

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SIM-1 UAS: A FRAMEWORK FOR RAPID
PROTOTYPING OF MATLAB DEVELOPED

FLIGHT TEST CODE

by

Juncun Su

September 2023

Thesis Advisor: Isaac I. Kaminer
Co-Advisor: Sean P. Kragelund

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2023 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
SIM-1 UAS: A FRAMEWORK FOR RAPID PROTOTYPING OF MATLAB
DEVELOPED FLIGHT TEST CODE

 5. FUNDING NUMBERS

 6. AUTHOR(S) Juncun Su

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Unmanned aerial systems (UAS) like the ScanEagle have been employed in both military and research
applications. Despite the ScanEagle’s low cost and operational flexibility, its utility for autonomy research is
limited due to its proprietary hardware and software. With this in mind a new UAS, named SIM-1, was
procured. It employs open-source hardware and software, making it suitable for research and development.
 In this thesis, the SIM-1 UAS was assembled and successfully flown in simulated and actual test flights.
Simulations were conducted using Gazebo software, which employs a physics-based virtual environment,
while flight tests were carried out at local flying fields. A basic MATLAB control algorithm was developed
for SIM-1, and flight paths were planned through the ground control station (GCS). Notably, two methods of
flight path planning were explored in this thesis. The first method uses open-source GCS software,
QGroundControl, while the second method uses algorithms developed, tested, and ported to C++ code using
MATLAB/Simulink. This second method provided an avenue for guidance, navigation and control (GNC)
prototype algorithms to be flight tested rapidly. Finally, SIM-1 was also configured with a machine learning
algorithm for object detection using its onboard camera payload, which opens up opportunities for more
advanced research with this UAS platform.

 14. SUBJECT TERMS
UAV, UAS, drone, autonomous, unmanned, SITL simulation, HITL simulation, guidance,
navigation, control

 15. NUMBER OF
PAGES
 89
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Approved for public release. Distribution is unlimited.

SIM-1 UAS: A FRAMEWORK FOR RAPID PROTOTYPING OF MATLAB
DEVELOPED FLIGHT TEST CODE

Juncun Su
Military Expert 5, Republic of Singapore Air Force

BME, National University of Singapore, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2023

Approved by: Isaac I. Kaminer
 Advisor

 Sean P. Kragelund
 Co-Advisor

 Brian S. Bingham
 Chair, Department of Mechanical and Aerospace Engineering

iii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

iv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ABSTRACT

 Unmanned aerial systems (UAS) like the ScanEagle have been employed in both

military and research applications. Despite the ScanEagle’s low cost and operational

flexibility, its utility for autonomy research is limited due to its proprietary hardware and

software. With this in mind a new UAS, named SIM-1, was procured. It employs open-

source hardware and software, making it suitable for research and development.

 In this thesis, the SIM-1 UAS was assembled and successfully flown in simulated

and actual test flights. Simulations were conducted using Gazebo software, which

employs a physics-based virtual environment, while flight tests were carried out at local

flying fields. A basic MATLAB control algorithm was developed for SIM-1, and flight

paths were planned through the ground control station (GCS). Notably, two methods of

flight path planning were explored in this thesis. The first method uses open-source GCS

software, QGroundControl, while the second method uses algorithms developed, tested,

and ported to C++ code using MATLAB/Simulink. This second method provided an

avenue for guidance, navigation and control (GNC) prototype algorithms to be flight

tested rapidly. Finally, SIM-1 was also configured with a machine learning algorithm for

object detection using its onboard camera payload, which opens up opportunities for

more advanced research with this UAS platform.

v

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

vi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. MOTIVATION ... 1
B. PROBLEM STATEMENT .. 2
C. THESIS OBJECTIVES .. 2

II. SYSTEM OVERVIEW, HARDWARE AND SOFTWARE 3

A. SYSTEM OVERVIEW .. 3
B. SIM-1 UAS HARDWARE SETUP .. 4

1. Fuselage .. 4
2. The Lift Generation and Control Surfaces and the Tail

Assembly .. 5
3. Landing Gear System ... 8
4. Other Parts .. 9
5. Internally Installed Components ... 10

C. GROUND CONTROL STATION... 14
D. SOFTWARE AND SOFTWARE INTERFACE.................................. 16

1. ROS .. 16
2. QGroundControl... 16
3. PX4 Autopilot Firmware .. 17
4. Gazebo .. 17
5. Software Interfaces ... 18

III. DEVELOPMENT AND INTEGRATION OF BASIC FLIGHT PATH
PLANNING AND CONTROL .. 21

A. DEVELOPMENT AND INTEGRATION OF BASIC
CONTROLS .. 21
1. Create a Basic Simulink Model and Control Algorithm 21
2. Generate C++ Code from Simulink .. 23
3. Incorporate C++ Code into ROS Node 26
4. Test and Validate Concept ... 26

B. PLANNING OF FLIGHT PATH .. 27
1. Basic Flight Path Planning Using QGroundControl 27
2. Waypoint Generation and Following Using Simulink

Generated C++ Codes ... 37
3. Advantages and Disadvantages of Each Method of Flight

Path Planning .. 42

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

viii

IV. SOFTWARE-IN-THE-LOOP SIMULATION AND ACTUAL FLIGHT
TEST RESULTS ... 45

A. SOFTWARE-IN-THE-LOOP SIMULATION 45
1. Preparations .. 45
2. Simulation Specifics and Simulation Results 47
3. Analysis of Simulation Results and Validation of

Simulations .. 50
B. ACTUAL FLIGHT TEST RESULTS ... 53

V. SETTING UP FOR MACHINE LEARNING .. 57

A. SETTING UP THE CAMERA NODE ... 57
B. SETTING UP THE MACHINE LEARNING (ML)

ALGORITHM NODE .. 57

VI. CONCLUSION ... 61

A. SUMMARY ... 61
B. RECOMMENDATION FOR FUTURE WORKS 61

1. More Elaborate Guidance, Navigation and Control
Algorithm ... 61

2. In-flight Objection Detection ... 62
3. Multiple SIM-1 UASs ... 62

APPENDIX. FLIGHT CHECKLIST ... 63

A. PRE-FLIGHT CHECKLIST ... 63
B. POST-FLIGHT CHECKLIST .. 63

LIST OF REFERENCES ... 65

INITIAL DISTRIBUTION LIST .. 69

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ix

LIST OF FIGURES

Figure 1. Joint UAS Group Classifications. Source: [8]. ... 3

Figure 2. Photo of a Fully Assembled SIM-1 UAS ... 4

Figure 3. Photo of a Partially Disassembled SIM-1 UAS .. 5

Figure 4. Photo of the SIM-1 UAS Wing Cover and Mounting Screws (Shown
in Red Box) ... 6

Figure 5. Photo of the SIM-1 UAS Aileron (Port Side) (Indicated by Red
Arrow) ... 7

Figure 6. Photo of the SIM-1 Elevators and Rudder (Indicated by Red Arrows) 7

Figure 7. Stabilization and Destabilization during Crosswind Landing for the
Tricycle and Taildragger Landing Gear. Source: [10]. 8

Figure 8. Photo of SIM-1 Front-Mounted Payload (Indicated by Red Arrow) 9

Figure 9. Photo of SIM-1 Propeller (Indicated by Red Arrow) 10

Figure 10. Picture of SIM-1 Cockpit Cover ... 10

Figure 11. PixHawk 2.1 Blue Cube Autopilot Flight Controller. Source: [12]. 11

Figure 12. RC Radio Receiver (Model: Graupner GR-16 8CH 2.4GHz HoTT).
Source: [13]. .. 12

Figure 13. RC Radio Transmitter (Model: Graupner mz-12 PRO 12). Source:
[14] .. 12

Figure 14. NVIDIA Jetson NANO Developer Kit. Source: [16]. 13

Figure 15. Telemetry Radio. Source: [17]. ... 14

Figure 16. TP5000-ASE55 LiPo Battery. Source: [18].. 14

Figure 17. Photo of the GCS and Peripheral Interfaces ... 15

Figure 18. A Snapshot of the QGroundControl GUI ... 17

Figure 19. Software Interface in the GCS .. 19

Figure 20. Communication Links between Software. .. 19

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

x

Figure 21. Simulink Model for SIM-1 UAS .. 22

Figure 22. Inside GNC_Sub Block... 23

Figure 23. Screenshot of guidance_sub Block with Build Button (Indicated by
Red Arrow) ... 25

Figure 24. Sample Code Generation Report .. 25

Figure 25. Diversion of SIM-1 from Its Original Flight Plan 27

Figure 26. Initialize QGroundControl Software ... 29

Figure 27. “single_plane_yosemite.launch” File (First Part) 29

Figure 28. “single_plane_yosemite.launch” File (Second Part) 30

Figure 29. Updated QGroundControl Showing SIM-1 at Yosemite National
Park Area .. 30

Figure 30. Gazebo Showing SIM-1 in Yosemite National Park Virtual World 31

Figure 31. Creating a Flight Plan in QGroundControl ... 32

Figure 32. Setting a Takeoff Point in QGroundControl ... 32

Figure 33. Setting Waypoints and Landing Point in QGroundControl 33

Figure 34. Invalid Flight Plan with Some Red Segments .. 34

Figure 35. Flight Plan Successfully Uploaded to SIM-1, with “Done” Being
Displayed at the Top ... 35

Figure 36. “Slide to Confirm” to Fly SIM-1 .. 36

Figure 37. SIM-1 Flying According to the Flight Plan .. 36

Figure 38. SIM-1 Flying in Gazebo ... 37

Figure 39. Updated “guidance_simulator_init.m” with the Waypoint
Coordinates ... 38

