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ANALYSIS AND DESIGN OF R-C PHASE-SHIFT OSCILLATOR NETWORKS

INTRODUCTION

The phase-shift oscillator is a resistance-capacitance tuned oscillator normally em-
ploying three or more L-sections in cascade. The frequency of oscillation may be uniquely
determined and expressed as a function of the network parameters.

In recent years various papers have been published concerning resistance-capacitance
phase-shift oscillators, most of which discussed rather specific or novel circuits, Among
the first papers only the basic circuit was discussed; its simplicity as a stable low-
frequency sine-wave oscillator using only one tube was indicated. Other points brought out
were compactness, lightness, and low expense of building such oscillators, since they con-
tained no transformers and only a few resistors and capacitors. As time passed, the re-
quirements for oscillators of this type increased and innovations of the basic network were
investigated.

The purpose of this report is to analyze more generally the oscillator networks,
specifically for use in designing frequency-modulated subcarrier oscillators (as used in
FM/FM telemetering systems) and in general to correlate various scattered material for
a better understanding of design procedure.

From general equations of the complex transfer characteristics (attenuation and phase
shift) of the oscillator networks, important facts are uncovered governing oscillator stabil-
ity, wave form, amplitude-modulation effects, and linearity of frequency deviation when
resistance legs of the network are varied to cause frequency modulation. The effects of
network “tapering,” defined as the geometric increase or decrease of the impedance of
each successive L-section with respect to its preceding section, are shown in families
of curves for specific cases.

CRITERIA FOR OSCILLATION

If an oscillator is composed of a p path and B path as shown in Figure 1, where u
denotes the amplification factor of the amplifier and j denotes the fraction of theamplifier’s
output that is fed back to its input, then for oscillations to occur:

>
pg=1. (1)
It w=a+jb
and B=c+jd,

AT 1T oL LN D
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[\ then (a +jb) (¢ + jd)
E| EO
- ; -
or the absolute value {(ac - bd)® + (ad + bc)?]? = 1
@ ad + bc _
and arctanm =0or 7.

Figure 1 In practice, the imaginary part of the amplification

can be considered equal to zero, owing to the negligible
effect of electrode and interelectrode impedances at low frequencies. Thus the criterion
for oscillatien reduces to:

a(c? + &) 21 (2)
e
arctan =5 Oor =, (3)
but since arctan—g = Qor 7,
d=20
Equation (2) may be further reduced to:
>4
a=-<. (4)

Equations (3) and (4) show that for oscillation to take place, the amplifier must have
enough gain to overcome the loss through the feedback network and the network must be
purely real. In order for the gain to be sufficient, feedback voltage must be additive in
nature or the phase shift around the p-p loop must be zero.

Thus if the amplifier produces 180 degrees phase shift, then the network must also
shift the phase by 180 degrees. If the amplifier produces zero degree phase shift, so
must the network. Since these two cases are the only ones, there can be only two types
of phase-shifting networks, namely, the 180-degree phase-shift type and the zero-degree
phase-shift type. The networks analyzed in this report are those shown below in Figures
2 to 6.

3 SECTION HIGH PASS 3 SECTION LOW PASS
I80 DEGREE PHASE SHIFT IBO DEGREE PHASE SHIFT

Figure 2 Figure 3
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4 - SECTION HIGH PASS 4 -SECTION LOW PASS
180- DEGHEE PHASE SH[FT 180~ DEGREE PHASE SHIFT
Figure 4 Figure 5

2 SECTION LOW PASS & 2 -SECTION HIGH PASS

SEaps

ZERO DEGREE PHASE SHIFT

Figure 6

THE BASIC OSCILLATOR

Figure Ta shows the basic circuit of a resistance-capacitance phase-shift oscillator
in which a three-section high-pass filter is used in conjunction with a single tube.

Figure Tb is the same oscillator as Ta except that the first fixed resistor in the phase-
shifting network has been replaced by a variable resistor, thus making the frequency of
oscillation variable according to mechanical position. Figure Tc is the same oscillator as
Ta except that the first fixed resistor has been replaced by the resistance of a vacuum tube,
thus making the frequency of oscillation variable according to electric potential.

Any one, any combination, or all the resistors or capacitors may be varied to change
the frequency, and the linearity of the frequency deviation will be different depending on
which circuit element or elements are varied. A linear change in any of the circuit ele-
ments will not produce a linear change in frequency, since frequency is inversely propor-
tional to the resistance and capacitance of the network. This is not of great consequence,
however, since most variable elements are not linearly variable with mechanical position
or electric potential unless specifically so designed. This means that the frequency-
controlling element may be designed to compensate for the nonlinearity in frequency
deviation if desired.

The network used in a phase-shift oscillator serves not only to supply a return voltage
of the correct phase relationship but also as a filter to reduce the amplitude of harmonics
generated in the tube. In the high-pass filter or shunt resistance network, harmorics
occur at frequencies where the network attenuation is very low, and a reduced amplifier
gain results, due to a large amount of feedback. In the low-pass filter or shunt capacitance
network the harmonic voltages are attenuated much more than the fundamental, and a
harmonic improvement at the filter output terminals results.

adsd g § £EAFRAN
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B+ c c c

a - Fixed frequency oscillator

B+§ ¢ ¢ c

b - Mechanically variable frequency
oscillator

== .

c - Electronically variable frequency
oscillator

Figure 7

The decision between using a low-pass
filter and a high-pass filter is sometimes
settled by necessity rather than choice. At
very low frequencies it is desirable to use a
shunt R network because the series C of the
network isolates the plate supply voltage from
the grid without the insertion of extra circuit
elements. At higher frequencies where an
isolating circuit may be added without affect-
ing the frequency determining network, a shunt
C network may be used, and to advantage, be-
cause the input capacitance of the tube (which
is sometimes high due to Miller effect) may
be added to the last capacitor of the network.

THE TAPERED OSCILLATOR

It is known that by progressively increas-
ing the impedance of the sections along a net-
work, a sharper attenuation curve may be had,
in that the loading imposed by any one section
on the previous section is reduced. This also
results in a sharper phase-shift curve (assum-
ing the curve to be a frequency plot). “Tapered-
network” is a term that has been coined by
other authors to describe such a network.
Figure 8 shows the oscillator of Figure Ta
again using a tapered network rather than the
basic three-section high-pass filter.

It may be said that the network of Figure
8 has a taper factor of ten. It should be noted
that the r-c time constants of each section of
Figure 8 are still equal thereby retaining the
simplicity of the design equations. The merits
of such a design are investigated under the
section of this report entitled “The Three-
Section Low-Pass Filter.”

METHOD OF ANALYSIS

In the analysis of any passive network, it
is needless to say that the dependency of the

network transfer characteristics upon its driving and terminating impedances cannot be
overlooked. However, if the driving impedance can be assumed nearly equal to zero and
the terminating impedance infinitely high, conditions which can usually be closely approxi-
mated in practice, the complexity of the network design is considerably reduced. This
simplification is made use of throughout the network analysis of this report.

A great deal of information may be obtained from the transfer characteristics of a
network in the normalized form. The easiest method of obtaining equations expressing
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attenuation and phase shift through cascaded
networks is through the aid of matrix alge-
bra.* After obtainingthe expressions by this
method, they are normalized with respect to
a reference frequency that is closely related
to the network parameters.{ With the equa-
tions inthis form, the networks may easily be
analyzed to determine their relative merits.

THE THREE-SECTION LOW-PASS FILTER

Harmonic-Transfer Characteristics Figure 8

Using the methods of network analysis
outlined in the previous section, the general equations for attenuation and phase shift
through a three-section low-pass filter (Figure 9) are derived in Appendix III (Equations
(217) and (218)), and are given below:

! 2N LKN KM MN KN]
(An)ap = - 10 IOg{[ ol T *IT*1s *sT

an NKM.I_(.ME_]
+[2 () G 5+ Y B a8 }’
K
T

oo E L )
Bp = arctan (6)
1_22n w.;.l(_b;f..'.g..‘.@.‘.K._N)
e RSB CES YR g
T e 0 (' 3
2 @o and Wo RC °

KR MR NR

On reducing Equations (5) and (6) for taper
l ‘ | factors of 0.1, 1, 10, and infinity, where taper
S c c factor equals M/K, N/M, S/L, and T/S, the follow-

T L T_s T T ing equations result:
@ . & e

Taper Factor = 0.1

Figure 9
(An)db = -10 log (2°" + 283-2" + 15083-22" + 1) ,(7)
sh .ol
Bn = arctan Z_ﬂ (8)
1.« 2395

* Refer to Appendix I

T Refer to Appendix II

FF IS W IMM

=4
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Taper Factor =1 |
(An)db = - 10 log (22" + 13-24" 4+ 26:27" + 1), )
28n A 6,21'1
Bn = arctan o s
Taper Factor = 10
(Ap)dp = - 10 log (22" + 3.82-2" + 3.9041-2°" + 1), (11)
a* s’
= arectan —————-
e 1 -8.23" (12)
Taper Factor = ©
(An)db = - 10 log (2" + 32" + 322" + 1), (13)
2311 = 3_21'1

Bn = arctan (14)

1-390

A plot of attenuation, in decibels, on a logarithmic normalized frequency scale for
these four different taper factors is shown in Figure 10 and its corresponding phase-shift
curves in Figure 11. Since oscillation occurs when the phase shift through the network is
180 degrees, it is possible to locate the value of n on Figure 12 corresponding to this point
and then find the value of attenuation corresponding to this value of n on the curve of Figure
11. Since the divisions of n are linear on the logarithmic paper, it is easier to use the
ruling of the paper which actually represents 2D, or by definition of the octave notation,
w/wo. Values of attenuation and phase shift corresponding to multiples of the value of w /o
at 180 degrees are the values of attenuation and phase shift of the harmonics of the oscil-
lation frequency. If a vector diagram were drawn showing the relation between the output
voltage of the fundamental, and second and third harmonic, assuming equal input voltages
of zero phase angle, it would appear as shown in Figures 12 and 13 for taper factors of
1.0 and 10 respectively.

Figures 13 and 14 show the absolute magnitudes and phase angles of the harmonic
voltages, neglecting the action of feedback to the input of the amplifier. The voltage gain
of an amplifier with complex feedback is:

A’ = = ;
(1+ |upl® - 2| uglcos¢)? e
where: A’ = amplifier gain with complex feedback
i = voltage amplification of amplifier without feedback
B = fraction of the amplifier output fed back to its input
¢ = phase shift of the amplifier and feedback circuit at a

given frequency.

A definite value of harmonic voltage is not known until a specific circuit is designed,
but by comparing the change of gain due to feedback of various network types, plus the
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difference between attenuation of the fundamental and the harmonic under considerationfor
these networks, an indication of the network’s merits will be brought out.

Consider Figure 14 first with switch x open. If a
voltage of a certain frequency is applied at point 1, it
appears also at point 2 changed in magnitude by a fac-
tor u,where [ is taken as the voltage amplification of
a vacuum-tube amplifier. Also at point 2 there would
be voltages of harmonics of this frequency due to the
nonlinearity in the characteristics of the vacuum tube.
Now if switch x is closed, the harmonic voltages at
point 2 would be changed by the amount:

1 - (16)
(1 + |ugl?-2| ppleosg)?

Figure 14

If the harmonic voltages were measured at point 1 rather than point 2, they would
differ by the amount of attenuation inserted by j at the harmonic frequency.

As an example, using a three-section low-pass filter with a taper factor of 1.0 for g
of Figure 14 and a single tube amplifier having a voltage amplification p, the circuit would
be in an oscillatory condition if u is equal to or greater than 29.24 decibels, as this is the
attenuation through the filter at the fundamental frequency. Since p is considered to be the
same at all frequencies, it is also 29.24 decibels at the second and third harmonic frequen-
cies. The attenuation through the filter at the second harmonic is 43.4 decibels as taken
from Figure 10. The product uB is -14.16 decibels or a voltage ratio of 0.196. The phase
shift through w is 180 degrees and the phase shift through the network at the second har-
monic is 216.5 degrees (Figure 11). The sum of these phase shifts (180° + 216.5°) is ¢ of
Equation (16) for this particular case. On substituting the values obtained for pf and cos ¢
in Equation (16), it is found that the change of gain of the second harmonic due to feedback
is: 1/[1+ (0.196)% -2(0.196) (0.804)]"* or 1.175 times what it would be without feedback.
Expressing Equation (16) in units of decibels:

] 1
Change of Gain = 10 log 1+ 1p;312—21u+‘3| cos ¢

(a7
= 10 log B
1+ (0.196)% + 2(0.196) (0.804)

or 1.41 decibels increase.

The difference in attenuation, through the filter alone, between the fundamental and
second harmonic was taken from Figure 10 as -14.16 decibels; thus the over-all second
harmonic improvement at point 1 of Figure 14 is 1.41 minus 14.16 or -12.75 decibels over
the second harmonic voltage produced by p. Figure 15 shows the change of gain that would
appear at point 2 of Figure 14 as a function of taper factor for a three-section low-pass
filter for the second and third harmonic voltages. Figure 16 shows the harmonic improve-
ment due to the filter alone and the over-all improvement at point 1 due to change in ampli-
fier gain and filter attenuation.

Stability of Oscillation

The degree of oscillator stability is determined mostly by the characteristics of the
frequency-determining network, specifically its amplitude or phase characteristics.



CHANGE IN GAIN - DECIBELS

NAVAL RESEARCH LABORATORY

2
H:::: SESE H
B = : :
: == EE:

=l Eg 1 _L - : &
T =
gg E e =
£ = e
an ) SRR peris i i

-2 BE5 == i =

GAIN WITH FEEDBACK ot
= CHANGE 1N GAIN * GAIN WITHOUT FEEDBACK _
-~ : [ T T T L - S P TR TR T e - ”(‘.
A 3 1 3

TAPER FAGCTOR

Figure 15 - Change in harmonic gain due to feedback - three-section low-pass filter

HARMONIC GAIN- DECIBELS

| - HARMONIC IMPROVEMENT DUE TO THREE-SECTION LOW-
0 = - PASS FILTER NETWORK ALONE :
e 2- COMPOSITE OF CURVE (1) AND CHANGE OF HARMONIC
= it GAIN IN AMPLIFIER DUE TO FEEDBACK
-5 =——— e : I t i . .. ; -Ir ‘.::I = *
-_‘ .”. _ ﬁ: u‘
- E B - H
-10 :
_|5 — b )
SE2Eass SSEnE
-20 e = £ = -
fist e }:‘ :_E
5t { =
= i S5ES i e e a2
-25 5 - TSI g ssasi "'h.-'
== i
EESiL iH RS i
~ - bo‘s h.hq'\'.ln‘\l - 1-3 o om N \ “ ; - W oW oW ok ww

TAPER FACTOR

Figure 16 - Harmonic transfer characteristics - three-section low-pass filter

11

A3 DL EIFPNP0



12 NAVAL RESEARCH LABORATORY,

Compare the phase characteristics A and B of

2707 /A & Figure 17 for use in a phase-shift oscillator.
B 180 / If a network of curve B characteristic were
. used, a slight variation in 8 would mean a much
90° greater frequency change than that which would

occur were a network of characteristic A used.

Thus, it is only necessary to take the deriva-

tive with respect to frequency of a set of phase

Figure 17 curves to compare them as factors of stability.

With this in mind, the stability characteristics

offered by a three-section low-pass filter may
be investigated from Equation (218) of Appendix Il by taking the derivative of g with re-
spect to n and obtaining relative stability in degrees per octave. A curve may be plotted
from points obtained by varying any one or combination of the network parameters and
taking the derivative at the point where B equals 180 degrees. Figure 18 shows stability as
a function of K for taper factors of 0.1, 1, and 10.

