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ABSTRACT 

 Unmanned aerial systems (UAS) like the ScanEagle have been employed in both 

military and research applications. Despite the ScanEagle’s low cost and operational 

flexibility, its utility for autonomy research is limited due to its proprietary hardware and 

software. With this in mind a new UAS, named SIM-1, was procured. It employs open-

source hardware and software, making it suitable for research and development. 

 In this thesis, the SIM-1 UAS was assembled and successfully flown in simulated 

and actual test flights. Simulations were conducted using Gazebo software, which 

employs a physics-based virtual environment, while flight tests were carried out at local 

flying fields. A basic MATLAB control algorithm was developed for SIM-1, and flight 

paths were planned through the ground control station (GCS). Notably, two methods of 

flight path planning were explored in this thesis. The first method uses open-source GCS 

software, QGroundControl, while the second method uses algorithms developed, tested, 

and ported to C++ code using MATLAB/Simulink. This second method provided an 

avenue for guidance, navigation and control (GNC) prototype algorithms to be flight 

tested rapidly. Finally, SIM-1 was also configured with a machine learning algorithm for 

object detection using its onboard camera payload, which opens up opportunities for 

more advanced research with this UAS platform. 
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I. INTRODUCTION 

A. MOTIVATION 

Unmanned aerial systems (UAS) such as the ScanEagle have been employed by 

the military for intelligence, surveillance, and reconnaissance (ISR) purposes. Users such 

as the United States Marine Corps, the United States Navy and the Singapore Navy have 

incorporated the use of ScanEagle to augment their ISR capabilities [1], [2]. Part of the 

ScanEagle’s “popularity” could be attributed to its low cost, and operational flexibility, as 

pointed out by Gettinger from the Center for the Study of Drone at Bard College. 

Gettinger stated that the ScanEagle drove the development and adoption of unmanned 

technologies due to these reasons [3].  

In addition to its operational use, the ScanEagle has also been used for UAS 

research in the Naval Postgraduate School (NPS). Notably, the NPS Center for 

Autonomous Vehicle Research (CAVR) is dedicated to educating students on unmanned 

vehicle technologies and advancing Naval autonomous vehicle operations. Within 

CAVR, a diverse range of unmanned systems, including the ScanEagle, is deployed for 

research purposes by NPS faculty and students [4]. Benjamin Keegan, for example, used 

the ScanEagle for his masters thesis exploring autonomously positioning UAS as wireless 

communication nodes for optimal communications [5]. 

Despite its advantages, the ScanEagle does have its own limitations. Like other 

proprietary products, ScanEagle’s design, technology and intellectual property rights 

belong to Insitu. Inc. and Boeing as they are its designer and manufacturer [6]. As such, 

user autonomy over the design and functions of their ScanEagle is limited. With this in 

mind, a new UAS, named SIM-1, developed by Chesi UAS Solutions [7], was procured. 

SIM-1 is a commercial off-the-shelf (COTS) product, costs significantly less than the 

ScanEagle, and employs open-source hardware and software. These qualities make it 

suitable for research and development (R&D) purposes. Additionally, the SIM-1 UAS 

can also be equipped with newer technologies such as machine learning (ML) object 

detection algorithm, for more advanced research.  
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B. PROBLEM STATEMENT 

With these motivations, this thesis focuses on answering the following question: 

• How can a low cost, COTS UAS like the SIM-1 UAS be best utilized for 

education (in the form of supporting coursework and laboratory 

instruction) and advanced research (in flight testing novel sensing and 

control algorithms)? 

C. THESIS OBJECTIVES 

To assess the utility of the SIM-1 UAS for these purposes, this thesis evaluates 

and documents the following: 

1. Assemble the SIM-1 UAS with the help of Chesi UAS Solutions. 

2. Develop and integrate basic control laws into the SIM-1 UAS. 

3. Perform flight path planning on the SIM-1 UAS. 

4. Conduct simulated and real-life flight tests of the SIM-1 UAS. 

5. Explore the integration of ML algorithm and utilize the onboard camera 

for object detection.  
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II. SYSTEM OVERVIEW, HARDWARE AND SOFTWARE 

A. SYSTEM OVERVIEW 

The SIM-1 UAS is a fixed-wing UAS, with the following key specifications: 

takeoff weight of 8.4 lbs (3.8 kg), normal operating altitude of below 1200 ft above 

ground level (AGL), and normal operating speed of 29.7 kts. Based on these 

specifications, it is a Group 1 UAS as per the United States Joint UAS Group 

classifications shown in Figure 1 [8]. For comparison, the ScanEagle is a Group 2 UAS 

based on the same categorization.  

The SIM-1 UAS (Figure 2) is a COTS product from Chesi UAS Solutions, and it 

is significantly more cost effective than the ScanEagle. It employs open-source hardware 

and software, which allows greater flexibility in its parts and choice of software. This 

lower cost and flexibility make it ideal for R&D purposes.  

 
Figure 1. Joint UAS Group Classifications. Source: [8]. 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



4 

 
Figure 2. Photo of a Fully Assembled SIM-1 UAS 

B. SIM-1 UAS HARDWARE SETUP 

The hardware of the SIM-1 UAS can be broadly categorized into two categories: 

external parts and internal components. The external assembly comprises the fuselage, 

the lift generation and control surfaces, the tail assembly, the landing gear system and 

various auxiliary parts.  

Internally, the SIM-1 UAS is enabled by key components including the autopilot 

flight controller, remote control (RC) radio transmitter/receiver, onboard computer, 

telemetry radio and lithium polymer (LiPo) battery. 

1. Fuselage 

The fuselage of the SIM-1 UAS is fabricated through injection molding using 

plastic. This fabrication technique and choice of material give lightweight and relative 
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durability properties to the fuselage and the UAS as a whole. Notably, the fuselage was 

built with mounting points for the integration of other components. A partially 

disassembled SIM-1 UAS, with its main parts detached from the fuselage is shown in 

Figure 3. 

 
Figure 3. Photo of a Partially Disassembled SIM-1 UAS  

2. The Lift Generation and Control Surfaces and the Tail Assembly 

The primary lift generating surface of the SIM-1 UAS is its main wing. The main 

wing comprises two pieces, the port half and starboard half, and measures 6.5 ft (1.98 m) 

when assembled. This length is the default length supplied by Chesi UAS Solutions. 

Chesi UAS Solutions also offers wings with a longer wingspan, which translates to a 

larger aspect ratio (AR), which is the ratio of the wingspan over the wing chord length. 

Generally, fixed-wing aircraft whose wings have higher AR, will generate more lift [9], 

thereby giving the aircraft better glide performance. However, the longer wingspan will 

also lead to reduced maneuverability due to the increased moment of inertia that the 
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control surfaces must overcome. The main wing was molded from lightweight and 

durable expanded polyolefin (EPO) material. Prior to flight, the two main wing halves are 

assembled and positioned at the top of the fuselage, which is then secured using the wing 

cover and four screws at the corresponding mounting points, as depicted in Figure 4.  

The tail assembly of the SIM-1 UAS uses a conventional design, comprising two 

horizontal stabilizers and a single vertical stabilizer. These stabilizers share the same 

material as the main wing.  

