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The need for safety (of aircraft)

Ariane 5 Flight 501: Catastrophic failure (causing self-destruct) in
flight in 1996 due to incorrect software reuse.

Boeing 737 MAX: Two crashes (in 2018 and 2019) due to software
flaw in the MCAS (Maneuvering Characteristics Augmentation
System).

Airbus A400M: Crash during a test flight in Spain 2015 due to
software flaw.

Helicopters: Army Helicopter crashes in April 2023: Apache in
Alaska and Black Hawk in Kentucky.

Some crashes are caused by software. The increase complexity of
software will make the impact of software on safety more important.
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The need for speed (of software development of aircraft)

2022 .
X s " National Defense *- .
Strategy

The Department will instead reward rapid experimentation, acquisition, and fielding.
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Software
development and
certification

How do we combine the need for safety with the need for speed?
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Software
development and
certification

How do we combine the need for safety with the need for speed?
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Software
development and
certification

How do we combine the need for safety with the need for speed?

| L T S , time X )

icle Secle Even if we decrease the development time to zero,
P PR Abpraise cert then certification time is still there and becomes a bottleneck
evidence evidence for our ability to field new systems rapidly.
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Software
development and
certification

How do we combine the need for safety with the need for speed?

Test data as cert evidence
* Exhaustive takes too long
* Non-exhaustive is unsafe
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Formal methods

Question Answer
Given model M, is correctness property FM tool {Yes,No,Undecided}
¢ true for all executions?

Input: (i) a model of a system and (ii) a correctness condition.

Output: True/False/Undecided
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Different correctness properties

Logical correctness:
Compute 2+3.
The result should be 5.

Temporal correctness:

Compute 2+3. % Focus of this talk
The time from when the computation is requested until its result

delivered should be at most 20 milliseconds.
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Why timing of software matter? .

Computer Program <<( )) Physical Environment
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Interaction of the software with the physical environment imposes timing requirements on software.

“Timing problems are one of the common causes of run-time failures in process-control systems,
and timing is often inadequately specified.”

M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart, "Software requirements analysis for
real-time process-control systems," IEEE TSE, 1991.
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Why timing of software matter?
Army avionics interact with physical environment. The world does not stand still.

“The trick there, when you’re processing flight critical information, it has to be a deterministic
environment, meaning we know exactly where a piece of data is going to be exactly when
we need to — no room for error,” Langhout says. “On a multi-core processor there’s a lot of
sharing going on across the cores, so right now we’re not able to do that.”

- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research
Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at
https:/mww.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.
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W hy satisfying timing requirements is challenging?

Satisfy for all scenarios

Depends on underlying hardware platform—mnot just software
Depends on external physical world

Event-driven

Undocumented hardware

Multitasking, Inter-core interference
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Concurrent Programming

int threadl () {
perform initialization thread 1();
while (1) {
walt for event threadl();
s = read sensor threadl();
o = perform processing threadl(s);
actuate command threadl (o) ;
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Concurrent Programming

int threadl () {
perform initialization thread 1();
while (1) {
walt for event threadl();
s = read sensor threadl();
lock semaphore (sem) ;
d = read shared data threadl();
unlock semaphore (sem) ;
o = perform processing threadl(s,d);
actuate command threadl (o) ;

}
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Concurrent Programming

int threadl () {
perform initialization thread 1();
while (1) {
walt for event threadl();
s = read sensor threadl();
lock semaphore (sem);
d = read shared data threadl();
unlock semaphore (sem) ;
o = perform processing threadl(s,d);
v actuate command threadl (o) ;

deadline

}
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Concurrent Programming

int threadl() {
perform initialization thread 1();

while (1) { Many sources of delay:

walt for event threadl(); Thread’s own execution
S = read_sensor_threadl (); The thread may get preempted
deadline | LOCk_semaphore (sem); The thread may block on semaphore

d = read_shared data_threadl(); Thread may experience inter-core
unlock semaphore(sem); interference (multicore)
o = perform processing threadl(s,d);

v actuate command threadl (o) ;

}

}
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Q: How to verify timing of
software executing on
multicore?