E.E _ ;:_i.ll‘
Ht : }' i
EE i i -:"E: e H
HHH R i
45 + i
40 T
g £ £
= E :
0 - 34 1
g S =SEIEEEE
o ®E s
&
s ==== 2! g
8 H
| ==
30 =
c ==
g
25 |
Ko=L,M=S,N=T,B:180°
“ =
# ﬂ'-;’?' wRC : 2
B HH g 1 £+ e et

3 10 30
Figure 18 - Frequency-stability characteristics - three-section low-pass filter

The equations from which the curves of Figure 18 are plotted are determined as follows:

1. The phase shift B through the network is a function of frequency (n) and the
resistance and capacitance parameters K, M, N, L, S, and T, as determined in
Appendix III:
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g KMN n(N K M _K

o
LST ;P I )
B = arctan ™ 2m (KM EE o KM E MN KN (18)

|

+%+

_ s

LT "LT LS " sT *ST

The derivative of B with respect to frequency (n) is also a function of frequency and
the parameters (see Appendix ITI) :

dB_ -[2"(xZ) +2"(YZ - 3%) + Y] 2" (39.72) degrees

(19)
dn. T 9(a% . 0%V + VP < 37 41 oetave
where
KMN
X8t (20)
_N K M K MK
FONE b BLB TT (21)

_KM KN KM MN KN
Z=Ir*LTr*IstST TST (22)

For B equal to 180 degrees, frequency is a function of the resistance and capacitance
parameters [Appendix III, Equation (240)] :

2 =(%)* (23)

where X and Y are the same as above.

Therefore the derivative of 8 with respect to frequency may be made a function of
the parameters only, for 8 equal to 180 degrees [ Appendix 111, Equation (241)]:

g _ -19.44Y VXY
dn YZ - X (24)

This equation may be reduced for any taper factor in terms of any one or combination
of parameters.

2. The following equations result when Equation (24) is reduced for taper factors of
0.1, 1, and 10 in terms of the resistance parameter K:

Taper Factor = 0.1

2 1
¥ X ] [ (E) L]a
4 S [111K0 12 (g ) +12 & |
dn (25)

2
[2442 (KL) +3ma K . 12]
0 KO

_79.44(315_0,(3)[3(_%_)2 +3K£a:|é
12("]!'((;)2 +14(—E;)+3

Taper Factor =1

d
Eﬁ" i (26)

AFf i3 £HIRNA
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Taper Factor = 10

-79.44 (1.11%— + 2.1) [1.11(,%) +2.1 II:O:] (27

2,442 (1%)3 + 4.?3(1%,) +2.1

The parameter Ko is a point around which K is varied and it is taken equal to its cor-
responding capacitance parameter L. An example of reducing the equations is given in
Appendix III.

gl

Amplitude-Modulation Effects

If all the network resistors or capacitors of Figure 9 were varied simultaneously to
vary the network corner frequency, and therefore the frequency of oscillation, so that the
corner frequencies of each section remained equal, no change in attenuation through the
network would result. (Zero generator impedance and infinite load impedance areassumed.)
Since this report deals with the variation of one- and two-resistor legs to vary frequency
it is desirable to investigate the corresponding variations in network attenuation. The
complex attenuation through a three-section low-pass filter at any frequency is (see Appen-
dix III for derivation):

e 1
o=l (28)
where
-~ KM KN I{NI m KN
o [ 1 ~(wCR) (LT g e ] (29)
ik b= [wer) ¥ - woR)(F+E+ H+ § 42 K] 00

For oscillation to occur B equals 180 degrees, the imaginary part of the attenuation
must be zero, and Equation (28) reduces to the following:

Bt KM lKN KM MN KN\ 1)
1- R\ r+Tr*1s * 5T * ST)

Since at 8 equal to 180 degrees, frequency is a function of the parameters K, M, N, L,
S, and T, Equation (31) is reduced to attenuation (in decibels) as a function of the param-
eters (as given by Equation (248), Appendix III):
(N M K M K) KM  MN KN

L8 8§ ALx LT " 1S T ST *ST/| (33

Agp =-201log |1 -
I.ST

Further reduction of Equation (32) in terms of the resistance parameter K for taper
factors of 0.1, 1, and 10 result in the following equations:

Taper Factor = 0.1

Agp = -20 log (2442%—“- +374 + 12 %) _ (33)
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Taper Factor =1
Agy = -20 1og (1255 +14 + 350 (34)
Taper Factor = 10
Agp = -20 log (2.442 KEn +4.73 + 2%9) . (35)

A plot of Equations 33-35 is shown in Figure 19. The attenuation at K equal to 1 has
been taken equal to zero decibels or a voltage ratio of 1; the values of attenuation for other
values of K are relative. The curves indicate the best point of operation for the least
amount of amplitude modulation when the frequency of oscillation is varied by varying the
resistance parameter K. It can be seen that the network tapering has little effect on the
sharpness of the curves but has a marked effect on the best point of operation. The opera-
ting points for the least amount of amplitude modulation are seen to be at K equals 0.3,

0.5, and 1 for taper factors of 0.1, 1, and 10 respectively. The plotting of these curves
with M or N as variable would result in curves similiar to those of Figure 19. If two of
the resistance parameters were varied simultaneously, the resulting curves would be
flatter than those for a single resistance variation.
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Figure 19 - Amplitude-modulation characteristics -three-section low-pass filter

Frequency-Deviation Characteristics

The equation of frequency in terms of the parameters K, M, N, L, S, and T is obtained
by setting the network phase shift g equal to 180 degrees and solving for frequency:

on = f”: = wRC =(%) 3 (36)

atty e oM
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where
x- BB o
M K M K
v=(F+E-H5:03) )

For taper factors of 0.1, 1, and 10, expressing frequency (2“) as a function of the
resistance parameter, K, the following equations result:

Taper Factor = 0.1

n 12 3
- (% 1) )
Taper Factor =1
n _ (3Ko :
3 ( Ko s 3) (40)
Taper Factor = 10
1
n . (21K 2
= (-—-—»K 5 1.11) . (41)

A plot of frequency (2™ vs. K is shown in Figure 20 for Equations (34), (40), and (41).
Since w is a known quantity, RC equals the value taken from the curve, divided by w.

KR MR NR

TTT

g,.L M=S,N=T, B-lao'

e
L

30 |-

b L TR TR

wCR

Figure 20 - Frequency-deviation characteristics— three-section low-pass filter
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Theoretically, an infinite number of R and C combinations would work, but practical limita-
tions prohibit this. Some of these are:

(1) Availability of precision capacitors (Mica, etc.) in large values
(2) Grid-resistance limitations of vacuum tubes

(3) Limit in approaching a zero-impedance driving source.

THE THREE-SECTION HIGH-PASS FILTER

S, £ £
| L S T
Harmonic-Transfer Characteristics
. - ] KR MR NR
The diagram of the three-section high-
pass filter is shown in Figure 21.

The general equations for attenuation
and phase shift through this network are de- Figure 21
rived in Appendix IV, and are given by:

2
(An)db=—1010g{[1- gm (15, ST LT 1T 18],

KM MNTRN Y MN T RN

KM KMN
nf8 B L T 8 N s LEE
SRR R MYE*MIN'NTN) 2 wvw (43)
) T St _];'S_+,§I+H,+£+J-ﬁ)
KM "MN "KN ¥ MN T KN

where 21 = w /w,
and wp, = 1/RC.

On reducing Equations (42) and (43) for taper factor of 0.1, 1, 10, and infinity the follow-
ing equations result:

Taper Factor = 0.1

(An)dp = -10 log (277 + 283-2~"1 4 15083-27%1 4 1), (44)
123:9°0 . g=°%
B pn = arctan 1 -38pm (45)
Taper Factor =1
(Ap)dp = -10 log (2-°" + 13.27"0 4 26-2-21 4 1), (46)
- .9~ _o._3n
Bn = arctan 02—=2"_. (47)

-5

Py o 5 88 B SIOW SR T o B8 § 4ol
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Taper Factor = 10

(Ap)dp = -10 log (27°0 + 3.82-2-"1 + 3.9041-27R 4+ 1), (48)
v 3.21:270 . 2~
B, = arctan T -3399% (49)
Taper Factor = ©
(Ap)ab = -10 log (2°°0 + 3-2-10 4 3.27%0 4 1), (50)
g 3.2—-1'1 et .
Bn = arctan 1 - 3.2-m o)

A plot of Equations (44) through (49) inclusive is shown in Figures 22 and 23. In the
same manner as discussed in the preceding section, Figure 24 is obtained for the three-
section high-pass filter for taper factor = 1, and shows the relation of phase shift and
voltage transmission between the fundamental and second and third harmonics. On compar-
ing Figure 24 with Figure 12, it is noted that the second and third harmonic components
lag the fundamental for both the three-section low- and high-pass filters by about the same
amount but their magnitude relationship is much different. In the low-pass filter the
fundamental is much larger than the harmonics while in the high-pass network the har-
monics are passed with much less attenuation than the fundamental. Because of this, the
amount of feedback at harmonic frequencies is quite large for the high-pass network, thus
producing a decrease of harmonic gain in the amplifier as shown in Figure 25.

Stability of Oscillation

The general equation relating frequency stability in terms of phase-shift curve slope
in units of degrees per octave is as follows (see Appendix IV for derivation) :

dB _ -79.44Y (XY)? degrees 52)
dn YZ - X octave
where
sl b B Bk
Y= +K+M+N+N+ﬁ- (54)

zZ

e -k (55)

Reduction of Equation (52) for taper factors of 0.1, 1, and 10 in terms of the resistance
parameter K results in the following equations:

Taper Factor = 0.1
/2

K
dg _ -19.44 (1221?0 +1)

2
1342(%) +1474 £ 412
Ko

(56)
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Taper Factor =1

dg _ -19.44 ,(BEKQ +1) - -

Taper Factor = 10 35
K
dg _-79.44 (221 +1)

dn ~ 2.431('(55 +4.741(%)+ 2.1 .

The curves of Equations 56, 57, and 58 are shown plotted in Figure 26 as slope in
degrees per octave as a function of K. This family of curves indicates that the greatest
stability occurs at a taper factor of 10 and that the best stability for any taper factor is
at the value of K = 1, whereas in the low-pass filter the value of K for best stability varied
with taper factor. However, the values at K = 1 for the low-pass filter are equal to those
of the high-pass filter at the same taper factor.

T 2 5 i §5ecSig
dRmgagam

< < <
KR< MR < KR 2
> £ 5

=

1R HHHT
FHH

o
i Ko= L, M=S,N=T, B=180°

2 = ;'o: whG

21 bz

Figure 26 - Frequency-stability characteristics - three-section high-pass filter

Amplitude-Modulation Effects

The general equation for determining the variation of network attenuation when the
network parameters are varied to change frequency is as follows (see Appendix IV for

derivation):
(A)gp = -20 log (1 2 Y—XZ)I (59)
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where X, Y, and Z are the same as in Equations (53), (54), and (55) respectively. On re-
ducing Equation (59) in terms of the resistance parameter K for taper factors of 0.1, 1,
and 10, the following equations result:

Taper Factor = 0.1

(A)gp = ~20 log (1342 X c1aras %ﬂ) (60)
Taper Factor =1

(A) gp = -20 log (105 + 16 + 3E2) 61)
Taper Factor = 10

(A)ab = 20 log (2.431 £ 441+ e ) (62)

Figure 27 shows a plot of Equations (60), (61), and (62) in terms of voltage ratio with

the largest ratio taken as 1 for ease in examining the curves. The broadness of the curves

seems to vary inversely with taper factor. The taper factor of 10 introduces more am-
plitude modulation than the taper factor of 1, etc. The value of K at which the curves
reach their maximum varies appreciably between the taper factor of 1 and taper factor of
0.1 curves.

= — BEES
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| ] B S T
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Figure 27 - Amplitude-modulation characteristics - three-section high-pass filter
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Frequency-Deviation Characteristics

The general equation expressing the frequency of oscillation as a function of the net-
work parameters is as follows (see Appendix IV for derivation):

2-n =(—§-)% or 20 = (%) 5 (63)

where X and Y are the same as in Equations (53) and (54) respectively.

On reducing Equation (63) in terms of the resistance parameters K, M, and N for
taper factors of 0.1, 1, and 10 the following equations result:

Frequency as a Function of K

Taper Factor = 0.1

1
on = (122-1-{IS + 1) 2 (64)
s
Taper Factor = 1
2 1
T2
n - —_
2 (5 &t 1) (65)
Taper Factor = 10
t 4
K e
o = (2.21K—0 + 1)’ (66)

Frequency as a Function of M

Taper Factor = 0.1

;= (L2 + 11) 2 67)
Taper Factor =1

m- (M5 (68)
Taper Factor = 10

on = (2.11 = 1.1) . (69)

Frequency as a Function of N
Taper Factor = 0.1
1
an = (12 + 111)-i (70)
Ny
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Taper Factor =1

- ol . NF
an = (31% 5 3)

Taper Factor = 10

LI

g N )-
2 (2.1 N +Lu) o

Figure 28 shows a plot of Equations (64), (65), and (66).
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e |
o T
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s Lt ayom i §
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€ KRY MRS NRS Eo i
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B
K:L,M=S,N=T B =180°
CITLITTIis | I S 1S 'EE THRE T T
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(71)

(72)

Figure 28 - Frequency-deviation characteristics - three-section high-pass filter
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THE FOUR-SECTION LOW-PASS FILTER
Harmonic-Transfer Characteristics [ 6 | c | ‘

2 = L £
P Q S 7
The diagram of the four-section low- T T T
pass filter is shown in Figure 29, o 3 ® —o

The general equations for gain and
phase shift through this network are de- Figure 29
rived in Appendix V, and are given by
Equations (73) and (74) respectively:

(An)dp = -10 log [(2""X - 2°7Z + 1) 2 + (2*°Y - 2R 5)?]

(73)

MEF LT X o AT NN
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z“x-g}g
ﬁn "arctan 2 x_-z. Z+1 (74)

where _ KLMN
X = posT (75)
Y=KLN+KLN+KLM+KLM+LMN+KMN KMN -
PST * PQT * PQS T PQT © QST ' PST ' QST (76)
Z=LN+LM+KM+KN+KN+KL+KM+KN+LN+M1‘¢
QT PT ST
+LM+KM+KM+KL KL =
oS 55~ *TPQ (77)
K K+L K+L+M K+L+M+N
6 =5+ addmr + T (78)
L
2 . wCR. (79)

On reducing Equations (73) and (74) for taper factors of 0.1, 1, 10, and infinity, the
following equations result:

Taper Factor = 0.1
(An)db = -10 log [(24" - 366-27" + 1)*+ (34-2°0 - 1234.20)°] | (80)

34-2°0 - 1234-20

= arctan - 81
Pn 20 _ 366.2710 4 1 0
Taper Factor = 1
(An)pq = -10 log [(2*1 -15-2" + 1)° + 722 - 102, (82)
.93 _ 1p4.90
Bn = arctan £ 108 (83)

M _ 15.9%0 1
Taper Factor = 10
(An)gb = -10 log [(2" - 6.63:2°" + 1)% + (4.3-2°0 - 4.321-2")%] , (84)

4.3.2°0 - 4,321-27
= arctan — - . (85)
Pn 94N _ g 63-220 4 1
Taper Factor = ©

(An)gp = -10 log [(2°" - 6:2°1 + 1)* + (4.2 - 4-2n)%], (86)

93 _ 4,900
Bn = arctan 5ok - @)

A plot of Equations (80) through (85) is given in Figures 30 and 31 for the four-section
low-pass filter with taper factors of 0.1, 1, and 10. The curves show the variation with



NAVAL RESEARCH LABORATORY

i i1
i1
1}
T
1
T

A FFk Lo eWINA) A

1B
1T
I

¥RENS DRI P T

n—-OCTAVES

=%

Figure 30 - Attenuation characteristics - four-section low-pass filter
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Figure 32 - Harmonic transfer characteristics - four-section low-pass filter

frequency of absolute attenuation in decibels and the phase shift in degrees through the

network. From the curves of Figures 30 and 31, the curves of Figure 32 were obtained

in the same manner as were the curves of Figure 16 obtained from the three-section.low-

pass filter. On comparing curves 2 of Figures 32 and 16 it is noted that the attenuation

of second and third harmonics for the four-section network is about the same as for the i
three-section network. This means that one offers little or nothing over the other from

the standpoint of passing harmonics into the output,

Stability of Oscillation

The general equation relating frequency stability and phase-shift curve slope in units
of degrees per octave is derived in Appendix V:

3/2

dg __-79.44 (8Y)
dn =~ 8YZ - X56° - Y2 (86)
where X, Y, Z,and & are the same as in Equations (75), (76), (77), and (78) respectively.

