Carnegie
Mellon
University

Methodology of Combining Empirical Software
Stress Testing and Formal-Methods Engineering
Based Schedulability Analysis for Real- [IEASIELE
Time Multicore Software

Carnegie Mellon University:
Bjorn Andersson, Dionisio de Niz

Distribution A:
OCTOBER 2023 Approved forPublic Release.

Distribution is Unlimited

Copyright 2023 Carnegie Mellon University, U.S. Army Combat Capabilities Development Command Aviation & Missile Center.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNNERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permissionis required for any other use. Requests for permission should be directed to the Software Engi neering Institute
at permission@sei.cmu.edu.

DM23-0820

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
SChedUlabi”ty A nalySiS fO.I' Re_al'Tirne Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

The need for safety (of aircraft)

Ariane 5 Flight 501: Catastrophic failure (causing self-destruct) in
flight in 1996 due to incorrect software reuse.

Boeing 737 MAX: Two crashes (in 2018 and 2019) due to software
flaw in the MCAS (Maneuvering Characteristics Augmentation
System).

Airbus A400M: Crash during a test flight in Spain 2015 due to
software flaw.

Helicopters: Army Helicopter crashes in April 2023: Apache in
Alaska and Black Hawk in Kentucky.

Some crashes are caused by software. The increase complexity of
software will make the impact of software on safety more important.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

The need for speed (of software development of aircraft)

2022 .
X s " National Defense *- .
Strategy

The Department will instead reward rapid experimentation, acquisition, and fielding.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software
development and
certification

How do we combine the need for safety with the need for speed?

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release

and unlimited distribution

Software
development and
certification

How do we combine the need for safety with the need for speed?

s I ‘ ‘ time
| cycle “eycle e
Produce cert Appraise cert
evidence evidence
- o 25
il &

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Software
development and
certification

How do we combine the need for safety with the need for speed?

| L T S , time X)

icle Secle Even if we decrease the development time to zero,
P PR Abpraise cert then certification time is still there and becomes a bottleneck
evidence evidence for our ability to field new systems rapidly.

8l q

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Software
development and
certification

How do we combine the need for safety with the need for speed?

Test data as cert evidence
* Exhaustive takes too long
* Non-exhaustive is unsafe

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

Formal methods have the
potential to avoid these

[Distribution Statement A] Approved for public release and unlimited distribution

Formal methods

Question Answer
Given model M, is correctness property FM tool {Yes,No,Undecided}
¢ true for all executions?

Input: (i) a model of a system and (ii) a correctness condition.

Output: True/False/Undecided

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Different correctness properties

Logical correctness:
Compute 2+3.
The result should be 5.

Temporal correctness:

Compute 2+3. % Focus of this talk
The time from when the computation is requested until its result

delivered should be at most 20 milliseconds.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Why timing of software matter? .

Computer Program <<()) Physical Environment
/ O ¢ AN Vi
(3

Actuator A 000 9

C

‘@ Sommor

Interaction of the software with the physical environment imposes timing requirements on software.

“Timing problems are one of the common causes of run-time failures in process-control systems,
and timing is often inadequately specified.”

M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart, "Software requirements analysis for
real-time process-control systems," IEEE TSE, 1991.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Why timing of software matter?
Army avionics interact with physical environment. The world does not stand still.

“The trick there, when you’re processing flight critical information, it has to be a deterministic
environment, meaning we know exactly where a piece of data is going to be exactly when
we need to — no room for error,” Langhout says. “On a multi-core processor there’s a lot of
sharing going on across the cores, so right now we’re not able to do that.”

- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research
Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at
https:/mww.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Sc hedUIab"lty AnalyS|S for Real-Time Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University

12

W hy satisfying timing requirements is challenging?

