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Abstract 

Introduction and Objectives 
This project was aimed to develop empirical dynamic modeling (EDM) as a practical framework for studying and 
managing ecosystems. A key challenge was to address the complex reality of ecosystems that are nonlinear, 
nonstationary and not in equilibrium – properties of real ecosystems that are not addressed by classical models 
(and that may explain their poor predictive ability). Our goal was to develop capacity to build mechanistic models 
that can be used to confidently forecast environmental futures in a dynamically changing world. Though many of 
the tactical objectives of the project are technically framed, together they provide tools that have practical utility 
to support DoD’s environmental interests and SERDP’s deployment of best-available science at the cutting edge.  
 
Technical Approach 
Empirical dynamic modelling is an inductive data-driven approach for studying complex systems from time series 
observations. While classical approaches involve hypothesized models, EDM attempts to minimize these 
assumptions by allowing the data to speak for itself. Thus, instead of assuming a particular model, EDM allows 
the data to tell us what the underlying model should look like. EDM is based on reconstructing an attractor from 
time series data (https://youtu.be/fevurdpiRYg). This allows us to identify and study causal variables and 
interactions that are nonlinear and state-dependent and make skillful out-of-sample predictions.  The abilities 
developed here to forecast and to explore alternative scenarios (e.g. different future environmental constraints), 
and to evaluate state dependent risk in terms of uncertainty (e.g., local sensitivity to dramatic change driven by 
dynamic instability), are essential for ecosystem management – the stated goals of this project. 
 
Results 
Central among the new high-level insights brought to the fore is the fact that causal drivers can be completely 
uncorrelated with their effects. We find that uncorrelated variables (that are therefore invisible to normal data 
exploration) are ubiquitous in nature and can be key elements for understanding mechanisms and for predicting 
and managing environmental futures — an inconvenient fact that profoundly impacts our normal study protocols 
and model-building efforts. To this end, the project demonstrated real solutions for understanding environmental 
futures in two tactical case studies. In the first case, EDM allowed us to untangle causal drivers of red tides 
(potentially harmful algal blooms) in the Southern California bight and demonstrate short-term prediction 
capability where none had seemed possible. By allowing for non-equilibrium and nonlinear dynamics, EDM 
analysis confirmed hypothesized drivers like nitrate and ocean temperature had predictable effects even though 
traditional methods had previously found them to be uncorrelated with the algal blooms. Combined with regional 
ocean simulations (ROMS) of future ocean conditions, the hybrid ROMS-EDM model predicts an increase in red 
tides over the next 3 decades. Our second case study develops a predictive framework for conservation 
management of reef areas that continue to be long-term DoD responsibilities in the U.S. Pacific Islands. This 
required developing new EDM methods for cases where historical time series are short. These methods uncovered 
the major environmental drivers operating at the reef sites, which in turn can identify specific areas in the U.S. 
Pacific Island region where conservation investments are most likely to succeed. 
 
Benefits 
Both case studies are useful SERDP targets on their own, but together they have grown the methodology and 
serve as road maps for new practitioners and applications. Critically, the project developed a standardized set of 
computational tools in R, Python, and C++ with documentation to communicate the essential foundations for new 
users wishing to apply EDM to their research. The benefits of this work   can be quantified by how highly 
subscribed the resources are. The rEDM package has more than 19,000 downloads from CRAN; and pyEDM has 
more than 76,729 downloads through the central PyPI server in the first year of its launch. Together the code and 
documentation are already having a transformative effect on multiple scientific domains with well over 100 new 
publications citing EDM in just the first few months of 2020. It seems likely that beyond the conservation benefits 
of our two specific case studies, EDM should be useful to future SERDP projects ranging from hydrology to fire 
ecology. It is a natural tool set for environmental science. 



1 Executive Summary 

1.1 Introduction 
 
The strategic aim of this study was to develop “empirical dynamic modeling” (EDM) as a practical framework for 
studying and managing ecosystems. A key challenge was to address the complex reality of ecosystems that are 
nonlinear, nonstationary and not in equilibrium – important properties of real ecosystems that are not addressed 
by classical models and that may explain the poor predictive ability of classical ecological models (1, 2). Our goal 
was to develop the capacity to build mechanistic models that can be used to confidently forecast environmental 
futures in a dynamically changing world.  
 
EDM involves constructing attractors directly from time series data — attractors are geometric shapes or 
manifolds that embody the rules (underlying equations) governing the ecosystem (see video 1 below). Thus, EDM 
is inductive and data-driven, and thereby quite different from classical deductive approaches involving models 
based on preconceived (hypothesized) equations. It allows the data to speak for itself.  
 
Though many of the tactical objectives of the project are technically framed, together they provide tools that have 
practical utility to support DoD’s environmental interests while also supporting SERDP’s deployment of best-
available science at the cutting edge. Indeed, the 2014 SERDP call that brought this project into being, to develop 
a predictive data-driven framework for addressing complex natural systems, presaged the 2019 national 21st 
century science initiative for Harnessing the Data Revolution (https://www.nsf.gov/cise/harnessingdata/).  As 
NOAA Acting Administrator, Timothy Galludet remarked about EDM in 2018: “I am especially interested in 
novel modeling approaches that treat the system as it actually functions, not how it theoretically 
should  (http://deepeco.ucsd.edu/nonlinear-dynamics-research/edm/)... the EDM work is just that sort of novel 
approach.”  
 
High-level Strategic Results 
Central among the new insights that this project brought forward is the fact that causal drivers can be completely 
uncorrelated with their effects. This inconvenient fact (the converse of Bishop Berkeley’s 1712 dictum) 
profoundly impacts our normal study protocols and model building efforts. In this project we find that such 
uncorrelated (invisible) variables are ubiquitous in nature, and that beyond raising consciousness about this fact, 
they can be key elements for predicting and managing environmental futures. To this end we have developed 
general analytical tools to acknowledge and exploit this important consequence of nonlinearity and that thereby 
can produce skillful predictive models where this was previously not possible (3, 4). More importantly these tools 
can be used more generally for attribution: to measure causes to assign responsibility for environmental impacts. 
 
Another key high-level insight is the discovery that species interactions and other biological relationships (e.g. 
nutrient uptake rates) are not fixed constants as classical models or statistical analysis would assume, but are non-
stationary in time and even highly episodic (5).  This insight has deep theoretical implications for understanding 
how ecological systems are structured, but also has major practical implications (developed through this project) 
for how ecosystems should be studied and modeled for prediction and management (not with constant 
coefficients), especially how to think about risk, resilience (6), and uncertainty (7). 
 
 
Practical Applied Results and Benefits 
At the more tactical level, the project provides practical solutions for understanding environmental futures in two 
case studies of DoD significance. In the first case, EDM allowed us to uncover uncorrelated causal drivers that 
can be used to forecast red tides in the Southern California bight — because of the lack of correlation the red tides 
in Southern California eluded prediction for over a century. This mechanistic predictive model, combined with 
regional ocean models (ROM), predicts an increase in red tides over the next 3 decades. This is significant as red 



tides in Southern California have interfered with ship operation and coastal industrial operations, and toxic 
blooms (e.g. by the Domoic Acid producing Pseudo-nitzschia) have caused mortality and reproductive failure in 
marine mammal and avian conservation targets (e.g. the California Brown Pelican). Going forward, near-term 
forecasts could also assist the scheduling of marine exercises at Camp Pendleton. 
 
Our second case study developed a predictive framework for conservation management of reef areas that continue 
to be long-term DoD responsibilities in the U.S. Pacific Islands. As we describe below, new methods were 
developed to apply to cases such as this one where historical time series are short. These methods were then 
applied to discover the major environmental drivers operating at the reef sites, which in turn allowed us to identify 
areas and circumstances where conservation investments are most likely to succeed. Both of these case studies 
are useful SERDP targets on their own, but together they have grown the methodology, expanding the types of 
systems and data EDM can be applied to, and serve as road maps for new practitioners and for applications in 
environmental management. 
 
Building on the methods used to study red tides, an additional study introduced new environmental management 
tools based on a hybrid of simple physical models and EDM. Using the apparent irreversibility of eutrophication 
in iconic Lake Geneva as a high profile example (in press at PNAS) – a nonstationary, nonequilibrium system 
without future analogues – the hybrid approach not only leads to substantially better prediction, but also to a more 
actionable description of the emergent rates and processes (biogeochemical, ecological etc.) that drive water 
quality. Notably, the hybrid model suggests that the future impact of a moderate 3°C increase in air temperature 
of would be on the same order as the eutrophication of the previous century, and that best management action 
may no longer involve a single control lever such as reducing phosphorus inputs alone. The Lake Geneva study 
was a nice demonstration of the portability of the methods and their ability to address a central challenge for 21st 
century environmental management –  forecasting nonlinear, non-stationary, non-analogue futures. 
 
 
Strategic Benefits (confirmed impact) 
Critically, and likely one of the most broadly significant consequences of this award, is the development of a 
standardized set of applied computational tools for EDM. Code packages are now publicly available in R, Python, 
and C++, and are quickly finding a large user base. Since initial launch ca. January 2017, the rEDM package has 
had more than 43,735 downloads (1047 just in March 2022) from the central CRAN server (see figure below). 

Redm monthly downloads  
 
 
More remarkably, pyEDM through the central PyPI server, has had more than 331,366 downloads since launch 
in August 2019 (~20,433 downloads just in March 2022). See https://pepy.tech/project/pyEDM for current 
download statistics. Python has a broader scientific audience than R. 
 



Simultaneously, along with 32 peer-reviewed publications (nearly all in first-tier journals), the award allowed us 
to develop documentation to communicate the essential foundations for new users wishing to apply EDM to their 
research. Together the code and documentation are already having a transformative effect on multiple scientific 
domains. In the first few months of 2022, there are over 100 new publications using convergent cross mapping 
across ecology and diverse other fields including meteorology, social sciences, and finance. In fact, a data 
visualization tool visEDM (https://youtu.be/GLTB8d-vexc) is soon to become available and a Stata package 
ofEDM tools based on rEDM is now available for social scientists and financial engineers 
(https://ideas.repec.org/c/boc/bocode/s458593.html) along with a tutorial for its use (Li, Zyphur, Sugihara 2021 
 
It is our hope that EDM will be a useful method in the toolbox of other future SERDP projects, not just the two 
case studies of marine environments focused on here. Conversations with SERDP researchers along with past 
SERDP review board members and former SERDP Program Manager, John A. Hall have identified critical needs 
that EDM can fill: ranging from forecasting/understanding red tides at Camp Lejeune (analogous to the SoCal 
study), to hydrology to fire ecology. 
 
 
1.2 Objectives 
 
The core strategic goal of the project was developing EDM to address the need for credible ecological 
forecasting to understand past, present, and future in non-stationary, non-equilibrium systems, and to raise 
consciousness of the particular complications that arise for predicting futures in such complex natural 
systems. This was accomplished using two case studies (described below) as exemplars with focused relevance to 
the SERDP mission, and an additional high-profile study to promote broader impact for the approach.  In order to 
meet the objectives of these studies it was necessary to develop methods that broaden the scope of EDM (our 
global objective), thus making the technology more relevant and applicable to a wider range of ecological systems 
(most notably, those that lack long time-series and that would require long term monitoring programs). 
 
Thus, our basic work scheme was to create a dialogue between specific real-world applications and general 
theory-methods development, and to use the case studies to: 1) produce practical advice relevant for each system, 
and 2) to use the strengths and constraints of the data in each study (eg. multiple long time series for multiple 
variables in the red tide study, and the short but spatially numerous time series of coral reefs) to catalyze new 
methods and insights. 
 
1.2.1 Tactical Case Studies 

1.2.1.1 Red Tides in Southern California 

The immediate objective of the first case study was to develop an empirical dynamic model to forecast red tide 
events in Southern California — a case with substantial long-term monitoring of many potentially relevant 
variables. The occurrence of red tides in Southern California was an unsolved problem for over 100 years because 
drivers of this phenomenon were invisible to correlation-based studies. A key sub-objective was to analyze the 
multiple data series to try to uncover the suite of causal environmental drivers (variables that should be included 
in a model but that were uncorrelated with red tides). This would then allow us to construct EDM models for the 
short-term prediction of specific events days or weeks in advance (our first objective). This case study was a first 
large-scale demonstration of EDM where linear methods have failed to give insight.  As an important check, the 
EDM models (constructed with mechanistic variables) must be validated by their ability to make skillful out-of-
sample forecasts. 
 
While short-term predictions address short-term operations decisions (e.g. training exercises), long-term 
prediction can help address long term planning of operations and conservation in future environments (where 
conditions might promote more frequent red tides). Thus, another major objective of this case study was to 



translate short-term predictive modeling of events into a long-term understanding of bloom behavior, to try to 
predict the future frequency of red tides 30 years from now. Here regional ocean models (ROMs) for the Southern 
California Bight are used to provide inputs to the mechanistic EDM models that have been previously validated 
by their ability to make out of sample predictions. 
 
1.2.1.2 Pacific Coral Reef Conservation 

The immediate objective of the second case study was to create a baseline empirical dynamic model for the 
benthic community dynamics of reef communities in the U.S. Pacific Islands — a case involving hundreds of 
islands having abundant line transect data collected over a relatively brief interval (short time series). The main 
applied objective was to demonstrate how an EDM framework can be constructed to identify practical 
benchmarks of reef status and address actions required to evaluate and restore past or future environmental 
impacts on islands. This includes predicting coral loss, growth, and stress as well as characterizing sensitivity to 
environmental drivers. 
 
Thus, in addition to providing practical advice for a specific system of DoD interest, this case study furthers the 
strategic objective of expanding the practical scope of EDM by focusing on a system without traditional long 
time-series measurements but with high spatial power instead. 
 
1.2.2 Expanding the scope of EDM methodology 

1.2.2.1 Multivariate Data Leverage 

While complexity and multi-dimensionality can be barriers to traditional analysis, we have shown that they also 
open up new ways of leveraging observations — allowing different sets of observations to effectively provide 
different kaleidoscopic views of the system. Thus, we aimed to expand EDM theory to develop ensemble models 
for improved forecasting and prediction both short-term, and for long-term scenarios, including multiview 
embedding (3) and refining ideas on random projection theory (8). 
 
1.2.2.2 High Spatial Power Data Leverage 

The core of empirical dynamic modeling was built on studies that involved long-term ecological observations. 
However, extensive longitudinal data may not be practical for many management applications. Indeed, it is much 
more common to encounter detailed but brief cross-sectional data from the intensive monitoring of many sites and 
species over short time periods (as in the reef island study). This motivates the objective here to extend EDM 
methods to accommodate high-spatial, low-temporal power data series common in ecosystem study, to make 
EDM more practical for treating emerging management needs. 
 
1.2.2.3 Long-term Simulation for Multiple Plausible Futures 

Empirical dynamic models can be used not just for predicting future environmental states from current conditions, 
but also for predicting behavior in hypothetical scenarios of management or environment (9). Previously, this 
capability was demonstrated over short horizons (9). A tactical objective for this project was to examine the 
potential for extending EDM scenario exploration under longer-term futures that are beyond the constraints of 
past behavior (that is, to distant no-analogue states). Furthermore, the results of extrapolation can depend heavily 
on the assumptions chosen such as to which variables interact with each other. We explore the sensitivity of 
extrapolation to changes in assumptions in models and explore avenues for adopting multivariate data leverage 
(see 1.2.2.1) to clarify future projections. Conceptually, we must also reconcile the need for long-term prediction 
with the inherent indeterminism in nonlinear systems due to stochasticity, forecast decay, and even classical 
dynamic chaos (10). 
 



1.2.2.4 Non-Analogue Projection and Nonlinear EWS 

Early warning signs (EWS) of critical transitions have garnered considerable interest over the last decade in 
giving simple metrics to predict dramatic change in nonlinear systems. However, these methods rely on assuming 
change is driven by a single slowly-varying external parameter, and view critical change as abrupt change 
between different alternative equilibria states.  
 
1.2.3 Technology Transfer: Code & Documentation 

A final transition goal of the project, and really our main challenge in terms of making EDM widely accessible, 
was to develop a standardized set of computational tools for public distribution. This includes providing detailed 
documentation and tutorials to allow new users who might wish to apply the methods to new areas of study.  This 
should not only benefit a variety of SERDP projects but should have an impact on environmental forecasting, 
environmental management and science in general.  
 
1.3 Technical Approach 
1.3.1 EDM Basics 

 
  
 
Empirical dynamic modelling is an inductive data-driven approach for studying complex systems from time series 
observations. While classical approaches involve hypothesized models, EDM attempts to minimize these 
assumptions by allowing the data to speak for itself. Thus, instead of assuming a particular model, EDM allows 
the data to tell us what the underlying model should look like — understanding nature as it “is,” rather than as we 
think it “should be.” The benefits of this are most clear in the context of fisheries management, where the classical 
model structures used to inform management fail to demonstrate real forecast skill (11). The ability to make 
skillful forecasts out of sample is an important validation step in the empirical dynamic approach. 
 
EDM is based on reconstructing an attractor from time series data (https://youtu.be/fevurdpiRYg). Thus, we 
consider time series of different system variables together as coordinates of a single system rather than as separate 
objects. This allows us to identify and study causal variables and interactions that are nonlinear and state-
dependent and make skillful out-of-sample predictions (12).  The abilities developed here to forecast and to 
explore alternative scenarios (e.g. different future environmental constraints), and to evaluate state-dependent risk 

Figure 1.1—Schematic of multivariate system 
reconstruction from a single time series. When 
there are missing variables or uncertainty about 
relationships, time lags of a single variable can be 
used as substitutes or proxy coordinates (bottom 
left, bottom right). Thus, a single time series can 
be used to make a univariate embedding. The 
geometry of the original multivariate data (the 
attractor above in x, y, z coordinates) can be used 
predictively, to identify relevant variables, and 
even measure changes in variable interactions 
through regime change. 

Video 1: https://youtu.be/fevurdpiRYg  
Video 2:  https://youtu.be/QQwtrWBwxQg 
Video 3:  https://youtu.be/NrFdIz-D2yM  



in terms of uncertainty (e.g., local sensitivity to dramatic change (7) driven by dynamic instability (6)), are 
essential for ecosystem management – the stated goals of this project. 
 
Determining key causal variables and their interrelationships is fundamental to understanding mechanisms and for 
constructing predictive models. The approach we take builds on convergent cross-mapping (CCM) as a way of 
identifying relevant causal variables in ecosystems—for a brief introduction see (13) or the following 1-minute 
videos:  
 
1.3.2 EDM without Traditional Time Series 

The geometric trajectory reconstructed with traditional EDM is closely related to another concept, the vector flow. 
Rather than a long winding thread through system states, the vector flow can be thought of as many short arrows, 
pointing how the system will evolve in the next time interval (Figure 1.2). In principle, the vector flow contains the 
same information about interactions and ability to predict. The advantage potential advantage is that a vector flow 
can be recovered from systems without traditional time-series so long as there are many equivalent observations 
of change over short intervals. 

In order for EDM to apply to these low-temporal power time series a key methodological problem we had to 
overcome was to find a way to determine how many active variables there are (embedding dimension (14)) and 
which variables to include together (causal analysis (13)). In the past, these questions have been answered with 
univariate EDM models using time lags.  
 
1.3.3 Data 

1.3.3.1 Case Study 1: Coastal Algal Blooms in Southern California 

The core data for Case Study 1 are from a manual observational program at the Scripps Institution of 
Oceanography Pier in La Jolla, CA. The time series consist of chlorophyll-a and nutrient measurements at 
approximate half-week intervals since 1986 (with some interruption), together with physical measurements (sea 
temperature, salinity) measured daily. 
 

Figure 1.2— Empirical dynamics 
composed of many short observations. 
Data on the left are smoothed through a 
nonlinear model ( = 5), while the panel 
on the right shows what data would look 
like if the system were linear ( = 0). 
While linear analysis would suggest a 
single equilibrium with fixed 
environmental conditions, representations 
of the attractor dynamics show a much 
richer range of behavior, and point to the 
need for coral reef conservation to look 
beyond the classic idea of static multiple 
stable states. Moreover, these plots 
shown on a 2-dimensional page smooth 
out the causal influences occurring in 
higher dimensions (nearby reef patches, 
ocean temperatures) that are explicitly 
treated in the full EDM analysis. 



1.3.3.2 Case Study 2: Pacific Coral Reefs 

The core data for Case Study 2 are benthic cover characterizations from a visual towed diver survey (TDS) 
program run under the Pacific Reef Assessment and Monitoring Program (RAMP) by NOAA between 2000 and 
2012 (https://inport.nmfs.noaa.gov/inport/item/35618). U.S. Pacific islands and atolls were revisited at 2-year 
intervals, and most islands had between 2 and 4 sequential observations. Benthic cover observations were 
geolocated to ~100m segments (5 minutes of diver tow), and thus the data set contains over 4,000 observations of 
benthic change in patches across 32 reefs over 2-year intervals. The observations include 7 islands and atolls with 
current or former DoD presence. 
 
1.4 Results & Discussion 
1.4.1 EDM Methods & Software Tools 

A major result of this grant is the discovery that species interactions are not fixed constants, but are non-stationary 
in time and even highly episodic (5), as shown in Figure 1.3. This insight led to developing more informative 
approaches to understanding risk, resilience (6), and uncertainty (7). Tools for these approaches and others were 
standardized in interoperable packages in R (rEDM), Python (pyEDM), and C++ (cppEDM). 

 

 

 

1.4.2 Red Tide Prediction 

Episodic Red Tides around Scripps are a classic example of something that no one has been able to predict. They 
have been thought to be regime-like, and the mechanism for the rapid transition to this state remained a mystery 
for over a century. Earlier attempts to understand bloom mechanisms using the Scripps Pier data were frustrated 
by absent or disappearing correlations between chlorophyll-a and the hypothesized drivers (see Pearson 
correlations reported in the right-hand column of table in Figure 0.3 below). Such so-called “mirage correlations” 
produce the appearance of non-stationarity and are common in nonlinear systems.   
 
However, using an EDM nonlinear causality test, convergent cross mapping (CCM), we examined data ending in 
December 2010 and identified strong nonlinear causal driving in a suite of variables that relate to physical 
conditions and nutrient history (see Cross-map skill (reported as Pearson Correlations) column of table in Figure 
0.3). Once identified, these otherwise invisible causal drivers were built into predictive EDM models that were 
subsequently tested on data from January 2011 to April 2012 — out of sample data that were unavailable during 
the model construction process. Interestingly, the multivariate models that showed best in-sample predictability 
(on data up to 2010) also demonstrated true out-of-sample forecast skill on data from January 2011 to April 2012 

Figure 1.3—Episodic interactions 
and stability. (Top) Analysis of a 
planktonic system uncovered by 
EDM analysis shows that 
competition between grazers (red 
line) occurs in narrow windows 
of time. Reproduced from. 
(Bottom) These episodic 
interactions lead to a new view of 
ecosystem stability as a dynamic 
process Reproduced from (5) 
(top) and (6) (bottom). 



which included a large chlorophyll bloom. These core results on short-term prediction of specific red tide events 
were presented in McGowan et al. 2017.  

 
Building on these short-term predictions, we developed long-term scenario exploration to identify sensitivity of 
bloom frequency and size to non-stationary changes in physical and nutrient drivers. The analysis was structured 
to incorporate the best available regional ocean model (ROMs) forecasts of the future environment in SoCal, but 
to also acknowledge the fact that the “best available” ROMS forecast is rapidly changing and that there are 
multiple plausible futures. A 7-km COBALT ROMs simulation run under the “business as usual” RCP 8.5 
scenario for climate change suggests temperatures will be cooler (more frequent upwelling or more influence 
from southward transport of cold water from the main California current) as well as increases in nutrients. Both of 
these environmental trends are predicted to lead to increased bloom frequency by our EDM analysis. There is also 
a more fundamental understanding that atmospheric warming will lead to greater stratification, and this also 
shows an increasing effect on bloom frequency in our analysis. Thus, although we are limited by the current state-
of-art of the ROMs predictions of future physical conditions in the area, there are multiple lines of evidence all 
suggesting blooms will become increasingly frequent as we approach 2050. 
 
1.4.3 Pacific Coral Reef Conservation 

We successfully adapted EDM methods to the spatially-rich, temporally limited RAMP towed diver surveys to 
build predictive models of change in benthic coral cover. Figure 1.5 shows sequential addition of variables to 
identify multivariate dynamics of % coral change over 2-year sampling intervals at individual survey patches. The 
best forecasts are produced by integrating local coral and macroalgae cover with nearby coral cover and 
environmental drivers.  

Figure 1.4—Nonlinear forecasting of 
coastal algal blooms in La Jolla, CA. 
Previous attempts to make 
quantitative predictions of blooms 
found no correlation between 
hypothesized drivers and chlorophyll-
a (see Pearson correlation values in 
the right-hand column of the top 
table), but nonlinear causal analysis 
shows they are mechanistic drivers 
(CCM skill reported as Pearson 
correlations). Yellow highlighted 
values are statistically significant 
with p < 0.05. EDM forecasts that 
incorporate these variables 
successfully predicted novel blooms 
held out-of-sample in measurements 
made available only after the analysis 
was complete (bottom panel). 



 

 
  
The same procedure can produce forecasts of change in the other benthic cover variable. For example, empirical 
dynamics can predict occurrence of stressed coral cover two years in the future from local benthic character 
(%Macroalgae Cover), spatial information (nearby %Stressed Coral Cover), and environmental drivers 
(maximum wave energy, temperature upper limit, directional variance in wave energy). It is critical to consider 
these variables acting interdependently to predict stressed coral. If a linear regression is used and variables are 
treated as acting independently, there is no ability to predict stressed coral events. 
 
Establishing a predictive framework for change in the benthic community then paves the way to develop dynamic 
benchmarks for management that describe the conservation landscape within reefs and across the 32 islands. 
Specifically, we apply the advances mentioned above (5–7) to quantify the stability of the benthic cover across 
time and space. Figure 1.6 shows how EDM estimates of the stability of the benthic dynamics and the expected 
growth or decline in coral across a study island to map out areas of different conservation relevance, e.g. reef 
segments that can be susceptible to positive intervention (quadrant IV in the figure). EDM models also provide 
benchmarks for sensitivity to changes in wave forcing and high temperature events. 
 

Figure 1.6— Benchmarks derived from multivariate EDM 
models for guiding management. The four quadrants map 
out the conservation landscape of an island. Areas with high 
instability indicate patches more susceptible to both positive 
intervention and negative impacts. A patch in quadrant I 
may grow, but this growth is sensitive to changes in the 
bottom and environment, meaning it could be easily derailed 
by human actions. On the other hand, a patch in quadrant IV 
is expected to decline, but could be steered to positive 
growth through restoration actions more easily than a patch 
in quadrant III. Note, each data point corresponds to a 
physical location on the reef. 

 
 
1.5 Benefits and Implications for Future Research 
 
This project has already produced 22 published manuscripts that advance EDM methodology and applications, 
with several more papers being planned. Among these are applications to understanding climate drivers of 
mosquito born illness (15–17) and further studies on understanding natural resource exploitation under climate 
variability (18, 19). 
 

Figure 1.5—2-year prediction of % 
Live Coral Cover  (%LC) using a 
greedy algorithm for selecting 
variables. Generally, %LC changes 
slowly over a 2-year period, reflected 
in high base-line predictability with a 
linear AR-1 model (yellow diamond). 
However, additional variance is 
predictable by incorporating 
multivariate information and allowing 
nonlinear interdependence between 
effects (>0). The best prediction 
(light purple) comes from integrating 
all seven listed variables. 



1.5.1 Data Fusion and Extending Modern Observations 

During this project, a new automated profiling instrument platform was deployed just off the SIO Pier. The data 
from this so-called “wire walker” between 2016-09-11 and 2017-09-05 presented the opportunity to use short-
term, high resolution measurements to enhance mechanistic interpretation of original study variables by explicitly 
considering ocean stratification (Figure 1.7A). In particular, the EDM cross-mapping relationship (13) between 
the wire-walker measured stratification and the manually measured surface state allowed us to reconstruct or 
impute a historical time series of stratification. This synthesized time series (Figure 1.7B) shows enhanced ability 
to predict historical blooms, and allows us to reconsider our long-term predictions of blooms in terms of more 
fundamental oceanographic change. Demonstrating this extension of EDM cross-mapping has huge relevance to 
environmental management through data-science, as it provides a way to reconstruct (impute) novel modern 
measurements over historical periods before the modern technology came into being. 
 
Bloom prediction in the historical data in principle demonstrated good predictability of red tide events with a 1-
week or greater lead time. However, the current data collection pipelines pose practical limitations to implement 
this for operations decisions: manually collected nutrient measurements are not processed in real time, but were 
key variables for prediction. A practical way forward could be to impute nutrients through cross-map (ala Figure 
1.7) from other variables easier to measure in real time like pH or dissolved oxygen. 

 
1.5.2 Further study of coral reefs 

EDM Benchmarks for Pacific Coral Reefs derived from the RAMP Towed Diver Surveys have practical utility 
for informing future management. Although NOAA no longer collects these data, the historical library we have 
built from the TDS remains relevant. For any given site in the future, only a single new snapshot is required to 
seed model forecasts and update benchmarks. An additional possibility is to adapt the analysis framework from 
TDS data to photomosaic quadrats, a rapidly expanding “big data” technology for reef monitoring. Photomosaic 
quadrats offer much greater detail spatially and taxonomically, but also have backwards compatibility to TDS as 
the same general % cover variables can be calculated as well. 
 
1.5.3 Lake Geneva 

During the grant, there was opportunity to apply the same methodology developed for the red tide case study to a 
conceptually similar problem. This additional case study emerged as a case of opportunity involving a classic 
limnological example: predicting water quality health in Lake Geneva under various plausible climate and 

Figure 1.7— Empirical dynamic model 
reconstruction of ocean stratification 
(calculated by the buoyancy frequency) 
from surface pier measurements. (A) 
Example data from wire-walker automated 
profile moored 100m off-shore of SIO Pier 
study site (77), contextualizing the detailed 
ocean state measurement possible with 
modern automated methodology against 
traditional daily measurements at the SIO 
Pier made by hand (yellow stars). (B) 
Shared causal information between surface 
measurements and ocean stratification (13) 
measured over a 1-year deployment in 2018, 
however, allow historical reconstruction of 
stratification across the historical SIO Pier 
time series. 



management future scenarios. Like the red tide event, there are extreme events that dominate the relevant 
ecological history, but in the lake they are changes in oxygen rather than changes in phytoplankton. Previous 
attempts at parametric modeling of hypoxia in Lake Geneva have had some success, as 1-dimensional physical 
circulation models can capture the physical mechanisms of oxygenation well. However, long-term changes (non-
stationarity) in biological relationships that play in oxygen consumption, like the carbon:phosphorous ratio and 
carbon export fluxes, confound the validity of extrapolating the parametric models to new scenarios. We find that 
EDM can capture these changing relationships and explain (predict) historical variability better than a strict 
parametric approach, particularly recent behavior as the lake has entered new regimes of biogeochemistry. 
1.5.4 New avenues 

The successful adaptation of EDM methods to the Pacific Coral Reef case study demonstrates a radical 
advancement for EDM as a practical tool for management. Traditional EDM relies on long time-series 
measurements to build an understanding of system complexity and identify relevant interacting variables, thus 
making it poorly suited to addressing emerging management questions in ecosystems or environments that don’t 
happen to have long-term observations associated with them. The road map set out in case study 2 shows how 
emerging management questions in previously un-studied systems could be addressed through EDM, so long as 
change (dynamics) can be measured over a limited time (months or a few years) in many equivalent systems, such 
as patches across a large area in a spatially explicit system like tropical coral reefs or forest fire. However, 
replicates do not need to have a spatial relationship, as the same general approach would work for e.g. water 
quality in US Army Core multi-use reservoirs across the United States (20). 
  