A: Use a two-step
framework where some
activities may use formal
methods and some may
not.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

Focus of this talk

Well-known in
the research
literature



Step 1

Find charmctaristics of each

thread/process

Step 2
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Make sure that all
threads/processes satisfy

timing requirements when
executing together on a
shared computer platform
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Find resource
characteristics of each
thread/process

Make sure that all
threads/processes satisfy

Find timing requirements

timing reguiremants when
of each thread/process »

executing together on a
shared computer platform

Find invocation pattermn of
each thread/process
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Are there tools for these
activities?

DTN AR . 138 CESHR TR S STk

Find resource
characteristics of each
thread/process

Find timing requirements
of each thread/process

Find invocation pattern of
each thread/process
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Maks sure that all
threads/processes satisfy

timing requiremsants when
executing together on a
shared computer platform
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Read design documents and
source code.
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Find resource
characteristics of each
thread/process

Mak= sure that all
threads/processes satisfy

Find timing requirements

timing reguiremsants when
of each thread/process 8 19

executing together on a
shared computer platform

Find Invocation pattern of
each thread/process
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Are there tools for these
activities?
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Find resource
characteristics of each
thread/process

Maks sure that all
threads/processes satisfy

Find timing requirements

timing reguiremsants when
of each thread/process 8 189

executing together on a
shared computer platform

Find invocation pattern of
each thread/process
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Rich literature. Let us see some
of SElI's and AvMC'’s tools.

----------------------------------------

Find resource
characteristics of each
thread/process

Maks sure that all

threads/processes satisfy

timing reguiremsants when
executing together on a

shared computer platform

Find timing requirements
of each thread/process

Find invocation pattern of
each thread/process
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Single-core. Find Estimate of
W orst-Case Execution Time.

--------------------------------

Find resource
characteristics of each
thread/process

Find timing requirements
of each thread/process

Find invocation pattern of
each thread/process

P L T e L

Maks sure that all

threads/processes satisfy

timing reguiremsants when
executing together on a

shared computer platform
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Single-core. Find Estimate of Worst-Case Execution Time
W orst-Case Execution Time. Analysis

bamba-desktop: ~/ga_find_wcet

Step 1 Step.2 View Search Terminal Help

a-desktop:~/ga_find etS more myconf

tS ./ga_find wcet nyconf . /bubblesort

tS tine ,/bubblesort < ascending integers.dat

real omD.002s
user

«/bubblesort < descending_integers.dat

&mo.
ond . 2

+/bubblesort < worstcaseinput CA_ Lnputfile.dat

| i Genetic Algorithms. End-to-End
e nsten e nser g J NN | Measurements.
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Single-core. Find Estimate of Worst-Case Execution Time
W orst-Case Execution Time. Analysis

bamba-desktop: ~/ga_find_wcet

Step 1 2. L <= 2 - File Edit View Search Terminal Help
1 baba-desktop: Ja_Tind etS more ayconf

bafiba-desktop:~/ga_find etsS . /gi et nyconf . /bubblesort
9 359
bagba-desktop:~/ga_find ot . esort < ascending integers.dat

H H
_— : : sal OmD . 0025
. <

esort < descending_integers.dat

esort < worstcaseinput _CA_inputfile.dat

| | https://www.andrew.cmu.edu/user/banderss/s
] | oftware/ga_find_wecet/ga_find_wcet.c

Methodology of Combining Empirical Stress Testing and Formal-Methods Based
Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution



Single-core. Response-Time
Analysis.

S S TR U S e S R o Sty

i Find resource
characteristics of each
thread/process

Maks sure that all
threads/processes satisfy

Find timing requirements

imin: i nts when
of each thread/process SN (S RIESINS W)

executing together on a
shared computer platfarm

Find invocation pattern of
each thread/process
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Multicore. Find Estimate of
W orst-Case Slowdown

s Moy

characteristics of each
thread/process

Make sure that all
threads/processes satisfy

Find timing requirements

of each thread/process timing requiremants when

executing together on a
shared computer platform

Find invocation pattern of

each thread/process
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https://www.andrew.cmu.edu/user/banderss/softwar
e/pyschedanalysiscorunner_including_ga based pa
rameter_extraction/pyschedanalysiscorunner_includi
ng_ga based parameter_extraction.py
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Multicore. Find Estimate of
W orst-Case Slowdown

..........................................

