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ABSTRACT 

 Recent technological advances require development of human-centered principles 

for their inclusion into complex systems. While such programs incorporate revolutionary 

hardware and software advances, there is a necessary space for including human operator 

design considerations, such as cognitive workload. As technologies mature, it is essential 

to understand the impacts that these emerging systems will have on cognitive workload. 

Adaptive automation is a solution that seeks to manage cognitive workload at optimal 

levels. Human performance modeling shows potential for modeling the effects of 

adaptive automation on cognitive workload. However, the introduction of adaptive 

automation into a system can also present unintended negative consequences to an 

operator. This dissertation investigated potential negative unintended consequences of 

adaptive automation through the development of human performance models of a multi-

tasking simulation. One hundred twenty participants were enrolled in three human-in-the-

loop experimental studies (forty participants each) that collected objective and subjective 

surrogate measures of cognitive workload to validate the models. Results from this 

research indicate that there are residual increases in operator workload after transitions in 

system states between manual and automatic control of a task that need to be included in 

human performance models and in system design considerations. 
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EXECUTIVE SUMMARY 

Technological advances that seek to address future operational challenges abound 

in the Department of Defense (DOD). An example of this technology evolution is the 

U.S. Army’s Future Vertical Lift (FVL) Program. The FVL Program is seeking to 

modernize the Army’s rotary air assets to fly faster and farther than ever before. While 

this capability will incorporate numerous capabilities, some of which are not yet realized, 

there is an important space for human design considerations. One human operator design 

consideration worthy of investigation is cognitive workload. Current aviation systems 

lead to increased operator workload values above accepted levels in predictive models 

(Militello et al., 2019). Therefore, the development of FVL lends itself to addressing 

operator cognitive workload levels in its early system acquisition stages. One solution 

that has sought to improve cognitive workload management is adaptive automation (AA), 

or the ability to dynamically change the level of automation in response to varying 

system demands (Sheridan, 2011). The implementation of AA seeks to increase or 

decrease operator cognitive workload within an optimal range (Inagaki, 2003; Scerbo, 

1996). While AA has the potential to achieve these ends, there also exists the potential of 

AA introducing unintended negative consequences into a system (de Visser & 

Parasuraman, 2011; Kaber & Endsley, 2004; Smith & Baumann, 2020).  

This dissertation sought to investigate the unintended negative consequences of 

AA through an adaption of Cassenti, Cox, and Bakdash’s (2017) Multi-Level Cognitive 

Cybernetic framework and Wickens’ (2008) Multiple Resource Theory. This research 

used a novel, model-based approach to assess the impacts of AA on cognitive workload. 

This assessment was conducted by modeling tasks in NASA’s Multi-attribute Task 

Battery-II (MATB-II) using the Army’s Improved Performance Research Integration 

Tool (IMPRINT). The MATB-II simulation served to replicate aspects of a flight task. 

The four tasks included in MATB-II are system monitoring, tracking, communications, 

and resource management.  

Cognitive workload, situation awareness (SA), and performance are three 

constructs that have shown to be inextricably linked in various settings (Endsley, 2021; 
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Ernst et al., 2020). All three constructs can be impacted by the introduction of AA into a 

system. The current effort sought to investigate the relationships among these three 

constructs over the course of the three studies using MATB-II, while also attempting to 

validate cognitive workload modeling predictions in IMPRINT. 

Cognitive workload prediction models of the MATB-II scenarios were modeled 

by the researcher for every scenario presented in the three studies. The researcher used 

the default workload demand values provided in IMPRINT to build initial workload 

models. Additional models were constructed after conducting cognitive walk-throughs 

with three MATB expert users. The expert users had each operated an adapted version of 

the MATB for at least 20 hours. The results of this approach yielded models that 

followed the researcher-derived models in workload demand, suggesting that the 

validated metrics provided in IMPRINT serve as reliable anchors to adjust baseline 

workload predictions.  

Three human-in-the-loop studies were conducted at the Naval Postgraduate 

School (NPS). The studies were approved by the NPS Institutional Review Board (IRB). 

A total of 133 participants volunteered for the three studies. Participants included staff, 

faculty, and students at NPS. After consideration for emergent behaviors, incomplete data 

sets, and other data collection issues, 40 participants were included in the analysis of each 

of the three studies. Participants could only participate in one study in an effort to 

mitigate learning effects.  

The first study examined how objective and subjective surrogate cognitive 

workload measures related to cognitive demand. Investigation into different experience 

levels was included by using two training progressions to create a novice and experienced 

group of MATB-II operators. After completing their respective training progressions, all 

participants were instrumented with an eye tracking device, a heart rate monitor, and a 

functional near infrared spectroscopy (fNIRS) headband to obtain physiological 

measurements during their trial runs. The trial runs consisted of a 10-minute-low and a 

10-minute-high workload condition, with presentation counterbalanced across 

participants. There was a break between the 10-minute trial runs to recalibrate the eye 

tracker and change MATB-II scenarios. Participants were asked to subjectively rate their 
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cognitive workload as a percentage of their maximum workload every minute during the 

trials using the Continuous Subjective Workload Assessment Graph (CSWAG) (Shattuck 

& Miller, 2006). Following the trial runs, participants completed the NASA Task Load 

Index (NASA-TLX) and the Situation Awareness Rating Technique questionnaire. 

Results from the first study indicated that there were significant differences between 

workload conditions when assessed against mean R-R HRV intervals, pupil diameter, and 

CSWAG results. Performance data also supported differences in experience levels and 

workload conditions.  

The results of Study 1 informed Study 2, where a higher level of automation was 

introduced in the tracking task of MATB-II. This task can be likened to flying an aircraft 

in manual or in autopilot. Study 2’s participants used the same procedures and 

experimental setup as those in Study 1, except for only completing one level of workload 

with two levels of automation. Results from Study 2 indicated increased MATB-II 

performance scores, increased HRV, and decreased pupil diameter during higher levels of 

automation. Further, CSWAG results decreased during lower workload and higher levels 

of automation conditions. These results followed the same pattern as Study 1. 

Additionally, a significant inverse correlation was found between post-trial NASA-TLX 

and SART ratings. These results indicated that participants reported lower perceived SA 

with higher self-assessed workload.  

Study 3 incorporated the insights from Studies 1 and 2 in attempt to determine if 

workload forecasts could be made based on cognitive workload measure changes with 

dynamically changing levels of automation. Of note, fNIRS was not used in this study 

because no differences were found across experience groups or experimental conditions 

in Studies 1 and 2. There were also no significant differences in subjective or objective 

cognitive workload surrogate measures between novice and experienced participants in 

the first two studies. Therefore, the decision was made to proceed with the experienced 

training progression in Study 3 to account for any learning effects and to focus more on 

the impacts of dynamically changing levels of automation on cognitive workload. After 

completing their training progressions, participants completed a continuous 20-minute 

trial with low and high workload levels and low and high levels of automation presented 
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in 5-minute, counterbalanced segments. Results from Study 3 followed the patterns seen 

in the first two studies with respect to significant differences in performance, mean HRV, 

mean pupil diameter, and CSWAG percentages between workload and tracking 

conditions. There was also a significant inverse correlation between NASA-TLX and 

SART ratings again.  

Key findings from Study 3 that addressed this dissertation’s objectives were the 

significant differences in both mean pupil diameters in the 5-, 15-, and 30-second 

windows before and after the system state transitions that occurred at the 5-, 10-, and 15-

minute marks during the trials. This finding suggests that there was an associated 

workload cost during the transitions to different system states. While adaptive automation 

was modeled to lower workload immediately, the results indicated that refinement needed 

to be made to the models to account for this transition period. Additionally, subjective 

CSWAG ratings were also significantly different in the 30 second window before and 

after a system state transition. Based on these results, new IMPRINT models were 

developed that showed increases in overall workload demands during the transition 

periods of the four trial run conditions.  

The results from this dissertation highlight the impacts of AA on cognitive 

workload. While the results are limited to the sampled population and controlled 

laboratory setting, the approach of pairing cognitive workload model predictions with 

human-in-the-loop validation studies provided insights into the impacts of AA on 

workload. The results of this research indicated that further investigation into other 

unintended negative consequences of AA could benefit from this approach. These 

research efforts can help inform human performance modeling and system design 

considerations early in a system’s life cycle. While we develop technologies to address 

future operational environments, we should address human cognitive workload 

considerations in parallel with those efforts.   
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I. INTRODUCTION 

A. BACKGROUND 

The U.S. Army’s Future Vertical Lift (FVL) program is set to replace legacy 

rotary lift vehicles to provide enhanced capabilities to meet operational requirements. The 

FVL program represents a technological evolution for the Army as new materiel 

solutions are developed with the goal of meeting future challenges. While many FVL 

developmental efforts center on hardware and software advancements, there is a 

necessary space for addressing human operator design considerations including cognitive 

workload considerations. To do so, the FVL program created the Holistic Situational 

Awareness and Decision Making (HSA-DM) subsidiary program to identify the drivers 

of cognitive workload and to develop cognitive workload management capabilities 

(Department of Defense, 2020a). The HSA-DM program is part of a vast research effort 

seeking to investigate the integration of adaptive automation to address cognitive 

overload.  

As the Army contemplates novel solutions to address emerging challenges within 

the FVL program, technologies continue to develop in both capability and complexity. 

This evolution creates the potential for increased cognitive demand on aircrews as they 

are presented with additional information and tasks that increase the probability of 

overload (Evans & Fendley, 2017). Designers can introduce complexity by adding 

information, changing the level of system functionality, and introducing decision options 

that require more sensory inputs and cognitive resources from a human operator (Rowe et 

al., 1998). Cognitive overload, loss of situation awareness (SA), readiness degradation, 

and poorly performed tasks are among the detrimental factors that may result from poorly 

designed FVL systems (Department of Defense, 2020a; Durbin & Hicks, 2009).  

B. PROBLEM STATEMENT 

The evolution of the Army’s rotary lift capability presents an opportunity to not 

only integrate new technology but also address acknowledged issues in introducing new 

technology. As technology matures and provides increased benefits in one area, it can 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



2 

ironically cause unexpected issues in another that counteract the benefits (Bainbridge, 

1982a; Hollnagel & Woods, 2005). Similarly, the Law of Stretched Systems posits that 

systems are stretched to operate at maximum capacity (Woods, 2006). As soon as some 

incremental improvement is realized, the system will be exploited to meet the new 

capacity threshold. The Law of Stretched Systems also addresses the increased demand 

on human operators when technological advances are realized (Woods, 2002, 2006; 

Hoffman & Woods, 2011). Increased levels of automation (LOA) can also cause poor 

situation awareness and reduce the probability of successful manual control resumption 

when needed (Endsley, 2017a). Furthermore, as technology continues to mature, the 

intended operational environment is not clearly defined or unexpectedly changes. This is 

known as the envisioned world problem where the work domain in which the technology 

will be used is not yet realized (Woods & Dekker, 2000). These considerations are 

directly applicable to FVL’s system design.  

As technology matures, more systems are being developed that remove the human 

from many aspects of system operation. The very nature of work has transitioned from a 

primarily physical activity to an automation-assisted activity in many work domains 

including aviation, medicine, driving, and nuclear power plant operations. However, 

human workload may increase and performance may degrade due to added system 

complexity that was intended to alleviate demands on humans (Evans & Fendley, 2017; 

Mehler, Reimer, Coughlin, & Dusek, 2009). Many systems deliver a static automation 

solution that require human operators to determine when to engage or disengage the 

automated assistance. The act of deciding when to implement static automation to assist 

an operator has been shown to create issues and even increase reported workload 

(Wiener, 1988; Wiener & Curry, 1980).  

The ability to anticipate and manage changing levels of cognitive workload with 

adaptive technology solutions may be a way to increase total system performance and 

provide additional resources during a range of operational conditions. Adaptive 

automation (AA) is the dynamic change in system control between a human and machine 

operator as the demands of the system exceed the resources available to address the task 

demand level (Kaber, Riley, Tan, & Endsley, 2001). Conversely, AA can be used to draw 
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human operators out from a low state of cognitive demand where performance may 

degrade due to boredom into a level of appropriate arousal. Adaptive automation systems 

can potentially perform difficult tasks with greater ease and efficiency, leaving the human 

operator to standby as a monitor and decision maker. However, assigning these roles to a 

human operator can be problematic given a history of accidents occurring from humans 

not attending to tasks or missing critical information that they would have been directly 

responsible for in manually controlled settings (Wiener & Curry, 1980). Adaptive 

automation is a growing field of investigation that seeks to address issues associated with 

human error and increased workload. Adaptive automation has shown promising 

capability to lower operator cognitive workload (Brand & Schulte, 2017; Inagaki, 2003; 

Scerbo, 2008). However, adaptive automation can also introduce adverse effects on an 

operator’s workload (de Visser & Parasuraman, 2011; Kaber & Endsley, 2004; P. Smith 

& Baumann, 2020).  

If FVL is to be successful, principled guidelines that address the negative 

unintended consequences of adaptive automation are needed to properly inform design 

decisions. This dissertation is a first step towards developing those guidelines. This 

research leverages a model-based approach to assess the unintended negative 

consequences of adaptive automation on cognitive workload. This dissertation will 

investigate those issues, measure them, and asses their impacts on cognitive workload.  

C. RESEARCH APPROACH  

This research sought to develop and assess a model of cognitive workload through 

examination of the positive and negative impacts of adaptive automation’s use. This 

effort was broken into phases that support the validation of an overarching model. The 

tasks that comprise NASA’s Multi-Attribute Trask Battery-II (MATB-II) Version 3.5 

served as inputs for a task analysis that were built into models using the U.S. Army’s 

Improved Performance Research Integration Tool (IMPRINT). These models provided 

the basis to analyze performance and workload during interactions with fully manual 

operator control and dynamically changing levels of automation during three 

experimental studies. The models were then compared with objective and subjective data 
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collected during simulation experiments with human participants to determine the 

model’s validity and its predictive capability of operator workload. This approach of 

leveraging workload data from humans in the loop as assessed by psychophysiological 

measures has been suggested as a line of effort to improve workload modeling tools like 

IMPRINT (Rusnock & Geiger, 2017). Resulting data informed the modification of the 

original model for future recommendations and incorporation in design processes. 

Additionally, situation awareness data were collected using a self-report measure to 

investigate the correlation between cognitive workload, performance, and SA.  

D. PROJECT SCOPE AND GOALS 

The approach for this research effort was broken into sequential phases that built 

on each other to refine and validate a model of cognitive workload when using adaptive 

automation. This approach was used to assess workload during interaction with adaptive 

automation in a simulated task.  

An adapted model of multi-level cognitive cybernetics (MLCC) serves as a 

baseline for this dissertation’s investigation into cognitive workload when using adaptive 

automation as seen at the top of Figure 1 (Cassenti & Veksler, 2018). The MLCC model 

depicts the co-adaptation between a human and a computer in a closed-loop system. The 

model of the dissertation research is located below the adapted MLCC graphic. Areas of 

particular emphasis of the dissertation and their mapping to address aspects of the MLCC 

are shown in blue arrows. The model begins with the assertion that psychophysiological 

measures correspond to cognitive demand. The results of Study 1 addressed this 

measurement process and its corresponding values at different levels of cognitive 

workload. Then, as levels of automation change, so too do psychophysiological workload 

measures. Study 2 incorporated the workload measures from Study 1 to investigate the 

relationship between workload and LOAs. Additionally, this work sought to determine 

what objective measures might be predictive of performance when using adaptive 

automation. Study 3 facilitated the examination of this final portion of the model by 

investigating adaptive automation’s impacts as it assists but also impedes task 

completion. There is a continuous feedback verification and validation (V&V) loop that 
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highlights the sequential and iterative refinement of each study. Measures used in all 

three humans in the loop (HITL) studies are listed as either objective or subjective. 

Throughout the model, external and internal factors inject variability on the impact that 

AA has on workload measurement and task performance. These considerations are 

almost endless. Therefore, this dissertation’s scope was focused on individual operators 

interacting with a simulated system in controlled settings where various internal and 

external confounds were mitigated.  

 

Figure 1. Adaptation of a model of cognitive workload interacting with AA, 
with current research efforts overlayed.  

Generally, this work was broken down into a modeling effort and an experimental 

effort. The modeling efforts using IMPRINT and subsequent HITL studies supported the 

validation of the high-level model of cognitive workload when using adaptive 

automation. As workload modeling predictions were made based on the task analysis and 

construction of IMPRINT models, studies to investigate those predictions were 

conducted as part of verification and validation activities.  
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Modeling Effort 

A task analysis was conducted with subject matter experts to determine the key 

tasks necessary to accomplish the MATB-II scenarios in the experimental studies. The 

results of this task analysis served as the basis for inputs modeled using IMPRINT. These 

models were verified in similar fashion to the task analysis. Three HITL studies were 

conducted using simulation to validate the models. The scenarios modeled in IMPRINT 

and in the simulation HITL studies used MATB-II as the referent.  

Experimentation 

The concepts and approaches for the three HITL experimental studies follow. 

Forty to fifty volunteers served as participants for each of the three studies. The number 

of participants recruited for the study ranged from 40–50 to support experimental power 

analysis while accounting for potential study dropouts and unforeseen data collection 

issues.  

Study 1. The first study sought to induce stress to gauge participants’ cognitive 

demand based on psychophysiological measures in two different workload conditions. 

The approach to achieve this leveraged MATB-II to replicate aspects of the task modeled 

in IMPRINT. Participants completed the MATB-II simulation during a 10-minute low 

workload condition and a 10-minute high workload condition to gauge objective 

(psychophysiological and performance) and self-reported subjective workload measures. 

Situation awareness data were also subjectively collected from the participants using the 

Situation Awareness Report Technique (SART) at the end of the trial runs. The results 

from this study served to validate the first portion of the dissertation’s overarching model 

that gives psychophysiological baseline measurements for cognitive workload at two 

different workload levels. 

Study 2. From the baseline study, a follow-on study introduced different levels of 

automation during a MATB-II simulation. The study sought to determine the levels of 

workload present at the different levels of automation. Study 2 used the same 

multitasking simulation in Study 1 but modified the behavior of the system to include 

different invocations of automation to support the operator in completing the task. The 
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levels of automation (LOAs) for this study followed previous work from Evans and 

Fendley (2017) using Sheridan and Verplank’s (1978) LOAs 2 (highly manual) and 9 

(highly automated). Study 2 was used to address the next portion of the model that 

investigated how workload measures change based on LOAs.  

Study 3. The results from the first two experimental efforts led to a study that 

assessed the effects of adaptive automation when triggered at specific times using a 

critical event strategy approach (Aricò et al., 2016). The study design incorporated 

MATB-II tasks again to determine the effects of what happens when those tasks are 

delegated to adaptive automation. Key to this study was determining if the workload 

predictions made based on the psychophysiological changes collected during the first two 

studies allowed for accurate forecasting of operator workload. The tasks associated with 

MATB-II were modeled using IMPRINT. The resulting cognitive workload prediction 

values served as the basis for comparison with the HITL studies. The validation process 

included workload prediction values by MATB-II SMEs. This final study focused on the 

ability to make cognitive workload predictions given multiple measures to find a way to 

provide real-time measurement.  

Numerous objective, subjective, and performance measures were collected 

throughout the three studies. Situation awareness data were collected using the Situation 

Awareness Rating Technique (SART) (Taylor, 2011). Subjective workload assessment 

data was collected using the NASA-TLX (Hart & Staveland, 1988) and CSWAG 

(Shattuck & Miller, 2006). Objective measures were collected from eye tracking, heart 

rate variability, and fNIRS data. These data were contrasted against the IMPRINT model 

to determine the goodness of fit of the newly proposed workload model and to provide 

validation of the model. This approach provides a framework to assist with the validation 

of IMPRINT models and with identifying some limitations of the program. Further, this 

methodology provides recommendations to address the limitations of current human 

performance modeling techniques.  
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E. CONTRIBUTIONS 

While the effects of adaptive automation are referred to often in the literature, 

there is not a clear effort to model those effects and measure them to provide validation 

of the models. This dissertation attempted to use a novel model-based approach to assess 

workload measurements when using adaptive automation. Specifically, a key item of 

interest in this dissertation was the modeling and measuring of the negative unintended 

consequences that emerge when using AA. Another aim of this research was to contribute 

to the cognitive workload body of knowledge with measurement and assessment 

techniques particularly developed to study adaptive automation. This research also sought 

to provide system design and configuration recommendations to assist with cognitive 

workload management for consideration in future adaptive automation systems including 

the Army’s FVL platforms. 

F. DISSERTATION ORGANIZATION 

This dissertation is organized into eight chapters. Chapter I serves as the 

introduction and begins with an operational context that serves as the basis for the 

dissertation work. A primary focus of this work is on supporting the next generation of 

U.S. Army aviation capabilities. The chapter then introduces the dissertation’s problem 

space involving adaptive automation and cognitive workload. Additionally, the 

introduction describes the research approach and supporting efforts associated with the 

dissertation. The introductory chapter introduces key concepts that will be used 

throughout the document. Finally, the chapter lists the forecasted novel contributions of 

this research effort.  

Chapter II reviews the literature concerning important elements of the 

dissertation’s scope. The chapter begins with an overview of the main topics addressed its 

subsections along with a discussion of an adapted MLCC framework that helps provide 

context to the current dissertation effort. Discussion includes key concepts such as 

cognitive workload, psychophysiological and subjective workload measures, automation 

in support of operations, adaptive automation, situation awareness, modeling & 

simulation (M&S) tools, and important M&S activities. The chapter concludes with the 
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research questions and hypotheses that followed from the investigation of the relevant 

literature.  

Chapters III, IV, and V describe each of the three studies conducted in support of 

this dissertation. Each chapter provides an overview of the study conducted as well as the 

methods that were used. These three chapters build on one another to highlight the 

progression of the studies in answering the research questions. Initial results are provided 

for each study that later serve as the basis for more comprehensive analysis and 

discussion.  

Chapter VI provides a discussion the results of the three studies in context with 

each other. The chapter also provides analyses of the measures of workload and 

performance individually and together. This analysis is used to validate the cognitive 

workload model developed by this dissertation. This chapter also analyzes the various 

relationships between workload, performance, and situation awareness.  

Chapter VII discusses future research recommendations based on the results of 

the dissertation and trends that emerged during data analysis. Further, applications of the 

research approach to other domains are recommended for investigation for systems using 

AA. The dissertation concludes with key takeaways in summation of the total effort. 

Final discussion regarding the research’s end states provides the basis for analysis of the 

impacts of AA in systems designed to manage cognitive workload.  
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II. LITERATURE REVIEW 

A. OVERVIEW 

The purpose of this literature review is to provide an overview of key concepts 

that will be used in this research. The following sections will provide an overview of 

these concepts and how they will be used in the overall dissertation effort. The review 

begins with a discussion of multi-level cognitive cybernetics, cognition, cognitive 

workload, and situation awareness. These concepts are discussed independently and in 

relation to each other. A discussion on automation follows with examination into levels 

of automation and adaptive automation. Specifically, a discussion on automation’s 

impacts on workload is presented with particular emphasis placed on the unintended 

negative consequences that these capabilities can introduce into a system. The chapter 

continues with an overview of human performance modeling and a discussion of a multi-

tasking simulation tool used for investigation in support of the research effort. The 

literature review concludes with a summary of the main concepts that emerged and how 

they lead to identification of the gaps that will be addressed by the dissertation.  

B. MULTI-LEVEL COGNITIVE CYBERNETICS 

Systems are often developed with the assumption that humans are adaptive in 

different contexts (Benyon, 1993). Research efforts have also attempted to develop 

technology to behave in a similar adaptive manner (Benyon, 1993; Hou et al., 2014; 

Karwowski et al., 2006). One approach to do so is the multi-level cognitive cybernetics 

(MLCC) approach seen in Figure 2 (Cassenti & Veksler, 2018). Cybernetics is the study 

of how humans and machines interact within an environment (Wiener, 1948). 

Communication between entities is a prevailing theme of cybernetics, as the interactions 

between a human and machine provide inputs for behavioral modifications in close-

looped systems (Cassenti et al., 2017). Wiener’s cybernetics conceptualization included a 

description of how humans adjust their behavior based on environmental feedback. The 

MLCC approach builds on Wiener’s work by suggesting a continuous co-adaptation 

between humans and technology. As humans proceed through information processing 
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stages and behavioral actions, adaptive automation is calibrated using those actions to 

determine the best ways to assist an operator. It is also important for adaptive automation 

to be triggered at appropriate times to not introduce more complexity for the operator. 

The MLCC approach differs from traditional AA triggering approaches by positing that 

cognitive variables can serve to trigger automation rather than time or performance 

metrics (Cassenti et al., 2017). The outputs of the adaptive automation serve as further 

sensory inputs for the human, resulting in another cycle of the MLCC approach.  

 

Figure 2. Stages of cognition and adaptive technology in the Multi-Level 
Cognitive Cybernetics. Source: Cassenti et al. (2017).  

An adapted model of Cassenti et al.’s (2017) MLCC approach is used to frame 

this dissertation and is depicted in Figure 3. The adapted MLCC framework was chosen 

as a foundational concept in this effort because of its intended outcomes of integrating 

subjective, objective, and cognitive workload modeling to inform AA design. This model 

is bounded by the human operator and the technology used within that closed-loop 

system. System-specific considerations are modeled through the interface interactions 

that the human has with them. This assumption assists with scoping the model to focus on 

the human operator. While external considerations and variables interact at the 

boundaries of the system, they are not of direct interest when examining the relationship 

between a human operator’s cognitive workload and AA. 
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Figure 3. Adapted version of Cassenti et al.’s (2017) MLCC framework with 
modifications italicized. 

Starting with the left-hand side of the diagram, the human is considered more 

broadly than with specific focus on cognition in the original framework. As the human 

perceives sensory inputs, they proceed through stages of information processing that lead 

to decision making. The outputs of their decisions affect situation awareness and 

responses. The resulting impacts of these responses and level of SA impact cognitive 

workload. The degree to which cognitive workload is influenced leads to actions by an 

operator. These actions transition to the technology portion of the cybernetic loop and 

serve as data inputs that can drive changes in levels of automation. Technology should 

then conduct an operator workload assessment based on established criteria to determine 

what the changes in adaptive automation should be. These modifications in adaptive 

automation provide feedback for the human operator through sensory inputs that allows 

the system to continue back to the perception of the human operator through another 

iteration of the cycle.  

This dissertation will investigate specific aspects of the adapted MLCC 

framework. The subsequent sections of this literature review will discuss the human 

considerations from perception, cognition, cognitive workload, situation awareness, and 

performance. The literature review will also address technological capabilities and their 

impacts on the human operator using adaptive automation. The focus on these concepts 

allows for mapping of experimental objectives to the adapted MLCC framework to model 

and validate cognitive workload predictions through the dissertation’s three experimental 

studies. Given that the MLCC framework is focused on human’s cognition when 
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interacting with technology, it is important to foundationally discuss cognitive workload 

in the proceeding sections.  

C. COGNITIVE WORKLOAD 

1. Cognition Introduction  

Cognition can be described as what goes on inside the human mind when going 

about life (Preece et al., 2002). Cognition also can be generally categorized as the ways 

people think, perceive, remember, and process information. It is what happens after the 

world is sensed and perceived, and responses are elicited in accordance with Wickens’ 

Model of Human Information Processing (HIP) (Lee et al., 2017). This framework 

provides a way to investigate the movement of sensory inputs into long-term memory and 

actions of a human. This flow from inputs to outputs can have significant implications for 

efficient and effective cognitive design that leads to better performance. Research into 

externalized cognition posits that cognition can happen outside of the human mind 

through such tasks as off-loading ideas onto notes and using paper and pencil to solve 

mathematical problems (Fiore & Wiltshire, 2016).  

Humans possess a finite ability to sense, perceive, and process information. 

Models of human information processing, such as Wickens’ HIP seen in Figure 4, 

theorize that humans’ information processing capabilities come with organic filtering 

mechanisms to attend to the most saliently perceived sensations. Without this capability, 

humans would be in a constant overload state. Further, differentiating between stimuli 

that enter a human’s information processing system yields necessary discussion to 

explain why multiple tasks can be performed at the same time.  
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Figure 4. Wickens’ Model of Human Information Processing. Source: Lee et 
al. (2017).  

Wickens’ (1981, 2002, 2008a) proposed Multiple Resource Theory (MRT) seen 

in Figure 5 to address how attentional resources can be divided across sensory modalities, 

enabling multi-tasking. Wickens’ MRT further suggests that presenting information 

through various modalities in multiple displays will facilitate more effective information 

processing (Wickens et al., 1984). These modalities can include verbal, spatial, visual, 

and auditory formations. This proposition has implications for various aspects of a 

system, including design, measuring performance, and predicting cognitive workload. 

Multiple Resource Theory explains that tasks can be aligned such that multi-tasking can 

occur to allow for better performance if processing channels are separate and distinct 

(e.g., a visual task and a separate auditory task). Further, the tasks should not converge 

into a single mental model. Otherwise, using the same resources for the task may be 

required and prevent from separate and effective processing. This can work conversely, 

however, if a task uses two channels to process the information (Wickens et al., 1984). If 

a task uses distinct value decisions about a display, then optimal performance will be 

realized when spatial and verbal analogs are used independently. (Wickens et al., 1984).  
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Figure 5. Wickens’ Multiple Resource Theory model. Source: Wickens 
(2008a).  