2 Objectives 

The purpose of this project was to investigate and further develop empirical dynamic modeling (EDM) 
as a practical nonparametric approach for environmental science that explicitly acknowledges the reality 
of natural (non-engineered) systems. Ecosystems have interconnected and interdependent pieces, 
meaning that causes, mechanisms, and dynamics are state dependent, non-separable and ephemerally 
non-stationary.  
 
The conventional parametric approach involves hypothesized model structures and key variables, then 
fitting data to adhere to these notions. But parameter values that optimize an in-sample fit don’t 
necessarily make for a predictive model. This is most clear in the context of fisheries management, 
where a fixed set explicit model structures are used to inform management across fisheries and 
countries, but fail to fundamentally demonstrate real forecast skill (11). EDM represents a paradigm 
shift away from current parametric models, built on the principle of empirically determines structure and 
variables, and uses true out-of-sample forecast skill as the rigorous measure of model merit rather than 
goodness-of-fit. 
 
Thus, the core strategic goal of the project was developing EDM to address the need for credible 
ecological forecasting to understand past, present, and future in non-stationary, non-equilibrium 
systems, and to raise consciousness of the particular complications that arise for predicting futures 
in these kinds of complex natural systems. Through model tests and case study development, we have 
developed and demonstrated real solutions to the forecasting problem with particular attention paid to 
ongoing development of methods for new kinds of data sets and computational tools that are publicly 
available. 
 
Two specific case studies were chosen to advance this broad strategic goal of developing non-analogue 
prediction that also have specific relevance to the SERDP mission. The first focused on predicting red 
tides and the second on predicting coral reef dynamics in the US Pacific Islands. The first is relevant to 
the Army Corp of Engineers, and the second included direct investigation on islands with current 
(Wake, Guam) and historical (Midway, Johnston, Palmyra) DoD presence.  
 

2.1 Working Hypotheses 
 
The EDM approach uses time-series data and non-parametric calculations to reveal the actual dynamic 
relationships operating among variables as they have occurred rather than as we imagine them to be. 
Thus it is a minimally assumptive modeling paradigm compared to parameterized approaches which 
assume a priori functional forms, as well as linear statistical modeling that assumes interactions between 
components occur independently. Rather, the grounding assumption of EDM is that there are 
deterministic rules governing the interactions between eco-system components. Stated more technically, 
our basic hypothesis is that changes through time in ecological variables (e.g. chlorophyll-a in the 
case of red tides, % coral cover in the case of Pacific reefs) can be explained by low-dimensional 
nonlinear endogenous dynamics forced by environmental drivers. Importantly, it is standard in 
applications of EDM to explicitly evaluate this hypothesis as a first step of analysis. Additionally, our 
working hypothesis is that EDM models constructed on historic data (in case of red tides) or data 
from similar but non-identical systems (in case of coral reefs) can forecast non-analogue behavior 
outside the strict bounds of the original observations. 



 

2.2 Methodological Advances: 
 
The specific objectives of this project involving methodological advancement all serve the broad 
strategic goals of developing EDM to address the need of credible ecological forecasting and broadening 
the applicability of EDM for environmental management under the purview of SERDP and beyond. 
Furthermore, tactical goals 2.2.1, 2.2.2, 2.2.3, and 2.2.4 most directly serve the strategic objective of 
creating an empirical forecasting framework that can accommodate multiple plausible futures. 
 
2.2.1 Leverage quasi-replicates for predicting non-analogue events 

Dewdrop regression is an approach with empirical dynamic modeling to leverage similarity across 
observed systems such that attractor dynamics from one can “co-predict” behavior of another (21). This 
project sought to expand on this idea of dewdrop regression specifically to predict novel extreme 
behavior (e.g. rapid transitions between non-equilibrium regimes) in a system based on observations of 
previous occurrences in other areas. Examples could include species collapses in fisheries, disease 
outbreaks, or bleaching in reef systems. This can be particularly applicable as climate change impacts 
(e.g. coral reef stresses) progress up latitudinal gradients. The working hypothesis is that using multiple 
time series replicates (each showing a single transition), we can forecast these transitions in a 
system that has not yet undergone transition. 
 
2.2.2 Long-term simulation for multiple plausible futures 

A tactical objective for this project was to examine the potential for extending EDM scenario 
exploration under longer-term futures that may go beyond the constraints of past behavior (i.e. to distant 
no-analogue states). This was originally stated under Task 5, and included building an understanding of 
how results of extrapolation can depend on the assumptions chosen such as which variables interact with 
each other. This objective was expanded on in Task S4 of the supplement funding, to include exploring 
avenues for adopting multivariate data leverage to clarify future projections. The EDM framework needs 
to account for stochasticity, allowing for both uncertainties in drivers and in the ecological response. 
 
2.2.3 Multivariate Data Leverage & Multimodal Inference 

This objective was articulated under the supplemental funding (Task S2). We sought to expand EDM 
theory to develop ensemble models for improved forecasting and prediction both short-term, and for 
long-term scenarios. This will build upon existing advances in EDM to leverage high-dimensional 
datasets (3) and will better support Tasks 5 and 7 ("Develop Theory and Methods to Extrapolate EDM to 
Non-Analogue Futures" & "Develop Theory and Methods to Leverage EDM using Spatial Data”). 
 
2.2.4 Non-Analogue Projection and Nonlinear EWS 

We sought to develop an EDM approach for credible forecasting of longer-term ecosystem dynamics 
under multiple plausible future scenarios of climate and human action. Explicitly, the project was aimed 
to use models to explore the ability of EDM to extrapolate dynamics beyond the constraints of past 
behavior, and to predict attractor switching and critical thresholds. Furthermore, the supplemental 
funding added an explicit objective to incorporate method advances made in the early stages of the 
project that established an EDM approach to explicitly measuring interactions in real-time (22) using the 
coefficient of local linear regression with S-maps. The advancement pointed towards the potential to 



develop new early warnings of nonlinear ecosystem shifts better suited to non-equilibrium systems and 
applicable to data sets lacking long time-series. The working hypothesis was that matrix stability 
metrics corresponding to the local linear regression coefficients (Jacobian matrix elements) 
indicate risk of critical change (e.g. collapse) in ecosystems. 
 
We will explore the sensitivity of extrapolation to changes in assumptions in models. We will also 
explore ways to validate the assumptions that go into extrapolation. For example, convergent cross-
mapping (CCM) can be used to validate which variables should be included together. 
 
2.2.5 Quantify Uncertainty 

In the past, uncertainty in EDM forecasts has generally been presented through aggregate forecast skill 
or forecast error for a given empirical dynamic model at making predictions across a test set of data. 
However, uncertainty is not understood to be uniform across an attractor, and can in theory be strongly 
influenced by the density of similar observations, by the varying local instability or stability of 
trajectories (23, 24), and by the varying sensitive to stochastic (environmental) drivers. Thus, a goal of 
this project was to develop state dependent uncertainty measures for EDM forecasts (with simplex 
projection and S-maps). This advancement was essential to other pieces of the project (e.g. 2.2.2) but 
also for suitability of EDM to broader application in environmental management. 
 
2.2.6 High Spatial Power Data Leverage 

The core of empirical dynamic modeling was built through the study of long-term ecological 
observations. However, reliance on long-term monitoring is not practical for many management 
applications. At the same time, detailed monitoring data are often collected over short time periods in 
spatially explicit data sets, and these have the potential to contain as much or more empirical 
information on dynamics and causal relationships as single long-term studies. Moreover, spatially rich 
data sets (unlike long time-series) can be rapidly collected in response to acute emerging environmental 
management needs. Thus, we proposed to extend EDM methods to accommodate high-spatial, low-
temporal power data series common in ecosystem study and more practical for treating acute 
management. 
 
Dewdrop with spatial replicates was previously demonstrated for CCM. However, the method still relied 
on time-lagged vectors. However, enough time lags are needed to sufficiently resolve the multi-
dimensional attractor dynamics. Even a three-component system requires at minimum three years of 
history at each site to take this approach. 
 
2.2.6.1 Spatial Lags 

Parallel measurements made at sites offer one way to reduce the need for taking sequential time lags. 
However, spatial data sets often correspond to system that have aspects of dynamics playing out in 
space, such as dispersal. This project will investigate using measurements of variables at spatial 
neighbors (“spatial lags” rather than “temporal lags”) as variables for unfolding (embedding) empirical 
attractors. The working hypothesis for this objective is that observations from adjacent sites (“spatial 
lags”) can be used in place of univariate time lags to reconstruct system attractors for EDM 
analysis, and additionally, that spatial lags can be incorporated through the same methods as single 
site multivariate data (ala Dixon et al. 1999). 
 



2.2.6.2 Multivariate alternatives to univariate methods 

Although multivariate EDM has existed for over 20 years(25), univariate time-lag embeddings are 
established for basic components of EDM analysis including assessing the number of coordinate 
variables needed to represent the system (14) and assessing causal relationships through attractor cross-
mapping(13). A key strategic objective, then, was to develop rigorous alternatives analyzing 
embedding dimension and dynamic causality using multivariate embeddings without time lag 
coordinates (but possibly spatial lags). 
 
2.2.7 Code & Documentation 

A central objective and deliverable for the project was a unified coding package for basic EDM and the 
methodological advances made here-in, complete with documentation, to facilitate direct technology 
transfer to new areas of application. 
 

2.3 Case Studies: 
2.3.1 Red Tide Forecasting 

The primary goal of Case Study 1 was to develop an empirical dynamic modeling framework to forecast 
red tide events in Southern California under the hypotheses that blooms can be understood as rapid, 
threshold behavior produced from nonlinear dynamics and amplification of stochastic forcing. as an 
initial large-scale demonstration case where linear, stationary methods have failed to give insight. 
Additionally, we sought to apply long term scenario exploration to generate insight into likely future red 
tide dynamics under climate change. 
 
Initial red tide models (Task 2) suggest that stratification is an important predictive indicator of red tide 
events along the Southern California coast. Under Task S1 of the supplemental funding, we proposed to 
extend research into these mechanisms to better be able to adapt the results to other systems of interest 
to SERDP, taking advantage of additional monitoring in Southern California including novel high-
resolution physical oceanographic measurements initiated by colleagues at SIO during the course of this 
grant. 
 
2.3.2 Coral Reef Resilience 

We will establish baselines for benthic community dynamics in Pacific Island reefs (neighboring islands 
without a DoD history), and use these control baselines to address actions required to evaluate and 
restore potential environmental impacts on islands with DoD history. 
 
The tactical objective of the second case study was to establish a baseline empirical dynamic model for 
benthic community dynamics in Pacific Island reefs, and demonstrate ways this EDM framework can 
identify benchmarks and address actions required to evaluate and restore past or future environmental 
impacts on islands. This includes predicting coral loss, growth, and stress as well as characterizing 
sensitivity to environmental drivers. Simultaneously, this case study furthers the strategic goal of 
expanding the practical scope of EDM by focusing on a system without traditional long time-series 
measurements, but high spatial power instead. 
 



3 Background 

3.1.1 The need for a new paradigm 

There is a clear and growing national and global need for analytical tools that better address the 
underlying complexity of natural, non-engineered systems. Engineered systems are generally created 
with linear causality where causes act independently of one another. That is, the channel button on a 
television remote has a single effect, and its effect is independent of the action of the volume button. 
Natural, non-engineered systems don’t necessarily follow this rule. Causal associations between 
variables are not fixed, but change with system state. For example, marine grazers can be shown to only 
complete for resources when they are experiencing food limitation (5). The dynamics that result from 
state-dependent (nonlinear) interaction can appear non-stationary and exhibit erratic, seemingly unstable 
ups and downs with unpredictable and sometimes severe outcomes (e.g. fisheries collapse and unstable 
financial markets). 
 
The conventional parametric approach involves “hypothesized” model structures and key variables, not 
empirically determined ones. These models can certainly be made “complex”, in some sense, but not 
necessarily meaningfully so. Increasing “model complexity” often means adding terms with more and 
more assumptions about the causal interactions in a system that are ultimately counter-productive (26). 
All such models are actually hypotheses. While ideally the structure and parameters of these equations 
provide insight into the mechanistic relationships between variables, in reality models are hampered by 
hidden variables, uncertain ecological relationships, and ambiguity between inherent unpredictability 
and model error. 
 
The alternative to structurally assumptive modeling has been a correlation-based framework of 
statistically understanding complex systems. Despite the known reality and ubiquity of nonlinear 
dynamics (and the costs associated with unanticipated threshold phenomena and tipping points) it is still 
accepted practice to apply linear statistical tools like correlation analysis based on their convenience and 
familiarity. The paradigm is based on stable, stationary equilibrium points that allows the system to be 
studied as a decomposable sum of independent parts. When applied to systems that don’t match these 
expectations, correlation analysis can give erroneous results. 
 

3.1.1.1 Mirage Correlation 

In nonlinear systems, it is not that correlations necessarily don’t exist. Variables in nonlinear systems 
can appear correlated for years. However, this correlation can quickly evaporate even though the 
dynamics have not changed in any significant way. Such transient correlation followed by apparent lack 
of stationarity (aka “mirage correlation”, Sugihara et al. 2012), is part of the phenomenology of 
nonlinear systems that produces the appearance of non-stationarity (Figure 3.1). Thus, just as 
“correlation does not imply causation,” in a nonlinear system lack of correlation does not imply lack of 
causation Therefore, for systems consisting of nonlinear webs of interacting parts, correlation, though 
insidiously ingrained in our thinking, is fundamentally the wrong tool for identifying relevant variables. 
Variables (e.g., species) may be dynamically coupled (and be perfectly cross-predictable), but show no 
correlation in time.  
 



 
Figure 3.1—(from Sugihara et al. 2012) Correlations between variables (red and blue) can be ephemeral in 
nonlinear systems. In panel (a), the two variables appear correlated for 9 time steps (years). In panel (b), the 
correlation breaks down but returns by year 115. We may incorrectly ascribe this breakdown in correlation to a 
perturbation. In panel (c), and over longer time periods, there is no correlation. Although uncorrelated, the system 
is dynamically coupled. Both series are generated by a simple deterministically coupled 2-variable logistic 
difference system that remained unchanged in the simulation. 

Struggles with mirage correlations continue to frustrate ecological understanding and management. In 
fisheries science, attempts have long been made to connect reproductive success (“recruitment”) to 
environmental conditions like sea surface temperature. Lacking a single precise mechanism for 
environmental driving (but a long list of plausible hypotheses), scientists have turned to correlation 
analyses. Perhaps the most high-profile case is the Pacific sardine, where environmental non-stationarity 
has been invoked in understanding the dramatic collapse of the fishery in the mid 1900s. However, 
documented correlations (27) that were then integrated into management (ostensibly to improve 
prediction) failed to hold up to retesting a decade later (28), throwing the management into back-and-
forth argument (29). Indeed, this same story of vanishing linear effects has played out across most 
fisheries where environmental-recruitment correlations were put forward (30). 
 
3.1.1.2 Rapid Transitions 

Rapid transitions in state are another type of apparent non-stationarity that can arise in ecological 
systems due to underlying nonlinear dynamics. These include blooms, where a population or taxon 
rapidly undergoes exponential growth; collapses, where populations abruptly fall to low numbers and 
even local extinction; but also may include irreversible transitions between characteristic communities, 
such as suspended algae to macrophytes in temperate lakes. While gradual, monotonic change has been 
invoked in explanations of regime shifts in many classic cases (31), it is possible for nonlinear 
endogenous dynamics to produce regime shifts all on their own. Witness the two lobes of the classic 
Lorenz attractor or food-chain switching by a predator with context dependent prey preference (32). 
 
Previous research with empirical dynamical modeling demonstrated in a natural system (Dixon et al. 
1999) to explain spikes in damselfish larval supply dynamics in terms of physical variables related to 
lunar cycle, wind direction and turbulence, the latter two variables showing no apparent correlation to 
larval supply. In this example, when the three physical conditions aligned correctly, the effect was 
multiplicative and a perfect storm resulted, producing a huge spike in larval abundance. However, if any 
one condition was not satisfied then abundance was effectively zero. Such nonlinear state dependence 
predisposes ecosystems to rapid shifts in state, a major source of concern for marine resource 
management and environmental management more broadly. However, thresholds and regimes of real 
systems are difficult to reliably derive from conceptual models. The answers can depend greatly on 
arbitrary choices of parameter or structural form (33). 
 
 



3.2 Data Science for Management of Nonstationary Futures 
 
In the era of big data, there is enormous opportunity for a renewed ecological empiricism that is both 
quantitative and minimally assumptive and can address the pressing needs for a new paradigm. Rich 
observations can let us study nature as it is, rather than as we imagine it to be, so long as the appropriate 
data science is applied. The fundamental idea of EDM is to use data to study ecosystem dynamics from 
a geometrical perspective—the attractor manifold. This geometry can then be studied in simple, general 
ways that require few assumptions, then used to predict (25, 34), test causal relationships (12), and 
analyze environmental scenarios (35). It is front-and-center a dynamic approach that seeks to understand 
change rather than ignore it, and thus is especially suited to systems with complex interdependence 
between variables be they species, environmental drivers, or even human behavior. 
 
The multivariate attractor can be intuitively thought of in relation to Hutchinson’s n-dimensional niche. 
While Hutchinson niches might be thought of as a cloud of points in a multivariate space, the attractor is 
the trajectory as the system winds through the cloud due to whatever particular combination of 
endogenous interaction and environmental forcing. Thus, as the system changes over time, it occupies 
different points in the state-space, forming trajectories that comprise an n-dimensional geometric 
attractor (see Figure 4.1 in the next section), and time series of the state variables can then be viewed as 
sequential projections of the attractor onto the coordinate axes. Moreover, although the attractor 
manifold was originally conceptualized as generated from an underlying set of equations, it can also be 
recovered directly from observational time series data. This is trivial (yet powerful) for a system where 
all essential variables are known and measured, it simply requires viewing the system as a 
multidimensional whole rather than separate single pieces of time series. 
 
3.2.1 Variable identification: CCM instead of correlation 

Determining key causal variables and their interrelationships is fundamental for constructing interaction 
networks and making reliable forecasts of ecosystem change. Clive Granger made the connection 
between forecasts and causality in his Nobel Prize-winning work (36). However, the test he developed, 
Granger causality, is designed for systems where causes and effects are neatly separable (linear). It does 
not generally apply to nonlinear dynamic systems, where information about the dynamics of causal 
variables is embedded in the time series of response variables. However, this property of nonlinear 
systems then forms the basis of convergent cross mapping (CCM) as a way of detecting dynamic causal 
links built on the general principles of EDM. Specifically, CCM uses cross-prediction between variables 
to establish causation—e.g. if past sea surface temperatures can be estimated from sardine time series, 
then temperature must have been a causal variable, whose historical effect was recorded by sardine 
populations (Sugihara et al. 2012). 
 
Empirical dynamic modeling has traditionally been applied to long time-series data. Indeed, work 
supported by this grant showed with fisheries data how short time series can mask underlying 
nonlinearity (37); it can lead to large uncertainty in causality assessment and bottom line prediction. 
Nevertheless, needs of environmental management generally only match up with long-term ecological 
observations by happy coincidence. Additionally, in truly non-analogue climate futures, causal 
relationships made fundamentally change, rendering causal associations learned from historical 
dynamics less useful. Combining short time-series from spatial replicates can be used to overcome this 
to some extent, as shown by Clark et al. (38). However, the approach is still limited to having time series 
at each site at least as long as the number of dimensions needed to unfold dynamics. In the towed-diver 



surveys we seek to study for Case Study 2, many sites were only revisited a single time. Generalizing 
convergent cross-mapping to these situations is thus critical to developing EDM as a practical tool for 
studying and managing non-stationary, non-equilibrium futures. 
 
3.2.2 Stability away from equilibrium 

The classic ideas of stability in ecology are built on linearization around a static equilibrium point, 
which reduces the dynamics of the system to a matrix of linear interaction coefficients (the Jacobian or 
Community matrix). For linear dynamics around an equilibrium, the stability is explained by the largest 
eigenvalue of the Jacobian matrix, 1. In discrete-time representation, if 1 > 1, then the system will 
iteratively diverge from the equilibrium, and hence the point is unstable (see left side of Figure 3.2). The 
equivalent in a continuous time model is 1 > 0. 
 
This framework lead to explanations of rapid change in ecosystems as arising from multiple stable states 
modulated either by a slow change differentially affecting the stability of equilibria or by sudden 
perturbations driving the system from one basin of attraction to another. However, it has long been 
appreciated that persistence in ecological communities is not always so easily understood as point 
equilibria (39). In this case, the Jacobian matrix still controls the local convergence or divergence of 
dynamics. However, the Jacobian matrix evolves as the system passes through ecosystem states, since it 
is not just remaining in linear neighborhood of a single point. This sequential Jacobian estimation is in 
fact the basis of an important EDM approach, S-maps (40, 41), and thus points a way towards 
understanding dynamic stability and anticipating rapid change within established EDM methodology. 
 
 

 
 
Figure 3.2— Linear and dynamic views of stability both are described by eigenvalues of the Jacobian matrix 
(local linear approximation). However, in a system near equilibrium a single fixed Jacobian can be defined for the 
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system, while in a non-equilibrium system that Jacobian will evolve through time. Both can be accommodated 
within EDM. 

3.2.3 Early Warning Signs 

Importantly, the existing early warning signs of critical transitions (EWS) are based on a conceptual 
framework of linear equilibria (left hand of Figure 3.2). Decreasing stability of a linear equilibria is 
marked by “critical slowing” of dynamics. This is illustrated on the left panel of Figure 3.3. When an 
equilibrium is highly stable ( << 1), dynamics quickly return the system to the point equilibrium after 
perturbations, but this return time increases as the point loses stability (1) before the system 
ultimately transitions to a different equilibrium. This gives rise to a number of related indicators of 
critical change such as rising autocorrelation and variance (right panel of Figure 3.3). 

 

 
Figure 3.3— Multiple stable states and early warning signs of critical transitions. Right-side panels reproduced 
with permission from Schaffer et al. (42). Decreasing stability of point equilibria leads to “critical slowing” of 
dynamics (left), which has given rise to a number of related indicators of critical change such as rising 
autocorrelation and variance (right). 

However, despite being a popular topic in the literature, the EWS metrics have not seen practical 
implementation for management. Neither rising variance, nor autocorrelation come with natural 
thresholds for prediction, but are rather qualitatively indications. Additionally, these are built on having 
long time series of a single system to notice these gradual changes over time. Finally, their justification 
is based on a stable equilibrium view of resilience at odds with many ecosystems. Returning to the 
underlying idea of Jacobian matrix stability points the way towards a more general and rigorous 
approach to EWS. 
 

3.3 Case Study 1: Red Tides in Southern California 
 
3.3.1 A Century-long Mystery with Mirage Correlations 

Rapidly appearing dinoflagellate blooms off the coast of La Jolla and Southern California have been a 
mystery for over a century (43). A predictive understanding of these events has long eluded science, and 
thus this case study provides a high profile example for understanding and forecasting episodic, 
threshold events. 
 
A comprehensive near-shore monitoring program at the Scripps Institution of Oceanography (SIO) pier 
has been ongoing for over three decades.  Biweekly and daily measurements include chlorophyll-a, 

λ << 1

λ → 1

λ > 1



dissolved nutrient concentrations, water temperature, and density for much of the observational period. 
Additionally, rainfall, wind, and offshore temperature measurements are available from nearby stations. 
It is a unique opportunity, both in terms of data-breadth and temporal depth, to approach the mystery of 
what controls the legendary episodic algal blooms. 
 
Past attempts to understand this system (e.g. Kim et al. 2009) based on a paradigm of stable, stationary 
equilibria, treated the different hypothetical causes piecewise (as a decomposable sum of independent 
parts), yielding little in the way of explanation or prediction. The analyses were based on linear cross 
correlation. In past decades, the best explanation found with linear analysis was an apparent positive 
correlation between temperature anomaly and chlorophyll-a (Figure 3.4). While the relationship initially 
appeared strong when data through 1993 were used (correlation of  = -0.33), it switched sign then 
vanished in the data collected from 1993-present ( = -0.02).  Mirage correlation such as this is expected 
in nonlinear ecosystems (Sugihara et al. 2012). 
 

 

 
Figure 3.4— Mirage correlation frustrated earlier attempts at identifying a causal mechanism for predicting red 
tides in La Jolla. A sea surface temperature (SST) anomaly was constructed by differencing surface and bottom 
measurements at the SIO pier that had a strong negative correlation to chlorophyll blooms between 1983 and 1993 
(top). However, this relationship was not immediately published and this linear relationship has since vanished 
(bottom). Such mirage correlations are a hallmark of nonlinear ecological dynamics. 

3.3.2 Negative Impacts 

In recent history, the most common dinoflagellate causing blooms in La Jolla is Lingulodinium 
polyedrum. Although L. polyedrum does not produce toxins directly harmful to humans (or other 
vertebrates), other blooms in the Southern California bight do produce toxins; these may cause 



detrimental health impacts during open water training/activities (e.g., reports of increased ear and sinus 
infections for swimmers). Even non-toxic dinoflagellate blooms produce negative impacts, however, and 
can be classified as harmful algal blooms (HABS). Exposure to blooms can affect equipment, requiring 
more maintenance to clean small boat engines, and various sensors (esp. optical) in bays/harbors for 
long-term monitoring. Advance notice of blooms via predictive models may allow proactive measures to 
be taken to limit their negative effects. 
 
More importantly, blooms of Pseudo-nitzschia, which produce Domoic acid (a neurotoxin), can lead to 
mortality events among seabirds and marine mammals. This includes the California Least Tern, an 
endangered bird; over 1/3 of California Least Terns nest on land managed by the DoD (Camp Pendleton 
& Naval bases in Southern California). Algal blooms reduce open water foraging areas, cause large 
hypoxic zones, precipitate mass fish die-offs, leading to reproductive failure or even direct mortality in 
conservation targets. Thus, knowledge of whether red tides will increase or decrease 25 years from now 
would provide actionable information and advance warning. 
 
Finally, beyond southern California, harmful algal blooms occur across several other ecosystems where 
the DoD has responsibilities and interests, including the Gulf of Mexico, Atlantic coast estuaries, and 
freshwater reservoirs maintained by the Army Corps of Engineers. Developing a robust analysis for 
predicting threshold, exponential response of algae in southern California, thus, can lay the foundation 
for future approaches in these other areas. 
 

3.4 Case Study 2: Pacific Coral Reef Resilience 
 
3.4.1 Ecological concerns at U.S. Pacific Reefs 

Coral reefs are in crisis globally. Loss of coral cover has been tied to multiple stressors within and 
across reef zones, including human and natural physical disturbance, thermal stress, disease, and over-
fishing of important herbivores. Coral reef status at current and former DoD sites in the Pacific differ 
greatly, with military presence associated with some positive characteristics (like fishing bans) but also 
physical disturbance due to operations and ongoing issues associated with past activities, such as the 
reengineering of Palmyra atoll. Understanding the factors that shape reef resilience is critical to ongoing 
conservation at Pacific island locations, particularly in the face of non-stationary environmental forcing 
under a changing climate. As reef cover continues to decline globally, it is important to avoid adverse 
impacts on sites that remain resilient to change, as well as identify opportunities to improve reef health 
where recover is possible. 
 
Statistical analysis across the Hawaiian archipelago identifies clusters of states indicative of multiple 
regimes of behavior, including a “calcification regime” dominated by hard corals, a “turf algae regime”, 
and a mixed macroalgae and sand regime (44). All three statistical regimes exist across human and 
environmental gradients. These regimes do not necessarily constitute stable states, however, and 
occurrence of the statistical regimes seemed to hinge on variable ecosystem states, like the abundance of 
classes of herbivorous fish, and the dependencies suggested nonlinear relationships. 
 
Previous quantitative analysis has also highlighted the importance of wave energy. Generally speaking, 
high wave stress is associated with low or absent coral cover, but the effect can depend on the 
community composition, as well as other stressors like temperature and sediments (45). While higher 
wave energy areas leave coral more vulnerable to physical damage, they are also associated with lower 



temperatures (due to greater circulation and flushing with deep water) and sedimentation than sheltered 
areas like lagoons. Critically, relationships with the environment show characteristics of nonlinear 
relationships, where coral communities can robustly reorganize to maintain resilience, but occasionally 
reach abrupt tipping points (46). Predicting these thresholds from individual physiologies and 
mechanistic models is a dizzying prospect, and thus is an ideal case to try to employ empirical, data-
driven approaches. 
 
3.4.2 Restoration as an emerging opportunity for data-driven science 

In addition to basic science needs for identifying factors of resilience and changes to resilience over 
time, there is also an opportunity for empirical approaches to guide next generation restoration efforts. 
There are many (often creative) tools emerging for restoration include algal removal with vacuums, but 
these cannot be usefully deployed without a predictive framework of reef resilience and recovery. Coral 
out-planting has shown exciting potential in a number of cases. At Laughing Bird Caye in Belize, for 
example, Fragments of Hope and collaborators have increased coral cover by an estimated 50% within 
the National Park. Nevertheless, coral reef conservation is inherently a multi-scale endeavor, with 
management actions, ecosystem processes, stressors, and outcomes all happening at a variety of spatial 
and temporal scales. As coral declines have multiple attributable causes across systems, resilient reefs 
seem to require a number of characteristics. Critically, these processes and factors do not neatly 
decompose in a separable way. Although this is certainly widely appreciated in the abstract, the full 
ramifications of this reality are not often assimilated into the analytical approaches we take to 
management and conservation. Large scale out-planting is already in the works, including an ambitious 
plan by NOAA and partners to restore Seven Iconic Reefs along the Florida Keys. The more reef 
resilience and restoration success can be best understood as emergent properties of complex ecosystem 
context and dynamics, the more these efforts can hope to meet the promise of their price tag. 
 

3.5 Other Empirical Examples 
 
3.5.1 Cedar Creek LTER 

Long-term experiments and observations at Cedar Creek have demonstrated regime shift behavior in the 
vegetation community which can be driven by nitrogen addition (47). The shift is characterized by loss 
of native C4 grasses, and dominance by two invasive species, Poa pratensis and Elymus repens. 
Experiments have shown these shifts display hysteresis, i.e. the dominance of invasive species can 
persist for decades after nitrogen additions have ceased. However, the dynamics in the plots also don’t 
conform to neat ideas of stable equilibria. For example, even after plots have shifted to dominance by 
invasives, there are large year-to-year fluctuations in biomass (Figure 3.5). 
 



 

Figure 3.5— Time-series of above ground P. pratensis biomass in Cedar Creek experimental plots under moderate 
nitrogen enrichment treatment, 5.44 kg N ha-1 yr-1. 
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4 Materials and Methods 

4.1 EDM Basics 
 
We begin by briefly describing established EDM methodologies. These methods were used extensively 
in the project and variously adapted in new ways and innovated upon. Several of these methods were 
explicit technical objectives of the project, while a few arose organically in pursuing our strategic goals. 
The established basics described in 4.1.1 form the foundation for the innovations described in the 
remaining sections. 
 
