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NUMERICAL INTEGRATION OF THE EIKONAL EQUATION WITH STOCHASTIC 
REFRACTIVE INDEX  

1. INTRODUCTION

     This report outlines the development of numerical methods for solving the Eikonal equation.  The 
Eikonal equation is a non-linear partial differential equation (PDE) describing the evolution of wavefronts 
related to wave theory and the general theory of hyperbolic PDEs [1].  This work is part of a larger effort 
to research, understand, and develop stochastic ray equation solvers suitable for application to radio 
frequency (RF) propagation and scattering.  More generally, the development of stochastic Maxwell’s 
equations solvers [2].  The classical ray paths can be thought of as flow lines of the wavefront gradient, 
these two mathematical objects being deterministically connected, see Figure 1.   

Figure 1 – Relationship between wavefronts (black), ray paths (blue), and the normal vectors (red) to the 
surface. 

Conceptually, one might expect that adding stochastic noise to the ray equation would produce 
Brownian paths due to the noise introducing random kicks to the ray momentum akin to a random walk.  
One driver of this work is to investigate to what extent the classical descriptions of the wavefront and the 
ray path remain connected when stochastic effects are introduced, as well as to determine the most reliable 
numerical approach to developing prediction codes for stochastic propagation.  The types of questions that 
come to mind include: 

(1) Can stochastic rays be used to build a stochastic wavefront?
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(2) Can a stochastic Eikonal be differentiated in some sense to generate stochastic ray paths? 
(3) Are the two procedures mentioned in (1) and (2) compatible and commutative to all orders? 
(4) Does the conjugate point theorem generalize to the stochastic system, allowing one to predict the 

onset of caustics? 
 
This last question will be discussed in more detail at the end of section 2 and constitutes one of the major 
drivers of this research.  
 
     The first step is understanding how to numerically solve the Eikonal and develop and stable convergent 
solver, the primary results presented in this report.  The remainder of the report is organized as follows.  
Chapter 2 presents a derivation of the Eikonal from several different approaches and discussed how they 
relate to each other.  Chapter 3 contains an overview of several methods for numerically solving the Eikonal 
equation.  Chapter 4 presents benchmarking results for the classical Eikonal and ray theory with toy model 
refractive profiles that have known exact solutions.  Chapter 5 discusses the introduction of stochasticity 
into the environment through the refractive index.  Chapter 6 contains a discussion and summary.  An 
appendix is included that contains a derivation supporting some of the results in chapter 5. 
 

2. THE EIKONAL 
 
     In this section the Eikonal equation, the classical ray equation, and their derivation are discussed.  
Readers may be familiar with both of these concepts from optics, RF propagation, or acoustics.  Despite its 
ubiquitous nature in every field of study where wave propagation is encountered there seems to be some 
misunderstanding (or dogma) regarding what these equations represent.  For brevity, lengthy derivations 
will not be presented and the reader is referred to the literature for details.  The purpose of this section is to 
provide an overview of the multiple ways the Eikonal and ray theory appear and how these different 
representations are similar and, more importantly, where they differ from one another.  The presentation 
will be in the form of a discussion with enough depth to support following sections and the main motivation 
of the research.  Also discussed in this section are, how rays are used to develop estimates of a full field 
solution in some cases, and the relationship between ray theory and differential geometry. 
 

2.1 Classical Derivation 
 
The most common approach to deriving the Eikonal and ray equations is through the high frequency 

approximation of the scalar Helmholtz equation, Eq. (1).  
 

∇2𝜓𝜓 + 𝑘𝑘2𝑛𝑛2𝜓𝜓 = 0 (1) 
 

The reader is referred to chapter 2 of Kravtzav and Orlav [3], and page 21-22 of Foreman [4] for details on 
this derivation.  This presentation mixes notation from both references, which are otherwise very similar.  
The following quantities are defined, the wavenumber, 𝑘𝑘 = 𝜔𝜔 𝑐𝑐0⁄ , and the refractive index, 𝑛𝑛 = 𝑐𝑐0 𝑐𝑐⁄ .  The 
Helmholtz equation is derived from the second order wave equation by assuming a time harmonic source 
with angular frequency 𝜔𝜔.  The refractive index can be a function of position through its local dependence 
on the wave speed, 𝑐𝑐(𝑥⃑𝑥).  The reference speed, 𝑐𝑐0, is constant and usually taken to be the speed of light in 
vacuum.   A solution of the form presented in Eq. (2) is assumed. 
 

𝜓𝜓 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 �
𝐴𝐴𝑚𝑚

(𝑖𝑖𝑖𝑖)𝑚𝑚

∞

𝑚𝑚=0

 (2) 
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Applying Eq. (2) to Eq. (1) and setting each factor of each unique power of 𝑘𝑘 to zero leads to a 
hierarchy of equations. 
 

∇��⃑ 𝜑𝜑 ∙ ∇��⃑ 𝜑𝜑 = 𝑛𝑛2

2∇��⃑ 𝐴𝐴0 ∙ ∇��⃑ 𝜑𝜑 + 𝐴𝐴0∇2𝜑𝜑 = 0
2∇��⃑ 𝐴𝐴1 ∙ ∇��⃑ 𝜑𝜑 + 𝐴𝐴1∇2𝜑𝜑 = −∇2𝐴𝐴0

⋮
2∇��⃑ 𝐴𝐴𝑚𝑚 ∙ ∇��⃑ 𝜑𝜑 + 𝐴𝐴𝑚𝑚∇2𝜑𝜑 = −∇2𝐴𝐴𝑚𝑚−1

 (3) 

 
The lowest order term is the classic Eikonal equation.  The next order can be converted into a total 

vanishing divergence, ∇��⃑ ∙ �𝐴𝐴02∇��⃑ 𝜑𝜑� = 0.  It is customary to define trajectories in space that are flow lines of 
the Eikonal gradient, ∇��⃑ 𝜑𝜑 ≡ 𝑑𝑑𝑟𝑟 𝑑𝑑𝑑𝑑⁄ , known as ray paths.  The parameter 𝑠𝑠 is arc-length along the ray.  Ray 
are often parameterized using other independent variables such as time or some other monotonically 
increasing quantity.  Varying this first order non-linear and using the original equation as a constraint leads 
to a second or ordinary differential equation (ODE) for these paths, the classic ray equation, the form of the 
ray equations presented here echo that found in Kravtzav and Orlav [3].   

 
𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝑝⃑𝑝

𝑑𝑑𝑝⃑𝑝
𝑑𝑑𝑑𝑑

=
1
2
∇��⃑ 𝑛𝑛2

 (4) 

 
The parameter 𝜏𝜏 is related to arc-length, 𝑠𝑠, by 𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑.  A single non-linear first order PDE for the 

phase surfaces in all of space has been replaced with a second order quasi-linear ODE that must be solved 
multiple times (really an infinite number of times) to describe points on the Eikonal surface.  The next order 
term in the expansion, with the help of the Eikonal, can be massaged into the form of a conservation law.  
Integrating this leads to the law of geometric spread of a cross sectional area of a ray bundle, and that the 
first order amplitude is nothing more than the inverse root of this geometric spread factor.  Formally, the 
geometric spread is the determinant of the Jacobian obtained by differential the ray path coordinates with 
respect to initial conditions.  Denoting the geometric spread factor by 𝐷𝐷 a first order estimate for the field 
at some point down range from a point source along a specific ray path is 𝜓𝜓~ exp 𝑖𝑖𝑖𝑖𝑖𝑖 √𝐷𝐷⁄ . 

With these ingredients one can develop a procedure for estimating the total field anywhere in space, 
including boundaries, by the method of ray tracing.  In the frequency domain, one gathers all rays that 
connect a source point to a field point (or receiver), referred to as eigen-rays.  The travel time, 𝑡𝑡, along each 
eigen ray is evaluated to produce the phase, 𝜃𝜃 = 𝑘𝑘𝑘𝑘 ≡ 𝜔𝜔𝜔𝜔, and the geometric spread is calculated to provide 
the first order amplitude factor, 𝑎𝑎.  This can be numerically intensive as it requires tracing many rays and 
numerical differentiation or solving an augmented set of equations that include a transport equation for the 
spreading factor.  A complete description of each contribution requires tracking discrete phase shifts due to 
(1) boundary interactions, and (2) formation of caustics along the ray path.  With all this accounting 
complete the total field at the field point is ∑ 𝑎𝑎𝑛𝑛 exp 𝑖𝑖𝜃𝜃𝑛𝑛𝑁𝑁

𝑛𝑛=1 , where the index sums over all eigen-rays.  This 
approach has been successful in optics, acoustics, seismology, and all fields of research where high 
frequency wave propagation is considered as long as the field point is not too close to a caustic. 