Much like other environments that humans encounter, the cognitive environment 

is an important domain for designers of any system to consider. Designers should address 

how quickly the cognitive environment changes, the level of familiarity with the 

environment, and the extent to which features in the environment provide context and 

cues for interaction within it (Lee et al., 2017). These considerations can help provide a 

foundational framework to investigate demands and resources available to address them.  

2. Cognitive Workload  

Unlike psychophysiological attributes such as blood pressure or body 

temperature, cognitive workload is not directly measurable. However, it can be 

characterized by the resource demand that tasks require and the available cognitive 

resources available to address them. (Embrey et al., 2006; Matthews et al., 2014). In this 

sense, cognitive workload measurement attempts to use surrogate measures through a 
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measure or combination of measures to infer levels of cognitive workload. This approach 

to cognitive workload measurement mirrors similar attempts to use correlates for things 

that we cannot measure directly, For example, heart rate can provide insight into 

cardiovascular disease (Perret-Guillaume et al., 2009). The approach to determine 

correlations between surrogate measures and phenomenon is not new. Further, an 

essential item to consider when examining surrogate measures is finding those metrics 

that best correlate to things that are not directly measurable, including cognitive 

workload.  

Cognitive workload can be considered as being either demanded in single or 

multiple levels (Moray, 2013). There are generally two regions of task demand level. The 

first region deals with where the task demand is less than resources available. This is an 

ideal state that leaves a buffer for a user to operate, should demand resources be needed. 

The second region is where task demand exceeds resources available. This is not ideal as 

performance will break down when this state persists (Wickens, 2008). It is important to 

note that workload is a uniquely personal experience that reveals the relationship between 

cognitive resources available and the cognitive work demands presented (Vogl et al., 

2020).  

Cognitive workload has been defined in many ways. Often, these definitions of 

cognitive workload rely on a singular consideration such as subjective or objective 

metrics. These characterizations are rarely considered together (Longo et al., 2022). Van 

Acker, Parmentier, Vlerick, and Saldien (2018, p. 9) provide this conceptual definition: 

“Mental workload is a subjectively experienced psychophysiological processing state, 

revealing the interplay between one’s limited and multidimensional cognitive resources 

and the cognitive work demands being exposed to.” Within the aviation domain, Ellis and 

Roscoe defined workload as “the integrated physical and mental effort generated by the 

perceived demands of a specified piloting task” (1982, p. 11). These definitions highlight 

the complexity of cognitive workload across multiple considerations.  

There have been recent attempts to provide a comprehensive definition of 

cognitive workload. Longo, Wickens, Hancock, and Hancock (2022, p. 18) propose that 

cognitive workload: “represents the degree of activation of a finite pool of resources, 
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limited in capacity, while cognitively processing a primary task over time, mediated by 

external stochastic environmental and situational factors, as well as affected by definite 

internal characteristics of a human operator, for coping with static task demands, by 

devoted effort and attention.” This definition was developed based on an extensive 

analysis of cognitive workload literature. Longo et al.’s definition addresses basic 

concepts such as resources demanded versus resources available while attempting to 

account for internal and external factors that a person may experience in completing a 

task. Longo et al.’s definition considers multiple aspects that influence cognitive 

workload. Their description of cognitive workload addresses cognitive resources and 

their limited capacity, and how those resources can be activated for completing a primary 

task. Additionally, Longo et al. account for individual differences in personnel traits and 

strategies. Their definition also acknowledges that environmental factors can influence 

task completion. Finally, their definition highlights the role that an individual’s effort and 

attention have in accomplishing a task. This definition serves as a guiding principle for 

this dissertation effort because of its multidimensional considerations in describing the 

complex nature of cognitive workload. 

Cognitive workload became a major design consideration in the aviation 

community as automation and flight support tools were used to replace flight engineers 

(Parasuraman et al., 2008). Workload was a key factor in the Federal Aviation 

Administration’s (FAA) decision to certify reduced manned aircraft. Measures analogous 

to the Cooper-Harper rating scale for quantifiable handling were used in these studies 

(Parasuraman et al., 2008). However, just because two flight crew members are 

experiencing high levels of cognitive workload does not mean both will perform at the 

same level (Guastello et al., 2015). For instance, an expert pilot may be demonstrating the 

same behavioral and performance outputs as a novice, but the expert pilot may have 

significantly more workload resources available for task allocation than the novice. This 

difference is an important consideration for both training and system design. Differences 

in aviators’ performance levels suggest that the cockpit should be designed to account for 

the differences between expert performers and novices. Novices rely on context-free rules 

and perceive situations superficially, whereas experts rely on intuition gained over time 
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to react to situations more efficiently due to gaining more focused experience (Dreyfus, 

2004; Hutton & Klein, 1999). Technology should provide commensurate affordances and 

constraints to support an array of human operators who have different capabilities and 

limitations (Shattuck, 2017).  

Cognitive workload has generally been measured in three ways: subjectively 

through self-assessment, employing task performance metrics, and through 

psychophysiological signals (Cain, 2007; Eggemeier et al., 1991). Not one of these 

methods has been shown to measure cognitive workload directly. Each approach is 

sensitive to different aspects of workload, and not all these approaches measure the same 

thing (Hancock & Matthews, 2019). Additional components to workload include task 

difficulty, task context, and the task performer’s proficiency level (Young et al., 2015). 

Therefore, it is important to approach cognitive workload measurement from multiple 

dimensions that include each of the aforementioned areas. This dissertation will follow 

this multi-dimension approach using certain objective, subjective, and performance 

measures to find relationships between them and cognitive workload. While there are 

many measures that have been identified as sensitive to changes in workload, it is beyond 

the scope of this effort to investigate them all.  

3. Subjective Cognitive Workload Measurement 

Cognitive workload demanded by a task can impact performance (Brand & 

Schulte, 2017; de Greef & Arciszewski, 2007; Hart, 2006; Inagaki, 2003; Kaber et al., 

2001; Kaber & Endsley, 2004; Kanaan & Moacdieh, 2021; P. Smith & Baumann, 2020; 

Vagia et al., 2016). Given this relationship, measuring workload is an essential step to 

bring about improved performance. Because cognitive workload is experienced 

subjectively by individuals, it can be described and assessed through introspection 

subjectively with reliability (Cain, 2007). Generally, a person will be able to identify 

when they are experiencing higher levels of cognitive workload or stress and be able to 

articulate that through self-reporting. However, the use of subjective self-report measures 

by an operator may be unreliable. Some external factors such as unannounced strategy, 

effort changes, anxiety, or emotional intelligence may influence subjective workload 
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ratings (Cain, 2007; Guastello et al., 2015). Therefore, the use of multiple subjective 

scales in conjunction with objective data provide more reliability in determining levels of 

cognitive workload (Cain, 2007; Lohani et al., 2019; O’Donnell & Eggemeier, 1986; 

Vogl et al., 2020).  

There are several other subjective methods to assess cognitive workload, 

including crew status survey (Ames & George, 1993), Malvern Capacity Estimate 

(MACE) (Goillau & Kelly, 2017), Modified Cooper-Harper (MCH) (Cooper & Harper, 

1969), Bedford Workload Rating Scale (BWRS) (Roscoe, 1984), Subjective Workload 

Assessment Technique (SWAT) (Potter & Bressler, 1989), and Workload Profile (WP) 

(Tsang & Velazquez, 1996). These methods represent approaches to capturing workload 

either during or after a task. Other methods that have been used for cognitive workload 

measurement in adaptive interface systems include using language complexity analysis 

techniques. Some of these linguistic measures include Lexical Density, Complex Word 

Ratio, and the Gunning Fog Index (Khawaja, Chen, & Marcus 2010; Khawaja, Chen, 

Owen, & Hickey, 2009) (Khawaja et al., 2009, 2010). 

Another way to subjectively measure cognitive workload is through the NASA 

Task Load Index (NASA-TLX). The NASA-TLX is a multidimensional scale examining 

the six dimensions of workload seen in Figure 6: mental workload, physical workload, 

temporal workload, performance, effort, and frustration (Hart, 2006). Individuals 

complete the NASA-TLX by rating each of these dimensions from low to high using an 

analog scale. Each scale consists of 21 marks that individuals use to rate their 

experienced level of demand. The NASA-TLX is a widely used workload assessment 

tool in the field of human factors and is typically administered after the completion of a 

task.  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



21 

 

Figure 6. NASA-TLX rating scale definitions. Source: Hart and Staveland 
(1988).  

Another tool available for cognitive workload measurement is the Continuous 

Subjective Workload Assessment Graph (CSWAG) (Miller & Shattuck, 2004). Research 

using the CSWAG seeks to have participants report their workload as a percentage of 

their maximum cognitive workload. Participants are asked to rate their cognitive 

workload percentage at given time intervals. The intervals used in a study must balance 

the tradeoff between asking a participant their workload too often versus not enough. 

Asking a participant every five seconds during a 10-minute task may be too distracting 

and may introduce an increased source of cognitive workload. Conversely, asking a 

participant every five minutes during a 10-minute task may not capture an accurate 

representation of their experienced cognitive workload during that period. Previous 
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studies have asked participants for their CSWAG percentage every minute during a task 

(Brown et al., 2021). Similar approaches have been used with the SWAT at 30 second 

intervals and with the Instantaneous Self-Assessment (ISA) of workload at two minute 

intervals (Brennan & Jordan, 1992; Zak et al., 2020). The CSWAG cognitive workload 

percentages can then be generally classified in three bins: lowest workload (0%-33%), 

just about right (34%-66%), and highest workload (67%-100%) (Miller & Shattuck, 

2004). A researcher instructs a participant that they will be asked for their workload as a 

percentage of their maximum workload. The researcher informs the participant that they 

will be asked for their assessment when they hear “workload.” The use of brevity in 

asking for the participants’ workload and training them on the CSWAG allows for 

operator workload assessment during task completion. This approach also helps mitigate 

disruptions to the operator’s primary task to a negligible level. The CSWAG approach is 

complementary to post-trial assessments.  

The NASA-TLX and CSWAG were selected for the current research effort due to 

the ease in the ability to administer subjective workload assessments during and after the 

trials while minimizing disruptions to the primary task. Additionally, the use of more 

continuous inquiries into an assessed state at set intervals have shown sensitivity to 

changes in perceived cognitive workload (Brennan & Jordan, 1992; Brown et al., 2021; 

Zak et al., 2020). While both metrics have been used previously, they also have issues as 

with all subjective workload measures. The CSWAG provides real-time workload 

measurement but may interfere with task completion due to the interruption of being 

asked to assess one’s workload at that moment. The NASA-TLX relies on a participant to 

reflect on their subjective experience, which may not be representative of the whole task 

since memories may be forgotten. Further, a recency effect may influence a participant’s 

NASA-TLX ratings. Participants may remember their most recent experience and base 

their responses based on that time interval instead of the whole period (Guastello et al., 

2015). Additionally, participants may try to average their total experience if there are 

multiple conditions. This averaging approach may lead to biased values in their NASA-

TLX ratings. However, when used together and in complementary fashion with the other 
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measures of workload, these measures can aid in the correlational analysis of cognitive 

workload.  

4. Objective Cognitive Workload Measurement 

Historically, unobtrusive measures of cognitive workload relied on somewhat 

unreliable subjective techniques, such as task omission rates as well as primary and 

secondary task performance (O’Donnell & Eggemeier, 1986). While cognitive workload 

can be measured via objective performance and subjective assessments, these metrics are 

not sensitive enough to determine differences between normal and overloaded workload 

conditions (O’Donnell & Eggemeier, 1986). Performance metrics also do not provide for 

identifying which resources are being used in accordance with MRT. However, 

psychophysiological measurement provides a robust and continuous means to gauge 

workload without any behavioral outputs needed (Hughes et al., 2019). Aricò et al. 

(2016) propose that there is value in using psychophysiological measurement in 

conjunction with subjective measures when investigating the relationship between 

humans and adaptive automation. Multiple ways exist to measure workload objectively 

that provide more fidelity on cognitive workload. Additionally, a host of 

psychophysiological measures are available which seek to objectively assess workload in 

real-time. Oculometrics (including pupillometry and blink data), electrocardiography 

(ECG) and cardiovascular measures, respiration, catecholamines and hormonal 

responses, electrodermal activity (EDA), electroencephalography (EEG), and functional 

near-infrared spectroscopy (fNIRS) are a few examples of these methods (Hancock et al., 

2013; Neubauer et al., 2020; Vogl et al., 2020).  

a. Eye Tracking 

The human eye can provide insight into brain activity (Janisse, 1977; Lohani et 

al., 2019). Eye tracking has been used in numerous studies to gain insight into the human 

state and cognitive activity (Matthews et al., 2014; Palma Fraga et al., 2020; Pfleging et 

al., 2016). Eye tracking has evolved from an unreliable and intrusive technique to its 

current state that allows for relatively simple and unobtrusive oculometric data collection 

(Vogl et al., 2020). Further, modern eye tracking solutions even present the possibility for 
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inclusion in applied operational settings instead of solely in a controlled laboratory 

environment (Aura et al., 2021).  

Eye tracking provides insight into where humans are focusing attention by 

analyzing eye movements and pupil dilation, which is coupled with autonomic nervous 

system (ANS) activity (Neubauer et al., 2020). The correlation of pupil size to the ANS 

provides an avenue for validation and study of the relationship between other 

psychophysiological measures. The pupil’s constrictions and dilations allow for the 

management of light entering the retina. The more light that is presented to the eye yields 

smaller pupil diameter, while less light yields larger pupil diameter (Aura et al., 2021). 

Ellis (1981) refers to this phenomenon as pupillary light reflex. Thus, pupil size is 

constantly changing due to constriction and dilation brought about due to environmental 

changes, giving humans the ability to see in rapidly changing conditions. In general, the 

size of human pupils vary between 2 and 8 mm (Watson & Yellott, 2012).  

When luminance conditions are controlled or held constant in a laboratory setting, 

pupil size has been shown to provide significant insights into psychosensory effects, 

including cognitive workload (Neubauer et al., 2020; Kahneman & Beatty, 1966). As a 

human operator’s experienced cognitive workload increases, the pupil’s diameter will 

also grow (Aura et al., 2021; Beatty & Lucero-Wagoner, 2000; Pfleging et al., 2016). The 

dilation associated with increasing cognitive workload is also referred to as task-evoked 

pupillary response (Pfleging et al., 2016). Task-evoked pupil diameters should be 

evaluated against a baseline period to determine the differences in pupil size following 

initiation of the task (Krejtz et al., 2018). Individual differences, such as age, can account 

for differences in pupillary response as well as cognitive activity and environmental 

conditions. The use of a within-subjects experimental design can mitigate and account for 

the impact of individual differences since participants complete all conditions 

(Greenwald, 1976).  

Previous work has investigated ways to measure cognitive activity as a function 

of pupil size (Duchowski et al., 2018; Marshall, 2002). Studies have also examined pupil 

size in simulated and live operating room settings to determine effects of workload on 

pupil size for novice and expert surgeons. Findings suggested that experts’ pupil sizes 
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were significantly smaller than those of novice surgeons in both simulated and live 

operating rooms (Richstone et al., 2010). These findings indicate that pupil measurement 

can be used to assess cognitive activity and workload. Further, the findings suggest that 

there may be differences occurring in neural pathways that explain different pupil sizes 

between right and left eyes.  

Two additional eye metrics that are related to cognitive workload and fatigue are 

blink rate and duration (Benedetto et al., 2011). As workload increases, blink rate and 

duration decrease and are indicative of focused attention on a task (Ahlstrom & 

Friedman-Berg, 2006). Eye tracking has been demonstrated to be an effective method  for 

understanding the effects of interruptions on how humans apply their cognitive resources 

in varying conditions, as measured by workload (Kanaan & Moacdieh, 2021). Higher 

workload manifests in slower scan patterns on displays than in conditions with lower 

workload (Kanaan & Moacdieh, 2021). This phenomenon of focused attention during 

periods of higher workload is the result of humans leveraging the limited resources 

available on accomplishing the most salient task (Dehais et al., 2011; Tao et al., 2019; 

Wickens et al., 2015).  

Previous research has found that visual physiology assessment is a viable 

candidate to assess cognitive workload within fixed levels of automation (Evans & 

Fendley, 2017). Evans and Fendley (2017) conducted an experiment using an open-

source real-time strategy game that involved participants interacting with the game using 

Sheridan and Verplank’s LOAs 2, 4, and 9 listed in Table 1. Their results showed 

significant differences in NASA-TLX subjective workload ratings, time to complete a run 

of the game, and differences in visual fixation rates among each of the levels. These 

findings suggest that visual physiology may be valuable in evaluating cognitive workload 

within static automation levels. However, investigation into cognitive workload when 

using dynamic autonomy levels is limited and is perhaps a valuable line of research to 

pursue given the findings from static levels of automation and the potential to increase 

performance (Evans & Fendley, 2017; O’Neill et al., 2020). A multimodal approach that 

couples neuroimaging with eye movements and observable behavior may be beneficial to 
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the present effort for analyzing cognitive workload increases brought on by task difficulty 

and complexity (Palma Fraga et al., 2020).  

Table 1. Sheridan and Verplank’s levels of automation. Sources: Beer et al. 
(2014); Parasuraman et al. (2000); Sheridan and Verplank (1978). 

 

 

While pupil diameter and blink rates have shown to be related to changes in 

experienced cognitive workload, challenges exist in their measurement in applied 

settings. Many studies have used controlled, static means to evaluate oculometrics in a 

laboratory setting with great success. However, environmental conditions and technology 

capabilities make oculometrics in applied settings more challenging. Solutions are 

improving as iterations of field-worthy systems are being developed, which will allow for 

more real-time assessment of oculometrics in applied settings. Additionally, using 

oculometric data along with multiple cognitive workload metrics will help provide a 

more complete analysis of the workload levels over time. Pupil diameter has shown to 

reliably discern differences between workload conditions in different luminance 

environments (Aura et al., 2021). Because of its sensitivities to varying workload and 

environmental conditions, pupil diameter will be leveraged as one potential workload 

correlate in the present effort.  
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b. Functional Near-Infrared Spectroscopy (fNIRS) 

Parasuraman and Rizzo (2008, p. 239) define neuroergonomics as “the study of 

the brain and behavior at work.” The aim of neuroergonomics is to help understand how 

humans interact with the environment through leveraging neuroscience. One method to 

assist with this understanding is functional near-infrared spectroscopy. Functional near-

infrared spectroscopy is a wearable brain-based technology that can measure brain 

activity in a non-invasive and transportable manner (Li et al., 2022; Reddy et al., 2022).  

Changes in blood oxygenation levels are associated with cognitive workload. For 

instance, the higher the change in oxygenation, the higher the associated cognitive 

workload (Ayaz et al., 2012; Causse et al., 2017; Herff et al., 2014). The use of fNIRS 

technology provides a method for measuring oxygenation levels in the brain (von 

Lühmann et al., 2015). To do so, fNIRS systems use a signal and detection methodology 

for examining infrared (IR) light at specific regions of the brain. The fNIRS system will 

send an IR light that is then absorbed by different components of the body. Detectors in 

the fNIRS system will then measure the resulting IR light (von Lühmann et al., 2015). As 

such, fNIRS systems examine the manner in which light passing through cortical tissues 

relate to changes in oxygenated (HbO) and deoxygenated hemoglobin (Hb) concentration 

levels (Reddy et al., 2022; Scerbo, 2008). Much like functional magnetic resonance 

imaging (fMRI) technology, fNIRS provides a view of how oxygen supply in the blood 

changes for different regions of the brain. Unlike fMRI, however, fNIRS systems can be 

used in an operational setting due to lower resource and space demands. Research efforts 

using fNIRS to examine cognitive workload have grown in recent years due to fNIRS 

systems becoming more reliable, affordable, and portable (Herff et al., 2014).  

Research using fNIRS has demonstrated the potential to continuously and 

objectively measure cognitive workload by leveraging blood oxygenation levels as a 

surrogate to cognitive workload (Harrison et al., 2014). Cognitive workload assessment 

using fNIRS has been successful when measuring hemodynamic activity in the prefrontal 

cortex (Herff et al., 2014). Because of its ability to continuously measure activity without 

reliance on any overt human behavior, a brain-based system like fNIRS can potentially 

benefit AA systems (Scerbo, 2008). Operator state monitoring approaches using fNIRS 
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can stand to benefit by providing another low-intrusive sensor to provide real-time 

cognitive workload metrics. While fNIRS has been shown to provide insights into 

cognitive workload, challenges exist with its use in applied settings due to ambient light 

and operator movement artifacts, creating noise in collected data (Girouard et al., 2010). 

These confounding variables can be eliminated in large part with mitigating techniques 

during data collection such as light blocking caps or with post hoc data process filtering 

(von Lühmann et al., 2015).  

c. Heart Rate Variability 

Cardiac activity has shown to be sensitive to variations of cognitive workload, 

particularly task workload demands and duration, as well as event presentation rate 

(Hughes et al., 2019). Heart Rate Variability (HRV) provides a more sensitive measure of 

cognitive workload than heart rate alone and has been used in numerous studies as a 

cognitive workload metric (Backs, 1995; Hughes et al., 2019; Matthews et al., 2014). 

Heart rate variability examines the changes in inter-beat intervals (IBI), commonly 

referred to as the R-R interval shown in Figure 7, over some period. The variation in 

timing between heartbeats provided by HRV data is caused by sympathetic and 

parasympathetic nervous system activity. Heart rate variability is also a cognitive 

workload metric that can be derived from ECG data. It has been used to measure 

cognitive workload in multiple domains, including aviation (Backs, 1995; Vogl et al., 

2020). For these reasons, HRV is of primary interest in this study to aid in determining 

cognitive workload changes.  
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Figure 7. A heartbeat outline showing an R-R interval. Source: (Murai et al., 
2015).  

Inter-beat intervals measure the time between contractions of the heart muscle. 

This is an important measurement when calculating an HRV metric. There are numerous 

peak detection algorithms available that assist with detecting R-wave spikes produced by 

ECG signals. The R-wave spike detection allows for determining R-R IBIs for a given 

time. One approach to analyzing the R-R IBIs leverages time domain analysis. Another 

common time domain analysis is the Root Mean Square of Successive Differences 

(RMSSD). The RMSSD is calculated by taking the square root of the mean of the 

squared differences between successive R-R intervals for a given period (Tao et al., 

2019). As cognitive workload increases, the IBI and RMSSD decrease highlighting the 

inverse relationship between cognitive workload and HRV (Fairclough et al., 2005; Tao 

et al., 2019). Mean R-R intervals have shown to be sensitive to the inverse relationship 

that accompanies changes in cognitive workload (Delliaux et al., 2019).  

The ability to leverage ECG signals to determine HRV while minimizing 

intrusiveness provides promising real-time assessment capability in future operational 

environments. As many commonly worn wearable technologies provide these data, low 

costs and operator familiarity with the systems may also break down barriers to 

acceptance in more applied settings. Additionally, the relatively low overhead to collect 

HRV may help achieve real-time operator state monitoring needed to properly employ 

AA systems.  
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5. Cognitive Workload and Performance 

A common depiction of the relationship between workload and performance can 

be seen in the inverted “U” curve presented in the Yerkes-Dodson Law (Yerkes & 

Dodson, 1908). An adaptation of this law is seen in Figure 8, which depicts the 

relationship of workload and resources available with task performance. If workload is 

too low, increased workload can increase performance. However, too much workload can 

then lead to a decrease in performance. When a person is under-aroused and bored, 

performance can decrease, although a person may have the resources available to attend 

to a situation.  

 

Figure 8. Relationship of performance, mental resources, and workload. 
Source: Ernst et al. (2020). 

Operators may drift or lose interest in the task, and thus suffer a decrement in 

performance (Parasuraman, 1987). Time increases workload, as temporal demands 

trigger an external pressure to complete the task. Errors in task performance also become 
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more prevalent as workload approaches the 80th percentile capacity of the individual. 

This concept is known as the workload redline (Young et al., 2015). Designers should 

consider the tasks required to complete an operation and the demands that those tasks 

place on the humans in the system. In other words, it is important to account for resources 

demanded versus the resources available to complete a task when assessing cognitive 

workload (McKendrick et al., 2019; Welford, 1978; Young et al., 2015).  

D. SITUATION AWARENESS 

Situation awareness (SA) can be conceptualized as understanding the state of an 

environment, or more simply as knowing what is happening (Endsley, 2021; Wickens, 

2008b). Situation awareness can be formally defined as “the perception of the elements in 

the environment within a volume of time and space, the comprehension of their meaning, 

and the projection of their status in the near future” (Endsley, 2021, p. 435). There are 

also internal and external factors that interact with SA to help provide a more developed 

description of it as seen in Figure 9. As the state of the environment changes, achieving 

Level 1 SA involves a human perceiving relevant elements through one or multiple 

sensory mechanisms. Level 2 SA describes comprehension of those elements perceived 

in Level 1 as well as an analysis of those elements in relation to the operator’s goals. This 

concept can be likened to comprehending words rather than just reading them. Level 3 

SA builds on the previous two levels and occurs when an operator can make predictions 

on future states of the environment.  
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Figure 9. Model of SA in dynamic decision-making. Source: Endsley and 
Jones (2011). 

An operator’s decision and subsequent actions are made based on perception, 

comprehension, and prediction that feed back into the SA cycle. While SA is susceptible 

to the limitations of human memory processes, there are individual characteristics that 

can help humans achieve higher levels of SA. For instance, operators can leverage goal-

directed processing, automaticity in actions, and long-term memory stores to help match 

patterns and schemas to currently experienced phenomena. These enhancing mechanisms 

are developed through the abilities acquired from training and experience.  

External factors in Figure 9 include a system’s capabilities, interface design, 

workload, and automation. These factors can afford or constrain the progression from 

situation awareness to action based on the number of resources the external factors 

demand. For example, a system that is highly automated and that has an intuitive user-

interface design may allow the sub-conscious progression through the Levels of SA 
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without interference. As a result, operators can make informed decisions and achieve 

higher levels of performance. Conversely, high complexity and increased workload can 

take an operator away from projecting the future consequences of their actions and lead 

to an incomplete understanding of a situation. A final key factor of SA is the inclusion of 

a feedback loop that helps inform the changed state of the environment as an operator 

progresses through a situation.  

Situation Awareness has been assessed in different ways in aviation environments 

(Nguyen et al., 2019). Some of the different measurement techniques for assessing SA in 

aviation have included the Situation Awareness Global Assessment Tool (SAGAT) 

(Endsley, 2017b), Situation Present Assessment Method (SPAM) (Durso et al., 1999), 

and Situation Awareness Rating Technique (SART) (Taylor, 2011). Each measurement 

technique possesses advantages and disadvantages.  

SAGAT is a widely used technique that will seek to assess an operator’s SA at a 

specified time during a task (e.g., pausing a flight simulation mid-flight). SAGAT can 

then provide real-time assessment of SA and mitigate issues such as forgetfulness that 

manifest in post-trial assessments. However, this approach can be problematic in 

collecting data on the primary variables of interest by disrupting the task (Sarter & 

Woods, 1995). SAGAT also allows for potential retrieval from LTM stores to provide a 

picture of SA retroactively rather than in real-time. This phenomenon is problematic 

given that SAGAT questions are dependent on memory information to assess SA.  

SPAM addresses the reliance on memory that SAGAT presents by assessing the 

latency in which operators report their SA. For instance, SPAM is not concerned with 

exact data being given, but rather on an operator’s ability to find it in a timely manner to 

report it. This approach is thus an easy and fast approach to SA measurement that is not 

reliant on freezing a task. However, SPAM can still disrupt task performance as it is 

conducted during a task. There is also more overhead in determining the questions to be 

asked of the participants to address the SA requirements in question (Durso et al., 1999).  

SART relies on subjective assessment and is thus susceptible to operators 

forgetting or reporting on only perceived SA during what they deemed as most important 
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or when they performed best. However, SART provides a fast and efficient way to 

evaluate SA in a less intrusive way. It has been used in a variety of domains and provides 

quantitative data for analysis (Taylor, 2011).  

One key feature of situation awareness is that it can be diagnostic of operator 

states. For example, operator accuracy can be continuously diagnosed and assessed 

against ground truth. Therefore, it can help guide human factors solutions in situations 

where operator SA is lacking (Parasuraman et al., 2008). Situation awareness represents a 

continuous diagnostic state of a dynamically changing environment. Because of this, 

there is a ground truth that can (and should) be used to assess levels of SA. Situation 

awareness is not performance, but is rather a psychological construct (Parasuraman et al., 

2008). Further, SA is not just general knowledge retrieved from long-term memory 

(LTM). Situation awareness applies to events that are ongoing and unfolding in (near-) 

real time, as opposed to events that occurred in the past. While long-term memories help 

inform people’s SA of the environment, LTM and SA are distinct concepts.  

Systems should be designed in a manner that supports human SA during 

operations. Humans in the loop have control and direct interaction with a system 

(Cummings & Thornburg, 2011). Tasks with HITL allow for greater situation awareness, 

given that the human is constantly engaged. Humans on the loop brings the human from 

direct interaction to more of a supervisory role (Stilgoe, 2018). Humans out of the loop 

(OOTL) takes the human away from a task and leaves the completion of the task to 

automation. This separation can result in a loss of SA (if the systems is not transparent) 

and can lead to a degradation of manual skill over time (Endsley & Kiris, 1995). 