The SIM-1 UAS is equipped with control surfaces typical of most fixed-wing 

aircraft. These include ailerons on the main wing, and elevators and rudders on the tail 

assembly to provide roll, pitch and yaw controls respectively. They are controlled by the 

flight control computer via actuators. These control surfaces can be seen in Figure 5 and 

Figure 6 respectively.  

 
Figure 4. Photo of the SIM-1 UAS Wing Cover and Mounting Screws 

(Shown in Red Box) 
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Figure 5. Photo of the SIM-1 UAS Aileron (Port Side) (Indicated by Red 

Arrow) 

 
Figure 6. Photo of the SIM-1 Elevators and Rudder (Indicated by Red 

Arrows) 
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3. Landing Gear System 

The landing gear system adopts a tail dragger configuration, also known as the 

conventional configuration. In this configuration, the main landing gears wheels are 

situated in front of the center of gravity, and a single smaller tailwheel is mounted on the 

tail. Schmidt highlighted one advantage of the tail dragger landing gear configuration – 

an overall reduction in weight due to a relatively compact tail gear [10]. Such weight 

saving is especially important to a small UAS like the SIM-1 UAS, where power is 

limited.  

Like other tail dragger aircraft, the SIM-1 UAS rests on the ground with a pitch 

up attitude. This gives the SIM-1 UAS more clearance between the front fuselage and the 

ground and makes the UAS and the front-mounted payload less susceptible to damage 

from ground obstacles.  

However, the tail dragger landing gear configuration poses challenges when the 

aircraft is landing in crosswind condition as compared to a tricycle configuration. 

Schmidt explained that the forces generated by the main wheel cause a destabilizing 

moment in the tail dragger configuration [10]. Figure 7 illustrates the phenomenon. 

 
Figure 7. Stabilization and Destabilization during Crosswind Landing for the 

Tricycle and Taildragger Landing Gear. Source: [10]. 
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4. Other Parts 

Other notable parts are the payload, the propellers, and the cockpit cover. The 

front-mounted payload is a camera system (model: 8MP HDR MIPI CSI-2) from e-con 

Systems, and is capable of capturing 4K resolution images [11]. Figure 8 shows the 

front-mounted camera payload [11].  

The propeller is a 2-bladed fixed pitch propeller, mounted to the electrical motor, 

behind the cockpit and the main wing. Figure 9 shows a photo of the propeller. The 

electrical motor turns the propeller, driving the SIM-1 UAS forward. During takeoff, 

when the forward speed exceeds a certain threshold, enough lift will be generated for the 

UAS to leave the ground.  

Lastly, the cockpit cover (shown in Figure 10) is fitted over the cockpit 

compartment to help the fuselage maintain an aerodynamic profile and protect the 

components that are housed within.  

 
Figure 8. Photo of SIM-1 Front-Mounted Payload (Indicated by Red Arrow) 
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Figure 9. Photo of SIM-1 Propeller (Indicated by Red Arrow) 

 
Figure 10. Picture of SIM-1 Cockpit Cover 

5. Internally Installed Components 

The key components installed in the cockpit compartment of the SIM-1 UAS are 

the autopilot flight controller, RC radio transmitter/receiver, onboard computer, telemetry 

radio and LiPo Battery. 
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a. Autopilot Flight Controller 

The autopilot flight controller installed in SIM-1 UAS is the PixHawk 2.1 Blue 

Cube (shown in Figure 11). It is manufactured by CubePilot in the USA. The PixHawk 

2.1 Blue Cube functions as the brain and sensors of the UAS: sensing the SIM-1 UAS’s 

attitude and altitude and flying the UAS by sending appropriate commands to the motors 

and actuators. The sensing is done through temperature-controlled and shock absorbing 

inertial measurement units (IMUs) which contain accelerometers, gyroscope sensors and 

barometer, to sense accelerations, rate of rotation and altitude respectively. Together with 

the base board, the PixHawk 2.1 Blue Cube provides interfaces with other hardware such 

as antenna, servos, and telemetry modules. Based on the product specifications, the 

PixHawk 2.1 Blue Cube supports different flight modes such as loiter, altitude hold, 

autonomous with waypoints, etc, for a wide variety of UAS. It also supports different 

ground control station (GCS) software such as QGroundControl [12]. These are useful 

for developmental flight tests.  

 
Figure 11. PixHawk 2.1 Blue Cube Autopilot Flight Controller. Source: [12]. 

b. RC Radio Transmitter/Receiver 

For remote control operation, the SIM-1 UAS utilizes a RC radio receiver (model: 

Graupner GR-16 8CH 2.4GHz HoTT) (Figure 12) in the cockpit compartment. This 

receiver functions to receive inputs from the RC radio transmitter (model: Graupner mz-
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12 PRO 12) (Figure 13) on the ground. The transmitter functions like a game controller, 

reading the stick inputs from the user, and sending the signals to the receiver via radio 

frequency (RF) and passing this information to the flight controller to make SIM-1 fly 

correspondingly [15]. This receiver/transmitter set is designed to work within line-of-

sight range.  

 
Figure 12. RC Radio Receiver (Model: Graupner GR-16 8CH 2.4GHz HoTT). 

Source: [13]. 

 
Figure 13. RC Radio Transmitter (Model: Graupner mz-12 PRO 12). Source: 

[14] 
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c. Onboard Computer 

The SIM-1 UAS comes installed with an onboard computer, the NVIDIA Jetson 

NANO developer kit (shown in Figure 14), that has an integrated 128-core Graphics 

Processing Unit (GPU), quad-core Central Processing Unit (CPU) and 4GB of memory. 

It provides dedicated processing power for edge computing so that more advanced tasks 

such as image classification and object detection can be done onboard the UAS [16].  

 
Figure 14. NVIDIA Jetson NANO Developer Kit. Source: [16]. 

d. Telemetry Radio 

The SIM-1 UAS also includes a telemetry radio (model: RF900 Radio (Tx/Rx)) 

(shown in Figure 15). The matching set of radio and antenna is connected to the GCS via 

an USB port. The main function of the telemetry radio is for two-way communication 

between the UAS and the GCS, so that the real-time flight data can be transmitted from 

the UAS to the GCS for display, monitoring and planning. Based on the product 

specifications, the telemetry radios have a range of 9.3 to 24.9 miles (15 to 40 km) [17].  
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Figure 15. Telemetry Radio. Source: [17]. 

e. Lithium Polymer (LiPo) Battery 

The components in the SIM-1 UAS are powered by a 5000 mAh LiPo battery 

(model: TP5000-4SE55) (see Figure 16). A fully charged battery will provide the SIM-1 

UAS an endurance of about 45 minutes with payloads switched on. Based on Chesi UAS 

Solutions, options for using larger capacity batteries are possible. This would provide the 

SIM-1 UAS with more endurance. However, a larger battery also adds additional weight 

to the UAS, and is only advisable for more advanced users as a crash would result in 

greater impact damage to the fuselage and UAS structure. 

 
Figure 16. TP5000-ASE55 LiPo Battery. Source: [18]. 

