
Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 1

[Distribution Statement A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Methodology of Combining Empirical

Stress Testing and Formal-Methods

Based Schedulability Analysis for Real-

Time Multicore Software

O C T O B E R 2 0 2 3

Carnegie Mellon University:

Bjorn Andersson, Dionisio de Niz

D i stribution A:

Ap proved for Public Release.

D i stribution is Unlimited

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 2

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2023 Carnegie Mellon University, U.S. Army Combat Capabilities Development Command Aviation & Missile Center.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702 -15-D-0002 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center .

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government

position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON

AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice

for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engi neering Institute

at permission@sei.cmu.edu.

DM23-0820

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 3

[Distribution Statement A] Approved for public release and unlimited distribution.

The need for safety (of aircraft)

Ariane 5 Flight 501: Catastrophic failure (causing self-destruct) in

flight in 1996 due to incorrect software reuse.

Boeing 737 MAX: Two crashes (in 2018 and 2019) due to software

flaw in the MCAS (Maneuvering Characteristics Augmentation

System).

Airbus A400M: Crash during a test flight in Spain 2015 due to

software flaw.

Helicopters: Army Helicopter crashes in April 2023: Apache in

Alaska and Black Hawk in Kentucky.

Some crashes are caused by software. The increase complexity of

software will make the impact of software on safety more important.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 4

[Distribution Statement A] Approved for public release and unlimited distribution.

The need for speed (of software development of aircraft)

The Department will instead reward rapid experimentation, acquisition, and fielding.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 5

[Distribution Statement A] Approved for public release and unlimited distribution.

Software
development and

certification

More safety Faster fielding

How do we combine the need for safety with the need for speed?

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 6

[Distribution Statement A] Approved for public release and unlimited distribution.

How do we combine the need for safety with the need for speed?

Software
development and

certification

More safety Faster fielding

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 7

[Distribution Statement A] Approved for public release and unlimited distribution.

How do we combine the need for safety with the need for speed?

Software
development and

certification

Even if we decrease the development time to zero,
then certification time is still there and becomes a bottleneck
for our ability to field new systems rapidly.

More safety Faster fielding

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 8

[Distribution Statement A] Approved for public release and unlimited distribution.

How do we combine the need for safety with the need for speed?

Software
development and

certification

Formal methods have the
potential to avoid these

More safety Faster fielding

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 9

[Distribution Statement A] Approved for public release and unlimited distribution.

Formal methods

Input: (i) a model of a system and (ii) a correctness condition.

Output: True/False/Undecided

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 10

[Distribution Statement A] Approved for public release and unlimited distribution.

Different correctness properties

Logical correctness:

Compute 2+3.

The result should be 5.

Temporal correctness:

Compute 2+3.

The time from when the computation is requested until its result

delivered should be at most 20 milliseconds.

Focus of this talk

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 11

[Distribution Statement A] Approved for public release and unlimited distribution.

Why timing of software matter?

Interaction of the software with the physical environment imposes timing requirements on software.

“Timing problems are one of the common causes of run-time failures in process-control systems,

and timing is often inadequately specified.”

M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart, "Software requirements analysis for

real-time process-control systems," IEEE TSE, 1991.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 12

[Distribution Statement A] Approved for public release and unlimited distribution.

Why timing of software matter?
Army avionics interact with physical environment. The world does not stand still.

“The trick there, when you’re processing flight critical information, it has to be a deterministic

environment, meaning we know exactly where a piece of data is going to be exactly when

we need to — no room for error,” Langhout says. “On a multi-core processor there’s a lot of

sharing going on across the cores, so right now we’re not able to do that.”

- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research

Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at

https://www.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 13

[Distribution Statement A] Approved for public release and unlimited distribution.

Why satisfying timing requirements is challenging?

Satisfy for all scenarios

Depends on underlying hardware platformnot just software

Depends on external physical world

Event-driven

Undocumented hardware

Multitasking, Inter-core interference

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 14

[Distribution Statement A] Approved for public release and unlimited distribution.

Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

o = perform_processing_thread1(s);

actuate_command_thread1(o);

}

}

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 15

[Distribution Statement A] Approved for public release and unlimited distribution.

Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

lock_semaphore(sem);

d = read_shared_data_thread1();

unlock_semaphore(sem);

o = perform_processing_thread1(s,d);

actuate_command_thread1(o);

}

}

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 16

[Distribution Statement A] Approved for public release and unlimited distribution.

Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

lock_semaphore(sem);

d = read_shared_data_thread1();

unlock_semaphore(sem);

o = perform_processing_thread1(s,d);

actuate_command_thread1(o);

}

}

deadline

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 17

[Distribution Statement A] Approved for public release and unlimited distribution.

Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

lock_semaphore(sem);

d = read_shared_data_thread1();

unlock_semaphore(sem);

o = perform_processing_thread1(s,d);

actuate_command_thread1(o);

}

}

deadline

Thread’s own execution
The thread may get preempted
The thread may block on semaphore
Thread may experience inter-core
interference (multicore)

Many sources of delay:

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 18

[Distribution Statement A] Approved for public release and unlimited distribution.

Q: How to verify timing of
software executing on

multicore?

A: Use a two-step

framework where some
activities may use formal

methods and some may

not.

Focus of this talk

Well-known in
the research
literature

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 19

[Distribution Statement A] Approved for public release and unlimited distribution.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 20

[Distribution Statement A] Approved for public release and unlimited distribution.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 21

[Distribution Statement A] Approved for public release and unlimited distribution.