Figure 40. Updated Waypoint Signal Port Dimensions ... 39

Figure 41. Updated Waypoints’ Coordinates in “drone_controller.cpp” 40

Figure 42. Updated Number of Waypoint Elements in “drone_controller.cpp” 41

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xi

Figure 43. SIM-1 Diverted from Original Flight Path and Followed a 5-Point
Star-Shaped Flight Path .. 42

Figure 44. “bayland.launch” File which Loads the “bayland.world” 46

Figure 45. Launch File which Loads a New World ... 46

Figure 46. Snippets of the New World File, Stipulating the Latitude and
Longitude of Monterey Bay Academy ... 47

Figure 47. SIM-1 Simulation Flight Plan and Results for Yosemite National
Park ... 48

Figure 48. SIM-1 Simulation Flight Plan and Results for Baylands Park 49

Figure 49. SIM-1 Simulation Flight Plan and Results for Rancho San Antonio
Flying Field ... 49

Figure 50. SIM-1 Simulation Flight Plan and Results for Monterey Bay
Academy ... 50

Figure 51. Simulated Quadcopter Diverted to a 5-Point Star-Shaped Flight Path 52

Figure 52. Photo of SIM-1 before Take Off at Baylands Park 54

Figure 53. Photo of SIM-1 at Rancho San Antonio Flying Field............................... 55

Figure 54. Photo of SIM-1 (Indicated by Red Arrow) in a Stable Loiter at
Rancho San Antonio Flying Field... 55

Figure 55. SIM-1 2D Flight Path at Rancho San Antonio Flying Field Flight
Test .. 56

Figure 56. SIM-1 3D Flight Path at Rancho San Antonio Flying Field Flight
Test; Flight Path Shows Loiter at Two different Altitudes. 56

Figure 57. Object Detection Performed on a Photo, Accuracy of Detection
Shown on Left Terminal ... 59

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xii

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiii

LIST OF TABLES

Table 1. Simulink Code Generation Configurations ... 24

Table 2. Summary of Simulation Results ... 52

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xv

LIST OF ACRONYMS AND ABBREVIATIONS

3D

3DOF

AGL

API

AR

CAVR

CNN

COTS

CPU

CRUSER

ENU

EPO

GCS

GNC

GPS

GPU

GUI

IMU

ISR

LiPo

LTP

ML

NN

NPS

OS

R&D

Three Dimensional

3 Degree of Freedom

Above Ground Level

Application Programming Interface

Aspect Ratio

Center for Autonomous Vehicle Research

Convolutional Neural Network

Commercial Off-the-Shelf

Central Processing Unit

Consortium for Robotics and Unmanned Systems Education and
Research

East, North, Up

Expanded Polyolefin

Ground Control Station

Guidance, Navigation and Control

Global Positioning System

Graphics Processing Unit

Graphical User Interface

Inertial Measurement Unit

Intelligence Surveillance and Reconnaissance

Lithium Polymer

Local Tangent Plane

Machine Learning

Neural Network

Naval Postgraduate School

Operating System

Research and Development

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xvi

RC Remote Control

RF Radio Frequency

ROS Robot Operating System

SITL Software-in-the-Loop

UAS Unmanned Aerial System

YOLO You Only Look Once

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xvii

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisors, Professor Kaminer and Professor

Kragelund, for the guidance and mentorship in this thesis journey. I am grateful for the

unique opportunity to delve into the developmental aspects of an unmanned aerial system

(UAS); it has been fun and educational. I also fondly recall the brainstorming sessions

and the flight tests that we went through together. I wish you all the best in your stay in

the Naval Postgraduate School (NPS) and hope to see you continue pushing boundaries

in the realm of unmanned systems.

Second, I would like to thank my friends and family for your companionship and

support, and for shaping the person I am today. I look forward to the moments we will

share in the future again.

Finally, my deepest thanks go to my wife, Swee Yan, and my son, Matthias, for

their love and company during my time in NPS. This thesis would not have come to

fruition without them and their support.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1

I. INTRODUCTION

A. MOTIVATION

Unmanned aerial systems (UAS) such as the ScanEagle have been employed by

the military for intelligence, surveillance, and reconnaissance (ISR) purposes. Users such

as the United States Marine Corps, the United States Navy and the Singapore Navy have

incorporated the use of ScanEagle to augment their ISR capabilities [1], [2]. Part of the

ScanEagle’s “popularity” could be attributed to its low cost, and operational flexibility, as

pointed out by Gettinger from the Center for the Study of Drone at Bard College.

Gettinger stated that the ScanEagle drove the development and adoption of unmanned

technologies due to these reasons [3].

In addition to its operational use, the ScanEagle has also been used for UAS

research in the Naval Postgraduate School (NPS). Notably, the NPS Center for

Autonomous Vehicle Research (CAVR) is dedicated to educating students on unmanned

vehicle technologies and advancing Naval autonomous vehicle operations. Within

CAVR, a diverse range of unmanned systems, including the ScanEagle, is deployed for

research purposes by NPS faculty and students [4]. Benjamin Keegan, for example, used

the ScanEagle for his masters thesis exploring autonomously positioning UAS as wireless

communication nodes for optimal communications [5].

Despite its advantages, the ScanEagle does have its own limitations. Like other

proprietary products, ScanEagle’s design, technology and intellectual property rights

belong to Insitu. Inc. and Boeing as they are its designer and manufacturer [6]. As such,

user autonomy over the design and functions of their ScanEagle is limited. With this in

mind, a new UAS, named SIM-1, developed by Chesi UAS Solutions [7], was procured.

SIM-1 is a commercial off-the-shelf (COTS) product, costs significantly less than the

ScanEagle, and employs open-source hardware and software. These qualities make it

suitable for research and development (R&D) purposes. Additionally, the SIM-1 UAS

can also be equipped with newer technologies such as machine learning (ML) object

detection algorithm, for more advanced research.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

2

B. PROBLEM STATEMENT

With these motivations, this thesis focuses on answering the following question:

• How can a low cost, COTS UAS like the SIM-1 UAS be best utilized for

education (in the form of supporting coursework and laboratory

instruction) and advanced research (in flight testing novel sensing and

control algorithms)?

C. THESIS OBJECTIVES

To assess the utility of the SIM-1 UAS for these purposes, this thesis evaluates

and documents the following:

1. Assemble the SIM-1 UAS with the help of Chesi UAS Solutions.

2. Develop and integrate basic control laws into the SIM-1 UAS.

3. Perform flight path planning on the SIM-1 UAS.

4. Conduct simulated and real-life flight tests of the SIM-1 UAS.

5. Explore the integration of ML algorithm and utilize the onboard camera

for object detection.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

3

II. SYSTEM OVERVIEW, HARDWARE AND SOFTWARE

A. SYSTEM OVERVIEW

The SIM-1 UAS is a fixed-wing UAS, with the following key specifications:

takeoff weight of 8.4 lbs (3.8 kg), normal operating altitude of below 1200 ft above

ground level (AGL), and normal operating speed of 29.7 kts. Based on these

specifications, it is a Group 1 UAS as per the United States Joint UAS Group

classifications shown in Figure 1 [8]. For comparison, the ScanEagle is a Group 2 UAS

based on the same categorization.

The SIM-1 UAS (Figure 2) is a COTS product from Chesi UAS Solutions, and it

is significantly more cost effective than the ScanEagle. It employs open-source hardware

and software, which allows greater flexibility in its parts and choice of software. This

lower cost and flexibility make it ideal for R&D purposes.

Figure 1. Joint UAS Group Classifications. Source: [8].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4

Figure 2. Photo of a Fully Assembled SIM-1 UAS

B. SIM-1 UAS HARDWARE SETUP

The hardware of the SIM-1 UAS can be broadly categorized into two categories:

external parts and internal components. The external assembly comprises the fuselage,

the lift generation and control surfaces, the tail assembly, the landing gear system and

various auxiliary parts.

Internally, the SIM-1 UAS is enabled by key components including the autopilot

flight controller, remote control (RC) radio transmitter/receiver, onboard computer,

telemetry radio and lithium polymer (LiPo) battery.

1. Fuselage

The fuselage of the SIM-1 UAS is fabricated through injection molding using

plastic. This fabrication technique and choice of material give lightweight and relative

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

5

durability properties to the fuselage and the UAS as a whole. Notably, the fuselage was

built with mounting points for the integration of other components. A partially

disassembled SIM-1 UAS, with its main parts detached from the fuselage is shown in

Figure 3.

Figure 3. Photo of a Partially Disassembled SIM-1 UAS

2. The Lift Generation and Control Surfaces and the Tail Assembly

The primary lift generating surface of the SIM-1 UAS is its main wing. The main

wing comprises two pieces, the port half and starboard half, and measures 6.5 ft (1.98 m)

when assembled. This length is the default length supplied by Chesi UAS Solutions.

Chesi UAS Solutions also offers wings with a longer wingspan, which translates to a

larger aspect ratio (AR), which is the ratio of the wingspan over the wing chord length.

Generally, fixed-wing aircraft whose wings have higher AR, will generate more lift [9],

thereby giving the aircraft better glide performance. However, the longer wingspan will

also lead to reduced maneuverability due to the increased moment of inertia that the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

6

control surfaces must overcome. The main wing was molded from lightweight and

durable expanded polyolefin (EPO) material. Prior to flight, the two main wing halves are

assembled and positioned at the top of the fuselage, which is then secured using the wing

cover and four screws at the corresponding mounting points, as depicted in Figure 4.

