)

59

1

(a)

60 # Save the model

61 def save(self,out_file_name):

62 model_data = {"layers_sizes": self.layers_sizes,

63 "input_scale": self.input_scaler.__getstate__(),

64 "output_scale": self.output_scaler.__getstate__(),

65 "model_state": self.nn.state_dict()}

66 torch.save(model_data,out_file_name)

67 return

68

69 # Convert tensor to appropriate type and move to appropriate device

70 def to(self,tensor):

71 return tensor.to(self.type).to(self.device)

72

73 def process_data(self,data,scaler,expected_dim,fit_scaler=False):

74 batch_size, dim = data.shape

75 if not dim == expected_dim:

76 print("Error: inconsistent dimensions when preprocessing")

77 print(dim, expected_dim)

78 sys.exit(1)

79

80 # Fit the scaler if requested

81 if fit_scaler:

82 scaler.fit(data)

83

84 # Scale the data

85 return_data = scaler.transform(data)

86

87 # Convert to torch tensor

88 return self.to(torch.from_numpy(return_data).view(batch_size,

89 dim))

90

91 def process_input(self,input_data,fit_scaler=False):

92 return self.process_data(input_data, self.input_scaler,

93 self.layers_sizes[0],fit_scaler)

94

95 def process_output(self,output_data,fit_scaler=False):

96 return self.process_data(output_data, self.output_scaler,

97 self.layers_sizes[-1],fit_scaler)

98

99 def inverse_scale_input(self,scaled_input):

100 return self.input_scaler.inverse_transform(scaled_input)

101

102 def inverse_scale_output(self,scaled_output):

103 return self.output_scaler.inverse_transform(scaled_output)

2

(b)

Fig. 6. Implementation of a generic FCNN designed to be used both for training of
FCNNs and for inference within a PyVUMAT model. These classes are defined in
pyvumat/svk/fcnn.py.

for the sake of space and readability of this guide. At the beginning of the script,
the command-line arguments are defined, parsed, and passed to the FCNN_Driver
constructor. This creates a new FCNN model that is ready for training. At the end of
the script, the model architecture, trained weights, and scaling constants are saved
to a PyTorch file as defined in the FCNN_Driver.save() function. Once again,
nothing in this file is specific to the SVK model. Application to the SVK model will
occur by passing the training data generated by GenSvkTraining.py and by
ensuring the number of nodes in the first and last layers of the FCNN are 7 and 6,
respectively. An example command for training on the SVK data with the default
hyperparameters is
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python TrainFCNN.py -i Data_SVK_strain1_20K.csv \

--layers-sizes 7 25 100 25 6 -o SVK_layers7-25-100-25-6

This will create output files SVK_layers7-25-100-25-6_error.csv log-
ging the training and test errors after each epoch and SVK_layers7-25-100-25-6
_model.pth containing the saved model to be used for inference in the PyVU-
MAT function.

1 import numpy as np

2 import argparse

3 import torch

4 from pyvumat.svk.fcnn import FCNN_Driver

5

6 # Construct the argument parse and parse the command line arguments

7 ap = argparse.ArgumentParser(description='Train a simple fully ' +

8 'connected NN with PyTorch')

9

10 ap.add_argument("--layers-sizes", type=int, required=True, nargs='+',

11 help="List of number of nodes for each layer")

12 ap.add_argument("-i","--in-file", type=str, required=True,

13 help="Name of input file")

14 ap.add_argument("-o","--out-file", type=str, required=True,

15 help="Prefix of output files")

16 ap.add_argument("--epochs", default=1000, type=int,

17 help="Number of epochs [1000]")

18 ap.add_argument("--batch", default=100, type=int,

19 help="Batch size [100]")

20 ap.add_argument("--max-lr", default=0.001, type=float,

21 help="Max learning rate [0.001]")

22 ap.add_argument("--min-lr", default=1.0e-6, type=float,

23 help="Min learning rate [1.0e-6]")

24 ap.add_argument("--train-ratio", default=0.9, type=float,

25 help="Ratio of data to use for training [0.9]")

26 ap.add_argument("--test-ratio", default=0.1, type=float,

27 help="Ratio of data to use for testing [0.1]")

28 args = ap.parse_args()

29

30 # Build the model using the command line arguments

31 model = FCNN_Driver(cmd_args=args)

32

33 # Read the files containing training and test data

34 raw_data = np.loadtxt(args.in_file,

35 skiprows=1, delimiter=',')

.