Additionally, systems should be designed to an appropriate level of automation that 

reduce negative effects on operator SA. Implementing SA support tools while giving a 

human a high level of control allows for the human to remain appropriately engaged with 

the task being accomplished. It may be worth including periodic intervention by humans 

to help them maintain a proper SA picture (Endsley & Kiris, 1995).  

Cognitive workload and SA have similar characteristics, and both can impact an 

operator’s performance. They are constructs that are different from behavior and 

performance (Parasuraman et al., 2008). Workload and SA are also impacted by adaptive 
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automation through various relationships. The relationship between SA and cognitive 

workload is dynamic and at times they may even be inversely linked in an operational 

system. For instance, adaptive automation may help increase SA by decreasing workload. 

However, if workload is reduced by taking the humans out of the loop, SA may decrease 

even though workload is lowered (Endsley, 2021; Kaber & Endsley, 2004). A depiction 

of the relationship between cognitive workload and SA as they relate to levels of 

automation is presented in Figure 10. The x-axis represents increasing levels of 

automation. The y-axis represents positive system attributes that would be present for 

cognitive workload and SA. If cognitive workload and SA are linear as seen in Figure 

10a and the system performance of the human and the automation are equal, then an 

optimal level of SA can be determined based on the weight that designers give to each 

construct. Figure 10b shows the relationship of one or both functions if they are 

exponentially increasing. The optimal level of SA will then exist at the high or low 

LOAs. Similarly, if the relationship between SA and workload follows a logarithmic 

function, then the optimal LOA towards the center of the LOA scale. This optimal LOA 

will be achieved in logarithmic functions where increases or decreases have reached an 

asymptotic level as shown in Figure 10c. Figure 10 shows workload reductions 

increasing as LOAs increase, with SA degrading as LOAs increase. These relationships 

highlight key design considerations as the interaction of these concepts can have 

significant impact on system performance. These three concepts are important aspects of 

this dissertation effort and are each evaluated due to their inextricable relationships.  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



36 

 

Figure 10. Hypothetical functions of workload and SA as LOAs are increased. 
Source: Wickens (2008b). 

While Endsley’s definition of SA has been discussed as a guiding concept in this 

research effort (and for a myriad of other lines of research for over two decades), 

criticisms of SA have abounded. Because of the contested nature of SA, there is no single 

universally accepted definition of it (Stanton et al., 2017). Criticisms of SA have ranged 

from disagreements on the ability and methods to measure SA (as described in the 

advantages and disadvantages of the SAGAT, SPAM, and SART methods) as well as the 

validity of SA as a construct overall. Opponents to Endsley’s SA construct suggest that 

SA is redundant in the face of existing concepts like attention (Dekker & Hollnagel, 

2004; Wickens, 2008b). This kind of simplification of SA lacks the contextual 

application that Endsley’s SA model can provide. Situation awareness can assist in 

identifying where in a complex environment a person’s knowledge of specific salient 

factors should be focused. Further, being able to operate in Levels 2 and 3 of SA allow 

for more exploration of the environment to find Level 1 items. This process can lead to 
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continual SA development which distinguishes Endsley’s model from attention 

conceptually. This process seen in Figure 11 highlights SA as an iterative process in 

focusing attention (Endsley, 2015).  

 

Figure 11. Leveraging higher levels of SA to find new information. Source: 
Endsley (2015).  

Smith and Hancock have defined SA as “adaptive, externally directed 

consciousness” (1995, p. 138). Smith and Hancock’s approach to SA attempts to extend 

an existing concept of consciousness rather than to categorize it as either knowledge or a 

process. In doing so, they propose that SA is at the interface between a human and their 

interaction with the environment, and not just an investigation into a human’s 

performance. As such, they liken SA to other constructs such as cognitive workload as 

aspects of consciousness. One of the weaknesses that Smith and Hancock identify with 

Endsley’s definition of SA is that the dynamic nature of interactions between the human 

and the environment are not explicitly identified. However, Endsley’s model in Figure 11 

provides an important feedback loop that accounts for this dynamically changing 
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interaction with the environment, allowing for on-going SA updates in many dynamic 

environments (Endsley, 2015).  

Others agree with using SA as a description of observed phenomenon. However, 

they caution against the use of SA as being a causal agent that can lead to circular 

reasoning when determining root causes of incidents (Flach, 1995). For instance, accident 

investigations may cite the loss of SA as the leading cause of an operator’s fatal error. 

Critics of SA might ask how one can determine if SA was lost and why did the operator 

respond inappropriately. In both instances, the answer can be that the operator lost SA, 

causing an unclear determination into the actual cause of the incident. Further, Flach 

argues that using SA to describe the phenomenon to further understand its role in 

causality can be beneficial in analyzing performance in human-machine systems. Using 

Endsley’s conceptualization mitigates Flach’s causality concern by identifying the factors 

that contributed to an operator losing SA rather than trying to mark a specific time when 

the SA loss may have occurred.  

Endsley’s model of SA provides a way to assess the temporal aspects of a 

situation through the dynamic cycle of interactions depicted therein. This approach means 

that SA is not a static process, but rather a dynamically changing one. Because of this 

consideration, Endsley’s model serves as a prime candidate for investigation into 

dynamically changing environments, such as those with dynamic levels of automation 

(Endsley, 2015). As such, Endsley’s definition and model of SA are used in the current 

effort to analyze the relationships between workload, performance, and SA.  

E. AUTOMATION IN SUPPORT OF SYSTEM PERFORMANCE 

Automation refers to the process of substituting task control by a human with a 

system (Parsons, 1985). Sheridan and Verplank’s (1978) seminal work on levels of 

automation (LOA) of decision and action selection depicts a range of automation from 

low to high, with lower levels associated with more human control and higher levels 

corresponding to more autonomous control by automation. Parasuraman, Sheridan, & 

Wickens (2000) expanded on this framework by proposing that levels of automation 

could be associated with equivalent system functions. The four system function classes 
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are information acquisition, information analysis, decision and action selection, and 

action implementation (Parasuraman et al., 2000). Each of the functions could be 

automated to varying degrees. These functions are key design considerations for systems 

that have tasks that could benefit from automating them to improve system performance. 

The model in Figure 12 depicts the four system function classes with human 

performance, automation reliability, and action costs included for design considerations. 

The model highlights that at different points of information processing, humans can 

benefit from automation assistance. Further, the model helps to show that different 

aspects of information processing can be allocated between humans and automation 

(Save, Feuerberg, & Avia., 2012).  

 

Figure 12. Types and levels of automation for ATC systems. Source: 
Parasuraman et al. (2000).  
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An adaptation of Sheridan and Verplank’s (1978) levels of automation and 

Parasuraman, Sheridan, and Wickens’ (2000) levels of autonomy framework can be 

applied to autonomy levels as well, as seen below in Figure 13 (O’Neill et al., 2020). As 

computers gain higher levels of agency (post-level 4), they begin to be considered more 

as teammates. The difference between automation and autonomy is the extent of the 

degree they exist on the LOA scale. For instance, at level 10, a computer agent is acting 

autonomously in that it is deciding and acting without any consideration from a human 

agent. Conversely, at level 2, the computer agent aids a human agent, but the human is 

ultimately in control of the system. Cognitive workload is one of the many factors 

impacted by different levels of automation, and its management is a key consideration to 

ensure operator safety and mission completion. The extent to which workload varies 

within each static level of automation can be significant (Evans & Fendley, 2017). This 

impact of automation on workload suggests that cognitive workload model predictions 

should change based on dynamic shifts between LOAs.  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



41 

 

Figure 13. Adapted levels of automation to autonomy levels. Source: O’Neill 
et al. (2020).  

F. ADAPTIVE AUTOMATION 

Adaptive automation (AA) has been identified as “one of the most important ideas 

in the history of human factors/ergonomics” (Hancock et al., 2013, p. 11). It abounds in 

many fields, including aviation medicine, transportation, and logistics. Within the 

aviation domain, advances in automation afford more efficient and effective flight 

operations by augmenting a pilot’s cognitive abilities (Calhoun, 2021; Scerbo, 1996; 

Wiener, 1989).  

Adaptive automation is the ability to modify the automation level in real time in 

response to demands on the system (Sheridan, 2011). The concept emerged in the 1970s 

in the field of artificial intelligence to determine the blend of task allocation between 

humans and machines and later would extend to finding ways to utilize adaptive systems 

in the aviation field (Rouse, 1988). Adaptive automation is differentiated from adaptable 
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automation in that adaptable automation relies on an operator selecting and initiating the 

level of automation. With adaptive automation, humans and machines share the ability to 

determine changes in the automation’s state (Scerbo, 1996).  

One of the primary objectives of adaptive automation is to manage operator 

workload at an optimal level (Parasuraman et al., 1992; Hilburn et al., 1993; Endsley, 

2017a). An assumption accompanying this perspective is that workload levels can be 

defined and specified through surrogate measures to serve as a starting point for adjusting 

automation. Adaptative automation has shown to lessen human error and performance 

variability (Scerbo, 1996). It also can enhance control of increasingly complex systems 

while mitigating operator performance variability, leading to reduced error rates (Scerbo, 

1996; Woods, 1996). Additional intended outcomes of adaptive automation include 

keeping humans within a “band of proper workload” (de Greef & Arciszewski, 2009), 

assisting operator cognitive processes (Inagaki, 2003; Hancock et al., 2013; Kaber et al., 

2006), and enhancing system performance (Brand & Schulte, 2017). These findings of 

reductions in cognitive workload and increases in performance suggest that the use of 

adaptive automation can serve as a viable intervention in high workload tasks (Endsley, 

2017a; Ernst et al., 2020). Further, changes in operator performance should be evident at 

different LOAs through their dynamic changes when using AA systems.  

Adaptive automation also seeks to reduce human OOTL processing issues such as 

complacency, which can manifest when an operator is over-reliant on the automation to 

conduct a task (Kaber et al., 2006). This characteristic helps facilitate two other intended 

outcomes: enhancing performance and safety (Kaber et al., 2006). Further, AA solutions 

need to balance changes in concert with factors happening in the periphery (Vagia et al., 

2016) and do so at the right time to provide the appropriate assistance at the point of need 

(Hancock et al., 2013).  

While adaptive automation solutions provide benefits, designers can inadvertently 

create detrimental issues when developing AA systems. For instance, adaptive 

automation should only provide assistance when required so as to prevent unnecessary or 

ill-timed assistance that can lead to degraded performance (Scerbo, 1996). Adaptive 

automation creates increased system complexity with new technical challenges that are 
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introduced with novel systems (Christoffersen & Woods, 2002; Endsley, 2017a; Scerbo, 

1996; Woods, 2016). Adaptive automation systems may actually increase workload 

demands on humans when the human operators have to manage function allocation while 

also performing routine tasks (Kaber et al., 2001; Bainbridge, 1982a; Endsley, 2017a; 

Hollnagel & Woods, 2005). Adaptive automation can introduce additional monitoring 

and processing demands on operators due to increasing information and visual displays 

that depict the actions and statuses of AA (Kaber et al., 2001; Kaber & Endsley, 2004). 

These are just some of the issues that may contribute to the manifestation of unintended 

consequences, negatively impact system performance, and negate the intended benefits 

AA should bring to a system.  

Unintended consequences are essential considerations in an evolving 

technological world (Tonn & Stiefel, 2019). As AA systems grow in complexity, there is 

a potential for them to introduce unintended consequences. Some of these consequences 

may be positive. For instance, humans may be able to focus more attention and complete 

tasks that are directly supporting task accomplishment. Operators may also find new 

ways to use existing systems for additional purposes to facilitate more efficient 

operations. Additionally, there exists the potential for digital technologies such as AA to 

become more sustainable in their development to support the human, rather than having 

to develop multiple methods to do so (Bohnsack et al., 2021).  

However, AA can also present risk and negative unintended consequences on 

automation systems (P. Smith & Baumann, 2020). These negative impacts include 

knowledge and skill degradation, overreliance on automation to identify operational 

issues, fewer attentional resources to address system errors, non-compliance with system 

state indicators, and adverse impacts on team SA (P. Smith & Baumann, 2020). 

Unintended consequences introduced by humans operating complex systems are thus 

susceptible to multiple avenues of failure if the automation itself fails. These systems are 

further subject to operational issues if the human interaction with it is suboptimal. One 

consideration with the capabilities adaptive automation systems offer is the inadvertent 

increase in workload that is created when the operator must interact with a computer or 

manage function allocations between them and the adaptive systems. This increase in 
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workload proposition follows previous findings that place more demands on human 

operators as they are responsible for managing the increasing amount of technology and 

the corresponding amount of increased information in their workspace (Bainbridge, 

1982a; Endsley, 2017a; Hollnagel & Woods, 2005).  

Additionally, determining when to initiate adaptive automation solutions without 

negatively impacting an operator’s performance is a critical consideration that remains 

paramount in attempts to employ this technology (Aricò et al., 2016; Rusnock & Geiger, 

2017). Adaptive automation can lead to decreased trust due to surprises that result from 

its actions (de Greef & Arciszewski, 2009; Inagaki, 2003; Parasuraman & Riley, 1997; 

Woods et al., 2021). Adaptive automation can provide assistance at the wrong time or not 

at all, which can lead to unintended increases in operator workload (Hancock et al., 

2013). Further, operators may experience decreased situation awareness and have to 

address adaptive shortfalls that require diverting their attention from their primary tasks 

(Inagaki, 2003; Kaber et al., 2001; Woods, 2016).  

As adaptive automation solutions are embedded in more complex systems, new 

challenges and requirements are introduced that need to be addressed to mitigate potential 

mismatches in simulated system demonstration and real-world performance. Designers 

must confront new challenges to mitigate the potential for detrimental surprises. This 

consideration follows the concept of Doyle’s Catch, whereby new systems create a 

potential mismatch between a simulated capability demonstration and the real world 

(Woods, 2016).  

Adaptative automation is generally described as being triggered using three 

different approaches: the critical-event strategy where analysis conducted ahead of an 

event seeks to identify high workload event times (Inagaki, 2003); the performance-

measurement strategy whereby an operator’s performance during tasks is used to estimate 

current and future state and workload (Aricò et al., 2016; Inagaki, 2003); and the 

neurophysiological measurement strategy that uses various signals from an operator 

including EEG, ECG, and GSR to make inferences on mental workload in near-real time 

(Scerbo et al., 2001).  
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Revoking adaptive automation is a key consideration for when and how to return 

control of a task back to a human. Rusnock and Geiger (2017) posited that the revocation 

of adaptive automation should be done after cognitive workload returns to manageable 

levels. Strategies to revoke adaptive automation include the inverse of the invoking 

strategies and user-initiated deactivation. Because AA is reliant on real-time operator 

state data for its invoking and revoking, further study into psychophysiological workload 

measurement as related to workload predictions is warranted (Rusnock & Geiger, 2017). 

Cognitive workload could then be measured and managed more effectively in keeping 

with the goals of AA. Therefore, it is essential to have reliably accurate measures of an 

operator’s cognitive workload to facilitate proper use of AA systems (Ayaz et al., 2012; 

Parasuraman, 2003).  

Psychophysiological measurements, such as brain activity, have been shown to 

provide accurate representations of an operator’s workload in air traffic control tasks 

(Aricò et al., 2016). Subjective measures such as the NASA-TLX have shown to correlate 

with these data to provide validation of cognitive workload models (Rusnock & Geiger, 

2017). Taken together with performance metrics, these measures can facilitate better 

understanding of an operator’s cognitive workload. Further, assessing cognitive workload 

model predictions with these subjective and objective metrics might yield relationships 

that allow for workload forecasting.  

There is an extensive body of research that has identified and investigated the 

potential impacts on operators when using adaptive automation. Because of these relevant 

considerations, adaptative automation serves as an integral element for this research. 

However, studies that seek to model and measure the extent to which AA negatively and 

unintentionally impacts operator workload are lacking. Research that uses 

psychophysiological measures, subjective ratings, and task performance metrics is 

needed to provide more robust analysis on the impacts of using AA. This approach also 

supports using real-time psychophysiological and performance metrics to predict an 

operator’s state, which is critical for the use of AA. This dissertation addresses this gap in 

the literature by modeling and revealing the identified potential negative unintended and 

unanticipated consequences that emerge when using AA systems.  
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G. TASK ANALYSIS 

Task analysis (TA) can help describe how an operator accomplishes an end state. 

One definition of TA is: “the study of what an operator (or team of operators) is required 

to do, in terms of actions and/or cognitive processes, to achieve a system goal” (Kirwan 

& Ainsworth, 1992, p. 1). There are different types of task analyses such as Hierarchical 

Task Analysis (HTA), Job Task Analysis (JTA), and Cognitive Task Analysis (CTA).  

Task analyses allow us to allocate functions in a system to a human, to a machine, 

or to a combination of both. They also allow for workload assessment to determine the 

load a task may place on someone (Kirwan & Ainsworth, 1992). Task analyses also 

impact job specifications, manning numbers, personnel selection considerations, and task 

procedures by identifying the number and type of people a system might require for 

effective operation. These factors are important when conducting tradeoff analysis among 

the domains of human systems integration (HSI) and in the system design process.  

Task analysis can also inform user interface design (UID) and be leveraged to 

reduce workload and error probability through proper employment of its results (Kirwan 

& Ainsworth, 1992; Rosala, 2020). Knowing what tasks are most important in a system 

can drive the design of a display to place those critical items in high visibility areas. 

Further, the content presented on those displays can be oriented and presented in such a 

way that facilitates task completion. This is a key tenet of human factors engineering 

(HFE) and is another example of how TA can be leveraged in system design to present 

salient information in efficient ways.  

Different task analysis methods can be applied at different stages and mixed at 

different times to answer questions when designing training. Task analysis is not a 

specific method, but rather a concept or goal to understand what a user is required to do 

to complete a task (Adams et al., 2012). Understanding the task is not as simple as this 

view, however, as a task can be multi-faceted (cognitive, physical, goals, etc.). Therefore, 

it is important to look at task analysis methods as approaches that address dynamic task 

aspects and that account for the changing nature of work from physical to cognitive. 

Additionally, task analysis methods should be further viewed as approaches that 
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emphasize safety-focused operations instead of efficiency (Adams et al., 2012). 

Designing for adaptive aiding through automation highlights the importance of task 

analyses because it requires understanding the context of activities and the functions 

necessary to complete a task (Adams et al., 2012; Inagaki, 2003; Hancock et al., 2013). 

H. MODELING AND SIMULATION 

Modeling and simulation (M&S) is an interdisciplinary field that is widely used 

across an array of domains. The Department of Defense (DOD) defines a model as a 

“physical, mathematical, or otherwise logical representation of a system, entity, 

phenomenon, or process” (Department of Defense, 2018, p. 9). Some examples include a 

mathematical equation, a simple toy model, or representations of human behavior. A 

model can also be described as an abstract representation or idealization of some 

phenomenon (Weisberg, 2013). Simulations are described as the dynamic application of a 

model, or a model run over time (Department of Defense, 2018). Modeling and 

simulation’s applications can be seen in training, healthcare, test and evaluation, human 

factors, and many other domains. For the DOD, human performance modeling represents 

an acknowledgment of the intersection of technological capabilities to support a system’s 

life cycle and the importance of warfighter consideration early in that process.  

1. Cognitive Architectures and the Improved Performance Research 
Integration Tool (IMPRINT) 

Two ways of modeling human performance and workload are cognitive 

architectures and task network modeling. A cognitive architecture can be described as “a 

scientific hypothesis about those aspects of human cognition that are relatively constant 

over time and relatively independent of task” (Ritter & Young, 2001, p. 3). They are 

broad theories of human cognition based on various human data and implemented as a 

simulation. Cognitive architectures can help with physical model development and also 

seek to simulate human intelligence in ways that emulate humans (Byrne, 2009). As we 

learn about the human mind through cognitive architectures, we can create models of 

those behaviors and then continue in facilitating human-centered design of them to bring 

about more optimal systems. As the system learns from the human, those inputs can be 
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translated into changing software requirements that are geared towards meeting dynamic 

mental models as the user gains experience, training, and interaction with the system. 

Examples of cognitive architectures include ACT-R (Carnegie Mellon University, 2013) 

and Soar (University of Michigan, 2021). Cognitive architectures facilitate a bottom-up 

approach of modeling human performance by combining multiple cognitive individual 

knowledge elements into a complex process (Lebiere et al., 2005).  

Task network modeling techniques represent a top-down approach to human 

performance and workload modeling (Lebiere et al., 2005). Task network modeling, or 

discrete event simulations, can be used to conduct human performance modeling. To do 

so, task analyses are conducted to decompose an operator’s functions into tasks and then 

develop the task network in context. Once the task analysis is complete, the process of 

developing a network based on the analysis is relatively straightforward and can be 

executed with low overhead. An example of this is the U.S. Army’s Improved 

Performance Research Integration Tool (IMPRINT).  

As human considerations became a more prevalent driving force in system design 

in the 1980s, the U.S. Army established the Manpower and Personnel Integration 

(MANPRINT) program. To support the program, the Army sought tools, techniques, 

approaches, and methods to provide more empirically robust foundations for the 

program. A major and long-lasting solution born from addressing that capability gap was 

the development of a human performance modeling tool called Hardware vs. Manpower 

III (HARDMAN III), which was later recast as IMPRINT (Allender et al., 2005).  

IMPRINT is a dynamic, stochastic, discrete event modeling and simulation tool 

that assists in assessing human interaction with a system and the resulting workload 

experienced in completing a mission (Department of the Army, 2019; Mitchell, 2000, 

2009; Wojciechowski, 2004). IMPRINT was the first human performance modeling tool 

accredited by the U.S. Army (Allender et al., 2005). In system design, IMPRINT can 

assist in identifying operator-driven constraints, setting realistic requirements, and 

allowing for analysis of manpower and personnel requirements to operate a system. In 

research efforts, IMPRINT can provide a means to analyze task analyses, workload 

modeling, and performance-shaping functions (Samms, 2010).  
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IMPRINT provides predictions of mental workload through both the Visual, 

Auditory, Cognitive, and Psychomotor (VACP) Theory (McCracken & Aldrich, 1984) 

and the Multiple Resource Theory (MRT) (Wickens, 2002). To do so, a task analysis 

must be conducted first to decompose an operator’s functions into tasks and then a 

network of the task sequence in context is developed. Once the initial task analysis is 

completed, a task network model can be executed with relatively low overhead. 

IMPRINT can then run the inputs from the modeler to assess different factors in a variety 

of conditions as see in Figure 14.  

 

Figure 14. Example of IMPRINT model flow. Source: Alion Science (2021).  

Modelers using IMPRINT can link tasks with the mental resources required to 

accomplish them. They can then assign quantitative demand values based on the VACP 

scale to each mental resource for the task, with descriptions for each demand level 
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provided as seen in Figure 15. Hardware and software sub-models can be incorporated 

into the model to show how the human, machine, and environment are represented during 

a closed-loop cycle of an operation (Dahn & Laughery, 1997).  

 

Figure 15. Overview of Multiple Resource Theory application in IMPRINT. 
Source: Alion Science (2021).  

Engineering models of human performance provide values for aspects of 

performance (e.g., time on task) in an intuitive manner. They should satisfy three criteria: 

view the human as an information processor, leverage approximate calculations based on 

a task analysis, and allow for performance predictions of systems while they are still in 

the design phase though much uncertainty still exists (Card et al., 1983). They should 

afford designers approximate quantitative predictions of performance for design 

alternatives (Proctor & Van Zandt, 2018).  
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IMPRINT meets the aforementioned criteria, and researchers using it have 

produced models supporting FVL with recommendations regarding crew manning levels 

and task allocation between crewmembers (Militello et al., 2019). IMPRINT uses 

previous findings of cognitive workload to build algorithms for use in the simulation and 

analysis of tasks (Lebiere et al., 2005). Cognitive architectures do not typically have the 

capability to predict cognitive workload (Jo et al., 2012). Unlike cognitive architectures, 

IMPRINT does not have any model of cognitive processes and instead relies on the 

modeler to build those (Lebiere et al., 2005). Further, IMPRINT facilitates looking at the 

operator and system interactions in an integrated manner, whereas cognitive architectures 

focus more on the human cognitive processes needed to accomplish a task. Based on of 

these considerations, IMPRINT will be used in the current effort to build on the line of 

previous research efforts examining workload and the human-system interactions 

associated with it from a top-down perspective.  

2. NASA Multi-attribute Task Battery II 

The NASA Multi-Attribute Task Battery II (MATB-II) is a computer-based 

solution that allows for evaluation of human workload and performance (Santiago-

Espada et al., 2011). MATB-II is derived from the original Multi-Attribute Task (MAT) 

Battery developed in the early 1990s that was used to investigate workload and human-

automation interaction (Comstock & Arnegard, 1992). MATB-II is capable of being used 

in training and testing modes and has flexibility in its configuration and execution 

through manipulation of its source files written in the Extensible Markup Language 

(XML). Numerous studies have used MATB-II to investigate an operator’s performance 

when executing multiple, complex tasks in both aviation and non-aviation domains 

(Gutzwiller et al., 2014; Kong et al., 2022; Liu et al., 2016; Santiago-Espada et al., 2011; 

Wusk et al., 2019; Zhang et al., 2020).  

MATB-II includes four tasks presented through a user interface as seen in  

Figure 16: a system monitoring task (SYSMON), a tracking task (TRACK), a 

communications task (COMM), and a resource management task (RESMAN) (Santiago-

Espada et al., 2011). MATB-II presents a scheduling indicator to show users upcoming 
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communications and tracking task requirements within the next eight minutes of the trial. 

Flow rates to support decision-making on the RESMAN task also appear immediately to 

the right of the main RESMAN task. The MATB-II interface also displays a Figure of 

Merit (FOM) beneath the scheduling indicator to inform the operator of their 

performance at that time. The figure of merit can be calculated using the current score, a 

simple moving average (SMA), or an exponential moving average (EMA). The 

exponential moving average calculates the average performance across all four tasks with 

more weight placed on the current score to address lagging indicators of performance that 

an SMA would provide. Therefore, the use of the EMA was used in the current studies to 

allow for examination of a user’s performance as they gain experience operating the 

tasks.  

 

Figure 16. MATB-II user interface with April tags. Source: Santiago-Espada 
et al. (2011) and Olson (2010). 
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a. Verification, validation, and accreditation  

Verification, validation, and accreditation (VV&A) are integral components of the 

M&S domain. The DOD verification, validation, and accreditation (VV&A) process is an 

important component of the modeling and simulation enterprise. The VV&A process 

allows M&S professionals to analyze and provide recommendations for accepted uses of 

a model. VV&A helps define the boundaries of a model’s application. VV&A also helps 

close the credibility gap between the developer and the end user. VV&A is an important 

topic in M&S because even the best models we have are still large abstractions of the 

referent. Therefore, intended use of the model is important so one can offer potential 

areas for reuse.  

Verification is defined as ensuring “that the computer programming and 

implementation of the conceptual model are correct” (Sargent, 2013, p. 14). The DOD 

defines verification as the “process of determining that a model or simulation 

implementation and its associated data accurately represent the developer’s conceptual 

description and specifications” (Department of Defense, 2018, p. 10). Another definition 

of verification is that it is “the process of determining that a model implementation and 

its associated data accurately represent the developer’s conceptual description and 

specifications” (Strickland, 2011, p. 60). Verification methods help show that the M&S 

solution correctly performs the intended functions. In other words, verification helps to 

identify if the model was built in the correct manner.  

Validation is defined by the DOD as “the process of determining the degree to 

which a model or simulation and its associated data are an accurate representation of the 

real world from the perspective of the intended uses of the model” (2018, p. 10). Sargent 

defines validation as “substantiation that a model within its domain of applicability 

possesses a satisfactory range of accuracy consistent with the intended application of the 

model” (2013, p. 12). It can also be expressed as “the process of determining the degree 

to which a model and its associated data provide an accurate representation of the real 

world from the perspective of the intended uses of the model” (Strickland, 2011, p. 60). 

Validation methods show how well the M&S represents the real world or the referent. 

Validation is also known as building the right model, or that the conceptual models align 
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with the referent. Validation ensures that the computational model follows the conceptual 

model adequately.  

Accreditation is defined as an official determination that a model or simulation is 

acceptable for use for a specific purpose. The appropriate decision maker confirms that 

the model is suitable for their needs (Department of Defense, 2020b). Accreditation can 

also be defined as “the official certification that a model, simulation, or federation of 

models and simulations and its associated data are acceptable for use for a specific 

purpose” (Department of Defense, 2018, p. 9).  

The VV&A activities that correspond with the development of M&S solutions are 

critical to ensure that M&S professionals can analyze and provide recommendations or 

acceptable uses for a model. The VV&A process can help define the boundaries of what 

the model can and cannot do. This scoping of a model’s reach can help manage the 

implementation to ensure that the model is being used in an appropriate context. Models 

are abstractions of some referent, and often they are large abstractions. Therefore, it is 

important to clearly define the intended use of the model to ensure that its use in a 

scenario is appropriate and to provide recommendations for reuse in other domains.  