On reducing Equation (88) in terms of K for taper factors of 0.1, 1, and 10, the follow-
ing equations result:

Taper Factor = 0.1

. [36,563(%)2 0 5,170(%% 123]3/8 (79.44)

[11,341,033(%)3 s 2,342,134(%)2 " 145,904(—%—0)», 2,323]

2- (89)
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Taper Factor =1

@ [24. K 40(%} ’79.44) "

5\

z
224(1{0) 436( =) +21 Kw = 29]

Taper Factor = 10

K 12 K \:I 3/2
s 6663( ) 411 704(%5 +3.21] (10.49
K 2

K\ ]
4 33, 8546\K + 31.559(1{0!1 +9.272

a8
dn

(91)

[
[11 341088\ K. )

The curves of Equations (89), (90), and (91) are shown plotted in Figure 33 with sta-
bility, in degrees per octave, as a function of the resistance parameter K for taper factors
of 0.1, 1, and 10.

It is noted from the curves that the stability is highest at K equal to 1 for taper factors
of 1 and 10 and that it is practically constant for taper factor equal to 0.1. Also, it is seen
from the curves that stability increases with taper factor and that the greatest rate of
increase is for values of taper factor between 1 and 10.
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Figure 33 - Frequency-stability characteristics - four-section low-pass filter
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Amplitude-Modulation Effects

The general equation for determining the variation of network attenuation when the
network resistance or capacitance parameters are varied to change frequency is derived
in Appendix V:

2
(A)gb = -20 log [(-‘%) x-($)z+ 1] (92)
where X, Y, Z, and b are given by Equations (75), (76), (77), and (78).

On reducing Equation (92) in terms of the resistance parameter K for taper factors
of 0.1, 1, and 10, the following equations result:

Taper Factor = 0.1

2
1111%», - 1111%—+ 123 "
Kap v =200 om0 @l 0 (3431? +23) +1 (93)
el 0
3Bz +1 By +1
- 0 0
Taper Factor = 1
K " K
4 h8 g 4=+ b %
(A)ap =-2010g || —| & | & — (10 = 5) 3t (94)
' 6=—+1 © \B6z=+1 ¢
. Ko Ko
Taper Factor = 10
2
1.111%+3.21 et [t §—+ 3.21 &
(A)gp = -20 log !; - —K“— (3.43 &+ 3.2) +1]- (95)
8.3=-31 ° 3.3 =—+1 9
Ku Ko

Reduction of Equation (92) in terms of the resistance parameters L, M, and N for
taper factor = 1 results in the following equations:

As a Function of L:

L i L
3ol L S+ 17 -

(A)gp =-2010g || =2—| + - 0 (7——+a)+1 (96)
548/ T igi,q /) Lo |
Lo Lo

As a Function of M:
2

2%4,8 = 231 +8

(Adgp =20log |} ——2— | == — 20— (7-11‘—-+a +1 (97)
M MD M Mo
50— +2 5— +2
Ma MO

AARI AL EF BN 0
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As a Function of N:

2
Ilfr*g\ N /§+9 N
(A)gp = -20log}[—=2 | = -f & Boea8) +1 | (98)
N_ No N No 7/
5 +2 B2
\No NO

Figure 34 shows a plot of Equations (94), (96), (97), and (98) where the relative network
attenuation is given as a function of the resistance parameters with the network phase shift
equal to 180 degrees. In Figures (35) and (36) similar curves are found with K plotted for
taper factors of 0.1 and 10.

Frequency-Deviation Characteristics

The general equation expressing the frequency of oscillation as a function of the net-
work parameters for the four-section low-pass filter is derived in Appendix V:

i

o (8=
2n = = wCR _(Y> (99)

where Y and & are the same as in Equations (76) and (78) respectively.
On reducing Equation (99) in terms of the resistance parameters K, L, M, and N for
taper factors of 0.1, 1, and 10, the following equations result:
Frequency as a Function of K:
Taper Factor = 0.1
K 3

1111 Xt 123

on
K
33 Ko + 1

(100)

Taper Factor =1

A
[

4—+6
on = Ko (101)
BE:) +1

Taper Factor = 10

[T

K
1'111Ko+ 3.21

on (102)

]

K
3.3 Ko+ 1
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Frequency as a Function of L:
Taper Factor = 0.1

=
1118 4+ 1123 \2
Ly

L
Lo

(103)

23 —+11

Taper Factor =1

o — i 77} i (104)

Taper Factor = 10

ik
1.11 'E?.* 3.211) 2
ks = : (105)
gai Ly
Lo

Frequency as a Function of M:

Taper Factor = 0.1

1

11% +1223\ 2

n = | M) (106)
233+ 11

Taper Factor = 1

3
oM ,8\2

on = .__.1‘1&0 (107)
5—42
Mo

Taper Factor = 10

1

1.1%— +3.221\ 2
| —a—— (108)
8.2+ 11

Frequency as a Function of N:

Taper Factor = 0.1

~* 1233
2!1 = N (109)
23 . +11
[}
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Taper Factor =1

= +9 :
on = NON_ (110)
5-N'—+2
1]
Taper Factor = 10
1
%—1»3.321 :
ol - e 5 (111)
3.2 F+ s |
a

A plot of Equations (101), (104), (107), and (110) is given in Figure 37 where the
variation of frequency due to variations of the resistance parameters K, L, M, and N for
taper factor = 1 is shown. Similar curves where K is varied for taper factors of 0.1, and
10 are given in Figures 35 and 36.

THE FOUR-SECTION HIGH-PASS FILTER
Harmonic-Transfer Characteristics

The diagram of the four-section high-pass filter is shown in Figure 38.

The general equations for attenuation and phase shift through this network are given
by Equations (112) and (113) respectively:

(An)ap =-10 log [(2-*0X - 2707 + 1)* + (2786 - 2-ny)*], (112)
- 20§ - 2-ny
Bn = arctan 2-0x - 3-Mg 5] (113)
where
_ PQST
X = KLMN (114)

PQT PQT PQS PQS £ QST , PST L PST

Y “gmn tKLN TKLM T KIN® IMN T RMN * LMN (115)

7z =QT+QS +PS +PT PQ+PS+PT PT+QT +ST
LN KN MN

Qs + PS PS + PQ PQ
+ e <l (116)

P+Q +P'+Q+S +P+Q+S+T
L M N

P
0=%+ (117)

w
20 =—=CR.
W

T R R H O,
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Figure 37 - Frequency-deviation characteristics - four-section low-pass filter
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On reducing Equations (112) and (113) for taper factors of 0.1, 1, and 10, the follow-
ing equations result:

Taper Factor = 0.1
(Ag)db = -10 log [(2" - 366-2720 + 1)” + (1234277 - 34.2-°n)"], (118)

1234.2-0 _ 34.2-%D

Bn = arctan -9 . 366.2-7 3 1 (119)
Taper Factor =1
2
(Ap)gp = -10log [(27® - 15:272R 4+ 1)* 4 (10-27M - 7:2-) ], (120)
»9=N _ 7.9-M
pn = arctan 30 jeg, T - (121)

Taper Factor = 10
(Ap)gp = -10 log[(2-*n - 6.63-2-°n 4 1)2 + (4.321:21 - 4.3-2'33)?] s (182)

4.321-270 - 4 3-2-n
2™ _6.63-27P;: 1

Bn = arctan . (123)

A plot of Equations (118) through (123) is given in Figures 39 and 40 for the four-
section high-pass filter with taper factors of 0.1, 1, and 10, and shows the variation with
frequency of absolute attenuation in decibels and the phase shift in degrees through the
network. From the curves of Figures 39 and 40, the curves of Figure 41 were obtained
in the same manner as were the curves of Figure 16 obtained for the three-section low-pass filter.
On comparing the curves of Figure 41 with those of Figure 25 (corresponding curves of
the three-section high-pass filter), it is noted that the four-section network offers less
harmonic attenuation than the three-section network. The reason for this is that the
operating point of the four-section network (for oscillation) is on a flatter portion of its
attenuation curve and therefore the difference in attenuation between fundamental and
harmonics is less than for the three-section network.

Stability of Oscillation

The general equation relating frequency stability and phase-shift curve slope in units
of degrees per octave is derived in Appendix VI:

d8  _-19.44 (59) V2
dn - 6YZ -X8° - Y 0

where X, Y, Z,and 0 are thesame as in Equations (114), (115), (116), and (117) respectively.

amI H ¥ LM A AN
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Figure 41 - Change in harmonic gain due to feedback -
four-section high-pass filter

Reduction of Equation (124) in terms of K for taper factors of 0.1, 1, and 10 result in
the following equations:

Taper Factor= 0.1
£

Taper Factor = 1

gﬁ . -79.44 [5(%9-)2 + 41(%9)+ 1a]i (126)

an [29(%)’ & 2;;@)3 + 430(%e) 1 158 |
Taper Factor = 10

ia B -79.44[3.2(%)2 +11.73 (%) + 3.65] i

" g.am(Ke) 4 s1.n06(Ke) s 33.100(Ke) 4
9.272 K) +31.706( E2) +33.764(52) + 11.284

K K
[2828(%)3 3 3492104(%2)!4, 7041364(%9) ¥ 3295688]

_,{9.44[23(&)2 i 28370(5‘1) F 135631 ‘h

(125)

(127)

The curves of Equations (125), (126) and (127) are shown piotted in Figure 42 with
stability, in degrees per octave, as a function of the resistance parameter K for taper
factors of 0.1, 1, and 10.

It is noted from the curves that the stability is highest at K equal to 1 for all three
taper factors and that the stability increases with taper factor, with the greatest rate of
increase occurring for values of taper factor between 1 and 10.
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Figure 42 - Frequency-stability characteristics - four-section high-pass filter

Amplitude-Modulation Effects

The general equation for determining the variation of network attenuation when the
network resistance or capacitance parameters are varied to change frequency is derived
in Appendix VI:

(4] 0
(An)db =-20 log[( 1—,)2 X - (;;;) Z + 1] (128)
where X, Y, Z, and 0 are given by Equations (114), (115), (116), and (117).

On reducing Equation (128), in terms of the resistance parameter K for taper factors
of 0.1, 1, and 10, the following equations result:

Taper Factor = 0.1

K ? K
1233 +1 1233 — +1
(Agp =-20l0g || —po— | Ro (Ko ) (123K  545) , 3)(120)
i 128 1 +28
Taper Factor =1
9 2
 +t1 o0 +1
6K
(An)db =-201og|| —Bo | Ko | “Ko © +9) +1| . (130
2k .5/ K 2k ;5 (K )

A1 BOFDCILACTITRIN 0
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Taper Factor = 10
K ? K

3.321— + 1 3.321 3 +1
(Ap)gp = -20 log + —%—q' - + (—3-:% + 3.42) +1{(131)
1.1+ 3.2 1.1 +3.2
Ku KD

Figure 43 shows a relative plot of Equations (129), (130), and (131) as a voltage ratio
vs. K/Ko. o
Frequency-Deviation Characteristics

The general equation expressing the frequency of oscillation as a function of the net-
work parameters for the four-section high-pass filter is derived in Appendix VI:

2-1’1 = i = _1_.-. = (6_) %
Wo wRC Y {132)
where Y and 0 are given by Equations (115) and (117) respectively.

On reducing Equation (132) in terms of the resistance parameters K, L, M, and N for
taper factors of 0.1, 1, and 10, the following equations result:

Frequency as a Function of K

Taper Factor = 0.1

x
11 % 428\ P
o (133)
1233 -Ié— 1
0
Taper Factor =1
K )
a2 o5 AF
2[1 = _..._.—.Kn (134)
9 = +1
Ko
Taper Factor = 10
S
1.1 ﬁ— +32 \?2
on _ -—"K—- . (135)
3.321 3~ + 1
0

Frequency as a Function of L

Taper Factor = 0.1

|

1l ;23
GO, f Bmelo (136)

L
1223 Lt 11
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Taper Factor =1

1
2 i— Th L
ol - ____.L" (137)
8—+2
Lo
Taper Factor = 10
3
1:1 % T e
g . (138)

L
3.221 T |

Frequency as a Function of M

Taper Factor = 0.1

/ 1131+ 23
2 = (139)
\1123—— +111
Taper Factor =1
1
2 —%— 5 %
e = ——“— (140)
T-N-I';‘+ 3
Taper Factor = 10
M ik
151 ot 3.2 2
28 = 1':1 . (141)
3.211 E-I- 1.11
Frequency as a Function of N
Taper Factor = 0.1
1
% +33 2
ol — _'3—._. (142)
123N—u+ 150
Taper Factor =1
L
wﬁ—+ 6 E
2 = -"—— (143)

G‘ﬁ;+4



NAVAL RESEARCH LABORATORY 47

Taper Factor = 10

1
g— + 33 2
on o | Sgnesee s (144)

N
\3.21 No +-1:11

Figure 44 shows a plot of Equations (133), (134), and (135).

THE ZERO-PHASE-SHIFT NETWORK
Harmonic-Transfer Characteristics
The diagram of the four-section zero-phase-shift network is shown in Figure 45.

The general equations for attenuation and phase shift through this network are derived
in Appendix VII:

(Anap = ~10 log{(Z - 270 = - 2%)* + (270 - 22v)°} (145)
27 P52y
Bn = arctan 7 2-21’12 L4 22]]x (146)
where
LM
X = Qs (147)
_M_ L LMT LM PLM PM L
Y=9+*5*%gs " QN "Rest@st (148)
z_1+m+£ PL PLTM PLM P PTM
= NS KQ ' KQNS T KQN TQ* N@s
+BM LT PM LT L P PL (149
QN TQNTRKS*NSTN'S T EKS )
5 I B PEM PM PIT PF PLT PL PT P (150
TNTK*RNS P RNTRKQN T QN P ENSTRNY NS TN )
PT
z = N (151)

on - wi = wCR.

On reducing Equations (145)and (146) for taper factor of 1 and 10 the following equa-
tions result:

Taper Factor =1

(Ap)gp = -10 log (2% + 19-2°" + 87 4 70-2720 4 2-47) (152)

ABDINICYVIHG 0
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Figure 44 - Frequency-deviation characteristics - four-section high-pass filter
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Figure 45
10-2°1 - 7.20
Bn = aretan ~ioan 5, 3-%) (153)

Taper Factor = 10

(Ap)dp -10 log (2" + 5.41-2°1 + 7.591 + 5.591041°2-1 4+ 2-“N)  (154)

4.321-2°0 - 4,3-.20
-(2° - 6.54 +27°1)

arctan {15R)

An

A plot of Equations (152) through (155) is given in Figures 46 and 47 for the zero-
phase-shift network with taper factors of 1 and 10, and shows the variation with frequency
of absolute attenuation in decibels and the phase shift in degrees through the network.
From the curves of Figures 46 and 47, the curves of Figure 48 were obtained in the same
manner as were the curves of Figure 16 obtained for the three-section low-pass filter.
Comparison of Figure 48 with like curves of any of the other filters shows that this net-
work has the least desirable characteristics in this respect.

Stability of Oscillation

The general equation relating frequency stability in terms of phase shift curve slope
in units of degrees per octave is derived in Appendix VI:

/2
dg _ -79.44 (6Y) 156
dn "X -06YZ+Y X {£56)

where X, Y, Z, 0, and X are given by Equations (147) through (151). The stability in
degrees per octave is the same as for the other four-section networks for any taper factor
when the parameter against which stability is being plotted is equal to 1.

Amplitude-Modulation Effects

The general equation for determining the variation of network attenuation when the
network parameters are varied to change frequency is derived in Appendix VI:

¥, 5 )
(Z % E—Y X
where X, Y, Z,0 , and T are given by Equations (147) through (151) respectively. On re-

ducing Equation (157) for taper factors of 1 and 10 in terms of K, the following equations
result:

(A)db = -20 log (157)

A FEHH LICAOANTITR N
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I~ CHANGE OF GAIN IN AMPLIFIER DUE TO FEEDBACK
2- HARMONIC IMPROVEMENT DUE TO FILTER NETWORK ALONE
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Figure 48 - Harmonic transfer characteristics - zero-phase-shift network

Taper Factor =1
K 2%
4—+6 ] 6K0+1

(A)gb = -20 log (5&+ 10) Lo o (158)
= 63 | et iesi %
K, Ko
Taper Factor = 10
" 1111 5-+3.21 e e
(A)gp = -20 log (3.2 -K—°+ 3.43) -] K° - K° K—" -(152)
335 41 Lt i 321
Ko Ko

Equations (158) and (159) are shown plotted in Figure 49. This graph, unlike the
similar graphs of the other filters, does not reach a maximum; thus there is no ideal point
of operation to obtain the minimum amount of amplitude modulation.

