

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DEFENDING AGAINST DEEP LEARNING-BASED
VIDEO FINGERPRINTING ATTACKS WITH

ADVERSARIAL EXAMPLES

by

Blake A. Hayden

June 2022

Thesis Advisor: Armon C. Barton
Second Reader: Joshua A. Kroll

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
DEFENDING AGAINST DEEP LEARNING-BASED VIDEO
FINGERPRINTING ATTACKS WITH ADVERSARIAL EXAMPLES

 5. FUNDING NUMBERS

 6. AUTHOR(S) Blake A. Hayden

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 In an increasingly digital world, online anonymity and privacy is a paramount issue for internet users.
Tools like The Onion Router (Tor) offer users anonymous internet browsing. Recently, however, Tor’s
anonymity has been compromised through fingerprinting, where machine learning models are used to
analyze Tor traffic and predict user viewing habits, with some models achieving an accuracy of over 99%.
There are defenses for Tor that attempt to prevent fingerprinting, but many are defeated by new techniques
that utilize Deep Neural Networks (DNNs). New defenses that are robust against DNNs use adversarial
examples to fool the classifier, but those defenses either assume the user has access to the full traffic trace
beforehand or require expensive maintenance from Tor servers. In this thesis, we propose Prism, a defense
against fingerprinting attacks that uses adversarial examples to fool classifiers in real time. We describe a
novel method of adversarial example generation that enables adversarial example creation as input is learned
over time. Prism injects these adversarial examples into the Tor traffic stream to prevent DNNs from
accurately predicting sites that a user is viewing, even if the DNN is hardened by adversarial training. We
show that Prism reduces the accuracy of defended fingerprinting models from over 98% to 0%. We also
show that Prism can be implemented entirely on the server side, increasing deployability for users who run
Tor on devices without GPUs.

 14. SUBJECT TERMS
adversarial examples, defending Tor, website fingerprinting, video fingerprinting, deep
fingerprinting, defending anonymity, anonymity

 15. NUMBER OF
PAGES
 59
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DEFENDING AGAINST DEEP LEARNING-BASED VIDEO FINGERPRINTING
ATTACKS WITH ADVERSARIAL EXAMPLES

Blake A. Hayden
Ensign, United States Navy

BS, United States Naval Academy, 2021

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Armon C. Barton
 Advisor

 Joshua A. Kroll
 Second Reader

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 In an increasingly digital world, online anonymity and privacy is a paramount

issue for internet users. Tools like The Onion Router (Tor) offer users anonymous

internet browsing. Recently, however, Tor’s anonymity has been compromised through

fingerprinting, where machine learning models are used to analyze Tor traffic and predict

user viewing habits, with some models achieving an accuracy of over 99%. There are

defenses for Tor that attempt to prevent fingerprinting, but many are defeated by new

techniques that utilize Deep Neural Networks (DNNs). New defenses that are robust

against DNNs use adversarial examples to fool the classifier, but those defenses either

assume the user has access to the full traffic trace beforehand or require expensive

maintenance from Tor servers. In this thesis, we propose Prism, a defense against

fingerprinting attacks that uses adversarial examples to fool classifiers in real time. We

describe a novel method of adversarial example generation that enables adversarial

example creation as input is learned over time. Prism injects these adversarial examples

into the Tor traffic stream to prevent DNNs from accurately predicting sites that a user is

viewing, even if the DNN is hardened by adversarial training. We show that Prism

reduces the accuracy of defended fingerprinting models from over 98% to 0%. We also

show that Prism can be implemented entirely on the server side, increasing deployability

for users who run Tor on devices without GPUs.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Thesis Organization . 2

2 Background and Related Work 3
2.1 Tor Onion Router . 3
2.2 Machine Learning . 4
2.3 Website Fingerprinting . 6
2.4 Adversarial Examples . 8

3 Prism Design 13
3.1 Generating Adversarial Traces 14

4 Evaluation 23
4.1 VF Testing . 23
4.2 WF Testing. 31

5 Discussion 35
5.1 Possible Improvements . 35
5.2 Adversarial Training . 36
5.3 BWO Requirements . 36
5.4 Open-World Testing . 37

6 Conclusion 39

List of References 41

Initial Distribution List 43

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 2.1 Tor network. Source: [7] . 3

Figure 2.2 Left shows the original input, middle shows the perturbations that are
added to the photo on the left, and right shows the resulting adversarial
example image. The images on the left are correctly classified, and
the images on the right are misclassified as an ostrich, struthio, and
camelus. Source: [15]. 9

Figure 3.1 Perturbation window representation 13

Figure 3.2 Perturbation column insertion 17

Figure 4.1 Results of Video Fingerprinting Server-Client Prism defense on an
undefended DF model . 28

Figure 4.2 Results of Video Fingerprinting server side only Prism defense on an
undefended DF model . 29

Figure 4.3 Results of Website Fingerprinting Server-Client Prism defense on an
undefended DF model . 33

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 3.1 Bandwidth overhead levels . 18

Table 4.1 Deep fingerprinting hyperparameters 25

Table 4.2 VF defense hyperparameters . 26

Table 4.3 Defended VF model results . 31

Table 4.4 WF defense hyperparameter settings 32

Table 4.5 Defended WF model results . 33

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

BWO bandwidth overhead

CL convolutional layer

CNN Convolutional Neural Network

DF Deep Fingerprinting

DNN Deep Neural Network

ML machine learning

PGD projected gradient descent

Tor The Onion Router

VF video fingerprinting

WF website fingerprinting

WT Walkie-Talkie

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

1.1 Introduction
Privacy on the web is a hot topic both technologically and politically. Some users simply
want to browse the web anonymously for peace of mind knowing that no third party is
able to track what they are doing. For others, however, like those living under a regime
that engages in censorship, online anonymity becomes a necessity. Programs, such as The
Onion Router (Tor), have created a way for users to browse the web anonymously [1]. The
anonymity offered by Tor is robust, but it did not take long for adversaries to discover ways
to circumvent Tor’s privacy and identify users’ browsing habits.

The most recent development in the field of attacking Tor has been using Deep Neural
Networks (DNNs) to analyze first hop network traffic and predict what website the victim
is visiting. This attack is known as website fingerprinting (WF). More specifically, using a
DNN to perform WF is called Deep Fingerprinting (DF) and was demonstrated in Sirinam
et al’s work [2]. Another way for an attacker to learn what a victim is viewing on the web is
through video fingerprinting (VF). This technique works similarly to WF, but the DNN is
used to analyze the traffic and determine which video a user is streaming rather than which
website he is viewing.

The objective of this thesis is to develop an effective defense against both VF andWF attacks
that are utilizing a DNN classifier. There have been several papers that explore possible
defenses against WF attacks, such as Mockingbird [3], Walkie-Talkie [4], andDolos [5], but
no defenses have been created for defending against VF attacks. Additionally, many of the
defenses that have been proposed for WF do not model the defense in a real-world scenario
where the information being defended is generated in real-time. The defenses are therefore
not implementable as a defense for Tor. This idea is discussed more in Section 2.4.

In this paper, we propose Prism, a VF and WF defense that uses adversarial examples
to defend Tor traces in real-time. We accomplish this by utilizing a novel method of
adversarial example generation which implements a modified version of projected gradient

1

descent (PGD) to craft adversarial examples on input that is learned over time. Prism uses
this approach to craft adversarial examples capable of fooling the classifier when injected
into the traffic stream.We also modify DF to create a VF classifier to test our defense against
both VF and WF classifiers.