In free space, rays from a point source will diverge from each other with a geometric spread factor of 
~𝑅𝑅2 in all directions, leading to a field value, away from the source, of ~ exp 𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅⁄ , with 𝜏𝜏 = 𝑅𝑅 𝑐𝑐⁄ .  In 
this trivial example the first two terms in the expansion reproduce the correct field at all points in space and 
for all frequencies, the solution being identical to the frequency domain Green’s function.  When position 
dependent refraction and/or boundaries are present an eigen-ray analysis to first order will not generally 
produce a complete field at the field point, but rather an approximation.  These environmental factors can 
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cause enhanced focusing (or defocusing) of the wavefront away from the source, as if a lens was present.  
When focusing occurs, the first order ray approximation can break down at special points causing an infinite 
amplitude (zero geometric spread) in the vicinity of the focal region.  This unphysical behavior is called a 
caustic.  The focusing effect is physical but the infinite amplitude predicted by first order ray theory is not 
physical.  There are well known methods to correct for this behavior by including higher order terms from 
the expansion.  An early approach by Ludwig expands the wave equation near the caustic, providing 
correction terms that lead to a finite amplitude in all regions of space [5].  More recent advances include 
Gaussian beam tracing where the initial equations include more complexity and track various amplitude 
factors along the ray path [6].  A take away from this discussion on the ray theory approach is that despite 
its apparent simplicity and intuitive appeal, constructing full field solutions from ray traces can be very 
tricky, involving a lot of accounting and a slew of correction factors each requiring more numerical work.   

However, despite these criticisms, there is something consistent in the theory.  Namely the Eikonal.  
The zeroth order term in the expansion incurs no corrections as a function of frequency, indicating that 
whatever information is contained in it is valid at all frequencies.  This information is related to the travel 
time of an impulsive source from source to receiver along each eigen-ray. 
 

This section closes with a comment on “covariant” forms of the Eikonal.  The starting point in this 
section was the Helmholtz equation in the frequency-domain, suitable for time-harmonic sources.  Rather 
than start with Helmholtz, the full scalar wave equation is used as the starting point. 
 

∇2𝜓𝜓 −
1
𝑐𝑐2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕2

= 0 (5) 

 
Equation (5) is the standard form of the wave equation, but for both optics and acoustics it is a derived 
equation and not fundamental.  Rather than work with this form a covariant version, Eq. (6), is employed.  
In some cases it is possible to reorganize terms on the fundamental field equations to create a covariant 
form of the wave equation [7]. 
 

𝐷𝐷𝜇𝜇𝐷𝐷𝜇𝜇𝜓𝜓 =
1

�−𝑔𝑔
𝜕𝜕𝜇𝜇�−𝑔𝑔 𝑔𝑔𝜇𝜇𝜇𝜇𝜕𝜕𝜈𝜈𝜓𝜓 = 0 (6) 

 
The factor of 𝑔𝑔𝜇𝜇𝜇𝜇 in Eq. (6) is the contravariant metric tensor, and 𝑔𝑔 its determinant.  The metric can arise 
from (1) expressing the second order derivative operator in terms of general curvilinear coordinates [8], (2) 
actual curvature of space-time (as occurs in relativistic astrophysics) [9], or (3) the emergence of an 
effective metric described by coordinate dependent environmental factors (e.g. refractive index) [10].  The 
covariant form takes some getting used to but, in the end, is easier to manipulate mathematically.  It arises 
naturally from the study of light propagating in a curved space-time where gravity (space-time curvature) 
creates lensing effects, bending light rays and creating other aberrations.  It also arises in the study of 
acoustics in a moving fluid, where analog models of black holes are predicted in super fluid Helium 
providing a possible laboratory testbed for investigating Hawking radiation [11, 12].  For the study of 
electromagnetic propagation it is natural to appeal to the tensor form of Maxwell’s equations in a source 
free region, which are manifestly covariant. 
 

𝐷𝐷𝜇𝜇𝐹𝐹𝜇𝜇𝜇𝜇 = 0 (7) 
 
To facilitate the derivation, Eq. (6) will be employed but it is noted that the same results emerge from Eq. 
(7), see reference [9].  The basic steps are the same, with the exception that the fields in Eq. (2) are functions 
of position and time, resulting in the following covariant version of Eq. (3). 
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𝑔𝑔𝜇𝜇𝜇𝜇 ∂𝜇𝜇𝜑𝜑 ∂𝜈𝜈𝜑𝜑 = 0
𝐷𝐷𝜇𝜇�𝐴𝐴02 ∂𝜇𝜇𝜑𝜑� = 0

2𝑔𝑔𝜇𝜇𝜇𝜇 ∂𝜇𝜇𝐴𝐴1 ∂𝜈𝜈𝜑𝜑 + 𝐴𝐴1𝐷𝐷2𝜑𝜑 = −𝐷𝐷2𝐴𝐴0
⋮

2𝑔𝑔𝜇𝜇𝜇𝜇 ∂𝜇𝜇𝐴𝐴𝑚𝑚 ∂𝜈𝜈𝜑𝜑 + 𝐴𝐴𝑚𝑚𝐷𝐷2𝜑𝜑 = −𝐷𝐷2𝐴𝐴𝑚𝑚−1

 (8) 

   
Clearly, using Eq. (7) will produce a different set of equations in terms of second rank field tensors, but the 
first two equations are common to all approaches (see Chapter 3 of [13]).  Namely that the Eikonal equation 
represents the wavefronts and the first order amplitude is related to the geometric spread of the ray paths.  
Defining a Hamiltonian from the Eikonal equation and varying this, with 𝑔𝑔𝜇𝜇𝜇𝜇 ∂𝜇𝜇𝜑𝜑 ≡ 𝑑𝑑𝑥𝑥𝜈𝜈 𝑑𝑑𝑑𝑑⁄ , produces a 
version of the ray equation that is identical to the geodesic equation in 4D space-time defined by the metric, 
𝑔𝑔𝜇𝜇𝜇𝜇 and its inverse 𝑔𝑔𝜇𝜇𝜇𝜇.  In terms of the ray paths, the Eikonal equation is a constraint that requires the ray 
path momentum to have zero magnitude in 4D, known as the null constraint.  In the covariant form, rays 
are space-time paths of zero length, called null-geodesics [1, 10-12].  A comment about the metric 
introduced in Eq. (6) and the refractive index is appropriate here.  In the covariant form of these equations 
the material properties are contained in the effective metric, i.e. the local wave speed 𝑐𝑐(𝑥𝑥𝜇𝜇) is contained in 
𝑔𝑔𝜇𝜇𝜇𝜇.  An example of an effective metric, Eq. (9), and the geodesic equation, Eq. (10), are provided below. 
 

𝑔𝑔𝜇𝜇𝜇𝜇 = �−1 𝟎𝟎𝑻𝑻
𝟎𝟎 𝑐𝑐2𝐈𝐈𝟑𝟑

� (9) 

 
 

𝑑𝑑2𝑥𝑥𝜇𝜇

𝑑𝑑𝑑𝑑2
+ Γ𝛼𝛼𝛼𝛼

𝜇𝜇 𝑑𝑑𝑥𝑥𝛼𝛼

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥𝛽𝛽

𝑑𝑑𝑑𝑑
= 0 (10) 

 
In Eq. (10) the factors Γ𝛼𝛼𝛼𝛼

𝜇𝜇  are the Christoffel symbols of the second kind, derived from the effective metric 
in Eq. (9) and 𝜆𝜆 is referred to as an affine parameter along the geodesic path (not to be confused with 
wavelength) [7].  In Eq. (9) 𝐈𝐈𝟑𝟑 is the 3 by 3 identity matrix and 𝟎𝟎 a column vector of zeros. 
 
 

2.2 Method of Characteristics 
 

Another approach to deriving the Eikonal is by applying the method of characteristics to Maxwell’s 
equations.  The details a beyond the scope of this report and the reader is referred to the literature, especially 
Courant and Hilbert Volume II [1].  Briefly, this method can be applied to any quasi-linear system of PDEs 
describing general conditions for a solution to exist away from a hyper-surface of initial data, called a 
Cauchy surface.  The method does not assume, or require, a series expansion in frequency or any other 
parameter, rather using general coordinate transformations to cast the systems of PDEs in coordinates near 
the Cauchy surface.  The method applies to PDEs in the time domain so no transform or assumption about 
sources being mono-chromatic are necessary.  Maxwell’s equations are hyperbolic in nature and the method 
gives rise to the familiar light cone structure encountered in relativity.  The characteristic surfaces are 
surfaces on which future values are evaluated after taking a small step away from the initial surface, a 
process that can be repeated to develop a full solution in space-time except near points where the surface is 
ill-defined.  These surfaces are referred to as ‘Characteristic surfaces’ and the flow lines along which the 
initial surface is propagated called bicharacteristics.  The characteristic surfaces and bicharacteristic curves 
are in one-to-one correspondence with the wavefronts and rays described in the previous section.  When 
the environmental parameters are functions of spatial coordinates and time the bicharacteristics are 
geodesics of a pseudo-Riemannian manifold where the metric tensor components are functions of the same 
parameters, e.g. permittivity and permeability or refractive index.  Bicharacteristics are curves along which 
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jump discontinuities in the fields will propagate.  In contrast, the frequency-domain description of previous 
section is more suitable for describing continuous waves.  An example of the equation for the characteristic 
and bicharacteristic are presented below.   
 