The tail assembly of the SIM-1 UAS uses a conventional design, comprising two

horizontal stabilizers and a single vertical stabilizer. These stabilizers share the same

material as the main wing.

The SIM-1 UAS is equipped with control surfaces typical of most fixed-wing

aircraft. These include ailerons on the main wing, and elevators and rudders on the tail

assembly to provide roll, pitch and yaw controls respectively. They are controlled by the

flight control computer via actuators. These control surfaces can be seen in Figure 5 and

Figure 6 respectively.

Figure 4. Photo of the SIM-1 UAS Wing Cover and Mounting Screws

(Shown in Red Box)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

7

Figure 5. Photo of the SIM-1 UAS Aileron (Port Side) (Indicated by Red

Arrow)

Figure 6. Photo of the SIM-1 Elevators and Rudder (Indicated by Red

Arrows)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

8

3. Landing Gear System

The landing gear system adopts a tail dragger configuration, also known as the

conventional configuration. In this configuration, the main landing gears wheels are

situated in front of the center of gravity, and a single smaller tailwheel is mounted on the

tail. Schmidt highlighted one advantage of the tail dragger landing gear configuration –

an overall reduction in weight due to a relatively compact tail gear [10]. Such weight

saving is especially important to a small UAS like the SIM-1 UAS, where power is

limited.

Like other tail dragger aircraft, the SIM-1 UAS rests on the ground with a pitch

up attitude. This gives the SIM-1 UAS more clearance between the front fuselage and the

ground and makes the UAS and the front-mounted payload less susceptible to damage

from ground obstacles.

However, the tail dragger landing gear configuration poses challenges when the

aircraft is landing in crosswind condition as compared to a tricycle configuration.

Schmidt explained that the forces generated by the main wheel cause a destabilizing

moment in the tail dragger configuration [10]. Figure 7 illustrates the phenomenon.

Figure 7. Stabilization and Destabilization during Crosswind Landing for the

Tricycle and Taildragger Landing Gear. Source: [10].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

9

4. Other Parts

Other notable parts are the payload, the propellers, and the cockpit cover. The

front-mounted payload is a camera system (model: 8MP HDR MIPI CSI-2) from e-con

Systems, and is capable of capturing 4K resolution images [11]. Figure 8 shows the

front-mounted camera payload [11].

The propeller is a 2-bladed fixed pitch propeller, mounted to the electrical motor,

behind the cockpit and the main wing. Figure 9 shows a photo of the propeller. The

electrical motor turns the propeller, driving the SIM-1 UAS forward. During takeoff,

when the forward speed exceeds a certain threshold, enough lift will be generated for the

UAS to leave the ground.

Lastly, the cockpit cover (shown in Figure 10) is fitted over the cockpit

compartment to help the fuselage maintain an aerodynamic profile and protect the

components that are housed within.

Figure 8. Photo of SIM-1 Front-Mounted Payload (Indicated by Red Arrow)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

10

Figure 9. Photo of SIM-1 Propeller (Indicated by Red Arrow)

Figure 10. Picture of SIM-1 Cockpit Cover

5. Internally Installed Components

The key components installed in the cockpit compartment of the SIM-1 UAS are

the autopilot flight controller, RC radio transmitter/receiver, onboard computer, telemetry

radio and LiPo Battery.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

11

a. Autopilot Flight Controller

The autopilot flight controller installed in SIM-1 UAS is the PixHawk 2.1 Blue

Cube (shown in Figure 11). It is manufactured by CubePilot in the USA. The PixHawk

2.1 Blue Cube functions as the brain and sensors of the UAS: sensing the SIM-1 UAS’s

attitude and altitude and flying the UAS by sending appropriate commands to the motors

and actuators. The sensing is done through temperature-controlled and shock absorbing

inertial measurement units (IMUs) which contain accelerometers, gyroscope sensors and

barometer, to sense accelerations, rate of rotation and altitude respectively. Together with

the base board, the PixHawk 2.1 Blue Cube provides interfaces with other hardware such

as antenna, servos, and telemetry modules. Based on the product specifications, the

PixHawk 2.1 Blue Cube supports different flight modes such as loiter, altitude hold,

autonomous with waypoints, etc, for a wide variety of UAS. It also supports different

ground control station (GCS) software such as QGroundControl [12]. These are useful

for developmental flight tests.

Figure 11. PixHawk 2.1 Blue Cube Autopilot Flight Controller. Source: [12].

b. RC Radio Transmitter/Receiver

For remote control operation, the SIM-1 UAS utilizes a RC radio receiver (model:

Graupner GR-16 8CH 2.4GHz HoTT) (Figure 12) in the cockpit compartment. This

receiver functions to receive inputs from the RC radio transmitter (model: Graupner mz-

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

12

12 PRO 12) (Figure 13) on the ground. The transmitter functions like a game controller,

reading the stick inputs from the user, and sending the signals to the receiver via radio

frequency (RF) and passing this information to the flight controller to make SIM-1 fly

correspondingly [15]. This receiver/transmitter set is designed to work within line-of-

sight range.

Figure 12. RC Radio Receiver (Model: Graupner GR-16 8CH 2.4GHz HoTT).

Source: [13].

Figure 13. RC Radio Transmitter (Model: Graupner mz-12 PRO 12). Source:

[14]

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

13

c. Onboard Computer

The SIM-1 UAS comes installed with an onboard computer, the NVIDIA Jetson

NANO developer kit (shown in Figure 14), that has an integrated 128-core Graphics

Processing Unit (GPU), quad-core Central Processing Unit (CPU) and 4GB of memory.

It provides dedicated processing power for edge computing so that more advanced tasks

such as image classification and object detection can be done onboard the UAS [16].

Figure 14. NVIDIA Jetson NANO Developer Kit. Source: [16].

d. Telemetry Radio

The SIM-1 UAS also includes a telemetry radio (model: RF900 Radio (Tx/Rx))

(shown in Figure 15). The matching set of radio and antenna is connected to the GCS via

an USB port. The main function of the telemetry radio is for two-way communication

between the UAS and the GCS, so that the real-time flight data can be transmitted from

the UAS to the GCS for display, monitoring and planning. Based on the product

specifications, the telemetry radios have a range of 9.3 to 24.9 miles (15 to 40 km) [17].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

14

Figure 15. Telemetry Radio. Source: [17].

e. Lithium Polymer (LiPo) Battery

The components in the SIM-1 UAS are powered by a 5000 mAh LiPo battery

(model: TP5000-4SE55) (see Figure 16). A fully charged battery will provide the SIM-1

UAS an endurance of about 45 minutes with payloads switched on. Based on Chesi UAS

Solutions, options for using larger capacity batteries are possible. This would provide the

SIM-1 UAS with more endurance. However, a larger battery also adds additional weight

to the UAS, and is only advisable for more advanced users as a crash would result in

greater impact damage to the fuselage and UAS structure.

Figure 16. TP5000-ASE55 LiPo Battery. Source: [18].

C. GROUND CONTROL STATION

The SIM-1 GCS is an MSI gaming laptop with Intel i7 CPU, and dedicated

NVIDIA GPU (see Figure 17). The GCS uses the Ubuntu 20.04 LTS Linux Operating

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

15

System (OS). To facilitate communications with the SIM-1 UAS onboard computer, and

other developmental algorithms, the GCS utilizes the Robot Operating System (ROS),

QGroundControl GCS software, PX4 autopilot firmware and Gazebo simulation software.

The GCS communicates with the SIM-1 UAS via telemetry and RF signals.

Through QGroundControl, some of the key flight parameters can be displayed in near

real-time on the GCS. The GCS can be used to control the SIM-1 UAS, send new

mission/flight plans to the UAS, etc. The GCS can also be used to provide live video

footage from the UAS’s camera.

The GCS comes with a game controller interface that can be used to simulate

control inputs in a virtual environment such as Gazebo.

Figure 17. Photo of the GCS and Peripheral Interfaces

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

16

D. SOFTWARE AND SOFTWARE INTERFACE

1. ROS

The GCS is installed with ROS 1, an open-source software development kit,

which functions as middleware that runs on top of the installed Linux OS. It provides a

set of tools and libraries to help developers build robotics software applications. One of

the key utilities of ROS is its communication messaging system, which is useful for intra

and inter robot communications. This is done by sending messages between

communication nodes via a publish/subscribe model [19]. The version installed is the

ROS 1 Noetic Ninjemys, which was developed primarily for Ubuntu 20.04, the OS

utilized by the GCS laptop.

2. QGroundControl

The GCS controls the SIM-1 UAS using QGroundControl (version 4.2.4),

open-source GCS software that provides a graphical user interface (GUI) for UAS flight

control and mission planning. See Figure 18 for a snapshot of the QGroundControl GUI.

QGroundControl supports open-source autopilot firmware such as PX4 (installed in the

SIM-1 GCS) and ArduPilot. Through QGroundControl, some of the key flight parameters

can be displayed in near real-time on the GCS. One of the key utilities of

QGroundControl is the ability for users to plan missions by defining waypoints and

setting flight paths such as loiter patterns etc. During flight, QGroundControl can also be

used to monitor flight parameters and alter the flight path as necessary [20].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

17

Figure 18. A Snapshot of the QGroundControl GUI

3. PX4 Autopilot Firmware

The SIM-1 GCS uses PX4 (version 1.14.0beta) open-source autopilot firmware. It

is compatible with flight controller hardware such as the Pixhawk series of autopilot

flight controllers which the SIM-1 UAS is installed with. One of the key utilities is that

PX4 can work together with flight controllers to provide advanced flight controls such as

stabilization, attitude control and autonomous flights [21].