By implementing our Prism defense, we show that we can effectively defeat fingerprinting,
significantly reducing the accuracy of DF models trained to perform VF and WF. Specif-
ically, when we apply the Prism defense to traces captured on Tor, we show that Prism
reduces the accuracy of undefended VF models from 92% down to 0% and reduces the
accuracy of undefended WF models from 98% down to 0%. We also test Prism with de-
fended models, which are hardened to resist adversarial examples, and show that Prism still
defeats the classifiers, reducing the defended VF model accuracy to 0% and the defended
WF model accuracy to 56%.

1.2 Thesis Organization
This thesis is organized into the following chapters:

• Background and Related Work where we explain the technical background regard-
ing the techniques employed in the paper and analyze current approaches to defending
against fingerprinting attacks.

• Prism Design where we describe the design of the Prism defense and explain how
the defense is implemented algorithmically.

• Evaluation where we present and analyze the results of the Prism defense when
tested against various fingerprinting models.

• Discussion where we discuss possible implementation decisions, limitations of the
defense, and possible future work to improve the defense.

• Conclusion where we summarize our findings in the paper.

2

CHAPTER 2:
Background and Related Work

2.1 Tor Onion Router
Tor is an internet browser and routing protocol that was specifically designed to protect
users’ online anonymity. To accomplish this, Tor layers encryption on the network packet
before sending it, so the original source and destination cannot be discovered by intercepting
the packet. Before sending the packet, Tor randomly selects a circuit between the client and
destination consisting of three relay nodes [6]. The circuit is chosen at random and will be
used for 10 minutes at which point a new circuit will be selected for user [7]. As the packet
is forwarded between the nodes, each node will strip off a layer of encryption to reveal the
next hop in the circuit and forward it on until the packet exits the Tor network and arrives
at the destination. Figure 2.1 shows a graphical representation of how packet forwarding is
accomplished over Tor.

Figure 2.1. Tor network. Source: [7].

3

In the diagram, client (A) wants to reach destination (B). First, the client selects a circuit
which will tunnel the packet through the network. The circuit consists of a guard node,
middle node, and exit node. When a new circuit is selected, only the middle and exit nodes
are changed; the guard node is only changed if it is no longer available or a period of 60 days
to 9 months is reached [6]. After selecting the circuit, the client will encrypt the message
three times using three different keys, each corresponding to one of the nodes in the circuit.
The client then forwards the encrypted packet to the guard node which decrypts the first
layer of encryption. After decrypting, the guard node will know the address of the middle
node and forward the packet on. The middle and exit nodes repeat this process and deliver
the packet to the destination. Note that no party in this system besides the client knows the
source and destination, only the previous and following hop.

The layered encryption approach ofTor significantly increases latency for users. [6] proposed
a method to intelligently select Tor circuits that will decrease latency. Additionally, it
is possible for nodes in the Tor network to become compromised which can lead to a
compromise in user anonymity. [8] outlines a method of selecting destination independent
Tor circuits to improve security by avoiding nodes which may be compromised.

Researchers have also found ways to attack anonymity on Tor by using a malicious guard
node to perform fingerprinting attacks (discussed in Section 2.3) on the traffic from users
and determine the sites they are visiting [9]. Reference [10] addresses this by creating guard
sets which allow a user to select a guard node from a set of secure guard nodes to limit
the ability of malicious guards to inject themselves into the Tor network. It is still possible,
however, for an adversary acting in the role of an Internet Service Provider to observe the
encrypted traffic and perform fingerprinting.

2.2 Machine Learning
The attacks that perform WF have relied on the science of machine learning (ML). ML
can be defined as, "a field of study that gives computers the ability to learn without being
explicitly programmed" [11]. Neural networks are a method within ML that are useful when
a programmer wants to model and predict the outcomes of a complicated data set. Neural
Networks accomplish this by analyzing a set of specified features in the data set and learning
relations between the input G and output ~ to model a function 5 , such that ~ = 5 (G).

4

Neural networks have layers of neuronswhere each neuron can be either 1 or 0. The resulting
structure of layers are referred to as a model. Each neuron is connected to every neuron in
the following layer by a weight, |. As information travels through the model, each neuron
computes the sum of the inputs multiplied by the weights, so for = inputs,

I =
∑=

8=0 G8 ∗ |8 [11]

The sum I is then fed into an activation functionwhich becomes the value of the neuron [11].
During the training phase of the model, the weights are adjusted using a loss function to
minimize the loss between output ~ and desired output ~̂.

As the data set complexity increases, the model must be expanded as well to identify more
subtle relationships within the data. This can be done by addingmore layers to the model. As
the model’s complexity grows, however, it requires more training data, with larger models
requiring millions of samples of data to successfully train.

2.2.1 Deep Neural Networks
One type of neural network is called a DNN. A DNN can get very large, often having more
than 10 layers with each layer having hundreds of neurons [11]. These models excel at
performing subtle classifications on large data sets, and have seen extensive use in image
classification [11]. One advancement that has tremendously improved the performance of
DNNs is the use of convolutional layers (CLs). When a DNNmakes use of CLs, it is referred
to as a Convolutional Neural Network (CNN).

CNNs are a way for the model to abstract the input so it becomes easier to identify less
obvious patterns within the data. In image classification, CNNs work by focusing on a
smaller section of pixels within the image called a receptive field. Instead of mapping
each pixel to the neurons above, a CNN looks at a small rectangle within the image and
computes a neuron value based on that selection [11]. This enables the CNN to focus on
pulling features out of different sections of the image to improve classification. While in this
example the CNN is used for image classification, CNNs can be used in any other model
where less obvious features are important to successfully classify the input.

5

2.3 Website Fingerprinting
In website fingerprinting, a local adversary listens to network traffic to and from a client that
is visiting websites and attempts to identify which website the client is viewing [12]. When
performing WF, the attack will be classified as being either closed-world or open-world.
Closed-world attacks are performed in a laboratory setting where the visited websites are
pulled from a predetermined set and there are not unanticipated network packets serving
as noise. Conversely, open-world attacks are performed in the wild where the attacker has
no prior knowledge of which websites the client is viewing or what type of packets may be
sent.

Anonymous browsers like Tor make WF attacks much more difficult by encrypting the
entire network packet, so the only information that an attacker can gather is the direction,
timestamp, and size associated with each packet. Before machine learning capabilities
advanced to the level they are now, WF attacks over Tor in an open-world setting based only
on these features were not feasible. With advents in ML, however, WF attacks over Tor are
now possible and have been thoroughly documented.

2.3.1 Deep Fingerprinting
Deep Fingerprinting (DF) is a new model that uses a Deep Neural Network to perform
WF [2]. The convolutional layers within the DNN assist the model in pulling out subtle
features within the data set which greatly improves the model’s accuracy when used on
traffic traces that have been defended. One weakness that most defenses have is that an
attacker can include defended traffic traces in the training set so the classifier can learn the
defense and circumvent it when classifying traces.