C. GROUND CONTROL STATION 

The SIM-1 GCS is an MSI gaming laptop with Intel i7 CPU, and dedicated 

NVIDIA GPU (see Figure 17). The GCS uses the Ubuntu 20.04 LTS Linux Operating 
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System (OS). To facilitate communications with the SIM-1 UAS onboard computer, and 

other developmental algorithms, the GCS utilizes the Robot Operating System (ROS), 

QGroundControl GCS software, PX4 autopilot firmware and Gazebo simulation software. 

The GCS communicates with the SIM-1 UAS via telemetry and RF signals. 

Through QGroundControl, some of the key flight parameters can be displayed in near 

real-time on the GCS. The GCS can be used to control the SIM-1 UAS, send new 

mission/flight plans to the UAS, etc. The GCS can also be used to provide live video 

footage from the UAS’s camera.  

The GCS comes with a game controller interface that can be used to simulate 

control inputs in a virtual environment such as Gazebo.  

 
Figure 17. Photo of the GCS and Peripheral Interfaces 
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D. SOFTWARE AND SOFTWARE INTERFACE 

1. ROS 

The GCS is installed with ROS 1, an open-source software development kit, 

which functions as middleware that runs on top of the installed Linux OS. It provides a 

set of tools and libraries to help developers build robotics software applications. One of 

the key utilities of ROS is its communication messaging system, which is useful for intra 

and inter robot communications. This is done by sending messages between 

communication nodes via a publish/subscribe model [19]. The version installed is the 

ROS 1 Noetic Ninjemys, which was developed primarily for Ubuntu 20.04, the OS 

utilized by the GCS laptop. 

2. QGroundControl  

The GCS controls the SIM-1 UAS using QGroundControl (version 4.2.4), 

open-source GCS software that provides a graphical user interface (GUI) for UAS flight 

control and mission planning. See Figure 18 for a snapshot of the QGroundControl GUI. 

QGroundControl supports open-source autopilot firmware such as PX4 (installed in the 

SIM-1 GCS) and ArduPilot. Through QGroundControl, some of the key flight parameters 

can be displayed in near real-time on the GCS. One of the key utilities of 

QGroundControl is the ability for users to plan missions by defining waypoints and 

setting flight paths such as loiter patterns etc. During flight, QGroundControl can also be 

used to monitor flight parameters and alter the flight path as necessary [20].  
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Figure 18. A Snapshot of the QGroundControl GUI 

3. PX4 Autopilot Firmware 

The SIM-1 GCS uses PX4 (version 1.14.0beta) open-source autopilot firmware. It 

is compatible with flight controller hardware such as the Pixhawk series of autopilot 

flight controllers which the SIM-1 UAS is installed with. One of the key utilities is that 

PX4 can work together with flight controllers to provide advanced flight controls such as 

stabilization, attitude control and autonomous flights [21].  

4. Gazebo 

The GCS is installed with Gazebo (version 11.13.0), open-source simulation 

software widely used for robotics development and testing. Gazebo employs a 

three-dimensional (3D) physics-based environment to simulate the behavior of robots 

interacting with realistic forces such as gravity and friction [22]. This is useful for testing 
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robotic software to understand its behaviors before operating in an actual environment. In 

this thesis, the SIM-1 UAS was “flown” in Gazebo, before conducting actual flight tests.  

5. Software Interfaces 

In summary, the GCS is installed with ROS, QGroundControl GCS software, PX4 

autopilot firmware and Gazebo simulation software, and collectively, they provide the 

necessary tools and avenues for basic flying and more advanced algorithm development 

using the SIM-1 UAS.  

At the backbone of the GCS laptop is the Linux OS that manages the hardware 

and software resources within the laptop. ROS then sits on top of the Linux OS as a 

middleware by providing a communication messaging system that sends messages across 

nodes which are akin to ‘software modules’ according to Quigley et al. [23]. This enables 

other software (such as QGroundControl, PX4 and Gazebo) to perform their functions. 

Figure 19 illustrates the software interfaces among the software installed on the GCS. For 

example, the MAVROS package enables communications between ROS, 

MAVLink 1 -enabled autopilots, and MAVLink-enabled GCS, by translating ROS 

messages into MAVLink messages and vice versa. This allows the ROS nodes and the 

corresponding MAVLink enabled software to communicate with one another [24]. The 

ROS/Gazebo/QGroundControl integration with PX4 follows Figure 20, where the PX4 

communicates with the Gazebo simulator to receive simulated sensor data from the 

virtual world and in response sends motor and actuator commands. PX4 then 

communicates with QGroundControl and an application programming interface (API) 

(ROS in this case) to send/receive data to/from the virtual environment [25].  

 
1 MAVLink is lightweight messaging protocol developed specifically for communications with drones 

and between onboard drone components. Data streams are sent / published as topics while configuration 
data such as the mission protocol or parameter protocol are point-to-point with retransmission [26]. 
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Figure 19. Software Interface in the GCS 

 
Figure 20. Communication Links between Software. 
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III. DEVELOPMENT AND INTEGRATION OF BASIC FLIGHT 
PATH PLANNING AND CONTROL 

A. DEVELOPMENT AND INTEGRATION OF BASIC CONTROLS 

Developing and integrating a control algorithm into the SIM-1 UAS can be done 

via various approaches. This thesis studied a method which involves creating a control 

algorithm using MATLAB/Simulink. From this algorithm, a corresponding set of C++ 

codes can then be generated by Simulink. These codes are then integrated into a ROS 

node and executed. This method is useful for students to prototype, simulate and refine 

algorithms as part of their coursework and/or laboratory exercises, before proceeding to 

actual flight tests.  

Alternatively, control algorithms can also be directly coded using programming 

languages such as C++ or Python. These algorithms can then be incorporated into a ROS 

node for utilization within the ROS environment. Such approaches are detailed in 

ROS.org tutorials [27], [28]. 

As a proof of concept, the following steps were carried out in this thesis: 

1. Create a basic Simulink model and control algorithm 

2. Generate C++ code from Simulink 

3. Incorporate the C++ code into ROS node 

4. Test and validate concept 

1. Create a Basic Simulink Model and Control Algorithm 

A basic Simulink model (Figure 21) was created by Chesi UAS Solutions for use 

on the SIM-1 UAS, and the related files can be found in GitLab via https://gitlab.nps.edu/

nps_sim_uas/nps-drones/-/tree/master/nodes/px4_simulink_mavros/src/matlab_simulink 

[29]. Based on the Simulink file, the model consists of two main blocks, the 

“Simulator_Sub” block and the “GNC_Sub” block. The “Simulator_Sub” block is used to 

simulate the system dynamics via a simplified 3 Degree of Freedom (3DOF) model, 

where the UAS is represented as a point mass. The “GNC_Sub” block contains two 
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further sub-blocks, “guidance_sub” and “controller_sub” (Figure 22), which does the 

Guidance and Control tasks for the UAS, respectively. These tasks are achieved by 

referencing the UAS’s current position and velocity vectors, and a matrix of waypoints, 

to determine the next waypoint that the UAS should head towards, and calculate the 

amount of control force required. Proportional and Derivative controllers are 

implemented in the “controller_sub” sub-block. Navigation is not required in this thesis 

as the UAS’s positions are assumed to be known. However, for example in a global 

positioning system (GPS) denied environment, this assumption would become invalid 

and an alternative form of navigation would be required. The flag_detect field is set up to 

enable object detection as described in Chapter V.  