Frequency-Deviation Characteristics

The general equation expressing the frequency of oscillation as a function of the net-
work parameters is derived in Appendix VI:

0\ z
on =(‘1’F) (160)
where Y and 6 are given by Equations (148) and (150) respectively.

Reduction of Equation (160) for taper factors of 1 and 10 in terms of the resistance
parameter K gives the following equations:
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Taper Factor =1

o = Ko (161)

Taper Factor = 10

“on = X : (162)

Equations (161) and (162) are found plotted in Figure 49.

Q
K L Two Zero-Phase-Shift Networks Isolated

D_W"‘Tl by an Amplifier
U
P

= = The diagram of a two-section zero-phase-
T - shift network is shown in Figure 50. The charac-
o & < teristics of two such networks isolated by an
amplifier stage may be investigated by analyzing
one of the networks by means of matrices. (See

?

o
igure 50 Appendix I for a description of this method.)
x — 1 =_L=._IL =i.
C 7 jw PC PCR U
LettingR =1,
: 1
Xe ot
¢ o1
a.|6=1lK I|0.1|U'1 0
CIB 0|1 %'1 0|1 %'1
KU Q.
_(1+ ) ) l K 1+LU
= | = L |
L
a - (1+5) (+§)+r
- u(E) +u(Q) + (B2 L ELy)
“U(P) +U i +<LP +L+1 -
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or substituting U = jwCR,

= e il T 3 -
a _ijR(%-)-— j;}b—R (%)+ %%* K 1) (163)

The absolute attenuation (when used as an oscillator network) is:

A IIELHIANA

1
since the imaginary quantities are zero.
If K=P,Q=1Lo, Q/K =1, then
A = Ll— as a function of L.
2 T°+ 1

Considering two such sections and expressing attenuation in terms of L,

2 -2
() -
=0 T
L

A

or expressed in decibels,

A

L -2
+ 20 log (2L—°+ 1) = -40 log (ZLh - 1) 3 (164)

The frequency of oscillation, when two such networks are used, occurs when the imaginary
part of the complex attenuation equals zero, or:

PORENCR

@CR)® = 22
wCR = (%—E) 2 '

which, when expressed in the rationalized form becomes:
1
o ow. (QB) 2
2 wCR Wo LK «

or expressed as a function of L for taper factor = 1,

1

on _ (%)5 ; (165)

Equations|(164) and (165) are shown plotted in Figure 51,
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DESIGN EXAMPLE

In order that the material of this report may be utilized more easily, the following
example is given. Suppose it is desired to design an oscillator with center frequency of
3000 cycles per second which may be linearly deviated plus and minus 7.5% with a de
voltage. The characteristics to be considered in order of importance are:

Frequency stability

Amplitude modulation

Linearity of frequency deviation
Practicality of network in circuit
Harmonic content

1 00 10 1

Since stability is the prime factor, the three-section networks may be disregarded. Since
amplitude modulation is of second importance, the zero-phase-shift network is eliminated.
Therefore, the choice seems to be between the four-section low- and high-pass network.
The frequency-deviation characteristics of the low- and high- pass networks are about the
same and will be discussed later in the example. As for the practicality of the network in
the circuit, the following items have to be considered:

Network driving impedance
DC isolation problems
Network load impedance
DC grid return problems

B 0O DD =

It is considered here that the network is driven and loaded by a vacuum-tube amplifier
or cathode follower. The network driving source must have an impedance much lower than
the input impedance of the network if it is not to affect the network design.

It is also necessary in most cases to have dc isolation between the driving source and
the load. The high-pass network provides its own dc isolation by means of its series capaci-
tors while the low-pass filter requires extra circuit elements. At high frequencies this
isolating network can be made to have a negligible effect on the frequency-determining
network by making its corner frequency much lower than that of the network.

The load placed across the output of the network must have an impedance much higher
than the output impedance of the network if it is not to affect it. High input capacity of
vacuum tube amplifiers due to Miller effect loads the high-pass network at high frequencies
because of the low values of resistance and capacitance in the network, whereas with the
low-pass network the Miller effect capacity may be subtracted from the last network
capacitor without affecting the network characteristics.

The grid of the amplifier being driven by the network must have a dc return path. The
high-pass network can provide this with its last shunt resistor while the low-pass network
makes it necessary to provide a separate grid return (which tends to load the network)
or use either the network series resistances and isolating network resistance, or the resist-
ance of the driving source.

The four-section high-pass network has been chosen for this example, although if the
oscillation frequency had been much higher it would have seemed profitable to use the low-
pass network. Consider the block diagram of Figure 52.

A cathode follower is used to drive the network and thereby offer it a low source
impedance while the network is loaded by the grid circuit of the oscillator, a very high

AN H Ty TG AN TR IARN
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I_ CATHODE J
OSCILLATOR FOLLOWER NETWORK
MODULATOR
Figure 52

impedance. The use of a network with a taper factor of 10 would provide the highest sta-
bility but would be impractical for this simple circuit, since the first network resistor
would have to be too low or the last resistor too high. The same reasoning can be followed
for the network capacitors. This drawback could be overcome by separating the first two
sections of the network from the second two by means of another cathode follower. How-
ever, a network with taper factor of three was decided upon for the example, and the actual
circuit is shown in Figure 53. From the general equations for amplitude modulation (130)
and frequency deviation (134) of a four-section high-pass filter, the following equations

are obtained for taper factor of three in terms of the resistor parameter L:

1.33 % +3.67
wCR=20 =| — 2 —— (166)
3.93 = +1.33
Lo

-4n
Adb = -20 log\:zL - 2*2n(4'T11- +4.22> + 1:\ . (167
7 S

SD9ITA
OSCILLATOR 2 5ma
+120V o :
1BOKS
0.3mq]
i

3 $ MRS NR
P=K,Q=Lg,S5=M,T=N
Lo, M N o

K Lo M
200K3

o U1 L

Figure 53
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equency point corresponding to L/L, = 1.15 was chosen since the amplitude

A plot of Ese curves is shown in Figure 54. From the attenuation vs. L/L, curve an
f

drops fast
in Equation
wCR =
since w =
CR=
It is nd
resistance

according t
voltage is d

and determi

gives a co
determinin
on log-log
resistance
the outcom

A plot
Figure 53.
characteri
vary the os
viation of
is required
55 it is see
value 15,00

'3
s}
1l

2

since:
CR s

C/K

CllLis

C/M

il

L

C/N

for L less than L, than for L greater than L,. Substituting this value of L/L,
(166) and solving for «wCR:

0.9428
2 7 (3000)
0.9428/60007 = 5.002 x 10-°.

w necessary to determine what values of C and R to use in the network. If the
of any one leg is decided upon, the rest of the network must take on values

o taper factor. Since a linear variation of frequency with applied modulating
esired, it is well to investigate the resistance characteristics of the modulator
e the operating point around which linear deviation may be achieved. Artzt*
plete analysis of this type of modulator, but a reasonably good method of

the operating point is to plot the modulator resistance vs. modulating voltage
aper and operate on the linear portion of the curve. Since the frequency vs.
urve of Figure 54 is nearly linear on a log-log plot over the range being used,
will be a linear variation of frequency with applied modulation voltage.

f resistance vs. modulation voltage is shown in Figure 55 for the modulator of
Over the resistance range of 10,000 ohms to 20,000 ohms, linear frequency
tics may be obtained for linear deviations in modulation voltage. In order to
illator center frequency (3000 cps) by plus and minus 7.5% a resistance de-
proximately 39% increase and 26% decrease of the center resistance value

as estimated from Figure 54 or calculated from Equation (166). From Figure
that this required deviation in resistance may easily be obtained. Using the
ohms for the resistance leg LR:

LR/1.15 = 15,000/1.15 = 13040 ohms

L,R/3 = 4348 ohms

3LoR = 39130 ohms

3 MR = 117400 ohms

5.002 (107°)

5.002 (107°)/KR = 11500 ppuf

5.002 (107°)/L,R = 3835 ppuf

5.002 (107°)/MR = 1278 ppf

5.002 (10~°)/NR =  426.1pupuf.

* Reference 5 in Bibliography
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The cathode follower output impedance was calculated to be about 400 ohms and the oscil-
lator input capacitance due to Miller effect about 70 puf. These values have to be sub-
tracted from the design values of KR and. C/N respectively so that:

KR - 400 = 4348 - 400 = 3948 ohms and C/N - 70 = 426.1 - 70 = 356.1 puf
are the actual circuit values of these components.

Figure 56 shows the frequency vs. modulating voltage characteristics of the experi-
mental oscillator. The amplitude of the output, measured across the cathode follower
cathode resistor, was flat within 0.1 decibel over the 15% frequency deviation due to a
slight amount of limiting action in the oscillator tube. The frequency stability of the oscil-
lator shown in Figure 53 is not as good as can be expected due to the extremely sensitive
effect of bias on the modulator resistance. By supplying self bias to the modulator with a
cathode resistor, the sensitivity is reduced but a corresponding increase in oscillator
frequency stability is obtained. The frequency stability of the experimental oscillator with
cathode bias supply to the modulator is not worse than 0.2%.

CONCLUSIONS
Oscillator Harmonic Content

It is seen from the harmonic curves of the different networks that the output point for
the least amount of harmonic distortion is different for the low-pass filter networks than
for the high-pass networks. The reason is that in the high-pass networks a large amount of
feedback occurs with a resulting decrease in harmonic gain through the amplifier, while
the oscillator using a low-pass filter achieves its decrease in harmonic content through
the filter itself. This means that when a high-pass oscillator is used the output should
be taken from the plate or cathode of a tube (a low impedance point) while with a low-pass
oscillator the output should be taken from a grid or high impedance point. This may or
may not result in a practical circuit depending upon the application.

The difference in harmonic reduction between a three-section and a four-section net-
work for both the high- and low-pass networksis very slight and would seldom be sufficient cause
for choosing one over the other. The zero-phase-shift network is least desirable in this
respect, however, since it contributes only as a two-section high-pass network, or a two-
section low-pass network toward the reduction of harmonics and, as mentioned, these effects
occur at different points in the circuit. Network tapering has little effect on the reduction
of harmonies.

Stability

The degree of oscillator stability when various networks are used has been determined
in this report by comparing the slopes of the phase-shift curves of the different networks
at taper factors of one-tenth, one, and ten. The four-section networks offer a higher sta-
bility than the three-section networks, and for every network considered, the stability
increases with an increase of taper factor. Stability is also dependent upon the quality of
the parts used in the frequency-determining network and their temperature and humidity
characteristics. Another factor affecting stability is the wave form produced by the oscil«
lator, the greatest stability occurring when a pure sine wave is generated. This effect
would be about the same for every filter network considered in this report since there is
little difference in the harmonic filtering action of the networks.
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Amplitude-Modulation Effects

Unless all of the resistance legs of the phase-shift network are used to vary the
frequency of oscillation, an accompanying variation of network attenuation occurs, result-
ing in amplitude modulation of the output. However, for the three- and four-section low-
and high-pass networks there are points of operation where the amplitude modulation can
be kept at a2 minimum due to the network gain reaching a maximum. In other words, if
one resistor in a network is used to vary the frequency, it should be operated around the
point where it allows the network gain to be the highest so that when it is varied the net-
work gain can only decrease, rather than increase one way and decrease the other. There
are no such points of operation for the zero-phase-shift network, and therefore it is less
desirable in this respect.

Bandwidth and Linearity of Frequency Deviation

As discussed under the section “The Basic Oscillator,” the linearity of frequency
deviation is not only a function of the network elements but also the method by which they
are varied. By matching the network frequency vs. resistance curves with an identical
curve of resistance vs. some other function, i.e., mechanical position, dc potential, etc.,
frequency can be made a linear function of the other function.

The amount of frequency deviation or bandwidth obtainable (at the point where the
least amplitude modulation occurs) by varying one resistance one decade is approximately
two to one for the low- and high-pass filters at a taper factor of 1 or 10. This figure
varies from 1.35, for the low-pass filters at a taper factor of 0.1, to 3 for the high-pass
filters at a taper factor of 0.1,
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APPENDIX I
ANALYSIS OF FOUR-TERMINAL NETWORKS BY USE OF
MATRIX ALGEBRA*

In any linear four-terminal network, there is, by definition, a linear relationship
between the input voltage and current and output voltage and current:

E; =QE; +8 I, (168)
I, =CE: + DL. (169)
This may be placed in matrix
fI'_.. — form as follows:
E, a,®,C,o Ezf "E‘ ”arBH E.
B = : . (170)
I, Cch L

The values of @,8,C, and D
Figure 57 for several simple circuits are given
in Table 1.

The advantage of this method appears when various networks are interconnected. In
the case of cascade of several networks the rule is that the over-all matrix of the new net-
work is merely the matrix product of the matrices for the individual networks taken in the
order of connection. A large collection of formulas for cascade and other types of con-
nections may be obtained. *»?

The procedure for multiplying two matrices to obtain a single matrix is as follows:

ot e |f _ atty | o)tk
c| d 4 [ + L + Ag_ C{) + dh
Equation (171) is obtained in four steps:

(171)

1. The first row of the first matrix is multiplied by the first column of the second
matrix to obtain the upper left-hand square of the final matrix:

ald =i a-2+% ¢

i 7] = i (172)

* Appendix Iis derived, for the most part, from a paper entitled “Application of Matrix
Algebra to Filter Theory,” by Paul I. Richards, Proc. IRE, 34:145-150, March 1946 .

Pipes, L. A., “"Matrix Theory of Four Terminal Networks," Phil. Mag., 30:370-395,
November 1940
2

Guillemin, E. A., Communication Networks, 1I:140, John Wiley and Sons, New York, N.Y.,
1935
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TABLE 1
Matrices for Simple Four-Terminal Networks
Network Matrix
l:l i S [
g |t

SERIES IMPEDANCE

& 0

(=
+ 0
0

(=) &

o Lol
(=

SHUNT ADMITTANCE

(=
M L,
L Lo
o -0 .

COUPLED CGIRCUIT

O {JTRANSMISSION LINE] = BT =40 = ng = 3 Z:L

CHARACTERISTIC IMPEDANCE=Z,

=

o (ke )

L:
M

=

€
=

cos jZ psin
PROPAGATION CONSTANT =[ sinee =
j
Zo

1 cos 6

Z, +Zp ‘ 97,71,

Zb = Za Zb = Za
2 Za +Zp
Zp - Z3 Zyp - 249

LATTICE (SYMMETRIC)

2. The first row of the first matrix is multiplied by the second column of the second
matrix to obtain the upper right-hand square of the final matrix:

a_{ﬂ. !-ﬁ L 10.-@#.-1’; S,

PSSR NS TE R YR
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3. The second row of the first matrix is multiplied by the first column of the second
matrix to obtain the lower left-hand square of the final matrix:

I - o 1
cld gl

ce+dyqg | (174)

4. The second row of the first matrix is multiplied by the second column of the second
matrix to obtain the lower right-hand square of the final matrix:

| LR |
c |d I h |c-f +d-h

(175)

If more than two matrices are to be multiplied together they can be taken two at a time
in any order, but none may be interchanged. That is:

(342 4

| | (1786)

a ] 8 .al
F AT
As an illustration of the usefulness of matrices for determining propagation constants

of cascaded filters and other four-terminal networks the complex transfer characteristic
of the network shown in Figure 58 will be calculated.

but

1)

@ = complex transfer characteristic of the network

l Ic I —»0
e ! [R r A = la[ , or the gain through the network
: ’ C E
Ein MR T N ° B = phase shift through the network
o . Rl Repeating Equation (168) for the network of
Figure 58:
Figure 58
Eiﬂ =a—Eo +® Io. (178)
Since Io equals zero, the following simplification is made:
Ein =@ Eo (179)
or Eo/Ejn = 1/Q (180)
and since a = E,/Ejn (181)
a=1/4. (182)

From Equation (182) both the absolute value of the network transfer characteristic A
and phase shift 8 may be obtained in the usual manner.