∇��⃑ 𝜑𝜑 ∙ ∇��⃑ 𝜑𝜑 −
1
𝑐𝑐2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

= 0 (11) 

 
The method of characteristics typically leads to multiple characteristic conditions, in many cases the same 
condition repeated multiple times.  A partial Hamiltonian is defined by each characteristic factor and 
momentum variables defined by 𝑝⃑𝑝 ≡ ∇��⃑ 𝜑𝜑 and 𝑝𝑝0 ≡ 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ , where the time component, 𝑝𝑝0, may be thought 
of as generalized energy.  Variation of the above equation leads to an equation for the bicharacteristics as 
null-geodesics of a Lorentzian manifold where the local wave speed 𝑐𝑐(𝑥⃑𝑥, 𝑡𝑡) creates an effective metric 
tensor, Eq. (10) of section 2.1.  Although the field is not directly expressed in terms of the hyper-surface 𝜑𝜑 
is it generally identified with the wavefront and the bicharacteristics with rays.  Like the covariant Eikonal 
approximation used by Visser [12] and Perlick [13], this approach maintains the intrinsic general covariance 
of the classical ray paths.  In fact, rays follow the same curves as photons, massless particles, in relativity, 
namely null geodesics.      
 
 

2.3 Exact Eikonal 
 

Section 2.1 presented the classic frequency-domain derivation of the high frequency expansion of the 
Helmholtz equation and the ray equations derived from them while section 2.2 presented the results of 
applying the method of characteristics to Maxwell’s equations.  This section offers yet another point of 
view related to ray theory called the “exact” Eikonal by Terry Foreman [14].  The original work by T. 
Foreman was published in acoustics but is applicable to optics and other wave phenomenon.  The field is 
described by an amplitude and a phase, 𝜓𝜓 = 𝐴𝐴𝑒𝑒𝑖𝑖Ф, and a set of coupled equations derived from the 
Helmholtz equation, Eq. (1). 
 

∇��⃑ Ф ∙ ∇��⃑ Ф = 𝑘𝑘2𝑛𝑛2 +
∇2𝐴𝐴
𝐴𝐴

2
∇��⃑ 𝐴𝐴
𝐴𝐴
∙ ∇��⃑ Ф + ∇2Ф = 0

 (12) 

 
The key feature of this approach is that there is no approximation and all components of the field are present 
in the description.  The second equation can be written as a total divergence, ∇��⃑ ∙ �𝐴𝐴2∇��⃑ Ф� = 0.  One take 
way from the original work is that “exact rays” have a conserved quantities to all orders, in contrast to 
classical ray theory which does contain a conserved quantity to first order.  Another very useful feature of 
the exact rays is that they do not cross and do not develop caustics, an artifact of classical ray theory and 
the method of characteristics, and exist in classical shadow zones [14].   
 

A similar approach in optics that includes the polarization of the electromagnetic field was recently 
published by Nichols et al [15, 16].  The electric field is described by a second order wave equation with 
the following description, where 𝜌𝜌, 𝜑𝜑, and 𝛾𝛾 are functions of position, following their notation. 

 

𝐸𝐸�⃑ = 𝜌𝜌1/2𝑒𝑒𝑖𝑖(𝑘𝑘0𝑧𝑧+𝜑𝜑) �
cos 𝛾𝛾
sin 𝛾𝛾

0
� (13) 
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The form of the field is designed to describe propagation along the z-axis, with x and y defined as transverse 
coordinates.  The corresponding Eikonal for this field is presented below in slightly different form, with 
2𝜂𝜂 = 𝑛𝑛2 − 1 and ∇��⃑ 𝑋𝑋�⃑  a transverse gradient operator. 
 

∇��⃑ 𝑋𝑋�⃑ 𝜑𝜑 ∙ ∇��⃑ 𝑋𝑋�⃑ 𝜑𝜑 + 2𝑘𝑘0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇��⃑ 𝑋𝑋�⃑ 𝛾𝛾 ∙ ∇��⃑ 𝑋𝑋�⃑ 𝛾𝛾 −
∇��⃑ 𝑋𝑋�⃑
2𝜌𝜌1/2

𝜌𝜌1/2 − 2𝑘𝑘02𝜂𝜂 = 0 (14) 

 
The complete set of equations was solved in [16] for an ideal test case demonstrating ray path bending in 
free space due to a specific initial polarization state.  
 

Lastly, a covariant version of Eq. (12) is presented.  To the authors’ knowledge this has not been 
presented in the literature.  The derivation is quite simple, staring with Eq. (6) and using the same form for 
𝜓𝜓 with amplitude and phase each a function of space-time coordinates.   
  

𝑔𝑔𝜇𝜇𝜇𝜇𝜕𝜕𝜇𝜇Ф∂𝜈𝜈Ф −
𝐷𝐷2𝐴𝐴
𝐴𝐴

= 0

𝐷𝐷𝜇𝜇�𝐴𝐴2 ∂𝜇𝜇Ф� = 0
 (15) 

 
The first equation is a 4D covariant “exact” Eikonal and the second represents a covariant conserved 4-
current. 
 

2.4 Summary of Ray Theory and the Eikonal 
 

This section summarizes the previous sections, pointing out similarities and differences between all 
approaches that claim to lead to the Eikonal and what they represent.  The geometric significance of the 
covariant form is discussed along with unique symmetries present in the covariant form that are not present 
at all or not obvious in other forms of the Eikonal.  Finally, the rational and justification for the selection 
presented in this research is given.   

The reader may be naturally perplexed at the variety of Eikonals presented in this section.  This 
summary should help shed light on the nature of each.  The method of characteristics is a general method 
for solving systems of PDEs on any background space, or space-time.  Regardless of whether one develops 
an “exact Eikonal” to describe the field or chooses to work with an asymptotic expansion, the resulting full 
solutions must evolve from one characteristic surface to another along bicharacteristics.  The individual 
pieces of the solution do not, but the total solution must.  If one inspects the high frequency expansion of 
the wave equation, classical Eikonal, the following should be realized.  Even though there are an infinite 
number of terms required to build up the field as a series, the Eikonal incurs no corrections.  It contains 
information that is truly universal to all orders. 

A feature of the covariant classical Eikonal (or characteristic and bicharacteristic) is that it exhibits 
several properties that the original field equations may not.  The first, is general covariance.  In section 2.1 
the time-domain wave equation and a covariant version of the same (equations (5) and (6) respectively) 
were introduced.  The wave equation in Eq. (5) is not invariant under general coordinate transforms, 
however Eq, (6) is manifestly invariant.  Regardless, the Eikonal and ray equation derived from either 
equation obey general covariance.  This same feature is seen in acoustics in a moving fluid where the 
original equations do not respect Lorentz symmetry, or general covariance, but the resulting wavefronts 
and rays do when expressed in the time-domain.  The common feature of the second order wave equation, 
Maxwell’s field equations, and the equations of fluid dynamics is that they are all examples of hyperbolic 
PDE systems.  The method of characteristics, section 2.2, provides the most general approach to arriving at 
this common result. 
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The high frequency approximations do contain a conserved quantity along the classical ray path but 
higher order amplitude terms are not individually conserved, whereas the Exact Eikonals, Eqs. (12) and 
(15), have a property that is fully conserved along the “exact” ray path.  These new, “exact”, paths are not, 
in general, the same as the classical rays.  Which path is “correct”?  Both.  This apparent paradox is 
eloquently addressed in Foreman’s work for the scalar acoustic field [14].  Briefly, the disparity arises from 
the fact that classical rays are best suited for describing short pulses, i.e. propagation of impulses, and the 
exact ray path is better suited for continuous waves.  A significant difference between these approaches is 
that the classical ray paths will provide a travel time for the leading edge of pulse along all paths that 
connect the source to a receiver.  These will correspond to observed delay times seen in a data collection 
system when environmental effects cause arrival of more than one copy of the pulse due to ray path bending 
and boundary interactions.  This type of information is not contained in the exact ray path.  In contrast, it is 
well known that classical ray theory breaks down at caustics and offers no amplitude estimate in shadow 
zones (without higher order corrections), whereas exact rays penetrate shadow zones providing a means to 
predict evanescent field strength.  Another significant difference appears in the geometric interpretation of 
rays as null-geodesics.  Both the high frequency expansion and the method of characteristics lead to the 
same Eikonal and ray path structure, which is well understood to be described by Lorentzian differential 
geometry with an effective metric tensor [1].  The exact Eikonals presented here do not share this 
interpretation.  The first ray equation presented in Eq. (4) does not appear to be a null-geodesic equation 
and trying to demonstrate this is difficult.  However, starting from the geodesic equation it is rather easy to 
arrive at Eq. (4) by a series of parameter changes and conformal transforms [17].  The difficulty in 
recognizing Eq. (4) as a null geodesic has led to a failure to see the benefits of new properties, including 
symmetries, in optics and acoustics and benefit from these.  These are discussed in the remaining 
paragraphs. 