 
Figure 21. Simulink Model for SIM-1 UAS 
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Figure 22. Inside GNC_Sub Block 

2. Generate C++ Code from Simulink 

Prior to the generation of the C++ codes, it is necessary to run the 

“guidance_simulink_init.m” file to initialize the key parameters such as the control gains, 

and the list of desired waypoints. This is also one of the ways to generate and upload a 

list of waypoints to the UAS for flight path planning. After initializing the parameters, it 

is crucial that the configurations in Table 1 are set correctly for the “guidance_sub” 

block. This will ensure that the code is properly generated for subsequent use. The menu 

to do so can be accessed via Modeling -> Model Settings. 
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Table 1. Simulink Code Generation Configurations  

S/N Configurations 
1 Solver -> Solver selection -> Type: Fixed-step 
2 Solver -> Solver selection-> Solver: ode4 (Runge-Kutta) 
3 Hardware Implementation -> Device Type: x86-64 (Linux 64) 
4 Code Generation -> Target selection -> System target file: ert.tlc2 
5 Code Generation -> Target selection -> Language: C++ 
6 Code Generation -> Build Process -> Generate code only (checked) 
7 Code Generation -> Report -> Create code generation report (checked) 
8 Code Generation -> Report -> Open report automatically (checked) 

  

After setting the configurations, the next step is to remove old code files (if any) 

by deleting the folder “guidance_sub_ert_rtw” in the same MATLAB folder. Lastly, use 

the Build button (shown in Figure 23) or the keyboard command Ctrl-B to generate the 

C++ codes. The Code Generation Report (Figure 24) can be used to verify that the code 

has been built correctly, e.g., by comparing the input ports and output ports with the 

Simulink model. In this case, the model was designed to have 5 waypoints for SIM-1 to 

follow, and the resulting dimensions of the waypoints (stated as wps in the model) is 3 by 

5 as seen in Figure 24.  

 
2 Based on Mathworks, the ert.tlc is for embedded systems such as when hardware-in-the-loop testing 

is involved [30].  
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Figure 23. Screenshot of guidance_sub Block with Build Button (Indicated by 

Red Arrow) 

 
Figure 24. Sample Code Generation Report 
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3. Incorporate C++ Code into ROS Node 

The build process will generate a list of files (see left side of Figure 24) in the 

folder, “guidance_sub_ert_rtw” in the same MATLAB folder. Of importance to this step 

are the “guidance_sub.cpp” and “guidance_sub.h,” which contains the control algorithm, 

and data structure respectively [31]. These are to be copied into the 

“px4_simulink_mavros” package folder in the ROS catkin workspace previously created 

on the GCS. Specifically, “guidance_sub.cpp” is to be copied into the “catkin_ws/src/

px4_simulink_mavros/src” folder, while “guidance_sub.h” is to be copied into the 

“catkin_ws/src/px4_simulink_mavros/include” folder. Next, navigate to the root 

directory of the workspace (“~/catkin_ws”) and run the “catkin build” command. This 

will build and compile the “px4_simulink_mavros” package.  

Chesi UAS Solutions wrote a C++ code for a ROS node, “drone_controller.cpp” 

to link the guidance_sub files generated from Simulink to the PX4 flight controller. This 

node integrates the guidance and control algorithm from the Simulink model and 

communicates the commands to PX4 firmware on SIM-1 via MAVROS, which 

implements communications with the autopilot and GCS via MAVLink protocol. The 

specific code can be found in GitLab via https://gitlab.nps.edu/nps_sim_uas/nps-drones/-

/tree/master/nodes/px4_simulink_mavros/src [29].  

4. Test and Validate Concept 

After incorporating the C++ codes in the ROS node per the previous step, the 

node can then be executed via the “rosrun px4_simulink_mavros 

px4_simulink_mavros_node” command. SIM-1 will then fly based on the commands 

from the Simulink model and the control algorithm. QGroundControl and Gazebo can be 

used to validate that this has been implemented successfully. Figure 25 shows a snapshot 

in QGroundControl where SIM-1 was diverted from its original flight path (after 

following a series of pre-planned waypoints, it had begun its landing approach) to head 

towards a single new waypoint (middle of the figure) where it began loitering. This 

diversion occurred as soon as the ROS node was executed, demonstrating that the 
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guidance and control algorithm developed in Simulink had been successfully 

implemented in ROS. 

 
Figure 25. Diversion of SIM-1 from Its Original Flight Plan 

B. PLANNING OF FLIGHT PATH 

In this thesis, two methods of flight path planning were explored: basic flight path 

planning using QGroundControl software, and waypoint generation and following using 

Simulink-generated C++ codes described in Chapter III.A.  

1. Basic Flight Path Planning Using QGroundControl 

The first method of flight path planning utilizes the QGroundControl software 

interface to manually define waypoints, set flight parameters (such as altitude and speed), 

and plan a mission for the SIM-1 UAS. It is summarized below, and the QGroundControl 

user guide can be referred to should more complex planning be required [20].  

1. Initialize programs 

2. Create flight plan (take-off, waypoints and landing) 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



28 

3. Set flight parameters 

4. Save and upload flight plan 

5. Fly SIM-1 

a. Initialize Programs 

First, the GCS software QGroundControl is launched, via the “~/git_repos/nps-

drones/utilities/QGroundControl.AppImage” command, and QGroundControl will 

display the GCS location per Figure 26. Next, navigate to ~/catkin_ws/ in the terminal 

window, and run the “roslaunch flight_simulator single_plane_yosemite.launch” 

command. For convenience, Gazebo, PX4 and MAVROS have been included in the 

launch file (Figure 27 and Figure 28) so they can all be executed by a single command. 

Notably, all three of them are required for the software simulation to work. Once this is 

done, QGroundControl will update itself (Figure 29) to correspond to the Gazebo world 

location (Yosemite National Park3 in this case) specified in the launch file. The Gazebo 

simulation view is shown in Figure 30.  