DF demonstrates this with a defense called WTF-PAD [13], a WF defense that has been
adopted by Tor. WTF-PAD works by sending bursts of dummy packets whenever there is
a large delay between packet arrival times, and this defense reduced the accuracy of some
WF models from 92% down to 17% with a bandwidth overhead (BWO) of 60% [13]. By
including WTF-PAD defended traffic in their training set, the DF model was able to achieve
a closed-world accuracy of over 90%, essentially breaking the WTF-PAD defense [2]. It
is important to note that in an open-world evaluation of the DF model on the Walkie-
Talkie (WT) defense, the model could only achieve an accuracy of approximately 35%. This

6

is largely the result of the burst modeling which is specifically designed to create collisions
and reduce the certainty of the model. TheWT defense is not implementable in a real-world
setting, however, because it requires knowledge of the full trace before crafting a defense.

2.3.2 BurNet
While traditional WF methods require the attacker to be local: i.e., have access to both
incoming and outgoing packets, [14] proposed BurNet, a Convolutional Neural Net (CNN)
which is able to perform fine grained WF with unidirectional packets, enabling a remote
attacker. The work uses the term fine grained WF to refer to identifying specific webpages
a user is viewing, as opposed to only the domain. BurNet accomplishes this by creating
unidirectional packet bursts going from the server to the client. A single burst is collected
from a series of packets and computed based on the packet sequencing and encrypted
message size [14]. Using bursts reduces the size of the training set and speeds up training
while also improving the performance of the model over alternative approaches, especially
in a remote attacker scenario.

The dataset used by [14] was built by accessing www.jd.com and www.youtube.com. The
experiments performed on the youtube dataset were in essence performing VF, and BurNet
identified the correct webpage (video) with 98% accuracy in the local attack scenario,
outperforming DF and the other models used. In the paper, it is noted that having access to
both direction sequences is preferred and results in higher accuracy, but since the paper was
primarily concerned with TLS traffic, it focused on unidirectional bursts.With Tor, however,
a remote attacker scenario is not feasible since the header information is encrypted, so an
attacker must be local [1].

2.3.3 Video Fingerprinting
Video fingerprinting differs from website fingerprinting because instead of intermittent
packet transmissions containing websites, video streaming creates a constant flow of traffic
to be analyzed. With the flexibility of machine learning, however, we are able to adjust
established WF models and train them on video traces to perform VF. For the purposes of
this paper, we use a modified Deep Fingerprinting model to perform VF. Although BurNet
slightly outperformed the DF in testing, the literature indicates that BurNet will be similarly
susceptible to our adversarial example attack since it relies on a CNN [15].

7

2.4 Adversarial Examples
[15] explores a weakness identified in DNNs: adversarial examples. [15] noted that DNNs
are sensitive to slight changes in the input image due to reliance on local generalization,
where the DNN is able to assign a high probability guess to a section of the image that does
not contain data similar to training input. For the most part this approach works very well,
but it can be exploited to attack the model. Adversarial examples are a way to fool image
classifying DNNs by adding small changes to the input image that are imperceptible to the
human eye but cause the classifier to misclassify the image with a high degree of certainty.
Distance metrics !0, !2, and !∞ are used to quantify how much the image changes, where

• !0 is the total number of pixels that were changed.
• !2 is the Euclidean distance between the two images.
• !∞ is the greatest change to any one pixel in the image. [16]

The method employed by [15] to generate adversarial examples was to add noise to the
input image until it is misclassified by the model, then minimize that noise so it changes
the input image as little as possible while still fooling the model. An example of adversarial
examples is shown in Figure 2.2 (reproduced from [15]).

8

Figure 2.2. Left shows the original input, middle shows the perturbations that
are added to the photo on the left, and right shows the resulting adversarial
example image. The images on the left are correctly classified, and the images
on the right are misclassified as an ostrich, struthio, and camelus. Source:
[15].

Another interesting finding from [15] is that the adversarial examples are highly transferable,
meaning those same adversarial example photos can be fed to another model, and that model
often misclassifies the photo with the same incorrect prediction class.

Projected Gradient Descent
One way of producing adversarial examples is through PGD. PGD is similar to the Fast
Gradient Sign Method, an attack method that calculates the gradient from the loss for a
given model prediction, then takes one step down the sign of the gradient to generate an
adversarial example [17]. PGD introduces a small amount of noise around the original
example, then repeatedly steps down the gradient [16]. A mathematical representation of
this approach is shown below in Equation 2.1 (pulled from [17]).

GC+1 = ΠG+S
(
GC + Usgn(∇G! (\, G, ~))

)
(2.1)

9

where ! is a loss function, U is a step size, and ΠG+S is an ;?-bound on - . It is important
to note that PGD assumes the attacker will use the entire input in conjunction with model
gradients to craft adversarial examples. This assumption does not hold in a network setting,
however, when the full input is not known beforehand.

2.4.1 Defending Against WF Attacks using Adversarial Examples

Mockingbird
In [3], the authors apply adversarial examples to create Mockingbird, a defense against
WF attacks. In their approach, they attempt to defend a given source trace by randomly
selecting a target sample from a training set and making gradual changes to the source
trace to get closer to the target sample [3]. The defense is finished when a sample WF
model misclassifies the source trace. They note that the source trace does not need to be
classified as the target sample for the defense to succeed.Mockingbird relies on a the degree
of confidence from theWFmodel with the goal being high confidence in regard to the target
sample. It adjusts the source sample to maximize the confidence value.

The Mockingbird defense successfully reduces the accuracy of a DF classifier to less than
40% with a lower BWO than alternative defenses such as WTF-PAD and WT.Mockingbird
is not a feasible solution toWF attacks, however, because it requires knowledge of the entire
trace before it can craft perturbation to defend that trace. In a real-world scenario, the client
does not fully observe the trace until all the content has been downloaded. At that point, the
adversary would have also passively observed the full trace and predicted the content before
the client could add defensive perturbation. For this reason, Mockingbird is considered a
proof of concept rather than a realistic defense [3].

Adversarial Patches
Reference [18] proposes a novel method of adversarial patches as a way to attack DNNs.
Adversarial patches differ from regular adversarial examples by only affecting a smaller
area of the image, or the trace in the case of WF and VF. Reference [5] proposes Dolos
which uses adversarial patches as a defense for WF, outperforming other methods such
as WTF-PAD and Mockingbird while being implementable in a real-world setting. In their

10

work, the authors combine adversarial patches with a user secret to create unique adversarial
patches that consistently fool the classifier with only 30% BWO [5].

The real-time patching approach works by selecting a website trace, , , that is dissimilar
to the website a user is trying to visit, and combines it with a user secret D to compute a
patch with (D,,). In the paper, the authors address deployment by arguing for a database,
maintained by Tor, which stores website traces divided into sensitive and non-sensitive sites
that is automatically queried when a user attempts to defend their traffic. This approach
enables thin clients (clients without GPU access) to defend their traces. A database of this
magnitude, however, incurs a significant cost to maintain, and it does not scale well to
accommodate VF where traces are much larger and more numerous.

Our Prism approach does not require precomputed adversarial examples, so we eliminate
the need for database maintenance. We show that Prism can be implemented as a gateway
only defense, meaning that only the Tor guard injects perturbation packets, eliminating the
need for the user to have access to a GPU. Additionally, we discuss possible implementation
in Section 5.1.2 that would enable traffic from both the client and the gateway while only
computing the defense at the gateway which expands the effectiveness of Prism on scaled
data for WF. This is a significant step towards deployability because many Tor users prefer
to run thin clients and therefore would not benefit from a defense that requires a client side
GPU.