4. Gazebo

The GCS is installed with Gazebo (version 11.13.0), open-source simulation

software widely used for robotics development and testing. Gazebo employs a

three-dimensional (3D) physics-based environment to simulate the behavior of robots

interacting with realistic forces such as gravity and friction [22]. This is useful for testing

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

18

robotic software to understand its behaviors before operating in an actual environment. In

this thesis, the SIM-1 UAS was “flown” in Gazebo, before conducting actual flight tests.

5. Software Interfaces

In summary, the GCS is installed with ROS, QGroundControl GCS software, PX4

autopilot firmware and Gazebo simulation software, and collectively, they provide the

necessary tools and avenues for basic flying and more advanced algorithm development

using the SIM-1 UAS.

At the backbone of the GCS laptop is the Linux OS that manages the hardware

and software resources within the laptop. ROS then sits on top of the Linux OS as a

middleware by providing a communication messaging system that sends messages across

nodes which are akin to ‘software modules’ according to Quigley et al. [23]. This enables

other software (such as QGroundControl, PX4 and Gazebo) to perform their functions.

Figure 19 illustrates the software interfaces among the software installed on the GCS. For

example, the MAVROS package enables communications between ROS,

MAVLink 1 -enabled autopilots, and MAVLink-enabled GCS, by translating ROS

messages into MAVLink messages and vice versa. This allows the ROS nodes and the

corresponding MAVLink enabled software to communicate with one another [24]. The

ROS/Gazebo/QGroundControl integration with PX4 follows Figure 20, where the PX4

communicates with the Gazebo simulator to receive simulated sensor data from the

virtual world and in response sends motor and actuator commands. PX4 then

communicates with QGroundControl and an application programming interface (API)

(ROS in this case) to send/receive data to/from the virtual environment [25].

1 MAVLink is lightweight messaging protocol developed specifically for communications with drones

and between onboard drone components. Data streams are sent / published as topics while configuration
data such as the mission protocol or parameter protocol are point-to-point with retransmission [26].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://mavlink.io/en/services/mission.html
https://mavlink.io/en/services/parameter.html

19

Figure 19. Software Interface in the GCS

Figure 20. Communication Links between Software.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

20

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

21

III. DEVELOPMENT AND INTEGRATION OF BASIC FLIGHT
PATH PLANNING AND CONTROL

A. DEVELOPMENT AND INTEGRATION OF BASIC CONTROLS

Developing and integrating a control algorithm into the SIM-1 UAS can be done

via various approaches. This thesis studied a method which involves creating a control

algorithm using MATLAB/Simulink. From this algorithm, a corresponding set of C++

codes can then be generated by Simulink. These codes are then integrated into a ROS

node and executed. This method is useful for students to prototype, simulate and refine

algorithms as part of their coursework and/or laboratory exercises, before proceeding to

actual flight tests.

Alternatively, control algorithms can also be directly coded using programming

languages such as C++ or Python. These algorithms can then be incorporated into a ROS

node for utilization within the ROS environment. Such approaches are detailed in

ROS.org tutorials [27], [28].

As a proof of concept, the following steps were carried out in this thesis:

1. Create a basic Simulink model and control algorithm

2. Generate C++ code from Simulink

3. Incorporate the C++ code into ROS node

4. Test and validate concept

1. Create a Basic Simulink Model and Control Algorithm

A basic Simulink model (Figure 21) was created by Chesi UAS Solutions for use

on the SIM-1 UAS, and the related files can be found in GitLab via https://gitlab.nps.edu/

nps_sim_uas/nps-drones/-/tree/master/nodes/px4_simulink_mavros/src/matlab_simulink

[29]. Based on the Simulink file, the model consists of two main blocks, the

“Simulator_Sub” block and the “GNC_Sub” block. The “Simulator_Sub” block is used to

simulate the system dynamics via a simplified 3 Degree of Freedom (3DOF) model,

where the UAS is represented as a point mass. The “GNC_Sub” block contains two

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

22

further sub-blocks, “guidance_sub” and “controller_sub” (Figure 22), which does the

Guidance and Control tasks for the UAS, respectively. These tasks are achieved by

referencing the UAS’s current position and velocity vectors, and a matrix of waypoints,

to determine the next waypoint that the UAS should head towards, and calculate the

amount of control force required. Proportional and Derivative controllers are

implemented in the “controller_sub” sub-block. Navigation is not required in this thesis

as the UAS’s positions are assumed to be known. However, for example in a global

positioning system (GPS) denied environment, this assumption would become invalid

and an alternative form of navigation would be required. The flag_detect field is set up to

enable object detection as described in Chapter V.

Figure 21. Simulink Model for SIM-1 UAS

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

23

Figure 22. Inside GNC_Sub Block

2. Generate C++ Code from Simulink

Prior to the generation of the C++ codes, it is necessary to run the

“guidance_simulink_init.m” file to initialize the key parameters such as the control gains,

and the list of desired waypoints. This is also one of the ways to generate and upload a

list of waypoints to the UAS for flight path planning. After initializing the parameters, it

is crucial that the configurations in Table 1 are set correctly for the “guidance_sub”

block. This will ensure that the code is properly generated for subsequent use. The menu

to do so can be accessed via Modeling -> Model Settings.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

24

Table 1. Simulink Code Generation Configurations

S/N Configurations
1 Solver -> Solver selection -> Type: Fixed-step
2 Solver -> Solver selection-> Solver: ode4 (Runge-Kutta)
3 Hardware Implementation -> Device Type: x86-64 (Linux 64)
4 Code Generation -> Target selection -> System target file: ert.tlc2
5 Code Generation -> Target selection -> Language: C++
6 Code Generation -> Build Process -> Generate code only (checked)
7 Code Generation -> Report -> Create code generation report (checked)
8 Code Generation -> Report -> Open report automatically (checked)

After setting the configurations, the next step is to remove old code files (if any)

by deleting the folder “guidance_sub_ert_rtw” in the same MATLAB folder. Lastly, use

the Build button (shown in Figure 23) or the keyboard command Ctrl-B to generate the

C++ codes. The Code Generation Report (Figure 24) can be used to verify that the code

has been built correctly, e.g., by comparing the input ports and output ports with the

Simulink model. In this case, the model was designed to have 5 waypoints for SIM-1 to

follow, and the resulting dimensions of the waypoints (stated as wps in the model) is 3 by

5 as seen in Figure 24.

2 Based on Mathworks, the ert.tlc is for embedded systems such as when hardware-in-the-loop testing

is involved [30].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

25

Figure 23. Screenshot of guidance_sub Block with Build Button (Indicated by

Red Arrow)

Figure 24. Sample Code Generation Report

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

26

3. Incorporate C++ Code into ROS Node

The build process will generate a list of files (see left side of Figure 24) in the

folder, “guidance_sub_ert_rtw” in the same MATLAB folder. Of importance to this step

are the “guidance_sub.cpp” and “guidance_sub.h,” which contains the control algorithm,

and data structure respectively [31]. These are to be copied into the

“px4_simulink_mavros” package folder in the ROS catkin workspace previously created

on the GCS. Specifically, “guidance_sub.cpp” is to be copied into the “catkin_ws/src/

px4_simulink_mavros/src” folder, while “guidance_sub.h” is to be copied into the

“catkin_ws/src/px4_simulink_mavros/include” folder. Next, navigate to the root

directory of the workspace (“~/catkin_ws”) and run the “catkin build” command. This

will build and compile the “px4_simulink_mavros” package.

Chesi UAS Solutions wrote a C++ code for a ROS node, “drone_controller.cpp”

to link the guidance_sub files generated from Simulink to the PX4 flight controller. This

node integrates the guidance and control algorithm from the Simulink model and

communicates the commands to PX4 firmware on SIM-1 via MAVROS, which

implements communications with the autopilot and GCS via MAVLink protocol. The

specific code can be found in GitLab via https://gitlab.nps.edu/nps_sim_uas/nps-drones/-

/tree/master/nodes/px4_simulink_mavros/src [29].

4. Test and Validate Concept

After incorporating the C++ codes in the ROS node per the previous step, the

node can then be executed via the “rosrun px4_simulink_mavros

px4_simulink_mavros_node” command. SIM-1 will then fly based on the commands

from the Simulink model and the control algorithm. QGroundControl and Gazebo can be

used to validate that this has been implemented successfully. Figure 25 shows a snapshot

in QGroundControl where SIM-1 was diverted from its original flight path (after

following a series of pre-planned waypoints, it had begun its landing approach) to head

towards a single new waypoint (middle of the figure) where it began loitering. This

diversion occurred as soon as the ROS node was executed, demonstrating that the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

27

guidance and control algorithm developed in Simulink had been successfully

implemented in ROS.

Figure 25. Diversion of SIM-1 from Its Original Flight Plan

B. PLANNING OF FLIGHT PATH

In this thesis, two methods of flight path planning were explored: basic flight path

planning using QGroundControl software, and waypoint generation and following using

Simulink-generated C++ codes described in Chapter III.A.

1. Basic Flight Path Planning Using QGroundControl

The first method of flight path planning utilizes the QGroundControl software

interface to manually define waypoints, set flight parameters (such as altitude and speed),

and plan a mission for the SIM-1 UAS. It is summarized below, and the QGroundControl

user guide can be referred to should more complex planning be required [20].