4.1.1 Attractors: What and Why? 

As discussed in 3.2, Empirical Dynamic Modeling is a data-driven approach to quantitative ecosystem 
study and forecasting that centers on the geometric attractor. Like equations, the geometric attractor 
represents the relationships between variables that cause changes through time in a system, but unlike 
equations, these can be recovered and studied in simple, minimally assumptive ways. 
 

 
 
Figure 4.1—Reconstructing the system dynamics from a single time series. (A) The basic concept of EDM is that 
time series can be understood as a projection of the motion of the multivariate system along its attractor 
trajectories. Here, the canonical Lorenz attractor projected onto the x-axis yields a time series for variable x. (B) 
Successive lags (with time step τ) of the time series xt are plotted as separate coordinates to form a reconstructed 
(and visually similar) “shadow” manifold that preserves essential mathematical properties of the original system.  

Takens’s theorem and extensions (48–52) formalize the idea of using time-lagged coordinates of a single 
variable to recover a shadow version of the underlying system attractor. In practice, the time-lag interval 
 needs to be appropriate so that successive lags aren’t too highly correlated, but aren’t past the horizon 
of information decay. 
 
 



 
Figure 4.2— Effect of time-lag interval  on manifold reconstruction. Using time-lag coordinates that are too 
highly correlated (left) or are past the information decay of the system (right) can lead to poorly resolved 
embeddings. 

Figure 4.2 gives an illustration with the Lorenz system of how the ability to recover a predictive attractor 
can be affected by picking a tau that is too short or too long. If measurements are made rapidly relative 
to the characteristic rate of change of the system and we attempt to do a lag reconstruction with this very 
short  (left-most attractor), the successive lags have almost the same information, and the attractor gets 
smashed up against the 1-to-1-to-1 line. On the other end of the spectrum, if  is much too long (right-
most attractor) then the successive time lags don’t really contain current information and the attractor 
becomes a tangled mess. In the middle ground, the successive lags are sufficiently different, but still 
contain current information (middle attractor). 
 
If observations are made continuously (e.g. an in situ fluorometer for measuring chlorophyll), then an 
appropriate  can be picked from analyzing the autocorrelation series and identifying a lag within the 
decorrelation time for autocorrelation to drop below  = 0.6. More commonly, observations are made at 
some frequency, and this sets the minimum tau we can consider. Many observational programs are 
keyed off of our existing understanding of the major time scales of a species or system, e.g. we survey 
salmon annually. 
 
While reconstruction can be done solely from lags of a single time series, it can also be done a mixture 
of different, related system variables(53). Moreover, linear combinations of variables; coordinates 
derived from simple rescaling and recombination of existing variables are generally also valid as 
embedding coordinates. This equivalence raises the point that there isn’t a single “correct” set of 
coordinates to use to treat the system. The implications of this are discussed later in 4.4. 
 
4.1.2 Forecasting with reconstructed attractors 

4.1.2.1 Simplex Projection 

Simplex projection (14) is a minimal nearest-neighbor method for forecasting dynamic systems on an 
attractor reconstruction. The basic principle is that points nearby on an embedded attractor will evolve 
similarly in time. Thus, the method involves finding nearest neighbors on the reconstructed attractor to a 
target point and averaging the trajectories of the neighbors to estimate the future state (p time steps 
ahead) of the target. For most ecological data, there is only a single meta-parameter that tunes the 



forecasts, the embedding dimension E. In the previously rare, but increasingly common case of high 
frequency measurement, it is also possible to have choice in the spacing of time-lags, . Psuedo-code for 
the algorithm is as follows (reproduced from (4)): 

(i) Use the time series data to create a library of vectors on the reconstructed attractor. For 
simple univariate attractor reconstruction, these vectors will just be the xi = x(ti) = [X(ti), X(ti 
-), …, X(ti – (E–1))], for time points ti. 

(ii) Identify a target time point, t*, and its corresponding vector x* = x(t*). 
(iii) Compute the Euclidian distance between the target vector x* and all the library vectors, xi. 

Recall that the Euclidian distance between two vectors x and y is d(x,y) = ||x – y|| = [(x1 – y1)2
 

+ (x2 – y2)2 + … +  (xE – yE)2]1/2. 
(iv) Using these distances, identify the E+1 nearest neighbors (the library vectors with the 

shortest Euclidian distance to x*). Label these xn(1) be the closest vector with corresponding 
time index tn(1), xn(2) with time index tn(2), etc. 

(v) Assign weights wi to the neighbors based on their distance: 
𝑤௜ ൌ exp൫െ ฮ𝒙∗ െ 𝒙௡ሺ௜ሻฮ ฮ𝒙∗ െ 𝒙௡ሺଵሻฮൗ ൯ 

(4.1) 

where xn(1) is the nearest neighbor and xn(i) is the ith nearest neighbor. 
(vi) Estimate the future value of variable X from the target point as a weighted average of the 

neighbors 

𝑋෠ሺ𝑡∗ ൅ 𝑝ሻ ൌ  ෍𝑤௜  𝑋൫𝑡௡ሺ௜ሻ ൅ 𝑝൯

ாାଵ

௜ୀଵ

෍𝑤௜  

ாାଵ

௜ୀଵ

൙ . 

(4.2) 

(vii) Repeat (ii) – (vi) for other target points. 
 
4.1.2.2 S-map 

Sequentially-weighted local linear maps or S-maps (40) are another minimal, non-parametric approach 
to attractor forecasting. While simplex projection is based on an average of the reference states nearby 
on the attractor based on their distance (locally weighted averages), S-maps is based on a linear 
regression of nearby states on the attractor, also weighted by their distance. S-maps has one additional 
parameter to simplex projection, θ, which tunes the degree of local weighting. Psuedo-code for the  
calculations are as follows (reproduced with modification from (4)): 
 

(i) Use the time series data to create a library of vectors on the reconstructed attractor. For 
simple univariate attractor reconstruction, these vectors will just be the xi = x(ti) = [X(ti), X(ti 
-), …, X(ti – (E–1))], for time points ti. 

(ii) Identify a target time point, t*, and its corresponding vector x* = x(t*). 
(iii) Compute the Euclidian distance between the target vector x* and all the library vectors, xi. 

Recall that the Euclidian distance between two vectors x and y is d(x,y) = ||x – y|| = [(x1 – y1)2
 

+ (x2 – y2)2 + … +  (xE – yE)2]1/2. 
(iv) Using these distances, calculate the elements of the n × E matrix A and n-dimensional vector 

B as follows: 
𝐴௜௝ ൌ 𝑤ሺ‖𝒙ሺ𝑡௜ሻ െ 𝒙ሺ𝑡∗ሻ‖ሻ 𝑥௝ሺ𝑡௜ሻ 
𝐵௜ ൌ 𝑤ሺ‖𝒙ሺ𝑡௜ሻ െ 𝒙ሺ𝑡∗ሻ‖ሻ 𝑋ሺ𝑡௜ ൅ 𝑝ሻ 



where 
𝑤ሺ𝑑ሻ ൌ exp൫െ𝑑𝜃/𝑑̅൯ 

and 𝑑̅ is the average distance of all library points to the target point x(t*). 
 

(v) Solve the following linear model for C using truncated SVD (singular value decomposition): 
B ൌ A ∙ C 

(vi) Estimate the future value of variable X from the target point using the calculated (least-
squares) linear model 𝐂෨. 

(vii) Repeat (ii) – (vi) for other target points. 
 
Generally, a constant term is also included in the linear equation for step (v). 
 
4.1.3 State-dependent uncertainty 

Historically, uncertainty in EDM forecasts have been characterized by the overall prediction skill or 
error measured across many forecasts. This uncertainty is understood to arise from a number of 
interrelated phenomena, including measurement error, finite sampling, local instability, and incomplete 
dimensionality. In a nonlinear system, we have no reason to suspect these act uniformly through time, 
that is, certain predictions will have higher uncertainty than others. This is especially true in predicting 
extreme behavior, such as chlorophyll blooms or reef collapses. To further EDM as a practical tool for 
managing non-stationary futures, it is necessary to establish methods (and code) to capture this. 
 
4.1.3.1 Simplex 

A straightforward way to estimate uncertainty of simplex predictions, then, is to compute the variance of 
the nearest neighbors. 
 

𝑣𝑎𝑟 ቀ𝑋෠ሺ𝑡∗ ൅ 𝑝ሻቁ ൌ  ෍൬𝑤௜  ቀ𝑋෠ሺ𝑡∗ ൅ 𝑝ሻ െ 𝑋൫𝑡௡ሺ௜ሻ ൅ 𝑝൯ቁ൰
ଶ

ாାଵ

௜ୀଵ

෍𝑤௜ଶ 

ாାଵ

௜ୀଵ

൙ . 

 
This formulation assumes that the uncertainty follows a parametric distribution. The most convenient 
would be to treat the error distribution as normal, but this is not always a good assumption. For example, 
many ecological time series are bounded by 0, so you can easily estimate error distributions that would 
suggest a finite probability of a physically impossible value (<0). This can theoretically be reduced by 
making data transformation, but any choice of data transformation also involves assumptions and risks. 
For example, log-transformation is popular in many statistical analyses of ecological data to create more 
Gaussian distributions of values. However, log transformation can also massively inflate observation 
errors at low counts, and encounters particular problems when faced with 0-count inflated data. 
Furthermore, data transformations that create Gaussian uncertainty distributions may not be optimal for 
the main objective of analysis (e.g. forecast skill or causal inference). 
 
Whether an appropriate parametric distribution and/or data transformation can be selected or not, the 
method is appropriate to quantify relative uncertainty between different predictions for the same system 
or a similar system. 
 



4.1.3.2 S-map 

Just as with simplex projection, we can look at the disagreement of the near-neighbors to assess forecast 
uncertainty. The variance of deviations of the reference points from the prediction is: 

𝑣𝑎𝑟 ቀ𝑋෠ሺ𝑡∗ ൅ 𝑝ሻቁ ൌ  ෍൬𝑤௜  ቀ𝑋෠ሺ𝑡∗ ൅ 𝑝ሻ െ 𝑋ሺ𝑡௜ ൅ 𝑝ሻቁ൰
ଶ

௜

෍𝑤௜ଶ

௜

൘ . 

 
Where the weights are now the S-map weights  
 

𝑤௜ ൌ 𝑤 ቀ𝑑൫𝒙ሺ𝑡∗ሻ,𝒙ሺ𝑡௜ሻ൯ቁൌexp൫െ𝜃𝑑൫𝒙ሺ𝑡∗ሻ,𝒙ሺ𝑡௜ሻ൯ 𝑑̅⁄ ൯. 

However, by using S-maps we are ascribing meaning to linear relationships in this neighborhood. If 
there are strong local linear effects of embedding variables on the forecast, these will inflate the error 
above. Thus, as with standard linear regression, it is wiser to use the residuals from the linear models. 
Since S-map is computed with truncated SVD, we can compute the residuals from the SVD matrices. 
Recall that if the singular-value decomposition of the regression matrix A is given by: 
 

𝐀 ൌ 𝐔𝚺𝐕𝑻 
then sum of squared residuals is given by 
 

ฮ𝐀 ∙ 𝐂෨  െ  𝐁ฮ
𝟐
ൌ ‖ሺ𝐔𝐔𝑻 െ 𝐈ሻ𝐁‖𝟐. 

Since S-maps weights the regression, the variance will be 
 

𝑣𝑎𝑟 ቀ𝑋෠ሺ𝑡∗ ൅ 𝑝ሻቁ ൌ  ‖ሺ𝐔𝐔𝑻 െ 𝐈ሻ𝐁‖𝟐 ෍𝑤௜ଶ

௜
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4.1.3.3 Jack-knife Sub-sampling 

In either case, it is also possible to heuristically model forecast uncertainty by subsampling the library 
data used to construct the EDM model. This approach has the advantage of not requiring an assumption 
about the statistical distribution of error, but it is also computationally intensive to perform sufficient 
resampling to reproduce many state-dependent error distributions. However, this method is well suited 
to using EDM to simulate system dynamics as discussed in the next section where only a single random 
draw from the theoretical error distribution is needed. 
 

4.2 Constructing Multivariate Models 
 
Takens’s theorem provides for reconstruction a shadow version of the system attractor from a single 
observation function, and allows dynamics to be treated as nonlinear and multivariate without having to 
explicitly identify interacting variables. However, this is largely phenomenological. Univariately 
modeling the empirical dyanmics allows the possibility of multivariate interactions without explicitly 
resolving what those are. That is to say, they can be predictive, but not necessarily interpretable. 
 
When the system variables are known, then EDM models become much more interpretable. Even 
though the dynamics are modeled without parametric equations, the interactions between variables can 
still be quantified, for example by examining the local linear structure (Jacobian) at a given point in time 



(5). However, this possibility can be difficult in practice, ecologically, because the systems were not 
built and thus the identity of interacting variables is often more hypothesis than fact. 
 
4.2.1 Greedy search 

The basic framework for selecting a single embedding for analysis is established for the mesocosm case 
study in (5). It involves first testing hypothesized drivers for interaction with convergent cross-mapping 
to establish a set of valid embedding variables as candidates, then sequentially replacing the 
phenomenological time-lag variables with interacting variables using a “greedy” approach. At each step 
of the algorithm the embedding is added to by a single variable that most improves prediction. 
Additionally, this grant developed novel approaches e.g. to multi-model inference described in later 
sections. 
 
Psuedo-code for basic multivariate model selection is as follows. Given target variable Y1, and causally 
interacting variables {Y2, … YN} validated with CCM: 
 

(i) Determine embedding dimension E* using univariate simplex projection (see Simplex 
Projection). 

(ii) Normalize all variables to have mean(Yi) = 0 and sd(Yi) = 1. 
(iii) Compute the simplex projection forecast skill (see 4.1.2.1) of Y1(t + tp) for the N-1 

embeddings constructed with Y1(t), E*-2 univariate time lag coordinates, and one of the 
causal interactors (bolding used for emphasis): 

[Y1(t), Y2(t), Y1(ti -), …, Y1(ti – (E–2))], 
[Y1(t), Y3(t), Y1 (ti -), …, Y1 (ti – (E–2))], 
… , 
[Y1, YN(t), Y1 (ti -), …, Y1 (ti – (E–2))]. 

(iv) Identify Yi* that gives the highest forecast skill. 
(v) Repeat (ii)-(iv) but replacing a random projection coordinate with the Yi*, and removing Yi 

from the candidate embedding variables. 
 
 

4.3 Long-term Scenario Simulation with EDM 
 
Technically speaking, it is trivial to generate a long-term prediction with the same methods listed above. 
One can simply set the prediction time, p, to a very large number or do a repeated iteration of short-term 
forecasts, where the output of the first prediction say x(t+1) is taken as the input state for the next 
prediction. However, just because it is technically possible does not mean it is a reliable method. 
 
Conceptually, the chief obstacle is to reconcile a long-term prediction with the  inherent indeterminism 
in nonlinear systems due to stochasticity, forecast decay, and possibly even classical dynamic chaos 
(10). If one extends the prediction time for simple dynamic models, the forecasts of simplex or S-map 
begin to approach the sample mean, making that approach not particularly useful as a modeling tool. 
Alternatively, if traditional simplex or S-map is iteratively applied to create a long-term trajectory, the 
simulated dynamics will not trivially fall to the mean, but they will be completely deterministic and 
biased towards averaging out large variances. This is particularly concerning for one of our key 
objectives, which is to develop EDM to simulate extreme events like red tides. This problem can be 



addressed by instead employing stochastic EDM forecasts, where process error is added to forecasts by 
drawing from the state-dependent uncertainty in forecasts described in 4.1.3. This allows EDM to 
reconstruct multiple plausible futures. Note, this process is intrinsically sensitive to systematic bias in 
the forecasts, so it is important not to introduce bias through the simulation of process error. For that 
reason, we simulate the process error use jack-knife sub-sampling rather than approximating a 
parametric error distribution. 
 

4.4 Multi-model Approaches 
 
Multivariate Takens theorem (54) presents a challenge and an opportunity. The result that the dynamic 
attractor can be reconstructed “diffeomorphically” from various combinations of lags of different 
variables in effect says there is no unique representation of a dynamical system with multiple interacting 
variables. Moreover, any combination of simple transformations like rotations or other linear 
combinations of observation functions are also valid embedding variables. That is, mathematically, there 
is an infinite number of valid ways to reconstruct a system from multiple time series. 
 
In practice, different combinations of variables amplify and reduce uncertainty in different ecosystem 
states. Take the 5 species competition model from (55)as an example. This toy ecosystem oscillates 
between generalists and specialists, and the dominate assemblage shows two alternate regimes (Figure 
4.3 left). Per Takens’s theorem and its multivariate generalization, these dynamics can be recovered 
directly from time-series data by embedding the data in a multivariate coordinate space. Two different 
choices of variables are shown in (Figure 4.3 middle, right). Although both reconstructions are equally 
valid according to mathematical theory (52, 53), they represent the system in different ways and can 
contain unique information. The reconstruction in the middle panel of Figure 4.3 resolves the system 
state in the blue regime quite well, but only resolves the red regime in the noise free ideal case. The 
reconstruction in the right panel does just the opposite. One consequence is that the dynamics leading to 
a regime shift are better identified by the currently dominant species. 
 

 
Figure 4.3— Comparison of different 3-dimensional projections of the chaotic 5-species competition model in 
Huisman et al. (55). Areas of the attractor where the N4 assemblage dominates are colored blue and areas where 
the N2 assemblage dominates are colored red. In principle either of these univariate attractors (middle, right) are 
1-1 mappings with the native attractor (left) and can be used for EDM forecasting, but in practice the compressed 
areas of the attractor (blue for middle, red for right) have extremely high noise amplification. Note in all three 
cases, two additional coordinates are treated with EDM to fully unfold the system, but those additional 
dimensions cannot be represented graphically. 



 
While this muddies the notion of what the “best” set of variables are to study a system, it also motivates 
multi-modeling approaches to multivariate empirical dynamic forecasting. Combining the predictions of 
multiple embeddings can smooth out forecast skill across areas of the attractor, improve forecast skill, 
and reduce uncertainty. 
 
4.4.1 Multiview embedding 

Multiview embedding (MVE) represents a simple but powerful approach. The details are presented in 
(3), but the basic principle is an extension of weighted nearest neighbor forecasting with simplex 
projection as described in 4.1.2.1. Instead of nearest neighbor xn(i) getting weighting based on its 
distance from the forecast target x* = x(t*) on a single manifold as in simplex, the weighting in MVE is 
assigned based on how many multivariate models xn(i) is the single nearest neighbor of x*. In practice, it 
is optimal for forecasting to only consider a limited number k of the top multivariate models ranked on 
forecast skill in a test set and a good heuristic is to take 𝑘 ൌ  √𝑚 where m is the total number of 
multivariate models considered. 
 
Psuedo-code for the algorithm is as follows. Given n observational variables of the same system {X1, X2, 
…, Xn}, including the variable being forecast, Xi: 

(i) Partition the time points of the data into an in-sample training set and an out-of-sample test 
set. 

(ii) Construct the m possible E-dimensional variable combinations of l lags of the n observed 
variables. 

𝑚 ൌ  ൬
𝑛𝑙
𝐸
൰ െ ቆ
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𝐸
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(iii) For each such embedding evaluate the simplex projection skill of forecasting Xi over the in-
sample training set, and order these Mj by the measured in-sample forecast skill such that M1 
has the highest forecast skill, M2 next, and so on. 

(iv) Identify a target time point, t*, in the out-of-sample test set. 
(v) For each of the top k embeddings Mj  (j ≤ k), compute the Euclidian distance between the 

target vector xMj(t*) and all the library vectors, xMj(t). 
(vi) Identify the single nearest neighbor of xMj(t*) and its corresponding time index, i.e. tnn(j) that 

corresponding to ฮ𝒙𝐌௝ሺt∗ሻ െ 𝒙𝐌௝ሺt௡௡ሺ௝ሻሻฮ ൏  ฮ𝒙𝐌௝ሺt∗ሻ െ 𝒙𝐌௝ሺtሻฮ for all t ≠ tnn(j).  
(vii) Estimate the future value of variable X from the target point as a weighted average of the 

single nearest neighbor in each of the top k embeddings. 
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.  

(viii) Repeat (iv) – (vii) for other target points in the out-of-sample test set. 
 
The general idea is amenable to other specific implementations. For example, in (4) we adapted the 
principle to evaluate the binary prediction of “bloom” or “no bloom” in the red tide case study. There, 
the averaging in (vii) was replaced by a quorum “vote” such that a bloom was predicted if p% of the top 
k embeddings predicted a bloom. 
 



4.4.2 Multivariate EDM with Randomized Embeddings 

Work in neuroscience by Tajima (Tajima et al. 2015) introduced the idea of using random projection 
coordinates popular in branches of machine learning for empirical dynamic modeling. Tajima et al. used 
random linear combinations of univariate time lags to generate coordinates for EDM that were more 
robust to multiple time-scales than strict, sequential lags. The idea, however, generalizes to multivariate 
coordinates as well, and this insight provides solutions for applying EDM to high spatial, low temporal 
power environmental data. 
 
If you have N observation functions {Y1, Y2, … YN} that embed a system (which can be any arbitrary mix 
of lags of different variables ala (53)), then generically any linear combination of the Yi will also be a 
valid embedding coordinate. Thus, we can generate any arbitrary number of random project coordinates 
j 
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ே

௜ୀଵ

 

 
where the ai,j are random variables drawn from the same distribution. Tajima et al. (8) note that Gaussian 
and Unitary distributions are both reasonable choices. If we replace a coordinate Yi with one of these 
random projection coordinates j, the new manifold M’ will be diffeomorphic to the old manifold M, 
because the linear transformation between the two sets of coordinates is non-degenerate for almost all 
random draws of ai,j: 
 

𝑓ሺ𝑀 → 𝑀ᇱሻ ൌ
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In practice, it will not necessarily be true that all variables under consideration will in fact be valid 
embedding coordinates due to uncertain causal coupling. In this case, including non-interacting variables 
in the random project coordinates combine essential contributes noise. EDM forecasting methods like 
simplex and S-map are robust to noise up to a point, however, so the approach can be practical so long 
as the noise does not degrade the predictive signal to the point of non-detection. 
 
Note that these randomized embeddings do not readily enhance predictive skill. Rather, they can instead 
aid inference in system identification and causality detection. In particular allow a first attempt to 
reconstruct trajectories before embedding dimension and causal variables are identified. 
 
4.4.2.1 Greedy EDM model selection with random projection coordinates 

Past EDM work with long time series has built multivariate models by replacing univariate lag 
coordinates with explicit variables. A similar approach can be used with randomized coordinates.  This 
is motivated by two considerations. First, it is especially practical if the data do not allow for multiple 
time lags, such as the TDS benthic data for Case Study 2. In this sense it can be a technique to build 



predictive multivariate EDM models without univariate analysis. The second advantage is that for each 
observed variable, it is possible to generate a whole distribution of forecast skill at each stage of variable 
selection, and thus deciding on the single best variable at each stage can be done much more robustly 
because it is done with a multi-model approach.  
 
The first step, however, is to determine a rough estimation of the necessary embedding dimension, E. 
This can also be done with random projection coordinates. Psuedo-code for the general algorithm is as 
follows. Given a target variable Y1 and n-1 other observational variables of the same system {Y2, Y3, …, 
Yn-1}, some of which may be time-lags of each other: 
 

(i) Normalize all variables to have mean(Yi) = 0 and sd(Yi) = 1. 
(ii) Construct Emax - 1 random projection coordinates from the n-1 observed variables, and 

renormalize the j 
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(iii) Compute the simplex projection forecast skill (see 4.1.2.1) of Y1(t + tp) for the sequentially 
constructed embeddings that include the target X0 and an increasing number of i: {Y1}, {Y1, 
1}, {Y1, 1, 2}, …, {Y1, 1, 2, …, Emax-1}. 

(iv) Repeat ii-iii for many ensembles (e.g. 500) randomly generated coordinates j. 
(v) Identify the number of coordinates E* that maximize median forecast skill across ensemble 

replicates. 
 

In practice, if there are candidate variables included in the Xi that ultimately are not causal, then adding 
additional random coordinates can continue to slightly improve forecast skill for ever increasing E due 
to incrementally increasing averaging of noise. We suggest a heuristic of identifying a lower 
dimensional E* such that the forecast skill at E* is at least 95% that of the forecast skill at Emax. 
 
Once a practical embedding dimension can be found, then greedy model selection can be applied. 
Psuedo-code for the general algorithm is as follows (using the same designation of target Y1 and n-1 
other Yi variables as above):: 
 

(vi) Normalize all variables to have mean(Yi) = 0 and sd(Yi) = 1. 
(vii) Construct Emax - 2 random projection coordinates from the n-1 observed variables, and 

renormalize the j 

𝜉௝ ൌ ෍𝑎௜,௝𝑌௜
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, ሺ𝑎௜,௝  ~ 𝑁ሺ0,1ሻሻ 

(viii) Compute the simplex projection forecast skill (see 4.1.2.1) of Y1(t + tp) for the embeddings 
including Y1, one candidate Yi, and E*-2 random projection coordinates: {Y1, Y2, 1, 2, …, 
Emax-1},{Y1, Y3, 1, 2, …, Emax-1}, …, {Y1, Yn, 1, 2, …, Emax-1}. (Bolding used for 
emphasis). 

(ix) Repeat (ii)-(iii) for many ensembles (e.g. 500) randomly generated coordinates j. 
(x) Select Yi that gives the highest median forecast skill. 
(xi) Repeat (ii)-(v) but replacing a random projection coordinate with the Yi, and removing Yi 

from the candidate variables. 



 
To increase statistical inference, the same ensemble of random projection coordinates can be used for 
each candidate embedding variable. 
 
4.4.2.2 Pairwise multivariate forecast analysis 

This general idea can be used in a similar mode to model selection, but instead to compare forecast skill 
of similar embeddings to help untangle information about environmental drivers (9, 56). The idea is that 
if X1 and X2 are both purported drivers of Y1, then whichever gives better prediction skill when used in 
embeddings to predict Y1 is a more proximate driver. This can be tricky for comparing just a single set of 
embeddings, however, e.g. a univariate embedding of Y1 with just a single lag of one of the drivers, 
{X1(t), Y1(t), Y1 (t -), …, Y1(t – (E–2))} and {X2(t), Y1(t), Y1 (t -), …, Y1(t – (E–2))}, and again 
cannot be readily applied to cases where using many time-lag coordinates isn’t possible. 
 
Alternatively, this can be done using random projection coordinates using a similar algorithm to that 
described previously for determining embedding dimension with random coordinates, but instead of 
comparing embedding with different numbers of randomized coordinates, we compare {X1, Y1, 1, 2,…, 
E-1} and { X2, Y1, 1, 2,… E-1}. This procedure was applied to evaluate the reconstructed stratification 
observations for Case Study 1 (see 5.3.2.4). 
 

4.5 EDM with Spatial Lags 
 
The fundamental idea of using spatial lags for empirical dynamic modeling is that in nonlinear spatio-
temporal systems, variables across space constitute different observation functions of the underlying 
dynamics. Thus, just like any other multivariate observation, the observation of a state variable Y(x,t) at 
a nearby location, Y(x + , t) can be used as an embedding coordinate. This idea has been demonstrated 
in principle with simple statistical physics models (57), but has not been practically implemented for 
prediction in ecological systems. In principle, one might be able to fully reconstruct dynamics from 
spatial lags of a single variable. 
 
Implementation of EDM forecasting with spatial lags can be carried out with the baseline functionality 
of rEDM and pyEDM packages together with some necessary data pre-processing in basic R or Python 
to translate the spatio-temporal information of samples. This involves first generating a description of 
neighbor relationships between points, then second translating these neighbor relationships into data 
series to append to an rEDM “block”. 
 
4.5.1 Spatio-temporal data processing 

If the spatial data conform to a densely populated rectangular grid, (e.g. many remote sensing data 
products), the task of translating spatial data into neighbor relationships is essentially trivial. However, 
this was not an option for applying spatial lags to the visual towed-diver benthic surveys. The surveys 
track a single depth contour on islands and atolls, and thus generally have a ring structure. There are 
several alternatives but the ultimate goal is to produce a graph data structure that contains the spatial and 
temporal relationships between measurements so that blocks with different combinations of spatial lags 
can be easily generated on the fly. Code for generating blocks with mixes of spatial and temporal lags is 
included in Appendix A, to generalize the functionality of the rEDM 0.7.4 function make_block(). 
 



4.5.1.1 General Approach 

Gridding the data through spatial binning is one option. This is relatively trivial for geolocated 
measurements. However, unless the grid size is larger than the distance between individual transects, 
there will be substantial observation error introduced by the spatial binning. In the case of coral, we 
know that important dynamics happen on scales substantially smaller than the resolution of the sampling 
protocol, and thus did not wish to further reduce the spatial resolution. There are certainly other cases 
where this would be less of a concern, however, and the procedure of gridding is widely applicable. 
Moreover, gridding the data was able to qualitatively reproduce the spatial lag analysis. 
 
Another option is to use graph algorithms, such as implemented through iGraph in R. The idea is to 
create a graph where each sample location is a vertex, and vertices are connected if they are separated by 
a set distance ± tolerance. For annular reef geometry, it is then possible to select a subgraph of this 
spatial neighbor graph so that each vertex has uniquely defined neighbors. This was particularly relevant 
for the benthic TDS, since small islands and atolls were often circumnavigated twice on the sampling 
day. From the spatial neighbor graph, identify the convex hull of the island, then find the shortest paths 
on the neighbor graph between sequential points on the convex hull. 
 
4.5.1.2 Approach for Case Study 2 

In the case of the benthic TDS studied for Case Study 2, observations are geolocated and time-stamped, 
but observations in different years are not explicitly connected as in a convential time series. Thus, the 
first step was to identify temporal relationships between observations of the same stretch of reef (within 
50m tolerance) separated by 2 years. Then, to identify spatial relationships, the observational design and 
metadata provided a shortcut. Spatial segments in the benthic TDS correspond to 5-minute segments that 
stretch ~150m, with each dive lasting 50-minutes. Thus, sequential dive segments from the same dive in 
the TDS data automatically correspond to spatial neighbors along depth a depth contour. Then, all that 
remains is to connect start and end segments of different dives (same year, same island) that are within 
the distance tolerance, 200m ± 50m. 
 

4.6 Static Cross-Mapping 
 
Conventional CCM is based on univariate attractor reconstruction using time lag coordinate 
embeddings. CCM is a pairwise test for causality but applicable to systems that cannot be understood in 
a piece-meal, reductionist manner. However, the need to use time-lag information to capture the 
underlying multivariate state-dependence means that conventional CCM is best suited to temporally rich 
data sets. Combining spatial replicates can be used to overcome this to some extent, as shown by Clark 
et al. (38). However, the approach is still limited to having time series at each site at least as long as the 
number of dimensions needed to unfold dynamics. In the towed-diver surveys we seek to study for Case 
Study 2, many sites were only revisited a single time. 
 
However, instead of using time-lag coordinates of a single variable to unfold the system attractor, it is 
also possible to recover the attractor multivariately, without taking time-lags. So long as the system is 
dissipative—that is, the important dynamics have lower dimensionality than the number of state 
variables—the system can be embedded from a subset of observables. Moreover, even if the system is 
not fully embedded, nearest-neighbor forecasting can still be accurate for all but a few areas of the 
manifold dynamics. 