2.4.2 Defenses Against Adversarial Examples
Reference [19] discusses possible ways to defend a model against an adversarial example
attack. The paper describes a handful of defenses, such as detecting if adversarial examples
are present in the input [20], trying to remove the perturbations from the input [21], including
adversarial examples in the training set [22], and others. The authors point out that all of
the defenses in the paper tend to be effective for defending against different aspects of the
attack, but none do a very good job of generalizing, especially to unseen attacks. PadNet
is another approach which introduces padding classes to separate possible classes as well
as minimizing gradients to prevent adversarial examples from traversing the gradient of the
loss function [16].

Some of the defenses, such as the inclusion of adversarial examples in the training set,

11

are intended to add robustness to the model. This improves model regularization and helps
to prevent overfitting, which improves model performance on an unperturbed test set and
a single iteration adversarial example attack [19]. The resulting model does not perform
better on black box adversarial examples, however, indicating that the hardened model is
sensitive to adversarial examples that were developed for a different model.

In this paper we include adversarial examples in the training set as a defense for three main
reasons. Firstly, including adversarial examples in the training set is a simple hardening tech-
nique that is easy to do, so it is a first step for an attacker to defend their model. Secondly,
each approach has significant trade-offs, and none are able to provide an all-encompassing
defense against adversarial examples [19]. This approach has shown promising results for
improving generalization which we determined was most important in our experimentation.
Finally, in a real-world scenario, an attacker collecting traces to train a model for fingerprint-
ing will see traces defended with adversarial examples, so including adversarial examples
in the training set emulates a real-world scenario most closely.

12

CHAPTER 3:
Prism Design

We will now describe the rationale and motivation behind our approach and describe our
design in detail.

Our main goal is to provide a means to effectively defend a trace in real-time. Other papers
have shown possible defenses using adversarial examples, [3], [5], but as stated in Section
2, not many of the effective defenses can be implemented in a real-world scenario. This
is because adversarial examples are designed to take full model inputs and make small
perturbations to the entire input, which is not suitable in network traffic analysis because a
trace cannot be determined before the download is complete.

To solve this issue, we rely on perturbation windows. We define a perturbation window
as a subsection of the trace that is eligible for perturbation tuning. The window is the last
= packets of the trace that have been seen, where = is a defense parameter. The window
acts as a pool for the packets before sending them, and perturbs the entire window as a
batch before transmitting the packets with the adversarial examples. When perturbing the
window, Prism uses the information seen previously in the trace, but only makes changes to
the current window. Adversarial examples perform better the more information is available
about the input, so by including the previous packets when perturbing the current window,
the adversarial examples get better as the trace continues. Figure 3.1 depicts the use of the
perturbation window.

Figure 3.1. Perturbation window representation

13

3.1 Generating Adversarial Traces
Since we are not able to alter the original packets of the trace, our first step is inserting
perturbation columns into the dataset which simulates perturbation packets being inserted
strategically by the client or guard during a live TCP stream. These perturbation columns
are randomly initialized within the min and max value range from the dataset. We want the
columns to be evenly distributed throughout the trace so that we do not end up with large
groups of dummy packets. This will prevent interruptions to the video stream as well as
make it difficult for the adversary to guess where the perturbations are and simply drop that
section of the trace before evaluating.

The perturbation columns are entered into the dataset in groups which are spread throughout
the trace. To insert perturbation columns, we used values of desired saturation, B, and width,
|, where saturation refers to a desired BWO (as a percentage between 0 and 1) and width
refers to the number of columns entered in each grouping. We limit BWO to less than 100%
because a defense that uses over 100% BWO will incur too much latency to be usable. The
first thing we calculate is the step size. The step size is a portion of the original trace in
which a group of perturbation columns will be randomly inserted. We want a step size such
that if a perturbation group of width | is inserted within step packets, we get a saturation
level (additional perturbation packets) of B. Mathematically, we can represent this as

step + |
step

= 1 − B (3.1)

We can now solve for step, and get

step =
|

B
(3.2)

In the Python implementation, the randint function, which is used to select a random
index within the step window, is non-inclusive, so we need to add 1 to account for this.
Additionally, randint requires integer arguments, so we have to truncate step to an integer,
which gives us

14

step = b|
B
c + 1 (3.3)

An index is randomly selected from this step range for the perturbation column entry.
Applying this step value, we can create a trace with perturbation columns distributed evenly
throughout with Algorithm 1.

15

Algorithm 1 Inserting Perturbation Columns
Input

trace A network trace capture
B The desired BWO of perturbation columns s.t. 0 < B < 1
| The desired width of the perturbation column entries
pad_mask An array of {0,1}_ where padding in the trace is 0
` The length of the trace

Output
trace The trace with random perturbation columns inserted
pert_mask An array of {0,1}_ where perturbation columns are 1

pert_mask[`] ← {0, 0, ..., 0}
step← b|

B
c + 1

8 ← 0
while 8 < ` do

index← A0=38=C (8, step + 8)
8 ← 8 + step + |
if index > ` then

index← ` − 1
end if
9 ← 0
while 9 < | do

A ← A0=38=C (<8=(trace), <0G(trace))
trace.8=B4AC (index + 9 , A)
pert_mask.8=B4AC (index + 9 , 1)
9 ← 9 + 1

end while
end while
trace← trace ∗ pad_mask

This algorithm inserts random integers sampled from the range of inputs seen into the trace
in perturbation groupings. It also tracks the locations of the inserts by inserting a 1 in the
pert_mask which is used when performing the PGD optimization on the trace. Finally, the

16

trace is multiplied by a pad_mask to restore any padding that may have been clobbered. This
is necessary because the perturbation columns are added after the data is processed into an
array of traces and padded or snipped to a common length. Figure 3.2 shows a simplified
depiction of the process described in Algorithm 1 where we set B = 0.2 and | = 2.

Figure 3.2. Perturbation column insertion

One thing to note is that the floor function in Equation 3.3 causes the resulting BWO to
differ slightly from the input saturation B. Table 3.1 details the input settings and resulting
BWO values used in our experimentation.

17

Table 3.1. Bandwidth overhead levels

BWO Saturation (B) Width (|)
5.00% 0.05 5
10.00% 0.1 5
20.00% 0.2 5
31.30% 0.3 5
41.70% 0.4 5
50.00% 0.5 5
62.50% 0.6 5
71.40% 0.7 5
83.30% 0.8 5
100.00% 0.9 5

3.1.1 Prism Algorithm
To turn our random perturbations into adversarial examples, we must tune the values using
PGD. In order to simulate a real-world scenario, however, we cannot simply pass our entire
trace into a PGD function. That would simulate knowledge of the trace before it occurs.
We instead use a perturbation window to tune the perturbations a little bit at a time. The
description of this process is shown in Algorithm 2.