1. Initialize programs

2. Create flight plan (take-off, waypoints and landing)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

28

3. Set flight parameters

4. Save and upload flight plan

5. Fly SIM-1

a. Initialize Programs

First, the GCS software QGroundControl is launched, via the “~/git_repos/nps-

drones/utilities/QGroundControl.AppImage” command, and QGroundControl will

display the GCS location per Figure 26. Next, navigate to ~/catkin_ws/ in the terminal

window, and run the “roslaunch flight_simulator single_plane_yosemite.launch”

command. For convenience, Gazebo, PX4 and MAVROS have been included in the

launch file (Figure 27 and Figure 28) so they can all be executed by a single command.

Notably, all three of them are required for the software simulation to work. Once this is

done, QGroundControl will update itself (Figure 29) to correspond to the Gazebo world

location (Yosemite National Park3 in this case) specified in the launch file. The Gazebo

simulation view is shown in Figure 30.

3 Yosemite National Park, was used arbitrarily as the area has been modelled by others for use in

Gazebo [32].

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

29

Figure 26. Initialize QGroundControl Software

Figure 27. “single_plane_yosemite.launch” File (First Part)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

30

Figure 28. “single_plane_yosemite.launch” File (Second Part)

Figure 29. Updated QGroundControl Showing SIM-1 at Yosemite National

Park Area

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

31

Figure 30. Gazebo Showing SIM-1 in Yosemite National Park Virtual World

b. Create Flight Plan (Take-off, Waypoints and Landing)

The first step to creating a flight plan is to use the “Plan” icon in the top left-hand

corner in QGroundControl. This will open up various options such as loading an existing

flight plan or designing a plan from scratch (Figure 31). To design a plan from scratch,

click on “Blank” plan. The second step is to set a takeoff position (Figure 32), followed

by adding the desired waypoints, and the landing point (Figure 33). It should be noted

that the SIM-1 UAS (like other fixed-wing aircraft) will require a landing approach to

land properly. This is made easy in QGroundControl which will automatically set a loiter

waypoint and a landing approach. In such a setting, the fixed wing drone will loiter at the

loiter waypoint until the landing conditions are met, before proceeding with its landing

approach to the desired landing point.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

32

Figure 31. Creating a Flight Plan in QGroundControl

Figure 32. Setting a Takeoff Point in QGroundControl

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

33

Figure 33. Setting Waypoints and Landing Point in QGroundControl

c. Set Flight Parameters

One of the most important aspects of designing a flight plan for the SIM-1 UAS

(or any other fixed-wing aircraft) is to ensure that the flight path is clear of the terrain

using the Height AMSL graph at the bottom of Figure 33. The key here is to set the flight

parameters such as the altitude such that SIM-1 stays clear of the terrain. In such a

condition, the entire flight path will be orange, otherwise the flight path will be red. An

example is in Figure 34 where the altitude of waypoint 4 was set incorrectly, and the

corresponding segments of the flight path are shown in red. Such unsafe flight plans are

not allowed to be uploaded for use by the autopilot.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

34

Figure 34. Invalid Flight Plan with Some Red Segments

d. Save and Upload Flight Plan

Once the flight plan is complete, it can be saved for subsequent use. This makes

simulation convenient as the same flight plan can be used repeatably. To ensure that the

flight plan is being used, it must be uploaded to the SIM-1 autopilot, by pressing “Upload

Required.” When successfully uploaded, “Done” will be shown near the top of the

QGroundControl window (Figure 35), and SIM-1 will be ready to fly.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

35

Figure 35. Flight Plan Successfully Uploaded to SIM-1, with “Done” Being

Displayed at the Top

e. Fly SIM-1

Once the flight plan is uploaded successfully to SIM-1 (actual or simulated), it is

ready to fly. Flying is done by dragging the cursor “Slide to confirm” (Figure 36). SIM-1

will take off from its starting position and head towards the various waypoints (Figure

37), before making a landing approach. The simulated SIM-1 in Gazebo will also fly

accordingly (Figure 38).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

36

Figure 36. “Slide to Confirm” to Fly SIM-1

Figure 37. SIM-1 Flying According to the Flight Plan

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

37

Figure 38. SIM-1 Flying in Gazebo

2. Waypoint Generation and Following Using Simulink Generated C++
Codes

The second method of flight path planning that was explored in this thesis

leverages the Simulink model that was described in Chapter III.A. This method also

involves manually defining waypoints and uploading them to the SIM-1 UAS. As an

example, a new flight path comprising 5 waypoints is used. Broadly, this flight path

planning method involves the following steps:

1. Define waypoints and update MATLAB and Simulink files.

2. Generate and Incorporate C++ code from Simulink into ROS node.

3. Execute node.

a. Define Waypoints and Update MATLAB and Simulink Files

This method is based on the premise that the waypoint coordinates of the flight

path are known. The coordinates can stem from operational needs or simulation and

testing requirements. The coordinate system that is used in the Simulink model follows a

Local Tangent Plane (LTP) coordinate system, specifically the East, North, Up (ENU)

coordinate system. Of note, the origin of the coordinate system is the position of the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

38

SIM-1 UAS when it connects with the GCS and becomes active in QGroundControl. The

waypoint coordinates are set relative to this origin. The associated MATLAB and

Simulink files are to be updated with these waypoints coordinates and the waypoint

matrix dimensions. Specifically, the “guidance_simulator_init.m” is to be updated with

the waypoint coordinates, as shown in Figure 39 for the five waypoints in this example.

Each column represents the x, y and z coordinates of a waypoint. A total of five columns

corresponds to five waypoints. The corresponding waypoint signal port dimensions in

“guidance_sub” needs to be updated as well (Figure 40). These steps will ensure that the

specified waypoint coordinates are built into the C++ code for subsequent use.

Figure 39. Updated “guidance_simulator_init.m” with the Waypoint

Coordinates

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

39

Figure 40. Updated Waypoint Signal Port Dimensions

b. Generate and Incorporate C++ Code from Simulink into ROS Node

This step is to generate C++ code from the updated Simulink model, and follows

the steps in Chapter III.A.2. Next, the C++ code from the updated Simulink model is

incorporated into a ROS node, following the steps in Chapter III.A.3 plus an additional

step to update the “drone_controller.cpp” code with the coordinates of the five waypoints

and increasing the number of elements in the waypoint matrix to 15, as shown in Figure

41 and Figure 42 respectively. It should be noted that in the C++ code, each row

represents the x, y and z coordinates of a waypoint. Since MATLAB stores these

coordinates in a column, the waypoint matrix needs to be transposed in the C++ code.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

40

Figure 41. Updated Waypoints’ Coordinates in “drone_controller.cpp”

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

41

Figure 42. Updated Number of Waypoint Elements in “drone_controller.cpp”

c. Execute Node

This step involves executing the updated ROS node follows the steps in Chapter

III.A.4. Upon executing the “rosrun px4_simulink_mavros px4_simulink_mavros_node”

command, the SIM-1 UAS (actual or simulated) will divert from its original flight path

and fly the new flight path comprising five waypoints instead. Figure 43 displays a

QGroundControl screenshot from a simulated flight when SIM-1 diverted from its

original flight path shortly after waypoint three, and followed a 5-point star-shaped flight

path.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

42

Figure 43. SIM-1 Diverted from Original Flight Path and Followed a 5-Point

Star-Shaped Flight Path

3. Advantages and Disadvantages of Each Method of Flight Path
Planning

Each of these two flight path planning methods has advantages and disadvantages.

The first method of utilizing the QGroundControl interface to perform basic flight

path planning ensures that an executable flight path is generated. For example,

QGroundControl automatically creates a proper landing approach based on the UAS

hardware, and QGroundControl prevents users from ignoring the effects of terrain

(described in Chapter III.B.1.c.). Additionally, flight path planning in QGroundControl is

intuitive and users can visualize the flight path against the terrain easily. However, the

manual flight path planning with QGroundControl may be cumbersome for complex

flight paths comprising large number of waypoints.

On the other hand, the second method uses algorithms developed, tested, and

ported to C++ code using Simulink. As a result, users must have a better understanding of

flight requirements such as take-off and landing, to properly design a set of viable flight

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

43

path waypoints, a task which QGroundControl handles automatically. Using Simulink

and C++ code is also less intuitive than the graphical approach used in QGroundControl.

However, the Simulink and C++ code method allows more sophisticated guidance,

navigation and control (GNC) algorithms to be integrated. Hence, it also provides an

avenue for GNC prototype algorithms to be swiftly integrated and flight tested rapidly.

Consequently, the SIM-1 UAS can then be utilized for education in the form of

supporting UAS coursework and advanced research by flight testing novel GNC

algorithms at NPS.

In summary, the first method using QGroundControl for flight path planning is

more suitable for beginners, while the second method using C++ code gives more user

autonomy and capability but is also more complex.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

44

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

45

IV. SOFTWARE-IN-THE-LOOP SIMULATION AND ACTUAL
FLIGHT TEST RESULTS

A. SOFTWARE-IN-THE-LOOP SIMULATION

For this thesis, basic software-in-the-loop (SITL) simulations were carried out to

validate the following basic requirements:

• The SIM-1 UAS can fly in a stable manner with basic control laws in

place.

• The communication links between the SIM-1 UAS and the GCS are

configured and working properly.

These simulations were carried out before actual flight testing. The advantages of

conducting simulations are that they are relatively easy to execute and can be utilized to

reveal and resolve any software related issues.

1. Preparations

To facilitate SITL simulations, the following steps are required: 1) Setting up the

Ground Control Station (Chapter II.C.), 2) Setting up the software (Chapter II.D.), 3)

Developing and incorporating basic controls (Chapter III.A.) and 4) Planning of flight

path (Chapter III.B.). The details of these steps are found in the respective chapters in this

thesis.