 
4.6.1 Identifying additional variables from existing causal understanding 

This multivariate approach to cross-mapping is simplest to execute when many of the observed variables 
are already understood to interact. In that case, the manifold can be reconstructed from the known 
interacting variables, and additional candidate variables can be tested by evaluating cross-mapping skill 
from this reconstruction to the candidate. This is well suited to a common problem in ecology: detecting 
environmental drivers of community dynamics. In this case, data on different taxa in a community or 
ecosystem can be used as coordinate axes to multivariately cross-map candidate environmental drivers. 
 
4.6.2 De novo causal testing 

When there is not existing understanding of causal relationships, one must face the question of which 
variables to combine together to create multivariate attractors for cross-mapping. Random embeddings 
(see 4.4.2) provide an agnostic solution that lets multivariate cross-mapping be done in a nearly pairwise 
manner. If we label the pair of variables to test X1 and X2, and the remaining variables (Y1, Y2, …, YN), 
we can construct E-1 coordinate variables out of random linear combinations of the Yi. Then, we test 
multivariate cross-mapping from X1 and these E-1 random projection variables to X2. 
 

4.7 Data Imputation with EDM 
 
Throughout environmental science, it is more rule than exception that the most commonly made 
measurements are the ones that are easiest to make, whether or not they are most fundamental to the 
system. Chlorophyll is measured much more often than phytoplankton cell counts or species biomass are 
made, much less true rates of carbon fixation/primary production. This is a strength of EDM, because 
attractor reconstruction allows researchers to make the most of what they’ve measured, right up to using 
just time-lags of a single variable to stand in for the underlying, multidimensional nature of the 
dynamics. However, ecological monitoring is progressing at an astonishing pace. Measurements that 
used to require a days-worth of lab work to process can now be issued in near real time from moored 
automated sensors. This is especially critical in understanding non-stationary futures as relationships 
between commonly measured indirect variables and underlying mechanistic variables may be changing 
and obscuring insight. 
 
With this in mind, we have developed a method for reconstructing historical time series of mechanistic 
variables from a set of new measurement, supplemented by long-term monitoring of related variables. 
The innovation is largely in just recognizing the potential for existing EDM techniques to be used for a 
new purpose. Call the core variables measured over the long-term history {Y1, Y2, Y3, …} and the new 
measurement variables be {Z1, Z2, Z3, …}. So long as there is a sufficient period of overlap between the 
measurements of the historical variables Yi and the novel variables Zi, then a multivariate model for 
predicting any Zi can be made from the previously described methods (4.24.2) using the overlapping 
period as the training set. Then out-of-sample prediction of Zi can be made based on the values of the 
predictor Yi in the historical period. 
 

4.8 Jacobian estimation and dynamic stability 
 
The Jacobian matrix describes the local dynamics of a dynamical system, whether globally linear or 
nonlinear. This was illustrated in Figure 3.2. Multiple properties of the matrix are connected to the 



stability of dynamics, including the largest eigenvalue, determinant (or trace in continuous time), and the 
singular values. Properly speaking, the singular values are the most direct measures of the divergence of 
trajectories in Euclidian measure. However, singular values are not scale-invariant, and this is a 
challenge for environmental systems where interacting variables don’t share a common scale. The 
largest eigenvalue is bounded by the largest singular value, and hence is a more conservative estimate of 
the divergence of trajectories, but is not dependent on the scales of individual coordinates (58). Thus, we 
focus on the largest eigenvalue of the Jacobian matrix as a practical indicator of dynamics stability and 
warning sign of rapid change. 
 
The approach has three important advantages over previously popularized early warning signs (EWS) 
(59) especially relevant to our project. First, it can apply equally if reefs exhibit true alternative stable 
states or more general alternative dynamic regimes. Second, there is a clear benchmark for transitions 
(=1) that comes directly from the mathematical theory, while previous EWS relied on qualitative 
changes in parameters, like “rising” autocorrelation. Finally, by building a picture of attractor dynamics 
from spatial replicates, the approach can be applied to very short time series. 
 

4.9 Data 
4.9.1 Case Study 1: 

The core data for Case Study 1 are manual measurements of chlorophyll, nutrients, water temperature, 
and salinity. These were supplemented by meteorological measurements. These core data are described 
in detail in the published results (4). 
 
4.9.1.1 Wire-walker Automated Profiler 

The “wire-walker” automated profiler uses passive wave energy to perform depth transects at a speed of 
approximately 20 meters per minute with a payload of automated sensors. A wire-walker was deployed 
in 90 meters of water directly off-shore of the SIO Pier from September 2016 – September 2017 (60), 
and included temperature, conductance/salinity, chlorophyll-a fluorescence, particle backscatter, and 
intermittent 3-dimensional water particle velocities. The sensors observe the rich variability in depth and 
time that are aliased by daily and weekly manual measurements. The resolution of density with depth 
allow for straightforward calculation of pycnocline slope. We focused on stratification averaged across 
the euphotic zone, so were interested in essentially 𝑚௣௬௖௡ ൌ ሺ𝜌ሺ0𝑚ሻ െ  𝜌ሺ90𝑚ሻሻ 90𝑚⁄ . To reduce 
noise contributions by the two extreme measurements, we first fit the depth data to a smoothing spline, 
then calculated the slope from the smooth measurements. Additional indicators of stability were 
computed from the Thorpe approximation including turbulent dissipation rate and length scale. 
Additionally, although we did not directly study the chlorophyll-a fluorescence measurements, the wire-
walker observations unveil the dependence of pier observations of physics and biology alike on a strong 
mode-2 internal tide (~6 hour period of oscillation). This is exemplified in Figure 4.4 for a 10-day 
period in April 2016. 
 



 
Figure 4.4— 10-day period of wire-walker measurements during April 2017 with an ephemeral high chlorophyll 
event. time-course of depth resolved measurement in 90 meters of water off the end of Scripps Institution of 
Oceanography Pier. Chlorophyll-a fluorescence is shown on top, water temperature on bottom. 

4.9.2 Case Study 2: 

The core data for Case Study 2 are benthic cover characterizations from a visual towed-diver survey 
(TDS) program run under the Pacific Reef Assessment and Monitoring Program (RAMP) by NOAA 
between 2000 and 2012 (https://inport.nmfs.noaa.gov/inport/item/35618). A diver visually estimates 
percent cover during a 5-min across several broad categories, while the boat attempts to follow the 15m 
depth contour of the island. Cover categories used for the entire survey program are % Live Coral, % 
Soft Coral, % Stressed Coral, % Macroalgae, % Coraline Algae, % Sand, and % Rubble. Further details 
of the standard operating procedures are described in (61). 
 
Thirty-two U.S. Pacific islands and atolls were revisited at 2-year intervals, and most islands had 
between 2 and 4 sequential observations. The benthic cover observations were geolocated to ~150m 
segments (5 minutes of diver tow), and thus the data set contains over 4,000 observations of benthic 
change in patches across 32 reefs over 2-year intervals. The observations include 7 islands and atolls 
with current or former DoD presence. 
 
Satellite derived physical variables were previously synthesized for study with this data set by Gove et 
al. (46). These include 2-year statistics on average and maximum sea surface temperature, as well as 
wave data. We considered the temperature measurements as predictor variables for our multivariate 
EDM analysis, but refined the wave calculations by Gove et al. to resolve differences in wave energy 
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across reef segments in the same islands. We used the Wave Watch III model outputs provided by 
NOAA. These are split over the RAMP TDS period by the historical reanalysis (1979-2009) and modern 
analysis (2006-present). Both give outputs at 3-hour intervals, although the modern analysis is done at a 
slightly higher resolution spatial resolution (0º30’ x 0º30’). Gove et al. describe calculating wave energy 
flux, WEF, from the height and period, but the NWW3 model also gives the primary angle of wave 
direction from true north, PW. Note that this is the angle from which the waves are coming, rather the 
angle of their propagation. 
 
To determine how direct a reef segments exposure was to wave energy at any given angle, we made the 
rough approximation of islands as points located at their centroid. Shape files of island coasts were 
obtained from (http://www.soest.hawaii.edu/wessel/gshhg/) described in (62), and we used the high 
resolution (“h”) shape files, version 2.3.3. The coastlines were used to identify the centroids of the study 
islands, from which we could calculate the angle from true north of individual reef segments, relative to 
the island centroid. The directed wave energy at segment k was thus approximated by: 
 

𝐷𝑊𝐸𝐹ሺ𝑘ሻ ൌ 𝑊𝐸𝐹ሺ1 ൅ cosሺ𝜃௉ௐ െ 𝜃௞ሻሻ/2 
 
If the wave energy is head-on at k, then DWEF(k) will be the full WEF in that grid square of the NWW3 
model. If the incident direction is exactly opposite the island, DWEF(k) will be 0. The NWW3 model 
allowed for a directional wave flux to be calculated for 3-hr segments between 2000 and 2021. We 
considered the maximum of DWEF, mean of DWEF, and standard deviation of DWEF as driving 
variables. We also considered the angular variance of directed wave energy using the circular package 
for R (https://cran.r-project.org/web/packages/circular/circular.pdf).  
 
4.9.3 Cedar Creek LTER 

Data used for Cedar Creek stability analysis were obtained from the LTER database, then processed 
according to previous EDM analysis by Clark et al. (63). Above ground biomass of plant species were 
aggregated by guild. Our analysis focused on C3 grasses, C4 grasses, and woody shrubs based on the 
previous EDM analysis. 
 
  



5 Results and Discussion 

5.1 Software Development 
 
Under this grant, a standardized set of applied computational tools for empirical dynamic modeling was 
developed. Code packages are now publicly available in R, Python, and C++, and are quickly finding a 
large user base. Since initial launch in March 2016, the rEDM package had more than 19,000 
downloads (>1000 just in March 2020) from the central CRAN server; and pyEDM through the central 
PyPI server, had more than 76,729 downloads in the first year of its launch (~20,000 just in May 2020). 
The grant allowed us to develop documentation to communicate the essential foundations for new users 
wishing to apply EDM to their research. The code was also put through a formal code review, and the 
report from that is included in the Appendix. 
 

5.2 Key Model Demonstrations of Novel Approaches 
 
Model demonstrations with known structure and behavior were developed to further a number of tactical 
research goals of this project. Many of these are already published in the literature. These are 
summarized in Table 5.1. Additional key model demonstrations that are not yet published are described 
in more detail below. 
 

 
 
 
 
 
 
 
 
 

Table 5.1— Summary of model demonstrations conducted during grant in publications. 

 
5.2.1 Static Cross Mapping 

In molecular biology, large datasets are often cross-sectional, collected across huge batches of cells with 
no repeated temporal measurement. This offers an extreme context for extending EDM to low-temporal 
power data sets in preparation for analysis of pacific coral reefs. Thus, we used the classic Repressilator 
gene circuit (66) to demonstrate our innovated approach to detecting causality in the absence of time-
series, static cross-mapping (see description in 4.6). 
 
In the Repressilator, there are three genes (a, b, and c) whose products (A, B, and C) each inhibit the 
next gene in the cycle (Figure 5.1A). An auto-inducer S is also included, which provides delayed 
feedback. Simulating this system produces with the appropriate parameters produces chaotic 
oscillations, evident in the time-series of the individual genes (Figure 5.1B). One could reconstruct the 
attractor by doing a lag-coordinate embedding with any single gene time-series, but it is also possible to 
reconstruct the attractor by taking each time-series as coordinates. In fact, even though there are 7 
variables in the model (3 genes, 3 protein products, and the auto inducer), the attractor is approximately 
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EDM Forecast uncertainty Cenci et al. 2019 (65), 
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3-dimensional and can be recovered just from using the three gene time series. This is shown in Figure 
5.1C for coordinates <a(t), b(t), c(t)>. 
 
If we take a sample of the model data at random time points, we no longer have time-series data. This is 
equivalent to experiments that provide a single snapshot of gene expression for each cell measured. 
Even without a time-sequence to the data, we can still embed each individual sample point in the 
multidimensional space. This is shown in (Figure 5.1D). The geometry of the manifold is still preserved, 
even though there is no immediate way to reconstruct the flow between points. 
 

 
Figure 5.1— Static cross mapping demonstrated in the Repressilator gene circuit (A,B). Even when data with 
underlying nonlinear dynamics (C) have no temporal evolution observed (D), manifold geometry can still be used 
to predict causally associated variables (E,F). 

With just the manifold geometry, the value of other interacting variables can still be cross-mapped from 
the manifold (just like in univariate CCM). Panel E shows that cross-mapping from the <a, b, c> 
manifold to S gives nearly perfect predictions. This is possible because the concentration of the auto-
inducer S (shown as the point color) is well-determined by the state on the <a, b, c> manifold. For 
contrast, panel F shows the value of an unrelated variable S’—in this case, the concentration of auto-
inducer from a separate (independent) realization of the Repressilator. S’ shares no causal information 



with genes a, b, and c. Hence, the value of S’ is not well-determined from the state on the <a, b, c> and 
cannot be cross-mapped from the static <a, b, c> manifold. 
 
5.2.2 Critical Transitions and Dynamic Stability 

We tested the ability of the S-map Jacobian estimates to characterize and predict threshold behavior and 
critical transitions on two models. The first demonstration used the seasonal phytoplankton model 
described by Huppert et al. (67). Chaotic dynamics modulate the size of the initial spring bloom varies 
strongly from year to year, as well as produce a second bloom in some but not all years. The analysis 
(Figure 5.2) demonstrates how small changes in nutrient concentration in spring (February-April) can 
lead to disproportionately large differences in primary bloom size and the presence or absence of a 
secondary peak.  
 
 

We also investigated the ability of EDM to predict population collapse in a fishery model. The model is 
a generalization of the widely used Ricker model, but includes a term for population depensation so that 
collapse occurs when the population is below a minimum viable threshold. In the simulation (Figure 
5.3), fishing mortality gradually increases until the population is fished to the point of collapse. The 
largest eigenvalue of the Jacobian estimated with EDM (see section 4.8) identifies growing instability 
well before the “point of no return” is reached. 
 
These demonstrations highlight the ability for EDM calculations to predict radical change in a system 
even without historical analogues. The calculations capture dynamic instability both in a fully 
deterministic system (Figure 5.2) and a system with exogenous stochastic forcing (Figure 5.3). 
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Figure 5.2— Dynamic instability in a seasonal phytoplankton model. (Left) The model produces 
variable season phytoplankton blooms, including intermittent secondary blooms. (Right) Dynamics are 
shown on an attractor in polar coordinates, where height designates phytoplankton abundance, radius 
denotes nutrient supply, and the polar angle indicates season. The discrete-time determinant of the 
Jacobian is calculated from EDM, and shows areas of dynamic instability (red) and contraction (blue). 
Grey sections of trajectory are neutrally stable (det(J)=1). 



 
Figure 5.3— Rising instability predicts critical transition in a fishery collapse model. As fishing mortality 
increases (middle), the population (top) approaches the depensation point where it can no longer replenish itself. 
The largest eigenvalue calculated with EDM (bottom) captures the loss of stability well in advance of collapse, 
despite collapse having no historical analogue in the EDM analysis. 

 

5.3 Case Study 1: Red Tides 
 
5.3.1 Historical Analysis 

Core results from the first phase of the analysis for the red tide case study were presented in McGowan 
et al. 2017 (4). These results are briefly discussed. The first step of results identified evidence of 
nonlinear dynamics in the chlorophyll-a time series (Fig. 3 in (4)), as well as statistical patterns between 
chlorophyll-a and purported causal variables that indicated multiple conditions for blooms that were 
necessary but not sufficient conditions (Fig. 4 in (4)). These patterns were not generally matched by 
linear correlations, however (Table 1 in (4)). Nevertheless, convergent cross mapping revealed 
significant driving by a range of hypothesized drivers (Table 1 in (4)), including nitrate, nitrite, silicate, 
water temperature, water density, and longshore wind speed. 
 
Combining identified drivers in multivariate embeddings showed strong in-sample forecast skill. 
However, the ranking of possible embeddings based on skill was not strongly stationary under cross-
validation tests. That is, the relative in-sample forecast skill of different embeddings did not closely 
match the relative out-of-sample forecast skill, although there was a clear pattern (Fig. 5 in (4)). One 
explanation is that blooms can occur from multiple combinations of observed drivers, which is 
consistent with understanding of dinoflagellate blooms globally. Indeed, different embeddings showed 
the ability to predict different bloom events (Fig. 8 in (4)). For that reason, we developed a multi-modal 



approach to produce forecasts, with a tunable sensitivity based on the relative importance of high true-
positives and low false-positives (Fig. 9 in (4)). 
 
5.3.2 Future Climate Scenarios 

Iterative forecasting with S-map was developed in this grant as a tool for assessing changes in dynamic 
behavior (e.g. frequency or magnitude) of threshold events like red tides under non-stationary climates. 
In the ideal case, outputs of physical models for future conditions can be piped into EDM forecasts. 
However, the results are necessarily only as reasonable as the predictions of the physical model. As an 
alternative, non-stationarity can be simulated by making perturbations to the historical observations of 
drivers, such as offsetting the mean value or scaling the time series by a percentage. This provides a 
climate sensitivity analysis that is independent of individual physical forecasts. 
 
5.3.2.1 Evaluation of ROMS Future Conditions 

We analyzed output from NOAA-GFDL biogeochemical model COBALT developed by Curchitser and 
Dussin at Rutgers University that downscaled the FDL ESM2M RCP8.5 future global climate 
projections to a 7km x 7km grid in the California Current. The model is similar to what was used for a 
historical comparison of chlorophyll dynamics from 1996-2006 (68), but was fully coupled to the 
atmospheric model. However, the COBALT output we used was run with a fully coupled ocean and 
atmosphere. That is, the simulation is not forced by historical atmospheric observations. Thus, the 
ROMS outputs should be regarded as a simulation of realistic historical dynamics but not a reproduction 
of the particular historic trajectory. Therefore, a direct comparison of the exact historical and ROMS 
time series doesn’t make sense (unlike in (68)). However, if the ROMS is producing realistic behavior 
then the statistics of the simulated variables should match the statistics of observations. 
 
Figure 5.4 shows a comparison of modeled historical and future behavior of the five ROMS variables 
that match the SIO Pier measurements we used for empirical modeling. In all cases the changes 
predicted by the ROMS model from historical conditions (red) to future conditions (green) under the 
RCP 8.5 scenario are substantially smaller than the disagreement between the historical modeled 
oceanography (red) at the 7km x 7km grid-square containing the SIO pier and the historical empirical 
observations at the SIO the pier (blue). SST and silicate are the two variables closest to having the 
simulated ROMS distributions line up with the historical observations. 
 
 



 
Figure 5.4— Comparison of ROMS modeled oceanography to empirical observations at the SIO pier. Density 
plots of the distribution of values are shown for five key environmental variables for ROMS historical (1980-
2010) ROMS predictions (red), 30-year future (2020-2050) ROMS predictions under RCP 8.5 warming scenario 
(green), and historical (1980-2010) observations at the SIO Pier used in (McGowan et al. 2017). 

The obvious cause of this extreme disagreement is a matter of scale. Although the blooms can stretch 
hundreds of kilometers up and down the coast, the pier measurements are made just outside the surf 
zone, where things can be quite different from 7km offshore; this model behavior might match much 
better the conditions further off shore, but do not realistically capture physics and chemistry as we 
measure at the pier, which means we can’t reasonably simulate the inputs to our empirical models built 
from the pier data. This speaks to the difficulty in resolving and projecting the oceanography in near 
shore environments. While this ROMS simulation is quite sophisticated and the best available science at 
the time of the project, it doesn’t resolve the environmental variability we require. 
 
Note a slightly unexpected prediction of the Rutgers COBALT model: the sea temperature off the coast 
of La Jolla is simulated to be lower on average in the future (2020-2050) than historically (1980-2010) 
(Figure 5.4 top-left panel). This certainly goes against our expectation that average ocean temperatures 
will rise under the 8.5 “business as usual” climate scenario. At the same time, ocean temperature in the 
Southern California Bight is the product of complicated oceanography. Cold water is transported from 
the north by the California Current but there is complicated recirculation, upwelling, and occasional 
intrusion of tropical water from Baja Mexico (69), not to mention eddy-scale features and smaller that 
shape oceanography but occur at scales below the ROMS resolution. Increased direct influence of the 
California Current or upwelling cold both plausibly drive temperatures in La Jolla lower in the future.  
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Figure 5.5—ROMs simulated sea surface temperature across coastal stations along the California coast order from 
North to South. Temperatures are split between simulations of historic conditions from 1990-2010 (red) and 
future conditions from 2020-2050 (blue). 

Figure 5.5 puts the La Jolla projections in the context of temperatures at coastal stations further up the 
coast. At the most northern stations, Trinidad Bay and Farallon Islands, the oceanography is driven 
much more simply by the main California Current that sits just off the coast. Indeed, there is a clear 
prediction of warming water as we expect for global averaged ocean temperature. Thus, the temperature 
shifts simulated in the ROMs model are reasonable. Detailed analysis of the ROMs output has not yet 
been made available to us at the writing of this report. Until such times as our limited understanding can 
be clarified, our working hypotheses for our use of the simulations was that even if the absolute levels 
do not match near-shore observations, we can still trust the relative changes predicted by the model for 
La Jolla: decreasing temperature and density, but increasing nutrient supply. So, while we cannot 
reasonably directly drive our EDM models with the outputs (although it is technically possible), we can 
still use the ROMs to interpret a climate sensitivity analysis. 
 
5.3.2.2 Long-term simulation of multiple climate scenarios 

Climate sensitivity analysis was performed using long-term simulation with EDM and basic statistical 
perturbations to the historical time series of environmental conditions. Given our conclusions presented 
in McGowan et al. (4) that there was no single optimal EDM model, we repeated the long-term 
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simulation calculations for the same top 100 embeddings used for Figures 8 and 9 in the published paper 
(4). Figure 5.6 and Figure 5.7 show the results for changes to the six key environmental variables, sea 
density, sea temperature, nitrate, nitrite, silicate, and u-directional wind. Changes in bloom frequency 
under sea temperature and silicate scenarios show coherence across possible multivariate models, while 
there is more disagreement between multivariate models for the other variables. 

 

 
Figure 5.6— Multi-model predictions of bloom frequency under long-term simulation of future environmental 
scenarios. Changes in bloom frequency (chl > chlbloom) are shown for hypothetical changes in each of the 6 key 
driving variables. 

 

 
Figure 5.7— Multi-model predictions of bloom size under long-term simulation of future environmental 
scenarios. Changes in the magnitude of blooms, E(chl | chl > chlbloom), are shown for hypothetical changes in the 
same 6 key driving variables as Figure 5.6. 

 



5.3.2.3 Synthesis 

SST and Silicate showed both the most definitive predictions of the EDM sensitivity analysis and the 
closest match between the available oceanographic model. Both decreasing temperature and increasing 
silicate showed to increase red tide frequency in the sensitivity analysis. Thus, our best prediction from 
synthesizing these results is that there will be an increase in red tide frequency along the San Diego 
coast over the next 30 years. At the same time, looking at the average size of blooms simulated under 
the sensitivity analysis (Figure 5.7), there is some agreement across multivariate models that increasing 
silicate will mean the increased bloom frequency will lead to more smaller blooms. 
 
More generally, this ensemble approach to long-term scenario simulations shows how we can explore 
the sensitivity of extrapolation to changes in assumptions of models (a key piece of the tactical objective 
as articulated in 2.2.4). Here, the multi-modal approach should agreement across models for temperature 
and silicate, but diverging predictions about changes in wind and nitrogen compounds. Our 
understanding is that relationships between indirect drivers and direct drivers make models that utilize 
indirect variables for prediction more sensitive to non-stationarity. The robust forecasted outcome of 
change in temperature and silicate suggest these two variables are the least convolved with indirect 
effects and are the best to infer future behavior. 
 
Nevertheless, our interpretation of the physical variables in McGowan et al. (4) in light of basic algal 
ecology is that they are indicators of a stratified or stable ocean. Thus, while the long-term scenario 
simulations show a uniform effect of temperature, we are motivated to clarify the simulations by 
clarifying the mechanistic variables. 
 
5.3.2.4 Imputing Water Column Stability 

Conceptually, surface conditions can contain information about subsurface physical structure in the 
ocean. If surface density is low, there can be a much greater difference between surface density and 
density at 90 m depth. This might appear as linear correlations, low density predicting high stratification, 
but the relationship need not be independent of ocean state. Thus, we investigated nonlinear multivariate 
prediction to see if surface conditions could predict subsurface physical structure. Initially, we focused 
just on wire-walker data and high frequency wind measurements so that we could maximize the high 
temporal resolution of the automated observing system. We focused on predicting the average slope of 
the pycnocline over the 90 m of depth (see 4.9.1.1) from surface density, surface sea temperature, 
surface salinity, and wind speed. Although surface density has a strong correlation to pycnocline slope 
(indicated by the red dot in Figure 5.8 at =0), the prediction was substantially improved by nonlinearly 
incorporating multiple predictors. Using a greedy search algorithm, the optimal prediction was found 
with surface density, salinity, and wind. Since density is computed as a function of temperature and 
salinity, it is unsurprising that including all three of temperature, density, and salinity did no better (and 
slightly worse even) than just two. 
 



 
Figure 5.8— Multivariate cross-prediction of pycnocline slope from surface variables. Density, salinity, 
temperature, and wind were all considered as predictors. 

This multivariate relationship only connected surface measurements by the wire walker to measurements 
across depth. To utilize this relationship for analyzing historic blooms, it was necessary to also look at 
the relationship between surface wire walker measurements and the pier measurements. These 
measurements have a different frequency, thus we used window averaging to smooth the wire walker 
measurements bad at ~15 min period to a daily time scale. These measurements showed very high 
correlation, but departed slightly from a strict 1:1 equivalence. The daily averaged wire walker 
measurements of temperature, for example, where systematically slightly higher than the single daily 
point measurement at the pier. 
 
Thusly, subsurface structure (slope of the pycnocline) can be predicted from the historic manual 
measurements at the pier by first applying a linear transformation from “surface pier” to “surface wire 
walker”, then using the nonlinearly tuned multivariate S-map model of density, salinity, and wind speed 
(Figure 5.8). This allowed us to reconstruct a daily estimation of historical stratification across the initial 
period of historical analysis in (4). This is shown in Figure 5.9. 
 

 
Figure 5.9— Imputed pycnocline slope for the coastal water of La Jolla reconstructed over the historical period of 
red tide analysis. Daily measurements are shown with crosses, and the weekly average is shown in blue. 

 
 



 
In principle, in-so-far as the original time series variables are observation functions of the system, these 
imputed time series are also observation functions of the system and hence valid embedding coordinates 
(53). So has anything been gained? In practice, there can be two advantages: (1) an appropriate 
transformation of data can give improvements to forecast skill in the face of finite time series length, 
observation noise, and process noise (70), but also (2) the transformation can make the model more 
interpretable. This is really key for the newer applications of EDM to scrutinize changing, state-
dependent interactions between variables. 
 
If we go back and evaluate multivariate EDM forecasting using this imputed stratification, we see in fact 
that the pycnocline slope gives improved predictability relative to original surface measurement that 
went into the reconstruction. Combining the reconstructed pycnocline slope with random projection 
coordinates gives consistently better forecast skill than surface density surf and surface temperature 
SST. The random projection coordinates are constructed from the 1 and 2 week lags of physical 
measurements and 0, 1, and 2 week lags of the nutrient variables in (4). A reconstruction was also done 
for the Thorpe length scale LOT that aims to capture water column stability/mixing, and not just physical 
stratification. While the ability to predict LOT from surface quantities was lower than for pycnocline 
slope (Figure 5.8), the reconstructed LOT still showed improved prediction over temperature (but not 
surface density). 
 

 
Figure 5.10— Forecast skill of random multivariate embeddings for predicting historical chl-a using EDM 
reconstructed stratification metrics, Thrope length scale LOT and pycoline slope mpycn, relative to original 
historical observations, surface density surf, sea surface temperature SST, and long-shore wind uwind. 

 
 



 
5.3.2.5 Reanalysis of future scenarios with imputed stability 

While the reconstructed pycnocline slope shows the ability to incrementally improve the red tide 
forecast skill, the greater promise lies in making the models more interpretable. In this way, the imputed 
pycnocline slope also allows us to revisit the long-term scenario exploration with a variable we 
hypothesize has a more direct mechanistic role. The systematic effects of temperature and silicate are 
not qualitatively changed when we include this other variable in embeddings (Figure 5.11, green and 
silicate boxes). However, contrary to our expectation, simulating chlorophyll dynamics with a 25% 
multiplicative increase on stratification does not lead to a systematic change in bloom frequency across 
top embeddings (Figure 5.11, red boxes). While a decreasing in stratification (less sloped pycnocline) on 
average produced fewer blooms per year, when a steeper pycnocline is simulated, the EDM prediction is 
that bloom frequency will not change. This could indicate that either the hypothesis that increased 
stratification promotes blooms is wrong or the imputed water column stability is misleading us. One 
possibility is that dinoflagellates benefit from an intermediate level of stratification, and that a scenario 
of a gross increase in the baseline stratification does not actually increase bloom-favorable conditions. 
 

 
Figure 5.11— Revisited long-term scenario exploration of bloom frequency including imputed pycnocline slope. 
Differences in bloom frequency under hypothetical non-stationarity in pycnocline slope (red) is shown along with 
surface temperature (green) and silicate (blue) which both showed systematic patterns under the original analysis 
(Figure 5.6). 

5.4 Case Study 2: Pacific Coral Reef Resilience 
 
Lack of long time-series was the central challenge for building a predictive EDM framework for 
understanding the benthic cover dynamics at U.S. Pacific reefs. With traditional EDM, univariate lag-
coordinate embeddings are used for two important analyses that provide the foundation for multivariate 
prediction and analysis (5). First, the presence of low dimensional dynamics is evaluated with simplex 
projection and S-map analysis. In addition to validating the foundational working assumption of EDM, 
the analysis also provides an estimation of embedding dimension, E, roughly the number of dimensions 
that need to be accounted. Second, convergent cross-mapping is used to establish which variables 
actually show evidence of causal coupling and hence can be used to account for these dimensions of 



variability. In this traditional approach to EDM analysis, the univariate time lags stand in for the yet-to-
be-determined dimensions of dynamics. 
 
In the case of Pacific reefs, we have a number of candidate variables for interaction, including different 
components of benthic cover and environmental variables, but also benthic cover at neighboring reef 
segments (see 4.9.2). We first implemented static cross-mapping 4.6 to test hypothesized environmental 
drivers of benthic dynamics at individual sample segments, then conducted a series of analysis across 
half of the study islands (randomly selected before all analyses) using spatial lags, multivariate, and we 
used random projection coordinates of these variables to stand in for undetermined dimensions of the 
dynamics much in the way univariate time lags are used in traditional EDM. 
 
5.4.1 Environmental drivers of benthic dynamics 

In the case of the benthic dynamics, we can reasonably hypothesize that the different % cover variables 
share some causal relationship. Thus, we can take the 8 core benthic cover classifications as different 
coordinates of a multivariate manifold, and test how well the manifold can cross-map values of 
hypothesized environmental drivers (4.6.1). We restrict analysis to the individual reef segments in the 
in-sample islands, across all study years (n = 10,280). To be conservative, we extend the standard leave-
one-out cross validation to additionally exclude all measurements made from the same island in the 
same year from the nearest neighbor selection (4.1.3.1). Figure 5.12 shows that the maximum value of 
DWEF experience at a reef segment over the previous 2-years has the most direct causal association 
with the benthic cover. There is also evidence that directional variance of DWEF also has a causal 
effect, thus we entertain both DWEFmax and DV-DWEF as embedding variables. 
 