18

Algorithm 2 Windowed Perturbation Tuning
Input

win_size Size of perturbation window, s.t. win_size> 0
trace A trace that has been processed through Algorithm 1
pert_mask Output from Algorithm 1 associated to trace
pad_mask Same as in Algorithm 1
` The length of the trace

Output
X_batch A tuned copy of the trace that contains adversarial examples

revealing_mask[`] ← {0, 0, ..., 0}
protection_mask[`] ← {1, 1, ..., 1}
window_lower← 0
window_upper← 0
X_batch← 2>?~(trace)
while window_upper < ` do

i← 0
while i < win_size do

revealing_mask[window_upper] ← 1
window_upper← window_upper + 1
if window_upper = ` − 1 then

break
end if
i← i + 1

end while
X_batch← X_batch ∗ revealing_mask
X_batch← ?�3 (X_batch, protection_mask)
i← 0
while i < win_size do

protection_mask[window_lower] ← 0
window_lower← window_lower + 1
if window_lower = ` − 1 then

break
end if
i← i + 1

end while
X_batch ← X_batch ∗ revealing_mask + trace ∗

protection_mask
end while

19

To enforce our windowed approach, we once utilize twomasks: one to hide the ‘unseen’ por-
tion of the trace from the PGD tuning, called revealing_mask in the algorithm, and another
to protect prior packets in the trace which have already been tuned, called protection_mask.
To hide the unseen portion of the trace, we begin with an array of 0’s equal to the length of
our trace. For protection_mask, we begin with an array of 1’s equal to the length of our trace.
In the algorithm, the space between the two masks is our current perturbation window: i.e.,
packets that have been ‘seen’ but are not yet protected.

To implement the window, we move the front of the window forward by consecutively
setting the values of window_size elements in revealing_mask to 1 and multiply X_batch
by revealing_mask. This is what ‘reveals’ the perturbation window. X_batch is then passed
into the PGD function along with protection_mask which is used in PGD to protect the
previous portion of the trace from being re-perturbed.

After the packets have been tuned by PGD, we advance the back of the window forward
by setting window_size elements in protection_mask to 0 which will protect the window
we just tuned on the next iteration. At this point, we need to reassemble the trace by
concatenating the tuned portion with the unseen portion. We accomplish this by taking the
sum ofX_batch*revealing_mask and trace*protection_mask. TheX_batch*revealing_mask
multiplication zeros out everything past the current position window in the tuned trace, and
the trace*protection_mask zeroes out everything before the window in the original trace.
By adding these together, we effectively concatenate the two sections of the traces.

3.1.2 PGD Implementation
To perform the tuning on the perturbation window, we use a PGD function that moves the
perturbations along the gradient of the loss with respect to the input trace. The loss function
we use is the SparseCategoricalCrossentropy package from TensorFlow. One can think of
the PGD algorithm as a means to minimize the loss of the model by changing the input
as opposed to minimizing loss by changing the parameters of the model. By minimizing
over the input, we cause the model to misclassify with high confidence. Our PGD algorithm
follows in Algorithm 3.

20

Algorithm 3 PGD
Input

X_batch As passed from Algorithm 2
protection_mask As passed from Algorithm 2
pert_mask Same as in Algorithm 2
pad_mask Same as in Algorithm 1
model White box model
y Correct label for X_batch
steps The number of steps taken down the gradient
step_size Size of each step taken down the gradient
n PGD epsilon value
d Lowest range value seen in original trace
l Highest range value seen in original trace
` The length of the trace

Output
X_batch X_batch where the current perturbation window has been tuned

noise[`]←$ Gaussian noise with unit standard deviation
noise← noise ∗ protection_mask
X_adv← X_batch +.001∗ noise
i← 0
while i < steps do

prediction← model.predict(X_adv)
loss← SparseCategoricalCrossentropy(y, prediction)
∇8 ← sgn(∇(loss, X_adv))
∇∗
8
← ∇8 · protection_mask · pert_mask · pad_mask

X_adv← X_adv + step_size ·∇∗
8

X_adv← clip(X_adv, X_batch - n , X_batch + n)
X_adv← clip(X_adv, d, l)

end while

An array the length of the trace is initialized with values from a Gaussian distribution with
a mean value of 0 and a standard deviation of 1 which is used to initialize the random

21

perturbation columns. We then get a prediction classification from the model and get the
loss of that prediction. We take the sign of the gradient of the loss and multiply that value by
our masks from the input, which ensures that only the perturbation columns in the current
perturbation window are changed and that the padding of the trace is not altered. Since our
trace is one dimensional, we only need the sign of the gradient to tune the perturbations. At
this point, we have an array that only holds gradient values in viable perturbation columns,
so we multiply that array by the step size and add it to our tuned copy of the trace. Finally,
we clip the values of the tuned trace to lie within our epsilon window as well as between
the minimum and maximum values we have seen in the trace.

22

CHAPTER 4:
Evaluation

In this section, we present our experimental methods and analyze our findings. We first
examine the Prism defense performance when defending VF traces, followed by our WF
results.

For our experimental setup, we trained two Deep Fingerprinting (Section 2.3.1) models on
the closed-world dataset, one for each of two attack settings: white box and black box. A
white box setting is where the defense has access to the model being used for classification
and can create an attack specifically tuned to that model. White box models are only for
experimental purposes since it is not realistic to assume the client will have access to the
adversary’s model. The black box model is a second model trained on the same dataset as
the white box model, but the defense algorithm does not see the black box model while
tuning the adversarial examples. The black box model realistically models the real-world
and is what we use to quantify our resistance to attack. As noted in Section 2.4, adversarial
examples are highly transferable, so we expect to see similar results between white box and
black box settings. We measure the classification accuracy of the black box model on the
adversarial examples generated with the white box model.

4.1 VF Testing
In this section we detail the results of Prism when defending against VF models.

4.1.1 The Dataset
Our dataset is modeled closely after that used in [2]. The traces for our dataset that we used
to train our VF classifier models were collected using tcp dump while visiting websites
through a ‘Tor crawler’ called tor-browser-crawler which accesses the web through a Tor
client. The dataset is a collection of packet traces for nine Disney video trailers that were
streamed over YouTube. These videos ranged in length from 104 seconds to 401 seconds;
however, if we exclude the longest video, all other videos fall between 104 and 163 seconds.

23

The raw data is of the form <Timestamp, ±packet size>, where the timestamp is relative to
the beginning of the packet capture and the sign of the packet size value indicates the packet
direction—packets outbound from the client are positive, and packets inbound to the client
are negative. These traces are closed-world, meaning that the client was only streaming the
target video while collecting the trace and was not browsing any other site.

There are approximately 1,300 traffic traces, each representing a different streaming instance
for each video, giving us a total dataset size of over 12,500 traces. Differing streaming
circumstances may produce different traces for the same video, so having a large number
of traces helps to ensure that there is enough data to account for streaming the video under
various circumstances.

Preprocessing
From these 1,300 traces, only traces that are longer than 2500 packets are kept. Anything
under that is considered a corrupted trace and is discarded. This trimmed the dataset down
to approximately 5,200 traces. The traces were then truncated to 15,000 packets, and any
traces shorter than 15,000 packets were padded with trailing zeros until the length was
15,000. Truncating the traces speeds up the training process while also improving accuracy
by constraining the data.

In other Website Fingerprinting literature, it is standard to scale the traces down to simply
[+1, -1] to represent the direction of the packets and ignore packet size [2]–[4], [18]. The
literature has found that the majority of the useful information can be extracted by only
looking at sequencing, and all other features are extraneous. For Video Fingerprinting,
however, we found that our accuracy increased by approximately 7% by retaining the packet
size vs. scaling, moving from 85% to 92% when using DF. Due to the significant increase
in accuracy, we choose to retain packet sizes throughout our VF experimentation.