On separating the network of Figure 58 into parts and writing its matrix (as taken
from Table 1) beneath it, the following results:
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C
e
c
R L
“ i T
=, < O o 0 O &
I | Zgr e I |10
g I YMrl | Ye |1
Figure 59

Expanding the matrices of Figure 59 to obtain the network matrix:

a|d 1 |Zrc 1|'0'1|D
e Id 0 I 1 YMRII Y | 1

1+ZRCYMR| ZrRc _1 |0
Y
Y™ | 1 £| 1
B N

(1 + ZRC YMR) + ZRC Ygl B

: .

c | ®
and
1 1
= = =
@  1+ZRCYMR+ZRC Y
N
where
1.
st = R(R) .
B R+L T R+ 1 2
juC
1
YMR =‘-ﬁs
Yo _ jeC
I

Substituting Equations (185), (186), and (187) into Equation (184);
1

o =

t+ (et ) ok (o) (580
WCR+1/ MR "\jacR+ 1/ \'N,

69

(183)

(184)

(185)

(186)

(187)
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e, (B2 P

This may be rationalized into the form:
a=a+jb (189)

and the absolute value of the transfer function o, which is the actual gain, and the phase

shift g are obtained as:
A =¥Fa* +b* , (190)

arctau'lj};l ’ (191)

Il

lal
B



APPENDIX II
ANALYSIS OF RESISTANCE-CAPACITANCE NETWORKS
IN TERMS OF A REFERENCE FREQUENCY *

Transfer characteristics of resistance-capacitance filter networks may be plotted
advantageously on a logarithmic scale since plots of attenuation in decibels on such a
frequency scale approach straight-line low- and high-frequency characteristics. These
straight lines are asymptotes of the curve at its outer extremities and may be extended
to intersect each other. The point at which these asymptotic lines intersect is importantly
related to the parameters of the network being analyzed, and may be conveniently used as
a frequency reference point. To illustrate the procedure used in obtaining this reference
frequency the following example is given:

The attenuation in decibels and phase shift in degrees through a single-section low-
pass filter (Figure 60) are:

(A)gb = +10 log [ 1 + (wCR)?], (192) =
B = arctan wCR. (193) [ @
C
At very high values ofw, Equation (192) takes the form T
o 0
(A)gp = 20 log «CR. (194)
Figure 60
At very low values of w, Equation (192) takes the form
(A)gp = +10 log 1 = 0. (195)

If these lines are extended so that they intersect, the point of intersection must lie
on the zero-attenuation axis or:

20 log wCR =0,
wCR =1,
i
LRC

From this relationship a reference frequency, w,, may be conveniently defined as
the reciprocal of product of network resistance and capacitance or:

1
“% = RC (196)

Since a reference frequency has been defined, Equations (192) and (193) may be re-
written as follows:

* Appendix II is derived, for the most part, from an NRL Report R-2587 entitled
“Resistance-Capacitance Low- and High-Pass Filters,"” by Charles F. White
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(A)gp = +10 log [1 +(w%)a] , (197)
B = arctan % : (198)
Using w/wo in units of octaves where
w=wy = 20w,
Equations (197) and (198) may be rewritten in octave form as:
(Ap)gp = +10 log (1 + 2°10), (199)
Bp = arctan 27, (200)
At very high frequencies Equation (199) takesthe form:
(Apn)db = 20 log 2™. (201)

One octave below this, the attenuation may be expressed as:

(Ap-1)db = 20 log 2(n-1) | (202)
The difference in attenuation per octave at high frequencies is therefore:
(An = A(n_l))= 20 log 2' = 6 db/octave. (203)

In the same manner the attenuation at low frequencies may be found to be zero deci-
bels per octave. A graph showing these asymptotic lines is given in Figure 61.

2"-L

Wo

An
W= wo at n=0

DECIBELS

6db /OCTAVE

0db/0CTAVE

-00=e— 0 —> 00+
n(OCTAVES)

Figure 61

For the case of a filter with a number of like sections in cascade, the “corner fre-
quency”. of the filter is the geometric mean of the corner frequencies of each individual
section taken separately. For a multisection low-pass filter such as shown in Figure 62,
the attenuation at very high frequencies through each section is:

(Adb) 1= 20 log wCiR:, (Adp)z = 20 logwC:R:z ,
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(Agp)s = 20 log wCsRs, -=-=---~ (Adb),, = 20 Jog wCpRy,.

R} Ra R3 Rn

IO| I C2 I—G—B_ I Cn
IR T e ot £

b o <+

Figure 62

The attenuation in decibels through the complete network at very high frequencies is
the sum of the attenuations of the sections composing the network, or:

Agp = 20 log (w CiRy) (wC2Rz) (wCsRs)----(wCpRn). (204)
At very low frequencies the attenuation in decibels through a low-pass filter section
is zero by Equation (195). Since this is so, the attenuation at very low frequencies through

n low-pass sections in cascade is also zero. The intersection of the two asymptotic lines
occurs, therefore, when:

20 log (wC;R; ) (wC2Ra) (WCsRs)--- (WCnRn) = 0,  (205)
(wCiR1) (@C:Rz) (wCsRs)--- (WCpRp) = 1, (206)

M = : :
CiR; C2R: C3Rs ....... CnRp
@ = R it Calls icselOaiial 2 . (207)
Since 1/CiR;, 1/C:Rz, 1/CsRs, ---, 1/CR, are the corner frequencies of the first,
second, third, and nth sections respectivelyor (we , wez, s » ---.» Won), the corner frequency,
w o, of the complete network is:
wo = (wor Wee Wos +vve- Won ) i (208)

or the geometric mean of the individual section corner frequencies.

* ¥ ¥
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APPENDIX III

THREE-SECTION LOW-PASS FILTER
Derivation of General Equations

KR MR NR Using the methods described in Appendix I the matrix of
Figure 63 is written down and expanded:

G
| L l S | T Zgr = KR, MR, NR,

jw C ]wC ij-

Figure 63 gyl e
|8 1lkr 1o MR 1]o 1|nr 1o
e '8 011L|1 o1 &1 o1 28
K M. | N |
g 1+L]wC | 1+SijR MR 1+T3wCR
A £| wC
l s - T |
(1 -~ %ijR) (1 .- ijR) + £ jwCR IMR 1 +—JwCR) KR
‘ 1+%ij3|
.wC |
Ioep
S pcn) 4 ) ] o ] [ B ][]
i [(1+LJwCR)(1+S jwCR +3 ijR._1+TJwCR + _MR1+L]wCR +KR | | 7 B )
. |
Since the complex transfer characteristic, a, equals 1/ ,
i ben N R M E N K)_(IQCR)Z KM KN KM MN Q)_.( CRY T | (210)
£ c (T+f+§+§'+T T (LT Lt IsStST TsT /7 LST
Let 1
¢ =ap
where
= » (KM KN KM MN KN)]
a = [1-(wCR) (LT+LT+ 5 (211)
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K M K M .
2% b - [werr B -eom( T+ 155+ T -F)] e
Then
. BERD - a : b . -
a_a2+b2_az+b2 3 e (213)

The absolute gain, | a| , and phase shift are immediately found as:

b 2 1
(&) ‘/(a +b2 a +b2) =(a% +b%) s (214)

B =arctan % i (215)

The absolute gain in decibels is:
(A)gp =20 log (A) = -10 log (a® +b?). (2186)
On expressing Equations (215)and (216) in terms of a reference frequency wp

where wo = 1/RC and rewriting in octave form as described in Appendix II the following
equations result:

i _snmﬁmug] [mm
(An)db= -10 log {[1 - (LT LT LS * ST s'r) * 2™ tar
q, 2
w(E A EAE)]). o

Bn = arctan (218)

Taper Factor = 0.1, K=1, M = 0.1, N = 0.01,
L=1,8 =0.1, T=0.01
(An)gp = -10 log [2°M + 283-2*" 4+ 15083-2°" + 1] , (219)
2°0 _ 123.20
Bn = arctan [w :I : (220)
Taper Factor =1, K=M=N=L=S=T=1.
(An)gp = -10 log [2°0 4+ 13-2*0 4 26-270 4+ 1], (221)
. - 231'1 = 6'2“
o = [‘W] : .

e

e

&Y

S8

AP J L
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Taper Factor = 10,K = 1, M = 10, N = 100,
L=1, 8 =10, T = 100.

(Ap)db = -10 log [2°M + 3,82:2%N 4+ 3,9041-2°" + 1], (223)
2°0 _ 3.21.20
e T . angit
Bn su:'ctanl:1 T3.9.27 } (224)
Taper Factor =0, M/K =N/M = o ,
S/L=T/8 = w,
(An)gp = -10 log [2°0 + 3-2*0 + 3-2°n 4 1] (225)
! 2°n _ 3.91 )
Bn = arctan [m} (226)

Establishment of General Equations for Determining Oscillator Stability

Since the stability of an oscillator is a function of the phase-shift slope of its
frequency-determining network, it is only necessary to take the derivative of 8 in Equation
(218), and obtain a relative stability in degrees per octave. The following substitutions
are made in Equation (218) before taking the derivative:

_ KMN

X = Jgp ° (227)
N, K M K MK

Y_T+L+S+S+T+T’ (228)
_KM KN KM KN

Z=IT*TT*IS*ST *ST ° (229)

U =2%x - 2Py, (230)

¥=1-27% (231)
U

A=+ (232)

Equation (218) is now rewritten as:
B = arctan A (233)

and the derivative of B with respect to n is:

4au _ .dv
B . L. S8 Ogere ey JagT Ba
dn = 1+A n = U? V2
1+
% ;
du _,dv
4 . Va U
g @ vau R04)
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d8 _ (1-217) (3XIn 2-2°" - Yin 2-20) (20X -20Y) (-2Z1n2.2°T)
dn (2°n-x - 20.Y)? + (1-27.2)°
98

-[2'(xXZ) + 2% (YZ -3X) + Y] 2"In2

235
dn | 2°M-X? 4 2 (Z7_2XY) + 20 (Y°-2Z) +1 (235)

Since this result is in units of radians per octave, it is necessary to multiply it by
57.3 to convert to degrees per octave. The In 2 is a constant equal to 0.69315 and it may
be combined with the 57.3 to give the following result:

dg _ -[2(x7) +2*"(¥Z-3X) + ¥]2"(39.72)
dn _ 2°LX? 5 2M(Z2-2XY) + 20(Y°-27) + 1 degrees/octave. (236)

To reduce Equations (227), (228), and (229) for any taper factor in terms of any one
parameter the following procedure is followed:

Taper Factor = M/K = N/M = 8/L = T/S.

In general K = L, M = S; N = T, but the separate symbols are retained for each param-

eter so that any one parameter may be varied independently.

The parameter in terms of which the equation is being reduced is given a zero sub-
script for an operating point around which it is to be varied, with the other parameters
taking on relative values according to taper factor.

As an example, Equation (228) is reduced for a taper factor of 2 in terms of K where
Ko=L, M=58,N=T, and M/Ko = N/M = 2:

Y=N/T + K/L+M/S+ K/S +M/T+ K/T
Y= 1 + K/Ko+ 1 +K/2K[}+ 2/4 +K/4Ko

¥

1.75 K/Ko + 2.5.

As a second example Equation (229) is reduced for an infinite taper factor in terms
of M where K = L, Mo =S, N = T, and M¢/K = N/M, = o:

Z=KM/LT+KN/LT+KM/IS+MN/ST+KN/ST
=0 + 1 + M/Mo+ M/Mo + O
Z=2M/Mn+1.

Equation (236)gives the slope of the 8 vs. n curve for any value of 8. Since it is
desirable to solve for the slope only at the value of 8 equal to 180 degrees,

B = 180 degrees when arctan A = 7 (237)
or gy .oy
A= ——m———= =
1 -2 0 (238)

and 2°n.x - 20y = 0, : (239)

ARO A CEVIRA N
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n - y/x,
on = VY/X . (240)

Substituting this value of 2™ into Equation (236) gives the 180-degree phase-shift slope
for any values of the parameters K, M, N, L, S, and T:

a8 _-[(¥/X)*-XZ + (¥/X) (YZ - 3X) + Y] Y¥/X (39.72)
dn (Y/X)F -X¥ 4 (/)7 (25 2XY) + (T/X) (Y2 <2Z)+ 1

- [(xX¥?Z - X*Y)] V¥/X (79.42) -YVXY (79.44)
dn (Y?Z® - 2XYZ + X?) - YZ - X

(241)

Equation (241) is reduced for taper factorsof 0.1, 1.0, 10, and infinity in terms of the
resistance parameter, K (Table 2 gives the values of X, Y, and Z):

Taper Factor = 0.1

3
-19.44( 11K+ 12) Vm(l{—) s12K
ﬁ " Kn KO KO (242)
dn KY,suE 19
2442(K0) + K, +
Taper Factor = 1.0
K L . T
5 . -79.44(3 B 3) (355 +35
dn )3 (243)
1 = + 14E +3
Taper Factor = 10
2 P
-79.44(1 e .2 1) (1 1n1Er.215)2
dB - o L o (244)
dn
2. 442( ol '73—+ 2.1
Taper Factor = «©
5 )(K._ _K_) =
= ‘79'44(1«:0* 2)(Er+
&~ RN R s : (245)
(Ko) o

The functions X, Y, and Z of Equations (227), (228), and (229), tabulated at taper
factors of 0.1, 1.0, 10 and infinity in terms of the resistance parameters K, M, and N,are
shown in Table 2.
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*
TABLE 2
X, Y, and Z as a Function of K
Taper
Factor 0.1 1.0 10.0 o0
% K K K K
Ko Ko Ko Ko
K K K X
X 111 Ko+12 3K0+3 1'11Kn+2'1 K, +2
K K K K_
Z 22 Ko+1 4K°+1 2.2 Ko+1 2K0+1
X, Y, and Z as a Function of M
Taper
Factor 0.1 1.0 10.0 ©
x M M M M
Mo, M, Mo M,
M M M M
Y 11 Mo+ 112 2M0+4 1.1 M04-2.11 Mo+2
M M M M
Z 12 M°+11 3M0+2 2.1 Mo+ 1:1 2Ma+1
X, Y, and Z as a Function of N
Taper
Factor 0.1 1.0 10.0 Vo)
< N N N N
No No No No
N N ). N
Y N + 122 N. +5 No+2'21 No + 2
N N N N
Z 12 No+11 3No+2 2.1 N0+1.1 2No +1

* X = KMN/LST

Y=N/T+K/L +M/S+K/S+M/T +K/T
Z = KM/LT + KN/LT + KM/LS + MN/ST + KN/ST

AITF FILLUTAMN
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Establishment of General Equations for
Determining Amplitude-Modulation Effects

The oscillator output voltage is dependent on the attenuation through the frequency-
determining network; thus, it is necessary to find the network attenuation as a function of
the resistance parameters since they are used to vary the oscillator frequency.

The second bracketed term of Equation (217) drops out, because it is the imaginary
part of the complex gain (Equation (210)), leaving:

(A)gp = -10 log (1-2°.2)* (246)

where Z is the same as in Equation (229).
Since oscillations occur when 28 = V-g (247)
(A)gp = -20 log l( i *s;_z> ‘ (248)

where X, Y, and Z aregiven by Equations (227), (228), and (229).

