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Anomaly detection is critical for many different use-cases, such as identifying safety hazards to potentially prevent disasters.
Developing the capability for a human-robot team to ask targeted questions would be critical to quickly identify a violation of
protocol and then quickly take action to rectify the situation. In this report, we experiment with how visual question answering
algorithms can be used with a set of carefully constructed questions to detect anomalies in a virtual makerspace and a real-world
alleyway. Our exploratory results show improvement over a random baseline and we discuss challenges for future work.
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1. Introduction

Human-guided robotic exploration can be useful for gathering information at re-
mote locations, especially those that might be too risky, inhospitable, or inaccessible
for humans due to hazardous conditions or natural disasters.1,2 Site conditions may
be unknown and continuously changing; therefore, having a robot visually moni-
tor and report on the evolving scenario would help a human partner decide what
action the robot should take next or what to investigate further. A robot with capa-
bilities for automatic detection when a scenario is in violation of safety protocols
or expectations may be able to support this goal.

The detection of anomalies has been explored in prior works at the individual entity
level (e.g., a hole in a piece of fabric), at the scene level pertaining to a specific
task (e.g., obstacle avoidance for self-driving cars), and at the events level (e.g.,
unexpected movement over the course of the video).3,4 We situate our work within
the scene level, and incorporate an interactive element for anomaly detection in
human-robot teams.

In this report, we design a paradigm for visual scene analysis centering around
safety protocols and subsequent detection of violations. We gather background
knowledge about the expectations of a particular domain (makerspace safety pro-
tocols) and then ask a system questions about snapshots from the environment to
assess if it is anomalous. Our approach applies recent advances in visual question
answering (VQA) algorithms to a focused inquiry of visual sensory anomaly de-
tection. We identify two sets of visual stimuli for our study: a virtual makerspace,
which we manipulate to violate our curated safety protocols; and a real-world al-
leyway, which exhibits anomalous configurations and properties. The two domains,
questions, and VQA answers are shown in Fig. 1.

In this work, we ask the following research question: Can asking targeted questions

identify and assess visual anomalies more accurately than requesting a generic de-

scription of the image (e.g., from an image captioning algorithm?) Our contribu-
tions are as follows: 1) We design an anomaly categorization from safety protocols
to guide both design of environments and the VQA algorithm’s line of question-
ing, and 2) We assess how well state-of-the-art VQA performs in atypical and out-
of-domain environments. In our proof-of-concept experiments, our VQA-targeted
questioning approach is able to achieve 70% accuracy on anomalies in a makerspace
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image compared to 50% randomness and 0% accuracy using caption generation and
description-only baselines. We discuss the potential in asking questions to assess
anomalies, and describe future work to increase the scale of our testing.

Fig. 1 Two visual stimuli: a virtual makerspace (left) and a real-world alley (right). The VQA
is asked the question “Is anything obstructing the ground around the fire extinguisher?” and
it responds correctly to both stimuli “yes” and “no,” respectively.

2. Visual Question Answering

VQA is an open-ended task where, given an image and a natural language ques-
tion, the system provides an accurate natural language answer.5 The task is de-
signed to closely “reflect the challenge of general image understanding”6 in that
the VQA models do not know the question that will be asked of an image until
run time; therefore, any number of possible questions may be applicable for each
image. Questions that comprise VQA benchmarks take on many formulations: yes-
no questions (e.g., “is...” or “are...”), counting questions (e.g., “how many...”), and
identification of objects or people (e.g., “what kind...” or “who...”). There are sev-
eral variants to the VQA task, including generative question answering, in which an
answer is generated that may be a single word or a short phrase, and ranking-based
question answering, in which the algorithm is given a predefined list of answers to
choose from that are designed to all be plausible.5 Prior success of VQA technology
has been more recently exploited for embodied exploration7 and navigation of 3-D
scenes.8
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3. Methodology

We establish criteria for determining questions that reflect the normative state of an
environment in order to probe for violations of those normative states. These states
are, of course, dependent on the particular domain, and in this work, we create them
through a manual process by reading source material. To alleviate the burden of
manually crafting new criteria for each novel situation, we leave to future work the
automatic creation of such normative states by extracting information from source
materials.