Satisfy for all scenarios

Depends on underlying hardware platform—mnot just software
Depends on external physical world

Event-driven

Undocumented hardware

Multitasking, Inter-core interference

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! | A [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

Concurrent Programming

int threadl () {
perform initialization thread 1();
while (1) {
walt for event threadl();
s = read sensor threadl();
o = perform processing threadl(s);
actuate command threadl (o) ;

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! | A [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

Concurrent Programming

int threadl () {
perform initialization thread 1();
while (1) {
walt for event threadl();
s = read sensor threadl();
lock semaphore (sem) ;
d = read shared data threadl();
unlock semaphore (sem) ;
o = perform processing threadl(s,d);
actuate command threadl (o) ;

}

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! | A [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

Concurrent Programming

int threadl () {
perform initialization thread 1();
while (1) {
walt for event threadl();
s = read sensor threadl();
lock semaphore (sem);
d = read shared data threadl();
unlock semaphore (sem) ;
o = perform processing threadl(s,d);
v actuate command threadl (o) ;

deadline

}

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! | A [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

Concurrent Programming

int threadl() {
perform initialization thread 1();

while (1) { Many sources of delay:

walt for event threadl(); Thread’s own execution
S = read_sensor_threadl (); The thread may get preempted
deadline | LOCk_semaphore (sem); The thread may block on semaphore

d = read_shared data_threadl(); Thread may experience inter-core
unlock semaphore(sem); interference (multicore)
o = perform processing threadl(s,d);

v actuate command threadl (o) ;

}

}

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! | A [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

Q: How to verify timing of
software executing on
multicore?

A: Use a two-step
framework where some
activities may use formal
methods and some may
not.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

Focus of this talk

Well-known in
the research
literature

Step 1

Find charmctaristics of each

thread/process

Step 2

e

Make sure that all
threads/processes satisfy

timing requirements when
executing together on a
shared computer platform

lecereeccecentncansrconsscscntnsescsussssnncssentsranssrensassrsssansnsne

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Saftwa e
ENgINoering
Imstitute

19

Saftware
Enginoering
imstitute

S S S S S S STERECEOTIARL | . T Sy KT

Find resource
characteristics of each
thread/process

Make sure that all
threads/processes satisfy

Find timing requirements

timing reguiremants when
of each thread/process »

executing together on a
shared computer platform

Find invocation pattermn of
each thread/process

S
]

r

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! § ! [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University 20

Are there tools for these
activities?

DTN AR . 138 CESHR TR S STk

Find resource
characteristics of each
thread/process

Find timing requirements
of each thread/process

Find invocation pattern of
each thread/process

4

s e R

Maks sure that all
threads/processes satisfy

timing requiremsants when
executing together on a
shared computer platform

]

"

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Read design documents and
source code.

S S S S S s R e s L

Find resource
characteristics of each
thread/process

Mak= sure that all
threads/processes satisfy

Find timing requirements

timing reguiremsants when
of each thread/process 8 19

executing together on a
shared computer platform

Find Invocation pattern of
each thread/process

[
]

i

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulablllty _Analysis fOI’ Re'aI—Time Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University 22

Are there tools for these
activities?

DTN AR . 138 CESHR TR S STk s e R

Find resource
characteristics of each
thread/process

Maks sure that all
threads/processes satisfy

Find timing requirements

timing reguiremsants when
of each thread/process 8 189

executing together on a
shared computer platform

Find invocation pattern of
each thread/process

4
]

"

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

23

Rich literature. Let us see some
of SElI's and AvMC'’s tools.

--

Find resource
characteristics of each
thread/process

Maks sure that all

threads/processes satisfy

timing reguiremsants when
executing together on a

shared computer platform

Find timing requirements
of each thread/process

Find invocation pattern of
each thread/process

P L T e L

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

24

Single-core. Find Estimate of
W orst-Case Execution Time.

Find resource
characteristics of each
thread/process

Find timing requirements
of each thread/process

Find invocation pattern of
each thread/process

P L T e L

Maks sure that all

threads/processes satisfy

timing reguiremsants when
executing together on a

shared computer platform

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Single-core. Find Estimate of Worst-Case Execution Time
W orst-Case Execution Time. Analysis

bamba-desktop: ~/ga_find_wcet

Step 1 Step.2 View Search Terminal Help

a-desktop:~/ga_find etS more myconf

tS ./ga_find wcet nyconf . /bubblesort

tS tine ,/bubblesort < ascending integers.dat

real omD.002s
user

«/bubblesort < descending_integers.dat

&mo.
ond . 2

+/bubblesort < worstcaseinput CA_ Lnputfile.dat

| i Genetic Algorithms. End-to-End
e nsten e nser g J NN | Measurements.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
SChedUlabi”ty A nalySiS fO.I' Re_al'Tirne Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