The VV&A process helps reduce a risk incrementally throughout a model’s 

development. Verification helps reduce risk by attempting to ensure that the model has 

fewer undetected errors in it. Validation reduces the risk that the model or simulation 

does not match the real-world referent well enough to lose credibility with the 

stakeholders. Accreditation reduces the risk that inappropriate or unsuitable models and 

simulations are selected and implemented. Therefore, including the VV&A process in 

building the current research effort is critical to ensure that the models built to examine 

an operator’s cognitive workload are correctly determining workload values. Further, 

VV&A helps to ensure that the models are representing the real-world referent accurately 

and adequately. While the VV&A process is a continuous and iterative process, the 

current research effort will focus on V&V specifically given that accreditation of a 

system is not within the scope of the dissertation. Additionally, IMPRINT is an 

accredited U.S. Army M&S tool which allows for the current research to leverage its 

capabilities in cognitive workload modeling. The focus on V&V will allow for building 
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more robust models of human operator cognitive workload during interactions with 

varying levels of automation.  

I. SUMMARY 

Cognition, cognitive workload, and situation awareness are key design 

considerations that impact performance independently and through resulting interactions 

with each other. While cognitive workload and SA are independent concepts, they can be 

inter-related (Vidulich, 2000). Cognitive workload can be associated with SA in an 

inverse manner, such as seen with an inverse-U curve. When cognitive workload 

increases, SA can decrease. Situation awareness can have the similar effects on cognitive 

processing. Therefore, system designers need to consider methods and approaches to 

managing this relationship to keep operators within optimal levels of performance. 

Automation has long been considered a way to accomplish the goal of keeping operators 

within an optimal level of performance through managing cognitive workload and 

promoting situation awareness. Adaptive automation attempts to go further by 

dynamically allocating functions to operators or a system to alleviate demands on human 

operators. However, this assistance does not always meet the intended outcomes of 

lowering cognitive workload. In fact, adaptive automation can create additional demands 

on an operator. These additional demands act in opposition to the intended outcomes of 

adaptive automation and introduce additional attentional demands, complex system 

interactions, and more cognitively involved tasks. The resulting unintended consequences 

of adaptive automation degrade human performance and are worthy of investigation to 

identify, measure, and mitigate their causes.  

Subjective and objective measures of workload, coupled with human performance 

modeling predictions from tools like IMPRINT, is an area of exploration that may help in 

alleviating adaptive automation’s unintended consequences. Further, incorporation of 

performance metrics with subjective and objective workload measures has the potential 

to assist in the development of a cognitive workload framework rather than using any of 

those metrics individually or in pairs (Longo et al., 2022). Simulation tools abound that 

can model tasks and assist with analyzing such emergent effects.  
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J. RESEARCH QUESTIONS AND HYPOTHESES 

The following research questions and hypotheses provide guides to the current 

effort. These questions and hypotheses were derived from gaps and opportunities 

identified during the literature review.  

Research Question 1: Can cognitive workload modeling inform design decisions 

in AA systems? 

Hypothesis 1: Effective cognitive workload modeling will reflect changes that 

occur as LOAs vary within AA systems. 

Research Question 1a: How do operator cognitive workload model predictions, 

psychophysiological measures, and subjective workload measures correlate in adaptive 

automation systems?  

Hypothesis 1a: There is a relationship between workload model predictions, 

subjective workload measures, and objective workload measures as LOAs change with 

AA.  

Research Question 1b: What is the relationship between cognitive workload and 

situation awareness as AA’s unintended consequences emerge during a task? 

Hypothesis 1b: There is a negative correlation between cognitive workload and 

SA as LOAs change with AA. 

Research Question 2: Do cognitive workload predictions forecast future 

performance in AA systems? 

Hypothesis 2: Cognitive workload measures can be used to predict future 

performance in AA systems. 

Research Question 2a: Will unintended (or unanticipated) design consequences of 

AA systems emerge in the form of changes in performance? 

Hypothesis 2a: Unintended (or unanticipated) design decisions of AA lead to 

performance changes. 
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K. CHAPTER REVIEW 

Based on the review of the relevant literature, research questions and hypotheses 

were derived to address a gap in modeling and measuring the impacts of the unintended 

negative consequences of adaptive automation. While efforts have identified various 

categories and impacts of these consequences, investigation into measurement of their 

impact is lacking. Predictive human performance modeling techniques such as IMPRINT 

do not provide specific measures to allow for specific workload predictions with AA. 

This research will seek to provide parameters for those predictions based on analysis of 

subjective, objective, and performance measures collected throughout the research effort. 

Additionally, the research approach provides for the potential to assess operator workload 

in real-time. Real-time workload measurement is a critical consideration for AA systems 

since their operation is predicated on operator state data being communicated constantly 

to allow for dynamic adaptations.  

The next chapter will introduce the first of three experimental studies that were 

undertaken to address the research questions and associated hypotheses. These research 

questions and hypotheses were based on the review of relevant literature. The first study 

investigated cognitive workload at two different workload conditions and served as a 

foundational experiment for the two subsequent studies. Results and discussions will be 

included for each study to describe how their designs built on each other.  
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III. STUDY 1 

A. OVERVIEW 

The first study sought to induce stress to gauge participants’ cognitive demand 

based on psychophysiological measures. The study was a 2 x 2 mixed design that 

compared levels of experience (novice vs. experienced) at different workload levels (low 

and high). The approach to achieve this study’s aim used NASA’s MATB-II as a referent 

for flight operations. The tasks associated with the MATB-II scenarios were also 

modeled in IMPRINT. Levels of workload were manipulated based on the number of 

tasks presented to operators. The degrees of difficulty for each MATB-II scenario was 

based on previous research that determined the number of tasks that would constitute 

different levels of workload (McCurry et al., 2022). Participants conducted multitasking 

operations in MATB-II at two difficulty levels (low and high) to gauge objective 

(psychophysiological and performance) and subjective (self-reported through NASA-

TLX and CSWAG) workload measures. Additionally, participants rated their situation 

awareness using the SART questionnaire. The results from this study served to validate 

the first portion of the research’s model that provides psychophysiological baseline 

measurements for cognitive workload and inform the follow-on studies that investigated 

workload with automation incorporated. The mapping of this study to the adapted MLCC 

framework is depicted in Figure 17. 
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Figure 17. Study 1 mapping to the adapted MLCC framework. 

The study consisted of an initial MATB-II training period on one day for all 

participants, with the novice participants conducting their MATB-II 20-minute test trial 

immediately following their training. The experienced participants conducted four 

additional training scenarios on their training day and then returned within 72 hours of 

their training to complete their 20-minute test trial.  

The supported research questions and hypotheses for this study are as follows: 

Research Question 1. How do operator cognitive workload predictions, 

psychophysiological measures, and subjective workload measures correlate in a manually 

completed multi-tasking simulation? 

Ha1: Cognitive workload predictions are directly correlated with objective and 

subjective workload measures. 

Ha2: Cognitive workload measures differ between the low and high workload 

conditions. 

Ha3: Performance and workload measures differ between novice and experienced 

participants.  

Research Question 2. What is the relationship between cognitive workload and 

situation awareness during a manually completed multi-tasking simulation? 
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Ha4: Cognitive workload and situation awareness are inversely related.  

B. PILOT STUDY 

A pilot study involving 4 participants was conducted to determine the training 

time it would take for a user to achieve a MATB-II FOM of 90%. Participants watched 

the MATB-II training video, completed part task training, and then completed two 5-

minute MATB-II scenario trials at medium and high workload conditions, respectively. 

Based on the results of the pilot trials, we determined that the training and relative 

straightforward nature of MATB-II did not warrant having participants conduct multiple 

training sessions to achieve a 90% FOM. To delineate between novice and experienced 

users, the researchers replaced the FOM threshold of 90% with number of training 

exposures in a high workload condition prior to testing on the 20-minute scenario. 

Experienced users would instead train on four different high workload scenarios to 

differentiate them from the novice group, which was exposed to only one low workload 

training scenario. The purpose of this grouping of participants in these two categories was 

to highlight differences in experiences of pilots who will enter FVL aircraft. Some pilots 

will have only their flight school training, while others will have hundreds of flight hours 

to give them more experience. Additionally, some pilots will have a significant level of 

experience but may have to transition to a new airframe. This transition can be aided or 

hindered based on the pilots’ ability to efficiently integrate into the new system.  

C. PARTICIPANTS 

1. Selection 

The Naval Postgraduate School (NPS) Institutional Review Board (IRB) reviewed 

and approved the research methods used in this study. Participants were treated in 

accordance with the Department of the Navy’s Human Research Protection Program 

standards. All participants were informed of their rights as participants in the study and 

signed consent forms. Participants were recruited through personal communication, 

email, and campus-wide announcements on the student personnel accountability website.  
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The inclusion criteria for participation in the study applied to any students or 

employees assigned to NPS, which included the following:  

 Personnel in all branches of service and any specialty branch. 

 No specific age, gender, or service required. 

 Minimum age of subjects is 18 years old. 

 Visual acuity within service standards. 

The exclusion criteria for all three studies applied to the same participant sample 

pool. These criteria were developed to account for anomalies that would interfere with 

oculometric data collection and to account for confounding learning effects. The 

exclusion criteria for the study were as follows:  

 Personnel with glasses that are bifocal, trifocal, or beyond. 

 Personnel with corrective lenses that have near infrared blocking coating. 

 Personnel who are red-green colorblind. 

 Personnel with previous experience using NASA’s Multi-Attribute Task 

Battery. 

 Personnel can only complete one of the three studies. 

2. Demographics 

From the 44 participants enrolled in the study, four participants were not included 

in the analysis due to incomplete or faulty data collection files. Forty participants 

completed the study (mean age = 35.53, standard deviation [SD] = 6.53). Participants 

included 34 males and 6 females. Of the 40 participants, 36 were in the military (13 in the 

U.S. Army, 12 in the U.S. Navy, 4 in the U.S. Marine Corps, 5 in the U.S. Air Force, and 

4 Department of the Navy civilians). The military participants’ occupational specialties 

within their respective services included operations, operations support, and force 

sustainment. All participants were graduate students or employees at NPS. The rank 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



63 

breakdown of the participants is depicted in Table 2. The participants’ time in service 

ranged from 5 months to 25 years (mean years in service = 12.79, SD = 5.48).  

Table 2. Study 1 participants’ military rank. 

Participant Rank Number 
E-6 1 

O-1 1 
O-2 14 
O-3 14 
O-4 4 
O-5 4 

Civilian 2 
Total 40 

 

D. MATERIALS 

The experiment used multiple displays and the equipment to interact with MATB-

II, i.e., one flat-panel color monitor, a joystick, a keyboard, and a computer mouse. 

Psychophysiological measurement devices included an eye tracker, an fNIRS system, and 

a heart rate monitor. The experimenter sat behind and out of frontal view of the 

participants. The workstation configuration and psychophysiological measurement 

devices are seen in Figure 18. Detailed descriptions of all the materials used in the study 

are provided in Appendix A.  
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Figure 18. Participant and experimenter workstations.  
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E. VARIABLES 

1. Independent Variables 

The two independent variables manipulated in this study were workload and 

experience levels. Presentation of the workload levels was counterbalanced to account for 

order effects. The overview of Study 1 is shown in Figure 19.  

 

Figure 19. Study 1 overview.  

a. Workload.  

All participants experienced a low and high workload condition based on previous 

MATB-II studies (McCurry et al., 2022). Based on their experience level, participants 

were randomly assigned to a group in which they received either the low or high 

workload condition first. The number of tasks associated with each condition are shown 

in Table 3. Tasks were randomly assigned throughout the scenarios by the researcher. Of 

note, the communications tasks in the high workload condition were limited to those 

audio files that were eight seconds or less in duration to allow for execution of the audio 

file and the 15 second response window for the operator within the 10-minute trial 

period. This meant that 59 out of the 80 available audio files were available for random 

assignment in the high workload condition. These restrictions were not present in the low 

workload condition since there was more time available between communications. Thus, 

the full complement of 80 audio files was available for random selection in the low 

workload condition.  
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Table 3. MATB-II system settings for each Study 1’s conditions. 

 SYSMON TRACK COMM RESMAN 

Low 
Workload 

11 Events Low 
Joystick 

Response 

High 
Update 

Rate 

3 Events 1 Pump 
Failure 

1 Pump 
Shutoff 

High 
Workload 

20 Events Low 
Joystick 

Response 

High 
Update 

Rate 

12 Events 10 Pump 
Failures 

10 Pump 
Shutoffs 

 

b. Experience. 

Participants were assigned to either a novice or experienced group based on 

scheduling availability. These groups were developed to assess differences between 

novice and experienced operators. Participants in both groups received the same baseline 

training on MATB-II. The baseline training included an orientation to the input devices, a 

NASA instructional video, part-task training, and a 5-minute MATB-II practice session 

in a low workload condition. Experienced participants conducted four additional 5-

minute MATB-II practice sessions in a high workload condition. All the MATB-II 

sessions were written such that participants did not receive the same scenario more than 

once.  

2. Dependent Variables 

There were multiple dependent variables collected in this study. The MATB-II 

FOM score was used to assess differences in performance between novice and 

experienced participants. CSWAG and NASA-TLX ratings were collected to determine 

self-reported workload measures during and after the low and high workload sessions. 

SART ratings were collected post hoc to determine operator SA. Eye tracking data, heart 
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rate data, and pre-frontal cortex (PFC) blood oxygenation levels were collected in real 

time as surrogate measurements for workload.  

F. PROCEDURE 

1. Performing the MATB-II  

Participants concurrently performed four primary tasks in MATB-II, i.e., System 

Monitoring (SYSMON), Tracking (TRACK), Communications (COMM), and Resource 

Management (RESMAN). The MATB-II user interface is shown in Figure 20. 

Participants interacted with the SYSMON, COMM, and RESMAN tasks with a mouse. 

They used a joystick to accomplish the TRACK task. Participants were required to notice 

system status changes in the SYSMON task. They had to keep the circle within the 

square reticle during the TRACK task. Participants were also required to change radio 

frequencies in the COMM task and manage fuel levels in the RESMAN task. Specific 

requirements about the operation of MATB-II are listed in Appendix A. 

 

Figure 20. MATB-II user display. 
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2. Novice Participants.  

Novice participants coordinated for a participation time and reported to the 

Human Systems Integration Laboratory (HSIL). The sequence of the novice group’s 

participation is depicted in Figure 21. Detailed experimental procedures are provided in 

Appendix A.  

 

Figure 21. Novice participants’ Study 1 experimental sequence. 

3. Experienced Participants 

Experienced participants completed the study with the same training approach as 

the novice participants. However, upon completion of the baseline training progression, 

the experienced participants then completed four MATB-II trials at a high workload level 

as shown in Figure 22. These trials were five minutes in duration, with a less than 30 

second break between trials to allow for loading of the next trial. Experienced 

participants then confirmed their experimental data collection time that was within 72 

hours of their training. The purpose of the training progression and time between studies 
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was to minimize learning effects that have been associated with MATB-II (Kong et al., 

2022).  

 

Figure 22. Experienced participants’ Study 1 training sequence. 

Within 72 hours of their initial training session, the experienced participants 

returned to the HSIL for their experimental session. The sequence that the experienced 

group followed is shown in Figure 23. The participants were refamiliarized with their 

consent forms and asked if they had any questions regarding the study. Participants then 

conducted a 5-minute low workload practice scenario that was different from their 

previous training session. Following the practice session, participants were instrumented 

with the psychophysiological measurement devices in the same manner as the novice 

group. Experienced participants were randomly assigned a workload condition such that 

half the participants completed the low workload condition first and vice versa. Upon 

completion of the experimental trial, participants followed the same sequence as the 

novice group by removing the instrumentation and completing the NASA-TLX and 

SART. Participants were given the same debriefing and instructions as the novice group 

to conclude their involvement in the study.  
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Figure 23. Experienced participants’ Study 1 trial sequence. 

4. IMPRINT Modeling 

The researcher constructed an IMPRINT model of both workload conditions used 

in Study 1. These models provided the basis for comparative analysis between the 

cognitive workload predictions in IMPRINT and the collected workload measures in 

Study 1. The task network diagrams were the same for the low and high workload 

conditions is seen in Figure 24. The external events that triggered the communications 

and manual tracking tasks are shown in Figure 25. The IMPRINT models were developed 

after conducting a task analysis that determined the cognitive and physical requirements 

necessary to complete the MATB-II tasks scripted in Study 1’s scenarios. The four main 

MATB-II tasks are depicted in the models. The TRACK, SYSMON, and RESMAN tasks 

were modeled such that they occur continuously but with user engagement distributed 

among them. The researcher modeled these tasks with the assistance of an IMPRINT 

subject matter expert to ensure that the task network flowed properly and that logic 

within the model allowed for proper execution.  
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Figure 24. Study 1 task network diagram.  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



72 

 

Figure 25. Study 1 low (above) and high (below) workload external event 
matrices. 

The resource workload demand values for each of the MATB-II tasks were 

chosen based on the options provided by IMPRINT. These cognitive workload value 

benchmarks provided for use in IMPRINT were calculated in a previous study that 

developed a model of cognitive workload in system design (Aldrich, Szabo, & Bierbaum, 

1989). The researcher modeled the devices used to operate MATB-II by creating joystick, 

mouse, and speaker interfaces and assigning resource-interface demand relationships 
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between them. The associated demand values available for selection with auditory, 

cognitive, fine motor, and visual resources in IMPRINT are depicted in Figure 26. Other 

demand values exist for gross motor control, speech, and tactile resources, but they were 

not applicable in modeling MATB-II.  

 

Figure 26. Selected IMPRINT workload demand benchmarks. Source: Alion 
Science (2018).  

To assign workload levels for each of the MATB-II tasks, the researcher 

constructed multiple models using two approaches. In the first approach, the researcher 

assigned workload values to the MATB-II tasks using the default anchor values provided 

in IMPRINT that most closely fit the description of each task. These values are depicted 

in Table 4.  
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Table 4. Study 1 researcher-derived IMPRINT workload demand values.  

 

 

The researcher gathered workload rating feedback from three MATB expert 

operators through a cognitive walk-through in the second approach. These operators had 

logged 20–100 hours using an adapted version of MATB-II. Based on the results of their 

feedback, the researcher inputted the mean values for each of the MATB-II tasks. These 

values were used in both the low and high workload conditions as they are representative 

of the demand of each task. Of note, these expert users used an adapted version MATB 

that was based on NASA’s instance. The experts used buttons on the joystick to control 

the SYSMON task, had only own ship calls in the COMM task, and only operated the 

TRACK task in manual mode. Additionally, the expert user group did not receive a 

standardized MATB training progression as was used in the current studies. Instead, they 

accomplished the tasks through individual strategy development based on their 

understanding of the task as they gained experience. Because of the differences in 

training and prioritization of tasks, expert feedback was used to assess task difficulty 

rather than sequencing and task duration. This approach allowed for default anchor 

values derived by the researcher and expert provided values to be input into the task 

Task: Tracking

Total Task Demand 10.00 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Joystick 1.00 4.60 4.40

Task: System Monitoring

Total Task Demand 8.40 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 1.20 2.20 5.00

Task: Resource Management

Total Task Demand 8.40 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 1.20 2.20 5.00

Task: Own Comms

Total Task Demand: 10.50 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 1.00 2.20 1.00

Interface: Speaker 4.30 1.00 1.00

Task: Other Comms

Total Task Demand: 6.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse

Interface: Speaker 4.30 1.00 1.00

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values
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network diagram that reflected an equal weighting to each of the four tasks. A 

consolidation measure was calculated for each resource-interface pair by taking the mean 

of the expert ratings. The consolidated expert-derived values are provided in Table 5. 

Table 5. Study 1 expert-derived IMPRINT workload demand values.  

 

 

To differentiate between low and high workload IMPRINT models, the researcher 

created event triggers in IMPRINT to initiate the “Own_Comms” and “Other_Comms” 

communications loops. This meant that there were six communications events in the low 

workload condition and 24 in the high workload condition. This approach was utilized to 

support the overall effort’s aim to assess IMPRINT’s ability to provide cognitive 

workload predictions when using adaptive automation.  

The IMPRINT-predicted time average workload was calculated by multiplying 

the operator’s predicted workload by the time elapsed between the discrete interval model 

events. This calculation yielded a time weighted workload value for each discrete 

interval. The time weighted workload values were then summed for the whole model and 

then divided by the total time of the simulation. The total researcher-derived IMPRINT 

Task: Tracking

Total Task Demand 11.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Joystick 3.60 3.90 3.80

Task: System Monitoring

Total Task Demand 7.87 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 2.40 3.30 2.17

Task: Resource Management

Total Task Demand 13.37 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 5.80 3.57 4.00

Task: Own Comms

Total Task Demand: 16.87 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 2.07 4.07 1.83

Interface: Speaker 5.00 2.07 1.83

Task: Other Comms

Total Task Demand: 6.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse

Interface: Speaker 4.30 1.00 1.00

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values
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predicted mean workload for the low workload condition was 38.48 and 41.05 for the 

high workload condition. The expert-derived IMPRINT predicted mean workload values 

for the low and high workload conditions were 34.13 and 41.15, respectively. 

Additionally, both the researcher and expert-derived high workload condition models had 

increased numbers of workload spikes as seen in Figures 27 and 28. These spikes in the 

high workload trial model are intuitive as there were more communications tasks 

introduced. The increase in communications tasks created more resource demand as 

audio cues were coupled with visual attention requirements. These requirements created a 

time-sharing conflict of the visual processing channel explained by Wickens’ (1981) 

MRT whereby visual attention for the other tasks were interrupted by having to attend to 

the communications task. The drops in workload represent communications tasks for 

other callsigns. These dips in workload again highlight MRT in that resources can be 

shared across modalities if they are used to process information separately.  
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Figure 27. Study 1 Researcher (above) and expert (below) derived IMPRINT 
model graph for the low workload condition.  
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Figure 28. Study 1 Researcher (above) and expert (below) derived IMPRINT 
model graph for the high workload condition. 
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G. ANALYTICAL APPROACH 

Psychophysiological data collected during the study were consolidated in LSL’s 

Extensible Data Format (.xdf) files. This synchronized format allowed for data extracting, 

processing, and analysis using a collaboratively developed MATLAB tool (Vogl, 2022). 

An additional Neurokit2 script was used and collaboratively adapted for HRV data 

processing (Makowski et al., 2021; O’Brien, 2022). Timestamps from the Neurokit2 

script provided the basis for pupil diameter data processing from Pupil Labs’ Pupil Player 

software. A separate process for processing the fNIRS data was conducted with NIRX’s 

nirsLab analysis software. Subjective measures were consolidated from the CSWAG, 

NASA-TLX, and SART instruments. Additionally, data from MATB-II were available 

for analysis, with the composite FOM score used as an overall assessment of participants’ 

performance during their trials.  

Pupil data were processed using Pupil Player version 3.5.7. Participant data files 

were loaded into Pupil Player and were processed for the duration of each trial run. The 

minimum data confidence was set to the default value of 0.60. The use of Pupil Player’s 

data processing was leveraged to export refined pupil data, specifically pupil diameter, 

for further analysis. The resulting data provided pupil diameter for each eye along with 

confidence levels in those measurements.  

The fNIRS data were processed and filtered using nirsLAB version 2019.04 (Xu 

et al., 2017). Participant data files were loaded with probe settings automatically applied 

from the initial NIRSTAR setup and calibration from each session. Event markers were 

applied to note the start, stop, and communications events during the trial runs. Data pre-

processing procedures included truncating all participants sessions to the 60 seconds 

before and after the trial runs. Detector saturation intervals were interpolated to the 

maximum of four frames or 0.51 seconds to account for noise artifacts in the collected 

data channels. Data channels that exceeded the four-frame saturation interval were 

excluded from analysis. Data qualities were checked using the default gain setting of 

eight. This default gain setting provided a factor to amplify the light-produced 

photocurrent of the NIRSport system. Channels that exceeded this gain setting were 

excluded from analysis. The data from the excluded channels were not included in the 
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analysis of PFC blood oxygenation. Data that fell outside of five standard deviations were 

removed as part of pre-processing as well. Spike artifacts that represented data loss 

during trial runs were removed and interpolated by nirsLAB. These artifacts were 

calculated using the data immediately before and after the signal loss. Finally, a 

frequency filter was applied using a low cutoff frequency of .01 Hz and high cutoff 

frequency of 0.2. The current study used Gratzer’s spectrum for application of the Beer-

Lambert Law to generate the HbO and Hb levels (Prahl, 1998). Finally, hemodynamic 

states were computed with these given parameters and yielded oxygenated, de-

oxygenated, and total oxygenated hemoglobin levels in the PFC for each participant.  

Following data processing procedures, data were analyzed using statistical 

methods. A mixed-effects model analysis approach was used to analyze the collected 

measures. For both workload conditions, dependent measures were analyzed against the 

fixed effects of experience level and workload level. Random effects were modeled using 

each participant with their experience level nested. All statistical tests were conducted 

using JMP version 16.0.0.  

H. RESULTS 

A summary of the results for Study 1 is shown in Table 6 (with presentation order 

included in the analytical model). Because presentation order was not found to be 

statistically different across measures, it was removed from the mixed-effects model to 

determine the relationships across measures and conditions. The resulting differences 

followed the same patterns of statistical significance across variables as seen in Table 7.  

Participant data were excluded due to extreme values after analyzing residual 

plots for each modeled measure. These exclusions are listed in the notes below Tables 6 

and 7. Of note, the removal of these extreme values did not change the pattern of 

statistical significance in the results of Study 1.  
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Table 6. Study 1 summary results with presentation order included.  

Measure Category 
Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Presentation 
Order 

Performance 
MATB-II 
Figure of 
Merit 

Composite 
FOM** 

Experienced 
group -> 
higher FOM 
𝑝 ൌ .002* 

High 
workload   
-> lower 
FOM 
𝒑 ൏
 .𝟎𝟎𝟏* 

 𝑝 ൌ .934 

Psychophysiological 

HRV 
Mean 
HRV*** 

𝑝 ൌ .928 

High 
workload 
-> lower 
HRV 
𝒑 ൌ.𝟎𝟎𝟖* 

  𝑝 ൌ .184 

fNIRS 

Mean 
HbO*** 

𝑝 ൌ .057  𝑝 ൌ .208  𝑝 ൌ .343 

Mean 
Hb**** 

𝑝 ൌ .373  𝑝 ൌ .411  𝑝 ൌ .215 

Mean 
Total 
Hb*** 

𝑝 ൌ .325 𝑝 ൌ .814  𝑝 ൌ .122 

Pupil*** 

Mean 
Right 
Pupil 
Diameter 

𝑝 ൌ .477 

 High 
workload 
-> larger 
pupil 
diameter 
𝒑 ൌ.𝟎𝟐𝟒* 

First 
condition -> 
larger pupil 
diameter 
𝒑 ൏.𝟎𝟎𝟏* 

Mean Left 
Pupil 
Diameter  

𝑝 ൌ .158 

High 
workload 
-> larger 
pupil 
diameter 
𝒑 ൏.𝟎𝟎𝟏* 

 First 
condition -> 
larger pupil 
diameter 
𝒑 ൏.𝟎𝟎𝟏* 

Subjective 
Workload 

Continuous 
Subjective 
Workload 
Assessment 

Mean 
CSWAG  

𝑝 ൌ .859 

High 
workload 
-> higher 
CSWAG 

 𝑝 ൌ .416 
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Measure Category 
Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Presentation 
Order 

Graph 𝒑 ൏.𝟎𝟎𝟏* 

NASA-
TLX 

NASA-
TLX 
Rating 

𝑝 ൌ .967  𝑝 ൌ .143 N/A 

Situation 
Awareness 

Situation 
Awareness 
Rating 
Technique 

SART 
Rating 

𝑝 ൌ .799  𝑝 ൌ .311 N/A 

 

Table 7. Study 1 summary results with presentation order omitted.  

Measure Category 
Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. Low 
Workload 

Performance 
MATB-II 
Figure of 
Merit 

Composite 
FOM** 

Experienced 
group -> 
higher FOM 
𝒑 ൌ.𝟎𝟎𝟐* 

High 
workload -> 
lower FOM 
𝒑 ൏.𝟎𝟎𝟏* 

Psychophysiological 

HRV Mean HRV 𝑝 ൌ .928 

High 
workload -> 
lower HRV 
𝒑 ൌ.𝟎𝟎𝟗* 

fNIRS 

Mean 
HbO*** 

𝑝 ൌ .057 𝑝 ൌ .199 

Mean 
Hb**** 

𝑝 ൌ .820 𝑝 ൌ .535 

Mean Total 
Hb*** 

𝑝 ൌ .325 𝑝 ൌ .845 

Pupil*** 

Mean Right 
Pupil 
Diameter 

𝑝 ൌ .477 𝑝 ൌ .106 

Mean Left 
Pupil 
Diameter 

𝑝 ൌ .158 
High 
workload -> 
larger pupil 
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Measure Category 
Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. Low 
Workload 

diameter  
𝒑 ൌ.𝟎𝟎𝟐* 

Subjective 
Workload 

Continuous 
Subjective 
Workload 
Assessment 
Graph 

Mean 
CSWAG  

𝑝 ൌ .859 

High 
workload -> 
higher 
CSWAG 
𝒑 ൏.𝟎𝟎𝟏* 

NASA-TLX 
NASA-TLX 
Rating 

𝑝 ൌ .967 𝑝 ൌ .143 

Situation 
Awareness 

Situation 
Awareness 
Rating 
Technique 

SART 
Rating 

𝑝 ൌ .799 𝑝 ൌ .311 

Tables 5 and 6 Notes:  

* p<.05 

** 3 Novice participants excluded due to extreme results 

*** 1 Novice participant excluded due to extreme results 

**** 2 Novice and 1 Experienced participant excluded due to extreme results 

 

Figure 29 shows that experienced participants scored higher FOMs than the 

novice participants (M=94.46, SD=2.46, SE=0.39 vs. M=92.33, SD=2.92, SE=0.50). 