Are there tools for these
activities?

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 22

[Distribution Statement A] Approved for public release and unlimited distribution.

Read design documents and

source code.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 23

[Distribution Statement A] Approved for public release and unlimited distribution.

Are there tools for these
activities?

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 24

[Distribution Statement A] Approved for public release and unlimited distribution.

Rich literature. Let us see some
of SEI’s and AvMC’s tools.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 25

[Distribution Statement A] Approved for public release and unlimited distribution.

Single-core. Find Estimate of
Worst-Case Execution Time.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 26

[Distribution Statement A] Approved for public release and unlimited distribution.

Single-core. Find Estimate of
Worst-Case Execution Time.

Worst-Case Execution Time

Analysis

Genetic Algorithms. End-to-End

Measurements.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 27

[Distribution Statement A] Approved for public release and unlimited distribution.

Single-core. Find Estimate of
Worst-Case Execution Time.

Worst-Case Execution Time

Analysis

https://www.andrew.cmu.edu/user/banderss/s

oftware/ga_find_wcet/ga_find_wcet.c

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 28

[Distribution Statement A] Approved for public release and unlimited distribution.

Single-core. Response-Time
Analysis.

Delay from arrival of thread i until it finishes

= time for its own execution

+

time for higher-priority threads’ execution

Compute upper bound on this.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 29

[Distribution Statement A] Approved for public release and unlimited distribution.

Multicore. Find Estimate of
Worst-Case Slowdown

Tool

https://www.andrew.cmu.edu/user/banderss/softwar

e/pyschedanalysiscorunner_including_ga_based_pa

rameter_extraction/pyschedanalysiscorunner_includi

ng_ga_based_parameter_extraction.py

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 30

[Distribution Statement A] Approved for public release and unlimited distribution.

Multicore. Find Estimate of
Worst-Case Slowdown

Tool

Finds slowdown for each thread i, for each co-

runner set of threads co.

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 31

[Distribution Statement A] Approved for public release and unlimited distribution.

Multicore. Compute upper
bounds on response times

Tool

https://www.andrew.cmu.edu/user/banderss/softwar

e/pyschedanalysiscorunner_including_ga_based_pa

rameter_extraction/pyschedanalysiscorunner_includi

ng_ga_based_parameter_extraction.py

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 32

[Distribution Statement A] Approved for public release and unlimited distribution.

Multicore. Profiling Tool

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 33

[Distribution Statement A] Approved for public release and unlimited distribution.

INTERFERENCES DUE TO CONCURRENT ACCESSES TO SHARED RESOURCES
EXAMPLE

• Core  L1  L2  Interconnect DDR
• DDR  Interconnect  L2  L1  Core

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 34

[Distribution Statement A] Approved for public release and unlimited distribution.

EXAMPLE – NXP P4080

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 35

[Distribution Statement A] Approved for public release and unlimited distribution.

EXAMPLE – NXP T2080

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 36

[Distribution Statement A] Approved for public release and unlimited distribution.

MCP Interference Matrix
AvMC MCP INTERFERENCE ANALYSIS

Resource Issue Analysis Mitigation Verification

Local Cache - Local cache miss

- Local cache eviction
- Cache coherency

- Performance

metrics collection
- Cache contents

inspection

- Use of cache
simulators

- Memory allocation adjustment

- Multiple memory controllers
- Cache inhibition

- Cache locking

- Performance metrics

collection
- Cache contents

inspection

Shared Cache - Cache miss

- Cache eviction
- Cache coherency

- Performance

metrics collection
- Analysis of

configuration settings

- Use of cache
simulators

- Memory allocation adjustment

- Multiple memory controllers
- Cache inhibition

- Cache locking

- Cache coloring
- Cache partitioning

- Disabling shared cache

- Off-core performance

metrics collection
- Analysis of configuration

settings

Main Memory - Access Latency - Execution timing

- Off-core
Performance metrics

collection

- Memory bank partitioning - Execution timing

- Off-core Performance
metrics collection

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 37

[Distribution Statement A] Approved for public release and unlimited distribution.

NXP P4080 SYSTEM ON A CHIP (SOC)

SOURCE: https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/qoriq-platforms/p-series/qoriq-p4080-p4040-p4081-multicore-
communications-processors:P4080

R
A

M

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 38

[Distribution Statement A] Approved for public release and unlimited distribution.

Core 5

Function

Core 4

Function

Core 6

Function

Core 7

Function

Controller

Core 3

Function

Core 2

Function

Core 1

Function

Core 0

Function

MCP UDP

to Data

Router

MCP Analysis
Framework

U
D

P

D
at

a

MCP Multi-Core Analysis Framework

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 39

[Distribution Statement A] Approved for public release and unlimited distribution.

Conclusion

The two-step framework for timing verification has been known for a long time in the academic

research literature on real-time systems.

We have presented it to the avionics community.

There are tools that support activities of this two-step framework. Some from SEI and AvMC

presented here.

Some tools can be downloaded here:

https://www.andrew.cmu.edu/user/banderss/projects.html

https://www.andrew.cmu.edu/user/banderss/projects.html

Methodology of Combining Empirical Stress Testing and Formal-Methods Based

Schedulability Analysis for Real-Time Multicore Softw are
© 2023 Carnegie Mellon University 40

[Distribution Statement A] Approved for public release and unlimited distribution.

Thanks!