.

.

118 # Save the model to a file

119 model.save(args.out_file+"_model.pth")

1

Fig. 7. The start and end of a Python script to train an FCNN. The middle section of this
script is ignored as it is specific to training in PyTorch. However, the full code is available in
pyvumat/svk/TrainFCNN.py.
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Now all of the pieces are in place to write the ML-based PyVUMAT for the SVK
model. This model is implemented in pyvumat/svk/svknn_vumat.py and
shown in Fig. 8. As discussed in Section 3, the material model function is encapsu-
lated in a class called SvkNnVumat so that parsing the configuration file and load-
ing the ML model are only performed once. The tasks in the constructor mirror the
example in Section 3 (Fig. 1) with an additional verbosity flag to demonstrate an-
other way to leverage the configuration file and the creation of the FCNN_Driver
object. Here, the file saved from training is passed to the constructor to reinitialize
the trained FCNN model.

The evaluate() function computes the VUMAT output arguments (Table 2) as
a function of the VUMAT input arguments (Table 1). In addition to the procedures
discussed in Section 2, this function requires the props array to determine the elastic
constants and combines ν and U to define the seven input arguments for the FCNN
model. Scaling of the input and inverse scaling of the output are performed through
FCNN_Driver to ensure consistency with the scaling performed during training.
The simplicity and flexibility of this function showcases the benefits of writing an
ML-based VUMAT in Python, rather than implementing it from scratch in C, C++,
or Fortran. Most likely, the latter approach would still require something similar to
the Python codes defining the FCNN architecture and to train the model’s weights
(Figs. 6 and 7). However, the VUMAT function to perform inference would require
hundreds to thousands of lines of code, significant effort to debug, and complex
logic for generalizability. This is in sharp contrast to the approximately 60 lines of
code presented in Fig. 8.

6.3 Modifying the Driver

The final step in creating both the analytical and ML-based SVK models is modi-
fying the Driver class called by the C++ PyVUMAT function. Figure 9 contains
an implementation of this Driver class that allows for the model to be specified
at run time through an INI configuration file using the keyword model within the
section [Driver]. This Driver was written to work with Python 2 and 3 so that
it is compatible with older versions of Abaqus (discussed in Section 4), however
only the analytical SVK model was implemented with Python 2 compatibility. The
ML-based models require a version PyTorch that is compatible with Python 3.
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1 from pyvumat.svk.fcnn import FCNN_Driver

2

3 class SvkNnVumat:

4 def __init__(self,config_file):

5 # Read the configuration file

6 parser = configparser.ConfigParser()

7 parser.read(config_file)

8 model_file = parser.get('Model','modelfilename')

9 self.verbose = parser.getint('Model','verbose',

10 fallback=0)

11

12 # Create the model, load the trained weights and

13 # scaling parameters

14 self.model = FCNN_Driver(saved_file=model_file)

15

16 # Set model to eval mode

17 self.model.nn.eval()

18

19 if self.verbose > 0:

20 print(self.model.nn, flush=True)

21

22 def evaluate(self, **kwargs):

23 # Extract the required arguments from the keywords

24 stretchNew = kwargs['stretchNew']

25 props = kwargs['props']

26 youngsMod = props[0]

27

28 # Add Poisson's ratio as an input to the model

29 num_points = stretchNew.shape[1]

30 poisson = np.full((1,num_points),props[1])

31 input = np.vstack((poisson,

32 stretchNew))

33

34 #Evaluate the predicted output

35 with torch.no_grad():

36 # Convert the input to a PyTorch tensor and perform

37 # scaling. Transpose from [n, num_points] to

38 # [num_points, n] as required in pytorch.

39 pyt_input = self.model.process_input(input.T)

40

41 # Predict the stress from the ML model

42 stress_out = self.model.nn(pyt_input)

43

44 # Apply inverse scaling on stress

45 stress_out = self.model.inverse_scale_output(stress_out)

46

47 # Output is [num_points, n]. Transpose to [n, num_points] and

48 # copy to ensure contiguous memory layout for return array

49 stressNew = np.transpose(stress_out).copy()

50

51 # Scale by E since training was done with E=1

52 stressNew *= youngsMod

53

54 # Only the stress is updated in this model so we return the

55 # old values for the other terms

56 stateOld = kwargs['stateOld']

57 enerInternOld = kwargs['enerInternOld']

58 enerInelasOld = kwargs['enerInelasOld']

59 return stressNew, stateOld, enerInternOld, enerInelasOld

1

Fig. 8. Implementation of an ML-based SVK model using PyTorch and an FCNN architecture.
The class is defined in pyvumat/svk/svknn_vumat.py.