 
3 Yosemite National Park, was used arbitrarily as the area has been modelled by others for use in 

Gazebo [32]. 
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Figure 26. Initialize QGroundControl Software 

  
Figure 27. “single_plane_yosemite.launch” File (First Part) 
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Figure 28. “single_plane_yosemite.launch” File (Second Part) 

 
Figure 29. Updated QGroundControl Showing SIM-1 at Yosemite National 

Park Area 
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Figure 30. Gazebo Showing SIM-1 in Yosemite National Park Virtual World 

b. Create Flight Plan (Take-off, Waypoints and Landing) 

The first step to creating a flight plan is to use the “Plan” icon in the top left-hand 

corner in QGroundControl. This will open up various options such as loading an existing 

flight plan or designing a plan from scratch (Figure 31). To design a plan from scratch, 

click on “Blank” plan. The second step is to set a takeoff position (Figure 32), followed 

by adding the desired waypoints, and the landing point (Figure 33). It should be noted 

that the SIM-1 UAS (like other fixed-wing aircraft) will require a landing approach to 

land properly. This is made easy in QGroundControl which will automatically set a loiter 

waypoint and a landing approach. In such a setting, the fixed wing drone will loiter at the 

loiter waypoint until the landing conditions are met, before proceeding with its landing 

approach to the desired landing point.  
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Figure 31. Creating a Flight Plan in QGroundControl 

 
Figure 32. Setting a Takeoff Point in QGroundControl 
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Figure 33. Setting Waypoints and Landing Point in QGroundControl 

c. Set Flight Parameters 

One of the most important aspects of designing a flight plan for the SIM-1 UAS 

(or any other fixed-wing aircraft) is to ensure that the flight path is clear of the terrain 

using the Height AMSL graph at the bottom of Figure 33. The key here is to set the flight 

parameters such as the altitude such that SIM-1 stays clear of the terrain. In such a 

condition, the entire flight path will be orange, otherwise the flight path will be red. An 

example is in Figure 34 where the altitude of waypoint 4 was set incorrectly, and the 

corresponding segments of the flight path are shown in red. Such unsafe flight plans are 

not allowed to be uploaded for use by the autopilot. 
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Figure 34. Invalid Flight Plan with Some Red Segments 

d. Save and Upload Flight Plan 

Once the flight plan is complete, it can be saved for subsequent use. This makes 

simulation convenient as the same flight plan can be used repeatably. To ensure that the 

flight plan is being used, it must be uploaded to the SIM-1 autopilot, by pressing “Upload 

Required.” When successfully uploaded, “Done” will be shown near the top of the 

QGroundControl window (Figure 35), and SIM-1 will be ready to fly.  
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Figure 35. Flight Plan Successfully Uploaded to SIM-1, with “Done” Being 

Displayed at the Top 

e. Fly SIM-1 

Once the flight plan is uploaded successfully to SIM-1 (actual or simulated), it is 

ready to fly. Flying is done by dragging the cursor “Slide to confirm” (Figure 36). SIM-1 

will take off from its starting position and head towards the various waypoints (Figure 

37), before making a landing approach. The simulated SIM-1 in Gazebo will also fly 

accordingly (Figure 38). 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



36 

  
Figure 36. “Slide to Confirm” to Fly SIM-1 

 
Figure 37. SIM-1 Flying According to the Flight Plan 
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Figure 38. SIM-1 Flying in Gazebo 

2. Waypoint Generation and Following Using Simulink Generated C++ 
Codes 

The second method of flight path planning that was explored in this thesis 

leverages the Simulink model that was described in Chapter III.A. This method also 

involves manually defining waypoints and uploading them to the SIM-1 UAS. As an 

example, a new flight path comprising 5 waypoints is used. Broadly, this flight path 

planning method involves the following steps: 

1. Define waypoints and update MATLAB and Simulink files. 

2. Generate and Incorporate C++ code from Simulink into ROS node. 

3. Execute node. 

a. Define Waypoints and Update MATLAB and Simulink Files 

This method is based on the premise that the waypoint coordinates of the flight 

path are known. The coordinates can stem from operational needs or simulation and 

testing requirements. The coordinate system that is used in the Simulink model follows a 

Local Tangent Plane (LTP) coordinate system, specifically the East, North, Up (ENU) 

coordinate system. Of note, the origin of the coordinate system is the position of the 
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SIM-1 UAS when it connects with the GCS and becomes active in QGroundControl. The 

waypoint coordinates are set relative to this origin. The associated MATLAB and 

Simulink files are to be updated with these waypoints coordinates and the waypoint 

matrix dimensions. Specifically, the “guidance_simulator_init.m” is to be updated with 

the waypoint coordinates, as shown in Figure 39 for the five waypoints in this example. 

Each column represents the x, y and z coordinates of a waypoint. A total of five columns 

corresponds to five waypoints. The corresponding waypoint signal port dimensions in 

“guidance_sub” needs to be updated as well (Figure 40). These steps will ensure that the 

specified waypoint coordinates are built into the C++ code for subsequent use. 

 
Figure 39. Updated “guidance_simulator_init.m” with the Waypoint 

Coordinates 
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Figure 40. Updated Waypoint Signal Port Dimensions 

b. Generate and Incorporate C++ Code from Simulink into ROS Node 

This step is to generate C++ code from the updated Simulink model, and follows 

the steps in Chapter III.A.2. Next, the C++ code from the updated Simulink model is 

incorporated into a ROS node, following the steps in Chapter III.A.3 plus an additional 

step to update the “drone_controller.cpp” code with the coordinates of the five waypoints 

and increasing the number of elements in the waypoint matrix to 15, as shown in Figure 

41 and Figure 42 respectively. It should be noted that in the C++ code, each row 

represents the x, y and z coordinates of a waypoint. Since MATLAB stores these 

coordinates in a column, the waypoint matrix needs to be transposed in the C++ code. 
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Figure 41. Updated Waypoints’ Coordinates in “drone_controller.cpp” 
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Figure 42. Updated Number of Waypoint Elements in “drone_controller.cpp” 

c. Execute Node  

This step involves executing the updated ROS node follows the steps in Chapter 

III.A.4. Upon executing the “rosrun px4_simulink_mavros px4_simulink_mavros_node” 

command, the SIM-1 UAS (actual or simulated) will divert from its original flight path 

and fly the new flight path comprising five waypoints instead. Figure 43 displays a 

QGroundControl screenshot from a simulated flight when SIM-1 diverted from its 

original flight path shortly after waypoint three, and followed a 5-point star-shaped flight 

path. 
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Figure 43. SIM-1 Diverted from Original Flight Path and Followed a 5-Point 

Star-Shaped Flight Path 

3. Advantages and Disadvantages of Each Method of Flight Path 
Planning 

Each of these two flight path planning methods has advantages and disadvantages. 

The first method of utilizing the QGroundControl interface to perform basic flight 

path planning ensures that an executable flight path is generated. For example, 

QGroundControl automatically creates a proper landing approach based on the UAS 

hardware, and QGroundControl prevents users from ignoring the effects of terrain 

(described in Chapter III.B.1.c.). Additionally, flight path planning in QGroundControl is 

intuitive and users can visualize the flight path against the terrain easily. However, the 

manual flight path planning with QGroundControl may be cumbersome for complex 

flight paths comprising large number of waypoints.  

On the other hand, the second method uses algorithms developed, tested, and 

ported to C++ code using Simulink. As a result, users must have a better understanding of 

flight requirements such as take-off and landing, to properly design a set of viable flight 
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path waypoints, a task which QGroundControl handles automatically. Using Simulink 

and C++ code is also less intuitive than the graphical approach used in QGroundControl. 

However, the Simulink and C++ code method allows more sophisticated guidance, 

navigation and control (GNC) algorithms to be integrated. Hence, it also provides an 

avenue for GNC prototype algorithms to be swiftly integrated and flight tested rapidly. 