3.1 Visual Stimuli

We select two sets of visual stimuli for our experiments that vary in their nor-
mative states and whether they represent a physical space or a virtual space. The
first is a makerspace, a room with tools and equipment (3-D printers, laser cutters,
etc.). Safety protocols are critical, and thus detecting anomalies within the space is
paramount. A hammer on a bench may be considered misplaced and of lower-level
concern, whereas a puddle on the ground may be a hazardous spill. The makerspace
is virtually rendered in Unity as part of the Robot Interaction in Virtual Reality
(RIVR) platform.9,10 We manipulated the environment to exhibit a number of po-
tential dangers, then took screenshots from different angles within the environment.

The second visual stimuli depicts an alleyway with atypical properties. This is a
real-world location, collected as part of human-robot dialogue experiments found
in the Situated Corpus on Understanding Transactions (SCOUT).11,12 The atypical
environment, which includes poor lighting and strange item placements, may evoke
natural questions about the normative state and its typical function, thus represen-
tative of a space where these elements are unknown prior to exploration.

3.2 Anomaly Categorization

To develop the targeted questions for the VQA, we developed an anomaly cate-
gorization for makerspace safety from a lab safety manual by the University of
Nevada, Reno Innevation Center.* After closely reading the manual, we denoted
five broad categories: inventory, equipment, materials, organization, and environ-
ment. Table 1 further describes each category and the possible dangers that could
result in a violation or critical outlier.

*https://www.unr.edu/innevation/makerspace/safety
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Table 1 Makerspace anomaly categorization

Inventory Equipment Materials Organization Environment

- Missing (lost) - Misuse - Spill - No label - Temp.
- Misplaced (found) - Malfunction - Leak - Obstruction - Noise
- Shortage - Broken - Placement - Light

These guidelines will serve as a foundation for questioning as well as the devel-
opment of synthetic scene creation in the virtual makerspace. We note that for this
study, we do not create a categorization for the SCOUT environment. This is in part
to test the generalization of the makerspace safety to unknown environments.

4. Experiments

4.1 Description Generation Baselines

We first show why using caption description or generic scene description approaches
are not adequate for anomaly detection. The caption generation task has seen an ex-
plosion of models and accuracy since 2015 with the emergence of neural networks
in combination with vision and language tasks13 (see Wang et al.14 for a recent sur-
vey). One might intuit that an algorithm that can describe an image may be able to
therefore describe what is wrong in the image. We show, however, that despite the
advances in technology, a generic scene description task alone is not adequate for
identifying anomalies.

On the makerspace image in Fig. 1 (left), we tested two baselines. The first was the
multi-modal framework (MMF) caption generation algorithm,15 a state-of-the-art
suite of natural language processing and computer visions tools released in 2020.
The algorithm takes as input a single image, and generates a single natural lan-
guage sentence describing it. After inputting the makerspace snapshot to MMF, it
produced: “a room with a bunch of chairs and umbrellas.”

There are no chairs or umbrellas in the room in the image, a clear indicator that
MMF could not correctly process the image. Furthermore, MMF’s caption genera-
tion did not point out any oddities. This may be by design as the caption is meant
to describe the state of the image rather than what is not in the image; however, this
small test suggests that the state-of-the-art caption generation algorithm may not be
sufficient for anomaly detection.
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We next tested a powerful large pre-trained model (LPTM) called Large Language
and Vision Assistant (LLaVA) released in 2023.16 LPTMs use an image and a natu-
ral language prompt as input, and follow the instructions in the prompt to generate
an open-ended text response. We created a simple prompt designed to represent a
similar instruction as the caption generation task: “Describe the scene.” From the
same makerspace image and this prompt, LLaVA generates:

The scene shows a large, empty room with various items and equipment, such as

a table, a chair, and a computer. There are also some barrels and a large container

in the room. The room appears to be a laboratory or a workshop, as it contains

scientific equipment and tools. The room is empty, which suggests that it may be

in the process of being set up or recently cleaned.