4.1.2 Attack Model Training and Hyperparameter Tuning
When training the DF models, we primarily rely on the hyperparameters that are prescribed
for WF in [2]. We also reference the work of [7], which adapted DF for use with VF
classification. The hyperparameter choices are shown in Table 4.1. The models required
more epochs when training on video traces, likely due to the fact that the variance between

24

given video traces are not as pronounced as variance between various website traces.
Additionally, we found that early stopping was necessary as some models would begin to
overfit, and others continued to improve in performance through all 90 epochs.

Table 4.1. Deep fingerprinting hyperparameters

Hyperparameters Video Fingerprinting Website Fingerprinting (Defaults [2])
Training Epoch 90 30
Batch Size 128 128
Optimizer Adamax Adamax
Learning Rate .002 .002
Early Stopping Enabled Yes No

4.1.3 Defense Tool Hyperparameter Tuning
When we began testing the Prism defense, we started with the initial hyperparameters
detailed in Table 4.2. For each of the hyperparameters, our decisions for the starting points
were:

• Perturbation Window Size: We wanted to pick a window size that is realistic to
implement in the real-world. Maintaining a packet queue of 50 is large enough to
form an efficient defense over the trace, while being small enough that it will not
significantly impact network latency.

• PGD Steps: This is the number of steps of size PGD Step Size that the PGD attack
takes down the gradient. We used 100 as a starting point because we wanted a value
that gave enough granularity to find minimums but that did not take too long to tune.

• PGD Step Size: The step size indicates the value jump for each step when descending
the gradient in PGD. In conjunction with the number of steps at 100, this gives a
value range of 10,000 from the starting point.

• Epsilon: The epsilon value is used to limit the range the perturbation values are
allowed to differ from the original random perturbations, used at the end of the
protocol. It was originally set at 4,500 as that is toward the upper range of the positive
range we see in the data set.

25

The results of the defense with the initial hyperparameter settings was lackluster, and we had
a difficult time getting either white box or black box settings to reduce the model accuracy
below 70%.

Table 4.2. VF defense hyperparameters

VF Prism Hyperparameters Initial Tuned
Perturbation Window Size 50 50
PGD Steps 100 40
PGD Step Size 100 1500
PGD Epsilon 4500 60000

To tune the hyperparameters, we tested various hyperparameters against a DF model trained
on a 20% BWO dataset. We first began by increasing epsilon to 60,000. Our initial thought
with setting epsilon at 4,500 was to limit the change in value to the positive max range,
but that assumption did not account for the much larger negative max range (up to -60,000)
indicating large incoming packets in the dataset. To account for the larger epsilon, we needed
to add an additional step that clipped our perturbations to lie between -60,000 and 5,000.
By only increasing epsilon, we were able to reduce model accuracy for white box to 54%.

The purpose of epsilon is to provide a range of allowable variation from the original values
of the trace. By increasing epsilon to 60,000, we allow the value of the adversarial example
to differ by as much as 100% from the original value. Since we are modeling a bounded
network system, however, we clip the values of the adversarial examples so they lie within
the range of observed network traffic. This ensures that the models are not fooled simply by
impossible transmission sizes present in the trace.

This brings up an important discussion on what defines “noise” in our experimentation.
In a traditional adversarial example scenario where the goal is to misclassify images, the
measurement of noise refers to the distance metrics which quantify how much individual
pixels in the image change as well as how much the overall image changed. The reason
being that when attacking the image, the goal is to keep the image close to the original as
perceived by humans. In a network scenario, however, we do not have the liberty to make

26

small adjustments to packets across the entire trace, as that would break the networking
protocol, nor do we have the liberty to add an unlimited amount of perturbation packets.
Every added perturbation packet incurs a cost of adding bandwidth overhead to an already
bandwidth starved system such as Tor. Instead, wemeasure noise as the number of additional
packets that must be added to the trace to fool the classifier (BWO). In this sense, we only
care about how much the trace as a whole differs from the original, not how the packet
individually differs.

The performance improvement resulting from the increase in epsilon indicated that the PGD
algorithm needed more freedom to adjust the values of the perturbations, so our next step
was to increase the step size to increase the possible range of variance from the original
value. Our range was originally 10,000 (steps * step size), so we increased the step size to
500 (50,000 range) and tested again. With these two changes, our approach now defeated
both white box and black box settings, with a white box accuracy of 1% and a black box
accuracy of 34%.

At this point, we were able to defeat the classifier, but the adversarial example generation
took about 50 seconds per trace (15,000 packets) which was slower than we wanted. To
speed up the program, we decreased the number of PGD steps to 40 and increased the step
size to 1,500. This gave us a max range of 60,000. By decreasing the number of steps, we
were able to significantly speed up the defense while still defeating the model, with the
classifier reporting almost 0% accuracy. Each trace now takes roughly 18 seconds to tune
which should not be noticeable when evenly distributed over a 3 minute video download.
In our testing, we do not simulate the delay while waiting for the perturbation window to
fill, so our latency calculations are a lower bound on the time required to perturb the trace.
Future work will be needed to determine latency in a real-world setting.

4.1.4 VF Defense Results Analysis
One of the goals throughout the experimentation process was to determine the lowest BWO
where the trace defense still succeeded: i.e., where both white box and black box testing
resulted in model accuracy <10%. Thus, after determining the Prism hyperparameters that
yield the best results, we tested the approach over various BWO levels, ranging from 5% to
100% BWO. The exact BWO values tested are shown in Table 3.1.

27

Our experimentation revealed that it was important to have a different pair of models
trained for each BWO level we tested. We found that if a model was trained at a given
BWO, changing the BWO of a trace by as little as 10% would cause the model accuracy to
decrease by approximately 75% when tested on random perturbations, essentially defeating
the classification. To accurately test Prism, we trained a white box and black box model for
every BWO level tested.

For all of our testing, we used a test sample size of 125 traces. We were limited in the
number of traces we could test at one time due to computational capabilities: too many
traces would overload GPU memory. Since the traces of the test set are randomly sampled
from the dataset, we are able to observe the performance on said traces and generalize the
results to the entire dataset.

Our initial testing modeled perturbation packets being inserted in the trace from both client
and Tor guard. In our implementation, this meant that we allowed the perturbation values to
to range from -60,000 to 5,000, where positive values indicate dummy packets originating
from the client. The results of this test are shown in Figure 4.1.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Bandwidth Overhead

M
od

el
A
cc
ur
ac
y

White Box
Black Box
Random

Figure 4.1. Results of Video Fingerprinting Server-Client Prism defense on
an undefended DF model

The trend in the graph indicates that defense performance increases as BWO increases
until 30% BWO. At this point, both models are completely defeated, classifying with 0%

28

accuracy, and increasing BWO cannot improve defense performance. The accuracy of the
model on random noise decreases as BWO increases, but remains fairly consistent, differing
by 25% across the various BWO ranges and demonstrating that random dummy packets
will not significantly affect the classification model.

While the results in Figure 4.1 are promising, the defense relies on the client having access
to a GPU to compute the perturbation on the fly as the video is being downloaded. Not all
users will have access to a GPU. As such, it was necessary to test if our defense was still
effective when only the Tor guard sent perturbation packets.