 
Figure 5.12— Static cross-mapping of wave forcing metrics to identify drivers of benthic cover. (Left) analysis 
across different statistical summaries of DWEF show that the maximum DWEF over a 2-year period has the most 
direct causal association. (Right) the directional variance in DWEF also shows some evidence of causal 
association. Thought predictability is substantially lower, the forecast skill is still highly significant (n = 10,280). 

 



5.4.2 EMD for Forecasting % Live Coral 

5.4.2.1 Spatial lags 

To assess the predictive value of including spatial lags for predicting changes in % coral cover, we took 
a multivariate EDM approach incorporating random projection coordinates to account for our initial 
uncertainty in the most proximate causal variables (4.4.2). Initial analysis showed evidence that spatial 
lags contain predictive information for % live coral cover (Figure 5.13). However, the % live coral cover 
at immediate spatial neighbors is strongly correlated. Additionally, a pure “spatial lag” embedding does 
show significantly lower error (both mean absolute error and root-mean squared error) than the AR1 
model, although the forecast skill measured with Pearson’s . 
 

 
 
Figure 5.13— Forecast skill using spatial lags to predict 2-year change in % Live Coral Cover. Presence of spatial 
dynamics at 150+ meter scale is evaluated using a multivariate EDM approach with randomized lags to predict 
future % coral cover at sites across half of the RAMP islands. Two spatial lags of coral cover are used ("left" and 
"right") with tau, the spatial distance from these lags to the target point ranges from 1 - 5 dive segments 
(approximately 150 m on average). The embedding also includes the “un-lagged” % Coral cover (at the target 
location), then is filled out with random projections of multivariate data at the target location. Forecast skill of 
these is then compared to skill using no spatial lags ("NO LAGS") but 2 more random projections of the 
multivariate data, as well as null spatial lags ("NULL LAGS") created from random permutation of the data. 
Finally, the forecast skill of an AR(1) model (i.e. just using the inertia present in % coral cover) is shown as a red 
dotted line for comparison. 

These indicate that spatial dynamics can potentially be incorporated as variables for forecast, but spatial 
dynamics alone cannot predict the 2-year dynamics. It is important to note that these results are also 
likely sensitive to the type and scale of the coral observations. Concurrent with this project, team 
member Stuart Sandin published an analysis with other colleagues (McNamara et al. 2019). The study 
offers additional insight into empirical dynamic modeling of nonlinear spatio-temporal dynamics of 
coral using similar (but not identical methods) on data at a much smaller scale. Their analysis was 
concerned with predicting species variation across space in 100 m2 photomosaics taken from Palmyra 
Atoll, with dynamics grouped into 10 cm pixels. In empirical images taken from areas of reef recovering 
from disturbance, pixel by pixel forecasting of coral species showed a clear deterministic signature 
compared to randomized images (see Figure 1, reproduction of Figure 3 in McNamara et al. 2019). 
While insight into the true dynamics is indirect, as the analysis was restricted to single temporal 
snapshots, the study illustrates strong spatial processes operating at a scale about 1/1000th of the 
resolution of the visual towed-diver survey data we have studied. 
 



Our preliminary understanding (or working hypothesis depending on perspective) is that direct spatial 
processes play out at smaller spatial scales (10 cm – 1m), while at larger spatial scales (100m – 1km), 
spatial lags may only contain indirect information about causal mechanisms acting at large scales (fish 
communities, environmental conditions, etc.). However, it is also possible that part of the difference 
between these studies is due to the scale of taxonomic aggregation. The visual towed-diver survey data 
only quantify total hard coral cover, while processing of photomosaic quadrats allowed McNamara et al. 
to resolve down to the species level. Since coral are broadcast spawners, it is possible that there are 
additional spatial dynamics at 100m – 1km scale at the species level we have missed due to the coarse 
resolution of visual survey data. 
 
5.4.2.2 Multivariate model selection 

Since there is no physical mechanism to systematically distinguish the neighbors that are to the left and 
right (or rather clockwise and counter-clockwise) of the target, we include these spatial lags as the 
maximum value of the two neighbors, max(%LC(xL1),%LC(xR1)) and the minimum value of the two 
neighbors, min(%LC(xL1),%LC(xR1)). 
 

 
Figure 5.14— Forecast skill of multivariate embeddings for 2-year forecasts of % Live Coral Cover  (%LC) 
selected sequentially using random projection coordinates with greedy model selection. Forecast skill is evaluated 
here without random coordinates, and as expected the full 7-dimensional model performs best. This model 
incorporates %LC, DWEFmax, SSTupper, %MA, STTmean, maximum spatial neighbor %LC, and %S. The forecast is 
optimal for nonlinear tuning ( > 0), and shows substantial improvement on the naïve predictability due just to the 
serial temporal correlation in %LC (yellow diamond). 

With the ability to more explicitly resolve the most proximately related variables for % live coral 
dynamics, we revisited the spatial lag analysis shown in Figure 5.13. The greedy model selection 
identified spatial lags for prediction at the 5th step, so we fixed 4 of the coordinates to % live coral, 
maximum directed wave energy, upper limited of island SST, and % macroalgae. 
 
 



 
Figure 5.15— Reanalysis of forecast skill using spatial lags to predict 2-year change in % Live Coral Cover. 
Spatial analysis shown in Figure 5.13 was repeated, but replacing some of the random projection coordinates with 
explicit variables identified in greedy model selection. Forecast skill of these is then compared to skill using no 
spatial lags ("NO LAGS") but 2 more random projections of the multivariate data, as well as null spatial lags 
("NULL LAGS") created from random permutation of the data. Finally, the forecast skill of an AR(1) model (i.e. 
just using the inertia present in % coral cover) is shown as a red dotted line for comparison. 

 
5.4.3 EDM for Forecasting Other Benthic Variables 

We can also investigate multivariate EDM predictions of other benthic variables. The stressed coral 
(%StC) category of the RAMP TDS is of particular interest, as it captures disease outbreaks and 
bleaching events that are of major conservation concern. Figure 5.16 shows greedy mEDM model 
selection applied to (A) %StC, (B) %S, and (C) %MA. Although the EDM forecast skill for predicting 
%StC is lower than for predicting live coral (%LC), the mEDM forecast skill is still highly significant, 
especially considering that the %StC shows no meaningful autocorrelation over a 2-year span and hence 
has less inherent statistical predictability. In all cases, information about the benthic state of spatial 
neighbors appears to offer some predictive skill. 
 



 
Figure 5.16— Forecast skill of multivariate embeddings for 2-year forecasts of other major % cover variables 
using greedy model selection and random projection coordinates. (A) Stressed Coral shows substantially lower 
predictability, but has no intrinsic inertia. Thus, observed forecast skill under nonlinearly tuned S-map models is 
noteworthy. (B) Sand Cover shows similar inertia (autocorrelation) to %LC, but nonlinearly tuned models 
incorporating environment and benthic cover show additional forecast skill. (C) Macroalgae predictability is 
dominated by the autocorrelation in %MA between 2-year observations. 

5.4.4 Characterizing conservation landscape 

The multivariate modeling results above can be translated into a number of metrics to describe 
conservation state and potential of reef segments. For example, the direct output of the forecasting 
model in Figure 5.16A and attached uncertainty (4.1.3.2) characterize relative risk of disease and 
bleaching. Further insight is possible by digging into the local linear coefficients of these models, 
however. For calculating stability metrics (see 4.8) it is necessary to have a single multivariate 



embedding that can predict all biological variables of interest. Furthermore, the issue of spatial 
interaction complicates the Jacobian interpretation. Based on the greedy model selection process, we 
observe that all %LC, %S, and %MA can all be predicted near the maximum observed predictability by 
the five-dimensional embedding [%LC, %S, %MA, DWEFmax, SSTupper]. Thus, we proceed with a 
detailed analysis of the Jacobian matrices estimated for this model across time and space, noting that it 
may overlook factors associated with the spatial processes uncovered above (5.4.2.1). 
 
5.4.4.1 Stability 

Analyzing the Jacobian matrices of the three closely associated benthic variables, %LC, %S, and %MA, 
the top panel of Figure 5.17 shows largely stable dynamics. Roughly 80% of plots are estimated to have 
LEV < 1, including most segments with currently high live coral cover (%LC). The other 20% show 
unstable dynamics. This picture changes, however, if bleaching and disease are considered by including 
the % Stressed Coral in analysis, shown in the bottom panel of Figure 5.17. The episodic and dramatic 
nature of disease and blenching events drives considerable instability in segments with high %LC. Note 
that the key environmental drivers DWEFmax and SSTupper are included in the model but do not directly 
contribute to the calculation of the largest eigenvalue. The environmental sensitivity is considered a 
separate effect.  
 
The LEV was also calculated for these models using the regularized S-map as studied in (65, 71). Using 
either LASSO or Ridge Regression penalties on coefficient magnitudes, the LEV are highly correlated 
(Spearman >0.90 in both cases), although the standard (non-regularized) S-map estimates of LEV are 
systematically larger than Ridge Regression. This is unsurprising, given that individual coefficients 
should be smaller, and thus the standard S-map estimates of LEV can be considered the more sensitive, 
the Ridge regression estimates the more conservative. 
 

 
Figure 5.17—Dynamic stability of reef segments as a function of current % Live Coral. (Top) The largest 
eigenvalue of the Jacobian matrix is estimated via S-map for the 5-dimensional multivariate EDM model 
containing [%LC(t),  %S(t),%MA(t), DWEFmax(t), SSTupper(t)]. (Bottom) Results are shown for equivalent 



calculations on the EDM model [%LC(t), %S(t), %MA(t), %StC(t), DWEFmax(t), SSTupper(t)] that has % Stressed 
Coral as an additional dimension. 

5.4.4.2 Environmental sensitivity 

Since the multivariate S-map models contain DWEFmax and SSTupper, we can also investigate the 
patterns in environmental sensitivity across reef segments. Broad patterns are shown in Figure 5.18. 
Reefs generally show negative relationships with both SSTupper and DWEFmax, and this is particularly 
pronounced for reefs with high coral cover (at least %40 Live Coral).  However, this sensitivity shows 
considerable variance, and near-zero estimates of these sensitivities can be understood as an indicator of 
resilience to environmental change. 
 
There are also reef segments that show positive dependence with SSTupper and DWEFmax. Figure 5.19 
shows the sensitivity of %LC to SSTupper as a function of SSTupper. Unsurprisingly, there is a general 
pattern consistent with a dome-shaped temperature sensitivity. For islands with lower temperatures, 
there is a positive response of %LC to the SST upper limit, and at islands with higher temperatures, the 
response becomes strongly negative. 
 

 
Figure 5.18— Environmental sensitivity of % Live Coral across all in-sample islands. High coral cover sites 
generally show a strong negative effect of maximum wave energy (DWEFmax), as well as a negative effect of SST 
upper limit (SSTupper). 

 



 
Figure 5.19— Effect of SSTupper on %LC across the range of SSTupper. 

5.4.4.3 Growth potential 

Dynamic instability is not necessarily a counter indicator for conservation. Figure 5.20 shows estimated 
stability in relation to the predicted change in coral cover. Across islands, there are many high coral 
cover sites (%LC ≥  40) that show stable declines. That is, the LEV indicates stability, log(LEV)<0, and 
the EDM forecast predicts that %LC + %StC will decline over the next two years. However, there are 
also sites that show decline, but with unstable dynamics. This characterizes sites where the right 
intervention might “turn the tide.” Sites with high coral cover, but  
 
Sites with low coral cover that show unstable growth, log(LEV) > 0 and expected %change in coral 
cover > 0, are areas where growth could take hold. Sites with these characteristics are especially 
interesting to consider in light of recent advances in coral out-planting for enhancing recovery. In fact, 
the S-map model coefficients contain an even more proximate indicator of out-planting potential, the 
self-regulation term of the Jacobian for %LC. If this coefficient, %LC(t+2)/%LC(t), is larger than 1, it 
indicates a small coral addition would grow in time. Figure 5.21 shows the estimated growth of a coral 
addition in relation to the LEV. Few sites predicted by this model predict growth, but these are indeed 
areas with unstable dynamics.  
 



 
Figure 5.20— Dynamic instability related to expected change coral cover. Here the S-map estimation of LEV is 
shown against the predicted change in total coral cover (%LC + %StC). Sites are sorted by the level of live coral 
cover. 

 
Figure 5.21— Dynamic instability related to the inferred growth of a coral addition. The inferred growth of a 
coral addition is predicted by the self-regulation term of the S-map Jacobian, , %LC(t+2)/%LC(t). 

 



5.4.4.4 Spatially resolved metrics 

Since each prediction of the multivariate EDM model is resolved to a particular reef location, the above 
calculations can all be projected onto maps of individual islands. Figure 5.22 shows Johnston Atoll as an 
example. The long-term prevailing direction of wave forcing is from the Northeast. These areas of reef 
have mostly low coral cover, but show stability and are not sensitive to changes in wave energy. 
Stability is lower and environmental sensitivity appears much higher on the opposite side of the land 
mass to the West. 
 

 
Figure 5.22— EDM metrics for identifying reef status at Johnston Atoll evaluated on the 2010 observations. 
Panels show (A) the dynamic instability measured by the largest eigenvalue of the S-map Jacobian, (B) the 
estimate fractional growth rate of a small coral addition, (C) the sensitivity of %LC to DWEFmax, and (D) the 
sensitivity of %LC to SSTupper. Note that substantial shallow coral cover exists in the interior lagoon of Johnston 
Atoll that was not reached by the RAMP TDS which followed the 15m depth contour. 
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5.4.5 Out-of-sample prediction 

The multivariate EDM model for predicting the 2-year dynamics of % Live Coral Cover was applied to 
the 16 Pacific Islands held out-of-sample for all above analysis. These are summarized in Table 5.2. 
Although the model is not able to predict dynamics at some islands beyond the autocorrelation in %LC, 
11 of the islands show out-of-sample forecast skill that exceeds the autocorrelation. Notably, the two 
strongest predictions are seen at Lisianski and Pearl & Hermes, which are both in the Hawaiian 
archipelago and have islands nearby that were analyzed in the in-sample portion (Kure, Midway). 
However, the general pattern of which islands were well predicted and which were not do not seem 
readily explained by human population, reef area, or island group. 
 
Island # pred  mae 

Agrihan 54 0.606 (0.676) 7.87 (7.55) 

Alamagan 46 0.390 (0.203) 8.84 (9.66) 

Asuncion 56 0.565 (0.469) 7.51 (8.48) 

Farallon de Pajaros 62 0.328 (0.321) 5.33 (8.73) 

Guam 145 0.529 (0.525) 8.8 (11.2) 

Guguan 28 0.534 (0.496) 7.88 (9.57) 

Laysan 20 0.478 (0.418) 5.61 (9.21) 

Lisianski 71 0.748 (0.625) 9.63 (11.6) 

Maro 54 0.671 (0.701) 13.2 (12.7) 

Maug 142 0.627 (0.608) 11 (11) 

Pearl & Hermes 64 0.668 (0.593) 5.98 (7.85) 

Rose 412 0.365 (0.403) 9.03 (8.47) 

Sarigan 58 0.388 (0.416) 8.61 (8.61) 

Swains 293 0.144 (0.137) 16.7 (15.2) 

Tinian 52 0.574 (0.767) 6.97 (7.65) 

Tutuila 285 0.383 (0.308) 8.68 (7.65) 

Table 5.2— Out-of-sample forecast skill for 2-year ahead predictions of %LC across 16 islands. Forecast skill by 
Pearson’s  and mean absolute error (mae) are listed, with grey numbers in parenthesis indicating the 
corresponding metric for the AR1 model of %LC. 

 

5.5 Key Empirical Demonstrations 
 
In the course of the grant, two empirical systems arose for demonstrating EDM advancements made 
under the grant. These systems served as more meaningful demonstrations than toy models. 
Additionally, they demonstrate the broad applicability of EDM beyond the marine realm. 
 
5.5.1 Cedar Creek 

We applied S-map analysis to long-term observations at Cedar Creek to demonstrate quantitative 
treatment of previous described regime shift (47). We focused on a 5-dimensional multivariate EDM 
model (embedding) based on strong interactions found in the Cedar Creek data with convergent cross-
mapping: [Nitrate(t), Richness(t), C3(t), C4(t), W(t)], where C3 is above-ground biomass of C3 grasses, 



C4 is above-ground biomass of C4 grasses, and W is above-ground biomass of woody shrubs. The 
largest eigenvalue calculated for this multivariate S-map model identifies rising instability of plots with 
nitrogen additions (Figure 5.23), and the LEV reaching 1.0 can identify impeding switch from native C4 
to invasive C3 community composition in many cases. 
 
While instability is strongly associated with the enrichment regime, plots do not behave identically. At 
moderate levels of nitrogen addition, some plots destabilized and some do not (see for example the panel 
for +5.44 kg N ha-1 yr-1 in Figure 5.23). Looking at the S-map estimate of LEV as a function of Plot 
Richness (Figure 5.24) we can see that within nitrogen treatments, higher plot richness is one associated 
with greater stability (lower LEV), recapitulating the common-held notion in ecology that diversity 
begets stability. 
 
Finally, previous study done after the initial 8-year experiment studied here identified the total nitrogen 
addition as a driver of hysteresis behavior. Analysis with S-map confirms this notion (Figure 5.25), but 
without the need for cessation experiments, and based solely on the first 8-years of experiments. 
 
 

 
Figure 5.23— EDM estimated instability of Cedar Creek patches under various nitrogen treatments (0.0 - 27.2 kg 
N ha-1 yr-1). LEV > 1 indicates unstable dynamics, while LEV < 1 indicates stable dynamics. 



 
Figure 5.24—Instability of vegetation dynamics (largest eigenvalue of the S-map estimated Jacobian) shown 
across all plots as a function of plot richness. High richness is associated with more stable dynamics (LEV < 1), 
recapitulating the common held notion in ecology that diversity buffers against instability. 

 

 
Figure 5.25—Plot instability in relation to total nitrogen added. Dynamics of the vegetation assemblage are stable 
in the absence of nitrogen additions. However, total additions of nitrogen of as little as 25 x 105 g ha-1 can lead to 
unstable dynamics in plots with low richness (darker blue circles). At extreme levels of total additions, dynamics 
become stable again but these plots are dominated by a low richness community of invasive C3 grasses. 
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5.5.2 Lake Geneva 

Water quality in Lake Geneva emerged as an opportunity to apply the same methodology developed for 
the red tide case study to a conceptually similar problem in a classic system with significant potential to 
produce a high visibility study for EDM. It was presented to us by colleagues from EAWAG (Zurich) as 
a problem with large amounts of excellent monitoring data, a long history of modelling attempts and a 
mystery as to why it has not returned to it’s former state.  Despite aggressive measures to reduce 
phosphorous loading to pre-20th century levels, the overall water quality of Lake Geneva, measured by 
dissoved oxygen at depth (DOB) and chlorophyll (CHL), have not returned to their expected pre-20th 
century levels.  To better understand this mystery and provide actionable management advice going 
forward (in the context of 21st century climate change), a hybrid approach was developed. This involved 
using classical equation-based physics models with unrealistic fixed constants for the changing ecology 
and complex chemistry, in combnination with EDM models to accommodate this complexity. Aside 
from resolving the mystery, the key concern was to make credible predictions of water quality health in 
Lake Geneva under various plausible climate and management future scenarios.  
 
Like the red tide event, there are extreme events that dominate the relevant ecological history, but in the 
lake, these extreme events are changes in oxygen rather than changes in phytoplankton. Previous 
attempts at parametric modeling of hypoxia in Lake Geneva have had some success (72) with 1-
dimensional physical circulation models being able to faithfully capture the physical mechanisms of 
oxygenation reasonably well. However, long-term changes (non-stationarity) in biological relationships 
that affect oxygen consumption – like the carbon:phosphorous ratio and carbon export fluxes – confound 
the validity of extrapolating the simple parametric models to new scenarios where, for example, in the 
real world temperature changes and nutrient dynamics will interact. 
 
These changes are directly quantifiable by EDM, as shown in Figure 5.26. Consequently, EDM can 
explain (predict) historical variability better than a strict parametric approach, especially as the lake has 
entered new regimes of biogeochemistry. Because parametric models can capture the (relatively) simple 
physical mixing that is a key driver, a hybrid modeling approach emerged as the best predictive 
framework, where large remixing events are predicted by the parametric physics model, and the effects 
of complex biogeochemistry in the inter-mixing intervals (that can span multiple years)  are accounted 
for with EDM. This enables long-term simulations to reproduce behavior with a great fidelity.  
 
The paper demonstrates the hybrid approach not only leads to substantially better prediction (Figure 
5.26), but also to a more actionable description of the emergent rates and processes (biogeochemical, 
ecological etc.) that drive water quality. Notably, the hybrid model suggests that the impact of moderate 
air temperature increase (ΔTair = 3°C; a lower bound in recent CH2018 scenario (RCP8.5) for the 
western part of Switzerland ) on water quality would be on the same order as the eutrophication of the 
previous century, and more significantly that the best management action may no longer involve a single 
control lever such as reducing phosphorus inputs alone.    
 
We believe that this hybrid approach represents a template that that sets the bar for the next generation 
of environmental management tools – tools that pass the validation test of out-of-sample forecasting, 
that accommodate nonlinearity and nonstationarity, and that have the flexibility to accommodate non-
analogue futures. Full details of the Lake Geneva example are contained in the manuscript (now in press 
at PNAS) attached in the Appendix. 
 



 
Figure 5.26— S-map estimations of first order partial derivative quantify the state-dependent effect of (A) PO4T 
on Chl and (B) Chl on DOdeep under changing levels of PO4T. Positive (negative) values indicate that an increase 
in PO4T lead to an increase (decrease) in (A) Chl or (B) DOdeep. At high levels of PO4T, there is little evidence of 
phosphorous limitation as the effect of PO4T is near 0 until PO4T drops below 40 g/L. However, a drop in Chl 
does not necessarily translate into improved water quality, since the effect of Chl on DOdeep also strongly depends 
on state. Importantly, the relationships quantified here can provide a way to dynamically parameterize 
constituents in equation-based models. 

 
 



 
Figure 5.27—Comparison of long-term predictions of dissolved oxygen (DO) in Lake Geneva using the 
previously reported parametric model of Schwaffel et al. (72) and the newly adapted parametric/EDM hybrid 
model. Both models are initialized at the start of the time course, then run iteratively with climate and 
biogeochemical inputs. 

 
 

  



6 Conclusions and Implications for Future Research 

The project case studies, in synergy with projects of opportunity, have provided templates for nonlinear 
data analysis that is able to skillfully model nonlinear systems even when faced with significant data 
challenges. Moreover, the EDM approach requires demonstrated out-of-sample forecast skill (validation 
is built in) and we have shown that it has flexibility to credibly address nonequilibrium, non-analogue 
futures, that can recommend and support management actions. 
 
Critically, the project successfully developed a standardized set of applied computational tools for 
empirical dynamic modeling. Code packages are now publicly available in R, Python, and C++, and as 
noted in the summary are quickly finding a large user base. The rEDM package has been downloaded 
more than 43,000 times from the central CRAN server since its launch in 2016; and more strikingly, 
pyEDM, has been downloaded more than 330,000 since launch in Fall 2021. Simultaneously, the grant 
allowed us to develop documentation to communicate the essential foundations for new users wishing to 
apply EDM to their research. Together the code and documentation are already having a transformative 
effect on multiple scientific domains. In the first months of 2022, there are over 130 new publications 
using convergent cross mapping across ecology and diverse other fields. In addition, to impact a broader 
audience, a Stata package of EDM tools based on rEDM is now available for social scientists and 
financial engineers (https://researchprofiles.canberra.edu.au/en/publications/edm-stata-module-to-
implement-empirical-dynamic-modeling) along with a user tutorial.  
 
It is our hope that EDM will be in the toolbox of other future SERDP projects, not just the two case studies of 
marine environments focused on here. Conversations with SERDP researchers along with past SERDP review 
board members and former SERDP Program Manager, John A. Hall have identified critical needs that EDM can 
fill: ranging from forecasting/understanding red tides at Camp Lejeune (analogous to the SoCal study herein), to 
hydrology to fire ecology.  General thoughts about how this might take shape follow below. 
 

6.1 EDM & SERDP 
 
6.1.1 Reduced Sets of Variables 

A key, broad contribution of this project to environmental management is demonstrating empirical 
dynamic modeling (EDM) for identifying reduced sets of variables. Convergent cross-mapping is a 
general criterion for measuring causal interactions in nonlinear systems. Thus, it allows us to explicitly 
identify the most important driver variables from a larger set. For example, CCM readily identifies that 
rainfall, despite being linked to red tides in other areas of the world (e.g. Florida) is not an important 
variable in the blooms off Southern California. Moreover, successful demonstration of static cross 
mapping on modeled (Figure 5.1) and empirical coral reef data (Figure 5.12) highlight how long time 
series aren’t strictly necessary for the general framework to be successful. 
 
6.1.2 Fire ecology applications 

Based on conversations at an annual project review meeting with SERDP review board member, Kevin 
Hiers, we conducted preliminary EDM analysis of fuel moisture data (provided by Hiers) at Tall 
Timbers Research Station (Tallahassee, FL). Univariate analysis with simplex projection and S-map 
finds evidence of low dimensional, nonlinear dynamics in both midnight and noon fuel moisture data (). 



This suggests a promising avenue for future work directed at clarifying meteorological drivers and 
forecasting long-term futures affecting wild fire frequency. 
 

 
Figure 6.1— Simplex projection forecasts of midnight fuel moisture data from Tall Timbers Research Station. 
Univariate lag-coordinate embeddings with 6-lags show predictable dynamics (Pearson rho = 0.54) beyond the 
inherent predictability of the time series due to autocorrelation (dotted black line). 

6.1.3 EDM for Rapid Assessment of Non-stationary Environmental Change 

The successful adaptation of EDM methods to the Pacific Coral Reef case study demonstrates a major 
advance for EDM as a practical tool for management. Traditional EDM relies on long time-series 
measurements (long monitoring studies) to build an understanding of system complexity and identify 
relevant interacting variables, thus making it poorly suited to addressing emerging management 
questions in ecosystems or environments that don’t have long-term observations associated with them. 
The road map set out in case study 2 shows how emerging management questions in previously un-
studied systems could be addressed through EDM, so long as change (dynamics) can be measured over a 
limited time (months or a few years) in many equivalent systems, such as patches across a large area in a 
spatially explicit system like tropical coral reefs or forest fire. Note, however, that replicates do not need 
to have a spatial relationship, as the same general approach would work for e.g. water quality in US 
Army Core multi-use reservoirs across the United States (20). 
 

6.2 Red Tides in Southern California 
 
Based on combining the qualitative predictions of the ROMs model and the environmental sensitivity 
analyses of chlorophyll bloom frequency we performed with EDM, it is likely that red tide frequency 
will occur in southern California under a “business as usual” climate future (RCP 8.5). The qualitative 
ROMs predictions includes a prediction that the water offshore of La Jolla will on average be cooler 
over the next 3 decades than it was over the past 3 decades. This is perhaps counterintuitive on first 
examination, but is completely plausible given the complex oceanography of the region; recirculation of 
water coming from the North in the California Current, occasionally intrusion of water up from Baja 
Mexico, upwelling, and more. (Again, the ROMs model combined with our EDM mechanistic 
predictive model, predicts an increase in red tides over the next 3 decades… but uncertainty is not with 
EDM but with the ROMs general circulation model). However, our analysis has been structured so that 



these conclusions can be reevaluated if and when new climate downscaling products (sub ROMs) 
become available for the Southern California Bight.   
 
6.2.1 Feasibility of Real Time Forecasting 

The time horizon for skillful prediction in the historical data in principle allows for good predictability 
of red tide events with a 1 week or greater lead time. However, the current data collection pipelines pose 
practical limitations. The chief obstacle is that nutrient measurements are not analyzed immediately in 
real time, but involve processing time lags often greater than a month (though this could be nearly 
instantaneous with automated assays). Nevertheless, including nutrient time series was critical to 
achieving good prediction skill (4). Automated nutrient measurement technologies have improved 
greatly and have already been deployed elsewhere in the Southern California Bight (73). Another 
practical way forward could be building on the success of using EDM to impute water column stability. 
If it is possible to find proxys for nutrients – other available time series that are not mechanistic drivers 
but share causal associations with nutrient dynamics (such as pH or dissolved oxygen) – then the need 
for real-time nutrient measurements could be circumvented. 
 
6.2.2 Predicting futures 

Predictions about the future of dinoflagellate algal blooms in southern California are ultimately tentative 
due to a combination of ambiguity about the future climate and limits of forecast skill with the EDM 
model predictions. EDM framework has been designed to accommodate “multiple plausible futures”, 
but the practical insight is still fundamentally limited by how much we can constrain the envelope of 
“plausibility”. 
 
6.2.2.1 Matching biological futures to climatic futures 

At the heart of this problem is a mis-match between oceanographic measurement and modeling. Our 
best, long-term measurements are made from the part of the ocean easiest to observe—the coast, and yet 
it is also the part of the ocean that is hardest to model physically. The SIO Pier in particular is a 
fascinating place of study, as open ocean physics get beamed up onto the surf zone through a deep 
submarine canyon while getting convolved with a highly unique internal tide pattern. While much has 
gone into studying these physics, they are not integrated into the modeling structures like ROMS. Yet 
currently these are the best models for tracking down the outcomes of atmospheric warming on open 
ocean physics, albeit at a scale not perfectly matched to the biology of red tides.. 
 
Empirical data imputation is a possible solution to this problem, although our first attempt closed the 
gap of disagreement between pier variables and simulated ROMS behavior. Imputed stability is by no 
means the only variable we can hope to draw out of the shared causal analysis between manual pier 
measurements and automated profiler measurements. As shown in previous sections (Figure 4.4), the 
wire-walker can resolve the intense internal tide oscillations that occur at the pier and continually 
reshape chlorophyll distribution with depth. Another possibility would be to seek relationships between 
shore station measurements and measurements further off-shore. Are the physical dynamics produced by 
the ROMS 7 km off-shore more realistic? The moored profiler was deployed in close proximity to the 
SIO Pier, but similar analysis could be repeated for buoys, ARGO floats, and automated gliders. 
 
At the end of the day, we question whether ROMS simulations should be considered credible despite 
being the “best available science” for long-term futures of near-shore ocean dynamics under climate 



scenarios. Despite the complexity and sophistication of ROMS models, we find no compelling evidence 
that the major simulated changes are more reliable than those reasoned by experts of local and regional 
oceanography based on simple arguments. Thus, while we feel confident in how the EDM model works 
and what it tells us, we are less confident about the scenario played out by ROMs that ultimately drives 
the EDM model.  This is why we suggest exploring this issue and other possible solutions such as data 
imputation. 
 

6.3 Coral Reefs Conservation 
 
The most extensive global mass bleaching lasted 3 years – from 2014 to 2017 – and affected at least 
75% of reefs around the globe. Nearly 30% estimated to have experienced mortality-level stress and 
50% suffered at least two individual events (74). The list of anthropogenic threats to coral reefs includes 
much more than just thermal stress, however, and seems to be growing: local pollution, fishing pressure, 
acidification, direct physical destruction by boats, increasing cyclone intensity, and sea level rise (75). 
Runaway climate change could well eventually doom them entirely, but until this is a foregone 
conclusion conservation must focus on identifying and protecting pockets of reef that have the best 
chance at sustaining diversity of corals and associated organisms over the coming decades.  
 