Participants’ mean FOMs were higher in the low workload condition than the high 

workload condition (M=94.46, SD=2.55, SE=0.42 vs. M=92.50, SD=2.86, SE=0.47).  
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Figure 29. Study 1 Mean FOM vs. experience level and workload level. Error 
bars denote the standard error. 

Figure 30 shows that novice and experienced participants had lower HRV in the 

high workload condition than the low workload condition (M=808.99 ms, SD=134.47, 

SE=21.58 vs. M=822.45ms, SD=136.22, SE=21.54). There were no statistically 

significant differences between novice and experienced participants’ mean HRV.  
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Figure 30. Mean HRV in milliseconds for Study 1 by workload condition. 
Error bars denote the standard error. 

Participants had larger left eye pupil diameters in the high workload condition 

than the low workload condition 𝐹ሺ1, 115ሻ ൌ 8.41, 𝑝 ൏ .01 (M=3.45mm, SD=0.96, 

SE=0.11 vs. M=3.40mm, SD=0.95, SE=0.11). There were no statistically significant 

differences in right eye pupil diameter between workload conditions. These results are 

depicted in Figure 31. There were no statistically significant differences in pupil diameter 

between experience groups in either pupil for any condition.  
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Figure 31. Study 1 mean right (top) and left (bottom) pupil diameters in 
millimeters by workload condition. Error bars denote the standard error. 

However, there was a statistically significant difference in all participants’ right 

pupil diameters five seconds after a communications event compared to the diameters 

five seconds preceding the communications events, 𝐹ሺ1, 115ሻ ൌ 16.46, 𝑝 ൏

.001 (M=3.40, SD=0.85, SE=0.10 vs. M=3.34, SD=0.83, SE=0.09). The same pattern 

was also seen in all participants’ left pupils, 𝐹ሺ1, 115ሻ ൌ 19.31, 𝑝 ൏ .001 (M=3.46, 

SD=0.97, SE=0.11 vs. M=3.38, SD=0.93, SE=0.11). These results are shown in Figure 

32.  
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Figure 32. Study 1 mean right (top) and left (bottom) pupil diameters by all 
communications event timings. Error bars denote the standard error.  

Further, participants’ pupils were larger five seconds after a communications 

event directed at their ship (NASA 504) and other ships. Own ship communications 

resulted in statistically significant differences in right pupil diameter 𝐹ሺ1, 115ሻ ൌ 19.37,

𝑝 ൏ .001 (M=3.41, SD=0.85, SE=0.10 vs. M=3.35, SD=0.84, SE=0.10) and left pupil 

diameter 𝐹ሺ1, 115ሻ ൌ 16.19, 𝑝 ൏ .001 (M=3.45, SD=0.95, SE=0.11 vs. M=3.38, 

SD=0.93, SE=0.11). Other ship communications followed the same pattern of statistical 

significant differences with the right pupil diameter ሺ1, 115ሻ ൌ 5.67, 𝑝 ൏ .05 (M=3.37, 

SD=0.82, SE=0.09 vs. M=3.31, SD=0.81, SE=0.09) and left pupil diameter 𝐹ሺ1, 115ሻ ൌ

17.03, 𝑝 ൏ .001 (M=3.44, SD=0.95, SE=0.11 vs. M=3.37, SD=0.93, SE=0.11). These 

results are displayed in Figure 33.  
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Figure 33. Study 1 mean right (red) and left (blue) pupil diameter in 
millimeters by all communications event timings. Error bars denote the 

standard error. 
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Differences between own and other ship communications were not statistically 

significant as shown in Figure 34. Two additional novice participants were excluded from 

this portion of the analysis due to extreme results as analyzed in the data’s residual plots.  

 

Figure 34. Study 1 mean pupil diameter differences in. millimeters between 
eyes and communications target. Error bars denote the standard error. 

The relationship between subjectively assessed cognitive workload and SA was 

conducted using post-trial questionnaire assessment. Correlation analysis was conducted 

to identify associations between NASA-TLX and SART ratings. There were no 

statistically significant correlations between those two ratings (p=0.57 for Spearman’s 𝜌).  

I. DISCUSSION 

The following discussion pertains to the results from Study 1. The hypotheses for 

Study 1 are reviewed, followed by analysis on their impacts on Studies 2 and 3. This 
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section also discusses how Study 1 addressed the aspects of the MLCC that were 

identified in Figure 17.  

1. Research Questions and Hypotheses  

Research Question 1: IMPRINT workload predictions correlate to two of the three 

main psychophysiological tools used in the study, HRV and pupil diameter. Of the two 

subjective workload measures collected, the measure that correlated with the workload 

predictions was the CSWAG. This finding suggests that more continuous gauging of an 

operator’s subjective workload is more sensitive to real-time workload changes. While 

the NASA-TLX has been used effectively in numerous studies, its application to this 

design was not associated with cognitive workload. 

Ha1: Cognitive workload predictions are directly correlated with objective and 

subjective workload measures. 

The first hypothesis that cognitive workload predictions were directly correlated 

with objective and subjective workload measures was partially supported. Statistical tests 

that examined the differences between the two workload conditions indicated that higher 

levels of workload were experienced in the high workload condition. This finding 

followed the IMPRINT cognitive workload prediction models that yielded higher 

predictive values in the high workload condition than the low workload condition. 

Previous studies have investigated mean pupil diameter within a 12-second task 

window during an arithmetic and search task (Chen & Epps, 2014). The current study 

used a 10-second task window for the communications task to allow for analysis. 

Additionally, Kruger, Hefer, & Matthew (2013) suggested investigating pupil diameter at 

least two seconds after the initiation of a stimulus. Both pupil diameters were analyzed in 

the five seconds before and after the initiation of a communications to allow for setting a 

baseline period and measurement period in accordance with these previous studies. The 

larger pupil sizes present five seconds after the initiation of any radio communication 

served to validate the workload spikes seen in the IMPRINT models. These spikes were 

hypothesized to be caused by resource demand conflicts present with the introduction of 

communications tasks. There was no difference between pupil diameters during own and 
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other ship radio communications, however. This non-finding suggests that participants 

experienced the auditory resource conflict in similar fashion for both own and other ship 

communications. Further, participants strategies to handle the different communications 

may have led to differences in pupil diameter being seen at another time interval outside 

of 5 seconds before and after an event.  

Objective cognitive workload surrogate measures that yielded statistically 

significant results between workload conditions were mean HRV and left eye pupil 

diameter. Participants’ mean HRV data were lower for the high workload condition than 

the low workload condition. Additionally, their mean left pupil diameters were larger for 

the higher workload condition. These findings follow previous research that suggest 

lower HRV and larger pupil diameters are indicators of higher cognitive workload (Aura 

et al., 2021; Hughes et al., 2019; Steinhauer et al., 2022; Vogl et al., 2020).  

The NASA-TLX was administered after the trial. The timing of its administration 

may have potentially confounded participants’ responses. Participants had to recall two 

separate trials as one. Additionally, participants ended their trials in different conditions, 

potentially creating a recency effect on their responses (e.g., lower reported NASA-TLX 

ratings when ending in the low workload condition versus ending in the high workload 

condition). These results support the approach of using IMPRINT models and multiple 

measures to validate the cognitive workload predictions. These findings suggest that 

certain measures might be more sensitive to cognitive workload changes than others in 

similar multi-attribute tasks. 

Pre-frontal cortex blood oxygenation from fNIRS was not associated with 

increased workload. While fNIRS measures changes to blood oxygen, it is slower in 

measuring changes than other measures of brain activity such as EEG. The MATB-II 

scenarios may have introduced changes that were too fast to identify changes in PFC 

blood oxygenation using the fNIRS capturing approach (Girouard et al., 2010). 

Ha2: There is a significant difference between cognitive workload measures in the 

low and high workload conditions. 
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The second hypothesis that there was a significant difference between cognitive 

workload measures in the low and high workload conditions was partially supported 

through mean HRV, left pupil diameter, and CSWAG scores. However, fNIRS and 

NASA-TLX results did not show any statistically significant differences between the two 

workload conditions. These non-findings can again be explained by the fast-moving pace 

of the trials that are not conducive to measurement through fNIRS. Additionally, the 

post-trial rating of the NASA-TLX had participants rely on their recollection of two 

separate trials while trying to assess their time in the experiment as one trial. This 

potentially introduced an issue in the administration of the NASA-TLX. However, this 

approach was used to try to gain understanding of cognitive workload from the NASA-

TLX ratings. The NASA-TLX was not administered during the break for eye 

recalibration due to the time it would have taken to complete the survey. This time would 

have created a longer gap in the trial run and not allowed for any analysis on potential 

transition effects.  

This study assessed cognitive workload surrogate measures in two workload 

conditions across two experience levels. Results from the mixed model supported the 

assertion that cognitive workload measures differed between the workload conditions. 

This finding allowed for building Study 2 using low- and high-level classifications of 

workload in the same manner as Study 1. The difference in FOMs between workload 

conditions helps validate the initial framework used to determine the number of tasks to 

be included in the experimental design of the MATB-II tasks (McCurry et al., 2022). This 

finding also supports previous research that found increases in cognitive workload when 

conflicts arose in resources demanded through multiple information processing channels 

(Longo et al., 2022; Wickens, 1981, 2002, 2008a).  

Ha3: There is a significant difference between the novice and experienced 

participant groups’ performance and workload measures. 

The third hypothesis that there was a significant difference between the novice 

and experienced participant groups’ performance and workload measures was supported 

with performance scores only. In particular, the FOMs between the novice and 

experienced groups showed differences such that experienced participants scored higher 
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than their novice counterparts. There were no statistically significant differences between 

novice and experienced participants for any of the cognitive workload measures 

collected. This non-finding suggests that the training design with MATB-II in the current 

study was not able to train different experience groups. However, this training approach 

was important to try to mirror real-world training approaches to determine the effects of 

experience on cognitive workload. While this design did not find any significant 

differences between experience groups’ cognitive workload measures, this line of 

investigation is worthy in future studies to assess cognitive workload impacts at different 

levels of training. For instance, the effects of experience on cognitive workload 

throughout a training progression from novice to expert have demonstrated that novices 

put forth more effort than experts (Fairclough et al., 2005).  

The results from Study 1 indicated that performance was significantly different 

between both novices and experienced participants, as well as between the high and low 

workload conditions. Experienced participants achieved higher composite FOMs than the 

novice participants. This finding indicates that the differences between the groups was 

significant and that the training approaches yielded different levels of performance. This 

difference would serve to inform the design of Study 3 by leveraging the experienced 

group training approach as the baseline for all participants. The FOMs were also higher 

for the low workload condition than the high workload condition, suggesting that lower 

workload allowed for higher performance across participants.  

Research Question 2. Cognitive workload and SA were assessed using results 

from the NASA-TLX and the SART questionnaires. There was no significant relationship 

between the two ratings. While both instruments have been used in previous studies, the 

experimental design in this study was not sensitive to these measures.  

Ha4: Cognitive workload and situation awareness are inversely related.  

We failed to reject the null hypothesis that cognitive workload and situation 

awareness are related. Research has demonstrated multiple possible relationships between 

cognitive workload and SA (Endsley, 2021; Kaber & Endsley, 2004; Wickens, 2008a). 

The psychophysiological data showed significant differences between the workload 
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conditions. Subjective workload assessments differed in their results. The results from the 

CSWAG were different between workload conditions, whereas the results from the 

NASA-TLX were not. This difference may be explained by the CSWAG being collected 

every minute, providing a more real-time assessment of the participant’s workload. The 

researchers administered the NASA-TLX at the conclusion of the whole experimental 

trial to mitigate disruptions to the data collection and minimize confounding time 

increases between scenarios.  

Situation awareness was measured using the SART. However, the SART data did 

not show any significant differences between groups or workload conditions. The SART 

was administered in the same manner as the NASA-TLX, possibly not allowing 

participants to properly gauge their SA during each of their two trial runs. Participants 

may not have been able to accurately gauge their SA beyond Level 1 given the nature of 

the MATB-II tasks. Additionally, participants’ perceptions of what was new and 

understood varied when completing the SART. These factors highlight some of the 

considerations when using the SART for similar tasks. SART results provide self-

assessed SA ratings. Self-assessed SA approaches might provide a participant’s 

confidence in their SA rather than actual SA (Endsley, 1995). The basis to gauge SA was 

also difficult in this design. Participants were not able to ascertain a ground truth to base 

their SA assessment, further highlighting issues associated with self-assessed SA 

approaches.  

2. Findings Informing Study 2 

Study 2’s design was informed partially based on the findings of Study 1. Study 1 

provided validation that the design of the two MATB-II scenarios yielded two different 

workload conditions as determined by the differences in performance. This finding 

served as the basis for building Study 2’s MATB-II scenarios with automation being 

introduced for an additional level of analysis. The use of objective and subjective 

measures in Study 1 allowed for analysis of their associations in two different workload 

conditions. The same cognitive workload surrogate measures were used in Study 2 to 

further examine the impact of automation on those measures. The training progression 
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and delineation of experience groups addressed concerns with learning effects that had 

been known to exist with multi-tasking batteries in previous research (Kong et al., 2022). 

Across all participants and workload conditions, the CSWAG appeared sensitive to 

subjective cognitive workload assessment.  

While fNIRS and post-trial subjective assessments did not yield any statistically 

significant results between experience groups or workload conditions, their use was 

continued in Study 2. Their inclusion in Study 2 served to investigate the potential 

impacts on cognitive workload of introducing automation in the TRACK task. The design 

of Study 1 informed Study 2’s design by replicating its data collection strategy to 

investigate cognitive workload with different LOAs present in the two 10-minute trials.  

3. MLCC Review 

Study 1 sought to investigate three areas of the adapted MLCC framework: 

perception, SA and response, and workload. Results from Study 1 indicate that the human 

operator was able to perceive differences in experienced workload both objectively and 

subjectively. This finding informed an operator’s responses as indicated by their 

performance metrics. Cognitive workload measures were shown to be different between 

workload conditions, suggesting that the cognitive workload aspect of the adapted MLCC 

continuously impacted the remaining elements in the framework in an iterative fashion.  

These results paved the way to examine other portions of the MLCC framework 

in Study 2. Given that cognitive workload and performance data indicated patterns and 

results for a manually completed scenario, the examination of the MLCC framework 

could then be expanded to investigate the impact of introducing a higher level of 

automation. The inclusion of a high and low level of automation would facilitate the 

exploration of the unintended negative consequences of adaptive automation in the 

human-system loop as seen in the adapted MLCC framework. Additionally, the use of 

IMPRINT modelling provided a basis of comparison for the different experimental 

conditions that were validated by the performance and workload measurements collected.  
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IV. STUDY 2 

A. OVERVIEW 

The second experiment focused on investigating the effect of different levels of 

automation on objective and subjective measures of workload. Additional analysis of SA 

and performance was conducted as well. Study 2 leveraged MATB-II again. However, 

participants conducted trial runs with automated tracking assistance. Figure 35 maps the 

areas investigated in this study to the adapted MLCC framework.  

 

Figure 35. Study 2 mapping to the adapted MLCC framework. 

The purpose of this study was to determine levels of workload present at a low (or 

highly manual) and high LOA (or highly automated level). The interval of introducing 

changes to the automation were time-based, occurring in two 10-minute increments. This 

interval was used in both Studies 1 and 2 because it was a factor of the five minute 

MATB-II task-to-workload mapping used in previous studies (McCurry et al., 2022). 

Further, the 10-minute interval allowed for collection of more psychophysiological data 

points. The approach used in Study 2 enabled analysis on the effects of automation 

changes on objectively measured and self-reported workload. Investigation into SA and 

performance was conducted again in the same manner as Study 1. An analysis to 
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determine which measures are predictive of workload as LOAs change resulted from this 

study.  

The supported research questions and hypotheses for this study are as follows:  

Research Question 1. How do IMPRINT operator cognitive workload predictions, 

psychophysiological measures, and subjective workload measures correlate at different 

levels of automation? 

Ha1: Cognitive workload predictions are directly correlated with objective and 

subjective workload measures. 

Ha2: There is a significant difference between cognitive workload measures in 

low and high levels of automation within the same level of workload demand. 

Research Question 2. What is the relationship between cognitive workload and 

situation awareness during different levels of automation when completing a multi-

tasking simulation? 

Ha3: Cognitive workload and situation awareness are inversely related.  

B. PILOT DATA 

A pilot study was not originally planned for Study 2 because the only important 

difference from the previous study was the introduction of automation for one of the 10-

minute scenarios. Additionally, participants in Study 1 stated that they were expecting to 

see some sort of automation in the TRACK task since it was explicitly covered during the 

instructional video. Due to these considerations, the researchers proceeded with Study 2 

with the assumption that no significant changes would be necessary to the study’s 

execution. However, initial observations from the first seven participants necessitated a 

modification in the study’s execution. 

Six of the first seven participants (three in the novice and three in the experienced 

groups) did not realize that one of their trial runs had the TRACK task in automatic 

mode. While the TRACK task is automated, there is no requirement for the user to 

provide any inputs to the joystick. The six participants completed their training 

progressions in the same manner as the participants in Study 1. There were four visual 
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indicators that the TRACK task was in an automated mode as seen in Figure 36. 

Additionally, the color of the circular reticle changed from a dark shade of blue to a 

lighter shade of blue as mentioned in the instructional video. A different audio tone at the 

start of the MATB-II scenario also indicated that the TRACK task was in automated 

mode. Finally, participant inputs via the joystick had no impact on the track task, yet the 

six participants who did not realize that the task was in automated mode continued to 

make inputs via the joystick for the duration of their experimental trials.  

 

Figure 36. MATB-II with TRACK in AUTO ON mode and indicators 
highlighted in red. 

As a result of these unexpected participant behaviors, instructions were modified 

prior to beginning the trial runs. Participants were told that they were going to complete 

two trials runs: one with the TRACK task in “Auto On” mode and one with the TRACK 
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task in “Manual” mode. The participants were instructed to recall their training and refer 

to the MATB-II Reference Sheet for assistance in determining which mode the 

simulation was running. After this addition to the instruction script, there were no further 

issues with participants mistaking the state of the TRACK task during their trial runs.  

While this emergent behavior caused the study to begin with a slight delay, it was 

ultimately informative. A key aspect of this research is to investigate unintended negative 

consequences of adaptive automation. In this case, an unintended consequence 

manifested in operators not being aware of the system status. This phenomenon has been 

investigated over the years in human computer interaction research. Operators can 

experience mode error whereby they are not aware of the status of the system that they 

are operating or monitoring (Sarter & Woods, 1995). The participants were so engrossed 

with the TRACK task that they were unaware the system was in an automated mode. The 

continued engagement with the TRACK task consumed participants’ attentional 

resources that could have been allocated to the other tasks and caused inadvertent 

increases in reported cognitive workload. This type of phenomenon is not uncommon in 

many accidents that involved a user and a miscalibration of task responsibility with an 

automated system. In essence, the operator did not realize the system was in a state that 

was supposed to alleviate workload demands. The operator’s unawareness of the 

system’s state created additional workload instead (Sarter & Woods, 1995).  

C. PARTICIPANTS 

1. Selection 

The NPS IRB approved the research methods used for this study. There were no 

changes to the inclusion and exclusion criteria in this study. All participants were 

informed of their rights as participants in the study and signed consent forms. Participants 

were recruited through personal communication, email, and campus-wide announcements 

on the student personnel accountability website. Participants used the same consent form 

from Study 1. No participants from Study 1 were eligible to participate in this study due 

to the exclusion criteria.  
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2. Demographics 

Forty participants completed the study (mean age in years = 36.04, standard 

deviation [SD] = 8.34). Participants included 33 males and 7 females. Of the 40 

participants, 39 were in the military (15 in the U.S. Army, 6 in the U.S. Navy, 13 in the 

U.S. Marine Corps, 1 in the U.S. Air Force, 3 in foreign militaries, and 2 Department of 

the Navy civilians). The military participants’ occupational specialties within their 

respective services included operations, operations support, and force sustainment. All 

participants were graduate students or employees at NPS. The rank breakdown of the 

participants is depicted in Table 8. The participants’ time in service ranged from 5 

months to 20 years (mean years in service = 11.71, SD = 4.33). All participants met the 

screening criteria listed in the inclusion and exclusion criteria.  

Table 8. Study 2 participants’ military rank. 

Participant Rank Number 
O-3 18 
O-4 17 
O-5 3 
Civilian 2 
Total 40 

 

D. MATERIALS 

In Study 2, we used the same configuration, materials, and workstation as in 

Study 1.  

E. VARIABLES 

1. Independent Variables 

The three independent variables manipulated in this study were experience, levels 

of automation, and workload levels. Presentation of the levels of automation was 

counterbalanced to account for order effects. The four conditions used in Study 2 are 

depicted in Figure 37.  
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Figure 37. Study 2 conditions.  

a. Workload 

All participants were presented either a low or high workload condition based on 

previous MATB-II studies (McCurry et al., 2022). Participants were randomly assigned 

to a condition where they would receive either the low automation or high automation 

condition first. The number of tasks associated with each manual condition were the same 

used in Study 1 (see Table 8). The researcher assigned tasks throughout the scenarios in 

accordance with the parameters in Table 9.  

Table 9. MATB-II system settings for Study 2’s conditions. 

 System 
Monitoring 

Tracking Communications Resource 
Management 

Low 
Workload 

(Manual 
Tracking) 

11 Events Low Joystick 
Response 

High Update 
Rate 

3 Events 1 Pump 
Failure 

1 Pump 
Shutoff 

Low 
Workload 

(Auto 
Tracking) 

11 Events Automatic 3 Events 1 Pump 
Failure 

1 Pump 
Shutoff 
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 System 
Monitoring 

Tracking Communications Resource 
Management 

High 
Workload 

(Manual 
Tracking) 

20 Events Low Joystick 
Response 

High Update 
Rate 

12 Events 10 Pump 
Failures 

10 Pump 
Shutoffs 

High 
Workload 

(Auto 
Tracking) 

20 Events Automatic 12 Events 10 Pump 
Failures 

10 Pump 
Shutoffs 

 

b. Experience  

Participants were assigned to either a novice or experienced group based on 

scheduling availability. These groups were developed to assess differences between 

novice and experienced operators. All participants in both groups received the same 

baseline training on MATB-II. The baseline training included an orientation to the input 

devices, a NASA instructional video, part-task training, and a 5-minute MATB-II 

practice session in a low workload condition. Experienced participants conducted four 

additional 5-minute MATB-II practice sessions in a high workload condition. All the 

MATB-II sessions were written such that participants did not receive the same scenario 

more than once.  

2. Dependent Variables 

Study 2 collected the same dependent variables as Study 1. These collected 

measures included the MATB-II FOM score; CSWAG, NASA TLX, and SART ratings; 

and eye tracking, heart rate, and PFC blood oxygenation level data.  

F. PROCEDURE 

1. Participants  

Participants in Study 2 completed the same procedures as participants in Study 1. 

Additional instructions were provided to the participants based on the emergent behavior 
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seen in the early Study 2 trials. Prior to beginning their experimental runs, participants 

were informed that they would be presented with two scenarios. One scenario would have 

the TRACK task in manual mode while the other would have it in auto mode. 

Participants were instructed to recall their training and refer to the MATB-II reference 

guide on the desk to determine what the system status of the TRACK task was. Novice 

participants completed their training and experimental runs in one session, while 

experienced participants completed the study over two sessions within 72 hours of each 

other. The key difference between the procedures in Study 1 and Study 2 was that 

novices and experienced users were assigned to conditions that presented low and high 

levels of automation in different orders that were counterbalanced across all participants. 

Additionally, each user only experienced one workload condition. For instance, a user 

would conduct two trial runs, with one run being at a high level of automation in a low 

workload condition, followed by a second run at a low level of automation in a low 

workload condition.  

2. IMPRINT Modeling 

The researcher constructed IMPRINT models using the same approach used in 

developing Study 1’s models. However, two additional IMPRINT models were produced 

to capture workload predictions when completing each workload condition with either a 

low or high level of automation. The baseline models used for the manual conditions in 

Study 1 did not change. The task network diagram of the low and high conditions is seen 

in Figures 38. Figure 39 depicts the external event triggers used to model the initiation of 

communications events in Study 2. Of note, the manual tracking trigger was omitted for 

the two automated tracking conditions in Study 2. Additionally, automatic tracking was 

not included in the task network diagram. This omission was due to participants being 

told in their training that they had no responsibility when the TRACK mode was set to 

“AUTO ON.” 
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Figure 38. Study 2 researcher-derived task network diagram IMPRINT 
model. 
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Figure 39. Study 2 external event triggers for the low (above) and high 
(below) workload conditions with automatic TRACK. 

The MATB-II researcher-derived cognitive workload demand ratings are 

provided in Table 10. These ratings were again based on the default anchors provided in 

IMPRINT.  
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Table 10. Study 2 researcher-derived IMPRINT workload demand values.  

 

 

A consolidation measure was calculated for each resource-interface pair by taking 

the mean of the expert ratings as was done in Study 1. However, the experts never 

experienced the TRACK task in “AUTO ON” mode in their interactions with their 

version of MATB. Therefore, they were asked to provide their best prediction as to the 

impacts on the resource-demand values if the TRACK task was automated. The 

consolidated expert-derived values are provided in Table 11. 

Task: Tracking

Total Task Demand 10.00 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Joystick 1.00 4.60 4.40

Task: System Monitoring

Total Task Demand 8.40 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 1.20 2.20 5.00

Task: Resource Management

Total Task Demand 8.40 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 1.20 2.20 5.00

Task: Own Comms

Total Task Demand: 10.50 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 1.00 2.20 1.00

Interface: Speaker 4.30 1.00 1.00

Task: Other Comms

Total Task Demand: 6.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse

Interface: Speaker 4.30 1.00 1.00

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values
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Table 11. Study 2 expert-derived IMPRINT workload demand values.  

 

 

The researcher-derived IMPRINT-predicted time average workload value for the 

whole low workload condition with high automation was 11.65. The total high workload 

with high automation condition time average workload value was 19.20. Expert predicted 

values for the low and high LOA conditions were and 13.97 and 16.54, respectively. 

There were significant differences between the average workload seen between the low 

and high levels of automation for the TRACK task. These workload differences were 

intuitive as participants had more attentional resources available to execute three tasks 

instead of four. However, both the low and high workload conditions saw workload 

spikes as seen in Figures 40 and 41. These workload spikes were associated with the 

initiation of communications tasks in both studies. These types of tasks create additional 

demand on the user while also creating workload resource conflicts with the other tasks.  

Task: Tracking

Total Task Demand 11.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Joystick 3.60 3.90 3.80

Task: Tracking (AUTO)

Total Task Demand 1.67 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Joystick 0.00 0.67 0.00 1.00

Task: System Monitoring

Total Task Demand 7.87 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 2.40 3.30 2.17

Task: Resource Management

Total Task Demand 13.37 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 5.80 3.57 4.00

Task: Own Comms

Total Task Demand: 16.87 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse 2.07 4.07 1.83

Interface: Speaker 5.00 2.07 1.83

Task: Other Comms

Total Task Demand: 6.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual

Interface: Mouse

Interface: Speaker 4.30 1.00 1.00

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values
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Figure 40. Study 2 researcher-derived (top) and expert-derived IMPRINT 
(below) model graphs for the low workload condition with high level of 

automation.  
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Figure 41. Study 2 researcher-derived (top) and expert-derived IMPRINT 
model graphs for the high workload condition with high level of 

automation. 
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G. RESULTS 

Data results were gathered in the same manner as Study 1 by leveraging the 

participants’ .xdf files and subjective ratings. A mixed model analysis approach was 

again used to analyze the collected measures in JMP version 16.0.0. Fixed effects 

included experience level, workload level, and automation condition in the TRACK task. 

Random effects were modeled using each participant with their experience and workload 

levels nested to account for the differences between experimental condition exposure for 

all participants. A summary of the results for Study 2 are listed in Tables 10 (with 

presentation order included in the analytical model) and 11 (without presentation order 

included in the analytical model). Participant data were excluded due to extreme values 

after analyzing residual plots for each modeled measure. These exclusions are listed in 

the notes below Tables 5 and 6.  

Table 12. Study 2 summary results table with presentation order included.  