Additionally, the Gazebo simulation environment must be set up. This includes

choosing or creating a Gazebo virtual world for the simulation. For this thesis, a total of

four worlds were used, 1) Yosemite National Park, 2) Baylands Park, 3) Rancho San

Antonio Flying Field, and 4) Monterey Bay Academy. The Yosemite National Park and

Baylands Parks worlds were created by J. Lim and are available online in GitHub [32],

[33]. The Rancho San Antonio Flying Field was included in this thesis as flight testing

was conducted there. Finally, Monterey Bay Academy was included because this area can

support more regular flight test activities, due to partnership agreement with the NPS

Consortium for Robotics and Unmanned Systems Education and Research (CRUSER).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

46

However, it should be noted that the third and fourth worlds are empty worlds that have

not yet been populated in Gazebo. Since there is ample air space in each area without

obstructions, exact virtual replicas of these areas are not crucial. However, when more

regular flight testing takes place at Monterey Bay Academy, future student can model this

area so that more representative flight simulations can be conducted.

A launch file was created to run Gazebo, PX4 and MAVROS at the same time. As

mentioned in Chapter III.B.1.a., the launch file starts Gazebo using the Yosemite

National Park world model, together with the other software modules. In order to run

simulations in other areas, a new launch file can be created to specify the desired world,

e.g. “baylands.world” (Figure 44) or “empty_monterey.world” (Figure 45) if a pre-built

Gazebo world is not available. In the specified world file, the latitude and longitude of its

LTP coordinate frame origin must be stipulated (Figure 46) so that the correct location

will be loaded. The latitude and longitude shown in Figure 46 are located at the Monterey

Bay Academy.

Figure 44. “bayland.launch” File which Loads the “bayland.world”

Figure 45. Launch File which Loads a New World

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

47

Figure 46. Snippets of the New World File, Stipulating the Latitude and

Longitude of Monterey Bay Academy

2. Simulation Specifics and Simulation Results

For this thesis, basic simulations were done to validate: 1) SIM-1’s ability to

perform waypoints following and loitering behaviors in various Gazebo worlds, 2)

communication links between the SIM-1 UAS and the GCS by diverting SIM-1 from its

original flight plan to a new flight plan uploaded from the GCS, and 3) SIM-1’s correct

response to manual controls inputs via a game controller.

a. Yosemite National Park

Once QGroundControl and the launch file are run, QGroundControl (with the

pre-loaded flight plan) and Gazebo windows will appear (Figure 29 and Figure 30

respectively) for the Yosemite National Park simulation. Figure 47 (top left) shows the

basic flight plan that SIM-1 will execute in the simulation. The simulation was carried

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

48

out, and SIM-1 was able to follow the intended flight path closely without drifting and

was able to hold a stable loiter of radius 50m (Figure 47 top right). Next, Figure 47

(bottom left) shows SIM-1 being diverted from its original flight path to a new waypoint

at its starting position. This was executed using the method described in Chapter III.B.2.

Lastly, Figure 47 (bottom right) shows that SIM-1 was being controlled manually via

inputs from an external game controller. SIM-1 was seen performing a left bank which

corresponded to a left stick input on the right joystick.

Similar simulations were done in the other three virtual worlds: Baylands Park,

Rancho San Antonio Flying Field, and Monterey Bay Academy. Their respective

simulation flight plan and simulation results are shown in Figures 48, 49 and 50

respectively.

Figure 47. SIM-1 Simulation Flight Plan and Results for Yosemite National

Park

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

49

Figure 48. SIM-1 Simulation Flight Plan and Results for Baylands Park

Figure 49. SIM-1 Simulation Flight Plan and Results for Rancho San Antonio

Flying Field

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

50

Figure 50. SIM-1 Simulation Flight Plan and Results for Monterey Bay

Academy

3. Analysis of Simulation Results and Validation of Simulations

Table 2 summarizes the simulation results. The simulation results are largely

satisfactory, as most of the requirements are met. Notably, SIM-1 managed to maintain a

stable loiter and respond correctly to external control inputs in all four simulations. This

was expected as the simulation environment has no significant effect on SIM-1’s ability

to fly unless it contains obstacles such as trees or mountains that may affect the flight

path.

For the Baylands Park and Rancho San Antonio Flying Field simulations, it was

noted that SIM-1 transited to its second waypoint before reaching its specified takeoff

point. A review of the QGroundControl documentations and open source discussions did

not yield clear reasons for why this happened. However, the author postulates that the

algorithm may have been designed to optimize the flight path for a fixed wing UAS to

approach the next waypoint during takeoff. Specifically, for Baylands Park and Rancho

San Antonio Flying Field, the angle that the second waypoint makes with the takeoff

‘trajectory’ is an acute angle, whereas the same angle for the other two simulation areas

were at least 90 degrees. Perhaps the standard flight path planner deliberately causes the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

51

UAS to head for the next waypoint to achieve a shorter and hence faster path, instead of

flying all the way to the stipulated takeoff point before making a wider turn towards the

second waypoint. While this seems like a trivial and beneficial feature of the

QGroundControl software, it may cause potential issues with the steeper altitude gradient

when such unintended ‘diversions’ occur. However, based on observations of these

simulations, the flight trajectories are smooth. As such, it is likely that the software

algorithm has taken care of this aspect.

In terms of diversion to a new flight plan, with the exception of the Monterey Bay

Academy simulation, the other three simulations did not complete the full flight path

which involved flying into a 5-point star-shaped flight path. The SIM-1 UAS in these

three simulations were observed to be making small loiter around the first waypoint set at

(0, 0, 0) (the starting point), and did not proceed to the next four waypoints. Similar

simulations were conducted on a quadcopter model under varying conditions, and these

aircraft were able to achieve the desired 5-point star-shaped flight path. An example of

the quadcopter simulation can be found in Figure 51. After a review of the C++ code

setup for flight path diversion, the author postulated that the issue could be with the

threshold that was set before the UAS satisfies the condition to fly to the next waypoint.

This threshold is a comparison of the distance of the drone to the current waypoint. The

difference between the quadcopter and the fixed wing drone flights is that the former will

fly directly to the current waypoint while the latter would loiter around that same

waypoint. And in a loiter, the distance between the drone and its waypoint does not

decrease; hence, since the condition to fly to the next waypoint cannot be met, the loiter

continues indefinitely. This behavior is unsatisfactory in a real-life operational scenario,

as the UAS would not be able to reach the stipulated waypoint(s) and perform its

intended role. To resolve this issue, the waypoint generation method (described in

Chapter III.B.2) should be improved so that the waypoint following algorithm can be

more robust. It should be noted that the basic requirements of generating waypoints and

diverting SIM-1 to the new flight path were still achieved.

In summary, the simulations showed that SIM-1 UAS can fly in a stable manner

with basic control laws in place, and the communication links between the SIM-1 UAS

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

52

and the GCS worked properly. The simulations also identified a few minor issues that can

be improved upon in the future.

Table 2. Summary of Simulation Results

Simulation Area Ability to Fly Communication Links between GCS and
SIM-1

Waypoint
Following

Loiter Diversion to a
New Flight Plan

Response to
External Control
Inputs

Yosemite Adhere to
waypoints closely

Able to maintain
stable loiter

Diverted to only
the first waypoint

SIM-1 banked left
according to stick
input

Baylands Adhere to
waypoints, except
for takeoff point

Able to maintain
stable loiter

Diverted to only
the first waypoint

SIM-1 banked left
according to stick
input

Rancho San
Antonio Flying
Field

Adhere to
waypoints, except
for takeoff point

Able to maintain
stable loiter

Diverted to only
the first waypoint

SIM-1 banked left
according to stick
input

Monterey Bay
Academy

Adhere to
waypoints closely

Able to maintain
stable loiter

Diverted and flew
to all 5 waypoints

SIM-1 banked left
according to stick
input

Green means that the objective was fully met.
Orange means that the objective was partially met.

Figure 51. Simulated Quadcopter Diverted to a 5-Point Star-Shaped Flight

Path

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

53

B. ACTUAL FLIGHT TEST RESULTS

Following the SITL simulations, actual flight tests were conducted. According to

Gregory et al., flight testing is conducted to determine the true performance of an aircraft

and uncover any unforeseen issues [34]. For this thesis, flight tests were conducted to

validate the same requirements as in the simulations, i.e., that SIM-1 can fly in a stable

manner, and that the communication links worked properly. Flight tests were conducted

at the Baylands Parks (Figure 52) and the Rancho San Antonio Flying Field (Figure 53)

using an incremental approach. To facilitate subsequent flight tests, checklists were

created in Appendix B for reference.

The first set of flight tests were done at Baylands Park, with basic objectives to

check that SIM-1 was able to take off, fly relatively low and near, and land safely.

Initially, these flights, especially take offs and landings, were conducted manually via the

RC radio transmitter. This was to minimize the amount of risk on SIM-1 in case of

unforeseen circumstances. The flight altitude was capped at about 98 ft (approximately

30 m), and the flight range was within 328 ft (approximately 100 m) of the RC pilot.

These flight tests were carried out successfully. Despite manual takeoff and landings,

SIM-1 was able to fly smoothly without any erratic movements and maintain a stable

loiter (pre-set via QGroundControl) in the operating area. Additionally, QGroundControl

was also used to adjust the loiter zone in terms of flight altitude and position during the

flight. SIM-1 flew to the amended loiter waypoint uneventfully after uploading it via the

GCS.

