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The need for safety (of aircraft)

Ariane 5 Flight 501: Catastrophic failure (causing self-destruct) in 

flight in 1996 due to incorrect software reuse.

Boeing 737 MAX: Two crashes (in 2018 and 2019) due to software 

flaw in the MCAS (Maneuvering Characteristics Augmentation 

System).  

Airbus A400M: Crash during a test flight in Spain 2015 due to 

software flaw.

Helicopters: Army Helicopter crashes in April 2023: Apache in 

Alaska and Black Hawk in Kentucky.

Some crashes are caused by software. The increase complexity of 

software will make the impact of software on safety more important.
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The need for speed (of software development of aircraft)

The Department will instead reward rapid experimentation, acquisition, and fielding.
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Software 
development and 

certification

More safety Faster fielding

How do we combine the need for safety with the need for speed?
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How do we combine the need for safety with the need for speed?

Software 
development and 

certification

More safety Faster fielding
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How do we combine the need for safety with the need for speed?

Software 
development and 

certification

Even if we decrease the development time to zero,
then certification time is still there and becomes a bottleneck
for our ability to field new systems rapidly.

More safety Faster fielding
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How do we combine the need for safety with the need for speed?

Software 
development and 

certification

Formal methods have the
potential to avoid these

More safety Faster fielding
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Formal methods

Input: (i) a model of a system and (ii) a correctness condition.

Output: True/False/Undecided
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Different correctness properties

Logical correctness:

Compute 2+3.

The result should be 5.

Temporal correctness:

Compute 2+3.

The time from when the computation is requested until its result

delivered should be at most 20 milliseconds.

Focus of this talk
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Why timing of software matter?

Interaction of the software with the physical environment imposes timing requirements on software.

“Timing problems are one of the common causes of run-time failures in process-control systems, 

and timing is often inadequately specified.”

M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart, "Software requirements analysis for 

real-time process-control systems," IEEE TSE, 1991.
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Why timing of software matter?
Army avionics interact with physical environment. The world does not stand still.

“The trick there, when you’re processing flight critical information, it has to be a deterministic 

environment, meaning we know exactly where a piece of data is going to be exactly when 

we need to — no room for error,” Langhout says. “On a multi-core processor there’s a lot of 

sharing going on across the cores, so right now we’re not able to do that.”

- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research 

Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at 

https://www.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.
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Why satisfying timing requirements is challenging?

Satisfy for all scenarios

Depends on underlying hardware platformnot just software

Depends on external physical world

Event-driven

Undocumented hardware

Multitasking, Inter-core interference
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Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

o = perform_processing_thread1(s);

actuate_command_thread1(o);

}

}
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Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

lock_semaphore(sem);

d = read_shared_data_thread1();

unlock_semaphore(sem);

o = perform_processing_thread1(s,d);

actuate_command_thread1(o);

}

}
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Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

lock_semaphore(sem);

d = read_shared_data_thread1();

unlock_semaphore(sem);

o = perform_processing_thread1(s,d);

actuate_command_thread1(o);

}

}

deadline
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Concurrent Programming

int thread1() {

perform_initialization_thread_1();

while (1) {

wait_for_event_thread1();

s = read_sensor_thread1();

lock_semaphore(sem);

d = read_shared_data_thread1();

unlock_semaphore(sem);

o = perform_processing_thread1(s,d);

actuate_command_thread1(o);

}

}

deadline

Thread’s own execution
The thread may get preempted
The thread may block on semaphore
Thread may experience inter-core
interference (multicore)

Many sources of delay:
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Q: How to verify timing of 
software executing on 

multicore?

A: Use a two-step 

framework where some 
activities may use formal 

methods and some may 

not. 

Focus of this talk

Well-known in 
the research 
literature
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Are there tools for these 
activities?
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Read design documents and 

source code.
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Are there tools for these 
activities?
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Rich literature. Let us see some
of SEI’s and AvMC’s tools.
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Single-core. Find Estimate of 
Worst-Case Execution Time.
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Single-core. Find Estimate of 
Worst-Case Execution Time.

Worst-Case Execution Time 

Analysis

Genetic Algorithms. End-to-End 

Measurements.
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Single-core. Find Estimate of 
Worst-Case Execution Time.

Worst-Case Execution Time 

Analysis

https://www.andrew.cmu.edu/user/banderss/s

oftware/ga_find_wcet/ga_find_wcet.c
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Single-core. Response-Time 
Analysis.

Delay from arrival of thread i until it finishes

= time for its own execution

+

time for higher-priority threads’ execution

Compute upper bound on this.
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Multicore. Find Estimate of 
Worst-Case Slowdown

Tool

https://www.andrew.cmu.edu/user/banderss/softwar

e/pyschedanalysiscorunner_including_ga_based_pa

rameter_extraction/pyschedanalysiscorunner_includi

ng_ga_based_parameter_extraction.py
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Multicore. Find Estimate of 
Worst-Case Slowdown

Tool

Finds slowdown for each thread i, for each co-

runner set of threads co.
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Multicore. Compute upper 
bounds on response times

Tool

https://www.andrew.cmu.edu/user/banderss/softwar

e/pyschedanalysiscorunner_including_ga_based_pa

rameter_extraction/pyschedanalysiscorunner_includi

ng_ga_based_parameter_extraction.py
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Multicore. Profiling Tool
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INTERFERENCES DUE TO CONCURRENT ACCESSES TO SHARED RESOURCES
EXAMPLE

• Core  L1  L2  Interconnect DDR
• DDR  Interconnect  L2  L1  Core
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EXAMPLE – NXP P4080
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EXAMPLE – NXP T2080
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MCP Interference Matrix
AvMC MCP INTERFERENCE ANALYSIS

Resource Issue Analysis Mitigation Verification

Local Cache - Local cache miss

- Local cache eviction
- Cache coherency

- Performance 

metrics collection
- Cache contents 

inspection

- Use of cache 
simulators

- Memory allocation adjustment

- Multiple memory controllers
- Cache inhibition

- Cache locking

- Performance metrics 

collection
- Cache contents 

inspection

Shared Cache - Cache miss

- Cache eviction
- Cache coherency

- Performance 

metrics collection
- Analysis of 

configuration settings

- Use of cache 
simulators

- Memory allocation adjustment

- Multiple memory controllers
- Cache inhibition

- Cache locking

- Cache coloring
- Cache partitioning

- Disabling shared cache

- Off-core performance 

metrics collection
- Analysis of configuration 

settings

Main Memory - Access Latency - Execution timing

- Off-core 
Performance metrics 

collection

- Memory bank partitioning - Execution timing

- Off-core Performance 
metrics collection
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NXP P4080 SYSTEM ON A CHIP (SOC)

SOURCE: https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/qoriq-platforms/p-series/qoriq-p4080-p4040-p4081-multicore-
communications-processors:P4080

R
A

M
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Core 5 

Function

Core 4 

Function

Core 6 

Function

Core 7 

Function 

Controller

Core 3 

Function

Core 2 

Function

Core 1 

Function

Core 0 

Function

MCP UDP 

to Data 

Router

MCP Analysis 
Framework

U
D

P

D
at

a

MCP Multi-Core Analysis Framework
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Conclusion

The two-step framework for timing verification has been known for a long time in the academic 

research literature on real-time systems.

We have presented it to the avionics community.

There are tools that support activities of this two-step framework. Some from SEI and AvMC

presented here.

Some tools can be downloaded here:

https://www.andrew.cmu.edu/user/banderss/projects.html

https://www.andrew.cmu.edu/user/banderss/projects.html
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Thanks!