Measure 
Category 

Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Tracking 
Mode 

Presentation 
Order 

Performance 
MATB-II 
Figure of 
Merit 

Composite 
FOM** 

  
𝑝 ൌ .105 

High 
workload -
> lower 
FOM 
𝒑 ൌ.𝟎𝟑𝟗* 

  
𝑝 ൌ .308 

First 
condition -> 
lower FOM 
𝒑 ൌ.𝟎𝟏𝟕* 

Psycho-
physiological 

HRV Mean HRV*** 
  
𝑝 ൌ .679 

  
𝑝 ൌ .179 

Manual 
Tracking-> 
lower HRV 
𝒑 ൏.𝟎𝟎𝟏* 

First 
condition -> 
lower HRV 
𝒑 ൌ.𝟎𝟒* 

fNIRS 

Mean HbO** 
  
𝑝 ൌ .307 

  
𝑝 ൌ .526 

  
𝑝 ൌ .092 

  
𝑝 ൌ .841 

Mean Hb 
  
𝑝 ൌ .965 

  
𝑝 ൌ .338 

  
𝑝 ൌ .087 

  
𝑝 ൌ .343 

Mean Total 
Hb** 

  
𝑝 ൌ .635 

  
𝑝 ൌ .923 

   
𝑝 ൌ .131 

  
𝑝 ൌ .701 

Pupil 
Mean Right 
Pupil 
Diameter** 

  
𝑝 ൌ .098 

  
𝑝 ൌ .361 

Auto 
Tracking -> 
smaller 
diameter 

First 
condition -> 
larger pupil 
diameter 
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Measure 
Category 

Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Tracking 
Mode 

Presentation 
Order 

𝒑 ൏.𝟎𝟎𝟏* 𝒑 ൌ.𝟎𝟎𝟒* 

Mean Left 
Pupil 
Diameter****  

  
𝑝 ൌ .337 

  
𝑝 ൌ .443 

 Auto 
Tracking -> 
smaller 
diameter 
𝒑 ൏.𝟎𝟎𝟏* 

First 
condition -> 
larger pupil 
diameter 
𝒑 ൌ.𝟎𝟎𝟑* 

Subjective 
Workload 

Continuous 
Subjective 
Workload 
Assessment 
Graph 

Mean CSWAG  
  
𝑝 ൌ .772 

High 
workload -
> higher 
CSWAG 
rating 
𝒑 ൌ.𝟎𝟐𝟑 * 

Participants 
reported 
lower 
CSWAG in 
Auto Track 
𝒑 ൏.𝟎𝟎𝟏* 

  
𝑝 ൌ .810 

NASA-
TLX 

NASA-TLX 
Rating 

  
𝑝 ൌ .244 

  
𝑝 ൌ .250 

  
𝑝 ൌ .815 

N/A 

Situation 
Awareness 

Situation 
Awareness 
Rating 
Technique 

SART Rating 
  
𝑝 ൌ .429 

  
𝑝 ൌ .166 

  
𝑝 ൌ .608 

N/A 

 

Table 13. Study 2 summary results table with presentation order omitted.  

Measure 
Category 

Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Tracking 
Mode 

Performance 
MATB-II 
Figure of 
Merit 

Composite 
FOM** 

  

𝑝 ൌ .105 

High 
workload -
> lower 
FOM 

𝒑 ൌ.𝟎𝟑𝟗* 

  

𝑝 ൌ .369 

Psycho-
physiological 

HRV 
Mean 
HRV*** 

  

 

𝑝 ൌ .679 

  

𝑝 ൌ .179 

Manual 
Tracking  
-> lower 
HRV 

𝒑 ൏.𝟎𝟎𝟏* 
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Measure 
Category 

Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Tracking 
Mode 

fNIRS 

Mean HbO** 
  

𝑝 ൌ .307 

  

𝑝 ൌ .526 

  

𝑝 ൌ .086 

Mean Hb 
  

𝑝 ൌ .965 

  

𝑝 ൌ .338 

  

𝑝 ൌ .086 

Mean Total 
Hb** 

  

𝑝 ൌ .635 

  

𝑝 ൌ .923 

   

𝑝 ൌ .128 

Pupil 

Mean Right 
Pupil 
Diameter** 

  

𝑝 ൌ .098 

  

𝑝 ൌ .361 

Auto 
Tracking -
> smaller 
diameter 

𝒑 ൏.𝟎𝟎𝟏* 

Mean Left 
Pupil 
Diameter**** 

  

𝑝 ൌ .541 

  

𝑝 ൌ .921 

Auto 
Tracking   
-> smaller 
diameter 

𝒑 .𝟎𝟎𝟓* 

Subjective 
Workload 

Continuous 
Subjective 
Workload 
Assessment 
Graph 

Mean 
CSWAG  

  

𝑝 ൌ .772 

High 
workload   
-> higher 
CSWAG 
rating 

𝒑 ൌ.𝟎𝟎𝟐* 

Auto 
Tracking-
> Lower 
reported 
workload  

𝒑 ൏.𝟎𝟎𝟏* 

NASA-TLX 
NASA-TLX 
Rating 

  

𝑝 ൌ .244 

  

𝑝 ൌ .250 

  

𝑝 ൌ .815 

Situation 
Situation 
Awareness 

SART Rating       
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Measure 
Category 

Measure 
Type 

Dependent 
Measure 

Novice vs. 
Experienced 

High vs. 
Low 
Workload 

Tracking 
Mode 

Awareness Rating 
Technique 

𝑝 ൌ .429 𝑝 ൌ .166 𝑝 ൌ .608 

Tables 10 and 11 Notes: 

* p<.05 

** 1 Novice participant excluded due to extreme results 

*** 2 Experienced participants excluded due to extreme results 

**** 2 Novice participants excluded due to extreme results 

 

There were no statistically significant differences between novice and 

experienced participants’ FOMs in Study 2. However, Figure 42 shows that participants’ 

mean FOMs were higher in the low workload condition than the high workload condition 

(M=93.61, SD=4.27, SE=0.67 vs. M=91.25, SD=4.16, SE=0.67) 
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Figure 42. Study 2 mean FOMs by workload level. Error bars represent 
standard errors. 

There were no statistically significant differences between novice or experienced 

participants’ mean HRV. There were also no differences in mean HRV between 

workload levels in Study 2. However, there were statistically significant differences in 

mean HRV between tracking modes. Auto tracking had a higher mean HRV in 

milliseconds (M=860.69, SD=107.34, SE=17.41) than manual tracking (M=839.05, 

SD=106.51, SE=17.28) as depicted in Figure 43.  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



116 

 

Figure 43. Mean HRV in milliseconds for Study 2 by tracking condition. 
Error bars represent standard errors. 

The mean left and right pupil diameter differences in Study 2 were statistically 

significant for the tracking condition. Figure 44 illustrates the mean right pupil diameter 

being larger (M=3.23mm, SD=0.70, SE=0.11) for the manual tracking condition than the 

auto tracking condition (M=3.14mm, SD=0.66, SE=0.11). Figure 45 shows the 

differences for the left pupil in the manual tracking condition (M=3.38mm, SD=0.70, 

SE=0.11) and the auto tracking condition (M=3.28mm, SD=0.64, SE=0.10).  
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Figure 44. Mean right pupil diameter in millimeters by tracking condition for 
Study 2. Error bars represent standard errors. 
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Figure 45. Mean left pupil diameter by tracking condition for Study 2. Error 
bars represent standard errors. 

Figure 46 depicts progressively larger right pupil diameters from pre-

communications event to post-communications event for Study 2 (M=3.19mm, SD=0.67, 

SE=0.08 vs. M=3.23mm, SD=0.70, SE=0.08). Left pupil diameters also followed the 

same progression as shown in Figure 47 (M=3.28mm, SD=0.73, SE=0.08 vs. M=3.39, 

SD=0.74, SE=0.09). There were statistically significant differences between participants’ 

left pupil diameters in the five second period before and after communications events, 

𝐹ሺ1, 112ሻ ൌ 20.17,𝑝 ൏ .001. Participants’ right pupil diameters were also different 

between the same time periods (𝐹ሺ1, 112ሻ ൌ 7.76,𝑝 ൏ .01.  
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Figure 46. Study 2 mean right diameter in millimeters by communications 
event timing. Error bars represent standard errors.  
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Figure 47. Study 2 mean left pupil diameter in millimeters by 
communications event timing. Error bars represent standard errors.  

Participants’ pupils were larger five seconds after a communications event 

directed at their ship (NASA 504) and other ships, following the pattern seen in Study 1. 

Own ship communications resulted in statistically significant differences before and after 

communications events in right pupil diameter 𝐹ሺ1, 112ሻ ൌ 5.70, 𝑝 ൏ .05 (M=3.19, 

SD=0.67, SE=0.08 vs. M=3.23, SD=0.70, SE=0.08) and left pupil diameter 𝐹ሺ1, 112ሻ ൌ

20.02, 𝑝 ൏ .001 (M=3.29, SD=0.66, SE=0.08 vs. M=3.40, SD=0.69, SE=0.08). Other 

ship communications followed the same pattern of statistical significant differences with 

the right pupil diameter 𝐹ሺ1, 112ሻ ൌ 10.02, 𝑝 ൏ .01 (M=3.18, SD=0.68, SE=0.08 vs. 

M=3.31, SD=0.81, SE=0.09) and left pupil diameter 𝐹ሺ1, 112ሻ ൌ 16.38, 𝑝 ൏

.001 (M=3.26 SD=0.67, SE=0.08 vs. M=3.37, SD=0.68, SE=0.08). These results are 

displayed in Figures 48 and 49.  
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Figure 48. Study 2 left pupil diameter in millimeters by own (top) and other 
(bottom) event communications timing. Error bars represent standard 

errors.  
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Figure 49. Study 2 right diameter in by own (top) and other (bottom) event 
communications timing. Error bars represent standard errors.  

Differences between own and other ship communications were not statistically 

significant as shown in Figure 50. One experienced participant was excluded from this 

portion of the analysis due to extreme results as analyzed in the data’s residual plots.  
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Figure 50. Study 1 mean pupil diameter differences in millimeters between 
eyes and communications target. Error bars represent standard errors.  

Differences in participants’ CSWAG percentages were statistically significant 

between tracking conditions as shown in Figure 51. Manual tracking resulted in higher 

reported CSWAG (M=55.64, SD=12.24, SE=1.94) than the auto tracking condition 

(M=37.95, SD=12.03, SE=1.90). Additionally, the high workload condition resulted in 

higher reported CSWAG than the low workload condition (M=50.86, SD=13.39, 

SE=2.11 vs. M=42.73, SD=15.156, SE=2.46).  
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Figure 51. Reported CSWAG percentage means by tracking condition and 
workload levels in Study 2. Error bars represent standard error.  

Post-trial situation awareness and cognitive workload ratings were collected using 

the SART and NASA-TLX, respectively. There was a statistically significant inverse 

correlation between SART ratings and NASA-TLX ratings, 𝜌 ൌ െ0.33,𝑝 ൌ .04. This 

relationship is illustrated in Figure 52.  
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Figure 52. Pairwise correlation graph for Study 2’s NASA-TLX and SART 
ratings.  

H. DISCUSSION 

The results from Study 2 are discussed in the proceeding section. Study 2’s 

research questions and hypotheses are reviewed, followed by analysis of their associated 

statistical results. These results were analyzed to provide recommendations for the 

refinement of Study 3’s design. This discussion also addresses the specific aspects of the 

adapted MLCC framework that were investigated in Study 2.  

1. Research Questions and Hypotheses  

Research Question 1. Operator cognitive workload predictions correlated to two 

psychophysiological measures, HRV and pupil diameter. The subjective measure that 

correlated to the different LOAs was CSWAG. These findings follow the results seen in 

Study 1 and provide additional support for more continuous assessment of an operators’ 
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workload using these approaches. NASA-TLX and fNIRS data did not yield significant 

results in Study 2.  

Higher levels of automation yielded smaller mean pupil sizes and larger HRV. 

The values follow previous research that suggest that smaller pupil diameters and 

increased HRV are analogous to lower workload (Aura et al., 2021; Beatty & Lucero-

Wagoner, 2000; Duchowski et al., 2018; Fairclough et al., 2005; Pfleging et al., 2016; 

Tao et al., 2019). Participants also reported lower CSWAG values in the high level of 

automation condition. These findings followed the IMPRINT workload value predictions 

that the higher LOA condition would yield lower workload values than the lower LOA 

condition. The pattern of the high workload condition having higher predicted workload 

values than the low workload condition regardless of automation level remained 

consistent between Studies 1 and 2.  

Ha1: Cognitive workload predictions are directly correlated with objective and 

subjective workload measures. 

Hypothesis 1 was partially supported with HRV, pupil diameter, and CSWAG 

ratings being directly associated with cognitive workload predictions. Further, the pattern 

of pupil diameter being larger after a communications event than the five seconds 

preceding it remained intact in Study 2, serving to validate the workload spikes in the 

IMPRINT models again. We fail to reject the null hypothesis that cognitive workload 

predictions are directly correlated with cognitive workload measures when using fNIRS 

data and NASA-TLX ratings. These findings suggest that certain measures might be 

more sensitive to cognitive workload changes than others in similar multi-attribute tasks.  

The non-findings with the fNIRS data follow the results from Study 1 in that the 

fast-paced changes of task may not be conducive to its use as a surrogate measure to 

workload (Girouard et al., 2010). The same approach that limited NASA-TLX’s 

assessment in Study 1 appeared to have the same result in Study 2. It was difficult for 

participants to accurately combine their cognitive workload assessment over two separate 

trials.  
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Presentation order appears to have had a significant impact on performance, 

HRV, and pupil diameter. The first condition yielded lower performance results and 

increased objective cognitive workload surrogate measures. This finding indicates that 

there is a cost and period of gaining in-the-loop familiarity with a system’s operation at 

the beginning of a task regardless of the LOA. Kaber and Endsley (2004) suggested that 

operators may need time to orient to their system’s status in order to understand how to 

engage appropriately. Applying Kaber and Endsley’s proposal to Study 2, participants 

were told that they would conduct the trial runs in either manual or auto TRACK mode. 

This instruction would introduce criteria that the participants would need to process to 

interact with MATB-II appropriately, and thus help account for the first conditions they 

saw as being more cognitively demanding. The period of gaining in-the-loop familiarity 

is also nested with the concept of operators working toward achieving an optimal level of 

workload as seen in the inverted U-curve of cognitive workload (Ernst et al., 2020; 

Yerkes & Dodson, 1908; Zhang et al., 2021). Additionally, this finding also suggests that 

the introduction of higher LOAs might warrant investigation to determine the impacts of 

LOA transitions on operators. This assessment could help determine the specific impacts 

of establishing in-the-loop familiarity on cognitive workload.   

For subjective workload measures, hypothesis 1 was partially supported through 

the CSWAG results. The low automation condition had a higher predicted workload 

score than the high automation condition. When assessed with the CSWAG results, 

automatic tracking yielded lower CSWAG percentages across participants. This result 

mirrored the outcome of Study 1 where cognitive workload predictions and subjective 

workload assessments showed higher results in the more difficult conditions. For Study 2, 

the manual TRACK condition resulted in higher CSWAG percentages than in the auto 

TRACK condition. These results suggest that cognitive workload is lower with the 

introduction of automation and follows previous literature that supports this assertion. 

Additionally, an aim of adaptive automation is to help manage an operator’s workload to 

optimal levels. The findings in Study 2 suggest that this workload management level is 

possible given the MATB-II task that participants completed.  
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Ha2: There is a significant difference between cognitive workload measures in 

low and high levels of automation within the same level of workload demand. 

For Study 2, participants completed their trials with one level of workload and 

two levels of automation in the TRACK task. Within this framework, hypothesis 2 was 

partially supported with similar objective and subjective workload surrogate measures as 

seen in Study 1. Higher levels of automation yielded smaller pupil sizes and larger HRV. 

These results follow IMPRINT workload predictions that higher LOAs will yield lower 

overall cognitive workload. Like Study 1, there were no significant differences with 

fNIRS PFC blood oxygenation levels data across conditions. Hypothesis 2 is also 

partially supported with CSWAG results as they indicate that workload differences were 

more sensitive to continuous assessment than whole-trial assessment with the NASA-

TLX. Additionally, CSWAG results suggest lower self-assessed workload during the 

trials when the participant had automated tracking. 

Research Question 2. Cognitive workload and SA were inversely related for 

Study 2 when analyzed through SART and NASA-TLX ratings. This finding may be 

explained by analyzing the participants’ perceived workload in the different conditions. 

The introduction of automation was a key difference between Study 1 and Study 2 and 

can help explain the significant findings seen across participant groups Study 2. 

Participants were not aware that they were in a high or low workload condition during 

their time operating MATB-II. However, they were aware when automation was 

introduced, potentially providing a lower perceived workload. Previous research using 

MATB-II has used automatic and manual tracking to differentiate between low and high 

workload conditions (Heard & Adams, 2019). Therefore, the significant correlation 

between SART ratings and NASA-TLX ratings in Study 2 could be explained through 

the differences in the conditions. 

Ha3: Cognitive workload and situation awareness are inversely related. 

There are multiple possibilities that can describe the relationship between 

cognitive workload and SA when assessed in an automated environment (Wickens, 

2008b). One relationship investigated in this current effort was that they were inversely 
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related. The statistical results indicate that this relationship does exist between the 

surrogate measures of SART and NASA-TLX ratings in Study 2. Therefore, we reject 

null hypothesis 3 that there was no relationship between cognitive workload and SA.  

Participants had to gauge their subjective ratings of SA and cognitive workload 

after their time in the study was complete in the same manner seen in Study 1. The main 

difference between the two studies was the use of automation in the TRACK task. This 

task condition change meant that participants had an overt indicator of a difference in the 

simulation. However, it was difficult to ascertain what their SA was being rated against 

because the SART did not ask them for specific aspects of the trial. For instance, the 

SART questionnaire asked participants the value of the information they gained in the 

situation. This information could have varied greatly between participants, and there was 

no way of standardizing that across all participants with this instrument. Additionally, 

participants had fewer tasks to monitor when the automation was active. Participants 

were informed that they had no responsibility with the TRACK task when it was in 

“AUTO ON” mode. Therefore, it is possible that participants had additional information 

processing resources that might have contributed to a sense of increased SA.  

2. Analysis Informing Study 3 

Results from Studies 1 and 2 informed the design of Study 3. Study 2 provided 

insights into the effects of introducing automation while completing MATB-II tasks. 

Automating the TRACK task yielded results that indicate participants experienced lower 

workload when using automation. Participants in Study 2 reported higher subjective 

workload ratings using the CSWAG for the high workload and the low automation 

conditions. Combined with the results of Study 1, Study 2’s results provided validation 

that the MATB-II scenarios again yielded different workload levels. These results were 

important to build on to Study 3, where cognitive workload would be investigated at 

dynamically changing levels of automation and workload demand conditions.  

The same objective and subjective measure categories that yielded statistically 

significant differences in Study 1 continued in the same pattern in Study 2 with HRV, 

pupil diameter, and CSWAG. Based on these patterns, Study 3’s collected cognitive 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



130 

workload measures were modified. HRV, pupil diameter, and CSWAG were chosen as 

measures to gauge participants’ workload in Study 3. The use of HRV as a cognitive 

workload surrogate has shown to be effective in tasks where workload levels are 

continuously altered (Hughes et al., 2019). Additionally, pupil diameter has shown to be 

sensitive to rapid manipulations in cognitive workload  (Aura et al., 2020). CSWAG was 

sensitive to different levels of cognitive workload and tracking mode presented in 

MATB-II. Because of the statistically significant differences in these collected measures, 

they were chosen to serve as the primary cognitive workload surrogates in Study 3.  

However, fNIRS and SART were again not reliable surrogate measures of 

workload or SA, respectively. The use of fNIRS was eliminated for Study 3 due to non-

significant results in the first two studies. While NASA-TLX and SART indicated a 

significant inverse correlation in Study 2, these results may not have been the most 

representative measure of SA. The proposed design for Study 3 would eliminate the mid-

trial eye tracking calibration and loading of the second scenario. To investigate the effects 

of dynamically changing levels of automation, the final study would leverage a 

continuous 20-minute trial instead of two separate 10-minute trials. This difference in the 

administration of the MATB-II scenarios could potentially lead to different results and 

analysis based on the participants’ groups that followed different condition progressions. 

The NASA-TLX and SART were once again included as post-trial questionnaires in 

Study 3 to determine if their relationship persisted with the introduction of dynamically 

changing levels of automation.  

3. MLCC Review 

The purpose of Study 2 was to investigate the following areas of the adapted 

MLCC framework: SA and response, workload, and LOA change. Study 2’s results 

suggest that the participants were once again able to perceive differences in their 

experienced workload through their collected cognitive workload surrogate measures. 

Further, participants’ performance scores indicated that higher levels of workload had an 

effect that produced lower levels of performance. These performance results follow the 

same pattern seen in Study 1. Cognitive workload measures were different between 
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workload conditions and LOAs. These results followed IMPRINT cognitive modeling 

predictions as they did in Study 1. Further, the increasing progression of pupil diameters 

before, during, and after a communications event highlighted the resource demand 

conflict that was seen in the IMRPINT models. Building on the results of Study 1, these 

findings led to the assertion that the changes in the cognitive cybernetic loop were 

sensitive to changes in multiple conditions as seen in the cognitive workload measures 

and performance data.  

The data analysis of Study 2 allowed for recommended investigation areas of the 

adapted MLCC framework in Study 3. In particular, the impacts of adaptive automation 

could now be assessed to determine changes in operators’ performance and cognitive 

workload measures as LOAs dynamically changed. Cognitive workload and performance 

measures were sensitive to manipulations to task difficulty and automated assistance in 

the first two studies. Therefore, utilizing the MLCC framework would allow for 

investigation into how cognitive workload fluctuations relate to dynamically changing 

levels of automation. These cognitive workload changes could be modeled to allow for 

cognitive workload forecasting, which would serve as a key element leading into Study 3.  
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V. STUDY 3 

A. OVERVIEW 

The final study in this research effort sought to assess workload forecasts based 

on changes in levels of automation. Study 3 continued with the use of MATB-II. 

However, participants conducted trial runs with dynamic changes in LOA during a 

continuous 20-minute trial. The mapping of the areas investigated in relation to the 

adapted MLCC framework is depicted in Figure 53.  

 

Figure 53. Study 3 mapping to the adapted MLCC framework. 

The purpose of this study was to determine levels of workload present during 

dynamic changes in LOAs and workload. The interval of introducing changes to the 

automation were time-based, occurring in 5-minute increments during the 20-minute trial 

run. This interval was used in both Studies 1 and 2 because it followed the 5-minute 

MATB-II task-to-workload mapping and allowed for HRV R-R interval analysis 

(Delliaux et al., 2019; Malik et al., 1996). Additionally, the 20-minute interval allowed 

for the uninterrupted collection of more physiological data points. Investigation into SA 

and performance was conducted in the same manner as Studies 1 and 2. The approach 
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used in Study 3 enabled analysis of the effects of dynamically changing LOAs and 

workload conditions on cognitive workload.  

Study 3 was informed and designed with insights gained from Studies 1 and 2. 

MATB-II performance measures differed significantly between experience and workload 

levels in both studies. Heart rate variability and pupil diameter were sensitive to changes 

in workload conditions in the first two studies. Pupil diameter and HRV data did not 

appear to suffer from any data loss or quality issues over the two 10-minute periods in the 

first two studies. Therefore, consolidating the trial into one continuous 20-minute period 

was selected as the collection interval for Study 3. This 20-minute period would allow for 

insight into transition periods and more fidelity on post-trial assessments. The use of 

CSWAG during the trial runs was used again. However, the timing was shifted to begin 

at the 30 second mark and every 60 seconds thereafter. This shift in timing would allow 

for collection of CSWAG percentages 30 seconds before and after a system state 

transition. Further, IMPRINT workload value predictions followed the results of the first 

two studies in that higher workload conditions were associated with higher objective and 

subjective cognitive workload surrogate measures.  

The results of Studies 1 and 2 did not yield significant differences between novice 

and experienced participants’ objective and subjective workload measures. Therefore, the 

decision was made by the researchers to eliminate the novice group of participants in 

Study 3. While it is essential to investigate the impacts of cognitive workload when using 

AA with different experience levels, the results from the current effort did not support 

further investigation into this relationship. To ensure further accounting for any order or 

learning effects, the researchers decided to leverage the experienced group training 

progression in Study 3. This meant that participants received a one-hour training session 

before returning for their experimental data collection on a second day that was within 72 

hours of their training day.  

The supported research questions and hypotheses for Study 3 sought to answer the 

main objectives of the dissertation and are reviewed below.  
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Research Question 1: Can cognitive workload modeling inform design decisions 

in AA systems?  

Ha1: Effective cognitive workload modeling will reflect changes that occur as 

LOAs vary within AA systems.  

Research Question 2: Do cognitive workload predictions forecast future 

performance in AA systems? 

Ha2: Cognitive workload measures can be used to predict future performance in 

AA systems.  

 Research Question 2a: Will unintended (or unanticipated) design 

consequences of AA systems emerge in the form of changes in performance?  

 Ha2a: Unintended (or unanticipated) design decisions of AA lead to 

performance changes.  

B. PILOT DATA 

A pilot study was not conducted for Study 3. Changes to the execution of Study 3 

included the elimination of fNIRS data collection and the mid-point break for eye 

tracking calibration. Because the execution of the rest of the study remained consistent 

with the first two studies, the researchers decided that a pilot study was not necessary for 

any data analysis ahead of Study 3. 

C. PARTICIPANTS 

1. Selection 

The NPS IRB approved the research methods used for this study. There were no 

changes to the inclusion and exclusion criteria for this study. Participants were recruited 

across the NPS campus as in Studies 1 and 2. Consent forms were updated to reflect the 

changes in the conditions that were being investigated in Study 3. No participants that 

were enrolled in Studies 1 or 2 were eligible to participate in this study due to the 

exclusion criteria.  
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2. Demographics 

Forty-three participants were enrolled in Study 3, with 40 participants completing 

the study (mean age in years=34.18, SD= 4.90). Participants included 29 males and 11 

females. Of the 40 participants, 39 were in the military (8 in the U.S. Army, 10 in the 

U.S. Navy, 13 in the U.S. Marine Corps, 5 in the U.S. Air Force, 3 in foreign militaries, 

and 1 Department of the Navy civilian). The military participants’ military occupational 

specialties again ranged from operations to operational sustainment. All participants were 

graduate students or employees at NPS. The rank breakdown of military participants is 

depicted in Table 14. The participants’ time in service ranged from 5 to 25 years of 

service (M=11.99 years, SD=5.52). All participants met the screening criteria listed in the 

inclusion and exclusion criteria.  

Table 14. Study 3 participants’ military rank.  

Participant Rank Number 
E-7 1 
O-3 18 
O-4 16 
O-5 4 
Civilian 1 
Total 40 

 

D. MATERIALS 

The only major change in the materials used for this study was the elimination of 

the NIRSport system. Because no statistically significant differences were found between 

experience groups, workload conditions, or levels of automation in the first two studies, 

fNIRS analysis was omitted for Study 3. The remaining configuration, materials, and 

workstation were the same used in Studies 1 and 2.  

variables 
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1. Independent Variables 

The two independent variables manipulated in this study were workload and 

tracking condition. Presentation of the workload and tracking levels were 

counterbalanced to account for order effects. The conditions used in Study 3 are shown in 

Figure 54. All participants were presented with both low and high workload conditions 

using McCurry et al.’s (2022) proposed task distribution. Participants were randomly 

assigned to one of the four groups shown in Figure 54. 

 

Figure 54. Study 3 conditions.  

The researcher again assigned tasks throughout the scenarios in accordance with 

the parameters in Table 15.  
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Table 15. Study 3 MATB-II system settings for each condition.  

 System 
Monitoring 

Tracking Communications Resource 
Management 

Low 
Workload 
(Manual 

Tracking) 

11 Events Low Joystick 
Response 

 
High Update 

Rate 

3 Events 1 Pump Failure 
 

1 Pump Shutoff 

Low 
Workload 

(Auto 
Tracking) 

11 Events Automatic 3 Events 1 Pump Failure 
 

1 Pump Shutoff 

High 
Workload 
(Manual 

Tracking) 

20 Events Low Joystick 
Response 

 
High Update 

Rate 

12 Events 10 Pump Failures 
 

10 Pump Shutoffs 

High 
Workload 

(Auto 
Tracking) 

20 Events Automatic 12 Events 10 Pump Failures 
 

10 Pump Shutoffs 

 

2. Dependent Variables 

Study 3 used the same dependent measures as Studies 1 and 2 except that fNIRS 

data were not collected. The measures collected included the following. 

 Performance metric: MATB-II FOM score.  

 Subjective workload: CSWAG and NASA-TLX.  

 SA rating: SART. 

 Physiological metrics: Eye tracking and heart rate.  

E. PROCEDURE 

1. Participants 

Participants enrolled in Study 3 completed the same training progression as the 

experienced participants in Studies 1 and 2. Prior to beginning their experimental trial 
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runs, participants were given the same instructions as participants in Study 2 that 

reminded them that they would experience the TRACK task in both “MANUAL” and 

“AUTO ON” modes. The researcher then instructed the participants to recall their 

training to determine when the TRACK task was in those different modes. Participants 

also were reminded that the MATB-II reference sheet was available to them to assist with 

remembering how to determine the TRACK mode. The key difference in Study 3 was 

that participants conducted the experimental run in one 20-minute trial instead of two 10-

minute trials. This approach was used to investigate the effects of dynamically changing 

levels of automation without interruption from any recalibration or changing simulation 

scenarios. All participants experienced low and high workload conditions with manual 

and auto tracking for each condition.  

2. IMPRINT Modeling 

The researcher constructed four IMPRINT models that reflected the scenarios to 

be presented in Study 3. The models for Study 3 were built from the models used in 

Studies 1 and 2, because they used the same MATB-II event files. These models were 

updated to reflect the accurate timing execution of the COMM and TRACK task. The 

researcher developed IMPRINT models using default anchors provided by the system to 

generate one set of models. The researcher-derived task network diagram for Study 3 is 

shown in Figure 55.  
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Figure 55. Study 3 IMPRINT researcher-derived task network diagram. 