The second set of flight tests were done at the Rancho San Antonio Flying Field,

with extended objectives to check that SIM-1 was able to fly higher and further while

maintaining similar stable flight characteristics. The flight altitude was capped at about

197 ft (approximately 60 m), and the flight range was within 500 ft (approximately 150

m) of the RC pilot. Again, these flight tests were carried out successfully, as SIM-1 flew

smoothly without any erratic movements and maintained a stable loiter (pre-set via

QGroundControl) in the area. Figure 54 shows SIM-1 maintaining a stable loiter. SIM-1

also flew to an amended loiter waypoint (with different coordinates and altitude)

uneventfully after uploading it via the GCS. Figure 55 and Figure 56 show the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

54

two-dimensional (2D) and 3D flight path taken by SIM-1 in this flight test. The flight

path visualizations were created from log files downloaded from SIM-1 after the flight,

using Flight Review analysis software developed by PX4 Team [35]. This flight test also

verified that SIM-1’s endurance was greater than 30 minutes. It has been estimated that

the 5000 mAh battery would give SIM-1 an endurance of about 45 minutes.

The flight test results showed that SIM-1 was able to fly smoothly and maintain a

stable loiter. This is evidence that the autopilot and the flight controls in place were

configured correctly. The flight tests also demonstrated that the communication links

between SIM-1, the GCS and the RC radio transmitter were fully functional, since the RC

radio and telemetry links worked during the flight tests.

In summary, the flight tests were carried out successfully as SIM-1 demonstrated

stable flight and all communication links functioned properly. There were some minor

issues uncovered in the process, but they did not affect the basic requirements of SIM-1

and could be resolved in a straightforward manner.

Figure 52. Photo of SIM-1 before Take Off at Baylands Park

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

55

Figure 53. Photo of SIM-1 at Rancho San Antonio Flying Field

Figure 54. Photo of SIM-1 (Indicated by Red Arrow) in a Stable Loiter at

Rancho San Antonio Flying Field

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

56

Figure 55. SIM-1 2D Flight Path at Rancho San Antonio Flying Field Flight

Test

Figure 56. SIM-1 3D Flight Path at Rancho San Antonio Flying Field Flight

Test; Flight Path Shows Loiter at Two different Altitudes.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

57

V. SETTING UP FOR MACHINE LEARNING

A. SETTING UP THE CAMERA NODE

In order to utilize SIM-1’s onboard camera, Chesi UAS Solutions set up the GCS

with a ROS node called “nps_drone_cam.” This node was configured to acquire images

from the camera connected to SIM-1. This node was tested using the GCS laptop’s front

facing camera as well. Two associated launch files were also developed to specify the

desired camera via the “roslaunch nps_drone_cam drone_camera.launch” and “roslaunch

nps_drone_cam gcstation_camera.launch” commands, respectively. These launch files

were also utilized to set the desired camera settings such as frames per second, image

height and width, etc. The relevant files can also be found in GitLab [29].

B. SETTING UP THE MACHINE LEARNING (ML) ALGORITHM NODE

According to Kim, “Machine Learning is a kind of Artificial Intelligence and

Deep Learning is a kind of Machine Learning.” He also pointed out that Deep Learning is

a ML technique that employs deep neural networks4 (NN) which have two or more

hidden layers of neurons [36]. Aggarwal explains that convolutional neural networks

(CNN) are a group of deep NN, which were designed to work with grid-structured inputs,

and one of the applications of CNN is to carry out object detection on images. Object

detection is akin to multiple object localizations in a single image [37].

One research objective is to enable SIM-1 to perform object detection tasks while

it is in flight. This would allow SIM-1, after being deployed in an area for surveillance

tasks, to detect specific objects such as vehicles, triggering further actions. The Simulink

model elaborated in Chapter III.A incorporated a feature where a detection flag could

trigger a “stop flying” action. Theoretically, SIM-1 would enter a loiter mode around the

location where the detection event occurred. To test this capability, the CNN algorithm

4 Aggarwal explained that NNs are ML techniques that simulate the mechanism of learning in brain

networks in biological organisms. For the case of ML NN, output(s) is computed from inputs by
propagating the values from the input neurons to the output neurons through the NN weights and biases.
Learning occurs when the weights and biases are adjusted such that the predicted output value(s) converges
to the intended output value(s) as in the case of supervised learning. [33]

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

58

“You Only Look Once” (YOLO) was implemented on the SIM-1 UAS. According to

Redmon et al., YOLO utilizes only one CNN on images to predict the objects’ presence

and locations in the image, unlike other 2-stage CNNs where these two tasks are done

separately. As such, YOLO is relatively fast compared to other CNN algorithms, and it

can work in almost real-time [38]. These advantages make YOLO a suitable starting

algorithm for SIM-1. However, YOLO does suffer in terms of accuracy as compared to

other 2-stage algorithms [38], and hence another algorithm should be considered if

accuracy is the priority. Based on GitHub, other object detection algorithms (such as

DetectNet) have been implemented successfully using ROS as well [39]. As such, these

algorithms should be compatible with SIM-1 as well.

To perform object detection using YOLO, a ROS node was executed on the GCS.

The node source codes and related details are available on GitHub via the Robotics

Systems Lab [40]. The node runs the YOLO algorithm on camera images and videos,

once the “roslaunch darknet_ros yolo_v3.launch” command is run. Specifically, object

detection will be performed on individual camera images, and the detected objects are

published on a ROS topic that describes the type of object, its location in the image, and

the accuracy of the detection [29]. This capability was tested on the ground using the

GCS laptop camera, and object detection was performed as shown in Figure 57. Along

with the bounding boxes around the objects that were detected in the image, their

detection accuracy is also displayed in the terminal. Similar steps can be carried out on

SIM-1 in flight to test out new sensing and guidance capabilities. Unfortunately, there

was a lack of opportunity to conduct flight tests using this capability, and this task will be

explored in future works instead.

In summary, to perform vision-based object detection using the SIM-1 UAS ROS

framework, a camera node and a separate node to launch the CNN algorithm were

required. The capability to perform object detection was tested on ground, but not in

flight. However, successful flight tests demonstrating the communication links between

SIM-1 and its GCS, and successful object detection tests on the ground, strongly suggest

that object detection can be successfully performed in flight. However, there might be

other issues that could surface in flight. One potential issue could be that the instability of

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

59

the non-gimballed camera negatively impacts the quality of the images taken in flight

which may in turn affect the accuracy of object detection.

Figure 57. Object Detection Performed on a Photo, Accuracy of Detection

Shown on Left Terminal

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

60

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

61

VI. CONCLUSION

A. SUMMARY

In this thesis, a new Group 1 fixed-wing UAS, named SIM-1, was assembled,

configured and then flown successfully in simulated and actual test flights. Extensive

simulations were conducted to validate a GNC algorithm development pipeline from

MATLAB/Simulink to ROS to Gazebo. Actual flight tests were conducted to verify the

SIM-1 UAS functionality. The flight tests also identified several practical considerations

regarding the SIM-1 UAS, as detailed in this thesis.

Notably, this thesis explored a waypoint generation and following method that

uses algorithms developed, tested and ported to C++ code using MATLAB/Simulink.

This method provided an avenue and framework for flight testing prototype GNC

algorithms using the SIM-1 UAS. This experimentation framework can be utilized to

support NPS coursework in unmanned systems and controls, as well as supporting

advanced research into novel GNC algorithms.

Lastly, a ML object detection algorithm was incorporated into the system and

shown to work on the ground. This testing strongly indicates that this capability will

function during flight using SIM-1’s onboard camera. As such, the basic objectives of

this thesis were achieved. This also laid the foundation for future research.

B. RECOMMENDATION FOR FUTURE WORKS

Based upon the testing conducted for this thesis, we recommend future research in

the following areas:

1. More Elaborate Guidance, Navigation and Control Algorithm

The basic waypoint following algorithm used in SIM-1 could be expanded to

include full nonlinear path following algorithms using a more accurate 6-DOF model of

the UAS. The enhanced algorithm can then be incorporated in SIM-1 and validated

through flight tests in different conditions such as in an area with obstacles.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

62

2. In-flight Objection Detection

In-flight object detection could be conducted in future flight tests, and this would

open up many options for future research. Several possibilities include the design of

specific responses and/or behaviors such as loitering above a detected object, tracking its

motion, etc.

3. Multiple SIM-1 UASs

QGroundControl can be launched with several drones, and hence could also be

utilized to explore multi-robot coordination or interaction of multiple SIM-1 UAS. So far,

NPS has a fleet of two SIM-1 UAS and one GCS. As such, some possibilities for future

work could be to plan and flight test formation flying involving the two SIM-1 UAS and

then extending to include some unique interactions between the two UAS.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

63

APPENDIX. FLIGHT CHECKLIST

A. PRE-FLIGHT CHECKLIST

1. Ensure all hardware (SIM-1, GCS and peripherals) are brought.

2. Ensure GCS and SIM-1 batteries, including spare ones, are charged up.

3. Pre plan flight test flight paths if possible.

4. Assemble SIM-1 by the following: 1) attach main wings and connect the

aileron control cables, 2) secure the main wings with wing cover and four

screws, 3) attach battery in cockpit compartment and connect battery

cable, 4) attach cockpit cover, and 5) attach and secure propeller.