Equation (248) is reduced for taper factors of 0.1, 1.0, 10, and infinity in terms of the
resistance parameter K (values of X, Y, and Z taken from Table 2):

Taper Factor = 0.1

(A)ap = 20 log( 2442 5=+ 374 + 12 2 ) (249)
Taper Factor = 1.0

(A)gp = -20 log(lz -E—D +14 + 3%9-) (250)
Taper Factor = 10

(A)gp = -20 10g(2.442 % +4.73 + 2.1 lé—-i'-) (251)
Taper Factor = o

(A)gp = -20 log( 2 % +44+2 %"—) : (252)

Establishment of Equations for Frequency in Terms of
the Resistance Parameters K, M, and N

The relation between frequency of oscillation and the resistance parameters has already
been given by Equation (240) in the octave form, as:

1
2n=(le-)2=%=wcn. (253)
0

This equation is reduced for taper factors of 0.1, 1.0, 10, and infinity in terms of the
resistance parameters K, M, and N (values of X and Y are taken from Table 2),



Taper Factor = 0.1

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

Taper Factor

1.0

10

0.1

1.0

10

0.1

1.0

10
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Frequency in Terms of K

i
2

on (12 % +111)

Ko , o\
(3K +3)

1
oR = (2.1 fn 1.11)2

1

21’1

K

1}

(2—1-<£+ 1) : ;

n
4 K

Frequency in Terms of M
1
2" = (112%+ 11)2
1
20 = (4%+ 2)5

211

M, 3
(2.11 32+ 1.1)

2n = ( %11—9-4,1)% :

Frequency in Terms of N

211

1]

Y
(=1
bo
B

Z|z

=)
+
—

N’

nae

b
=
|
o
b
o
-y
i
o
=y
S
0

(254)

(255)

(256)

(257)

(258)

(259)

(260)

(261)

(262)

(263)

(264)

(265)
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APPENDIX IV
THREE-SECTION HIGH-PASS FILTER
Derivation of General Equations

Using the methods described in Appendix I the matrix of Figure 64 is written down
and expanded:

e G (1.

. Xc=jC ® JoC '’ JuC
KR MR NR 5 __l L L

FEG SR SR S R=KR’ MR’ i

NR
Figure 64
E S T
ale tlpe 10 1|'iﬁ,1|0 1| 1]o
c‘a £ | N 014 | | Ll
of 1 sm|t ot mll o] ! Fm|!l
G N 1+i_1|i %4 =
_ 'K juCR|juC M joCR | joC N juCR | joC
il =t 1 g |1 i . | 1
KR MR NR
(1+—L"—>(1+ 2 )+ L (1+ L )i+ e i
- jwCRK jwCRM /) © jwCRM joCRK/ juC " juC =~ jwCRN
- 1
NR
[(1+ - ) 1+ S - L ]|:1+ 2 +[(1+—L)-—S—+—I-‘-]—l ﬁ
y ijRK( ijRM) jwCRM | | * jwCRN jwCRK ) joC * juCJl NR|™ (266)
e | &
Since the complex transfer characteristic a = 1/¢,
s kay ey e S
- R TFaE I FD a8
where
L s o2 (L8 ST A& LT ﬁ):l
e [1 (wCR) (KM+MN+KN+MN+KN ; (268)
E (8 L, b E .3 LY_ -3_L-§'_T_].
= [(”CR) (M+K+ M+N+N+N) (WCR)™ TN (269)
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The absolute gain and phase shift are immediately found as:
h a’ b’ e 2\ -5
A= V(az + 1) o (a2 00 (a0 ), (270)

arctan -2- : (271)

I

B
The absolute gain in decibels is:
2 2y 2 2
(A)gp = 20 log (a® +0*)~2 = -10 log (a° +b"). (272)
Expressing Equations (271) and (272) in terms of a reference frequency w, where w, =

1/RC, and rewriting in octave form as described in Appendix II, the following equations
result:

e -nfLS A ST LT LT LS)T [-ni | et Vil el I
(An)gy ““Og{[ 2 e F e M RN L2 (M FEFE RN
=z I‘IEBS{I{I] } (273)
b B i B B B BN o BT
N — t =4 —f—4—4 — - i
B, = arctan 2 (M+K+M+N+N+N) 2 KMN (274)
(om(LS BF IF T LS)
KM * MN RN MN T RN

Taper Factor = 0.1, K =1, M= 0.1, N = 0.01,
L=1, 8 =0.1, T =0.01.

(Ap)gp = -10 log[2-°0 + 283-27" + 15083-27°" + 1], (275)
4 19y R Lg=n

Bp = arctan —-T-_zs_z_én— . (276)

Taper Factor =1.0,K=M=N=L=8S=T~=1.

(Apgp = =10'%0gf2"" 1. 183-2°0 5 26270 + 1] , (277)
§-2-n _ 2-30
— t —_— . 27
Bn = arctan 1591 (278)

Taper Factor =10, K =1, M =10, N =100,
L=1, 8 =10, T =100.

(An)gp = -10log [271 + 3.82.270 ; 3.9041-27" + 1], (279)

3.21-2-n_2-%n

1-32.0-%1 (280)

Bn = arctan

AT 1T U TALMNA
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Taper Factor = ©,M/K =N/M =
8/L =T/8 = w,

(Ap)db = -10 log[2-°" + 3:270 4 3.2°0 4 1], (281)

- 3.2-!‘1 = 2-31’1
Bn = arctan g (282)

Establishment of General Equations for
Determining Oscillator Stability

Since the stability of an oscillator is a function of the phase-shift slope of its fre-
quency-determining network it is only necessary to take the derivative of g in Equation
(274) and obtain a relative stability in degrees per octave.

The following substitutions are made in Equation (274) before taking the derivative:

X = LST/KMN, (283)
Y =S/M + L/K + L/M + T/N + 8/N + L/N, (284)
Z = LS/KM + ST/MN + LT/KN + LT/MN + LS/KN, (285)
v =2"y-270x, (286)
¥ =1-2"0%, (287)
A =U/V. (288)

Equation (274) is now rewritten as:

B =arctan A (289)
and the derivative of B with respect to n is:
du .dv du ..dv
ag . A @k 8 Vie. V5 ... Van U
dn 1 +A* dn 1 +(E)2 v? = V2 + U2 (290)
v
dg _ (1-27Z) (-¥In2-2"+3XIn2:27%") -(27"y-2""¥) (2ZIn2-27")
dn (1270 (2 20
—-41n =2n -n
_={armxe s (yz SRF ¥ ]2 a2 (291)

9-onx? , 2-M(72 _ 2XY) + 2B (Y - 2Z)+1

Since this result is in units of radians per octave, it is necessary to multiply it by
57.3 to convert to degrees per octave. The In 2 is a constant equal to 0.69315 and it may
be combined with the 57.3 to give the following result:

dg _ -[27%x7 +2-"N(yz - 3%) +Y]27T(39.72)
dn  2-MX® +2-M(Z? - 2XY) + 20 (Y - 22) + 1

degrees/octave. (292)
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To reduce Equations (283), (284), and (285) for any taper factor in terms of any one
parameter, the following procedure is followed:

Taper Factor = M/K = N/M = 8/L = T/S.

In general K=L, M =S, N = T, but the separate symbols are retained for each param-

eter so that any one parameter may be varied independently.

The parameter in terms of which the equation is being reduced is given a zero sub-
script for an operating point around which it is to be varied with the other parameters
taking on relative values, according to taper factor.

As an example, Equation (284) is reduced for a taper factor of 2 in terms of K where
Ko=L,M=8,N=T, and M/K, =N/M = 2:

Y=8/M+L/K+L/M+T/N+8S/N+L/N
-1+ % =Ko
Y—1+T<-+.5+1+.5+.25 K+3.2.5.

As a second example, Equation (285) is reduced for an infinite taper factor in terms
of M where K =L, Mo =S, N =T, and M¢/K = N/M = oo

7 = LS/KM + ST/MN + LT/KN + LT/MN + LS/KN

- Mo g =
Z—M +1+M_+0+0 2

Mo
M_ + 1.

Equation (292) gives the slope of the B vs. n curve for any value of B. Since it is
desirable to solve for the slope only at the value of B equal to 180 degrees,

B =180 degrees when arctan A =
gy -
g 1

e e e

2 =21l

i =\/% < (293)

Substituting this value of 2™ in Equation (292) gives the 180-degree phase-shift
slope for any values of the parameters K, L, M; N, S, and T.

g&-"[( %)2 _— *(%) (YZ - 3X) + Y] V%— (39.72)

=) @ ()

-(XY’Z - X%Y) ]/—}-{-E (79.44)
T ¥Z? - 2XYZ + X°

ATT I T CcUTALLN
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_ -YVXY (79.44
Z -X . (294)

Equation (294) is reduced for taper factors of 0.1, 1.0, 10, and infinity in terms of
the resistance parameter K (Table 3 gives the values of X, Y, and Z):

Taper Factor = 0.1

3/2
1944 (1225 4 1)

o
= z 295
L T 14'74£ +12 499
Kb
Taper Factor = 1.0
g— 3fz
ag _ T 44(5K + 1) 1
dn 0K IGK"
K:
Taper Factor = 10
(22 +1)"”
ap -1eslaalg +1
dn © 431(K )2 411K 121 )
- Ku + 4, KD + 4.

Taper Factor = ©

T79.44( 2 P

d g ( A 1)

EE = . (298)
2(—- - 1)

The functions X, Y, and Z of Equations (283), (284), and (285) tabulated at taper factors

of 0.1, 1, 10, and inﬁnlty in terms of the resistance parameters K, M, and N are shown in
Table 3.

Establishment of General Equations for
Determining Amplitude-Modulation Effects

The oscillator output voltage is dependent on the gain through the frequency-deter-
mining network; thus, it is necessary to find the network gain as a function of the resistance
parameters since they are used to vary the oscillator frequency.

The second bracketed term of Equation (273) drops out because it is the imaginary
part of the complex gain (Equation (267)) leaving:

(Ap)gp = - 10 1og(1 - 27" gZ)* (299)

where Z is the same as in Equation (285) . Since by Equation (293) oscillation occurs when

20 = YY/X,
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l

TABLE 38"

87

X, Y, and Z as a Function of K

Taper
Factor 0.1 1 10 o0
" Ko Ko Ko Ko
K K K K
E e Ko Ko
Y 7 +122 g +5 g +2.21 K +'2
Ko Ko Ko Ko
Z 1282+ 11 3 Ko . » 21 2%, 1,4 2 B +1
X, Y, and Z as a Function of M
Taper
Factor 0.1 1 10 ©
. Mo Mo Mo Mo
M M M M
Y 11%”12 2-%11&4,4 1.1 l‘ﬂ‘lafz.n -ﬁ—%z
z 12 %‘h 11 3 —ﬁiw 2.1 ﬁh 1.1 2 gd-’[—“n
X, Y, and Z as a Function of N
Taper
Factor 0.1 1 10 0
" Ny Ny No No
N N N N
Y 111%%12 3%9-4,3 1.11 %‘Hu %hz
z 22%‘“ 1 4%%1 2.2 %‘Ml 2-§—°+1

* X = LST/KMN

Y=S/M+L/K+L/M+T/N+S/N+L/N
7 = LS/KM + ST/MN + LT/KN + LT/MN + LS/KN.

MBH P CWATYHIM
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(An)gp = -20 log

1- _YiZ_ l (300)

Equation (300) is reduced for taper factors of 0.1, 1, 10, and infinity in terms of the
resistance parameter K (values of X, Y, and Z are taken from Table 3) :

Taper Factor = 0.1

(Apgp = -20 1@(1342% +1474 + 12%) (301)
Taper Factor = 1.0

(Ap)db = -20 log (10%0 +16+3 §—°) (302)
Taper Factor = 10

(An)gp = -20 log (2.431 % +4.741 + 2.1 %‘-’—) (303)
Taper Factor =

(An)gp = -20 mg(z% ras2%e) (304)

Reduction of Equation (300) in terms of the resistance parameters, L, M, and N at a
taper factor of 1 results in the following equations:

As a Function of L:

sl g\ 3L ,q
(Adap =-201og { —18 | 2 | 1o (TTL: +8) 1], (308)
5= +2 ® \5=+2 v
Lo Lo
As a Function of M:
2
2%‘”3 M 2%"8 M
(Ap)db = -20 log _Q_M Mo T —M°— (?-ﬂ[—+8)+1,(305)
5m+2 > 5-ﬁ'+2 i :
1]
As a Function of N:
2
%*9 N %*9 N
(Ap)gp = -20 log -—ﬁg—-— o Nu_ (ﬁ-ﬁ- +9)+1, (307)
5% t2 ® N5=—+2 o
No No

Establishment of Equations for Frequency in Terms of
the Resistance Parameters K, M, and N

The relation between frequency of oscillation and the resistance parameters has
already been given by Equation (293) in the octave form as:
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1
=1 =-—-w ) = X—) z
20 =2 = 4CR ( )%

This equation is reduced for taper factors of 0.1, 1.0, 10, and infinity in terms of the
resistance parameters K, M, and N (values of X and Y are taken from Table 3):

Frequency in Terms of K

Taper Factor = 0.1
=L
on = (122— +1)7 (308)
Taper Factor = 1.0
1
K =3
" = -
2 (5 £ 1) (309)

Taper Factor = 10

K 1
2 = (221 +1) 7 (310)
0
" Taper Factor = «
on (2—- + 1) : (311)
Frequency in Terms of M
Taper Factor = 0.1
1
on = (112% + 11)'z (312)
0
Taper Factor = 1.0
on = (4—- +2) (313)
Taper Factor = 10
M -3
0= put I
2 = (20141 + 1.1) (314)
Taper Factor = «©
M =
2n =(2-§{—°+1) i, (815)
Frequency in Terms of N
Taper Factor = 0.1
on = (121—4, 111) 2 (316)
No

1 I BIIOCADAITRIYN N
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Taper Factor = 1.0

Taper Factor = 10

Taper Factor = o

NAVAL RESEARCH LABORATORY

1
N -2
an = (331—; +3 ) (317)
. N -3
on = (2.1N—0+1.11) . (318)
n N "%
o - (2 X 1) ; (319)



APPENDIX V
FOUR-SECTION LOW-PASS FILTER
Derivation of General Equations

Using the methods described in Appendix I, the matrix of Figure 65 is written down
and expanded:

K
Xc = 1/jwC = 1/pC = R/pCR =R/U. R LR MR NR

Letting R equal 1.0,

Xc = 1/U; P/U, Q/U, S/U, T/U |
C s ’ ] ’
%% C/Q Cfs Gt
Y. = U/P, U/Q, U/S, U/T a | i
ZR=K’ L, M, N. Figure 65
ald 1|k 1]lo 1]n 1]o 1|m 1o 1|N 1]o
e ol Bl o|1 %ll u|1 —g—[1 0|1 %|1
_1+'Kp—UK'1+L'g‘|L 1+T|M 1+'N?U|N
T U U | i |
3 |1 Q |1 5 I T |1
KU LU\ KU KU MU NU) MU MU
\ (1+ p)(n Q)+ : (1+p)L+K .(1+ s)(“'r)” & (1+ S)N+M
= IN\T. U i NU\ U, U NU
(“T)P*Q | D (1+T)S+T | g i
Q- [(18)0-) 2][(8) (-3 ]
(1 F)e+x] [(+5F) 77]- 20

Since the complex attenuation a = 1/(Z,

1
X+ 0Y+0Z 4006 &1

= (321)

where

KLMN

= PQST (322)

91
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KLN KLN KLM LKM LMN KMN KMN

Y =p5T * PQT * PQS * PQT © QST ' PST T QST (323)
7 = LN + LM+KM+KN+KN+KL+KM+KN+LN+MN+LM+KM
QT PT ST Qs
KM + KL KL
g TPQ (324)
K K+L K+L+M K+L+M+N
= o Q - S + = . (325)
Since U = jwCR,
s 1
(@CR)*X - j@CR)’Y - (wCRY’ Z + j(«CR) 5 + 1 (326)
» 1 Bk -
a= T CTE T (327)
where a = (WCR)*X - (WCR)*Z + 1 (328)
b = (@CR)’Y - (wCR)5 . (329)
The absolute gain and phase shift are immediately found as:
a‘ b x
(A) = / + =@ =) 2
‘((az b2 (2% +b?)? ) (330)
B = arctan % . (331)
The absolute gain in decibels is:
i
(A)gb = 20 log (a% +b%) "2 = -10 log (a° +b*) (332)

where a and b are given by Equations (328) and (329).