The same resource-interface demand values were used in Study 3 as were used in 

Studies 1 and 2. The research-derived IMPRINT-predicted time average workload values 

for each group’s segments and total trials are listed in Table 16. The researcher-derived 

IMPRINT model workload graphs for Group 1–4 and their corresponding external event 

triggers are contained in Appendix I.  

Table 16. Study 3 researcher-derived time-weighted predicted workload 
values.  

Group Low 
Manual 

Low 
Auto 

High 
Manual 

High 
Auto 

Total 

1 40.55 11.70 41.54 25.25 26.51 
2 40.31 14.34 43.48 21.12 27.41 
3 40.20 11.81 42.35 24.29 28.37 
4 39.95 14.92 41.29 20.61 28.15 
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An additional set of models was developed using the expert feedback received for 

Studies 1 and 2. The key difference between the researcher-derived models and the 

expert-derived models was the inclusion of auto TRACK task with its associated 

workload requirements based on the expert feedback. The task network diagram 

reflecting the experts’ inputs with the auto TRACK task is shown in Figure 56. The 

expert-derived IMPRINT model graphs for Groups 1–4 and their associated external 

event triggers are contained in Appendix I. 

 

Figure 56. Study 3 IMPRINT expert-derived task network diagram.  

The expert-derived IMPRINT-predicted time average workload values for each 

group’s segments and total trials are listed in Table 17.  
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Table 17. Study 3 expert-derived time-weighted predicted workload values.  

Group Low 
Manual 

Low 
Auto 

High 
Manual 

High 
Auto 

Total 

1 40.00 12.89 41.58 23.79 28.72 
2 40.33 13.35 42.05 21.95 29.03 
3 40.03 13.41 42.38 22.86 29.02 
4 40.71 14.31 41.70 22.14 28.71 

 

The predicted workload values were similar for both the researcher-derived and 

expert-derived models. In both instances, workload predictions followed the patterns seen 

in Studies 1 and 2 with higher workload conditions being associated with higher 

forecasted levels of workload. Additionally, the expert-derived workload predictions 

were slightly higher due to the inclusion of monitoring demands present during the auto 

TRACK task.  

F. RESULTS 

Data results were gathered in the same manner as in the first two studies using 

.xdf files created using LSL. Subjective and performance metrics were also included in 

the analysis. A mixed-effects model approach was used to analyze the data with JMP 

version 16.0.0. Fixed effects included workload level and automation condition. Analysis 

of transition periods was conducted with the addition of communications event timing to 

the model. Included as a random effect, participants were nested within groups. There 

were no statistically significant differences between group conditions for any of the 

collected measures. These results indicate that there was no effect of presentation order 

between the groups, and therefore order is not included in the summary results listed in 

Table 18. No participant data were excluded due to extreme values after analyzing 

residual plots for each modeled measure.  
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Table 18. Study 3 summary results table. 

Measure 
Category 

Measure 
Type 

Dependent 
Measure 

High vs. 
Low 

Workload 

Tracking 
Mode 

Performance 
MATB-II 

FOM 
Composite 

FOM 

High 
workload -> 
lower FOM 
𝒑 ൏.𝟎𝟎𝟏* 

Manual 
Tracking -> 
lower FOM 
𝒑 ൏.𝟎𝟎𝟏 ∗ 

Psycho-
physiological 

HRV Mean HRV 
 

𝑝 ൌ .087 

Manual 
Tracking -> 
lower HRV 
𝒑 ൏.𝟎𝟎𝟏* 

Pupil 

Mean Right 
Pupil 

Diameter 
𝑝 ൌ .467 𝑝 ൌ .410 

Mean Left 
Pupil 

Diameter 

Low 
Workload-> 

smaller 
diameter 
𝒑 ൌ.𝟎𝟏𝟏* 

𝑝 ൌ .627 

Subjective 
Workload 

CSWAG 
Mean 

CSWAG 

Low 
Workload -> 

lower 
CSWAG 
𝒑 ൏.𝟎𝟎𝟏* 

Lower 
CSWAG in 
Auto Track 
𝒑 ൏.𝟎𝟎𝟏* 

NASA-TLX 
NASA-TLX 

Rating 

Low 
Workload-> 
lower rating 
𝒑 ൏.𝟎𝟎𝟏* 

Manual 
Mode -> 

lower rating 
𝒑 ൌ.𝟎𝟏𝟐* 

Situation 
Awareness 

SART SART Rating 

Low 
Workload-> 

higher 
rating 

𝒑 ൏.𝟎𝟎𝟏* 

Manual 
Mode -> 
higher 
rating 

𝒑 ൌ.𝟎𝟏𝟐* 
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Participants had lower FOMs in the high workload condition than the low 

workload condition (M=94.02, SD=2.88, SE=0.32 vs. M=95.25, SD=2.76, SE=0.30). 

This pattern was also present in the manual TRACK condition compared to the auto 

TRACK condition (M=94.09, SD=2.71, SE=0.30 vs. M=95.19, SD=2.96, SE=0.33). 

These results are shown in Figure 57. There were no statistically significant differences 

between FOMs in the 30 seconds before and after a system state transition.  

  

Figure 57. Study 3 FOMs by workload conditions (left) and tracking 
conditions (right). Error bars denote the standard error.  

There were no statistically significant differences in mean HRV R-R intervals 

between workload levels in Study 3. However, Figure 58 shows the difference between 

mean HRV R-R intervals in the auto TRACK condition compared to the manual TRACK 

condition was statistically significant (M=845.23 milliseconds, SD=120.96, SE=13.52 vs. 

M=833 milliseconds, SD=121.09, SE=13.53).  
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Figure 58. Study 3 mean HRV R-R interval by TRACK condition. Error bars 
denote the standard error.  

There were no statistically significant differences in mean pupil diameters 

between TRACK conditions. However, there was a statistically significant difference 

between mean left pupil diameters in the low and high workload conditions as seen in 

Figure 59 (M=3.45mm, SD=0.93, SE=0.10 vs. M=3.40mm, SD=0.89, SE=0.09).  
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Figure 59. Study 3 mean left pupil diameter in millimeters by workload 
condition. Error bars denote the standard error.  

Figures 60 depicts progressively larger pupil diameters in the five seconds 

preceding and following a communications event for left pupil 𝐹ሺ1, 277ሻ ൌ 5.70,𝑝 ൌ

0.02 (M=3.31mm, SD=0.86, SE=0.07 vs. M=3.36mm, SD=0.88, SE=0.07) and the right 

pupil 𝐹ሺ1, 277ሻ ൌ 8.70,𝑝 ൌ .003 (M=3.46mm, 0.94, 0.07 vs. M=3.51mm, SD=0.96 

,SE=0.08).  
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Figure 60. Study 3 mean left (top) and right (bottom) pupil diameters in 
millimeters by communications event timing. Error bars denote the 

standard errors.  

Left pupil diameter differences in the same five second window were statistically 

significant between own and other ship communications as seen in Figure 61. This 

relationship was not statistically significant with right pupil diameters. 
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Figure 61. Study 3 mean left pupil diameter differences in millimeters 
between own and other radio transmissions in the 5 second window before 
and after a communications event. Error bars denote the standard errors.  

There were statistically significant differences in both pupil diameters at the 5, 15, 

and 30 second windows surrounding a system transition. Study 3’s mixed-effects model 

statistical results are listed in Table 19.  

 

 

 

 

 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



149 

Table 19. Study 3 pupil diameters before and after a system state transition.  

Transition 
Window 

Left Pupil Right Pupil 

TRACK 
Mode 

Pre-Post 
Transition 

Event 
Duration 

Workload 
Condition 

TRACK 
Mode 

Pre-Post 
Transition 

Event 
Duration 

Workload 
Condition 

5 0.02* 0.0001* 0.26 0.13 0.02* 0.12 

15 0.002* 0.001* 0.35 0.07 0.0004* 0.99 

30 0.01* 0.01* 0.56 0.05 0.006* 0.84 

60 0.04* 0.10 0.78 0.001* 0.08 0.80 

90 0.26 0.42 0.58 0.001* 0.37 0.43 

120 0.16 0.57 0.56 0.002* 0.73 0.57 

 

Mean CSWAG differences were statistically significant between both workload 

and tracking conditions as seen in Figure 62. Low workload resulted in lower reported 

CSWAG percentages than in the high workload condition (M=38.79, SD=14.13, SE=1.58 

vs. M=48.75, SD=13.30, SE=1.49). Automatic tracking also resulted in lower reported 

CSWAG percentages than manual tracking (M=50.51, SD=12.37, SE=1.38 vs. M=37.04, 

SD=13.49, SE=1.51).  
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Figure 62. Study 3 CSWAG differences between workload (left) and tracking 
(right) conditions. Error bars denote the standard error.  

Additionally, the pattern of workload differences between workload and tracking 

conditions followed in the 30 second window before and after a system state transition. 

Mean reported CSWAG was lower in the low workload condition than the high workload 

condition, 𝐹ሺ1, 198ሻ ൌ 59.30,𝑝 ൏ .001 (M=40.13, SD=15.06, SE=1.37 vs. M=49.06, 

SD=14.91, SE=1.36). Mean reported CSWAG was also lower in the auto TRACK 

condition (M=38.73, SD=14.18, SE=1.29) than the manual TRACK condition, 

(M=50.46, SD=14.80, SE=1.35; 𝐹ሺ1, 198ሻ ൌ 102.31,𝑝 ൏ .001). These differences are 

shown in Figure 63. 
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Figure 63. Study 3 CSWAG differences between workload (left) and tracking 
(right) conditions in the 30 second system state transition window. Error 

bars denote the standard error.  

Post-trial situation awareness and cognitive workload ratings were collected using 

the SART and NASA-TLX, respectively. There was a statistically significant inverse 

correlation between SART ratings and NASA-TLX ratings, 𝜌 ൌ െ0.65,𝑝 ൏ .001. This 

relationship is illustrated in Figure 64.  
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Figure 64. Pairwise correlation graph for NASA-TLX and SART ratings in 
Study 3.  

G. DISCUSSION 

The following section discusses the results of Study 3. The study’s research 

questions and hypotheses are reviewed, followed by analysis of the study’s associated 

statistical results. The analysis seeks to assess the cognitive workload forecasts made in 

the cognitive workload prediction models developed using IMPRINT. Finally, the 

discussion addresses specific aspects of the adapted MLCC framework that were 

investigated in Study 3.  

1. Research Questions and Hypotheses 

Research Question 1. Cognitive workload modeling followed the results of two 

physiological measures: HRV and pupil diameter. Subjective cognitive workload 

measures were also related to the IMPRINT predictions through the CSWAG and NASA-

SART Ratings
0 10 20 30 40

N
A

S
A

-T
L

X
 R

at
in

g
s

20

30

40

50

60

70

80

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



153 

TLX results. These patterns continue the trends seen throughout this dissertation and 

support the use of these measures to validate cognitive workload prediction models. 

Validated models using this approach can then substantively inform design decisions in 

AA systems to give additional understanding of the impacts on operators’ states.  

One of the more salient findings from Study 3 was the impact of system state 

transitions throughout the trial runs. The cognitive workload prediction models provided 

workload values without consideration for the impacts of transitions on workload. As 

dynamic shifts in automation occur in AA systems, it became evident that these changes 

should be modeled to provide a more accurate representation of changes in operator 

cognitive workload.  

Ha1: Effective cognitive workload modeling will reflect changes that occur as 

LOAs vary within AA systems.  

Hypothesis 1 was supported through assessment of the time-weighted workload 

values for each LOA shift. The changes in cognitive workload modeling prediction 

values were supported in a more continuous manner with pupil diameter in the 30 second 

window surrounding a transition. Participants’ left and right pupils were smaller in the 5, 

15, and 30 seconds preceding a system state transition than they were in the same time 

window following a transition. At the 60, 90, and 120 second windows, there were no 

statistically significant differences for either pupil before and after a system state 

transition. However, there was a statistically significant difference in manual vs. 

automatic tracking at the 60 second window for both pupils. This result indicates that 

transitions in the system state in the 30 second window before and after the transition 

event contributed to increased workload. At the 60 second mark, manual tracking seemed 

to contribute to higher workload instead of the system state transition. This result 

highlights the time that it took for participants to gain in-the-loop familiarity and the 

workload resource demand cost associated with the system state transitions.  

Participants were required to use both hands when using MATB-II. Mean right 

pupil diameters were larger during the system state transition windows than the left 

pupils (M=3.52mm vs. M=3.37mm). Figure 65 depicts the differences in p-values 
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throughout the transition windows in both pupils. The differences in levels of statistical 

significance with pupil diameters at the transition windows can possibly be explained due 

to the variability in each pupils’ mean diameters. These results follow previous research 

that found that right pupil diameters were larger than left pupil diameters in surgical 

residents completing tasks that required both hands (Cagiltay & Menekse Dalveren, 

2012). Additionally, left pupil diameter has been associated with sympathetic activity in 

the autonomic nervous system (ANS), whereas right pupil diameter has been associated 

with parasympathetic activity (Burtis et al., 2014). The significant differences in pupil 

diameters in the left eye in the 5 to 60 second window may indicate sympathetic nervous 

system activation to address the increased demands during the tracking mode change. 

The differences in the right pupil from the 60 to 120 second window could indicate the 

parasympathetic response became dominant in participants when they perceived 

workload to demand fewer cognitive resources.  

 

Figure 65. Study 3 p-value differences in left and right pupils during system 
state transitions.  

Further, HRV was higher in the low workload and high automation conditions, 

suggesting that time-based measures of HRV are sensitive to changes in conditions when 

assessed over the appropriate time interval (five minutes in the case of each condition 

segment in Study 3). These results indicate that gaining in-the-loop familiarity is a 

measurable process when assessing AA systems. While AA can ultimately reduce 

workload, an unintended consequence of its introduction is a temporary increase in 
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cognitive workload as seen with the physiological and subjective results in Study 3 

(Kaber et al., 2001; Scerbo, 2008; Woods et al., 2021).  

There was no significant difference in the presentation order of the workload and 

automation conditions in Study 3. This non-finding accounted for potential order effects 

in the research design. Further, this non-finding allowed for analysis of each condition’s 

segment in the 20-minute trials. While there were differences between workload and 

automation conditions, the impacts of the transitions between them were also significant. 

Cognitive workload models must account for automation state transitions as drivers of 

workload to provide a complete picture of the cost of invoking and revoking AA 

(Goodman, Miller, & Rusnock, 2015; Rusnock & Geiger, 2017).  

Subjective cognitive workload measures used in Study 3 supported Hypothesis 1. 

Mean CSWAG values were significantly different in the 30 seconds before and after a 

condition transition. These differences indicate that participants were able to subjectively 

assess the impacts of the systems’ transitioning states. These results showed that 

experienced workload was significantly different between workload and automation 

conditions. Therefore, cognitive workload predictions must address these changes in 

cognitive workload during the transitions to give a more accurate prediction for the 

entirety of a task’s model. Additionally, NASA-TLX ratings differed with statistical 

significance in Study 3 based on the group condition. This finding indicated a potential 

recency effect as participants might have rated their experiences according to the final 

condition that they experienced (Guastello et al., 2015). Participants who ended in higher 

workload conditions reported higher cognitive workload through the NASA-TLX and 

vice versa. The use of the TLX through a continuous study, as opposed to the segmented 

approach in the first two studies appears to have addressed concerns in the timing of its 

administration for Study 3.  

Research Question 2. The MATB-II FOM results from Study 3 follow the pattern 

seen in the first two studies that show differences in workload and tracking conditions. 

However, this performance data did not differ significantly when assessed at the 

transition periods in Study 3. One potential explanation for this was that the version of 

MATB-II used in this study collected performance data every five seconds and used the 
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mean FOM over that period to provide performance scores at the end of those five second 

periods. This configuration was a limitation of the system that did not allow for a more 

in-depth analysis of the impacts on performance as LOAs changed.  

Ha2: Cognitive workload measures can be used to predict future performance in 

AA systems.  

Hypothesis 2 was partially supported with performance data in Study 3. Even 

though changes in system state conditions resulted in differences in workload measures at 

different LOAs, performance measures did not follow this pattern. Additionally, 

cognitive workload predictions were generally associated with performance results. As 

workload values increased, performance scores decreased. However, this trend was not 

present around the system state transition windows. This finding suggests that 

performance does not always directly associate with cognitive workload. For instance, 

participants could be achieving the same levels of performance, but their associated 

workload may be different based on individual factors such as experience (Guastello et 

al., 2015; Patten, Kircher, Ostlun, Nilsson, & Svenson, 2006).  

Research Question 2a. Changes in performance were not significantly different 

when analyzing the system state transition windows in Study 3. Therefore, it was difficult 

to ascertain if any changes in performance manifested as unintended consequences when 

the system state was transitioning. However, changes in objective and subjective 

surrogate measures of cognitive workload suggested times when unanticipated 

consequences of LOA shifts manifested around these transition windows. For instance, 

right pupil diameters were significantly different in the 30 seconds surrounding a system 

transition. Then, differences in the right pupil diameter were significantly different 

depending on the tracking mode. The 30–60 second transition window differences in 

right pupil diameter indicate that participants were actively addressing the system state 

change for at least 30 seconds after the transition. After this 30 second period, the system 

state, not the transition, was the main driver of experienced workload. This finding is 

important for the current effort as it highlights an unanticipated consequence of the 

dynamic shift in LOA: there will be a time cost as operators deal with the transition of 
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system states that must be accounted for in predictive workload models and ultimately, 

system design.  

Ha2a: Unintended (or unanticipated) design decisions of AA lead to performance 

changes.  

Hypothesis 2a was supported with MATB-II performance data. Participants 

performed better in the lower workload and higher automation conditions than in the 

higher workload and lower automation conditions. These results are intuitive and follow 

the pattern of statistically significant differences seen throughout the studies in this 

dissertation. These findings suggest that operators’ performance is sensitive to changes in 

LOAs. Therefore, it is important to consider LOAs to provide to an operator when 

assessed against other requirements that happen concurrently in a completion of a task.  

2. Cognitive Workload Models with AA Transitions 

The results of Study 3’s experimental analysis indicated that there were transition 

periods between AA states that needed to be modeled. These modeling efforts would help 

refine workload predictions that occur around the AA transitions using workload demand 

values provided by the default anchors in IMPRINT. Figure 66 shows an updated 

IMPRINT task network diagram for Study 3 that adds a state transition task to the model.  
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Figure 66. Refined Study 3 IMPRINT task network diagram with the state 
transition task added to the model. 

The updated MATB-II resource-interface pair cognitive workload demand ratings 

are provided in Table 20. The workload demand ratings for the system monitoring, 

tracking, communications, and resource management tasks are based on the consolidated 

expert ratings used in Study 2. These ratings were used since they included expert-

derived values for the automated tracking condition. The key difference between this the 

ratings used in Study 2 was the addition of research-derived default anchor ratings for the 

transition task. The analysis from Study 3 indicated that additional workload needed to be 

modeled at these transition points. Because the MATB SMEs interviewed for this 

dissertation did not experience transitions such as those experienced in the current effort, 

the researcher leveraged the default anchors in IMPRINT to update the model.  
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The interface interaction selected as the cognitive workload driver for the 

transition task was the operator and the crew station. The crew station was modeled as the 

whole of the interfaces the participants interacted with in MATB-II. The researcher 

selected this interface because an assumption of the updated model was that multiple 

interfaces of the MATB-II system demanded resources during the transition at the same 

time rather than one or two (i.e., not just the mouse or joystick). This demand was then 

assumed to create increased workload overall across all the interfaces. Therefore, the 

system state was modeled as an additional task that is listed at the bottom of Table 20.  

Table 20. Study 3 workload demand ratings with state transition demands 
added.  

 

RI Pair = resource-interface pair 

 

The only external event trigger modifications in this model from the one used in 

Study 2 was the addition of the three times a system state transition occurred with the 

Task: Tracking
Total Task Demand 11.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Joystick 3.60 3.90 3.80

Task: Tracking (AUTO)
Total Task Demand 1.67 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Joystick 0.00 0.67 0.00 1.00

Task: System Monitoring
Total Task Demand 7.87 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Mouse 2.40 3.30 2.17

Task: Resource Management
Total Task Demand 13.37 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Mouse 5.80 3.57 4.00

Task: Own Comms
Total Task Demand: 16.87 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Mouse 2.07 4.07 1.83
Interface: Speaker 5.00 2.07 1.83

Task: Other Comms
Total Task Demand: 6.30 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Mouse
Interface: Speaker 4.30 1.00 1.00

Task: State_Transition
Total Task Demand: 7.60 Auditory Cognitive Fine Motor Gross Motor Speech Tacticle Visual
Interface: Crew Station 1.00 1.00 2.60 3.00

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values

RI Pair Demand Values
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tracking task. Transition state event triggers occurred at the 5-, 10-, and 15-minute marks 

in accordance with the MATB-II event files. The updated IMPRINT-predicted time 

average workload values for each groups’ segments and total trials with transitions 

included are listed in Table 21. These workload values reflect increases in predicted 

workload across all conditions.  

Table 21. Study 3 updated time-weighed predicted workload values with 
differences from Study 3’s predicted values in parentheses.  

Group Low Manual Low Auto High Manual High Auto Total 

1 40.02 (+0.02) 13.69 (+0.80) 42.70 (+1.12) 28.15 (+4.36) 31.00 (+2.28) 

2 40.89 (+0.56) 13.18 (-0.17) 45.16 (+3.11) 23.89 (+1.94) 30.63 (+1.60) 

3 41.35 (+1.32) 16.40 (+2.99) 42.49 (+0.11) 24.13 (+1.27) 30.81 (+1.79) 

4 41.29 (+0.58) 14.12 (-0.19) 42.11 (+0.41) 22.17 (+0.03) 29.78 (+1.07) 

 

The results of the refined IMPRINT workload models are graphically depicted in 

Figures 67–70. The 30-second state transition periods are highlighted on each graph. 

Increases in predicted workload are seen throughout most but not all the trial runs at the 

transition periods.  
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Figure 67. Study 3 group 1 IMPRINT workload graph with state transition 

highlighted.  
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Figure 68. Study 3 group 2 IMPRINT workload graph with state transition 

highlighted.  
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Figure 69. Study 3 group 3 IMPRINT workload graph with state transition 

highlighted.  
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Figure 70. Study 3 group 4 IMPRINT workload graph with state transition 

highlighted.  

Participants’ CSWAG ratings were found to be sensitive to different workload 

and automated tracking conditions in Study 3. The composite results of all participants’ 

CSWAG ratings are overlayed on the group 1 workload prediction model in Figure 71. 

The results depict the differences in conditions and show general pattern alignment with 

the workload prediction values provided by IMPRINT. The CSWAG ratings began 30 

seconds after initiating the experimental trial, and subsequent ratings were elicited every 

minute thereafter. Additionally, CSWAG elicitations were delayed when there was a 

communications task ongoing to mitigate any confounding audio demands on the 

participant. Therefore, direct mappings to subjective workload experienced during 

communications tasks was difficult to ascertain. However, the increased pupil diameters 

seen during communications task windows highlight the workload demand spikes in the 

IMPRINT models at those specific intervals.  
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Figure 71. Study 3 group 1 IMPRINT prediction model with composite 
CSWAG values overlayed. 

3. MLCC Review 

The purpose of Study 3 was to investigate cognitive workload fluctuations in 

relation to dynamically changing LOAs. Study 3 addressed SA and response, workload, 

LOA change, and AA as parts of the adapted MLCC framework. This investigation 

allowed for assessment of cognitive workload forecasts made based on the results of the 

first two studies. Study 3’s results were consistent with the previous two studies’ 

outcomes. Participants’ performance and surrogate workload measures again differed 

between workload and tracking conditions.  

Situation awareness and participant response were inversely related to cognitive 

workload when assessed through the post-trial SART and NASA-TLX questionnaires. 

Participants reported higher levels of SA when their workload was lower and vice versa. 

These results follow previous work that highlights the dynamic relationship between SA 

and cognitive workload (Endsley, 2021; Kaber & Endsley, 2004; Wickens, 2008b). 

While increased SA may decrease experienced workload, this relationship is only truly 
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beneficial when SA is sufficiently grounded in truth to mitigate any unanticipated 

changes in regaining in-the-loop familiarity.  

Study 3 continued with the emphasis of using multiple cognitive workload 

measures to gain an understanding of an operator’s state. Time interval analysis from 

HRV data was leveraged again in Study 3. The R-R interval HRV data followed previous 

studies that showed sensitivity to this metric in a five-minute window (Delliaux et al., 

2019; Malik et al., 1996). Higher workload conditions resulted in lower HRV again in 

Study 3. These results support the continued use of HRV when assessing longer duration 

tasks within a cognitive cybernetic framework.  

Dynamic changes in LOAs lead to changes in operator state that then lead to AA 

shifts according to the adapted MLCC framework. The results from Study 3 indicate that 

these LOA changes impact an operator’s state when looking at objective and subjective 

data around the times of the automation transitions. This finding can help inform not only 

the recommended level to adjust the AA, but also the way those transitions occur. The 

transition in system state should not be done in a simple on or off manner, but rather with 

consideration for task responsibility handoffs (Rusnock & Geiger, 2017).  

The use of the adapted MLCC framework provided a bounded guide for this 

dissertation research. The inextricable relationships between key concepts such as SA, 

workload, dynamically shifting LOAs, and the delivery of AA are accounted for in this 

framework. Further, being able to assess impacts of each element on the cybernetic loop 

with continuous feedback is an effective method to generate future analysis of the 

unintended consequences of AA systems.  
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VI. DISCUSSION 

The use of adaptive automation can help decrease cognitive workload, but it also 

can unintentionally contribute to increased cognitive workload. To complicate matters, 

cognitive workload is difficult to model and measure. This is not a new issue and is in 

fact well-documented (Cain, 2007; Hancock & Matthews, 2019; Lohani et al., 2019; 

O’Donnell & Eggemeier, 1986; Vogl et al., 2020). The current effort sought to assess 

cognitive workload through predictive modeling and experimental validation. The multi-

modal approach to this research attempted to provide a more complete assessment of 

cognitive workload in AA systems. This chapter discusses the findings of this 

investigation into the emergent negative unintended consequences of AA on cognitive 

workload.  

Main findings indicate that there is a system state transition cost on an operator’s 

workload in AA systems that must be accounted for in human performance prediction 

models and system design. Additionally, human operators can suffer from negative 

unintended consequences of AA systems with improper salience as different system state 

modes are presented to them. The failure to properly detect mode changes will impact 

operator SA. While an aim of AA is to manage cognitive workload within optimal levels, 

the effect of these workload adjustments may be delayed as control transitions between 

humans and the technological system. Operators appear to suffer decreases in SA as their 

workload increases in AA systems.  

Additional findings emerged from the analysis of the three experimental studies 

and their corresponding cognitive workload models. Some of these additional research 

contributions included an analysis of different workload measurement techniques, an 

illustration of cognitive workload modeling techniques to predict future performance, and 

the role of both training and human factors considerations in system design. Research 

limitations and future work recommendations conclude the discussion.  
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A. PRIMARY CONTRIBUTIONS: ASSESSING THE UNINTENDED 
CONSEQUENCES OF ADAPTIVE AUTOMATION 

This dissertation saw multiple unintended consequences of AA emerge in Studies 

2 and 3. Adaptive automation can lead to unintended consequences (Kaber et al., 2001; P. 

Smith & Baumann, 2020; Tonn & Stiefel, 2019; Woods, 2016). This investigation 

specifically into AA’s unintended negative consequences sought to investigate some of 

these consequences as the technological landscape continues to rapidly evolve, especially 

in the aeronautical field. This dissertation effort has yielded insights to facilitate future 

research and design in this area and beyond. While AA has shown the potential to 

alleviate excessive cognitive demands on humans, the results from this work have 

highlighted considerations for modeling and implementing AA in human-machine 

systems.  

1. AA Transition Cost 

The inadvertent increase in workload when automation was introduced follows 

previous findings that more demands are placed on an operator as they manage multiple 

components of a system (Bainbridge, 1982b; Endsley, 2017a). This research highlighted 

that transitioning a system state between manual and automatic tracking modes came at a 

cost to an operator’s cognitive workload. The results from Studies 2 and 3 suggest that 

introducing higher levels of automation can increase cognitive workload for up to 30 

seconds. This phenomenon is seen in the increased mean pupil diameter and CSWAG 

ratings around the time of system state transitions.  

The introduction of adaptive automation may yield appropriate shifts in task 

allocation to facilitate manageable levels of workload. However, the act of introducing 

the automation in this manner comes with an unintended consequence of temporarily 

increasing workload and introducing unnecessary risk (P. Smith & Baumann, 2020). 

These transition-induced increases in workload can be explained through resource 

conflicts that arise in accordance with Multiple Resource Theory (Wickens, 1981, 

2008a). These workload increases need to be accounted for in both modeling and system 

design to allow for proper handoff between the operator and machine.  
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2. System Indication Salience and Mode Determination Issues with AA 
Systems 

An intended consequence of introducing AA in this research was to lower 

cognitive workload. This intent was realized through smaller pupil diameters, higher 

HRV, and decreased CSWAG ratings. While the intent of the AA was to lower cognitive 

workload, six participants in Study 2 did not experience this reduction due to incorrect 

interpretation of the system state. This emergent behavior was an indication of an 

unintended negative consequence of introducing AA. Increasing the number of system 

modes led to an increased number of mode errors. Even though training and cues were 

provided to operators to detect mode changes, they failed to recognize these changes on 

several occasions.  