5. Switch on GCS, and attach telemetry radio antenna to GCS via USB port.

6. Run QGroundControl, ensure that SIM-1 is active and upload flight plan.

7. Take off SIM-1 manually or autonomously.

B. POST-FLIGHT CHECKLIST

1. Check condition of SIM-1.

2. Download flight log from QGroundControl while SIM-1 is active.

3. Disconnect and disassemble SIM-1.

4. Ensure all hardware retrieved and packed.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

64

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

65

LIST OF REFERENCES

[1] Naval Technology. ScanEagle – Mini-UAV (Unmanned Aerial Vehicle), (Aug. 22,
2007). Available: https://www.naval-technology.com/projects/scaneagle-uav/

[2] Asian Military Review. Eyes in the Sky, (Mar. 31, 2021). Available:
https://www.asianmilitaryreview.com/2021/03/eyes-in-the-sky/?amp

[3] Bard College. ScanEagle: A Small Drone Making a Big Impact, (Jan. 6, 2014).
Accessed: Jul. 15, 2023. Available: https://dronecenter.bard.edu/scaneagle-drone/

[4] Naval Postgraduate School, “Center for Autonomous Vehicle Research,”
Accessed Jul. 20, 2023. Available: https://nps.edu/web/cavr

[5] B. P. Keegan, “UAV Position Optimization for Wireless Communications,”
Masters thesis, Dept. of Mech. Eng., Naval Postgraduate School, Monterey, CA,
USA, 2018.

[6] Boeing. ScanEagle. Accessed: Jul. 15, 2023. Available: https://www.boeing.com/
defense/autonomous-systems/scaneagle/index.page

[7] Chesi UAS Solutions, “Drones for R&D,” Accessed Jul. 20, 2023. Available:
https://chesiuassol.com/

[8] United States Air Force Unmanned Aircraft Systems Flight Plan 2009–2047.
United States Air Force, Washington, DC, USA, 2009. Available:
https://www.govexec.com/pdfs/072309kp1.pdf

[9] A. K. Kundu, Aircraft Design. New York, NY, USA: Cambridge University
Press, 2010.

[10] R. K. Schmidt, The Design of Aircraft Landing Gear. Warrendale, PA, USA: SAE
International, 2021.

[11] e-con Systems, “4K HDR Camera for NVIDIA Jetson Xavier NX/ TX2 NX/
Nano,” Accessed: Aug. 2, 23. Available: https://www.e-consystems.com/nvidia-
cameras/jetson-tx2-nx-cameras/ar0821-8mp-hdr-camera.asp

[12] CubePilot, “The Cube Orange+ Standard Set,” Accessed Jul. 16, 2023. Available:
https://www.cubepilot.org/#/cube/specs

[13] Control Hobbies, “Graupner GR-16 8CH 2.4 GHz HoTT Receiver,” Accessed
Aug. 8, 2023. Available: https://www.controlhobbies.com/33508.html

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

66

[14] Control Hobbies, “Graupner mz-12 PRO 12 Channel Telemetry Radio System,”
Accessed Aug. 8, 2023. Available: https://www.controlhobbies.com/s1002-
pro.html

[15] Drone Nodes, “Drone Transmitter and Receiver – Radio Control System Guide,”
Accessed Jul. 17, 2023. Available: https://dronenodes.com/drone-transmitter-
receiver-fpv/

[16] NVIDIA Developer, “Jetson Nano Developer Kit,” Accessed Jul. 17, 2023.
Available: https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[17] IT-Lock, “RFD900x-US Telemetry Bundle (FCC approved), “ Accessed Jul. 17,
2023. Available: https://irlock.com/collections/telemetry-2/products/rfd900-
telemetry-bundle

[18] Thunder Power RC, “TP5000-4SE55,” Accessed Jul. 17, 2023. Available:
https://www.thunderpowerrc.com/collections/5000-mah-2/products/tp5000-
4se55?variant=31080883060800

[19] Open Robotics, “ROS – Robot Operating System,” Accessed Jul. 17, 2023.
Available: https://www.ros.org/

[20] Dronecode, “QGroundControl User Guide,” Accessed Jul. 18, 2023. Available:
https://docs.qgroundcontrol.com/master/en/

[21] Dronecode, “PX4 Software Overview,” Accessed Jul. 18, 2023. Available:
https://px4.io/software/software-overview/

[22] Open Robotics, “Gazebo,” Accessed Jul. 18, 2023. Available:
https://gazebosim.org/features

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Ng, “ROS: An Open-Source Robot Operating System,” ICRA Workshop on
Open Source Software, Jan. 2009, vol. 3.

[24] Dronecode, “MAVROS,” Accessed Jul. 19, 2023. Available: https://dev.px4.io/
v1.10_noredirect/en/ros/mavros_installation.html

[25] Dronecode, “ROS with Gazebo Simulation,” Accessed Jul 19, 2023. Available:
https://dev.px4.io/v1.10_noredirect/en/simulation/ros_interface.html

[26] Dronecode, “MAVLink Developer Guide,” Accessed Aug. 11, 2023. Available:
https://mavlink.io/en/

[27] Open Robotics, “roscpp_tutorials/Tutorials/WritingPublisherSubscriber,”
Accessed Jul. 27, 2023. Available: http://wiki.ros.org/roscpp_tutorials/Tutorials/
WritingPublisherSubscriber

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

67

[28] Open Robotics, “ROSNodeTutorialPython,” Accessed Jul. 27, 2023. Available:
http://wiki.ros.org/ROSNodeTutorialPython

[29] S. Chesi, “Drone Software Configuration and Installation Manual,” unpublished.

[30] Mathworks, “ConfigureToolchain(ToolchainInfo) or Template Makefile Build
Process,” Accessed Jul. 28, 2023. Available: https://www.mathworks.com/help/
rtw/ug/program-builds.html#f1158912

[31] Mathworks, “Manage File Packaging of Generated Code Modules,” Accessed Jul.
28, 2023. Available: https://www.mathworks.com/help/ecoder/ug/generate-code-
modules.html

[32] J. Lim, “PX4-SITL_gazebo-classic/worlds/Yosemite.world,” Accessed Jul. 30,
2023. Available: https://github.com/PX4/PX4-SITL_gazebo-classic/blob/main/
worlds/yosemite.world

[33] J. Lim, “PX4-SITL_gazebo-classic/worlds/baylands.world,” Accessed Jul. 30,
2023. Available: https://github.com/PX4/PX4-SITL_gazebo-classic/blob/main/
worlds/baylands.world

[34] J. W. Gregory, T. Liu, Introduction to Flight Testing. Hoboken, NJ, USA: John
Wiley & Sons, 2021.

[35] PX4 Team, “Flight Review,” Accessed Aug. 17, 2023. Available:
https://logs.px4.io/

[36] P. Kim, MATLAB Deep Learning: With Machine Learning, Neural Networks and
Artificial Intelligence. New York, NY, USA: Springer, 2017.

[37] C.C. Aggarwal, Neural Networks and Deep Learning. Cham, Switzerland:
Springer Nature, 2018.

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[39] H. Shah, J. Singh, “Isaac ROS Object Detection,” Accessed Aug. 8, 2023.
Available: https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_object_detection

[40] Robotics Systems Lab, “YOLO ROS: Real-Time Object Detection for ROS,”
Accessed Aug. 8, 2023. Available: https://github.com/leggedrobotics/darknet_ros

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

68

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

WWW . N P S . E D U

W H E R E S C I E N C E M E E T S T H E A R T O F W A R F A R E

	I. INTRODUCTION
	A. MOTIVATION
	B. PROBLEM STATEMENT
	C. THESIS OBJECTIVES

	II. SYSTEM OVERVIEW, hardware and software
	A. SYSTEM OVERVIEW
	B. sim-1 uas HARDWARE SETUP
	1. Fuselage
	2. The Lift Generation and Control Surfaces and the Tail Assembly
	3. Landing Gear System
	4. Other Parts
	5. Internally Installed Components
	a. Autopilot Flight Controller
	b. RC Radio Transmitter/​Receiver
	c. Onboard Computer
	d. Telemetry Radio
	e. Lithium Polymer (LiPo) Battery

	C. Ground control station
	D. SOFTWARE and software interface
	1. ROS
	2. QGroundControl
	3. PX4 Autopilot Firmware
	4. Gazebo
	5. Software Interfaces

	III. DEVELOPMENT and INTEGRATION OF basic FLIGHT PATH planning and control
	A. Development and INTEGRATION of basic controls
	1. Create a Basic Simulink Model and Control Algorithm
	2. Generate C++ Code from Simulink
	3. Incorporate C++ Code into ROS Node
	4. Test and Validate Concept

	B. planning of flight path
	1. Basic Flight Path Planning Using QGroundControl
	a. Initialize Programs
	b. Create Flight Plan (Take-off, Waypoints and Landing)
	c. Set Flight Parameters
	d. Save and Upload Flight Plan
	e. Fly SIM-1

	2. Waypoint Generation and Following Using Simulink Generated C++ Codes
	a. Define Waypoints and Update MATLAB and Simulink Files
	b. Generate and Incorporate C++ Code from Simulink into ROS Node
	c. Execute Node

	3. Advantages and Disadvantages of Each Method of Flight Path Planning

	IV. SOFTWARE-IN-THE-LOOP SIMULATION AND actual FLIGHT TEST RESULTS
	A. software-in-the-loop simulation
	1. Preparations
	2. Simulation Specifics and Simulation Results
	a. Yosemite National Park

	3. Analysis of Simulation Results and Validation of Simulations

	B. actual flight test results

	V. SETTING UP for MACHINE LEARNING
	A. Setting up the camera node
	B. setting up the machine learning (ML) algorithm node

	VI. CONCLUSION
	A. summary
	B. recommendation for future works
	1. More Elaborate Guidance, Navigation and Control Algorithm
	2. In-flight Objection Detection
	3. Multiple SIM-1 UASs

	APPENDIX. Flight checklist
	A. Pre-flight checklist
	B. post-flight checklist

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST
	Branding_Back Cover File (1).pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