21



1 import sys

2 if sys.version_info[0] == 2:

3 import ConfigParser as configparser

4 else:

5 import configparser

6

7 # Import user-defined models

8 from pyvumat.simple_ml_vumat import UserVumat

9 from pyvumat.svk.svk_vumat import SvkVumat

10 from pyvumat.svk.svknn_vumat import SvkNnVumat

11

12 class Driver:

13

14 def __init__(self,config_file):

15 # Parse the options from the ini file

16 parser = configparser.ConfigParser()

17 parser.read(config_file)

18

19 # Choose the model

20 model_type = parser.get('Driver','model')

21 if model_type == 'simple_ml':

22 self.model = UserVumat(config_file)

23 elif model_type == 'svk':

24 self.model = SvkVumat(config_file)

25 elif model_type == 'svknn':

26 self.model = SvkNnVumat(config_file)

27 else:

28 print("\n Error: unknown model type \n")

29 sys.stdout.flush()

30 sys.exit()

31

32 def evaluate(self, **kwargs):

33

34 # Point to the user-defined material

35 # model function

36 user_function = self.model.evaluate

37

38 return user_function(**kwargs)

1

Fig. 9. An example of pyvumat/driver.py modified to use any of the PyVUMAT models
presented in this guide

Example configuration files using the INI format are provided in Fig. 10. Figure
10a shows a configuration file to use the analytical SVK model with the function to
compute stress based on vectorizing operations with the flattened vector represen-
tation and Abaqus ordering. Figure 10b shows a configuration file that specifies the
FCNN-based SVK model and passes a file path for a trained PyTorch file. From this
example configuration file, it should be clear that numerous models can be trained
and the only modification required to test these models in an FEA tool is modifying
line 7 (the ModelFileName keyword) in the INI configuration file, which can be
specified at run time.
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1 # File: pyvumat_conf_svk.ini

2 [Driver]

3 Model = svk

4

5 [Model]

6 StressFunction = abaqus_vectorize

1

(a)

1 # File: pyvumat_conf_svkNN.ini

2 [Driver]

3 Model = svknn

4

5 [Model]

6 Verbose = 1

7 ModelFileName = ./trainedModels/Svk_layers7-25-100-25-6_model.pth

1

(b)

Fig. 10. Example configuration files for use with the Driver class and PyVUMAT models
presented in this guide. (a) uses the analytical SVK model and a vectorized implementation of
the stress computation. (b) uses FCNN-based SVK model. These files are passed to Driver
by defining the PYVUMAT_CONF_FILE environment variable at run time.

7. Performance

Some overhead costs are unavoidable with PyVUMAT due to the added conversions
to and from NumPy arrays. In addition, Python execution times will be slower than
C, C++, or Fortran. However, the philosophy behind PyVUMAT is that the ability
to rapidly prototype and refine material models outweighs the loss in speed, par-
ticularly in research settings. This section explores the computational performance
in order to quantify this tradeoff for the test case of the SVK PyVUMAT models
discussed in Section 6.

The metric of interest for assessing performance is the wall-clock time to perform
the material model evaluations for one time step of an FEA simulation. This time
does not include the the cost of file input/output, parallel communication, contact
algorithms, or any other cost outside of the material model evaluation. Reported
timings are averaged over 10,000 time steps. Simulations were performed on an
HPE SGI 8600 system with Intel Skylake processors clocked at 2.7 GHz at the Navy
DOD Supercomputing Resource Center. The FEA simulations were performed with
the Arbitrary Lagrangian–Eulerian 3-D (ALE3D) simulation tool.3
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The wall-clock times per time step with increasing number of elements are plotted
in Fig. 11 for simulations on a single CPU processor. The benchmark model is an
SVK VUMAT implemented directly in C++. At low element counts, the C++ im-
plementation is 4 to 16 times faster. However, all implementations achieve times of
10−3 s or better for small element counts. This regime is not particularly interesting
from a performance standpoint. Most large-scale simulations, where performance
is important, will have at least thousands of elements per process. In this regime, the
PyVUMAT SVK implementation that loops over each material point is predictably
the slowest, but the other PyVUMAT SVK models show similar execution times to
the C++ implementation. All models show a linear scaling with more than a few
thousand elements. Figure 12 contains the wall clock time per time step normalized
by the cost of the C++ implementation. This provides a quantitative assessment of
the added cost of Python. For large element counts, the loop-based implementation
of SVK is 15 to 20 times slower than the C++ implementation. Both vectorization
schemes show significant speedup at high element counts. The vectorization scheme
that maintains the Abaqus flattened representation of tensors achieves speeds that
are only 15% to 20% slower than the C++ implementation. The ML-based model
achieves performance comparable to the analytical model at high element counts,
where the batch optimizations in PyTorch take effect.
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Fig. 11. Average wall-clock time per time step to evaluate the material model for various im-
plementations of the SVK hyperelastic model. Simulations were performed on a single CPU
process.
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Fig. 12. Timings from Fig. 11 normalized by the C++ implementation of the SVK model. This
shows the increase in computational cost of each PyVUMAT mode.