For this research the classical ray and Eikonal are selected.  This is due to their being described as 
geodesics and the benefits that accompany this description and for the connection to predicting travel time.  
First note that the Eikonal structure will exhibit general covariance regardless of whether or not the original 
field equation has general covariance.  This is a general feature of all hyperbolic PDEs.  Based on this it is 
clear that the classical Eikonal is missing some information about the field but what information it does 
contain obeys general covariance as well as several other features now described.  As an example, the 
equations for an inviscid, isentropic, Newtonian fluid are not generally covariant with respect to space-time 
coordinate transforms or Lorentz transformations, but they do comprise a hyperbolic PDE system and the 
characteristic surfaces and bicharacteristics form null structures in space-time [1, 10].  Adding the constraint 
that the fluid be irrotational leads to a truly covariant wave equation like that in Eq. (6) [11, 12].  A 
consequence of being a null-hypersurface or a null-geodesic is that the geometry of these objects is 
completely immune to a conformal transformation, a transformation in which the metric is multiplied by 
an arbitrary positive definite scalar field.  Conformal symmetry is a form of gauge symmetry arising from 
a continuous group of transformation and can be used to create a continuum of equivalent equations for the 
same set of rays [17].  In addition to conformal symmetry, the geometric form of the classical ray equation 
can be analyzed using Killing’s theorem to identify isometries [18].  An isometry is a “rigid” symmetry of 
the geometry and directly related to a conserved quantity along the ray paths, e.g. momentum or energy.  
The frequency domain ray equation, Eq. (4), can be elevated to a null geodesic path in 4D with some 
mathematical gymnastics but this does not appear to be its natural home and the presence of conformal 
symmetry and isometry are not manifestly apparent.  Once the covariant geometric form is identified the 
geometric spread is determined by geodesic deviation [10].  Through this set of equations, the focusing 
and/or defocusing of a ray bundle is measured by the Riemann curvature tensor induced by the local 
refractive index.  Including the geodesic deviation equation with the ray equation produces a full set of 
“dynamic” ray equations that solve the amplitude factor as a transport equation along the ray path, in 
contrast to traditional methods that numerically differentiate ray bundles.  Related to this, the Riemann 
curvature tensor provides a means to predict with some certainty when and where caustics will form along 
ray paths by the conjugate point theorem [19, 20].  The value to using the covariant form for all hyperbolic 
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PDEs lie in the fact that all of these features; isometry, conformal symmetry, the geodesic and deviation 
equations, and the conjugate point theorem, are all the same regardless of what type of field is being 
described.  The geometric view provides a one stop shop for all classic ray theory, and ray trace 
implementation needs.  One of the primary questions that this research seeks to address is how to generalize 
these concepts to ray paths in stochastic environments.  A summary of this chapter is provided in Table 1. 
 

Table 1 – List of all Eikonals, their origin(s), and references  

Eikonal Versions 
Type Approach Equation Geodesic Sources 

C
la

ss
ic

al
 

Helmholtz, Eq. (1) �∇��⃑ 𝜑𝜑�
2

= 𝑛𝑛2 No Kravtsov & Orlov [3] 

Covariant Wave Equation, Eq.(6) 

�∂𝜇𝜇𝜑𝜑�
2 = 0 Yes 

Unruh [11], Visser [12] 

Maxwell’s Equation, Eq. (7) Schneider et al [9], Perlick [13] 

Method of Characteristics Courant & Hilbert [1] 

Ex
ac

t Helmholtz, Eq. (1) Eq. (10) No Foreman [4, 14] 

Covariant Wave Equation, Eq.(6) Eq. (13) No This text 
 
 

3. NUMERICAL METHODS FOR THE EIKONAL EQUATION 

As discussed in section 2, solving the Eikonal equation is a fundamental problem in wave mechanics. 
Although the Eikonal is often derived from a high frequency expansion of the Helmholtz equation its 
solutions, which encode the phase of the wave, actually provide insight at all frequencies. Thus, 
characterizing how solutions to the Eikonal vary in a noisy environment is a key issue for understanding 
wave propagation in random or fluctuating media in a variety of contexts.  Due to its non-linear structure, 
it is difficult to treat the stochastic Eikonal equation analytically and numerical methods are needed. There 
are three broad classes of suitable methods: 

• Level-set methods. These essentially simulate the propagation of a wavefront according to the 
Huygens-Fresnel principle. The wavefront is tracked by following level sets, e.g. where 
𝜙𝜙(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Although intuitive to understand and straightforward to implement, these are 
not efficient and can suffer from numerical instabilities [21, 22]. 

• Ray tracing. The ray tracing approach arises from applying the method of characteristics to 
the Eikonal equation. As the name suggests, one imagines sourcing a ray at point 𝑞𝑞 with 
“momentum” (direction) 𝑝𝑝 and then (𝑞𝑞,𝑝𝑝) evolve according to a coupled set of 1st order 
differential equations that depend on the index of refraction 𝑛𝑛(𝑞𝑞) and its gradient. The actual 
Eikonal, i.e 𝜙𝜙, is then determined by integrating the travel time along each ray. Individual ray 
trajectories can be solved efficiently and accurately but in stochastic, inhomogeneous 
environments it is necessary to do a “dense” ray-trace which is more demanding [23, 24]. 

• Fast-marching methods. The so-called fast-marching method is the preferred technique for 
finding global solutions to the Eikonal equation. This approach is motivated by the insight that 
𝜙𝜙(𝑥𝑥) encodes the shortest travel time from the source (point or boundary) to 𝑥𝑥. Thus, the 
travel time to each point can be built up in a “greedy” fashion by first determining the shortest 
travel time to all nearby points that are closer to the source (like Dijkstra’s shortest-path 
algorithm). Given this basic principle, different implementations use different approximations 
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for the travel time between volume elements and different heuristics for the order in which 
nodes are visited [21, 22]. 

More details on all three methods, include the specific implementation of each used for generating the 
data in this report, are provided below. 

 
3.1 Level-set Method 

Recalling 𝜙𝜙 as the phase of the wave-field, the time evolution of 𝜙𝜙 is given by: 𝜕𝜕𝑡𝑡𝜙𝜙(𝑥⃗𝑥, 𝑡𝑡) +
𝑛𝑛(𝑥⃗𝑥)|∇𝜙𝜙(𝑥⃗𝑥)| = 0. Adopting a spatial discretization labeled by 𝑥⃗𝑥𝑖𝑖, this equation can clearly be 
approximately solved by the finite-difference rule: 

 

𝜙𝜙(𝑥⃗𝑥𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡) = 𝜙𝜙(𝑥⃗𝑥𝑖𝑖 , 𝑡𝑡) − Δ𝑡𝑡 ⋅ 𝑛𝑛(𝑥⃗𝑥𝑖𝑖)|∇𝜙𝜙(𝑥⃗𝑥𝑖𝑖 , 𝑡𝑡)| (16) 

 
where 𝜙𝜙(𝑥⃗𝑥𝑖𝑖 , 0) is given as the initial data.  To propagate a planar wavefront, for example, one may specify 
𝜙𝜙((0,𝑦𝑦𝑖𝑖),0) = 0 for 𝜙𝜙((𝑥𝑥𝑖𝑖 > 0,𝑦𝑦𝑖𝑖),0) = 1.  The difficulty in implementing this solution lies in accurately 
determining |∇𝜙𝜙(𝑥⃗𝑥𝑖𝑖 , 𝑡𝑡)|.  Estimating gradients in finite-element schemes is generically challenging, but 
here there is an additional subtlety: an “upwind difference” scheme must be used, or non-physical 
discontinuities in the phase will develop [21].  Essentially, care must be taken to propagate the wavefront 
away from the region through which it has already passed.  Concretely, the simplest way to define an 
upwind difference is calculate the gradient at 𝑥𝑥𝑖𝑖 only in “upwind” directions, i.e. towards points with a 
smaller phase. In 2D, 
 
𝑎𝑎|∇𝜙𝜙(𝑥⃗𝑥𝑖𝑖 , 𝑡𝑡)| = (max(𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) − 𝜙𝜙(𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑖𝑖), 0)2 +  min(𝜙𝜙(𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑖𝑖) − 𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 0)2

+  max(𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) − 𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖−1), 0)2 +  min(𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖+1) − 𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 0)2)
1
2 

 
(17) 

where 𝑎𝑎 is the length scale of the chosen discretization. Generalizations to 3D are straightforward, and more 
sophisticated upwind difference estimates may also be employed.  A basic implementation of the level set 
method is quite computationally expensive, since the gradient must be evaluated at grid point every time 
step and 𝑂𝑂(𝐿𝐿) time steps must be taken to fully propagate the front, where 𝐿𝐿 is the number of grid points 
along one direction of the system. This leads to a complexity of 𝑂𝑂(𝐿𝐿𝑑𝑑+1), where 𝑑𝑑 is the spatial dimension 
[21]. We will see below this compares unfavorably to the fast-marching method. 

In numerical tests of simulating the propagation of plane waves through lenses, the level-set method 
was found to be significantly slower and less accurate than the fast-marching method. Therefore, it was not 
applied to the study of stochastic environments.   
 

3.2 Ray Tracing 
 
There are many excellent references on ray-tracing, see [23, 24].  Details only relevant to numerical 

studies on solving the Eikonal equation in a stochastic environment are reviewed here.  For reasons that 
will be clear when the model for stochasticity is discussed, the following parametrization of the refractive 
index is chosen, 𝑛𝑛(𝑞⃑𝑞) =  𝑒𝑒𝜂𝜂(𝑞𝑞�⃑ ) (note this is > 0 as long as 𝜂𝜂 is real).  In the arc-length parametrization of 
the ray equations, this leads to particularly nice expressions for the ray position 𝑞⃑𝑞 and direction 𝑝⃑𝑝.  The 
variable 𝑞⃑𝑞 is chosen to specify points on the ray path, where as 𝑥⃑𝑥 labels arbitrary points in space. 