Single-core. Find Estimate of Worst-Case Execution Time
W orst-Case Execution Time. Analysis

bamba-desktop: ~/ga_find_wcet

Step 1 2. L <= 2 - File Edit View Search Terminal Help
1 baba-desktop: Ja_Tind etS more ayconf

bafiba-desktop:~/ga_find etsS . /gi et nyconf . /bubblesort
9 359
bagba-desktop:~/ga_find ot . esort < ascending integers.dat

H H
_— : : sal OmD . 0025
. <

esort < descending_integers.dat

esort < worstcaseinput _CA_inputfile.dat

| | https://www.andrew.cmu.edu/user/banderss/s
] | oftware/ga_find_wecet/ga_find_wcet.c

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Single-core. Response-Time
Analysis.

S S TR U S e S R o Sty

i Find resource
characteristics of each
thread/process

Maks sure that all
threads/processes satisfy

Find timing requirements

imin: i nts when
of each thread/process SN (S RIESINS W)

executing together on a
shared computer platfarm

Find invocation pattern of
each thread/process

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

time for hig

Compute upper bound on

[Distribution Statement A] Approved for public release and unlimited distribution.

Delay from arrival of thread i until it finishes
= timefor its own execution

IS.

r-priority threads’ execution

28

Multicore. Find Estimate of
W orst-Case Slowdown

s Moy

characteristics of each
thread/process

Make sure that all
threads/processes satisfy

Find timing requirements

of each thread/process timing requiremants when

executing together on a
shared computer platform

Find invocation pattern of

each thread/process

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

e A —
B e
—aa ——— v——
e e —— | S—— e e o eann -
—— “ — —— - ~
— ——— - -
-
—— at — 4 ok ——— bt
-
g ¢
-
—— — vy oo ey ene
T
g+
Ty
[— - et s o ——
g
—
-
—— ———— i e bt b
o
ekl
-l
—— 11w el T emess oo
— oy [RONIveIRe: 2t e {404 mabmt -
T
Tt
g |
——
|
-
o—
g |
g ¢
)
——
—
-
Yot
R — S —————

https://www.andrew.cmu.edu/user/banderss/softwar
e/pyschedanalysiscorunner_including_ga based pa
rameter_extraction/pyschedanalysiscorunner_includi
ng_ga based parameter_extraction.py

[Distribution Statement A] Approved for public release and unlimited distribution.

29

Multicore. Find Estimate of
W orst-Case Slowdown

..

Find resource
characteristics of each
thread/process

Maks sure that all
threads/processes satisfy
timing requiremants when
executing together on a
shared computer platfarm

Find timing requirements
of #ach thread/process

Find invocation pattern of

ach thread/process

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

|
i
P mi

.
—g— ——
b ——

P— N N T O

—— A R R LTI L L et e el

P I N T] S

—— I e e T)
— e N T ==

4

S AN A B —A—"———__ - ——— (LA —— T —————

Finds slowdown for each thread i, for each co-
runner set of threads co.

[Distribution Statement A] Approved for public release and unlimited distribution.

30

Multicore. Compute upper
bounds on response times

s Moy

characteristics of each

thread/process

Make sure that all
threads/processes satisfy

Find timing requirements
of each thread/process

Find invocation pattern of

each thread/process

timing reguiremants when
executing together on a
shared computer platform

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

e A —
B e
—aa ——— v——
e e —— | S—— e e o eann -
—— “ — —— - ~
— ——— - -
-
—— st w1 — 4 ok ——— bt
-
g ¢
-
—— — vy oo ey ene
T
g+
Ty
[— - et s o ——
g
—
-
—— e i e bt b
o
ekl
-l
—— 11w el S emee oo
I oy [RONIveIRe: 2t e {404 mabmt -
T
Tt
g |
——
|
-
o—
g |
g ¢
)
——
—
-
Yot
R — S —————

https://www.andrew.cmu.edu/user/banderss/softwar
e/pyschedanalysiscorunner_including_ga based pa
rameter_extraction/pyschedanalysiscorunner_includi
ng_ga based parameter_extraction.py

[Distribution Statement A] Approved for public release and unlimited distribution.