6.3.1 Decision making 

We have demonstrated EDM’s potential to identify differential impacts of these stressors, including high 
wave energy events associated with storms and maximum sea surface temperature. This framework can 
be refined and updated for more directed decision support. Metrics like those shown for Johnston Atoll 
in Figure 5.22 can help distinguish areas that are a priority for protection, from those that are lost causes. 
Reef areas with stable, high coral cover, and low sensitivity to temperature are the most critical to 
protect from direct disturbance (e.g. caused by marine vessel operations), as well as areas with lower 
coral cover that show positive prospects for recovery.  
 
Although NOAA no longer collects these data, the historical library we have built from the TDS remains 
relevant. For any given site in the future, only a single new snapshot is required to seed model 
forecasts and update benchmarks. 
 
6.3.2 Active Restoration 

Active coral reef restoration through coral out-planting has seen received considerable attention and 
investment. In 2019 NOAA announced Mission: Iconic Reefs to restore 7 iconic reef sites within Florida 
Keys National Marine Sanctuary through an ambitious program of out-planting and coordinated research 
activities. The >90% decline of the once spectacular reefs in the Florida Keys has been tied to pretty 
much all known global factors: direct physical destruction from anchors, boat hulls, and storms; stress 
from changing ocean temperature and pH; and ecosystem stressors from eutrophication to over-fishing 
to disease. Yet in terms of conservation, the coral reefs of Florida are something of a paradox. The 
environment in Florida superficially looks favorable to reef persistence, but the reefs are in far worse 
shape than other places, such as areas of Kiribati with greater disturbance. What is behind this poor 
resilience? Understanding the landscape of reef resilience is critical to smart and effective management. 
The complex nexus of factors presents a dizzying landscape to tackle with traditional single or two-
factor field experiments. Thus, the data-driven approach building on what was developed here 
allows exploration of the dimensions of variability that will shape out-planting success and give 



practical insight to managers for improving probability of success for projects like the Seven 
Iconic Reefs. The most critical, concrete step forward for an EDM approach to restoration would be 
demonstrating prediction of past/ongoing restoration outcomes in Florida, Hawaii, or elsewhere. 
 
6.3.3 Resolving scale-dependence 

In results and discussion, we highlighted contrasting evidence of spatial dynamics between our analysis 
of coarse scale (150m spatial scale, no taxonomic resolution within hard corals) and an empirical 
dynamics analysis of photomosaic quadrat data from Palmyra Atoll by McNamara et al. (76). 
Photomosaic quadrat data are being replicated under a common protocol at many reefs around the globe 
now under the 100 Island Challenge and many other cooperating efforts. Most importantly, they are 
being done sequentially in many places, so that these data can, in fact, directly resolve dynamic change. 
Thus, future EDM analysis could repeat many of our analysis to include additional islands from around 
the globe, and thus have a much higher chance to resolve spatial and species-specific dynamics. If this is 
the case, the reasonably good predictability of our coarse scale data is only a lower bound on what is 
possible with better and more data in hand. 
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7 Appendices 

7.1 Appendix A: Supporting Data 
 
No primary data were collected under this project. However, we include key pieces of code for 
implementing novel EDM approaches here not immediately accomplished with the published rEDM 
tools. 
 
7.1.1 help_functions_data.R 

This script contains several functions to process spatial data from geolocated observations into neighbor 
graphs for spatial EDM, (see 4.5.1). 
 
7.1.2 help_functions_greedy_EDM.R 

This script contains functions to conduct a greedy multivariate EDM model selection as shown in Figure 
5.14 using randomized projection coordinates (see 4.4.2.1). 
 
7.1.3 help_functions_Jacobian_analysis.R 

This script contains functions to merge S-map coefficients across interacting variables and compute 
Jacobian metrics of stability (see 4.8). 
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Overview 
cppEDM (C++ Library of EDM tools)  is an open-source library of C++ code that provides 
Empirical Dynamic Modeling (EDM) support. It is authored by the Sugihara Laboratory and 
colleagues at UCSD.  This project’s purpose is to evaluate the code quality, design and coding 
processes, and offer recommendations that will enhance the software in the short, medium, and 
long terms.  This code is developed in the open as well.  This report describes version v1.3.1 of 
the code. 
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cppEDM Code Review
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DevOPS/GitOPS 

1. Use of Git (Development Processes)

Git is used, but it is used in an effective way, but it is a bit too simplistic.  There is a master 
branch, an a single, special purpose branch: 

  exclusion_matrix a455f0f [ ​origin/exclusion_matrix ​] Merge branch 'exclusion_matrix' of 
http://github.com/sugiharalab/cppEDM into exclusion_matrix 
* ​master          ​ fd21fe7 [​origin/master ​] v1.3.1 Disjoint lib & pred. 

There are a small number of developers, but this project is developed on a public Git repo. 

The ‘develop’ branch should be added, and the master and develop branch should be 
protected.  That will require ownership rights to accept pull request (PR).  It appears anyone can 
update the source at present.  Protecting it is easy using Github.  

Reference 1 below describes an effective branching model for Git (a process now known as 
git-flow), which is to make master super stable, the develop branch have longer term work and 
pre-releases, and feature branches branched off develop for focused additions.  This model 
should be used.  Then, when a certain set of features checked into develop reach the point to 
meet the requirements for a major, minor, or maintenance release (resp 1.0.0, 1.1.0, 1.1.1 type 
number), then develop should be merged into master, that hash should be tagged using 
annotated Git tags.  At present, tags are not used at all; rather, each check-in for a version has 
its version number as part of the comment.  That means that the developers need to know what 
version they are working on when they make contributions, rather than making contributions 
through feature branches that total to a set of new capabilities and corrections that comprise a 
given release.  This change will be easy, but extremely beneficial. 

The developer count is low, the check-in rate is low, and the 2+ developers are not developing 
on this code every day.  For these reasons, mechanisms that benefit large teams with high 
development rates also make sense for small teams like this one because they codify what’s 
going on and help the developers keep track after some periods of inactivity of the development. 

It is recommended also that a ​feat-featurename​ type branch name be used for shorter-term 
branches that implement a feature.  Features should be documented in the Issues tab on Github 
to give documentation, background, and quality (compliance to specification) info.  This can all 
be light but is needed.  When feature branches are checked into develop, then terminate. 
Feature branches can also apply to bug fixes equally well. 

C.2



The Git history (git graph mode) shows the last five months of development check-ins: 
* ​fd21fe7​ - ​(7 days ago)​ ​v1.3.1 Disjoint lib & pred.​ ​- SoftwareLiteracy​ (HEAD
-> master, origin/master, origin/HEAD)

* ​fa71166​ - ​(3 weeks ago)​ ​v1.3.0 call delete[] on array.​ ​- SoftwareLiteracy
* ​696b07a​ - ​(4 weeks ago)​ ​v1.3.0 Docs​ ​- SoftwareLiteracy
* ​ac5f6ea​ - ​(4 weeks ago)​ ​v1.3.0 Doc update SMap.​ ​- SoftwareLiteracy
* ​441e599​ - ​(4 weeks ago)​ ​v1.3.0 SMap solver function pointer.​ ​-
SoftwareLiteracy

* ​4916ae2​ - ​(6 weeks ago)​ ​v1.2.1 Update docs.​ ​- SoftwareLiteracy
* ​dfad6c4​ - ​(6 weeks ago)​ ​v1.2.1 Add doc/PackageBuild.pdf, update etc/Notes.​ ​-
SoftwareLiteracy

* ​b8ba283​ - ​(6 weeks ago)​ ​v1.2.1 Add -Wreorder compiler flag for CRAN checks.​ ​-
SoftwareLiteracy

* ​c21f3cb​ - ​(7 weeks ago)​ ​v1.2.1 E = 0 check for shift.  DistanceMax query
instead of fixed macro.​ ​- SoftwareLiteracy
* ​1dd0fc6​ - ​(7 weeks ago)​ ​v1.2.1 Add CCM sample = 0 check.​ ​- SoftwareLiteracy
* ​0e16a7e​ - ​(8 weeks ago)​ ​v1.2.1 Fix library bound check.​ ​- SoftwareLiteracy
* ​3107e32​ - ​(10 weeks ago)​ ​v1.2.0 Add positive tau. Default tau = -1. Set
default knn if embedded = true.​ ​- SoftwareLiteracy
* ​d467bdb​ - ​(10 weeks ago)​ ​v1.2.0 Add positive tau. Default tau = -1. Set
default knn if embedded = true.​ ​- SoftwareLiteracy
* ​b86c0c9​ - ​(3 months ago)​ ​v1.1.0 CCM neighbors fix, parameter check. Add
%Y-%m-%d %H:%M:%S time format.​ ​- SoftwareLiteracy
* ​b84c4ce​ - ​(3 months ago)​ ​v1.0.1 Error estimates excluded end data.​ ​-
SoftwareLiteracy

* ​7e28c54​ - ​(3 months ago)​ ​v1.0.1 Change embedded E data columns error to
warning.​ ​- SoftwareLiteracy
* ​641e73c​ - ​(3 months ago)​ ​v1.0.1 Init unrecognized_fmt​ ​- SoftwareLiteracy
* ​9ceaf15​ - ​(3 months ago)​ ​v1.0.1 Fix extension of datetime for Tp exceeding
data.​ ​- SoftwareLiteracy
* ​b86dd9b​ - ​(3 months ago)​ ​v1.0.1 Sync with pyEDM​ ​- SoftwareLiteracy
* ​cb01531​ - ​(3 months ago)​ ​v1.0.1 Fix lib and pred index check.​ ​-
SoftwareLiteracy

* ​30b8dea​ - ​(4 months ago)​ ​v1.0.1 lib and pred start index check.​ ​-
SoftwareLiteracy

* ​e2e29f0​ - ​(4 months ago)​ ​v1.0.1 lib and pred start index check.​ ​-
SoftwareLiteracy

* ​f9baa67​ - ​(4 months ago)​ ​v1.0.1 Add knn to PredictNonlinear() args.​ ​-
SoftwareLiteracy

* ​7538f11​ - ​(4 months ago)​ ​v1.0.1 Update OnlyDigits()​ ​- SoftwareLiteracy
* ​8fe6391​ - ​(4 months ago)​ ​v1.0.1 LAPACK Notes in etc/​ ​- SoftwareLiteracy
* ​a775074​ - ​(4 months ago)​ ​v1.0.1 fix windows makefile.​ ​- SoftwareLiteracy
* ​884b33a​ - ​(4 months ago)​ ​v1.0.1 Doc update.​ ​- SoftwareLiteracy
* ​ed04145​ - ​(4 months ago)​ ​v1.0.1 CCM data copy instead of reference.​ ​-
SoftwareLiteracy

* ​4a84deb​ - ​(4 months ago)​ ​v1.0.1: SMap matrix construction.​ ​- SoftwareLiteracy
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* ​04764e1​ - ​(5 months ago)​ ​v0.1.10: CCM: Don't DeletePartialDataRow() prior to
CrossMap().​ ​- SoftwareLiteracy
* ​dd3fff6​ - ​(5 months ago)​ ​v0.1.10 CCM() min libSize check.​ ​- SoftwareLiteracy
* ​2ea3962​ - ​(5 months ago)​ ​v0.1.10: SMap Lapack_SVD() kludge for MSVC/pyEDM.​ ​-
SoftwareLiteracy

* ​b29d8ec​ - ​(5 months ago)​ ​v0.1.10: Excise Eigen. Use LAPACK dgelss() for
s-map.​ ​- SoftwareLiteracy
* ​87c5481​ - ​(5 months ago)​ ​v0.1.10: Excise Eigen.  Use LAPACK dgelss for s-map.
- SoftwareLiteracy

* ​94f185b​ - ​(5 months ago)​ ​v0.1.10: Excised Eigen. Use LAPACK dgelss() for
s-map SVD.​ ​- SoftwareLiteracy

All this work is directly on the master, so master is evolving with each check-in, rather than with 
a stable release cadence.  

2. Other Aspects of the Development Process
Makefile recommendations 

1) Make should work from the cppEDM main directory, even if this is a supervisory makefile
that recurses into a Makefile into cppEDM and/or test directories, depending on what’s
requested.

2) ‘make clean’ (executed in the src directory) does not remove the lib/libEDM.a file
3) The Makefile is missing some potentially useful features (see Appendix B).

3. Review: Requirements Documents

To be added. 

4. Review: Other Documentation
To be added. 
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Project and Code Structure, Complexity and Use of 
C++ 

1. Project Structure
The code is structured as follows in terms of layout in the directory structure (after the project 
has been built, to show where side effects occur): 

Directory-wise, this expands to:

cppEDM/:

src  tests  etc  doc  lib  data  README.md  LICENSE

cppEDM/src:

libEDM.a CCM.o Neighbors.o  Parameter.o     Common.o SMap.cc

Neighbors.cc  Embed.cc Common.h  AuxFunc.cc Version.h Embed.h

SMap.o Eval.o Interface.o  DateTimeUtil.o  makefile Parameter.h

Multiview.cc  DateTimeUtil.cc  Common.cc  build.02feb20 Neighbors.h

DateTime.h
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Multiview.o  Simplex.o Embed.o AuxFunc.o Simplex.cc  Parameter.cc

Eval.cc      DataFrame.h CCM.cc  makefile.windows  Interface.cc

AuxFunc.h

cppEDM/tests:

makefile  data SimplexTest.cc SMapTest.cc  MultiviewTest.cc  CCMTest.cc

run TestCommonTest.cc  TestCommon.h  TestCommon.cc DateTimeTest.cc

cppEDM/tests/data:

Multiview_combos_valid.csv Smplx_embd_block_3sp_pyEDM.csv

Smplx_E3_block_3sp_pyEDM.csv Smap_circle_pyEDM.csv CCM_anch_sst_pyEDM.csv

CCM_anch_sst_cppEDM_valid.csv Smplx_S12CD_E3_pyEDM.csv

Smap_embd_block_3sp_pyEDM.csv Multiview_pred_valid.csv

cppEDM/etc:

Test.cc  Notes libstdc++_Notes.txt  PlotTest.R

cppEDM/doc:

cppEDM.pdf  PackageBuild.pdf

cppEDM/lib:

libEDM.a

cppEDM/data:

sardine_anchovy_sst.csv  circle_noise.csv  circle.csv  block_3sp.csv

TentMap_rEDM.csv TentMapNoise_rEDM.csv  S12CD-S333-SumFlow_1980-2005.csv

LorenzData1000.csv

This project structure us usual and not surprising.  It is fine as is, with one suggestion offered, 
as follows: The source directory could be further subdivided into C++ source files and header 
files, such as src/src (or similar) and src/include ; this is usual.  It is helpful to segregate the 
header files from the main source files, but is not required. 

The use of the .cc and .h extensions for file naming follows accepted conventions as well. 

The requirement for compilers to support C++ 11 is reasonable and modest; use of additional 
C++14, 17, and 20 features in the future may be useful and should not be avoided. Widespread 
GCC/G++, CLANG, and ICC support for modern C++ is not an impediment to adoption. 

2. Code Structure / Use of C++
The project structure already indicates that the library is composed from C++ sources (.cc) files 
supported by header files (.h) all in the src directory. This section considers design structural 
issues of the source itself. 
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I. Class structure

1) Inheritance canonical form requires

virtual ~Parameters();

[example] of the declaration of the destructors in each class.  This is a best 
practice, in case the project ever wants to do inheritance off a given class. 

2) If you ever want to inherit from these objects, use 'protected' explicitly, instead
of private (implicitly)

The keyword private appears only once in the entire project, under DataFrame.h 

Explicitly naming what's private is good practice too, even though its the default 
for C++ classes. 

II. Namespaces

1. EDM should be the namespace for everything in this library.

They are used, but ad hoc, now: 
AuxFunc.cc:namespace EDM_AuxFunc {

CCM.cc:namespace EDM_CCM { 

Eval.cc:namespace EDM_Eval {

Multiview.cc:namespace EDM_Multiview {

Neighbors.cc:namespace EDM_Neighbors {

They are used sparingly for quite specific purposes; this should change to 
EDM::Neighbors, for instance.  All published APIs, global constants, and 
singleton objects (if any), should live in the EDM namespace. 

2. ​using namespace std;​ in each source file would allow the use of the STL
and simplify coding (eliminates std::).
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III. Use of float vs double; there are few scalar parameters are in float; deciding
when to use float vs. double should be clarified in the design.  In fact, these
appear to be “dangerous” to be float when the rest of the library is double, given
that they deal with tolerances; recommendation is to change these to double:

Parameter.h ​: ​ ​float​ theta; // S Map localization

Parameter.h ​: ​ ​float​ SVDSignificance; // SVD singular value

cutoff

Parameter.h ​: ​ ​float​ TikhonovAlpha; // Initial alpha

parameter

Parameter.h ​: ​ ​float​ ElasticNetAlpha; // Initial alpha

parameter

Parameter.h ​: ​ ​float​ theta = 0,

Parameter.h ​: ​ ​float​ svdSig = 1E-5,

Parameter.h ​: ​ ​float​ tikhonov = 0,

Parameter.h ​: ​ ​float​ elasticNet = 0.1,

Parameter.cc ​: ​ ​float​ theta,

Parameter.cc ​: ​ ​float​ svdSig,

Parameter.cc ​: ​ ​float​ tikhonov,

Parameter.cc ​: ​ ​float​ elasticNet,

IV. Variable naming;  there is no set convention; some camelCase, some N_xxx,
some all lowercase.  Not a big deal, you might want to set a standard.

V. Use of by const and/or reference parameter passing (no change to
correctness, only change to performance for the better implied):

1. Example:

​ void PrintIndices( std::vector<size_t> library,

std::vector<size_t> prediction );

These should be 
a) passed like this,
b) and passed as const if they are in parameters:
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Parameter.h: 

class Parameter {

...

void PrintIndices( const std::vector<size_t> &library,

const std::vector<size_t> &prediction );

};

const references are much faster for large objects, and won't change the syntax 
of the function. 

Neighbors.h: 

Neighbors FindNeighbors( DataFrame<double> dataFrame,

Parameters parameters );

this could better be:

Neighbors &FindNeighbors( const DataFrame<double> &dataFrame,

const Parameters &parameters );

while these use const refs: 

void PrintDataFrameIn( const DataFrame<double> &dataFrame,

const Parameters &parameters );

void PrintNeighborsOut( const Neighbors &neighbors );

double Distance( const std::valarray<double> &v1,

const std::valarray<double> &v2,

DistanceMetric metric );

Embed.h 

There are these functions: 
DataFrame< double > Embed ()
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These functions would better be declared as: 

DataFrame< double >& Embed ()

This function 
DataFrame< double > MakeBlock ( DataFrame< double > dataFrame,

int E,

int tau,

std::vector<std::string> columnNames,

bool verbose );

would better be done as: 

DataFrame< double >& MakeBlock ( const DataFrame< double > &dataFrame,

int E,

int tau,

std::vector<std::string> &columnNames,

bool verbose );

DateTime.h: 

Similar opportunities to use ​const & ​ as input arguments, and ​std::string &
instead of ​std::string ​ in output. 

DataFrame.h: 

Similar opportunities to use ​const & ​ as input arguments, and ​std::string &
instead of ​std::string ​ in output. 

Example (R-value and L-value accessors); the L-value accessor is correct 
std::valarray<T>  Elements() const { return elements; }

std::valarray<T> &Elements()       { return elements; }

The R-value accessor could also be done as follows: 

const std::valarray<T>  &Elements() const { return elements; }

Otherwise, the whole valarray is copied. 
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Example program to show const ref return as R-value: 

using namespace std;

template <typename T>

class testValarray

{

public:

testValarray(int _N) : N(_N) {a = new valarray<T>(N);}

virtual ~testValarray() {delete a;}

valarray<T> &Elements() {return *a;}

const valarray<T> &Elements() const {return *a;}

typedef T classType;

protected:

int N;

valarray<T> *a;

};

int main(void)

{

testValarray<double> alpha(10);

const testValarray<double> beta(10);

valarray<double> gamma = alpha.Elements();

valarray<double> delta = beta.Elements();

return 0;

}
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Common.h: 

// forward declaration for SMap solver

std::valarray < double > SVD( DataFrame    < double > A,

std::valarray< double > B );

MultiviewValues( DataFrame< double >        combo_rho,

DataFrame< double >        predictions,

std::vector< std::string > combo_rho_table ):

should also use ​& ​'s and​ const &' ​s. 

This declaration is fine, but it is the C-style of passing function pointer: 

SMapValues SMap( std::string pathIn = "./data/",

...

std::valarray<double> (*solver)(DataFrame < double

>,

std::valarray < double

>) = &SVD,

...

};

As a matter of principle, using Functor (function objects) is a desirable alternative 
to consider in future, for instance, in an object-oriented C++ refactoring that uses 
the full power of C++11 … C++20.  

Please see also: 

https://www.geeksforgeeks.org/functors-in-cpp/

This is not urgent, but design-wise, it is more of the C++ way of doing things. 

AuxFunc.h: 

Similar recommendations for use of pass by reference for everything R/W, and 
const & ​ for things that are in-arguments. 
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Memory leaks / static & dynamic testing: 

Cppcheck: 

Checking SMap.cc ... 
SMap.cc:471:9: error: Memory leak: iwork [memleak]

throw std::runtime_error( "Lapack_SVD(): dgelss failed on

query.\n" );

^

SMap.cc:489:9: error: Memory leak: iwork [memleak]

throw std::runtime_error( "Lapack_SVD(): dgelss failed.\n" );

^

These appear real; a workaround will be recommended in a pull request. It requires a catch and 
rethrow to delete local heap temporaries. 

Valgrind testing: 

TO BE DONE STILL ON EXAMPLE TEST PROGRAM. 

3. Code Complexity
No concerns here; more comments may be made in the revised final report. 

Overall Recommendations 
1. Use Git with more features in key ways:

a. The stable master model should be adopted [See Ref #1].
b. The master and develop branches (develop will come soon) should be protected.
c. All check-ins should be code reviewed through a pull-request
d. Git annotated tags should be used to mark releases (e.g., 1.4.0)
e. The use of Git with the project should be documented briefly on the Wiki

2. The Makefile should be enhanced incrementally as described above.  Potentially, as
more compiler options are selected GCC, CLANG/LLVM, and ICC Makefiles will be
useful, but right now that would be overkill.

3. The Makefile should (eventually) provide a DLL (.so) file option.  In large systems, and
with many processes going, it is market standard to offer a .so variant, not just a static
library.  For now, this should be low priority until an important customer complains.

4. Documentation on the requirements for the library should be retroactively created by
interviewing the developers further and creating practical enumeration of functional and
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non-functional expectations for the library.  This will aid with further development and as 
developers change over time. 

5. A library namespace should be used for the cppEDM source C++ code (i.e., EDM::).
6. The published APIs (​doc/cppEDM.pdf​) should be declared stable with a defined

commitment (or lack thereof) to retaining backward compatibility defined (that’s a policy
decision). Examples policies for API stability follow: permanently, per release, subject to
a period of deprecation then deletion or change, or no promises.  Rules for breaking
backward compatibility by the developers should be written down in the documentation
processes for code reviews and acceptance of pull requests.

7. Known tested compilers/OSes should be documented.  For instance, the use of
GCC/G++ 9.1 and 8.3 (on x86-64) posed no issues for the project to build.

8. Dependencies on third-party libraries other deserve baseline documentation.  For
instance, the use of LAPACK-type libraries is mentioned specifically but there is more
than one API-compliant form of LAPACK besides the NETLIB version that can be
superior (e.g., BLIS from UT Austin).  If there should be known dependencies on
minimum version numbers, these should be captured.  The author believes this is
unlikely at present but might become more important in the future.

9. Interactions with multicore modes of operation and concurrency both at the cppEDM
level and at the LAPACK/BLAS levels is unclear and deserves additional study,
clarification, and potentially additional, user-level tuning mechanisms.

10. Some type of information should be provided on how third parties can submit pull
requests on forks or clones of the library for consideration including a) a developer
agreement, b) a process for accepting/reviewing/rejecting such third-party contributions.

11. This code has only been run on x86-64 systems; there is no reason to believe it would
not work on Power9, 64-bit ARM, and even 32-bit platforms with some careful
considerations (although that might not seem useful to the authors, given their use
cases).  64-bit processors appear to be no problem whatsoever.  Testing on the IBM
Linux for Power9 would be an easy but valuable exercise but is evidently not urgent.

12. The code structure is fine and there are no observed problems.  For the size of the code,
development team, and development cadence, this structure works fine and is
commonly found elsewhere in mathematical software.

Conclusion 
cppEDM is high-quality scientific software that can benefit from small and incremental additional 
investments in DevOPS practices and documentation.  Overall it is sound and has the potential 
to continue to be developed and enhanced for the foreseeable future.   No major concerns were 
noted but lots of opportunities to enhance what is already strong and quality were noted. 
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References 

1. Useful Git model: ​https://nvie.com/posts/a-successful-git-branching-model/
This model is used widely in industry; for instance, it is widely accepted in Silicon Valley
companies as a useful guide for developers.  It has been a standard practice for about
10 years.

Appendices 

A. Recommended Git macros (put in ~user/.gitconfig):
[alias]

graph = !"git lg"

lg = !"git lg1"

lg1 = !"git lg1-specific"

lg2 = !"git lg2-specific --all"

lg3 = !"git lg3-specific --all"

lg1-specific = log --graph --abbrev-commit --decorate

--format=format:'%C(bold blue)%h%C(reset) - %C(bold green)(%ar)%C(reset)

%C(white)%s%C(reset) %C(dim white)- %an%C(r

eset)%C(bold yellow)%d%C(reset)'

lg2-specific = log --graph --abbrev-commit --decorate

--format=format:'%C(bold blue)%h%C(reset) - %C(bold cyan)%aD%C(reset) %C(bold

green)(%ar)%C(reset)%C(bold yellow)%d%

C(reset)%n''          %C(white)%s%C(reset) %C(dim white)- %an%C(reset)'

lg3-specific = log --graph --abbrev-commit --decorate

--format=format:'%C(bold blue)%h%C(reset) - %C(bold cyan)%aD%C(reset) %C(bold

green)(%ar)%C(reset) %C(bold cyan)(com

mitted: %cD)%C(reset) %C(bold yellow)%d%C(reset)%n''

%C(white)%s%C(reset)%n''          %C(dim white)- %an <%ae> %C(reset) %C(dim

white)(committer: %cn <%ce>)%C(reset

)’

In particular, this enables that command “git graph” 
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B. Recommended makefile changes
A pull request for this modified makefile will be provided.  Here it is for reference: 

.PHONY: all clean distclean depend

CC  = g++

HEADERS = AuxFunc.h  Common.h  DataFrame.h  DateTime.h  Embed.h  Neighbors.h

Parameter.h  Version.h

SRCS    = Common.cc AuxFunc.cc DateTimeUtil.cc Parameter.cc Embed.cc

Interface.cc\

Neighbors.cc Simplex.cc Eval.cc CCM.cc Multiview.cc SMap.cc

OBJ = $(SRCS:%.cc=%.o)

LIB = libEDM.a

CFLAGS += -std=c++11 -DCCM_THREADED -DMULTIVIEW_VALUES_OVERLOAD -O3 -Wreorder #

-g -DDEBUG -DDEBUG_ALL

# optional for heavier testing:

CFLAGS += -Wpedantic -Wall -Wextra

#

LFLAGS = -L./ -lstdc++ -lEDM -lpthread # -llapacke -llapack -lblas

all:    $(LIB)

cp $(LIB) ../lib/

clean:

rm -f $(OBJ) $(LIB)

distclean:

rm -f $(OBJ) $(LIB) ../lib/$(LIB) *~ *.bak *.csv

$(LIB): $(OBJ)

ar -rcs $(LIB) $(OBJ)

%.o : %.cc

$(CC) $(CFLAGS) -c $<

depend:

@echo ${SRCS}

makedepend -Y $(SRCS) -w160

# DO NOT DELETE

Common.o: Common.h DataFrame.h

AuxFunc.o: AuxFunc.h Common.h DataFrame.h Neighbors.h Parameter.h Version.h

Embed.h DateTime.h
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DateTimeUtil.o: DateTime.h

Parameter.o: Parameter.h Common.h DataFrame.h Version.h

Embed.o: Embed.h Common.h DataFrame.h Parameter.h Version.h

Interface.o: Common.h DataFrame.h

Neighbors.o: Neighbors.h Common.h DataFrame.h Parameter.h Version.h

Simplex.o: Common.h DataFrame.h Parameter.h Version.h Neighbors.h Embed.h

AuxFunc.h

Eval.o: Common.h DataFrame.h

CCM.o: Common.h DataFrame.h Embed.h Parameter.h Version.h AuxFunc.h Neighbors.h

Multiview.o: Common.h DataFrame.h AuxFunc.h Neighbors.h Parameter.h Version.h

Embed.h

SMap.o: Common.h DataFrame.h Parameter.h Version.h Embed.h Neighbors.h

AuxFunc.h
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pyEDM Version 1.15.3 November 31, 2023

pyEDM is a Python package interface to the cppEDM C++ library of empirical dynamic modeling 
(EDM) algorithms.  It returns Pandas DataFrame objects, or Python dictionaries of Pandas DataFrames.
pyEDM is hosted on the Python Package Index (PyPI) at pypi/pyEDM. A Jupyter notebook GUI is 
available at jpyEDM.
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Introduction
pyEDM is a Python interface to the C++ library cppEDM.  Input and output objects are based on 
Pandas DataFrame objects.  Core algorithms are listed in Table 1.  

Algorithm API Interface Reference
Simplex projection Simplex() Sugihara and May (1990)
Sequential Locally Weighted Global Linear 
Maps (S-map)

SMap() Sugihara (1994)

Predictions from multivariate embeddings Simplex(), SMap() Dixon et. al. (1999)
Convergent cross mapping CCM() Sugihara et. al. (2012)
Multiview embedding Multiview() Ye and Sugihara (2016)

Convenience functions to prepare and evaluate data are listed in Table 2.

Function Purpose Parameter Range
Embed() Timeseries delay dimensional embedding User defined
MakeBlock() Timeseries delay dimensional embedding User defined
EmbedDimension() Evaluate prediction skill vs. embedding 

dimension
E = [1, 10]

PredictInterval() Evaluate prediction skill vs. forecast interval Tp = [1, 10]
PredictNonlinear() Evaluate prediction skill vs. SMap nonlinear 

localisation
θ = 0.01, 0.1, 0.3, 0.5, 
0.75, 1, 1.5, 2, 3, 4, 5, 
6, 7, 8, 9

ComputeError() Pearson ρ, RMSE, MAE 
Examples() Example function calls and plots
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Installation
There are two methods to install pyEDM:
1)  Python Package Index and pip, which is only supported for certain OSX and Windows platforms
2)  Download, build and install package. 

Python Package Index (PyPI)
Certain Mac OSX and Windows platforms are supported with prebuilt binary distributions and can  be 
installed using the Python pip module.  The module is located at pypi.org/project/pyEDM/.  

Installation can be executed as: 
python -m pip install pyEDM --trusted-host pypi.org --trusted-host 
files.pythonhosted.org pyEDM

Manual Compilation
Unfortunately, we do not have the resources to provide pre-built binary distributions for all computer 
platforms.  In this case the user is required to first build the cppEDM library on their machine, and then
install the Python package using pip.  On OSX and Linux this requires gcc and the LAPACK library. 
On Windows, mingw from MSYS2 can be used.