To model this scenario in our test, we created a new dataset from the original, but when
inserting the columns of random perturbations, we restricted the range to only negative
values between -60,000 and -100. We then trained new models for every BWO level. By
limiting the range of random perturbations, we ensure that the defense does not have an
unfair advantage: i.e., the model does not expect to see a disproportionate number of
outbound packets. In our defense model, we kept everything the same as before except we
now clipped the adversarial examples so they ranged from -60,000 to -100. The results of
the test are shown in Figure 4.2

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Bandwidth Overhead

M
od

el
A
cc
ur
ac
y

White Box
Black Box
Random

Figure 4.2. Results of Video Fingerprinting server side only Prism defense on
an undefended DF model

The results of this test follow similar trends as observed in the server-client defense. The

29

defense performance increases as BWO increases up to 30%, decreasing model accuracy
from 38% down to 0%, and the accuracy on the random perturbations decreases by 25%
across the BWO values. These results are very promising, as they indicate that the defense
may be implemented at the Tor guard nodes, increasing the availability of the defense to
users who may not have access to GPUs.

At this point, it is important to discuss our decision to use unscaled traces in our dataset.
When scaled, the server side only defense will be represented as bursts of [-1] for the
perturbation column width. Our testing did not include how this affects the performance of
the defense, especially on a defended model. However, as previously discussed, should the
VF attacker choose to scale the data, he will be incurring a significant accuracy reduction
with the model. Testing the defense in these various scenarios remains a topic for future
work.

To test Prism performance in a more realistic real-world setting, we included adversarial
examples in the training set at 30% BWO. We choose 30% BWO because that is lowest
BWO level that Prism defeats both the white box and black box models. We found that when
we trained the model entirely on adversarial examples, the resulting model was less robust
and misclassified any trace that did not contain adversarial examples that were generated
on an undefended model, even random noise. To correct this, we split the training set
so that half of the traces contained random perturbations and half contained adversarial
examples. We then took this defended model, created another set of adversarial examples
for the training dataset, and created another defended model using the adversarial examples
from the second step. This way, the adversarial examples that our final defended model was
trained on were crafted on a defended model to increase the likelihood that the model was
resistant to adversarial examples. The results of this testing are summarized in Table 4.3.

30

Table 4.3. Defended VF model results

Model Accuracy With: White Box Black Box Random
Server-Client–only adversarial training 0% 0% 15.2%
Server-Client–split adversarial training 0% 0.5% 76%
Server Only–only adversarial training 0% 0% 4%
Server Only–split adversarial training 0% 0% 74%

The Prism defense defeats the attacker’s model even with adversarial training. For both
black-box and white-box, we observed ≈0% accuracy for detecting the user’s video. The
results show howmodels that were only trained on adversarial examples were not effective at
all, even misclassifying random noise. When we include random perturbations back into the
test set along with the adversarial examples, we see that the model correctly classifies benign
traces with higher accuracy, but the adversarial training does not increase performance on
defended traces.

4.2 WF Testing
In this section we detail the results of Prism when defending against WF models.

4.2.1 The Dataset
For our WF testing, we used the dataset collected by Sirinam et al. [2] (accessed via Google
Drive). A detailed description of this dataset can be found in [2]. As stated in Section
4.1.1, the dataset used for our VF experimentation is very similar to that used in Deep
Fingerprinting, with the most noticeable difference being that our dataset for VF is not
scaled to [+1, -1] to only represent traffic direction. For a detailed description on why we do
not scale our VF dataset, refer to Section 4.1.1. Since the dataset only included values of -1
and 1, we had to ensure that when inserting the random perturbation columns we initialized
the values randomly to either -1 or 1 as well.

31

4.2.2 Attack Model Training
To train our DFmodels forWF, we rely on the default hyperparameter settings as prescribed
in [2]. These are shown in Table 4.1.

4.2.3 Defense Tool Hyperparameter Tuning
Following the logic of our hyperparameter tuning described in Section 4.1.3, we choose
hyperparameter values that gave the defense the freedom to shift the adversarial example
values to anything seen in the range of the trace: e.g., the ability to shift a ‘1’ to a ‘-1’.
We found that a larger step size significantly improved the performance of the defense. We
hypothesize that this allowed the defense to traverse far down the gradient and increased
the chance that the value was flipped. We also eliminated the threshold on perturbation size
by removing epsilon from the equation because we did not want to restrict the ability of the
defense to flip values. Our resulting hyperparameter settings are summarized in Table 4.4.

Table 4.4. WF defense hyperparameter settings

WF Prism Hyperparameters Value
Perturbation Window Size 50
PGD Steps 12
PGD Step Size 12
PGD Epsilon ∞

4.2.4 WF Defense Results Analysis
Similar to our VF testing (Section 4.1.4), one of our goals with our WF testing was to
determine the lowest BWO level where the defense succeeds. We accomplish this by testing
our defense against a WF classifier at all BWO levels listed in Table 3.1. We also train
models at each BWO level for the reasons described in Section 4.1.4.

As with our VF testing, we test our defense on 125 traces. Our test models both client and
server participation in the defense. In our implementation, this meant that we allowed the
adversarial example values to be either -1 or 1. We exclude 0 as that would represent an
impossible non-transmission. The results of this test are shown in Figure 4.3.

32

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Bandwidth Overhead

M
od

el
A
cc
ur
ac
y

White Box
Black Box
Random

Figure 4.3. Results of Website Fingerprinting Server-Client Prism defense on
an undefended DF model

These results indicate that the Prism defense succeeds when defending website traces,
reducing model accuracy from 97% down to 0% at 100% BWO. One thing to note is that a
much higher BWO level is needed to defeat the attack in this scenario. This could be due
to the fact that the traces are scaled, or because the model performs better when classifying
website traces rather than video traces. Future work can explore the cause for robustness in
the website fingerprinting DF model, and attempt to build better VF classifiers as well as a
better defense against WF.

To test our model performance in a more realistic real-world setting, we included adversarial
examples in the training set at 60% BWO. Similar to our VF defended testing, we include
results on a model trained only on adversarial examples generated from an undefended
model and a model trained half on random perturbations and half on adversarial examples
generated from a defended model. The results are shown in Table 4.5.

Table 4.5. Defended WF model results

Model Accuracy On: White Box Black Box Random
Server-Client–only adversarial training 0.8% 1.0% 3.5%
Server-Client–split adversarial training 26.9% 55.6% 91.1%

33

Prism defense reduces the accuracy of the attacker’s model to 55.6%. While this does not
completely defeat the model, it reduces certainty to approximately a 50/50 chance, or in
other words, it reduces the likelihood to a coin flip as to whether the prediction is correct
for the adversary. Similar to VF, we see that the split training set significantly increases
accuracy on benign traces. While adversarial training increases accuracy on the black box
model by ≈ 13%, it does not overcome the defense.

34

CHAPTER 5:
Discussion

The results of our study show that adversarial examples are a viable option for defending
Tor against various fingerprinting attacks. In particular, we show that Prism can effectively
defeat VF attacks and significantly reduce the certainty of WF attacks in a simulated real-
world environment, even defeating DF, a state of the art DNN that is able to overcome most
defenses available at the time of this publication [2]. In this section, we discuss possible
design decisions for implementation and limitations of the defense as well as possible future
work.