31

Multicore. Profiling

Find resource
characteristics of each
thread/process

Maks sure that all

threads/processes satisfy

timing requiremsants when
executing together on a

shared computer platform

Find timing requirements
of each thread/process

|

OO o N T
3= O R T
K O R T e
G N RO e KOS
Bl - RY- BN N Bl
B2 P B Sl)
ELl- U0 S - L

Find invocation pattern of
each thread/process

O
.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulablllty _Analysis fOI’ Re'aI—Time Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University 32

INTERFERENCES DUE TO CONCURRENT ACCESSES TO SHARED RESOURCES
EXAMPLE

| []
| Core 0 —_Cache | Cache |
Mmory Thrasher 256K Dlstnbubom
I Core 1 Cache Cache 3 [
w
| Core 2 l:‘_ ':‘_ °
Cache Cache g 1/0 .g "
[Core 3 I:| Caehe ':‘ Gache l: = g
|Core 4 | J 8 s
j—l_che P—L__che = o g 6
o
o E
ICore 5 l:I Cache Cache l: i Caghe i g
Core 6 : 3 ¢ wos_ o w000
- DDR)))
Core 7 Memory e 0 e LL‘::E :.I.:.?”.\:vﬂ-l ::::2 ;’l.'_:.?‘?:uma
Cache Cache 256K Siwp 4 258K Step 64

e Core=>L1->L2 - Interconnect-> DDR
* DDR = Interconnect 9 L2 > L1 - Core

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Sc hedUIab"lty AnalyS|S for Real-Time Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University 33

EXAMPLE — NXP P4080

Core 0ot
Gt |t e
Core 2 j C:c1he D Cala-czhe D
Cm@E;E]C;;e[] C;ie[]
Core 4t mar—ttrone
ot m| - P
Core 6 [| C':c:ﬁe I ca!ln-ci,e E
Core 7 | | CaLc1he] Cachhe L

Interconnect

I/0

3
Cacthe

DDR
Memory

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

EXAMPLE — NXP T2080

Core 0 CaL:he
@
—
L1 8 o
Core 1-Em- o | QCJ 110
o C
o
= S
'c 1=
L1 . () 3
Core 2 @ L-
D Cache y. 5 E Cathe
o
(@)
L1 DDR
Core 3 e Memory

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

AvMC MCP INTERFERENCE ANALYSIS

MCP Interference Matrix

Resource Issue Analysis Mitigation Verification
Local Cache - Local cache miss - Performance - Memory allocation adjustment - Performance metrics
- Local cache eviction metrics collection - Multiple memory controllers collection
- Cache coherency - Cache contents - Cache inhibition - Cache contents
inspection - Cache locking inspection
- Use of cache
simulators
Shared Cache - Cache miss - Performance - Memory allocation adjustment - Off-core performance
- Cache eviction metrics collection - Multiple memory controllers metrics collection
- Cache coherency - Analysis of - Cache inhibition - Analysis of configuration

configuration settings
- Use of cache
simulators

- Cache locking

- Cache coloring

- Cache partitioning

- Disabling shared cache

settings

Main Memory

- Access Latency

- Execution timing

- Off-core
Performance metrics
collection

- Memory bank partitioning

- Execution timing
- Off-core Performance
metrics collection

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution

Qorla™ P4080 Communications Processor Product Brief, Rewv. 1

Freescale Semiconductor

SOURCE: https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/qorig-platforms/p-series/qorig-p4080-p4040-p4081-multicore-
communications-processors:P4080

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

SChedUIabi”ty AnalySiS fOI’ ReaI—Time Multicore SOftW are [Distribution Statement A] Approved for public release and unlimited distribution.

© 2023 Carnegie Mellon University 3 7

MCP Multi-Core Analysis Framework

MCP Analysis
Framework

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! § ! [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Camegie Mellon University 38

Conclusion

The two-step framework for timing verification has been known for a long time in the academic
research literature on real-time systems.

We have presented it to the avionics community.

There are tools that support activities of this two-step framework. Some from SEI and AvMC
presented here.

Some tools can be downloaded here:
https://www.andrew.cmu.edu/user/banderss/projects.html

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are

! | A [Distribution Statement A] Approved for public release and unlimited distribution
© 2023 Carnegie Mellon University

https://www.andrew.cmu.edu/user/banderss/projects.html

cllom
{ Lniversity

.

it

Thanks!

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
SChedUIablllty AnalySiS for Real-Time Multicore Softw are [Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carmegie Mellon University 40