Consequently, the SIM-1 UAS can then be utilized for education in the form of 

supporting UAS coursework and advanced research by flight testing novel GNC 

algorithms at NPS. 

In summary, the first method using QGroundControl for flight path planning is 

more suitable for beginners, while the second method using C++ code gives more user 

autonomy and capability but is also more complex.  
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IV. SOFTWARE-IN-THE-LOOP SIMULATION AND ACTUAL 
FLIGHT TEST RESULTS  

A. SOFTWARE-IN-THE-LOOP SIMULATION 

For this thesis, basic software-in-the-loop (SITL) simulations were carried out to 

validate the following basic requirements: 

• The SIM-1 UAS can fly in a stable manner with basic control laws in 

place. 

• The communication links between the SIM-1 UAS and the GCS are 

configured and working properly. 

These simulations were carried out before actual flight testing. The advantages of 

conducting simulations are that they are relatively easy to execute and can be utilized to 

reveal and resolve any software related issues. 

1. Preparations 

To facilitate SITL simulations, the following steps are required: 1) Setting up the 

Ground Control Station (Chapter II.C.), 2) Setting up the software (Chapter II.D.), 3) 

Developing and incorporating basic controls (Chapter III.A.) and 4) Planning of flight 

path (Chapter III.B.). The details of these steps are found in the respective chapters in this 

thesis.  

Additionally, the Gazebo simulation environment must be set up. This includes 

choosing or creating a Gazebo virtual world for the simulation. For this thesis, a total of 

four worlds were used, 1) Yosemite National Park, 2) Baylands Park, 3) Rancho San 

Antonio Flying Field, and 4) Monterey Bay Academy. The Yosemite National Park and 

Baylands Parks worlds were created by J. Lim and are available online in GitHub [32], 

[33]. The Rancho San Antonio Flying Field was included in this thesis as flight testing 

was conducted there. Finally, Monterey Bay Academy was included because this area can 

support more regular flight test activities, due to partnership agreement with the NPS 

Consortium for Robotics and Unmanned Systems Education and Research (CRUSER). 
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However, it should be noted that the third and fourth worlds are empty worlds that have 

not yet been populated in Gazebo. Since there is ample air space in each area without 

obstructions, exact virtual replicas of these areas are not crucial. However, when more 

regular flight testing takes place at Monterey Bay Academy, future student can model this 

area so that more representative flight simulations can be conducted. 

A launch file was created to run Gazebo, PX4 and MAVROS at the same time. As 

mentioned in Chapter III.B.1.a., the launch file starts Gazebo using the Yosemite 

National Park world model, together with the other software modules. In order to run 

simulations in other areas, a new launch file can be created to specify the desired world, 

e.g. “baylands.world” (Figure 44) or “empty_monterey.world” (Figure 45) if a pre-built 

Gazebo world is not available. In the specified world file, the latitude and longitude of its 

LTP coordinate frame origin must be stipulated (Figure 46) so that the correct location 

will be loaded. The latitude and longitude shown in Figure 46 are located at the Monterey 

Bay Academy.  

 
Figure 44. “bayland.launch” File which Loads the “bayland.world” 

 
Figure 45. Launch File which Loads a New World 
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Figure 46. Snippets of the New World File, Stipulating the Latitude and 

Longitude of Monterey Bay Academy 

2. Simulation Specifics and Simulation Results 

For this thesis, basic simulations were done to validate: 1) SIM-1’s ability to 

perform waypoints following and loitering behaviors in various Gazebo worlds, 2) 

communication links between the SIM-1 UAS and the GCS by diverting SIM-1 from its 

original flight plan to a new flight plan uploaded from the GCS, and 3) SIM-1’s correct 

response to manual controls inputs via a game controller.  

a. Yosemite National Park 

Once QGroundControl and the launch file are run, QGroundControl (with the 

pre-loaded flight plan) and Gazebo windows will appear (Figure 29 and Figure 30 

respectively) for the Yosemite National Park simulation. Figure 47 (top left) shows the 

basic flight plan that SIM-1 will execute in the simulation. The simulation was carried 
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out, and SIM-1 was able to follow the intended flight path closely without drifting and 

was able to hold a stable loiter of radius 50m (Figure 47 top right). Next, Figure 47 

(bottom left) shows SIM-1 being diverted from its original flight path to a new waypoint 

at its starting position. This was executed using the method described in Chapter III.B.2. 

Lastly, Figure 47 (bottom right) shows that SIM-1 was being controlled manually via 

inputs from an external game controller. SIM-1 was seen performing a left bank which 

corresponded to a left stick input on the right joystick. 

Similar simulations were done in the other three virtual worlds: Baylands Park, 

Rancho San Antonio Flying Field, and Monterey Bay Academy. Their respective 

simulation flight plan and simulation results are shown in Figures 48, 49 and 50 

respectively.  

 
Figure 47. SIM-1 Simulation Flight Plan and Results for Yosemite National 

Park 
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Figure 48. SIM-1 Simulation Flight Plan and Results for Baylands Park 

 
Figure 49. SIM-1 Simulation Flight Plan and Results for Rancho San Antonio 

Flying Field  
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Figure 50. SIM-1 Simulation Flight Plan and Results for Monterey Bay 

Academy 

3. Analysis of Simulation Results and Validation of Simulations 

Table 2 summarizes the simulation results. The simulation results are largely 

satisfactory, as most of the requirements are met. Notably, SIM-1 managed to maintain a 

stable loiter and respond correctly to external control inputs in all four simulations. This 

was expected as the simulation environment has no significant effect on SIM-1’s ability 

to fly unless it contains obstacles such as trees or mountains that may affect the flight 

path.  

For the Baylands Park and Rancho San Antonio Flying Field simulations, it was 

noted that SIM-1 transited to its second waypoint before reaching its specified takeoff 

point. A review of the QGroundControl documentations and open source discussions did 

not yield clear reasons for why this happened. However, the author postulates that the 

algorithm may have been designed to optimize the flight path for a fixed wing UAS to 

approach the next waypoint during takeoff. Specifically, for Baylands Park and Rancho 

San Antonio Flying Field, the angle that the second waypoint makes with the takeoff 

‘trajectory’ is an acute angle, whereas the same angle for the other two simulation areas 

were at least 90 degrees. Perhaps the standard flight path planner deliberately causes the 
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UAS to head for the next waypoint to achieve a shorter and hence faster path, instead of 

flying all the way to the stipulated takeoff point before making a wider turn towards the 

second waypoint. While this seems like a trivial and beneficial feature of the 

QGroundControl software, it may cause potential issues with the steeper altitude gradient 

when such unintended ‘diversions’ occur. However, based on observations of these 

simulations, the flight trajectories are smooth. As such, it is likely that the software 

algorithm has taken care of this aspect.  

In terms of diversion to a new flight plan, with the exception of the Monterey Bay 

Academy simulation, the other three simulations did not complete the full flight path 

which involved flying into a 5-point star-shaped flight path. The SIM-1 UAS in these 

three simulations were observed to be making small loiter around the first waypoint set at 

(0, 0, 0) (the starting point), and did not proceed to the next four waypoints. Similar 

simulations were conducted on a quadcopter model under varying conditions, and these 

aircraft were able to achieve the desired 5-point star-shaped flight path. An example of 

the quadcopter simulation can be found in Figure 51. After a review of the C++ code 

setup for flight path diversion, the author postulated that the issue could be with the 

threshold that was set before the UAS satisfies the condition to fly to the next waypoint. 