5.1 Possible Improvements
With Prism, we propose a novel method of generating adversarial examples for situations
where the data being perturbed is discovered over time. We show that our approach is
effective at defeating both image classification and fingerprinting classification, but more
research is needed to optimize this approach.

5.1.1 Decaying the Step Size
One possible improvement for Prismwould be adding a decay to the step size in PGD. Since
our goal with scaled data is to induce a flipped sign when it minimizes loss, adding a bias
to earlier gradients may yield better results, as the initial gradients are more representative
of the loss in the model. Adding this decay could also reduce the number of steps required
when crafting adversarial examples, which would increase the speed at which adversarial
examples can be generated.

5.1.2 Server-Client Participation
We include testing on a network scenario where both the server (guard node) and the client
participate in the defense, enabling dummy packet transmissions in both directions. In this
scenario, however, it is likely that the adversarial example packets computed at the server
would be different than what is calculated at the client, which could potentially result in a

35

reduction in performance of the defense. While we show that the defense can feasibly be
implemented only at the server when defending VF traces, participation from both parties
is crucial when the dataset is scaled by the adversary, as discussed in Section 4.1.

A possible solution would be to compute the adversarial examples entirely at one side:
i.e., the server or the client, and include information about how the opposite party is to
participate in the dummy packet burst in the first transmitted packet. This would require that
the first packet in each dummy packet burst originate from either the server or the client,
thereby reducing the sample space of possible adversarial example sequences. Our testing
does not include how this might effect the performance of the defense but could be explored
in future work.

5.2 Adversarial Training
Our testing revealed that adversarial training does not significantly improve model perfor-
mance when classifying traces defended with Prism. There are other methods of defending
against adversarial examples as discussed in [19] and [16]. Future work can research other
defenses to determine whetherPrism remains effective against a variety of defendedmodels,
however, as [16] points out, defenses against adversarial examples do not always improve
model performance.

5.3 BWO Requirements
In our testing we include results from various BWO levels on undefended models. This
testing acts more as a proof of concept of our defense, however, because in a real-world
setting, the attacker would train on defended traces observed “in the wild.” We only include
a single BWO level for our defended models due to time limitations while performing
the research. As discussed in Section 2.1, Tor is a bandwidth-starved environment, so
minimizing BWO is crucial in a defense. Exploring a range of BWO performance on
defended models would give an indication of the feasibility of implementing the Prism
defense in Tor.

36

5.4 Open-World Testing
In this paper, we only explore the defense in a closed-world setting. Closed-world testing
gives an advantage to the classifier since there is no noise present when classifying the
traces. Future work will be needed to test Prism in an open-world setting where we predict
that it will yeild better results.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

CHAPTER 6:
Conclusion

In this study, we explored the performance of a defense for both VF and WF attacks. We
proposedPrism, a defense that creates adversarial examples using a perturbationwindowand
an adaptation of projected gradient descent (PGD) to create perturbations that are compatible
with a real-time networking environment.We analyzed thePrism defense across BWO levels
varying from 5% to 100% on both VF andWF Deep Fingerprinting (DF) models, and show
that for both scenarios, Prism defeats the fingerprinting attacks by reducing model accuracy
to 0% at varying BWO levels. Finally, we demonstrated that Prism completely defeats
defended VF models by reducing accuracy to 0%, and significantly reduces defended WF
model performance by reducing accuracy to 55.6%.

Our study demonstrates that real-world defenses against fingerprinting attacks that do not
incur heavy BWO costs are possible and that more research is needed in this field to develop
an effective defense on Tor.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

List of References

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion
router,” Naval Research Lab Washington DC, Tech. Rep., 2004.

[2] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting: Undermin-
ing website fingerprinting defenses with deep learning,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, 2018, pp.
1928–1943.

[3] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird: Defending
against deep-learning-based website fingerprinting attacks with adversarial traces,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1594–1609,
2020.

[4] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against passive web-
site fingerprinting attacks,” in 26th {USENIX} Security Symposium ({USENIX} Se-
curity 17), 2017, pp. 1375–1390.

[5] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “A real-time defense against web-
site fingerprinting attacks,” 2021. Available: https://arxiv.org/abs/2102.04291

[6] A. Barton, M. Wright, J. Ming, and M. Imani, “Towards predicting efficient and
anonymous tor circuits,” in 27th {USENIX} Security Symposium ({USENIX} Se-
curity 18), 2018, pp. 429–444.

[7] D. Campuzano, Carlos, “Towards video fingerprinting attacks over tor,” 2021. Avail-
able: https://calhoun.nps.edu/handle/10945/68304

[8] A. Barton and M. Wright, “Denasa: Destination-naive as-awareness in anonymous
communications.” Proc. Priv. Enhancing Technol., vol. 2016, no. 4, pp. 356–372,
2016.

[9] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in 2005 IEEE Sym-
posium on Security and Privacy (S&P’05). IEEE, 2005, pp. 183–195.

[10] M. Imani, A. Barton, and M. Wright, “Guard sets in tor using as relationships.”
Proc. Priv. Enhancing Technol., vol. 2018, no. 1, pp. 145–165, 2018.

[11] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

41

https://arxiv.org/abs/2102.04291
https://calhoun.nps.edu/handle/10945/68304

[12] T. Wang and I. Goldberg, “On realistically attacking tor with website fingerprinting.”
Proc. Priv. Enhancing Technol., vol. 2016, no. 4, pp. 21–36, 2016.

[13] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an efficient website
fingerprinting defense,” in European Symposium on Research in Computer Security,
09 2016, vol. 9878, pp. 27–46.

[14] M. Shen, Z. Gao, L. Zhu, and K. Xu, “Efficient fine-grained website fingerprinting
via encrypted traffic analysis with deep learning,” in 2021 IEEE/ACM 29th Interna-
tional Symposium on Quality of Service (IWQOS), 2021, pp. 1–10.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” in 2nd International Conference on
Learning Representations, ICLR 2014, Jan. 2014, 2nd International Conference on
Learning Representations, ICLR 2014 ; Conference date: 14-04-2014 Through 16-
04-2014.

[16] A. Barton et al., “Defending neural networks against adversarial examples,” Ph.D.
dissertation, University of Texas Arlington, 2018.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-
ing models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[18] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” 2017.
Available: https://arxiv.org/abs/1712.09665

[19] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses
for deep learning,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 9, pp. 2805–2824, 2019.

[20] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial
examples robustly,” 2017. Available: https://arxiv.org/abs/1704.00103

[21] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adver-
sarial examples,” 2014. Available: https://arxiv.org/abs/1412.5068

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” 2014. Available: https://arxiv.org/abs/1412.6572

42

https://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1704.00103
https://arxiv.org/abs/1412.5068
https://arxiv.org/abs/1412.6572

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

43

	22Jun_Hayden_Blake_First8
	22Jun_Hayden_Blake
	Introduction
	Introduction
	Thesis Organization

	Background and Related Work
	Tor Onion Router
	Machine Learning
	Website Fingerprinting
	Adversarial Examples

	Prism Design
	Generating Adversarial Traces

	Evaluation
	VF Testing
	WF Testing

	Discussion
	Possible Improvements
	Adversarial Training
	BWO Requirements
	Open-World Testing

	Conclusion
	List of References
	Initial Distribution List