Find resource
characteristics of each
thread/process

Maks sure that all
threads/processes satisfy
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Find timing requirements
of #ach thread/process

Find invocation pattern of

ach thread/process
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Finds slowdown for each thread i, for each co-
runner set of threads co.
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Multicore. Compute upper
bounds on response times

s Moy

characteristics of each

thread/process

Make sure that all
threads/processes satisfy

Find timing requirements
of each thread/process

Find invocation pattern of

each thread/process

timing reguiremants when
executing together on a
shared computer platform
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Multicore. Profiling

---------------------------------------

Find resource
characteristics of each
thread/process

Maks sure that all

threads/processes satisfy

timing requiremsants when
executing together on a

shared computer platform

Find timing requirements
of each thread/process
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Find invocation pattern of
each thread/process
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INTERFERENCES DUE TO CONCURRENT ACCESSES TO SHARED RESOURCES
EXAMPLE

| [ ]
| Core 0 —_Cache | Cache |
Mmory Thrasher 256K Dlstnbubom
I Core 1 Cache Cache 3 [
w
| Core 2 l:‘_ ':‘_ °
Cache Cache g 1/0 .g "
[Core 3 I:| Caehe ':‘ Gache l: = g
|Core 4 | J 8 s
j—l_che P—L__che = o g 6
o
o E
ICore 5 l:I Cache Cache l: i Caghe i g
Core 6 : 3 ¢ wos_ o w000
- DDR ) ) )
Core 7 Memory e 0 e LL‘::E :.I.:.?”.\:vﬂ-l ::::2 ;’l.'_:.?‘?:uma
Cache Cache 256K Siwp 4 258K Step 64

e Core=>L1->L2 - Interconnect-> DDR
*  DDR = Interconnect 9 L2 > L1 - Core
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EXAMPLE — NXP P4080

Core 0ot
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Interconnect
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Memory
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EXAMPLE — NXP T2080

Core 0 CaL:he
@
—
L1 8 o
Core 1-Em- o | QCJ 110
o C
o
= S
'c 1=
L1 . () 3
Core 2 @ L-
D Cache y. 5 E Cathe
o
(@)
L1 DDR
Core 3 e Memory
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AvMC MCP INTERFERENCE ANALYSIS

MCP Interference Matrix

Resource Issue Analysis Mitigation Verification
Local Cache - Local cache miss - Performance - Memory allocation adjustment - Performance metrics
- Local cache eviction metrics collection - Multiple memory controllers collection
- Cache coherency - Cache contents - Cache inhibition - Cache contents
inspection - Cache locking inspection
- Use of cache
simulators
Shared Cache - Cache miss - Performance - Memory allocation adjustment - Off-core performance
- Cache eviction metrics collection - Multiple memory controllers metrics collection
- Cache coherency - Analysis of - Cache inhibition - Analysis of configuration

configuration settings
- Use of cache
simulators

- Cache locking

- Cache coloring

- Cache partitioning

- Disabling shared cache

settings

Main Memory

- Access Latency

- Execution timing

- Off-core
Performance metrics
collection

- Memory bank partitioning

- Execution timing
- Off-core Performance
metrics collection
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Qorla™ P4080 Communications Processor Product Brief, Rewv. 1

Freescale Semiconductor

SOURCE: https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/qorig-platforms/p-series/qorig-p4080-p4040-p4081-multicore-
communications-processors:P4080
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MCP Multi-Core Analysis Framework

MCP Analysis
Framework
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Conclusion

The two-step framework for timing verification has been known for a long time in the academic
research literature on real-time systems.

We have presented it to the avionics community.

There are tools that support activities of this two-step framework. Some from SEI and AvMC
presented here.

Some tools can be downloaded here:
https://www.andrew.cmu.edu/user/banderss/projects.html
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https://www.andrew.cmu.edu/user/banderss/projects.html
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Thanks!
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