 
𝑞̇⃑𝑞 = 𝑝⃑𝑝 

𝑝̇⃑𝑝 = ∇��⃑ 𝜂𝜂 − 𝑝⃑𝑝�∇��⃑ 𝜂𝜂 ⋅ 𝑝⃑𝑝� 
(18) 
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The length of 𝑝⃑𝑝 is conserved in this formulation, which makes it convenient to choose a fixed 𝑑𝑑𝑑𝑑 for 

an Euler-like solution (it also provides a good additional check on convergence). In practice, it was found 
that (at least for the benchmarks and stochastic environments considered) the basic implicit midpoint 
method worked best for numerical integration.  
 

3.3 Fast-marching Method 
 

The fast-marching method (FMM) finds the viscosity solution to the static Eikonal equation 
|∇𝜙𝜙(𝑥⃗𝑥)|2 = 𝑛𝑛2(𝑥⃗𝑥) on a region Ω. It proceeds by propagating arrival times on the boundary 𝜙𝜙(𝑥⃗𝑥) =
𝑓𝑓(𝑥⃗𝑥), 𝑥⃗𝑥 ∈ 𝜕𝜕Ω to the rest of the region in greedy manner.  To implement the FMM it is helpful to maintain 
three data structures, visited, front, unvisited.  The visited data is initialized to contain the boundary nodes 
and unvisited to contain all other nodes.  The process iterates over the neighbors of visited and add them to 
front, sorted by value of 𝜙𝜙 propagated to the neighbor.  The natural data structure to use for front is a 
priority queue, where high priority is given by a low value of 𝜙𝜙 at that node.  The neighbors of visited added 
to front are also removed from unvisited. After this initialization, the main iterative step of the algorithm 
can proceed: 

 
1. Pop the highest priority node, N, from front, add it to visited. 
2. Iterate over the unvisited neighbors of N, removing them from unvisited and adding them to 

front according to the propagated value of 𝜙𝜙 
3. Repeat 1-2 until unvisited is empty 

 
A key component of the algorithm is the numerical propagation of 𝜙𝜙, which is done by solving for 

𝜙𝜙(𝑥⃗𝑥𝑖𝑖) given its neighbors using the discretized static Eikonal equation.  However, as in the level-set method, 
only upwind neighbors of  𝑥⃗𝑥𝑖𝑖 should plugged into the discretized equation – this guarantees that the shortest 
arrival time, also called the viscocity solution is found.  To illustrate this, consider the 2D case explicitly. 
Assuming a Cartesian grid with lattice constant 𝑎𝑎, let  𝐴𝐴 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) be the point of interest and let 𝐵𝐵 =
(𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑖𝑖) be its upwind neighbor in the 𝑥𝑥-direction, 𝑗𝑗 = 𝑖𝑖 ± 1 depending on whether the node to the left or 
right has a lower value of 𝜙𝜙 (an unvisited node should be treated as having infinite 𝜙𝜙 for this purpose). 
Similarly, let 𝐶𝐶 be its upwind neighbor in the 𝑦𝑦-direction. Then the following equation must be solved: 
 

�𝜙𝜙(𝐴𝐴) − 𝜙𝜙(𝐵𝐵)�2 + �𝜙𝜙(𝐴𝐴) − 𝜙𝜙(𝐶𝐶)�2 = 𝑛𝑛2(𝐴𝐴)𝑎𝑎2 (19) 
 
which is simply a quadratic equation for 𝜙𝜙(𝐴𝐴) and can be easily solved. Note, however, that a valid solution 
to the propagation must have 𝜙𝜙(𝐴𝐴) > 𝜙𝜙(𝐵𝐵),𝜙𝜙(𝐶𝐶).  For the solution to the above quadratic to have this 
property we must have |𝜙𝜙(𝐵𝐵) − 𝜙𝜙(𝐶𝐶)| < 𝑎𝑎 ⋅ 𝑛𝑛(𝐴𝐴).  If this condition is not satisfied, then the value 𝜙𝜙(𝐴𝐴) 
should be linearly propagated,  𝜙𝜙(𝐴𝐴) = min�𝜙𝜙(𝐵𝐵),𝜙𝜙(𝐶𝐶)� + 𝑎𝑎 ⋅ 𝑛𝑛(𝐴𝐴).  Linear propagation corresponds to 
one the partial derivatives of 𝜙𝜙 vanishing at 𝐴𝐴.  The generalization to 3D is straightforward, with the minor 
subtlety that one must account for the possibility that one or two partial derivatives of 𝜙𝜙 may vanish.  For 
a more detailed introduction to the FMM see references [21, 22]. 
 Using an efficient implementation of a priority queue, the runtime of the FMM is only 𝑂𝑂(𝐿𝐿𝑑𝑑 log 𝐿𝐿), 
saving (essentially) a factor of 𝐿𝐿/ log(𝐿𝐿)  compared the iterative level-set method [21, 22].  In typical 
applications, this factor of 𝐿𝐿/ log(𝐿𝐿)  is enormous since one wants to a take very fine discretization to ensure 
numerical accuracy. 
 The FMM described here can be improved in several ways.  Most obviously, more sophisticated 
functions to estimate |∇𝜙𝜙(𝐴𝐴)| by using longer-distance finite-difference stencils may be used, see [25] for 
details.  It is also possible use precomputed / analytical solutions to Eikonal for linear or quadratic expansion 
of 𝑛𝑛(𝐴𝐴), so that small scale variation in 𝑛𝑛 can be more easily accommodated [26]. However, these 
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improvements are primarily geared towards maximizing the acceptable coarseness of the discretization. For 
the study of simple models of stochastic environments such improvements were not necessary. Finally, it 
is worth noting that a marching method has been developed for both Eikonal and its 1-jet (gradient), so that 
the rays and Eikonal can be simultaneously determined [27].   
 

3.4 Benchmarking FMM and Ray-tracing 
 
The fast-marching method and ray-tracing are both useful approaches to numerically solving the 

Eikonal equation. It is important to understand how they compare and to benchmark both methods in exactly 
solvable refractive environments. In this section, we evaluate two such cases: a linear-wave speed profile 
and the Kormilitsin profile. 
 

Linear wave speed: 
Results 
 

 
Figure 2 - Φ as determined by the FMM (indicated by color) and its contours for a linear wave-speed 

profile. The ray solutions (solid lines) are   always perpendicular to the contours. 

 
 

 
Figure 3 - Left: The error between Φ and the exact solution. The error is comparable to the 

discretization scale of 10−3. Right: the error between Ray travel time and the exact solution. The 
error is significantly smaller, 𝑂𝑂((𝑑𝑑𝑑𝑑 = 2 ⋅ 10−4)2), since the implicit midpoint method used for 

integration is 2nd order errors. 
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Kormilitsin: 
Results 
 

 
Figure 4 - Φ as determined by the FMM (indicated by color) and its contours for the Kormilitsin profile. 

The ray solutions (solid lines) are   always perpendicular to the contours. 

 
 

 
Figure 5 - Left: The error between Φ and the exact solution. The error is comparable to the 

discretization scale of 10−3.  Right: the error between Ray travel time and the exact solution. The 
error is again 𝑂𝑂((𝑑𝑑𝑑𝑑 = 2 ⋅ 10−4)2). 

 

 
4. MODELING STOCHASTICITY 
 
The benchmark cases of the previous section illustrate that the Eikonal solver and ray trace are 

providing consistent information for a smooth refractive profile.  The technique is now extended to include 
randomness to a background profile for the purpose of evaluating stochastic behavior of the field.  A general 
introduction to stochastic methods can be found in [28, 29].  In this section a Monte Carlo approach is 
applied, where some portion of the refractive index is selected at random but is an otherwise smooth 
differentiable function of position.  There are many (indeed, infinite) noise models one may consider as 
driving the stochastic Eikonal. For simplicity, a translation invariant Gaussian process is chosen, 
specifically with a squared exponential kernel.  This is a standard model in physics, signal processing and 
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machine learning, so only its most important properties are briefly reviewed here.  A Gaussian process is 
defined through the expectation values for the first and second correlation functions. We will always use a 
zero-mean process, 
 

⟨𝜂𝜂(𝑥⃗𝑥)⟩ = 0 

⟨𝜂𝜂(𝑥⃗𝑥)𝜂𝜂(𝑥⃗𝑥′)⟩ = 𝜎𝜎2 exp �−
(𝑥⃗𝑥 − 𝑥⃗𝑥′)2

𝜉𝜉2
� (20) 

 
where 𝜎𝜎 determines the overall scale of the noise and 𝜉𝜉 sets the degree of spatial correlation. All the 
derivatives of ⟨𝜂𝜂(𝑥𝑥)𝜂𝜂(𝑥𝑥′)⟩ are defined, so any particular sample from this Gaussian process will in fact be 
a smooth function. In particular, the partial derivatives 𝜂𝜂𝑥𝑥𝑖𝑖 are themselves Gaussian processes with 
correlations functions 
 

�𝜂𝜂𝑥𝑥𝑖𝑖(𝑥⃗𝑥)𝜂𝜂(𝑥⃗𝑥′)� =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝜎𝜎2 exp �−
(𝑥⃗𝑥 − 𝑥⃗𝑥′)2

𝜉𝜉2
� 

�𝜂𝜂𝑥𝑥𝑖𝑖(𝑥⃗𝑥)𝜂𝜂𝑥𝑥𝑗𝑗(𝑥⃗𝑥′)� =
𝜕𝜕2

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
𝜎𝜎2 exp �−

(𝑥⃗𝑥 − 𝑥⃗𝑥′)2

𝜉𝜉2
� 

(21) 

 
Most importantly, 𝜂𝜂 and ∇𝜂𝜂 are well-defined, so ray-tracing can be used without any complications in such 
a stochastic environment. 