OSX and Linux
1) Download pyEDM: git clone https://github.com/SugiharaLab/pyEDM

2) Build cppEDM library: 
cd pyEDM/cppEDM/src
make

3) Build and install package:  
cd ../..
python -m pip install . --user --trusted-host pypi.org

Windows
    We do not have resources to maintain windows build support. These suggestions may be useful.

    Requires mingw installation. MSYS2 provides a mingw package.
    1) Download pyEDM: git clone https://github.com/SugiharaLab/pyEDM
    2) Build cppEDM library: cd pyEDM\cppEDM\src; make
    3) Build and install package in pyEDM\ : python -m pip install . --user

3
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Usage

>>> import pyEDM
>>> pyEDM.Examples()

See the Examples section below. 

All data input files are assumed to be in .csv format or Pandas DataFrame.

The files are required to have a single line header with column names.

It is expected the first column is a vector of times or time indices. This can be disabled with 
the noTime = True parameter. 

4
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Parameters
API parameter names and purpose are listed in Table 3.

Parameter Type Default Purpose
pathIn string "./" Input data file path
dataFile string "" Data file name
dataFrame Pandas DataFrame None Input DataFrame
pathOut string "./" Output file path
predictFile string "" Prediction output file
smapCoefFile string "" SMap coefficient output file
smapSVFile string "" SMap singular values output file
lib string "" library start : stop row indices
pred string "" prediction start : stop row indices
D int 0 Multiview state-space dimension
E int 0 Embedding dimension
Tp int 0 or 1 Prediction interval
knn int 0 Number nearest neighbors
tau int -1 Embedding delay
theta float 0 SMap localisation
exclusionRadius int 0 Prediction vector exclusion radius
columns string "" or [] Column names or indices for library
target string "" Target library column name or index
embedded bool False Is data an embedding?
const_pred bool False Include non projected forecast data
ignoreNan bool True SMap detect and remove nan from lib
verbose bool False Echo messages
validLib [ bool ] [] Conditional Embedding (CE)
noTime bool False Do not require first column to be time
generateSteps int 0 Simplex, SMap feedback prediction
generateLibrary bool False Increment EDM library with feedback
parameterList bool False Return Parameters map
smapFile string "" SMap coefficient output file
solver sklearn.linear_model None SMap solver
multiview int 0 Number of ensembles, 0 = sqrt(N)
trainLib bool True Multiview use lib as training library
excludeTarget bool True Multiview exclude target from combos
libSizes string or [ int ] "" CCM library sizes
sample int 0 CCM number of random samples
random bool True CCM use random samples?
replacement bool False CCM sample with replacement?
includeData bool False CCM include all projections in return
seed unsigned 0 CCM RNG seed, 0 = random seed
method string "ebisusaki"SurrogateData method
alpha float range / 5 SurrogateData seasonal noise std dev
smooth float 0.8 SurrogateData seasonal spline smooth
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Application Programming Interface (API)

Embed

Create a data block of Takens (1981) time-delay embedding from each of the columns in the csv file or 
dataFrame.  The columns parameter can be a list of column names, or a list of column indices.  If 
columns is a list of indices, then column names are created as V1, V2... 

Note:  The returned DataFrame will have tau*(E-1) fewer rows than the input data from the removal 
of partial vectors as a result of the embedding. 

Note: The returned DataFrame will not have the time column. 

//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame Embed ( path      = "./",

 dataFile  = "",
 dataFrame = None,
 E  = 0,
 tau  = -1,
 columns  = "",
 verbose  = False )

//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame MakeBlock ( dataFrame,

 E  = 0,
 tau  = -1,
 columnNames   = "",
 deletePartial = False )

6
C.23



Simplex

Simplex projection of the input data file or DataFrame.  If parameterList = False, (default) the 
returned object is a DataFrame with 3 columns : "Time", "Observations", "Predictions".  nan values are
inserted where there is no observation or prediction.  If parameterList = True, a dictionary with 
keys:  predictions, parameters is returned with the respective dictionary values the predictions 
DataFrame and parameter dictionary. 

See the Parameters table for parameter definitions. 

Parameters

lib and pred specify [start stop] row indices of the input data for the library and predictions.

If embedded is False the data columns are embedded to dimension E with delay tau.  If embedded is 
True the data columns are assumed to be a multivariable data block. 

If knn is not specified, and embedded is False, it is set equal to E+1.  If embedded is True, knn is set 
equal to the number of columns + 1. 

exclusionRadius defines the number of library rows excluded from the state-space library with 
respect to a temporal "radius" from the prediction state.  If exclusionRadius = 1, library state-space
points from observation time series that are within ±1 sequential observation row of the prediction state
are not included in the library.  Note that units of the radius are time series rows, not time values. 

validLib implements conditional embedding (CE).  It is a boolean vector the same length as the 
number of time series rows.  A  False entry means that the state-space vector derived from the 
corresponding time series row will not be included in the state-space library. 

If columns is a string and column names have whitespace, delimit the columns with “,”  or, place the 
column names in a list. 

If parameterList = True, then parameters is populated and returned in a dictionary.

If generateSteps > 0, then Simplex operates in feedback generative mode. The values of pred are 
over-riden to start at the end of the data.  At each step one prediction is made, added to the columns 
data, a new time-delay embedded is created, and the cycle repeated for generateSteps.  Feedback 
generation only operates on a univariate time series that is time-delay embedded.  The  columns and 
target variables must be the same. If generateLibrary is false the state-space library is not 
expanded as predictions are generated, it is static.  If generateLibrary is true the state-space library 
has the generated prediction added to the library at each step. 

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 
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//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame Simplex( pathIn          = "./",
                   dataFile        = "",
                   dataFrame       = None,
                   pathOut         = "./",
                   predictFile     = "",
                   lib             = "",
                   pred            = "",
                   E               = 0,
                   Tp              = 1,
                   knn             = 0,
                   tau             = -1,
                   exclusionRadius = 0,
                   columns         = "",
                   target          = "",
                   embedded        = False,
                   verbose         = False
                   const_pred      = False,
                   showPlot        = False,
                   validLib        = [],
                   generateSteps   = 0,
                   generateLibrary = False,
                   parameterList   = False,
                   noTime          = False )
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SMap

SMap projection of the input data file or DataFrame.  See the Parameters table for parameter 
definitions. 

SMap() returns a dict with three DataFrames:

dict { predictions    : DataFrame, 
 coefficients   : DataFrame,
 singularValues : DataFrame

}

The predictions DataFrame has 3 columns  "Time", "Observations", "Predictions".  nan values are 
inserted where there is no observation or prediction.  If predictFile is provided the predictions will
be written to it in csv format. 

The coefficients DataFrame will have E+2 columns.  The first column is the "Time" vector, the 
remaining E+1 columns are the SMap SVD fit coefficients.  The first column "C0" is the bias term, 
following coefficients are ∂ target / ∂ columns[i] . 

The singularValues DataFrame holds SVD singular values if the default LAPACK solver, or 
scikit.learn LinearRegression solver is used.   The scikit.learn LinearRegression does not return a 
sigular value for the intercept (bias) term.

If parameterList = True, a dictionary with parameters is added to the returned object. 

Parameters

lib and pred specify [start, stop] row indices of the input data for the library and predictions.

If embedded is False the data columns are embedded to dimension E with delay tau.  If embedded is 
True the data columns are assumed to be a multivariable data block.  If smapFile is provided the 
coefficients will be written to it in csv format. 

If columns is a string and column names have whitespace, delimit the columns with “,”  or, place the 
column names in a list. 

If parameterList = True, a dictionary with parameters is added to the returned object.

If a multivariate data set is used (number of columns > 1) it must use embedded = true with E 
equal to the number of columns. This prevents the function from internally time-delay embedding the 
multiple columns to dimension E. If the internal time-delay embedding is performed, then state-space 
columns will not correspond to the intended dimensions in the matrix inversion, coefficient assignment,
and prediction. In the multivariate case, the user should first prepare the embedding (using Embed() for
time-delay embedding if desired), then pass this embedding to SMap with appropriately specified 
columns, E, and embedded = true.
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If knn is not specified, it is set equal to the library size.  If knn is specified, it must be greater than E+1.

exclusionRadius defines the number of library rows excluded from the state-space library with 
respect to a temporal "radius" from the prediction state.  If exclusionRadius = 1, library state-space
points from observation time series that are within ±1 sequential observation row of the prediction state
are not included in the library.  Note that units of the radius are time series rows, not time values. 

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 

ignoreNan automatically redefines the library to avoid nan observations and associated state vectors. If
ignoreNan is false the library is not changed. The user can manually specify library row segements 
to ignore nan values. 

validLib implements conditional embedding (CE).  It is a boolean vector the same length as the 
number of time series rows.  A  false entry means that the state-space vector derived from the 
corresponding time series row will not be included in the state-space library. 

If generateSteps > 0, then SMap operates in feedback generative mode. The values of pred are over-
riden to start at the end of the data.  At each step one prediction is made, added to the columns data, a 
new time-delay embedded is created, and the cycle repeated for generateSteps.  Feedback 
generation only operates on a univariate time series that is time-delay embedded.  The  columns and 
target variables must be the same. If generateLibrary is false the state-space library is not 
expanded as predictions are generated, it is static.  If generateLibrary is true the state-space library 
has the generated prediction added to the library at each step. 

The default solver for the SMap coefficient matrix is the LAPACK SVD function dgelss().  If the 
default solver is used, SMap singular values are returned. This can be  replaced with a user-
instantianted class object from the python sklearn.linear_model: Linear Models.  Supported 
solvers include: LinearRegression, Ridge, Lasso, ElasticNet, RidgeCV, LassoCV, 
ElasticNetCV. See the pyEDM/tests/smapSolverTest.py script for examples. 
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//----------------------------------------------------------------
// 
//----------------------------------------------------------------
dict SMap( pathIn  = "./",

 dataFile  = "",
 dataFrame  = None,
 pathOut  = "./",
 predictFile  = "",
 lib  = "",
 pred  = "",
 E  = 0,
 Tp  = 1,
 knn  = 0,
 tau  = -1,
 theta  = 0,
 exclusionRadius = 0,
 columns  = "",
 target    = "",
 smapCoefFile  = "",
 smapSVFile    = "",
 solver    = None,
 embedded    = False,
 verbose    = False,
 const_pred    = False,
 showPlot    = False,
 validLib    = [],
 ignoreNan    = True,
 generateSteps  = 0,
 generateLibrary = False,
 parameterList  = False,
 noTime    = False )

11
C.28



CCM
Convergent cross mapping of columns against target via Simplex. Normally, one column and one 
target are specified.  The column time series is time-delay embedded to dimension E, cross mapped 
with the target time series.  The target time series is then embedded to E and cross mapped against the
column as the "target" time series, not an embedding.

If there are multiple columns and embedded is false, each column is time-delay embedded to 
dimension E creating an N-columns * E dimensional "mixed" embedding.  If embedded is true, no time-
delay embedding is done, creating a multivariate embedding of the speficied columns.  The same logic 
applies if multiple target are specified for the "reverse" mapping. If embedded is false, each target is 
time-delay embedded to dimension E creating an N-target * E dimensional "mixed" embedding cross 
mapped to the first column as the cross map target.  If embedded is true, no time-delay embedding is 
done, creating a multivariate embedding of the speficied target(s).

Cross mappings are performed between column : target, and, target : column in separate 
threads.  If multiprocessing is applied, halve the number of proccessors. 

See the Parameters table for parameter definitions. 

If includeData is False, the returned DataFrame has 3 columns.  The first column is "LibSize", the 
second and third columns are Pearson correlation coefficients for "column : target" and "target : 
column" cross mapping. If includeData is True, a dict is returned with the LibMeans DataFrame , 
and a DataFrames of prediction statistics for all predictions in the ensembles.   If includeData is 
True, and parameterList = True, then parameters dictionary is added to the return object.

Parameters

The libSizes parameter is a string of whitespace or comma separated library sizes.  If the string has 3
values, and, if the third value is less than the second value, then the three values are interpreted as a 
sequence generator specifying "start stop increment" row values, i.e. "10 80 10" will evaluate library 
sizes from 10 to 80 in increments of 10.

If random is true, sample observations are radomly selected from the subset of each library size.  If 
seed=0, then a random seed is generated for the random number generator.  Otherwise, seed is used to 
initialise the random number generator.   

If random is false, sample is ignored and contiguous library rows up to the current library size are used.

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 

Note: Cross mappings are performed between column : target, and target : column.  The default 
is to do this in separate threads.  Threading can be disabled in the makefile by removing  -
DCCM_THREADED.

Note: The entire prediction vector is used in the Simplex prediction at each library subset size. 
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//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame or dict CCM( pathIn  = "./",

 dataFile  = "",
 dataFrame  = None,
 pathOut  = "./",
 predictFile  = "",
 E  = 0,
 Tp  = 0,
 knn  = 0,
 tau  = -1,
 exclusionRadius = 0,
 columns  = "",
 target  = "",
 libSizes  = "",
 sample  = 0,
 random  = True,
 replacement  = False,
 seed            = 0,     // seed=0: use RNG
 embedded    = False,
 includeData  = False,
 parameterList  = False,
 verbose    = False,
 showPlot    = False,
 noTime    = False );
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Multiview
Multiview embedding and forecasting of the input data file or DataFrame.  See the Parameters table for
parameter definitions. 

Multiview() returns a dict:

dict { View        : DataFrame,
   Predictions : DataFrame,
 [ parameters  : dict ]

}

The Predictions DataFrame has 3 columns  "Time", "Observations", "Predictions".  nan values are 
inserted where there is no observation or prediction.  If predictFile is provided the Predictions will
be written to it in csv format. 

The View DataFrame will have 2*D+3 columns.  The first D columns are the the column indices in the 
input data DataFrame that are embedded and applied to Simplex prediction.  The following three 
columns are "rho", "MAE",  "RMSE" corresponding to the prediction Pearson correlation, maximum 
absolute error and root mean square error. The final D columns are the column names of the input 
embedding. 

Parameters

D represents the number of variables to combine for each assessment, if not specified, it is the number 
of columns.

E is the embedding dimension of each variable.  If E = 1, no time delay embedding is done.

multiview is the number of top-ranked D-dimensional predictions to "average" for the final prediction.
Corresponds to parameter k in Ye & Sugihara with default k = sqrt(C) where C is the number of 
combinations C(n,D) available from the embedding columns taken D at-a-time. 

trainLib specifies whether projections used to rank the column combinations are done in-sample 
(pred = lib, the default), or, using the lib and pred specified as input options (trainLib false).

lib and pred specify [start, stop] row indices of the input data for the library and predictions.

If knn is not specified, it is set equal to D+1.

If columns is a string and column names have whitespace, delimit the columns with “,”  or, place the 
column names in a list. 

If parameterList = True, a dictionary with parameters is added to the returned object.

numThreads defines the number of worker threads.

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 
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//----------------------------------------------------------------
// 
//----------------------------------------------------------------
dict Multiview( pathIn          = "./",
                dataFile        = "",
                dataFrame       = None,
                pathOut         = "./",
                predictFile     = "",
                lib             = "",
                pred            = "",
                D               = 0,
                E               = 1,
                Tp              = 1,
                knn             = 0,
                tau             = -1,
                columns         = "",
                target          = "",
                multiview       = 0,
                exclusionRadius = 0,
                trainLib        = True,
                excludeTarget   = False,
                parameterList   = False,
                verbose         = False,
                numThreads      = 4,
                showPlot        = False,
                noTime          = True )
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EmbedDimension

Evaluate Simplex prediction skill for embedding dimensions from 1 to 10.  The returned DataFrame 
has columns "E" and "rho".  See the Parameters table for parameter definitions. 

Note: numThreads defines the number of worker threads for the 10 embeddings.  The maximum 
number of threads is 10. 

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 

If columns is a string and column names have whitespace, delimit the columns with “,”  or, place the 
column names in a list. 

//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame EmbedDimension( pathIn  = "./",

 dataFile  = "",
 dataFrame  = None,
 pathOut  = "./",
 predictFile  = "",
 lib  = "",
 pred  = "",
 maxE  = 10,
 Tp  = 1,
 tau  = -1,
 exclusionRadius = 0,
 columns  = "",
 target    = "",
 embedded    = False,
 verbose    = False,
 validLib    = [],
 numThreads  = 4,
 showPlot    = True,
 noTime    = False )
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PredictInterval

Evaluate Simplex prediction skill for forecast intervals from 1 to 10.  The returned DataFrame has 
columns "Tp" and "rho".  See the Parameters table for parameter definitions. 

Note: numThreads defines the number of worker threads for the 10 prediction interval forecasts.  The 
maximum number of threads is 10. 

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 

If columns is a string and column names have whitespace, delimit the columns with “,”  or, place the 
column names in a list. 

//----------------------------------------------------------------
// Overload 1: Explicit data file path/name
//----------------------------------------------------------------
DataFrame PredictInterval( pathIn  = "./",

 dataFile  = "",
 dataFrame  = None,
 pathOut  = "./",
 predictFile  = "",
 lib  = "",
 pred  = "",
 maxTp  = 10,
 E  = 0,
 tau  = -1,
 exclusionRadius = 0,
 columns    = "",
 target    = "",
 embedded    = False,
 verbose    = False,
 validLib    = [],
 numThreads  = 4,
 showPlot    = True,
 noTime    = False );
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PredictNonlinear

Evaluate SMap prediction skill for localisation parameter θ (default from 0.01 to 9).  The returned 
DataFrame has columns "theta" and "rho".  See the Parameters table for parameter definitions. 

If knn is not specified, it is set equal to the library size.  If knn is specified, it must be greater than E.

Note: numThreads defines the number of worker threads for the θ value forecasts. 

If noTime = False, the first column of the input DataFrame or .csv file must be an index or time 
column. If noTime = True an index or time column is not required. 

If columns is a string and column names have whitespace, delimit the columns with “,”  or, place the 
column names in a list. 

//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame PredictNonlinear( pathIn          = "./",
                            dataFile        = "",
                            dataFrame       = None,
                            pathOut         = "./",
                            predictFile     = "",
                            lib             = "",
                            pred            = "",
                            theta           = "",
                            E               = 0,
                            knn             = 0,
                            Tp              = 1,
                            tau             = -1,
                            exclusionRadius = 0,
                            columns         = "",
                            target          = "",
                            embedded        = False,
                            verbose         = False,
                            validLib        = [],
                            ignoreNan       = true,
                            numThreads      = 4,
                            showPlot        = True,
                            noTime          = False );
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ComputeError

Compute Pearson correlation coefficient, maximum absolute error (MAE) and root mean square error 
(RMSE) between two vectors. 

ComputeError() returns a dict:

dict { rho  :  double,
 RMSE :  double,
 MAE  :  double

}

//----------------------------------------------------------------
//----------------------------------------------------------------
dict ComputeError( obsIn, predIn )
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SurrogateData

Generate surrogate data using one of three methods.  

1) random_shuffle :
Sample the data with a uniform distribution.

2) ebisuzaki :
Journal of Climate. A Method to Estimate the Statistical Significance of a Correlation When the 
Data Are Serially Correlated.
https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2

Presumes data are serially correlated with low pass coherence. It is: "resampling in the 
frequency domain. This procedure will not preserve the distribution of values but rather the 
power spectrum (periodogram). The advantage of preserving the power spectrum is that 
resampled series retains the same autocorrelation as the original series."

3) seasonal :
Presume a smoothing spline represents the seasonal trend.  The smooth parameter can range 
from 0 to 1.  See scipy.interpolate.UnivariateSpline parameter s. 

Each surrogate is a summation of the trend, resampled residuals, and possibly additive Gaussian
noise. Default noise has a standard deviation (alpha) that is the data range / 5.

Note:  It is presumed the first column of the dataFrame is a time vector.  It is set as the first column of 
the returned DataFrame. 

//----------------------------------------------------------------
// 
//----------------------------------------------------------------
DataFrame SurrogateData( dataFrame  = None,

 column  = None,
 method  = 'ebisuzaki',
 numSurrogates = 10,
 alpha  = None,
 smooth    = 0.8,
 outputFile  = None )
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Application Notes

All data input files are assumed to be in .csv format, or Pandas DataFrame.

The files are required to have a single line header with column names.
It is expected the first column be a vector of times or time indices. This can be disabled by 
setting the parameter noTime = True.

SMap() should be called with DataFrame that have columns explicity corresponding to dimensions E.
This means that if a multivariate data set is used, it should Not be called with an embedding from 
Embed() since Embed() will add lagged coordinates for each variable.  These extra columns will then
not correspond to the intended dimensions in the matrix inversion and prediction reconstruction. In this 
case, use the embedded parameter set to true so that the columns selected correspond to the proper 
dimension.
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Examples 

        from pyEDM import *

 df = EmbedDimension( dataFrame = sampleData["TentMap"],
 lib = "1 100", pred = "201 500",
 columns = "TentMap", showPlot = True )

 df = PredictInterval( dataFrame = sampleData["TentMap"],
 lib = "1 100", pred = "201 500",  E = 2,
 columns = "TentMap", showPlot = True )

 df = PredictNonlinear( dataFrame = sampleData["TentMapNoise"],
 lib = "1 100", pred = "201 500", E = 2,
 columns = "TentMap", showPlot = True )

 df = Simplex( dataFrame = sampleData["block_3sp"],
 lib = "1 99", pred = "100 198", E = 3,
 columns = "x_t y_t z_t", target = "x_t", 
 embedded = True, showPlot = True )

 df = Simplex( dataFrame = sampleData["block_3sp"], 
 lib = "1 99", pred = "100 195", E = 3,
 columns = "x_t", target = "x_t", showPlot = True )

 M = Multiview( dataFrame = sampleData["block_3sp"],
 lib = "1 100", pred = "101 198", E = 3,
 columns = "x_t y_t z_t", target = "x_t", showPlot = True )

 S = SMap( dataFrame = sampleData["circle"],
 lib = "1 100", pred = "101 198", E = 2, theta = 4,
 columns = "x y", target = "x", embedded = True, showPlot = True )

 df = CCM( dataFrame = sampleData["sardine_anchovy_sst"],
 E = 3, Tp = 0, columns = "anchovy", target = "np_sst",
 libSizes = "5 75 5", sample = 100, showPlot = True )
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Abstract
Empirical dynamic modeling (EDM) is an emerging non-parametric framework for modeling nonlinear dy-
namic systems. EDM is based on the mathematical theory of reconstructing attractor manifolds from time
series data (Takens 1981). The rEDM package collects several EDM methods, including simplex projection
(Sugihara and May 1990), S-map (Sugihara 1994), multivariate embeddings (Dixon, Milicich, and Sugihara
1999), convergent cross mapping (Sugihara et al. 2012), and multiview embedding (Ye and Sugihara 2016).
Here, we introduce the basic underlying theory, and describe the functionality of rEDM using examples
from both model simulations and real data.

Installation
The rEDM package can be obtained in two main ways. The standard version of the package can be obtained
through CRAN (the Comprehensive R Archive Network): https://cran.r-project.org/package=rEDM:
install.packages("rEDM")

Also available on GitHub at SugiharaLab, and can be installed using R devtools.
devtools::install_github("SugiharaLab/rEDM")

Introduction
Many scientific fields use models as approximations of reality and for various purposes, for example, testing
hypotheses regarding mechanisms or processes, explaining past observations, and predicting future outcomes.
In many cases these models are based on hypothesized parametric equations; however, explicit equations
can be impractical when the underlying mechanisms are unknown or are too complex to be characterized
with existing datasets. Empirical models, which infer patterns and associations from the data (instead of
using hypothesized equations), represent an alternative and highly flexible approach. Here, we review the
theoretical background for empirical dynamic modeling (EDM) and the functionality of the rEDM package,
which are intended for nonlinear dynamic systems that can prove problematic for traditional modeling
approaches.

The basic goal underlying EDM is to reconstruct the behavior of dynamic systems using time series data.
This approach is based on mathematical theory developed initially by (Takens 1981), and expanded by
others (Sauer, Yorke, and Casdagli 1991; Casdagli et al. 1991; Deyle and Sugihara 2011). Because these
methods operate with minimal assumptions, they are particularly suitable for studying systems that exhibit
non-equilibrium dynamics and nonlinear state-dependent behavior (i.e. where interactions change over time
and as a function of the system state).
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Empirical Dynamic Modeling
Time Series as Observations of a Dynamic System
The essential concept is that time series can be viewed as projections of the behavior of a dynamic system.
First, the system state can be described as a point in a high-dimensional space. The axes of this space
can be thought of as fundamental state variables; in an ecosystem, these variables might correspond to
population abundances, resources, or environmental conditions. Second, the system state changes through
time following a set of deterministic rules. In other words, the behavior of the system is not completely
stochastic.

Consequently, it is possible to project the system state onto one of the coordinate axes and obtain the value
of the corresponding state variable. Sequential projections over time will thus produce a time series for that
variable. For example, in figure 1 the states of the canonical Lorenz Attractor (Lorenz 1963) are projected
onto the 𝑥-axis, creating a time series of variable 𝑥.

Figure 1: Time Series Projection from the Lorenz Attractor.

Although different time series observed from a system can represent independent state variables, in general,
each time series is an observation function of the system state that may convolve several different state
variables.

Attractor Reconstruction / Takens’ Theorem
The goal of EDM is to reconstruct the system dynamics from time series data. As seen above, a time series
can be thought of as sequential projections of the motion on an attractor; in other words, information about
the behavior is encoded in the temporal ordering of the time series. Takens’ Theorem (Takens 1981) states
that mathematically valid and property preserving reconstructions of the attractor can be created using lags
of a single time series, then substituting those lagged time series for unknown or unobserved variables. In
other words, instead of representing the system state using a complete set of state variables, we can instead
use an E-dimensional lagged-coordinate embedding:

⃗𝑥𝑡 = ⟨𝑥𝑡, 𝑥𝑡−𝜏 , … , 𝑥𝑡−(𝐸−1)𝜏⟩

If sufficient lags are used, the reconstruction preserves essential mathematical properties of the original
system: reconstructed states will map one-to-one to actual system states, and nearby points in the recon-
struction will correspond to similar system states. Figure 2 shows a reconstruction of the Lorenz attractor
where the reconstructed system state is comprised of 3 lags of variable 𝑥. Here, the visual similarity between
the reconstruction and the original Lorenz Attractor is quite clear.

As a consequence of the fact that dynamical properties of the original system can be recovered from a
single time series, there are multiple applications. For example, empirical models can be used for forecasting
(Sugihara and May 1990), to understand nonlinear behavior (Sugihara 1994), or to uncover mechanism
(Dixon, Milicich, and Sugihara 1999). Moreover, recent work describes how EDM can be used to identify
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Figure 2: Attractor Reconstruction from 3 Lagged Coordinates

causal interactions, by testing whether two time series are observed from the same system (Sugihara et al.
2012). In the next section, we demonstrate how rEDM can be used to accomplish these various tasks.

Demonstration of EDM
Nearest Neighbor Forecasting using Simplex Projection
As mentioned previously, the reconstruction will map one-to-one to the original attractor manifold if enough
lags are used (i.e. if the reconstruction has a sufficiently large embedding dimension). If the embedding
dimension is too small, then reconstructed states can overlap and appear to be the same even though they
actually correspond to different states. These “singularities” will result in poor forecast performance because
the system behavior cannot be uniquely determined in the reconstruction. As a consequence, we can use
prediction skill as an indicator for identifying the optimal embedding dimension. In the following example
we demonstrate the Simplex() projection nearest neighbor forecasting method (Sugihara and May 1990),
and its’ extension EmbedDimension() that automates evaluation of an optimal embedding dimension.

Example

In this example, time series come from a simulation of the tent map that exhibits chaotic behavior. The tent
map is a discrete-time dynamic system, where a sequence, 𝑥𝑡, on the interval [0, 1] is iterated according to:

𝑥𝑡+1 = {2𝑥𝑡 𝑥𝑡 < 1
2

2(1 − 𝑥𝑡) 𝑥𝑡 ≥ 1
2

In rEDM, a sample time series of first-differenced values can be found in dataset TentMap.

We begin by loading the rEDM package and examining the TentMap data:
library(rEDM)
str(TentMap)

## 'data.frame': 999 obs. of 2 variables:
## $ Time : int 1 2 3 4 5 6 7 8 9 10 ...
## $ TentMap: num -0.0992 -0.6013 0.7998 -0.7944 0.798 ...

We can see that the data consists of a data.frame with two columns: Time and TentMap. All rEDM input
data files or data.frames are assumed to have a time vector in the first column. Data files are expected to be
in .csv format with the first line a header of column names, data.frames are also expected to have column
names.

The Simplex function has 5 required parameters:

1. columns TentMap name of column(s) of embedding library
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2. target TentMap name of column for prediction
3. lib "1 100" start stop indices of embedding library
4. pred "201 500" start stop indices of predictions
5. E 3 embedding dimension

columns specifies the timeseries vector(s) that form the library, target is the column on which predictions
will be made. lib defines row indices of the “training” portion of data, pred corresponds to row indices of
the “test” portion, and E defines the embedding dimension.

Note that if any overlap in the lib and pred is found, it will enable leave-one-out cross-validation. If verbose
= TRUE, a warning message will be raised.

In this univariate case, we specify the “TentMap” column of the data frame for both columns and target,
and select the first 100 points (indices 1 to 100) in the time series to constitute the “library set”, and a
separate 300 point span (indices 201 to 500) as the “prediction set”.

Default parameters of knn (k-nearest neighbors) and Tp (time-to-prediction) are assumed. The default knn
= 0 sets the number of nearest neighbors to E + 1, and default Tp is 1 timestep (observation row). With
these parameters we demonstrate the Simplex() function:
simplex_out <- Simplex(dataFrame = TentMap, lib = "1 100", pred = "201 500", columns = "TentMap",

target = "TentMap", E = 3)
simplex_out[c(1:2, 300:301), ]

## Time Observations Predictions Pred_Variance
## 1 201 0.94 NaN NaN
## 2 202 0.11 0.077 0.00015
## 300 500 -1.09 -1.084 0.06366
## 301 501 0.91 0.873 0.00255

Note that the returned data.frame has 1 NaN as the first Predictions point since Tp = 1, and, the last
Observations will likewise be NaN with the time vector adjusted to accommodate Tp rows beyond the data
as needed.

Computation of Pearson correlation, MAE and RMSE errors between the forecast Observations and
Predictions can be performed with the ComputeError() function.
ComputeError(simplex_out$Observations, simplex_out$Predictions)

## $MAE
## [1] 0.14
##
## $rho
## [1] 0.94
##
## $RMSE
## [1] 0.23

Optimal embedding dimension
As noted earlier, identification of the optimal embedding dimension to best “unfold” the dynamics can be
assessed with simplex prediction skill. rEDM provides the EmbedDimension() function to automate this
task. EmbedDimension() parallelises function calls to Simplex(), which automatically sets values of E from
1 to maxE=10. Continuing with the previous example, we invoke EmbedDimension():
rho_E <- EmbedDimension(dataFrame = TentMap, lib = "1 100", pred = "201 500", columns = "TentMap",

target = "TentMap")

4
C.44



2 4 6 8 10

0.
6

0.
8

 
Tp= 1

Embedding Dimension

P
re

di
ct

io
n 

S
ki

ll 
(.

.)

Figure 3: TentMap data prediction skill vs. embedding dimension.

The output is a data.frame with columns E and rho detailing the embedding dimension and Pearson corre-
lation coefficient between the simplex projected forecast at Tp = 1 timesteps ahead, and the observed data
over the pred indices. Here, we observe that forecast skill peaks at E = 2, indicating that the dynamics of
our data are unfolded best in 2 dimensions. Note that this optimal value does not have to correspond to
the dimensionality of the original system. The forecast skill will be affected by factors such as observational
noise, process error, and time series length, and so it is more useful to think of the embedding dimension as
a practical measure that is dependent on properties of the data.