This threshold is a comparison of the distance of the drone to the current waypoint. The 

difference between the quadcopter and the fixed wing drone flights is that the former will 

fly directly to the current waypoint while the latter would loiter around that same 

waypoint. And in a loiter, the distance between the drone and its waypoint does not 

decrease; hence, since the condition to fly to the next waypoint cannot be met, the loiter 

continues indefinitely. This behavior is unsatisfactory in a real-life operational scenario, 

as the UAS would not be able to reach the stipulated waypoint(s) and perform its 

intended role. To resolve this issue, the waypoint generation method (described in 

Chapter III.B.2) should be improved so that the waypoint following algorithm can be 

more robust. It should be noted that the basic requirements of generating waypoints and 

diverting SIM-1 to the new flight path were still achieved.  

In summary, the simulations showed that SIM-1 UAS can fly in a stable manner 

with basic control laws in place, and the communication links between the SIM-1 UAS 
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and the GCS worked properly. The simulations also identified a few minor issues that can 

be improved upon in the future. 

Table 2. Summary of Simulation Results 

Simulation Area Ability to Fly Communication Links between GCS and 
SIM-1 

Waypoint 
Following 

Loiter Diversion to a 
New Flight Plan 

Response to 
External Control 
Inputs 

Yosemite Adhere to 
waypoints closely 

Able to maintain 
stable loiter 

Diverted to only 
the first waypoint 

SIM-1 banked left 
according to stick 
input 

Baylands Adhere to 
waypoints, except 
for takeoff point 

Able to maintain 
stable loiter 

Diverted to only 
the first waypoint 

SIM-1 banked left 
according to stick 
input 

Rancho San 
Antonio Flying 
Field 

Adhere to 
waypoints, except 
for takeoff point 

Able to maintain 
stable loiter 

Diverted to only 
the first waypoint 

SIM-1 banked left 
according to stick 
input 

Monterey Bay 
Academy 

Adhere to 
waypoints closely 

Able to maintain 
stable loiter 

Diverted and flew 
to all 5 waypoints 

SIM-1 banked left 
according to stick 
input 

Green means that the objective was fully met. 
Orange means that the objective was partially met. 

 
Figure 51. Simulated Quadcopter Diverted to a 5-Point Star-Shaped Flight 

Path 
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B. ACTUAL FLIGHT TEST RESULTS 

Following the SITL simulations, actual flight tests were conducted. According to 

Gregory et al., flight testing is conducted to determine the true performance of an aircraft 

and uncover any unforeseen issues [34]. For this thesis, flight tests were conducted to 

validate the same requirements as in the simulations, i.e., that SIM-1 can fly in a stable 

manner, and that the communication links worked properly. Flight tests were conducted 

at the Baylands Parks (Figure 52) and the Rancho San Antonio Flying Field (Figure 53) 

using an incremental approach. To facilitate subsequent flight tests, checklists were 

created in Appendix B for reference. 

The first set of flight tests were done at Baylands Park, with basic objectives to 

check that SIM-1 was able to take off, fly relatively low and near, and land safely. 

Initially, these flights, especially take offs and landings, were conducted manually via the 

RC radio transmitter. This was to minimize the amount of risk on SIM-1 in case of 

unforeseen circumstances. The flight altitude was capped at about 98 ft (approximately 

30 m), and the flight range was within 328 ft (approximately 100 m) of the RC pilot. 

These flight tests were carried out successfully. Despite manual takeoff and landings, 

SIM-1 was able to fly smoothly without any erratic movements and maintain a stable 

loiter (pre-set via QGroundControl) in the operating area. Additionally, QGroundControl 

was also used to adjust the loiter zone in terms of flight altitude and position during the 

flight. SIM-1 flew to the amended loiter waypoint uneventfully after uploading it via the 

GCS.  

The second set of flight tests were done at the Rancho San Antonio Flying Field, 

with extended objectives to check that SIM-1 was able to fly higher and further while 

maintaining similar stable flight characteristics. The flight altitude was capped at about 

197 ft (approximately 60 m), and the flight range was within 500 ft (approximately 150 

m) of the RC pilot. Again, these flight tests were carried out successfully, as SIM-1 flew 

smoothly without any erratic movements and maintained a stable loiter (pre-set via 

QGroundControl) in the area. Figure 54 shows SIM-1 maintaining a stable loiter. SIM-1 

also flew to an amended loiter waypoint (with different coordinates and altitude) 

uneventfully after uploading it via the GCS. Figure 55 and Figure 56 show the 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



54 

two-dimensional (2D) and 3D flight path taken by SIM-1 in this flight test. The flight 

path visualizations were created from log files downloaded from SIM-1 after the flight, 

using Flight Review analysis software developed by PX4 Team [35]. This flight test also 

verified that SIM-1’s endurance was greater than 30 minutes. It has been estimated that 

the 5000 mAh battery would give SIM-1 an endurance of about 45 minutes.  

The flight test results showed that SIM-1 was able to fly smoothly and maintain a 

stable loiter. This is evidence that the autopilot and the flight controls in place were 

configured correctly. The flight tests also demonstrated that the communication links 

between SIM-1, the GCS and the RC radio transmitter were fully functional, since the RC 

radio and telemetry links worked during the flight tests.  

In summary, the flight tests were carried out successfully as SIM-1 demonstrated 

stable flight and all communication links functioned properly. There were some minor 

issues uncovered in the process, but they did not affect the basic requirements of SIM-1 

and could be resolved in a straightforward manner.  

 
Figure 52. Photo of SIM-1 before Take Off at Baylands Park 
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Figure 53. Photo of SIM-1 at Rancho San Antonio Flying Field 

 
Figure 54. Photo of SIM-1 (Indicated by Red Arrow) in a Stable Loiter at 

Rancho San Antonio Flying Field 
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Figure 55. SIM-1 2D Flight Path at Rancho San Antonio Flying Field Flight 

Test 

 
Figure 56. SIM-1 3D Flight Path at Rancho San Antonio Flying Field Flight 

Test; Flight Path Shows Loiter at Two different Altitudes. 
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V. SETTING UP FOR MACHINE LEARNING 

A. SETTING UP THE CAMERA NODE 

In order to utilize SIM-1’s onboard camera, Chesi UAS Solutions set up the GCS 

with a ROS node called “nps_drone_cam.” This node was configured to acquire images 

from the camera connected to SIM-1. This node was tested using the GCS laptop’s front 

facing camera as well. Two associated launch files were also developed to specify the 

desired camera via the “roslaunch nps_drone_cam drone_camera.launch” and “roslaunch 

nps_drone_cam gcstation_camera.launch” commands, respectively. These launch files 

were also utilized to set the desired camera settings such as frames per second, image 

height and width, etc. The relevant files can also be found in GitLab [29]. 