On expressing Equations (331) and (332) in terms of a reference frequency o (where
wo = 1/RC) and rewriting in octave form as described in Appendix II, the following equations

result:
(An)gp = -10 1og[{2‘ﬂx - gy 4 117 4 [Py Bl a]’} y (333)

2°ny - 205 ,
o'y _ 9°Nz7 .1 (334)

Equations (333) and (334) are reduced for taper factors of 0.1, 1, 10, and infinity:

Bp = arctan

Taper Factor = 0.1

(A = -10 log (2“1 - 2°1.366 + 1)% + (34-281:l - 1234-2M)2] (335
n/db )
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34.2°%0 _ 1234-20
= arctan . 338
Pn = aretan e 3662 + 1 (336)
Taper Factor = 1.0
(Ap)db= - 10 log [(2*® - 15-2°1 4+ 1)? 4+ (7-2°0 - 10-27)%], (337)
231‘1 10.21’1
Bn =arctan 2m 59 5 1 (338)
Taper Factor = 10
(Ap)gp = -10 log [ (21 - 6.63-2°" + 1)% + (4.3-2°" - 4.321-20)2 ], (339)
4.3:2°2 . 4. 391.2"
= arctan . 34
Ao = arC S S3 1 1 (3%0)
Taper Factor = ®©
(An)gp = -10 log [(2*" - 6-2°% + 1) ? +(4°2° - 4-27)%], (341)
4.2°0 _ 4.20
Bp =arctan W—-— 3 (342)

Establishment of General Equations for
Determining Oscillator Stability

Since the stability of an oscillator is a function of the phase-shift slope of its frequency-
determining network it is only necessary to take the derivative of 8 in Equation (334) with
respect to n and obtain a relative stability in degrees per octave:

2%y _ 25 U

B = arctan S AT arctan-v-: (343)
du ..dv |
an Van " Ydn : (344)
dn U% +V° ]
dg _ (2" -2°"Z +1) (3YIn2-2"" - 51n2- 2") -2y -2M5) (4XIn2.2'R -2ZIn2-2°")
dn (2%y - 285)2 ¢+ (2x - 2Mg 4 7
- [2°PXY + 20 (YZ - 3X5) +2°"(Z5 - 3Y)+6]2MIn2 (345)

dn - 2°MX? 4 2°0 (Y _ 2XZ) + 2M(Z° + 2X - 2Y0) + 2°R(5° - 27) + 1

Since this result is in units of radians per octave, it is necessary to multiply it by
57.3 to convert to degrees per octave. The In 2 is a constant equal to 0.69315 and it may
be combined with the 57.3 to give the following result:

ds [ 2%(xy) + 2% (YZ 3X3) +2°R(Z6 - 3Y)+o]zn (39.71) degrees _
dn T 2°0X? 4 2(Y?_2X7Z) + 20(Z°+2X -2Y0) + 2 (52-2Z) +1  octave  (346)

Ay WA N
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Equation (346) gives the slope of the 8 vs. n curve for any value of 8. Since it is
desirable to solve for the slope only at the value of 8 equal to 180 degrees,

(=)

B =180° when arctan o =

<o <

0
U=2"y-205=0
R - (6/¥)2 . (347)

Substituting this value of 2" in Equation (346) gives the 180-degree phase-shift slope
for any values of the parameters K, L, M, N, P, @, S, and T.

k. [(——) XY +( 5) (YZ - 3X0) +( )(62 3Y) + 5](%—)%(39.72)
4 (?) X+ (?) (Y* - 2X2) +(_1'r_) (2 + 2X - 2¥0) +(5) (6° - 22) + 1

-79.44 (5Y) ¥

A 348
5YZ - X5° - ¢° G4

Equation (348) is reduced for taper factors of 0.1, 1, 10, and infinity in terms of the
resistance parameter K (Table 4 gives the values of X, Y, Z,and 6):

Taper Factor = 0.1
o : K >2 K 3/f2
[36663 &) + 5170(_"1:0) + 123] (79.44)

o ol v K Y K | o
[11341088(—) + 2342164 (—) " 145904(—) 5 zaza]
KO Kl} Kn
Taper Factor = 1.0
2 3f2
= [24(5) & 40(5-) £ 6] (79.44)
g - L = (350)
dn L)* K\ K
[224(1:0 . 436(Ku) 5 212(1:0) + 29]
Taper Factor = 10
K 2 K 3/2
2 [3.6663(—) F 11.704(—) 5 3.21] (79.44)
8- Ky Sef = (351)
11.341088(—1-(:) 4 33.8546(K—0) + 31'559(E) +9.272
Taper Factor = ©
K \? K 3/2
i 3(—) 5 10(—— § 3] 79.44
® [ e - ) e (352)

au 8(% + 1)
The functions X, Y, Z, and 6 of Equations (322) through (325) tabulated at taper factors

of 0.1, 1, 10, and infinity in terms of the resistance parameters K, L, M, and N are shown
in Table 4.
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__ TABLE4 .
X, Y, Z, and das a Function of K
Taper Factor 0.1 1.0 10 ]
X X K K K
Ko Ko Ko Ko
K K K K
¥ 33K0+1 GT{_J+1 3.3 E—:+1 3-K—0+1
K_ K K X
Z 343 KO+-23 10 K, +5|3.43 K0+3.2 3 X, + 3
K K K X
(o] 1111 K, + 123 4 K, C i WS Gl Ko+ 3.21 Ko +3
X,Y,Z,and 8 as a Function of L
Taper Factor 0.1 1.0 10 o)
X j ' L L L
LO Ll] LD Lo
L L L L
X 23L—0+11 5—L~;+2 3.2 L—D+1.1 3-r0+1
L L L L
Z 133 Ln+233 7 I +8 [3.31 v +3.32 | 3 % +3
L L L L
6 111L0+1123 3Lu +7]1.11 i +3.211 T +3
X, Y, 7Z,and 5 as a Function of M
Taper Factor ) 1.0 10
% M M M M
Mu Mu MO MO
M M M M
o 23E+11 5M9+2 3.2 'I_vf-;+1'1 3m+1
M M M M
Z 133 Mo+ 233 7 M, +8 [3.31 M, +3.32 | 3 M, +3
M M M M
0 11M0+ 1223 2M°+8 11 M°+3.221 ST +3
X,Y,Z,and § as a Function of N
Taper Factor 0.1 1.0 10 ©
N . N N
= No No No b7
N N N N
¥ 23N0+11 5N0+2 3.2 No+1'1 3No +1
N b N B
Z 123 No+ 243 SNO +9 [3.21 o +342 | 3 N +3
N N N N
6 N, + 1233 N, *+9 N, +3.321) w +3

95
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Establishment of Equations for Frequency in Terms
of the Resistance Parameters K, L, M, and N

The relation between frequency of oscillation and the resistance parameters has
already been given by Equation (347) in the octave form as:

1

Lol - @ _ = 5_)5
2 5 wCR (Y

This equatipn is reduced for taper factors of 0.1, 1, 10, and infinity in terms of the
resistance parameters K, L, M, and N (values of Y and & are taken from Table 4):

Frequency in Terms of K
Taper Factor = 0.1

1
E

K
1111 g 123

on (353)
K
33-12-; +1
Taper Factor =1.0
1
4!(— +6 \ :
ol = go ) (354)
6— +1
Ko /
Taper Factor =10
A
1.111 % +3097 } 2
= = (355)
3.3-§'u' +1
Taper Factor = @
1
—g— +3 \ ¢
ol = __Q_.._.._K . (356)
3E| +1 )
Frequency in Terms of L
Taper Factor = 0.1
i
111 % +1123 \2
a2 = L" (357)
23L—°+ It
Taper Factor = 1.0
3-1%- + 7 \ e
on - | —— (358)

\51£"—0+2/



Taper Factor = 10

Taper Factor = ®©

Taper Factor = 0.1

Taper Factor = 1.0

Taper Factor = 10

Taper Factor = ®©

Taper Factor = 0.1

NAVAL RESEARCH LABORATORY

1

L z
1.11 ; + 3.211

[~
=
]

L
3.2E + 1.1

5
o=

on = _I.ﬂ'..._... .

Frequency in Terms of M

i
2

1M, 1223
2!1 MO

L]

M
23-LTn +11

1
M 2
i 2M0+8
M
5M0+2

if

1.1 M 321 \?

on = Mo
3.2%4, 1.1

Frequency in Terms of N

N 3
_ﬁ; + 1233

20 =
N
23 N +11

(359)

(360)

(361)

(362)

(363)

(364)

(365)

an

AYI I e0UTAMN
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Taper Factor = 1.0

2n N (366)

Taper Factor =10

Z
o=

e | e S e (367)

Taper Factor = ©

on _ [__No (368)

Establishment of General Equations for
Determining Amplitude-Modulation Effects

The oscillator output voltage is dependent on the gain through the frequency-determining
network; thus, it is necessary to find the network gain as a function of the resistance param-
eters, since they are used to vary the oscillator frequency.

The second bracketed term of Equation (333) drops out because it is the imaginary
part of the complex gain (Equation (326)) leaving:

(Ap)gp = -10 log (2*°X - 2°1Z + 1)2 (369)
where X and Z are the same as in Equations (322) and (324). :
Since oscillation occurs when
5\ 5
: (An)gp = -20 log l[(?) X - (¥)z &1 :“ 1 (370)

Equation (370) is reduced for taper factors of 0.1, 1, 10, and infinity in terms of the
resistance parameter K (values of X, Y, Z, and 6 are taken from Table 4):

Taper Factor = 0.1

2

” 1111%+ 123 1111%— +123 .
(A)gp =-20log |9 &= | ——=——] - [ —F>—— | (3435 +23) +1} | (871)
» 33=—4+1 33=—+1 -

Ko KIJ
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Taper Factor = 1.0

K " K
4-12;*-6 K 4E+8 K )
(A)gp = -20 log —_— = | —— (10—-+5 +1 (372
8R . 1 Ko GK—-+1 Ko )
KD KD

Taper Factor = 10

- 2
1111 £ + 3.21 . L1115+ 3.21
(Ahaw = -2010g | (Ko ) (K) K (3435 +3.2) + 1](a73)
3.3 +1 3.3=0— +1 -
o Ko
Taper Factor = o
K 9 K
= +3 =+ 3
(A)gp =-20log | | Ko~ (L) A B (3:-+8) +1] . (374)
3K Ko K Ko
=) { 3E+ 1
(1] 0

* ok %

i SER BV Y g



APPENDIX VI

FOUR-SECTION HIGH-PASS FILTER
Derivation of General Equations

Using the methods described in Appendix I the matrix of Figure 66 is written down
and expanded:

Y C G C 1 1 R _R
P = — O e— l e—— I e—
o—] i "S JIT o € jwC PC PCR U
LettingR =1,
KR SLR 3SMR SNR. x,-1.P Qs T
U’ U’U’0’T
= M) T -
(e, O YREK'L'M’N
Figure 66

P QU S ix.,
¢|5_1|U 1|0 1|U 1|0 1|U 1|0 liu 1|o
o)1 laieln =l el SRR
Cl @)1 F|E E1E ik SR el gl o
S Q) a S |5 S Y
_1+KU|U 1+LU1U 1+MUIU 1+NUIU
= 2 g = =
K |1 L |1 M |1 N |1
- 20, (B B.G) | 2 PQ g ST v(S.L.8
) Ut U\t +1| U+ U (P+Q)-U VN * U M+N+N)+1
= 4 T 1__1_)
l U(_l\d-l\?)+(M+N

= [U’z %+U_l(§+§+%—)+l][ o %+U'l(%+%+—i—)+1]

$ [U‘z%uri (p+q)] [U“ M'fq +(%+ -115 ] - (375)

Since the complex gain («) through the network is 1/ ,
1

% T X0y U Z 0 0+ (356
where _ PQST
X = g s (377)
_PQT _PQT .  PQS . PQS . QST . PST . PST
Y= EMN "KLN "KLM "KLN*LMN "KMN " LmN °  (378)

100
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Z=QT+QSENPS+PT+PT+§+ PS+PT+%§+ST+Q§L+1-“PS+P?&PQ‘*IE{’{%G,?Q)

P P+Q P+Q+S8 P+QeBeh,
G—I—(+ B v + N (380)

Since U = jwuCR

1
®= WCR) X+ j(WCR)™Y - (wWCR)™ Z- j(wCR) ™*6 + 1 (381)

S a A U
Faem T Tw T (362)

The absolute gain and phase shift are:

1

(A) = (a® + b°) 2 (383)
8 = arctan 2 (384)
wherea = (wWCR)™*X - (wCR) ~°Z + 1 (385)
b = (wCR)™6 - (wCR) %Y. (386)

.The absolute gain in decibels is:

1

(A)gp = 20 log (a* + b*) "2 = -10 log (a® + b?). (387)

On expressing Equations (384) and (387) in terms of a reference frequency (wo) where
wo equals 1/RC and rewriting in octave form as described in Appendix II, the following
equations result :

(Ap)gp = -10 log{[(Z""nX -277 4+ 1)2] + [(27% - 2'““Y)’*’]} : (388)

2-D5 _ 30y
2y 2By 1 (35)

311 = arctan

Equations (388) and (389) are reduced for taper factors of 0.1, 1, 10, and infinity:

Taper Factor = 0.1, L/K=M/L =N/M = 0.1,
Q/P=8/Q =T/S =0.1.

(Ap)gp = -10log [(2-*" - 366-2-*" + 1)* + (1234-2-D - 34-2-30)2] (390)
1234-270 _ 34.2-°n _ ]
B, = arctan = (391)

Taper Factor =1.0, L/K = M/L = N/M = 1.0,
Q/P=8/Q =T/S =1.0.

(An)db = -10 log [ (27" - 15:27°R + 1)2 4 (10-2-D - 7-2-37)2], (392)

SN IFTLWIAMNA
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n! ¢ 10-2-0 - 7.2730
" S _{5anLy1
Bn = arctan 3 15251 (393)

Taper Factor =10,L/K =M/L = N/M = 10,
Q/P = 5/Q = T/S =10.

(Ap)gp = -10 log[(z'm - 6.63-2721 4+ 1)% 4+ (4.321-270 - 4,3-2-37)%], (394)
4.821: 3% g

Bn = arctanFrt 6.63-2°0 1 1 = (395)
Taper Factor = ©, L/K = M/L =N/M = o,
Q/P=8/Q =T/S = .

(Ap)gp = -10 log l'_(2"m -62- 4 1) 4 (42D - 4.2-0)?] (396)

4-2-D - 4.2-°0
(397)

Bn = arctan 9 _goo-m | | .

Establishment of General Equations for
Determining Oscillator Stability

Since the stability of an oscillator is a function of the phase-shift slope of its frequency-
determining network, it is only necessary to take the derivative of Bn (Equation (389))
with respect to n and obtain a relative stability in degrees per octave.

2-ng - 2-My U
Bn = arctan 5-mx _o-Mgz 11 arctan v (398)
du dav
a _Van " Yan (399)
dn %+ V2

dg _@7*"X -27"Z +1) (-6-2"Mn2 +3Y-2-"NIn2) - @70 56-27NY) (-4X-2 ~Mn2 +2z-2'2n1@(400)
dn (2-205%_26Y-2-0 + 2-"0Y?) + (270X +27"Z% + 1 - X720 2X-2°"0 - 27-27°1)

_ _-[2-*nxy+2-*n(¥2 - 30X) + 270 (82 - 3Y) + 5]27"In2 : (401)
9-8Ny? , 9-6N (y2 _ 9X7) + 27N (Z? + 2X-20Y) +2 7Y 8227 a1

Since this result is in units of radians per octave it is necessary to multiply it by
57.3 to convert to degrees per octave. The In 2 is a constant equal to 0.69315 and it may
be combined with the 57.3 to give the following result:

dapg _ _[2-0XY + 2~"0 (YZ - 36X) + 2P (6% - 3Y) +3]2°1n(39.72) degrees  (402)

dn _ 2-Mx? ;2790 (y2_2xX7) +2 (2% +2X - 206Y) +27°" (8" - 2Z) +1 octave

Equation (402) gives the slope of the g vs. n curve for any value of . Since it is
desirable to solve for the slope only at the value of B equal to 180 degrees:
=7

B = 180° when arctan%
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U

= =0

U = 205 -2y =0

2™ = V5 /Y. (403)

Substituting this value of 2-1 jnto Equation (402) gives the 180-degree phase-shift slope
for any value of the parameters K, L, M, N, P, Q, S,and T.