 The above equations, however, do not make it clearly how to actually sample 𝜂𝜂 and ∇𝜂𝜂.  There are 
several possible approaches.  A standard approach would be to choose a spatial discretization so that 𝜂𝜂(𝑥⃗𝑥) →
𝜂𝜂 ≡ [𝜂𝜂(𝑥⃗𝑥1), 𝜂𝜂(𝑥⃗𝑥2),⋯ ]𝑇𝑇.  Then sampling 𝜂𝜂 reduces to sampling correlated Gaussian noise, for which there 
are many standard methods, e.g. Cholesky decomposition of the correlation matrix.  Naively, this involves 
finding a matrix square-root of an 𝐿𝐿𝐷𝐷 × 𝐿𝐿𝐷𝐷 correlation matrix (every point has some correlation with every 
other point), which is computationally expensive. It is possible to approximate the square root, but for a 
translation invariant Gaussian process this is unnecessary. A more efficient method for sampling is to use 
the Fourier transform. The correlation function between Fourier modes can derived straightforwardly and 
results in the simple form 
 

⟨𝜂𝜂(𝑝⃗𝑝)𝜂𝜂(𝑝⃗𝑝′)⟩ = 𝛿𝛿(𝑝⃗𝑝 − 𝑝⃗𝑝′) 𝜎𝜎2 exp �
−𝑝𝑝2𝜉𝜉2

8
�  (22) 

 
Conceptually, a translation invariant Gaussian process is nothing but a prescription for randomly 

sampling amplitudes of Fourier modes, given by the above formula. With this in mind, an efficient scheme 
for sampling from such a random process is clear. For concreteness, we will explain the scheme for the 
�− 1

2
, 1
2
� × [−1

2
, 1
2
] unit square in 2D, but the method generalizes easily to higher dimensions. We first 

choose a uniform 𝐿𝐿 × 𝐿𝐿 discretization and periodic boundary conditions, which fixes 𝑝𝑝𝑥𝑥 ,𝑝𝑝𝑦𝑦 ∈
{0,2𝜋𝜋, 4𝜋𝜋,⋯𝐿𝐿 ⋅ 2𝜋𝜋}. We then sample an 𝐿𝐿 × 𝐿𝐿 matrix 𝑄𝑄 of i.i.d random complex numbers, according to 

 

�𝑅𝑅𝑅𝑅 �𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦�
2

 � = �𝐼𝐼𝐼𝐼 �𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦�
2

 � = 𝜎𝜎2 exp�−
�𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑦𝑦�

2𝜋𝜋2𝜉𝜉2

2
� (23) 

 
with the real and imaginary component uncorrelated. Then, simply Fourier transforming 𝑄𝑄 and keeping the 
real part provides a sample of the process 𝜂𝜂 on the 𝐿𝐿 × 𝐿𝐿 grid. This approach only requires building a matrix 
with 𝐿𝐿𝐷𝐷 elements and can benefit from extremely fast implementations of the Fourier transform, such as 
those provided by the Julia package FFTW.jl. 
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 Technically, due to the discreteness of the Fourier basis, this way of sampling only works well for 
correlation lengths that are not too large, i.e. 𝜉𝜉 ≲ 0.1 is required.  However, this limitation can easily be 
overcome simply by scaling up the sampled noise in real space by a factor of 𝑏𝑏 which take 𝜉𝜉 → 𝑏𝑏𝑏𝑏.  This 
requires interpolating between the grid points to evaluate 𝜂𝜂 at points that were not originally defined in the 
grid.  Although an approximation, this works extremely well in practice because, by definition, the function 
that is being interpolated is extremely smooth.  A sample from a Gaussian process with 𝜉𝜉 = 1.0 can be 
faithfully obtained by first sampling from a process with 𝜉𝜉 = 0.03 on a grid with 𝐿𝐿 = 1024 and then 
blowing up the resulting distribution by a factor of ≈ 33 (even using 𝐿𝐿 = 128 does not actually result in 
significant interpolation artifacts).  Example results of sampling followed by rescaling are included in the 
figures below. 

 A nice feature of the above method is that is easy to sample 𝜂𝜂 and ∇𝜂𝜂 simultaneously. Indeed, after 
sampling 𝑄𝑄, one can define 𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦

𝑥𝑥 = 𝑖𝑖2𝜋𝜋𝑛𝑛𝑥𝑥𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦  and 𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦
𝑦𝑦 = 𝑖𝑖2𝜋𝜋𝑛𝑛𝑦𝑦𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 . Then 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜂𝜂 and 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜂𝜂 are 

simply the real parts of the Fourier transforms of 𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦
𝑥𝑥 ,𝑄𝑄𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦

𝑦𝑦  respectively. Examples of 𝜂𝜂, 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜂𝜂, and 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜂𝜂 

are included in the figures below. 

 As mentioned above, this method of sampling generalizes straightforwardly the 3D. For details, 
see the implementation provided in [code ref]. 

 Figures: 

 
Figure 6 - Left: a sample of squared-exponential Gaussian process with 𝜉𝜉 = 0.1; Middle: 𝜕𝜕𝑦𝑦 derivative of 

the sample; Right: 𝜕𝜕𝑥𝑥 derivative 
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Figure 7 - Agreement between averaged sample correlation functions and exact correlation 

functions. For 𝜉𝜉 > 0.1, there is systematic disagreement due to the finite number of Fourier modes 
used for sampling. For smaller correlation lengths, agreement is excellent. Top row: ⟨𝜂𝜂(𝑥𝑥)𝜂𝜂(𝑥𝑥′)⟩ 
agreement; Middle row: ⟨𝜕𝜕𝑥𝑥𝜂𝜂(𝑥𝑥)𝜕𝜕𝑥𝑥𝜂𝜂(𝑥𝑥′)⟩ agreement; Bottom row: ⟨𝜕𝜕𝑦𝑦𝜂𝜂(𝑥𝑥)𝜕𝜕𝑦𝑦𝜂𝜂(𝑥𝑥′)⟩ agreement 

 
 

 
Figure 8 - Left: a sample of squared-exponential Gaussian process with 𝜉𝜉 = 0.03; Middle: 𝜕𝜕𝑦𝑦 

derivative of the sample; Right: 𝜕𝜕𝑥𝑥 derivative 
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Figure 9 - Left: a sample of squared-exponential Gaussian process with 𝜉𝜉 ≈ 1.0 obtained from the 

above by 33.3x scaling; no artifacts from the scaling appear since the Gaussian process is (by 
definition) very smooth at the small scale which is interpolated.  Middle: 𝜕𝜕𝑦𝑦 derivative of the 

sample; Right: 𝜕𝜕𝑥𝑥 derivative 
 

 
Figure 10 - Surfaces of constant magnitude in 3D Gaussian process sample with 𝜉𝜉 = 0.1. 
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5. RAY TRACING AND FAST MARCHING IN A STOCHASTIC ENVIRONMENT 
 
Ray-tracing and the fast-marching method (FMM) are both applied to the above model of a stochastic 

environment.  Monte Carlo simulations are performed to characterize the basic statistics of the solutions, 
e.g. average travel time from the source, 〈𝜙𝜙〉, and deviations from average travel time, 〈log 𝜙𝜙

〈𝜙𝜙〉
〉.  (The 

expectation of the log of the ratio is preferred to e.g. the variance because the travel time is distributed over 
several orders of magnitude.)  In 5.1, 5.2, a point source at the origin is considered as the boundary 
condition, and in 5.3, a plane wave emanating from the left side of the unit square is considered. 

 
5.1 Rays as Random-walks 

 
Before analyzing the statistics per se with the FMM, it is helpful to build some physical intuition by 

developing a conceptual picture of how the rays propagate in a stochastic environment.  The simplest 
possible model is that the rays evolve as random walks driven by some noise with a correlation time, 𝜏𝜏𝑐𝑐.  
In evaluating the utility of this picture there are two important questions: 1) to what extent does the direction 
of ray propagation actually de-correlate over its path and 2) what determines 𝜏𝜏𝑐𝑐?  Fortunately both these 
questions can be answered by looking at the correlation function 〈𝑝𝑝(𝜏𝜏)𝑝𝑝(0)〉, where 𝑝𝑝 is the instantaneous 
direction of the ray. The random walk picture should apply if 〈𝑝𝑝(𝜏𝜏)𝑝𝑝(0)〉 decays to 0 roughly exponentially, 
and rate of decay is 𝜏𝜏𝑐𝑐.  On dimensional grounds the following is expected 𝜏𝜏𝑐𝑐 ∝ 𝜉𝜉, where 𝜉𝜉 is the correlation 
length of the Guassian noise, but it will be seen that the dependence on 𝜎𝜎 is subtler. 

 
First, consider the plausibility of the random-walk picture by examining some particular solutions. 
 