Prediction Decay
An important property of many natural systems is that nearby trajectories eventually diverge over time
(i.e. “deterministic chaos” – the “butterfly effect”). In essence, this means that while short-term prediction is
often possible, information about the predictive state of the system is diluted over time, hindering long-term
forecasting. We can demonstrate this effect by examining how prediction skill changes as we increase the Tp
argument, the “time to prediction”, defining the number of time steps into the future at which forecasts are
made. rEDM provides the PredictInterval() function to automate this task.

Example

Using the same data with the PredictInterval() function, we supply the embedding dimension parameter
with the value determined previously (E = 2):
rho_Tp <- PredictInterval(dataFrame = TentMap, lib = "1 100", pred = "201 500", target = "TentMap",

columns = "TentMap", E = 2)

As above, the returned object is a data.frame with forecast skill rho and time to prediction Tp. As expected
(because the parameters chosen for the tent map fall in the region for chaotic behavior), the decline in
forecast skill (rho → 0) as the forecast interval Tp increases, indicates that the system may be chaotic.
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Figure 4: Tent map first differences simplex prediction skill as a function of forecast interval.

Identifying Nonlinearity
One concern is that time series may show predictability even if they are purely stochastic, they behave
similarly to autocorrelated red noise. Fortunately, we can distinguish between red noise and nonlinear
deterministic behavior by using S-maps as described in (Sugihara 1994).

In contrast to the nearest-neighbor interpolation of simplex projection, the S-map forecasting method (Sugi-
hara 1994) fits local linear maps to describe the dynamics. In addition to the standard set of parameters for
a lagged-coordinate reconstruction as in simplex, S-maps contain a nonlinear localisation parameter, 𝜃, that
determines the degree to which points are weighted when fitting the local linear map. For example, when
𝜃 = 0, all points are equally weighted, such that the local linear map is identical for different points in the
reconstructed state-space. As such, the S-map will be identical to a global linear map (i.e. an autoregressive
model). When values of 𝜃 are greater than 0, nearby points in the state space receive larger weight, and the
local linear map can vary in state-space to accommodate nonlinear behavior.

Consequently, if the time series are sampled from autoregressive red noise, then the linear model (𝜃 = 0)
should produce better forecasts, because the global linear map (which will, in effect, be fitted to more data
points) will reduce the effects of observation error compared to local linear maps. In contrast, if forecast
skill increases for 𝜃 > 0, then the results are suggestive of nonlinear dynamics wherein better forecasts are
achieved when the local linear map can change depending on the location in state-space: it is a better
description of state-dependent behavior.

Example

The PredictNonlinear() function provides an evaluation of S-map forecast skill as a function of the locali-
sation parameter theta. If unspecified, theta values will range from 0.01 to 9.

Typically, when using S-map to test for nonlinear behavior, we want to use all available points in the
reconstruction of the local linear map, not just knn nearest neighbors as in simplex projection. With all
points available, S-map uses the theta parameter to control the weighting assigned to individual points,
thereby localising the dynamics to capture nonlinear behavior. When knn = 0, the default, SMap() will use
all available points.
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Here we use an embedding dimension of E = 2 and the same parameters as in the previous examples, however,
we specify the “TentMapNoise” data that adds Gaussian noise to the TentMap data as one would normally
encounter with noisy observational data.
rho_theta <- PredictNonlinear(dataFrame = TentMapNoise, lib = "1 100", pred = "201 500",

target = "TentMap", columns = "TentMap", E = 2)
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Figure 5: Tent map first differences S-map prediction skill as a function of S-map localisation parameter.

The result is a data.frame with columns Theta and rho. Here, we see that forecast skill substantially improves
as theta increases, indicating the presence of nonlinear dynamics. We also observe a degradation in forecast
skill at high values of theta as the local linear map overfits to insufficient nearest neighbors.

Simplex() and SMap() functions
The functions EmbedDimension(), PredictInterval() and PredictNonlinear() are multithreaded wrap-
per functions for the Simplex() and SMap() algorithms. EmbedDimension() and PredictInterval() par-
allelise calls to Simplex() to evaluate forecast skill as a function of embedding dimension and prediction
interval respectively. PredictNonlinear() parallelises calls to SMap() to assess predictive skill as a function
of the nearest neighbor localisation parameter. However, one can equivalently call the underlying Simplex()
and SMap() functions directly.

Simplex()

For example, evaluation of the simplex prediction at an optimal embedding dimension of E = 2 can be
performed as:
tentMapPredict <- Simplex(dataFrame = TentMap, lib = "1 100", pred = "201 500", target = "TentMap",

columns = "TentMap", E = 2)

ComputeError(tentMapPredict$Observations, tentMapPredict$Predictions)$rho

## [1] 0.96
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SMap()

An individual S-map evaluation corresponding to the optimal PredictNonlinear() result from above is:
smap = SMap(dataFrame = TentMapNoise, lib = "1 100", pred = "201 500", target = "TentMap",

columns = "TentMap", E = 2, theta = 3)

SMap() returns a named list with predictions and coefficients data.frames, with NaN inserted appropri-
ately where no predictions or observations are available.
head(cbind(smap$predictions, smap$coefficients), 2)

## Time Observations Predictions Pred_Variance Time C0 �TentMap/�TentMap(t-0)
## 1 201 0.99 NaN NaN 201 NaN NaN
## 2 202 0.16 -0.14 0.28 202 -1.1 -0.33
## �TentMap/�TentMap(t-1)
## 1 NaN
## 2 -1.1
tail(cbind(smap$predictions, smap$coefficients), 2)

## Time Observations Predictions Pred_Variance Time C0
## 300 500 -1.3 -0.63 0.36 500 -0.33
## 301 501 1.1 0.92 0.41 501 0.24
## �TentMap/�TentMap(t-0) �TentMap/�TentMap(t-1)
## 300 -0.78 -0.16
## 301 -0.52 -0.03

Generalized Takens Theorem
A practical reality is that sampled observations of complex dynamics are usually composed of finite, noisy
data. Additionally, the presence of stochastic, non-deterministic drivers means that “multivariate” recon-
structions can often be a better description than “univariate” reconstructions. This means that in addition
to creating an attractor from lags of one time series, it can be advantageous to combine different time series
to create the phase-space embedding, provided they are all observed from the same system (Sauer, Yorke,
and Casdagli 1991; Deyle and Sugihara 2011).

In rEDM, the Simplex() and SMap() functions allow multivariate reconstructions from any set of observa-
tion vectors. A multivariate reconstruction is defined by specifying which columns to use as coordinates in
the columns argument, and which column is to be forecast in the target argument. By default, rEDM will
create Takens time-delay embeddings from univariate or multivariate data, however, this can be prevented
by setting the embedded parameter TRUE. In this case, the input data are assumed to already constitute a
valid multidimensional embedding, and no time-delay embedding is performed.

Example

We begin by examining an example dataset from a coupled 3-species model system.
head(block_3sp, 3)

## time x_t x_t-1 x_t-2 y_t y_t-1 y_t-2 z_t z_t-1 z_t-2
## 1 3 -1.92 1.24 -0.74 -0.11 1.49 -1.27 1.5 -0.48 -1.86
## 2 4 -0.96 -1.92 1.24 -1.11 -0.11 1.49 -1.5 1.54 -0.48
## 3 5 1.33 -0.96 -1.92 2.39 -1.11 -0.11 -1.1 -1.49 1.54

Here, block_3sp is a 10-column data.frame with 9 data columns. This data has already been time-delay
embedded to dimension E = 3 with a time delay of tau = -1. We use simplex forecasting based on a
multivariate embedding of the three data vectors x_t x_t-1 z_t with embedded = TRUE and E = 3:
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smplx_3species = Simplex(dataFrame = block_3sp, lib = "1 100", pred = "101 190",
E = 3, columns = "x_t x_t-1 z_t", target = "x_t", embedded = TRUE)

A plot of the predictions vs. observations can be examined with:
err = ComputeError(smplx_3species$Observations, smplx_3species$Predictions)
plot(smplx_3species$Observations, smplx_3species$Predictions, pch = 19, cex = 0.5,

xlab = "Observations", ylab = "Predictions", main = "3 Species x_t")
abline(a = 0, b = 1, lty = 2, col = "blue")
text(-1, 1, paste(capture.output(cbind(err)), collapse = "\n"))
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Figure 6: Scatter plot of simplex forecast of 𝑥𝑡 vs. observations.

S-map Coefficients
As described in (Deyle et al. 2016), S-map coefficients from the appropriate multivariate embedding can be
interpreted as dynamic, time-varying interaction strengths. We demonstrate this with a chaotic timeseries
described in (Lorenz 1996), defined for N variables k=1, … N, as

𝑑𝑥𝑘
𝑑𝑡 = −𝑋𝑘−2𝑋𝑘−1 + 𝑋𝑘−1𝑋𝑘+1 − 𝑋𝑘 + 𝐹

The Lorenz5D data.frame contains a N=5 dimensional system with F=8 from (Lorenz 1996). Here, we use
SMap() to compute a 4-dimensional forecast at Tp=1:
smap_Lorenz <- SMap(dataFrame = Lorenz5D, lib = "1 500", pred = "601 900", E = 4,

theta = 3, columns = "V1 V2 V3 V4", target = "V1", embedded = TRUE)

As noted earlier, SMap() returns a named list with two data frames, predictions and coefficients:
head(cbind(smap_Lorenz$predictions, smap_Lorenz$coefficients[, 2:6]), 3)

## Time Observations Predictions Pred_Variance C0 �V1/�V1 �V1/�V2
## 1 40.00 3.485 NaN NaN NaN NaN NaN
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## 2 40.05 4.214 4.123 8.197 -0.4830 0.9914 0.1313
## 3 40.10 4.849 4.744 8.947 -0.5544 0.9890 0.1530
## �V1/�V3 �V1/�V4
## 1 NaN NaN
## 2 -0.011692 0.04222
## 3 -0.006055 0.02284

Here, we plot the time series for the observed (blue) and predicted (red) values of V1 in the top panel; and
the inferred interactions (S-map coefficients) for the influence of V4, V3 and V2 on future values of V1 in the
lower panels.
predictions = smap_Lorenz$predictions
coefficients = smap_Lorenz$coefficients
Time = predictions$Time

plot(Time, predictions$Observations, type = "l", col = "blue", ylab = "V1", xlab = "",
lwd = 2, cex.lab = 1.3, cex.axis = 1.3)

lines(Time, predictions$Predictions, lwd = 2, col = "red")
legend("topright", legend = c("observed", "predicted"), fill = c("blue", "red"),

bty = "n", cex = 1.3)

plot(Time, coefficients[, 6], type = "l", col = "brown", ylab = paste("�", "V4/",
"�", "V1", sep = ""), xlab = "", lwd = 2, cex.lab = 1.3, cex.axis = 1.3)

plot(Time, coefficients[, 5], type = "l", col = "darkgreen", ylab = paste("�",
"V3/", "�", "V1", sep = ""), xlab = "", lwd = 2, cex.lab = 1.3, cex.axis = 1.3)

plot(Time, coefficients[, 4], type = "l", col = "blue", ylab = paste("�", "V2/",
"�", "V1", sep = ""), xlab = "", lwd = 2, cex.lab = 1.3, cex.axis = 1.3)
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Figure 7: S-map prediction and coefficients of Lorenz’96 5-D system.
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Multiview Embedding
The generality of Takens Theorem means that in situations with multivariate time series, there can often
be many different, valid attractor reconstructions. As described in (Ye and Sugihara 2016), combining these
different models can result in improved forecasts.

Here, we demonstrate this idea using the Multiview() function with the 3-species data used above.
Multiview() operates by constructing all possible embeddings of dimension E with lag up to E-1. These
embeddings are ranked by forecast skill (rho) over the lib portion of the data. The individual forecasts for
the top multiview embeddings are then averaged together. If multiview is not specified it is set to sqrt(C)
where C is the number of E-dimensional combinations created from all data vectors.
Mview = Multiview(dataFrame = block_3sp, lib = "1 100", pred = "101 190", E = 3,

columns = "x_t y_t z_t", target = "x_t")

Multiview() returns a named list with two data.frames: View, and Predictions. View lists the vari-
ous combinations of data embedding vectors used for the forecasts along with their prediction statistics.
Predictions returns the final averaged multiview projections.
Mview$View[which(Mview$View$rho > 0.91), ]

## Col_1 Col_2 Col_3 rho MAE RMSE name_1 name_2 name_3
## 1 1 2 7 0.9320 0.2391 0.2996 x_t(t-0) x_t(t-1) z_t(t-0)
## 3 1 2 3 0.9395 0.2221 0.2815 x_t(t-0) x_t(t-1) x_t(t-2)
## 7 1 2 8 0.9215 0.2484 0.3202 x_t(t-0) x_t(t-1) z_t(t-1)
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Causality Inference and Cross Mapping
One of the corollaries to the Generalized Takens Theorem is that it should be possible to cross predict or
cross map between variables that are observed from the same system. Consider two variables, 𝑥 and 𝑦 that
interact in a dynamic system. Then the univariate reconstructions based on 𝑥 or 𝑦 alone should uniquely
identify the system state and and thus the corresponding value of the other variable.

Figure 8: Cross Mapping Between Reconstructions of the Lorenz Attractor

In the case of unidirectional causality, e.g. 𝑥 causes 𝑦, the causal variable (𝑥) leaves a signature on the
affected variable (𝑦). Consequently, the reconstructed states based on 𝑦 can be used to cross predict the
values of 𝑥 (because the reconstruction based on 𝑦 must be complete, it must include information about the
value of 𝑥). Note that this cross prediction is in the opposite direction of the causal effect. At the same time,
cross prediction from 𝑥 to 𝑦 will fail, because the time series of 𝑥 behaves independently of 𝑦, so a univariate
reconstruction using only lags of 𝑥 is necessarily incomplete.

Although 𝑥 has incomplete information for predicting 𝑦, it does affect the values of 𝑦, and therefore will likely
to have nonzero predictive skill. However, this cross mapping will be limited to the statistical association
between 𝑥 and 𝑦 and will generally not improve as longer time series are used for reconstruction. In contrast,
the cross prediction of 𝑥 from 𝑦 will generally improve. This convergence is therefore a crucial property for
inferring causality. For practical reasons, the sensitivity of detecting causality this way is improved if, instead
of predicting the future value of another variable, we estimate the concurrent value of another variable. We
refer to this modified method as cross mapping, because we are not “predicting” the future.

For a more detailed description of using cross mapping to infer causation, see (Sugihara et al. 2012).

Convergent Cross Mapping (CCM)
In rEDM, convergent cross mapping is implemented as the CCM() function, which provides a wrapper
to compute cross map skill for different subsamples of the data. In the following example, we reproduce
the analysis from (Sugihara et al. 2012) to identify causality between anchovy landings in California and
Newport Pier sea-surface temperature. For this example, a previously identified value of 3 for the embedding
dimension will be used.

To quantify convergence, we compute the cross map skill over many random subsamples of the time series.
The libSizes argument specifies the size of the library set, and sample specifies the number of subsamples
generated at each library size. random and replacement specify how the subsamples will be generated. The
default is random sampling without replacement.
cmap <- CCM(dataFrame = sardine_anchovy_sst, E = 3, Tp = 0, columns = "anchovy",

target = "np_sst", libSizes = "10 70 5", sample = 100, showPlot = TRUE)

The output is a data.frame with statistics for each model run (in this case, 100 models at each library
size) as a function of library size. Recalling that cross mapping indicates causal influence in the reverse
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Figure 9: Convergent cross mapping of Newport sea surface temperature with anchovy landings.

direction (target to source), we see that the cross mapping anchovy:np_sst converges at a positive value
of 𝜌, indicating that Newport sea surface temperature influences anchovy landings. Because average cross
map skill less than 0 means there is no prediction skill, (predictions should not be anticorrelated with
observations), we infer from the np_sst:anchovy cross mapping that anchovy landings do not effect sea
surface temperatures.

Real Data Example
Apple-Blossom Thrips
In this example, we use EDM to re-examine the classic apple-blossom thrips (Thrips imaginis) time series
from the Wait Institute in Australia (Davidson and Andrewartha 1948a, 1948b). Seasonal outbreaks of
Thrips imaginis were observed to vary greatly in magnitude from year to year, but large outbreaks tended to
coincide across large spatial domains. This lead to the hypothesis that regional-scale climatic factors were
responsible for controlling the size of the seasonal outbreaks (what might now be called the Moran effect
(Moran 1953)).
head(Thrips, 2)

## Year Month Thrips_imaginis maxT_degC Rain_mm Season
## 1 1932 4 4.5 19.2 140.1 -0.500
## 2 1932 5 23.4 19.1 53.7 -0.866

The data column Thrips_imaginis contains counts of Thrips imaginis obtained from the Global Population
Dynamics Database (GPDD) (NERC Centre for Population Biology 2010). maxT_degC is the mean maximum
daily temperature (∘C) taken over each month and Rain_mm is the monthly rainfall (mm), both from the
Waite Institute. The final column Season is a simple annual sinusoid that peaks in December (the Austral
summer) to emulate an indicator of season.

First, we plot the data. Note that all the time-series variables, particularly the mean maximum daily
temperature, show marked seasonality.
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YearFigure 10: Thrips abundance and environmental variables.

Univariate Analysis

We first examine the dependence of simplex predictability on the embedding dimension.
rho_E <- EmbedDimension(dataFrame = Thrips, columns = "Thrips_imaginis", target = "Thrips_imaginis",

lib = "1 72", pred = "1 72", showPlot = TRUE)

While there is an initial peak in the simplex prediction at E = 3, the global maximum is at E = 8. This
suggests that both E = 3 and E = 8 are practical embedding dimensions, although E = 8 is preferrable with
a higher predictive skill.

To test for nonlinearity we use the S-map PredictNonlinear() function.
E = 8
rho_theta_e3 = PredictNonlinear(dataFrame = Thrips, columns = "Thrips_imaginis",

target = "Thrips_imaginis", lib = "1 73", pred = "1 73", E = E)

The S-map results demonstrate clear nonlinearity in the Thrips time series, as nonlinear models theta > 0
give substantially better predictions than the linear model theta = 0. This suggests that Thrips, despite the
strong seasonal dynamics, do not simply track the environment passively, but have some intrinsic dynamics.
To look more closely at the issue of seasonal drivers, however, we turn to convergent cross-mapping (CCM).

Seasonal Drivers

Recall that there is a two-part criterion for CCM to be a rigorous test of causality:

1. The cross map prediction skill is statistically significant when using the full time series as the library.
2. Cross map prediction demonstrates convergence, i.e. prediction skill increases as more of the time series

is used for the library and the reconstructed attractor becomes more dense.

For an initial summary, we first compute the cross map skill (measured with Pearsons 𝜌) for each variable
pair. Note that CCM() computes the cross map in both “directions”.
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Figure 11: Simplex embedding dimension for Thrips abundance.

vars = colnames(Thrips[3:6])
var_pairs = combn(vars, 2) # Combinations of vars, 2 at a time
libSize = paste(NROW(Thrips) - E, NROW(Thrips) - E, 10, collapse = " ")
ccm_matrix = array(NA, dim = c(length(vars), length(vars)), dimnames = list(vars,

vars))

for (i in 1:ncol(var_pairs)) {
ccm_out = CCM(dataFrame = Thrips, columns = var_pairs[1, i], target = var_pairs[2,

i], libSizes = libSize, Tp = 0, E = E, sample = 100)

outVars = names(ccm_out)

var_out = unlist(strsplit(outVars[2], ":"))
ccm_matrix[var_out[2], var_out[1]] = ccm_out[1, 2]

var_out = unlist(strsplit(outVars[3], ":"))
ccm_matrix[var_out[2], var_out[1]] = ccm_out[1, 3]

}

We note that ccm_matrix rows are the second of the CCM() returned variables, while columns are the first
variable. As outlined earlier, influences are quantified from the target to the columns variable so that here,
rows are considered the ’target, influencing variable, and columns thecolumns‘ influenced variable.

For comparison we also compute the lagged cross-correlation, allowing lags of up to ±6 months.
corr_matrix <- array(NA, dim = c(length(vars), length(vars)), dimnames = list(vars,

vars))

for (ccm_from in vars) {
for (ccm_to in vars[vars != ccm_from]) {

ccf_out <- ccf(Thrips[, ccm_from], Thrips[, ccm_to], type = "correlation",
lag.max = 6, plot = FALSE)$acf

corr_matrix[ccm_from, ccm_to] <- max(abs(ccf_out))

15
C.55



0 2 4 6 8

0.
45

0.
55

0.
65

 
E= 8

S−map Localisation

P
re

di
ct

io
n 

S
ki

ll 
(.

.)

Figure 12: SMap localisation parameter for Thrips abundance.

}
}

We compare the two matrices.
ccm_matrix

## Thrips_imaginis maxT_degC Rain_mm Season
## Thrips_imaginis NA 0.6046 0.4254 0.5617
## maxT_degC 0.9227 NA 0.8214 0.9625
## Rain_mm 0.5118 0.4624 NA 0.3933
## Season 0.9544 0.9918 0.7773 NA
corr_matrix

## Thrips_imaginis maxT_degC Rain_mm Season
## Thrips_imaginis NA 0.4490 0.2668 0.4488
## maxT_degC 0.4490 NA 0.5949 0.9453
## Rain_mm 0.2668 0.5949 NA 0.5333
## Season 0.4488 0.9453 0.5333 NA

We can see that the cross map strengths are not symmetric. In general CCM(X1 : X2) != CCM(X2 : X1).
We also notice that the cross map and correlation between temperature and the seasonal indicator are high,
with the cross map results suggesting that the seasonal variable can almost perfectly recover the temperature,
𝜌 = 0.9918. This makes interpretation more complicated, because we have to consider the possibility that
cross mapping is simply identifying the shared seasonality between two time series. In other words, cross
mapping between temperature and any variable with a seasonal cycle, might suggest an interaction even if
there is no actual causal mechanism.

Convergent Cross-Mapping With this in mind, we examine convergence in cross-map predictability,
i.e. we compute rho as a function of library size L. The magnitude of the cross-correlation between Thrips
and the cross mapped variable is shown as a black dashed line for comparison.
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thrips_xmap_maxT <- CCM(dataFrame = Thrips, E = E, Tp = 0, columns = "Thrips_imaginis",
target = "maxT_degC", libSizes = "13 73 3", sample = 300, showPlot = FALSE)

CCMPlot(thrips_xmap_maxT, E)

## [1] "Thrips_imaginis:maxT_degC : maxT_degC:Thrips_imaginis \nE= 8"
## [1] 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
abline(h = corr_matrix["Thrips_imaginis", "maxT_degC"], col = "black", lty = 2)

thrips_xmap_Rain <- CCM(dataFrame = Thrips, E = E, Tp = 0, columns = "Thrips_imaginis",
target = "Rain_mm", libSizes = "13 73 3", sample = 300, showPlot = FALSE)

CCMPlot(thrips_xmap_Rain, E)

## [1] "Thrips_imaginis:Rain_mm : Rain_mm:Thrips_imaginis \nE= 8"
## [1] 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
abline(h = corr_matrix["Thrips_imaginis", "Rain_mm"], col = "black", lty = 2)

thrips_xmap_Season <- CCM(dataFrame = Thrips, E = E, Tp = 0, columns = "Thrips_imaginis",
target = "Season", libSizes = "13 73 3", sample = 300, showPlot = FALSE)

CCMPlot(thrips_xmap_Season, E)

## [1] "Thrips_imaginis:Season : Season:Thrips_imaginis \nE= 8"
## [1] 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
abline(h = corr_matrix["Thrips_imaginis", "Season"], col = "black", lty = 2)
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Figure 13: Thrips cross mapped to climatic variables. Vertical axis is cross map prediction skill (rho).

The results show evidence of convergence for Thrips cross mapping to temperature and season variables,
with the 𝜌 at maximum library size L significantly exceeding linear correlation. The rain variable does not
indicate a substantially different cross map interaction, appearing confounded as to causal influence.

In addition, we are still left with the conundrum that temperature and to a lesser extent, rainfall, are easily
predicted from the seasonal cycle, and so we cannot immediately ignore the possibility that the cross map
results are an artifact of shared seasonal forcing.

To reframe, we wish to reject the null hypothesis that the level of cross mapping we obtain for maxT_degC and
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Rain_mm can be solely explained by shared seasonality. This hypothesis can be tested using randomization
tests based on surrogate data. The idea here is to generate surrogate time series with the same level of
shared seasonality. Cross mapping between the real time series and these surrogates thus generates a null
distribution for 𝜌, against which the actual cross map 𝜌 value can be compared.

# Create matrix with temperature and rain surrogates (1000 time series vectors)
surr_maxT = SurrogateData(Thrips$maxT_degC, method = "seasonal", T_period = 12, num_surr = 1000,

alpha = 3)
surr_rain = SurrogateData(Thrips$Rain_mm, method = "seasonal", T_period = 12, num_surr = 1000,

alpha = 3)

# Rain cannot be negative
surr_rain = apply(surr_rain, 2, function(x) {

i = which(x < 0)
x[i] = 0
x

})

# data.frame to hold CCM rho values between Thrips abundance and variable
rho_surr <- data.frame(maxT = numeric(1000), Rain = numeric(1000))

# data.frames with time, Thrips, and 1000 surrogate climate variables for CCM()
maxT_data = as.data.frame(cbind(seq(1:nrow(Thrips)), Thrips$Thrips_imaginis, surr_maxT))
names(maxT_data) = c("time", "Thrips_imaginis", paste("T", as.character(seq(1, 1000)),

sep = ""))

rain_data = as.data.frame(cbind(seq(1:nrow(Thrips)), Thrips$Thrips_imaginis, surr_rain))
names(rain_data) = c("time", "Thrips_imaginis", paste("R", as.character(seq(1, 1000)),

sep = ""))

# Cross mapping
for (i in 1:1000) {

targetCol = paste("T", i, sep = "") # as in maxT_data

ccm_out = CCM(dataFrame = maxT_data, E = E, Tp = 0, columns = "Thrips_imaginis",
target = targetCol, libSizes = "73 73 5", sample = 1)

col = paste("Thrips_imaginis", ":", targetCol, sep = "")

rho_surr$maxT[i] = ccm_out[1, col]
}

for (i in 1:1000) {
targetCol = paste("R", i, sep = "") # as in rain_data

ccm_out = CCM(dataFrame = rain_data, E = E, Tp = 0, columns = "Thrips_imaginis",
target = targetCol, libSizes = "73 73 5", sample = 1)

col = paste("Thrips_imaginis", ":", targetCol, sep = "")

rho_surr$Rain[i] = ccm_out[1, col]
}
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Seasonal Surrogate Test We now have a null distribution, and can estimate a 𝑝-value for rejecting the
null hypothesis of mutual seasonality.
1 - ecdf(rho_surr$maxT)(ccm_matrix["maxT_degC", "Thrips_imaginis"])

## [1] 0
1 - ecdf(rho_surr$Rain)(ccm_matrix["Rain_mm", "Thrips_imaginis"])

## [1] 0.039

In the case of temperature, the CCM influence we estimated (0.9227) is higher than the linear correlation
(0.449), and is highly significant in relation to a surrogate null distribution. Regarding rainfall, the CCM
influence (0.5118) is higher than the linear correlate (0.2668), but not significant at the 95th percentile of the
surrogate null distribution. We note that the original Thrips data collections were at a much higher frequency
than those available through the GPDD, and that monthly accumulated rainfall may be inadequate to resolve
lifecycle influences on a species with a lifecycle of approximately one month. With more highly resolved data,
it may well be possible to establish significance.

Package Core
The rEDM package is implemented as a wrapper to the cppEDM library. All EDM algorithms are executed
in the core cppEDM library and interfaced through the Rcpp package.

Data Input
Data can be input as an R data.frame, or read from a .csv file. In either case, the first column must define
a time vector, and all columns are expected to be named. The time vector can be a string encoding a Date,
or Datetime format. All subsequent columns are expected to be numeric.

S-Map coefficients and embedded data

SMap() should be called with a DataFrame that has columns explicity corresponding to dimensions E. This
means that if a multivariate data set is used, it should not be called with an embedding from Embed()
since Embed() will add lagged coordinates for each variable. These extra columns will then not correspond
to the intended dimensions in the matrix inversion and prediction reconstruction and subsequent S-map
coefficients. In this case, use the embedded = TRUE parameter with the multivariate data so that columns
selected correspond to the proper dimension.

Parameters
Since rEDM is a wrapper for the cppEDM library, parameters largely correspond to function parameters of
cppEDM. Primary parameters are tabulated here.

Parameter Description
pathIn Filesystem path to input ‘dataFile’. CSV format.

dataFile CSV format data file name. The first column must be a timeindex or time values.
The first row must be column names.

dataFrame Input data.frame. The first column must be a time index or time values.
The columns must be named.

pathOut Filesystem path for ‘predictFile’ containing output predictions.
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Parameter Description

predictFile Observation and Prediction output file name. CSV format.

smapCoefFileOutput file containing S-map coefficients.

lib String with start and stop indices of input data rows used to create the library of
observations.
A single contiguous range is supported.

pred String with start and stop indices of input data rows used for predictions.
A single contiguous range is supported.

D Multiview dimension.

E Embedding dimension.

Tp Prediction horizon (number of time column rows).

knn Number of nearest neighbors. If knn=0; knn is set to E+1 for Simplex(); set to number of
data rows for SMap().

tau Lag of time delay embedding specified as number of time column rows.

theta In Smap: S-Map neighbor localisation exponent. Single numeric.

theta In PredictNonlinear: A whitespace delimeted string with values of S-map localisation
parameters to be evaluated.

exclusionRadiusExcludes vectors from the search space of nearest neighbors if their relative time index is
within exclusionRadius.

columns String of whitespace separated column name(s) in the input data used to create the library.

target String of column name in the input data used for prediction.

embedded Logical specifying if the input data are embedded.

validLib Conditional embedding. Boolean vector identifying time series rows to use in state-space
library.

noTIme Default False. Set True to not require first column of data to be time.

ignoreNan SMap: default True. Redefine lib to ignore nan in data and embedding.

generateStepsGenerative feedback predictions in Simplex or SMap.

parameterListAdd parameter dictionary to return objects in Simplex; SMap; CCM; Multiview.

libSizes String of 3 whitespace separated integer values specifying the intial library size; the final
library size; and the library size increment for CCM.
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Parameter Description
sample Integer specifying the number of random samples to draw at each library size evaluation

for CCM.

random Logical to specify random (‘TRUE’) or sequential library sampling in CCM.

includeData Logical to return all CCM projection data frames.

seed Integer specifying the random sampler seed in CCM. If ‘seed=0’ a random seed is
generated.

multiview Number of multiview ensembles to average for the final prediction estimate in Multiview.

trainLib Use in-sample (lib=pred) prediction for multiview ranking.

excludeTargetExclude target variable from multiviews.

maxE Maximum value of E to evalulate in EmbedDimension.

maxTp Maximum value of Tp to evalulate in PredictInterval.

numThreadsNumber of parallel threads for computation in EmbedDimension; PredictInterval and
PredictNonlinear.

verbose Logical to produce additional console reporting.

const_pred Logical to add a constant predictor column to the output. The constant predictor is
X(t+1) = X(t).

showPlot Logical to plot results.
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