The description, while longer than the caption generation response, also did not
point out any anomalies in the space. This response may actually be worse than the
caption generation’s sparsity because of its contradictory nature. It first delivered an
inventory of items in the room, and subsequently declared that the room was empty.
This contradiction presents a large risk to an individual seeking this information in
order to enter a safe space, where they would be mistakenly led to believe that either
the space is empty when it is not, or that the barrel and container are not spilled on
the ground along the other missed safety violations.

We selected these two baselines to make the case for targeted questioning for visual
anomaly detection. We leave to future work the ability to utilize LLaVA or other
LPTMs to implement the same questioning techniques we utilize with the VQA
algorithm (Section 4.2), and instead argue that targeted questioning, over a generic
request for a caption or description, is necessary.

4.2 VQA Targeted Questioning

We utilize an off-the-shelf VQA algorithm, BLIP (Bootstrapping Language-Image
Pre-training for Unified Vision-Language Understanding and Generation).17 The
BLIP algorithm achieves state-of-the-art results on VQA benchmarks as well as
other vision-language tasks, including image-text retrieval and image captioning.
BLIP is part of a suite of computer vision and language tools called LAVIS (Library
for LAnguage-VISion Intelligence).18

We again focused our experimentation on the two images in Fig. 1. Starting with the
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virtual makerspace, we curated a set of 10 “yes-no” questions based on the image,
intending to discover as many anomalies as possible. The questions were designed
to probe features of the categorization within the scope of the image. For example,
from the Organization→Obstruction category, there should be no obstructions on
the ground around items including fire extinguishers, and since there is a fire ex-
tinguisher present in the image, we designed the question, “Is anything obstructing
the ground around the fire extinguisher?” The questions are listed in Table 2, which
also includes the ground truth answer for each visual stimuli and an indicator if the
VQA answered the question incorrectly.

Table 2 Ten questions about anomalies. The asterisk (*) indicates the VQA answered incor-
rectly.

Question Makerspace
answer

SCOUT
answer

Is anything obstructing the doorway? no* yes*

Is the door left open? yes yes

Is anything obstructing the ground around the fire extin-
guisher?

yes no*

Is any liquid spilled on the ground? yes* no

Is anything inside the caution tape on the ground? yes no

Is anything on top of the flammable liquid cabinet? yes* no

Are tools left on the table? yes no

Are there any items misplaced? yes no

Are any items being misused? no no

Are any items malfunctioning? no no

We implemented a preliminary follow-up routine where, if the VQA answered
“yes,” a subsequent question was triggered that specifically requested what exactly
in the environment was anomalous. For example, if the VQA answered “yes” to the
question, “Is anything obstructing the ground around the fire extinguisher?” The
follow-up question triggered was, “What is obstructing the ground around the fire
extinguisher?” Due to the wide range of possible answers that could be produced
by this open-ended line of questioning, we treat the responses as observations in
this work.

The BLIP-VQA algorithm achieved 70% accuracy on these questions in the mak-
erspace, outperforming a random baseline (50% representing chance of the “yes-
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no” questions). The anomalies overlooked were the liquid spill, the placement of
items on top of the flammable liquid cabinet, and that the doorway was not ob-
structed.

We tested the same 10 questions on the image from SCOUT in Fig. 1 (right) and
achieved 80% accuracy. Because these questions were designed for makerspace
safety, they are not assessing the anomalies within the SCOUT space, but rather
the VQA’s ability to answer questions in the atypical environment. This percentage
represents precision, rather than recall. While most of the questions were answered
correctly, the anomalies not asked about that appear in the image were not reflected
in the score.