 
 

Figure 11Left: example rays with 𝜉𝜉 = 0.0004 and 𝜎𝜎 = 0.01, Right: example rays with 𝜉𝜉 = 0.04 and 𝜎𝜎 =
0.1 

 
Although the rays retain some memory of their initial direction at the scale of the unit square, they are 

clearly deviating from their straight-line path with no discernable pattern. To be more rigorous, consider 
the momentum correlation function, for various noise correlation lengths 𝜉𝜉 and noise amplitudes 𝜎𝜎 =
0.01⋯10, indicated by green-purple shading. The correlation functions are evaluated over arc-length 𝑠𝑠. 
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Figure 12 – Momentum correlation vs. arc-length for three values of 𝜉𝜉2 (starting from the far left) and all 

combined (far right) 

 
Clearly the momentum autocorrelation function tending to 0 in an exponential fashion in all cases, although 
exponential decay is sometimes quite mild for small noise-amplitudes. A one standard-deviation uncertainty 
in the correlation function is indicated by the shaded region. 
 It thus appears that the random walk model for the rays is at least a good “first-order” 
approximation, which leaves us with the question what determines 𝜏𝜏𝑐𝑐. The value of 𝜏𝜏𝑐𝑐 can be extracted 
from the maximum slope of the decay.  This slope is rescaled by 𝜉𝜉 to make it unitless and comparable across 
noise realizations with different correlations lengths. The results are shown below. 
 

 
Figure 13 – Estimating 𝜏𝜏𝑐𝑐 from the maximum slope of the decay in Figure 11 

 
Two distinct regimes are observed: 𝜏𝜏𝑐𝑐 ∝

𝜉𝜉
𝜎𝜎2

 for 𝜎𝜎 ≪ 1.0 (yellow shaded fit) and 𝜏𝜏𝑐𝑐 ∝
𝜉𝜉
𝜎𝜎
 for  𝜎𝜎 > 1.0 

(blue shaded fit).  Naively, it is somewhat surprising there are two scaling regimes for how 𝜏𝜏𝑐𝑐 depends on 
𝜎𝜎.  To see why this occurs it is helpful to think about the limit of extremely strong noise, 𝜎𝜎 ≫ 1.0. In this 
case, each ray will rapidly re-orient so that 𝑝𝑝 ∥ ∇𝜂𝜂 (then 𝑝̇𝑝 = 0). Since ∇𝜂𝜂 is just a random direction, the 
time it takes for the re-orientation to occur is in fact the correlation time. The trajectory for rays for planar 
𝜂𝜂 is exactly solvable and it can be seen that this takes a time ∝ 1

〈|𝜂𝜂|〉 = 1
𝜎𝜎
, which explains the scaling in the 
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large 𝜎𝜎 regime. On the other hand, a standard Markovian approximation for computing the correlation 
function yields the 1

𝜎𝜎2
 scaling seen in the small 𝜎𝜎 regime. 

The significance of this simple conceptual model is that it helps form rough estimates of the 
significance of noise in practical physical environments.  For example, in atmosphere the noise on the index 
of refraction is quite small, typically 𝛿𝛿𝛿𝛿 ∼ 10−5 [25, 30]. The correlation length of this noise may range 
from mm to km, , but assuming a typical value of cm we obtain a correlation length of 108 m. This means 
that a beam sent over 10 km = 104 m will have an angular wander of around 10−4, resulting in a 
displacement error of ∼ 1 m.  Note that this is a similar result to that obtained in [25] for wander due to 
turbulence using a much more complicated method that analyzed the ray equations perturbatively in noise.   

 
 

5.2 Average travel-time from FMM 
 

It is interesting to compare the picture of randomly propagating rays to the rather mild effects of 
stochasticity observed in the statistics of the FMM solutions.  Consider an identical setup, with a point-
source at the origin of the unit square, and determine the FMM travel time, 𝜙𝜙, for an ensemble of noise 
realizations. The results are summarized below. 
 

 

 
Figure 14 – Statistics of the FMM travel time solution in a stochastic medium 

 
In the above figure |𝜂𝜂| = 𝜎𝜎, and 𝑟𝑟 is the distance from the source (origin).  The first thing to notice 

is that the stochastic environment has a negligible effect on the mean travel time (top row) – essentially 
〈𝜙𝜙〉 ≈ 𝑟𝑟 for all noise strengths and correlation lengths, which is the noise-free solution. This result can be 
derived by solving for moments of 𝜙𝜙 perturbatively in the noise strength, which shows that the first 
correction to the mean travel time appears at 𝑂𝑂(|𝜂𝜂|2), which is quite small for all of the above. Investigating 
if this linear travel time result holds for |𝜂𝜂| ∼ 1 is an interesting direction for future research. 

The fluctuations about 〈𝜙𝜙〉 are more interesting. As mentioned above, the most natural way to 
quantify the fluctuations 〈log 𝜙𝜙

〈𝜙𝜙〉
〉 (bottom row) since near the origin fluctuations in travel time are very 

small and away from the origin they can be large.  An interesting pattern emerges in these fluctuations – 
they collapse when rescaled by 𝜉𝜉 and |𝜂𝜂|2, and are only significant near the origin while for 𝑟𝑟 > 10 𝜉𝜉 they 
are negligible. Roughly speaking, it appears that near the origin there is always a “shortcut” through the 
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noise field to arrive at some nearby point more quickly, but over longer distances these shortcuts are 
cancelled out by obstructions. Of course the fact the fluctuations collapse when rescaled is not surprising 
given the preceding discussion of the scaling behavior of rays, but understanding the universal form to 
which they collapse is an interesting direction for future research. 
 

5.3 Ray tracing vs. FMM 
 

The above discussions surface a discrepancy between the ray-tracing and FMM solutions of the 
random Eikonal. At large distances, the rays have undertaken significant random walks meaning the travel 
time should be longer than in the noiseless case. On the other hand, the FMM solution show that at large 
scales the travel time is just proportional to distance; not at all what would be expected from a random walk. 
The resolution is that the rays cross and the FMM solution is the minimum travel time to a given point. 
Thus while many wandering rays may pass through a point distant from the origin, only one of them agrees 
with the FMM solution and matches the minimum travel time. 

This is an important observation that warrants a deeper analysis. Indeed, it is quite important to know 
when the ray tracing solution and FMM solution unambiguously agree, since the FMM solution is typically 
faster and easier to compute. Conceptually, this is equivalent to the question of when multipathing makes 
an important contribution to the propagation. This is challenging question and the answer is not yet fully 
understood.  Roughly speaking, it appears there is characteristic region around the source for which ray 
tracing and the FMM solution unambiguously agree.  The size of this region is surely proportional to 𝜉𝜉, but 
its exact boundaries are hard to derive. An example of the expected behavior is shown below, where the 
ray solution (obtained by doing a dense ray trace) and the FMM solution are compared for a plane wave 
source on the left edge of the unit square. The noise parameters are 𝜉𝜉 = 0.02 and 𝜎𝜎 = 0.003. 

 
 

  
Figure 15 – Discrepancy between FMM and ray trace in a stochastic medium 

 
A discrepancy between the ray solution and FMM solution arises at 𝑥𝑥 ≈ 0, independent of the 
discretization. To the right of 𝑥𝑥 ≈ 0, “showers” of deviation appear, which clearly evidence several rays 
crossing and then spreading back out. Understanding why the deviation appears at a distance of 0.5 from 
the source, and developing general understanding of the deviation between the ray solution and FMM, 
remains an important goal for future research. 
 
 

6. DISCUSSION, CONCLUSION, SUMMARY 
 

The main goal of this report is to present results of developing and benchmarking a numerical method 
for directly solving the Eikonal equation.  This will serve as a tool in future studies for probing the statistics 
of physical and geometric properties of ray paths describing radio frequency propagation in random 
environments and for comparing results to other numerical stochastic solvers.  Two of the main features of 
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interest are the time of first arrival from source to receiver, more generally travel time along a ray path, and 
caustic formation as well as other geometric properties of ray paths.  The rational for developing the 
approach presented here is that the Eikonal method may be more efficient for evaluating arrival times in 
some cases.  Similar studies using Monte Carlo methods appear in the literature applied to acoustic 
problems in seismology [32, 33].  Authors note that ray trace techniques estimate first arrival times that are 
slightly larger (indicating slower travel time) as compared to Eikonal methods in shadow zones behind an 
object.  Otherwise, the two approaches match.  This observation is explained by noting that Eikonal solvers 
naturally incorporate “diffractive wavefront healing” as they propagate.  To elaborate, classical ray tracing 
may not produce results in shadow zones in a refractive media.  The specific studies cited in [32] look at 
ray paths propagation in a medium with a small region filled with a different refractive index, including a 
hard boundary between the two regions.  The mismatch between the ray trace and Eikonal travel times is 
attributed to the fact that diffraction is not naturally included in ray traces, whereas the Eikonal solver 
contains information about diffraction at each step that is incorporated in the logic for determining 
minimum time of arrival.  Hence then term “wavefront healing”.  One criticism of these studies is that they 
do not include well known formulas and method for rays that interact with finite convex boundaries to 
create “diffraction rays” [34].  Similar results are demonstrated for ray propagation in a 2D environment 
with random pockets of refractive gradients [32, 33].  The benchmarking done in this report does not contain 
such exotic environmental or numerical features.  If one makes the effort to take into account diffraction 
rays in a complete ray trace the results should match the Eikonal [34].  Regardless, the work demonstrated 
here illustrates that for ideal and weakly random environments where caustic formation is less likely, the 
two approaches provide reliable and comparable results.  Finally, the type of media studied in seismology 
is modeled as a fractal function, making ray trace approaches difficult if not impossible due to the lack of 
differentiability of the wave speed profile [33].  Solving the Eikonal directly avoids the debate over how to 
define the stochastic derivative, casting the entire problem as one of direct integration.  The fact that Eikonal 
solvers naturally select the leading portion of the wavefront (shortest travel time) makes them a better 
candidate for evaluating travel time statistics in a random environment.  The ray trace method would be 
more appropriate (if not necessary) for the study of geometric quantities in the presence of stochastic noise.    
 