Parallel FEA simulations were also performed for a fixed simulation size of 2.1
million elements. The average wall-clock time per time step is shown in Fig. 13
with increasing numbers of CPU processes. Excellent parallel scalability is demon-
strated on thousands of processes. While this result is not entirely surprising, as
communication costs are not included in this timing, it does show that thousands of
Python evaluations can efficiently run concurrently on separate processes.

The specific performance of PyVUMAT models will depend on many factors. The
purpose of this section is simply to demonstrate that the cost of PyVUMAT models
are not prohibitively high, particularly for research settings. There are many situa-
tions where the significant reduction in development time provided by PyVUMAT
will outweigh the added computational cost. And as demonstrated in this section,
the computational cost can be reduced to a small increase over compiled languages
through careful use of vectorization capabilities in Python. Furthermore, Python
packages such as CuPy or JAX may improve performance further by seamlessly
integrating GPU acceleration with minimal effort by the developer.
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Fig. 13. Average wall-clock time per time step of parallel FEA simulations with fixed number
of elements at 2.1 million

8. Conclusion

The rapid growth in ML is due, in part, to the ability to quickly and easily develop
ML models and deploy them. Whether it is PyTorch, TensorFlow, JAX, or any of
the countless packages openly available, Python is the programming language of
choice for ML. This is the motivation behind PyVUMAT—to bring the features
and usability of Python into computational mechanics. As shown in this guide,
users can create Python-based material models following minimal constraints on
the input and output arguments and then easily integrate them into the PyVUMAT
framework. Once integrated, running a PyVUMAT model is nearly identical to run-
ning a traditional VUMAT model. The reduction in development time and increased
flexibility of PyVUMAT models over those written in compiled languages can be
tremendous, as demonstrated in Section 6. Furthermore, there has been significant
investments by tech companies and individuals over the past few years to improve
the performance of Python. These improvements reduce the trade-off between ease
of development and computational cost one might expect which switching from C,
C++, or Fortran to Python.
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PyVUMAT is an example of how the functionality of FEA tools can increase dra-
matically through the support of the VUMAT interface. FEA codes that do not
support VUMATs, or only have partial support, are missing out on the opportunity
to instantly add ML modeling capabilities to their software. Furthermore, VUMATs
provide a clear transition path from academic research to government laboratories.
Material models can be developed and tested in commercial FEA codes such as
Abaqus and integrated directly into government codes. PyVUMAT also supports
the development of simple and easy-to-use code that would make the handoff from
academia to government laboratories significantly easier.

The content of this user’s guide merely scratches the surface of what can be ac-
complished with PyVUMAT. There are hundreds of thousands of Python packages,
providing opportunities to bring new functionality, performance, and usability to
Python-based material models.
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List of Symbols, Abbreviations, and Acronyms

TERMS:

1-D – one-dimensional

2-D – two-dimensional

3-D – three-dimensional

ALE3D – Arbitrary Lagrangian-Eulerian 3-D

CPU – central processing unit

DOD – Department of Defense

FEA – finite element analysis

FCNN – fully connected neural network

GPU – graphics processing unit

INI – initialization

ML – machine learning

NN – neural network

PyVUMAT – Python Vectorized User MATerial

SVK – Saint Venant-Kirchhoff

VUMAT – Vectorized User MATerial

MATHEMATICAL SYMBOLS:

σ̂ – corotational Cauchy stress tensor

U – stretch tensor

E – Young’s modulus

ν – Poisson’s ratio
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