_[( -%)Bxy +(%)2 (YZ - 36X) +(—%—)(cz - 3Y) + 6]\/:5- (39.71)

8 _
- (%}4 'S +(%) (Y? - 2XZ) +(%)2(z2 +2X - 28Y) +(%) (62 -22) +1
. -79.44(YS) V2
C SYZ-X8 -Y 488

Equation (404) is reduced for taper factors of 0.1, 1, 10, and infinity in terms of the
resistance parameter K (Table 5 gives the values of X, Y, Z,and 6):

Taper Factor = 0.1

el [23(%“)2 + 28370(%) +13563]m (405)

dn = Ko\’ KoY Ko ]
[2szs(ﬁ + 349210 'x% + 041364152 + 3295688

Taper Factor = 1.0

/!
4 oA [5{.§—°)a + 47 Bo)s 13] i ot

dn [ (Ko)s (Ko)z O(Ko)+ ]
29 %/ * 284 ) * 43 T 158
Taper Factor =10

K 2 K af2
-79.44 [3.2 Ko} 11.73(-——") + 3.65]
a8 _ (K ) K (407)

dn Xo\® &)2 Xo' ]
[9.272(K ) + 31.706(K 2 33.764(K )+ 11.284

Taper Factor =

2 3/z
s [3(§—°) g 10(%1): 3] ' A
- )

The functions X, Y, Z, and 5 of Equations (377) through (380), tabulated at taper
factors of 0.1, 1, 10, and infinity in terms of the resistance parameters K, L, M, and N
are shown in Table 5.

1
R 2]

R RO ALY
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TABLE 5
X, Y, Z, and § as a Function of K B T
Taper Factor 0.1 1 10 )
X Ko Xo Ko Ko
K K K K
Y 23 Ko, 11| 5 Ko ;2 | 32 Koiia Kos1
K K K
Ko ﬁ Kl} KB
Z 123 7+ 243 O i 9 3.21 o 3.42 . 3
Ko K Ko Ko
] g+ 1233 g +9 g 3.321 i 3
X, Y, Z, and 6 as a Function of L
Taper Factor 0.1 1 10 o)
% = L T Lo
L L L L
Lo Lo Lo Lo
¥ 23 T 11 5 T +2 3.2 T +1.1 T +1
= b 31 Loi33 Lo+ 3
Z 133 Tt 233 7 T +8 3. T:+ .32 T.—+
5 11 %+ 1223 | 2 ‘iz e {1 %1» 3.221 _II:_o+3
X, Y, Z, and 0 as a Function of M
Taper Factor 0.1 1 10 )
X Mo Mo Mo Mo
M M M M
Mo Mo Mo M,
Y 23M + 11 5 o + 2 3.2 - +1.1 Moy 1
M
z 133005 233 | 7 T +8 | 3.31 3% 3.32 oe3
Mo Mo M, M,
o} 111M +1123 3 i +7 1.11 W +3.211 .M_+3
X, Y, Z, and 0 as a Function of N
Taper Factor 0.1 1 10 )
- No No No No
N N N N
¥ 33-53+ 1 6 % +1 3.3 .bNI_°+1 11§_°+1
z 343%‘! & 280k 18 %’i +5 | 3.43 %+ 3.2 %+ 3
No No No No
6 1111~I;I—+ 123 4 X +6 1'111T+ 3.21 N_+3
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The relation between frequency of oscillation and the resistance parameters has already
been givén by Equation (403) in the octave form as:

-n (I P [ [A
2= oo Yy (409)

Wo
Equation (409) is reduced for taper factors of 0.1, 1.0, 10, and infinity in terms of the
resistance parameters K, L, M, and N (values of Y and 6 are taken from Table 5) :

Frequency in Terms of K

Taper Factor = 0.1 i

1nE ;23

3 K
= —— (410)
1233*K— +1
0

Taper Factor = 1.0

1

2% +5 V=
—— (411)

Taper Factor = 10

ol =

(412)

Taper Factor = ®

on — __KO__ (413)

Frequency in Terms of L

Taper Factor = 0.1

i
11l 423 \?

n Lo
2" = I A (414)
1223 — + 11
Lo

Taper Factor = 1.0
1
2 % 57
g ol ol (415)

L
8Lo+2

FATE I WILroolumrni i
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Taper Factor = 10

. /11L—+32 z

4 3.221 1.1 )
\s21 £,

Taper Factor = ®©
%+3 %

2“=_il_.-— . (417)

3i—+1
0

Frequency in Terms of M

Taper Factor = 0.1 !
11 — - +23 #
21’1 = (418)

1123 s 111

Taper Factor = 1.0

2—+5

n -

2" = T_7 (419)
—+3

Taper Factor =10

(420)

1
( 1—+32 \2
n _

3211——+ I 11}

M .
. O I (421)
3 == + 1

Frequency in Terms of N

Taper Factor =

21'1

Taper Factor = 0.1

N
L -N—u+33
R e (422)

N
123 N * 1111

Taper Factor = 1.0

g = [ No (423)
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Taper Factor = 10

naj=

N
P M SR
N
UL, 0 424
2 N (424)

3.21-—1;1—0 +1.111

Taper Factor =

l-t—3

e YRR (425)
3E—+ 1 '
No

Establishment of General Equations for Determining
Amplitude-Modulation Effects

The oscillator output voltage is dependent on the gain through the frequency-determining
network; thus, it is necessary to find the network gain as a function of the resistance param-
eters since they are used to vary the oscillator frequency.

The second bracketed term of Equation (388) drops out because it is the imaginary
part of the complex gain (Equation (381)) leaving:

(Apgp = -10 log (27"X - 27277 + 1) (426)

where X and Z are the same as in Equations (377) and (379).

3 a ¥ Yi (427)

(Ap)gp = - 20 log ][(%)2}( - (g—)z + 1] ‘ (428)

Equation (428) is reduced for taper factors of 0.1, 1.0, 10, and infinity in terms of
the resistance parameter K (values of X, Y, Z, and 6 are taken from Table 5).

Since oscillation occurs when

Taper Factor = 0.1

2
% +1233\ o T‘é& +1233 .
(A)gp = -20 logd| — X | Ee— (123 L, 243) #1 % (429)
23 Ko , 11 23 8e ; 11
K K
Taper Factor = 1.0
2
%2 it % b g K
(A)gp = -20 log e ~IT° o (G-K-E-&- 9) + 1 (430)
Bt 3 5oty

AMT 1 I @A RANN
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108
Taper Factor =10
‘/l{.a L " léi +3.321 o
(A)db = -20 log l-_ — e ——— (3.21""q > 3.42\ +1 (431)
\3.2%2 +11 E \32 U 5 /
Taper Factor = «©
N2
/%* s Vg £+3 \ (2 K
= - e el
(A)gb = -20 log \3&” = 3&+1) (3 +8) +1 . (432)
K K



APPENDIX VII
ZERO-PHASE-SHIFT NETWORK
Derivation of General Equations

Using the methods described in Appendix I the matrix of Figure 67 is written down
and expanded:

C;P C/T
Xc = 1/jwC = 1/pC = R/pCR = R/U. ' LR MR
LettingR:l,
b 5. 3
KR c C NR
_qq . U U / /
Yo=U : = . 2
ZR=L , M o O
YR .—_l,, i,. Figure 67
K’ N
a|aa 1|% 1|0 1|L 1‘0 1|M 1!0 1|% 1|0
— .‘1_ - -gl il v 'J_l
e|£> 0|1K|1 o|1Q10|1 Sll 0|1N1
D 2 LU MU sl e o
! 1+KU| G 1+Q|L 1+S |M 1+NU | T
| U U 1
= 10 R | 1 N |_a
P LU\ (B\/U Bt B MU AN M
2 (1+KU) (1+Q)+(U)(Q) (1+KU)L+U (“s J(“NU)*N |
o
| (t+wo) &) v |
2 B LU, P MU B M k- i
a [(1+KU)(1+Q)+Q][(1+ S)(1+NU) +N]+[(1+KU)L+U]
TN B .1
[(1+NU) & +F] g (433)
Since the complex attenuation o =1/4
y 1
TR UY+2+U0+U 3 (434)
where
_ LM
R (435)

ATTRIIFICOCARNT AR
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y-M,L LMT LM PLM PM L
TR T T T W T Rt EY (436)

™ M PL PLTM PLM P PTM PM

Z=1+ﬁ+-ﬁ+ﬁ+m+x—w+a+m+@-
LLT PM LT L P PL
Nt RS YNSTN'YSTKS (437)
6_T+P+PTM+PM+PLT+PT+PLT+PL+PT+£
"N'EK"RNS "RKN"EKQN "QN "ENS "EN" NS ' N (438)
PT
E:R-N—. (439)
Since U = jwCR,
1
i (jwCRF X + (jlwCR)Y + Z + 8 + 2
) WwCR * (jwCRY
1
id [z L (CR)ax] il wcryy--2 ' i
(WCR)Z ~ ¥ : ”[“’ wCR]

On expressing Equation (440) in terms of a reference frequency w, (where w, = 1/RC)
and rewriting in octave form as described in Appendix IT the following equation results:

1

T -mrx] B3 12} (441)
1 a " b
C’!:a-jbﬂ3.!+l:aﬁ+la\.§+b5 (442)
where
%= (Z=27"2 2188 (443)
b = (2706 - 2BY), (444)

The equations for phase shift and absolute attenuation are immediately found as;

Bal=

1

@ =[(— bz)z+(az sz)z ] =@y (445)

g = arctan = - (446)

The absolute attenuation may be expressed in decibels as:
(An)gp = -10 log (a° + b°). (447)

Replacing the values for a and b found in Equations (443) and (444) into the phase—-shift and
attenuation Equations (445) and (446),
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- 10 1og{(z _ 9Ny _92mx)2 . (2-R5 . 2nY)=}, (448)

2% - 2"y
arctan —— o " (449)

(An)db

Bn

Equations (448) and (449) are reduced for taper factors of 1, 10, and infinity:

Taper Factor =1

(A,) =-10log (2% +19-2°" 4+ 87 + 70.272" +27) , (450)
n’db
10-2-0 - 7-20
'Bl'l = arctan _(zzn R & 2_2‘{1) ¢ (451)

Taper Factor = 10

(An)gp = -10 log (2 + 5.41-2°" + 7.501 + 5.591041-27%1 4+ 2741), (452)
A 39320 _ 2 338

fn =arctan THI_ g 5g 4 2N) (133)
Taper Factor = @
(Andgh: =-101og (2™ + 42" 4+ 6.+42™ +279), (454)
49" 428
= S 4
Bn = arctan 612 (455)
Establishment of General Equations for Determining
Oscillator Stability
. - S W S o
B arctan 7 o My _ ooy - arctan v (456)
dp VdU - UdV
& ER (457)
dg_(Z-27"3 - 9'%) (-6In2-27"-YIn2-2") - 27" -2"Y) (2Z1n2:27" -2X In2-2°")
dn (2725 - 2% ) © (T - 2°0 3 - 27k’
dg -[2°0(xY) +2"(YZ - 3X8) +27M(6Z-35Y)+2"*"(36)]1In2(57.3) (458)

dn - 2T (X°) + 20 (Y° - 2X7Z) + (Z2 + 2XT - 2Y0) +2 20(5° - 222) + 2 P (z)

The last equation has the factor (57.3) in order that it be in units of degrees per octave
rather than radians per octave.

Equation (458) gives the slope of the 8 vs. n curve for any value of 8. Since it is
desirable to solve for the slope only at the value of B equal to 180 degrees,

g= 0° when arctan U/V =0

- NOJTILTLOTITRN! N
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LA
v
U

0

=925 -9y -9

*-(4)

Substitution of this value of 2™ in Equation (458) gives the zero-degree phase-shift
slope for any values of the parameters K, L, M, N, P, Q, S, and T.

as _ -[(% " xv + (%)M (YZ - 3X0) +(%)_L’2 (62 -32%)+(3) e Eé](ln D

dn (%)2 G +(—3—}(Y2 - 2XZ) + (2% + 2X5-2Y6) + (-{?-)-1 (6% -2Z%) + (%)‘2 »2

o=

(459)

Establishment of Equations for Frequency in Terms of the
Resistance Parameters K, L, M, and N

The relation between frequency of oscillation and the resistance parameters has
already been established by Equation (459) in the octave form as:

1
zn =£= wCR = (——6—)2 -

Wo Al

This equation is reduced for taper factors of 1 and 10 in terms of the resistance
parameters K, L, M, and N (values of Y and 0 in terms of the resistance parameters are

given in Table 6):

Frequency in Terms of K

I
—

Taper Factor

on - Ko > (461)

Taper Factor = 10

-

o

K
1.111f0 + 3.21

28 = 462
381y s
3K,
Frequency in Terms of L
Taper Factor =1 i
3 %— + 7
onl = _LO © (463)
i

Lo



Taper Factor = 10

Taper Factor =1

Taper Factor = 10

Taper Factor =1

Taper Factor = 10
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1
2

L
1.11 =t 3.211

i
L
3.2 i +1.1
Frequency in Terms of M
1
2 08 + 8 c
oh = M,
50
Mo
i
i 2y 3.221\ 2
2n = M, .
s, i /
23t L
Frequency in Terms of N
P
N g %2
21’1 - NO
N
sﬁﬂ + 2
3
N | 3.321
211 = N{]

N
3.2 e 1.1

(464)

(465)

(466)

(467)

(468)
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The functions X, Y, Z, 6, and T , of Equations (435) through (439), tabulated at taper
factors of'1, 10, and infinity in terms of resistance parameters K, L, M, and N are shown

in Table 6.

Establishment of General Equations for Determining

Amplitude-Modulation Effects

The oscillator output voltage is dependent on the attenuation through the frequency-
determining network; thus, it is necessary to find the network attenuation as a function of
the resistance parameters, since they are used to vary the oscillator frequency.

The second bracketed term of Equation (448) drops out because it is the iinaginary
part of the complex attenuation, leaving:

1

ik LU
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TABLE 6
X,Y,Z,0,and Z as a Function of K
Taper Factor X s z ) )
1 1 —§—°+ 6 5 %+ 10 6 %’+ 4 %-‘1.
10 1 Rei3.3 | 3.2 X0+ 343/ 321 2o 14| B
@ 1 %i— 3 3 %"' 3 3 %+ 1 TIE.E
X,Y,Z,56, and T as a Function of L
Taper Factor X Y Z (0 Z
1 E—O 5 {i? 2 7 %ﬁ 8 3 %ﬂ+ 7 1
10 %0 3.2%+1.1 3.31 TLJ},* 3.82 | 1.11 %J+ 3.211| 1
o —E—O- 3 LE+ 1 3 %ﬂ+ 3 %O+ 3 1
X,Y,7Z,0,and Z as a Function of M
Taper Factor X ¥ Z ] %
1 o 5 Ir+2 T 48 2 r+8 1
10 N 3250+ 1.1 33191 +3.32 | 11 -+ 3.221| 1
o] %—0 3 %{f 1 3 ﬁ—; 3 %+ 3 1
X,Y,Z,06,and Zas a Function of N
Taper Factor X ¥ Z (i »
1 1 2 2o 9 Xe+6 9 e+l |
10 1 1.1-§—°+ 3.2 3.42%—% 3.21 3.321%“ i
© 1 —§—° 3 %‘-’4 3 3 %+1 No
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where X, Z, and T are the same as in E

quations (435), (437), and (439). Since oscillation
occurs when: .

6)%

< il

f “(Y

Adb =-201og|z—6lz—-% x|, (469)

Equation (469) is reduced for taper factors of 1 and 10 in terms of the resistance
parameter K (values of X, Y, Z, 6, and T are taken from Table 6):

Taper Factor = 1

Agp = -20log [|(5Xa,10) - Ko [ _Ko iae (470)
db K K K K
o041 45 45
K, Ko

Taper Factor = 10

(A)gp = -20 log (3.2 g" +3.43) - ® - ] I

1.111%- +3.21 3.3§+1 =
. - 1 (471)
335 +1 LIIE- +3.21

* %k X
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