B. SETTING UP THE MACHINE LEARNING (ML) ALGORITHM NODE 

According to Kim, “Machine Learning is a kind of Artificial Intelligence and 

Deep Learning is a kind of Machine Learning.” He also pointed out that Deep Learning is 

a ML technique that employs deep neural networks4 (NN) which have two or more 

hidden layers of neurons [36]. Aggarwal explains that convolutional neural networks 

(CNN) are a group of deep NN, which were designed to work with grid-structured inputs, 

and one of the applications of CNN is to carry out object detection on images. Object 

detection is akin to multiple object localizations in a single image [37]. 

One research objective is to enable SIM-1 to perform object detection tasks while 

it is in flight. This would allow SIM-1, after being deployed in an area for surveillance 

tasks, to detect specific objects such as vehicles, triggering further actions. The Simulink 

model elaborated in Chapter III.A incorporated a feature where a detection flag could 

trigger a “stop flying” action. Theoretically, SIM-1 would enter a loiter mode around the 

location where the detection event occurred. To test this capability, the CNN algorithm 

 
4 Aggarwal explained that NNs are ML techniques that simulate the mechanism of learning in brain 

networks in biological organisms. For the case of ML NN, output(s) is computed from inputs by 
propagating the values from the input neurons to the output neurons through the NN weights and biases. 
Learning occurs when the weights and biases are adjusted such that the predicted output value(s) converges 
to the intended output value(s) as in the case of supervised learning. [33] 
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“You Only Look Once” (YOLO) was implemented on the SIM-1 UAS. According to 

Redmon et al., YOLO utilizes only one CNN on images to predict the objects’ presence 

and locations in the image, unlike other 2-stage CNNs where these two tasks are done 

separately. As such, YOLO is relatively fast compared to other CNN algorithms, and it 

can work in almost real-time [38]. These advantages make YOLO a suitable starting 

algorithm for SIM-1. However, YOLO does suffer in terms of accuracy as compared to 

other 2-stage algorithms [38], and hence another algorithm should be considered if 

accuracy is the priority. Based on GitHub, other object detection algorithms (such as 

DetectNet) have been implemented successfully using ROS as well [39]. As such, these 

algorithms should be compatible with SIM-1 as well. 

To perform object detection using YOLO, a ROS node was executed on the GCS. 

The node source codes and related details are available on GitHub via the Robotics 

Systems Lab [40]. The node runs the YOLO algorithm on camera images and videos, 

once the “roslaunch darknet_ros yolo_v3.launch” command is run. Specifically, object 

detection will be performed on individual camera images, and the detected objects are 

published on a ROS topic that describes the type of object, its location in the image, and 

the accuracy of the detection [29]. This capability was tested on the ground using the 

GCS laptop camera, and object detection was performed as shown in Figure 57. Along 

with the bounding boxes around the objects that were detected in the image, their 

detection accuracy is also displayed in the terminal. Similar steps can be carried out on 

SIM-1 in flight to test out new sensing and guidance capabilities. Unfortunately, there 

was a lack of opportunity to conduct flight tests using this capability, and this task will be 

explored in future works instead. 

In summary, to perform vision-based object detection using the SIM-1 UAS ROS 

framework, a camera node and a separate node to launch the CNN algorithm were 

required. The capability to perform object detection was tested on ground, but not in 

flight. However, successful flight tests demonstrating the communication links between 

SIM-1 and its GCS, and successful object detection tests on the ground, strongly suggest 

that object detection can be successfully performed in flight. However, there might be 

other issues that could surface in flight. One potential issue could be that the instability of 
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the non-gimballed camera negatively impacts the quality of the images taken in flight 

which may in turn affect the accuracy of object detection.  

 
Figure 57. Object Detection Performed on a Photo, Accuracy of Detection 

Shown on Left Terminal 
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VI. CONCLUSION 

A. SUMMARY 

In this thesis, a new Group 1 fixed-wing UAS, named SIM-1, was assembled, 

configured and then flown successfully in simulated and actual test flights. Extensive 

simulations were conducted to validate a GNC algorithm development pipeline from 

MATLAB/Simulink to ROS to Gazebo. Actual flight tests were conducted to verify the 

SIM-1 UAS functionality. The flight tests also identified several practical considerations 

regarding the SIM-1 UAS, as detailed in this thesis.  

Notably, this thesis explored a waypoint generation and following method that 

uses algorithms developed, tested and ported to C++ code using MATLAB/Simulink. 

This method provided an avenue and framework for flight testing prototype GNC 

algorithms using the SIM-1 UAS. This experimentation framework can be utilized to 

support NPS coursework in unmanned systems and controls, as well as supporting 

advanced research into novel GNC algorithms. 

Lastly, a ML object detection algorithm was incorporated into the system and 

shown to work on the ground. This testing strongly indicates that this capability will 

function during flight using SIM-1’s onboard camera. As such, the basic objectives of 

this thesis were achieved. This also laid the foundation for future research.  

B. RECOMMENDATION FOR FUTURE WORKS 

Based upon the testing conducted for this thesis, we recommend future research in 

the following areas: 

1. More Elaborate Guidance, Navigation and Control Algorithm 

The basic waypoint following algorithm used in SIM-1 could be expanded to 

include full nonlinear path following algorithms using a more accurate 6-DOF model of 

the UAS. The enhanced algorithm can then be incorporated in SIM-1 and validated 

through flight tests in different conditions such as in an area with obstacles.  
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2. In-flight Objection Detection 

In-flight object detection could be conducted in future flight tests, and this would 

open up many options for future research. Several possibilities include the design of 

specific responses and/or behaviors such as loitering above a detected object, tracking its 

motion, etc. 

3. Multiple SIM-1 UASs 

QGroundControl can be launched with several drones, and hence could also be 

utilized to explore multi-robot coordination or interaction of multiple SIM-1 UAS. So far, 

NPS has a fleet of two SIM-1 UAS and one GCS. As such, some possibilities for future 

work could be to plan and flight test formation flying involving the two SIM-1 UAS and 

then extending to include some unique interactions between the two UAS.  
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APPENDIX. FLIGHT CHECKLIST 

A. PRE-FLIGHT CHECKLIST 

1. Ensure all hardware (SIM-1, GCS and peripherals) are brought. 

2. Ensure GCS and SIM-1 batteries, including spare ones, are charged up. 

3. Pre plan flight test flight paths if possible. 

4. Assemble SIM-1 by the following: 1) attach main wings and connect the 

aileron control cables, 2) secure the main wings with wing cover and four 

screws, 3) attach battery in cockpit compartment and connect battery 

cable, 4) attach cockpit cover, and 5) attach and secure propeller. 

5. Switch on GCS, and attach telemetry radio antenna to GCS via USB port. 

6. Run QGroundControl, ensure that SIM-1 is active and upload flight plan. 

7. Take off SIM-1 manually or autonomously. 

B. POST-FLIGHT CHECKLIST 

1. Check condition of SIM-1. 

2. Download flight log from QGroundControl while SIM-1 is active. 

3. Disconnect and disassemble SIM-1. 

4. Ensure all hardware retrieved and packed. 
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