The results presented in this report will be used to explore several more interesting questions: 

• Region of agreement between FMM and ray tracing? 
• When do rays cross on average creating interference? 
• When are conjugate points encountered on average? 
• How do FMM and ray tracing to compare to full EM solution in stochastic environment? 
• More realistic models of randomness, e.g. combining stochasticity with atmospheric models. 
• What is the statistics of travel time along as predicted by FMM and ray tracing? 
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A.  ANALYSIS OF RAYS AS RANDOM WALKS 
 

This appendix presents an analysis of random walk properties of ray paths under restricted conditions.  
Two derivations are provided, supporting the observations made in the analysis of the correlation time of 
rays in random environments, section 5.  In the first, it is assumed that the scale of the noise 𝜂𝜂 is small and 
a Markovian approximation is applied to determine how the correlation time of the ray direction scales with 
the noise magnitude, finding ~|𝜂𝜂|−2.  In the second, the complementary limit of extremely strong noise is 
considered.  It is argued that this case is well approximated by the exactly solvable case of a ray propagating 
on an unknown, but a linearly varying, index of refraction background. This exactly solvable case yields a 
different scaling of the correlation time with noise strength, ~|𝜂𝜂|−1. These two regimes are reflected in the 
numerical analysis above. 
 
 
Small Noise: The Markovian Limit 
 
Consider an index of refraction 𝑒𝑒𝜂𝜂, where 𝜂𝜂 is a 2D Gaussian process,  
 

⟨𝜂𝜂(𝑥𝑥)𝜂𝜂(𝑥𝑥′)⟩ = |𝜂𝜂| exp�−
(𝑥𝑥 − 𝑥𝑥′)2

𝜉𝜉2
� (A.1) 

 
The ray equations presented in Eq. () are used for this analysis.  In this parametrization, 𝑝𝑝 is always a unit 
vector.  Let 𝑝𝑝(0) = [1 0]𝑇𝑇, i.e. the ray initially points along the x-axis.  The following expressions follow 
for ∇𝜂𝜂 and 𝑝𝑝(𝑡𝑡), ∇𝜂𝜂 = |𝜂𝜂′|[cos(𝜃𝜃) sin(𝜃𝜃)]𝑇𝑇, and 𝑝𝑝(𝑡𝑡) = �cos�𝛿𝛿(𝑡𝑡)�  sin�𝛿𝛿(𝑡𝑡)��𝑇𝑇, 𝛿𝛿(0) = 0.  An equation 
of motion for 𝛿𝛿 can be determined: 
 

𝑑𝑑
𝑑𝑑𝑑𝑑

sin(𝛿𝛿) = |𝜂𝜂′(𝑞𝑞)|�sin�𝜃𝜃(𝑞𝑞)� − cos�𝜃𝜃(𝑞𝑞) − 𝛿𝛿(𝑡𝑡)� sin�𝛿𝛿(𝑡𝑡)�� (A.2) 

 
Where 𝑞𝑞 implicitly depends on 𝑡𝑡.  Using standard trigonometric identities, 
 

𝑑𝑑
𝑑𝑑𝑑𝑑

sin(𝛿𝛿) = |𝜂𝜂′(𝑞𝑞)| cos�𝛿𝛿(𝑡𝑡)� sin�𝜃𝜃(𝑞𝑞) − 𝛿𝛿(𝑡𝑡)� (A.2) 

 
And, after taking the derivative and cancelling terms the following simple form is obtained: 
  

𝛿̇𝛿 = |𝜂𝜂′(𝑞𝑞)| sin�𝜃𝜃(𝑞𝑞) − 𝛿𝛿(𝑡𝑡)� 
 

(A.3) 

Thus, the variance of 𝛿𝛿 grows according to: 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝛿𝛿2⟩ = 2�𝛿̇𝛿𝛿𝛿� = 2 ���𝜂𝜂′�𝑞𝑞(𝑡𝑡)�� sin �𝜃𝜃�𝑞𝑞(𝑡𝑡)� − 𝛿𝛿(𝑡𝑡)� �𝜂𝜂′�𝑞𝑞(𝑠𝑠)�� sin �𝜃𝜃�𝑞𝑞(𝑠𝑠)� − 𝛿𝛿(𝑠𝑠)� 𝑑𝑑𝑑𝑑

𝑡𝑡

0

� (A.4) 

 
Now we must begin making approximations to proceed. Since we are assuming small noise, |𝛿𝛿| increases 
slowly and we can linearize, 
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𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝛿𝛿2⟩ = 2 ���𝜂𝜂′�𝑞𝑞(𝑡𝑡)�� sin �𝜃𝜃�𝑞𝑞(𝑡𝑡)�� �𝜂𝜂′�𝑞𝑞(𝑠𝑠)�� sin �𝜃𝜃�𝑞𝑞(𝑠𝑠)�� 𝑑𝑑𝑑𝑑

𝑡𝑡

0

� + 𝑂𝑂(𝛿𝛿2) . 

 
Where terms linear in 𝛿𝛿 vanish due to the fact ⟨cos(𝜃𝜃) sin(𝜃𝜃)⟩ will average to 0 as 𝜃𝜃 varies from 0 to 2𝜋𝜋. 
Now we again make use of the fact that we are assuming small noise, i.e. |𝜂𝜂′| ≪ 1/𝜉𝜉, where 𝜉𝜉 is the 
correlation length of the noise. This means that the integral will average to 0 for |𝑞𝑞(𝑠𝑠) − 𝑞𝑞(𝑡𝑡)| > 𝜉𝜉. Since 
the ray is always moving with unit speed, and 𝛿𝛿 is changing slowly (again because the noise is small), this 
should be the case for all 𝑠𝑠 < 𝑡𝑡 − 𝜉𝜉. We can then make a very rough approximation that for all 𝑠𝑠 > 𝑡𝑡 − 𝜉𝜉, 
𝑞𝑞(𝑡𝑡) = 𝑞𝑞(𝑠𝑠) and 𝜃𝜃(𝑡𝑡) = 𝜃𝜃(𝑠𝑠). This gives, 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝛿𝛿2⟩ = 2⟨𝜉𝜉|𝜂𝜂′(𝑞𝑞(𝑡𝑡)|2 sin2(𝜃𝜃(𝑡𝑡))⟩ (A.5) 

 
Taking the expectation value over the noise distribution (so 𝜃𝜃 is varies over 0 to 2𝜋𝜋), and noting that |𝜂𝜂′| ∼
|𝜂𝜂|/𝜉𝜉, where |𝜂𝜂| is the noise scale, we have the simple result: 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
⟨𝛿𝛿2⟩ =

𝜋𝜋|𝜂𝜂|2

𝜉𝜉
 (A.6) 

 
We can naturally define the correlation time of the ray as the time at which the variance exceeds some 
threshold value, so 𝜏𝜏𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝜉𝜉|𝜂𝜂|−2 as claimed. 
 
 
Large Noise: Rapid Re-Orientation 
 
We now consider the case when |𝜂𝜂′| ≫ 1/𝜉𝜉, so the noise causes the ray path to rapidly align with the local 
gradient. Since the local gradient direction is uncorrelated with the initial ray direction, the time it takes for 
the alignment to happen is itself the correlation time of the ray direction. For large enough noise strength 
|𝜂𝜂|, it is a good approximation to solve the ray equations assuming constant ∇𝜂𝜂. In this case, it is convenient 
to adopt coordinates such that ∇𝜂𝜂 = [|𝜂𝜂′| 0]𝑇𝑇 and the ray direction 𝛿𝛿(0) = 𝜃𝜃, where 𝜃𝜃 is the initial 
discrepancy between ray-direction and local gradient. Then, the ray equations reduce to 
 

𝛿̇𝛿 = −|𝜂𝜂′| sin(𝛿𝛿) (A.7) 

 
which can be solved exactly, 
 

tan�
𝛿𝛿(𝑡𝑡)

2
� = 𝑒𝑒−�𝜂𝜂′� 𝑡𝑡 tan �

𝜃𝜃
2
� (A.8) 

 
 
The key point is that after a time of order 1/|𝜂𝜂′| the RHS will be small so that 𝛿𝛿(𝑡𝑡) must also be small, i.e. 
the ray will have aligned with the local gradient. Hence, we must have 𝜏𝜏𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝜉𝜉|𝜂𝜂|−1, as seen in the 
numerical results in the strong-noise regime. 
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