5. Discussion

While we are unable to make broad statements of impact given our small sample
size, we discuss several points in our investigation that remain open in ongoing and
future work. It is difficult to determine if the errors are due to a computer vision
failure at the image level, a language failure at the question understanding level, or
a reasoning failure at the algorithmic level. In the case of the question asking if any
liquid spilled on the ground, did the computer vision not recognize the oil from the
red barrel as a liquid spilling? Did the VQA not understand what a spill is? Or did
the algorithm that attempts to reconcile the two fail to do so? The logic of VQA
remains “under the hood.” In future work, we will stress test and ablate different
scenarios to attempt to reveal these differences.

The majority of the questions explicitly name an item of interest for the focus of
the analysis (e.g., “doorway”) and then a question about it or its surroundings (e.g.,
“obstruction”). These questions assess the co-location of two objects (in front of,
on top of, next to, etc.) and require the computer vision to correctly identify both
named items, as well as determine their positional relationship as extracted from the
natural language question. All of the incorrect answers in the makerspace stimuli
are of this co-location type and may represent shortcomings at the computer vision
level (i.e., Can the model identify a “flammable liquid cabinet”?) Does the word
“obstruction” generalize such that the model interprets the word to refer to any
object? Furthermore, does the fidelity of the simulated environment affect recogni-
tion? BLIP is trained on photographic images, although prior work has shown VQA
to be effective on animated pictures when trained for such.5 More recently, work has
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investigated VQA’s performance on synthetically generated environments.19 There
are benefits to training on synthetic environments if we ultimately envision the VQA
as assisting in unseen environments. On the other hand, while the SCOUT image
is photographic, the lighting, resolution, and camera angle differ from the high-
quality photographic images these models are typically trained on. This too may
pose a challenge for adapting to unseen environments.

Some of the questions—namely, those dealing with item misplacement, misuse,
malfunction—involve implicit knowledge about the item and its typical placement,
use, and function. The VQA answered these questions correctly; however, there is
no evidence that the VQA has ever been trained on makerspace data, or that it could
know typical uses for every item in the entire image. These questions ask for an
anomaly detection of a particular type (e.g., anomalies dealing with item misuse.)
In subsequent experimentation, more questions will be asked to enumerate possible
types of misuse and help focus the VQA analysis.

Finally, we note that some of our questions can have more than one correct answer.
To the fire extinguisher obstruction question, for example, there are two such items:
a small gas canister and a large oil barrel. Answering in the affirmative is correct,
but we envision the follow-up questioning as significant in fully exploring the scene.
When dealing with safety protocols, it is not enough to identify the hazard; we must
also seek to resolve it. If the VQA line of questioning could respond with the exact
cause of the anomaly, recovery actions could be taken by a robot, either by picking
up and relocating objects or cleaning them up. In the case of this question, the VQA
correctly responds that there is something by the fire extinguisher; however, the
follow-up response is “ladder.” This returns us to our earlier discussion point about
understanding what the VQA is failing under the hood, which we hope to address
in experimentation and design of questions from the categorization. We also need
to examine whether the categorization and visual stimuli inputs need to be refined.

6. Conclusions and Future Work

In this report, we showed how the use of targeted questioning can more accurately
assess anomalies in test environments than image captions or descriptions alone.
In particular, this approach demonstrated how manually crafted environments and
questions achieved 70% accuracy using an off-the-shelf VQA algorithm, and 80%
precision for an out-of-domain image.

8



We have several research avenues for future work. First, we aim to automate the
creation of anomalous categories from source documents. This could be done by ap-
plying natural language processing information extraction techniques to documents.
As a starting point, we will compare the automatically extracted categories of the
makerspace against our manual categories. We will further curate a categorization
for the SCOUT environment based on documents that describe the expectations of
that environment. Second, we plan to conduct more rigorous question asking over
more images, and design images and questions to test the various capabilities (i.e.,
computer vision, natural language understanding, and VQA.) To substantiate this
effort, we will propose new evaluation tasks and metrics for measuring the effi-
ciency of a question-answering interaction between a human and robot based on
these questions.
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