Increased training in the form of additional instructions mitigated this behavior 

for the rest of the participants in Study 2. However, even after training was modified to 

include automation transitions in Study 3, 15 participants did not immediately notice the 

start of, or transition to, an automated tracking condition. While there were six overt cues 

that alerted participants to the automation’s state and additional training that allowed 

them to see and hear those cues, participants still had difficulty in noticing them. 

Resource conflict in accordance with MRT can help account for the apparent lack of 

resources to notice the change in system state (Wickens, 1981). Even though there were 

multiple overt cues, these cues may not have had sufficient salience to divert attentional 

resources away from the tracking task. This finding highlights a competition between 

salience of visual stimuli and different cues seen in previous research (Dowd & Mitroff, 

2013). Therefore, future AA systems should be designed with salience of informational 

cues as a priority to mitigate the number of system state modes that may be available to 

an operator.  

3. Delayed Cognitive Workload Management 

This dissertation highlighted an aspect of the human-technology relationship by 

identifying potential areas where AA assisted and hindered the operator. Adaptative 

automation has been described in terms of managing operator workload to an optimal 
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level. In other words, AA can increase or decrease operator workload to facilitate optimal 

system performance (de Greef & Arciszewski, 2007; Endsley, 2017a; Endsley & Kiris, 

1995; Inagaki, 2003). When operators had automation assistance, their surrogate 

workload measures were lower overall in different workload conditions.  

However, operator workload levels were not immediately reduced, but increased 

until the operator reached a level of equilibrium. This pattern suggests the importance of 

gaining in-the-loop familiarity. Further, this process represents a delay in achieving the 

intended outcome of cognitive workload management that AA systems are designed to 

provide. These delays were evident in the increased pupil sizes that were present in the 30 

seconds following a system state transition. The increased pupil sizes were possibly 

related to ANS responses. This relationship further highlights the need to provide 

appropriate time for ANS responses to complete before transition steady state operational 

control to a human or machine operator.  

4. Situation Awareness and Cognitive Workload in AA Systems 

An intended outcome of AA is to increase SA (Kaber & Endsley, 2004). Results 

from the Studies 2 and 3 indicate that participants did experience increased SA when 

their cognitive workload was perceived to be lower. However, participants reported 

decreased SA when their cognitive workload was increased. These results follow 

previous studies that demonstrated these relationships (Endsley, 2021; Wickens, 2008b).  

One unintended negative outcome with the introduction of higher LOAs is that 

SA decreases when it should increase. Results from this research indicated that 

participants reported higher SA when they were had most recently completed the tracking 

task in manual mode. This result suggests that participants were able to achieve higher 

levels of SA because they were in the system’s operational loop. This finding highlights a 

complex relationship between providing cognitive workload management to the human 

operator at higher LOAs with the potential cost of reducing SA.  

The inverse SA and cognitive workload relationship seen in this dissertation is 

particularly important when analyzing the system state transition periods. Results from 

Study 3 suggest that participants experienced increased cognitive workload for 30 
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seconds following a system state transition. So, it can be assumed that they experienced 

decreased SA around these transition windows. Therefore, AA systems should provide 

salient information at times of system state transitions until an operator can properly 

perceive and comprehend those cues to facilitate regaining SA.  

B. ADDITIONAL CONTRIBUTIONS 

1. Cognitive Workload Modeling Considerations 

The cognitive workload models seen in this dissertation were developed using the 

discrete event modeling approach provided in IMPRINT. IMPRINT has been previously 

used in numerous studies to investigate the relationship between an operator and different 

task conditions (Ernst et al., 2020; Goodman et al., 2015; Lebiere et al., 2005; Militello et 

al., 2019; Samms, 2010; Wojciechowski, 2004). This research effort yielded insights into 

using IMPRINT task network models to investigate the unintended impacts of AA on 

cognitive workload. Some of these findings included the utility of IMPRINT models, the 

process of modeling and measuring unintended negative consequences of AA systems, 

and potential improvements for future attempts to use discrete-event modeling systems to 

understand AA systems.  

a. IMPRINT Utility 

Downes and Weisberg describe a two-level approach to assessing a model’s 

representational capacity. The extent to which a model is accurate can be used to assess 

its utility (Downes, 2020). Models can be further related to their real-world target through 

investigating various components and manipulating their assigned value within different 

analyses (Weisberg, 2013). Both considerations were investigated in this research.  

First, the accuracy of the models showed representational capacity to the real-

world target when the predicted workload values were assessed against the results of the 

three experimental studies. Additionally, task workload values were manipulated in the 

model because of expert feedback, subjective cognitive workload ratings via CSWAG, 

and statistically significant differences in pupil diameter. The IMPRINT models showed 

utility by being able to incorporate multiple workload value updates. This dissertation 
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demonstrated that representative AA system task models can be developed using 

IMPRINT to provide design recommendations. 

b. AA Unintended Consequence Modeling and Measurement Process 

This dissertation used a novel modeling and simulation approach to investigate 

AA’s unintended negative consequences. The adapted MLCC framework guided the 

research efforts to investigate the impacts of how specific manipulations of MLCC 

variables affected cognitive workload. This approach was used to assess current workload 

prediction capabilities and to refine them based on validation measures gathered 

throughout the HITL studies. The results indicate that this methodology can help inform 

design decisions when appropriate modeling and measurement techniques are used.  

An important aspect of this research’s approach was the inclusion of subject 

matter expert knowledge elicitation through cognitive walk-throughs. The insights gained 

from these interviews allowed for refinement of the cognitive workload models that were 

derived from the default anchors provided in IMPRINT. The cognitive walk-throughs 

facilitated the process of verifying and validating the IMPRINT models. The 

experimental results served to validate the models and led to the discovery of transition 

effects that were not captured in the models previously. This framework highlights the 

importance of knowledge elicitation in refining the task analyses that serve as inputs to 

workload prediction modeling tools such as IMPRINT.  

The multiple iterations of cognitive workload measurement throughout the three 

experimental studies revealed metrics that were sensitive to changes in workload. In the 

end, the current research attempted to surround the truth of what cognitive workload 

looks like using objective and subjective surrogate measures. The findings support 

previous work that recommended multi-modal approaches to investigating cognitive 

workload (Aricò et al., 2016; Cain, 2007; Hancock & Matthews, 2019). The method used 

here of combining predictive modeling tools and multi-modal cognitive workload 

measurement could be applied to different domains.  
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c. Future IMPRINT Considerations 

Future research and design efforts can continue to benefit from the use of 

IMPRINT and similar tools to investigate impacts of various environments on system 

performance. While using these types of models can be informative, it is important to 

note that there are corresponding preliminary requirements that would help ensure 

successful modeling efforts. IMPRINT provides a user interface that modelers can use to 

graphically depict the flow of a task. They can define the operators and interfaces that 

will interact to accomplish the task. Further, modelers can input workload demand values 

for each interaction between the operator and a corresponding interface, while also 

determining impacts based on system reliability and success probabilities. These 

customizable parameters are numerous and can help ensure that models are developed 

with high levels of fidelity.  

One key finding from using IMPRINT in this research effort was the importance 

of ensuring proper inputs into the model’s workload demand values that resulted from the 

expert users’ cognitive walk-throughs. A future consideration would be to include 

insights from novice operators to provide insights into the spectrum of cognitive 

workload that may be experienced during a task. While there were no validating 

cognitive workload measures found when assessing experience levels in this research, 

these non-findings may have been due to the nature of the MATB-II design used. 

However, future AA system models could stand to benefit from investigation of 

experience-related workload impacts.  

IMPRINT was chosen in this research effort because its algorithm allowed for the 

investigation of the operator and system interactions together. The researcher was able to 

develop the progression of the tasks with their associated workload values. This approach 

allowed for analyzing cognitive workload through the human-system interactions that 

occurred with each event in MATB-II. Future modeling work could take the IMPRINT 

demand values and incorporate them into the processes seen in cognitive architectures. 

Used together, IMPRINT and cognitive architectures could inform how human operators 

might accomplish tasks using AA and provide resulting cognitive workload values based 

on the insights gleaned from the cognitive architectures (Lebiere et al., 2005). Both 
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human performance models (i.e., IMPRINT) and cognitive architectures (i.e., ACT-R) 

rely on events as foundational concepts. Therefore, the modeled events can be used to 

integrate IMPRINT and ACT-R, for example (Lebiere et al., 2005). This framework 

begins to mirror the process of federating distributed simulations with a communications 

architecture that supports passing data in an integrated manner. The results of such an 

integration could provide insights into different approaches of accomplishing a task and 

the corresponding predicted workload values.  

Modeling and simulation provide approaches and standards to integrating 

simulations through common architectures (Strickland, 2011). Applied to investigating 

the unintended consequences of AA, IMPRINT could provide information as to which 

tasks are being executed by the operator and ACT-R could list the actions being taken by 

the operator at the different interfaces. The two simulations could communicate over an 

architecture provided by a standard M&S protocol. The resulting information could be 

displayed to show the system state and provide an additional level of model verification 

and validation. This integration description follows Lebiere and colleagues’ proposed 

modeling and simulation integration approach for task network models and cognitive 

architectures.  

Because IMPRINT and ACT-R have shown potential for integration using M&S 

standards, future design analysis could include further integration of live, virtual, or 

constructive simulations to further assess cognitive workload impacts in AA systems. 

While the FVL platforms are still in development, their system requirements are 

established (Lacdan, 2022). Therefore, future modeling efforts using IMPRINT could be 

refined with real-time inputs from operators in a virtual simulation. These operator inputs 

could also inform the cognitive decision paths that exist in cognitive architectures. There 

exists great potential for M&S to be used in this complementary manner. The inclusion of 

multiple M&S tools could provide more robust insight into such systems as FVL where 

requirements are known, but the final materiel solution is not.  
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2. Towards Real-time Operator State Monitoring 

AA will need to rely on real-time operator state monitoring. Therefore, it is 

important to investigate multiple candidate measures and validate them for future design 

consideration and to use insights from these measures in workload prediction models to 

facilitate early design decisions and later system modifications. Pupil diameter was 

sensitive to changes in workload and tracking conditions throughout this dissertation. 

Additionally, mean R-R intervals for HRV were sensitive to the scenario conditions in 

the five-minute increments that were assessed. Both physiological measures could be 

candidates for inclusion in operator state monitoring (OSM) efforts for future Army 

aircraft (Feltman, Kelley, Bernhardt, Bass, & Morabito, 2021). However, more analysis is 

necessary to determine feasibility in operational environments (Wilkins, Feltman, & 

Aura, 2022).  

The use of fNIRS has been shown to be sensitive to changes in cognitive 

workload under certain conditions (Harrison et al., 2014; Herff et al., 2014; Scerbo, 

2008). However, results from the current research did not follow this trend. This may be 

explained by the pace of the MATB-II tasks and the lag in the PFC blood oxygenation 

level response. Other studies also have not found  PFC blood oxygenation to be an 

effective workload measure (Girouard et al., 2010). While fNIRS was not sensitive to 

changes in cognitive workload conditions in the current research, there may be 

applications of AA systems that would benefit from further investigation into changes of 

blood oxygenation in different parts of the brain.  

Additionally, the results from this dissertation can help inform design 

considerations in future flight controls. If both hands will be required for operation, pupil 

metrics might be different in each eye due to ANS activation and deactivation. This 

finding could provide clarifying information to understand a pilot’s cognitive workload 

through surrogate eye measures when accomplishing tasks that require both hands being 

engaged by the operator. Further investigation into different areas of the brain with 

fNIRS or EEG that are associated with ANS responses could help provide more 

understanding of the pupil size differences in each eye around the system state transition 

windows. 
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The results from the current effort support the inclusion of certain metrics to 

gauge operator cognitive workload. It is important to note that these measures can be 

leveraged to detect both increases and decreases in task demands to keep operators in the 

band of optimal workload. In other words, reducing workload should not be the only aim 

of introducing AA into a system.  

3. Training and Human Factors Considerations 

This research effort sought to investigate the effect of experience on MATB-II 

performance. Two training progressions yielded novice and experienced participants in 

the first two studies. While there were no statistically significant differences in cognitive 

workload surrogate measures between the two experience groups, experienced 

participants performed better on the MATB-II. Future work should include this type of 

analysis to account for the varied levels of experience that might interact with any system 

(Dreyfus, 2004; Hutton & Klein, 1999).   

Human factors engineering considerations derived from this research included the 

impacts of intended and unintended consequences of AA on cognitive workload and 

performance. Study 1 demonstrated that there were increased pupil diameters, decreased 

HRV, and increased CSWAG ratings in a manually completed MATB-II task. 

Additionally, performance scores were lower in a manually completed MATB-II 

scenarios. The introduction of automation in Studies 2 and 3 represented improved HFE. 

Pupil sizes were smaller, HRV increased, and CSWAG ratings were lower when 

participants had automated assistance in the tracking task. While those measures all 

indicated a lower cognitive workload in the current design, they should not be used to 

make design decisions independent of other variables such as performance, SA, decision-

making, or fatigue to name a few.  

C. LIMITATIONS 

The experimental studies in this dissertation each had a few threats to validity and 

limitations that should be considered. The experimental studies were limited to a 

laboratory setting where many potential confounding effects were controlled. While this 

setting allowed for the collection of a rich data set, this approach should be investigated 
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in more operational settings using the same psychophysiological measures. Additionally, 

this dissertation leveraged a multi-attribute task battery that replicated aspects of flight to 

investigate cognitive workload rather than an actual flight task. The design used in this 

dissertation could be applied to more high-fidelity flight tasks to support different levels 

of analysis into AA.  

The study samples used in this effort included predominantly mid-career military 

officers in graduate school. This population demographic is certainly unique and different 

than those of other settings that rely on either specific population sampling or more 

varied participation (i.e., military aviators or civilian undergraduate students). However, 

being able to investigate AA’s unintended consequences with this population helped 

provide insight for future military system development. Although the study’s scope was 

limited in this regard, the modeling and validation methodology used could be beneficial 

in different populations.  

The modeling of the task was limited due to the lack of experts on the MATB-II 

task used in this study. Additionally, the small number of experts that provided feedback 

for the MATB-II task analysis threatened the validity of the model predictions and thus 

the models’ outputs. While the expert-derived workload demand values were close to the 

default anchors provided in IMPRINT, further elicitation of workload demand values 

would be necessary to provide more refined models.  

MATB-II afforded investigation of dynamically changing LOAs. However, this 

investigation was limited and did not allow for the full exploration of all LOAs. Further, 

the FOM data were aggregated at longer time intervals than all the physiological 

measurement devices. This time difference did not allow for higher fidelity comparison 

of performance and objective surrogate measures of cognitive workload.  

D. DESIGNING FOR THE FUTURE 

Technology will continue to evolve at a fast pace to meet growing requirements in 

changing environments, many of which are not yet known (Hollnagel & Woods, 2005). 

Therefore, it is critical to include human considerations when modeling and predicting 

what these future operational environments might be. These considerations are perhaps 
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some of the only opportunities to evaluate system design in systems and environments 

that have not been realized yet. Early modeling and simulation efforts can help inform 

system acquisition processes. Therefore, it is important to have informed models that 

attempt to address potential issues.  

Future Vertical Lift platforms are being developed with candidate technologies 

that will support the management of operator cognitive workload. Two of these 

technologies include heart rate and eye tracking. While there will be limitations on the 

number of technologies that can be included into a system due to competing resource 

demands, eye tracking and heart rate monitoring are two strong candidates to assess 

cognitive workload. The results from this dissertation support the inclusion of these 

capabilities to gather operator state data to inform the use of AA. Both heart rate and eye 

tracking metrics can be gathered in minimally intrusive ways and potentially through 

existing or soon to be fielded systems (Roth, Klein, Sushereba, Ernst, & Militello, 2022).  

E. NEXT STEPS 

The results of this dissertation highlighted numerous areas that would benefit 

from follow on studies. Future work should include further analysis of differences in 

physiological measures as objective means to assess cognitive workload in context. The 

use of fNIRS analysis in this effort did not yield significant results. However, future 

studies should continue to explore the use of this technology in different environments to 

assess the conditions in which these data might provide substantive information. 

Additional fNIRS analysis on the current data set could investigate any differences in 

specific channels to determine if specific areas of the PFC are sensitive to the rapid 

changes seen in the MATB-II scenarios.  

HRV and pupil diameter appeared to be the most sensitive physiological measures 

in this research. Pupil diameter showed to be a consistent measure of cognitive workload, 

and future studies should continue to develop methods to capture this metric in various 

environmental conditions. Much of the future of adaptive automation rests with being 

able to have physiological inputs from the human operator be analyzed for action by a 

larger system (Ayaz et al., 2012; Parasuraman, 2003; Rusnock & Geiger, 2017). It is, 
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therefore, imperative that the use of these measures be refined to provide quality signal 

from noise to properly advise systems of the future. Further analysis of saccades and 

fixations in relation to the current study could yield additional insights into unanticipated 

consequences of adaptive automation.  

The investigation of the relationship with SA and cognitive workload warrants 

more investigation. While individual SA and cognitive workload were key considerations 

in this study and many others, the relationship between those two variables in a team 

setting warrant study as well. Smith and Baumann (2020) posit that team SA can suffer as 

an unintended negative consequences of AA. Therefore, applying the modeling and 

experimentation approach used in this research effort to a team setting (human-human 

and human-autonomy teams) could lead to an informative area of inquiry.  

This research supported growing efforts to examine the effects of adaptive 

automation on operator workload and system performance using modeling and simulation 

tools. The resulting output of this effort yielded a model of cognitive workload that 

incorporates psychophysiological measurements, subjective measures, and performance 

data when operators execute tasks using adaptive automation. Combining data derived 

from IMPRINT’s visual, audio, cognitive, and psychomotor (VACP) workload values 

and then comparing those data with performance results from an HITL study using 

physiological and subjective measures can assist in making operator workload modeling 

more robust. Performance metrics also served as a point of analysis to determine the 

relationship between objective and subjective workload measurements. This research 

effort also contributed to the Army’s HSA-DM efforts in support of FVL to determine 

cognitive workload drivers and analyze their impacts on system performance. The results 

from this effort will support design considerations for adaptive automation across 

domains to address cognitive workload throughout a system’s operation.  

F. CONCLUSION 

This dissertation sought to investigate the negative unintended consequences of 

AA on cognitive workload through leveraging modeling and simulations. Adaptive 

automation can introduce inadvertent drivers of cognitive workload. Human performance 
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modeling can forecast these increases in cognitive workload when appropriate tools and 

complementary methods are used. These modeling predictions can be strengthened when 

assessed against objective and subjective measures. Further, human performance 

modeling can help inform early AA system design to ensure task demands are accounted 

for properly. These considerations can help facilitate appropriate total systems integration 

as new technologies are realized.  

There exists a great opportunity to include the considerations of AA on operator 

workload in the Army’s FVL program and beyond. While the nature of work will 

continue to transition to more automation-assisted activity, there will remain the impetus 

to ensure that human capabilities and limitations are identified, addressed, and accounted 

for through dynamic levels of technology integration. Introducing AA cannot be a simple 

on or off mechanism. Rather, the relationship that must exist between the human and the 

machine require seamless transitions that will develop over time rather than discretely. 

Let us then endeavor to ensure that those transitions take us further and faster into the 

future as intended.  
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APPENDIX A. EXPERIMENTAL MATERIALS AND METHODS 

A. EQUIPMENT SPECIFICATIONS 

The specifications for the equipment used in the studies were: 

 1 x MSI GE66 Raider gaming laptop computer, running Windows 10 

Enterprise, with an Intel 11th Generation Core i9 processor at 3.30Ghz 

and 32.0 GB RAM.  

 1 x Acer H227HU 27-inch LCD flat panel display, connected to the main 

laptop computer via an HDMI cable. This external display was kept at a 

resolution of 1400x900 pixels to provide the largest possible display of 

MATB-II in the screen. 

 1 x Logitech G-Extreme 3D Pro USB Joystick.  

 1 x Dell KB813 USB Keyboard.  

 1 x Dell N231 USB Optical Mouse.  

 1 x NIRx NIRSport wearable, multi-channel neuroimaging system with an 

8-light source/8-light detector configuration with 3cm source-detector 

separation, using a preconfigured NIRx prefrontal cortex headband. This 

configuration consisted of 21 data channels across the anterior prefrontal 

cortex (Giles et al., 2017). The NIRSport system collected data at a 

7.81Hz sampling rate.  

 1 x Pupil Labs Core head-worn eye tracking system connected via USB-C, 

with a 200Hz eye camera sampling frequency and up to 120hz@480p 

scene camera sampling frequency.  

 1 x Polar H10 chest-worn heart rate monitor, with a 130Hz sampling 

frequency.  
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 1 x Apple iPad, 9.7,” Model Mp2H2LL/A, running iOS version 10.3.3.  

 Lab Streaming Layer (LSL), version 1.14.  

 Lab Streaming Layer Keyboard/Mouse connector application or Windows, 

version 1.15.0.  

 Pupil Labs Capture, version 3.5.1.  

 NIRx NIRStar, version 15.3.  

 NASA MATB-II, version 3.5, presented in color inverse mode (black 

background) to allow for analysis using the Pupil Labs Core.  

 NASA-TLX mobile application, version 1.0.2.  

 PolarBand2LSL Bluetooth to LSL software connection.  

 GNU Image Manipulation Program (GIMP), version 2.10.32. 

 Apriltags visual fiduciary system markers, Tag 36h11. The researcher 

created a solid blue background with four Apriltags placed at the corners 

of the MATB-II window using the GIMP image editor. MATB-II was 

opened on the same centered spot on the monitor every time, with the 

Apriltags appearing on the corners of the MATB-II window as seen in 

Figure 20. This setup allowed for redundant eye tracking calibration and 

post hoc analysis.  

 The Improved Performance Research Integration Tool (IMPRINT), 

version 4.6.60.0.  

B. MATB-II REQUIREMENTS 

Participants were instructed to ensure that the F5 button remained illuminated as 

green by clicking on the F5 should the square turn black. Similarly, participants were to 

ensure that the F6 square stayed black by clicking on the F6 square when it turned red. 
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For the F1-F4 sliding scales, users must ensure that the three dark blue rectangles do not 

deviate in their movement past the center point. An indicator arrow appeared next to the 

F1-F4 text, indicating that the scale moved out of tolerance. Participants had to click on 

the F1-F4 column (matching to the slider that is out of tolerance). Participants had to 

identify deviations in the F1-F4 columns within 15 seconds and light changes in F5-F6 

within 10 seconds. If participants did not click on these indicators, it was counted as a 

failed task.  

Participants interacted with the tracking task through a joystick when the TRACK 

task was set to manual mode. The TRACK task can also be set to automated where the 

operator is only responsible for monitoring the status of the tracking status (automated or 

manual). For Study 1, the TRACK task remained in manual mode. The center reticle 

illuminated to dark blue when in manual mode and light blue when in automated mode. 

There was also an audio tone alert that signaled any changes to the state of the TRACK 

task’s automation level. Additionally, the text data in the TRACK task window provided 

data of position, velocity, and refresh rates when in manual mode. These data were 

reduced in automatic tracking mode. Participants were responsible for keeping the reticle 

in the center of the TRACK display. Participants could determine when they will be 

required to manually control the TRACK by identifying when the green bar was present 

on the scheduling window.  

The COMM task can use up to 80 different audio clips to simulate radio traffic. 

Operators had to monitor for their callsign (NASA 504) and use their mouse to change 

the frequency of one of the four directed radio channels. Different voices are used, and 

time intervals for radio calls were configured ahead of time. Like the TRACK task, 

operators could determine when they would be required to respond to the COMM task by 

looking at the scheduling task. However, the green bar represents a period when radio 

traffic will come through, not necessarily that all communications traffic will be directed 

at their aircraft.  

The RESMAN task required participants to interact with a series of fuel tanks and 

pumps to keep two main fuel tanks (A and B) at volumes around 2500. Fuel level 

indicators directly below tanks A and B displayed red numbers if the fuel levels were 
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outside of +/- 500. Pumps C and D could hold volumes of 2000 and tanks E and F could 

hold an unlimited amount of fuel. Pumps 1–8 have different flow rates that the researcher 

set ahead of time using the default configuration file. The window directly to the right of 

the RESMAN task showed the fuel flow rates of each pump. When a pump was activated 

by a participant clicking on it, it would turn green. When a pump turned red, it was 

inoperable and could only be automatically fixed by MATB-II. These inoperable and 

fixed statuses were randomly pre-programmed by the researcher. Participants had to wait 

for the pump to turn black, signifying it had been fixed, before they could re-engage it. 

The RESMAN task window provides levels of fuel and their deviations from the 2500 

fuel volume level. Additionally, participants were able to view the flow rates of the 

activated pumps to guide their strategy in accomplishing the RESMAN task.  

C. EXPERIMENTAL PROCEDURES 

The researcher welcomed the participants to the lab and oriented them to the 

experimental site. Participants were then given a consent form, and the researcher 

answered any resulting questions. Once participants signed the consent form, they 

completed the demographic questionnaire. This sequence served to identify any 

participants who met exclusion criteria. The researcher then discussed the subjective 

assessments (CSWAG and NASA-TLX) that were going to be collected. Participants 

received instructions on reporting their workload values every minute during the trial 

runs using CSWAG. They were also given a quick reference guide to help them report 

their workload assessments appropriately. Each of the psychophysiological measurement 

devices were displayed, and the researcher described them and their uses to the 

participants.  

Next, participants then watched a NASA-produced training video on MATB-II 

and were provided a corresponding quick reference guide that was available for the 

duration of their time in the study room. Upon completion of the training video, 

participants began part-task training using MATB-II. Participants trained on each task 

(SYSMON, TRACK, COMM, and RESMAN) separately, and each training scenario 

lasted one minute. Once the part-task training was complete, participants completed a 5-
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minute MATB-II practice session in a low workload condition (see Table 3) with all four 

tasks active. This training progression served as the training baseline for both novice and 

experienced operators in the study.  

Upon completion of MATB-II training, the participants were instrumented with 

the three psychophysiological measurement devices. Participants received the Polar H10 

heart rate monitor and were given instructions on how to moisten the leads on the chest 

strap. Further, participants had access to an instructional diagram that was posted in the 

private changing room in the HSIL. Participants returned to the main study site in the 

HSIL where the researchers ensured that the Polar2LSL application was connected to the 

heart rate monitor and sending data to the computer via Bluetooth in a Python 

environment.  

Upon verification of the Polar H10 communicating with the collection system, 

members of the research team placed the fNIRS headband on the participant. The NIRx 

headbands were placed and centered on the participants’ foreheads between the left and 

right pre-auricular regions in accordance with international 10–20 standards (Pinti et al., 

2015). The researcher then calibrated the fNIRS device using NIRSTAR version 15.3 to 

validate proper setup of the fNIRS headband. Default values provided by NIRx in their 

software were used throughout the study to maintain consistent collection. If the 

calibration resulted in acceptable or better results (as provided by the NIRSTAR 

software), then the next system calibration steps commenced. If the calibration was not 

successful, then the researcher restarted the software and adjusted the NIRSport headband 

prior to running another calibration sequence to satisfactory levels. 

The participants then placed the Pupil Labs Core system on their heads with the 

assistance of the research team to ensure proper fit and comfort. Participants were then 

invited to move up to a comfortable position in their chair so that they would be able to 

have the joystick, keyboard, and mouse within reach and have the screen in view. The 

researcher then instructed the participants to maintain a stationary position as the eye 

tracker calibration would happen next. Participants then completed the eye tracking 

calibration using the Pupil Capture software by moving their eye to five points on the 

screen. The center dot within the calibration circle that they fixated on turned from red to 
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green in each position when the eye was properly registered. If participants did not 

successfully have their eyes calibrated to the screen, the researcher would examine the 

placement of the glasses on the participant and adjust the eye cameras so that each eye 

was recognized by Pupil Capture. Participants would then complete the calibration again, 

with this process being repeated until the software confirmed the participants’ eye 

location. Once eye calibration was complete, the researcher locked the eye model toggle 

for each participant in Pupil Capture to account for potential drift or movement of the 

physical eye tracking system. The resolution of the eye cameras was set at 400 x 400 

pixels based on the Pupil Labs Core User Guide (2022) and at the recommendation of a 

U.S. Army Aeromedical Research Laboratory (USAARL) vision scientist with previous 

experience using Pupil Labs (C. Aura, personal communication, August 18, 2022). The 

process of calibrating the system, locking the eye model, and setting the resolution at the 

recommended level was completed to account for differences in right and left pupil 

diameters found in pilot testing. While the pupil sizes fluctuated at the same rate, they 

were not equal diameters. Lighting conditions were held constant with the use of one 

lamp positioned behind the experimental station to provide ambient light and mitigate 

light artifacts from being directly in front of the participants. This setup was established 

to reduce detected light noise by the eye tracker and the fNIRS headband.  

Once all three of the psychophysiological measurement devices were set up, the 

researcher opened Lab Streaming Layer and selected each of the modalities that were to 

be collected during the trial run. These modalities included the NIRSport, Pupil Labs 

Core, Polar H10, mouse position, mouse click, and keyboard entries. The keyboard 

entries also served as the definitive time start marker when analyzing the synchronized 

data. The researcher began recording on LSL and then instructed the participants to relax 

for one minute while pre-trial psychophysiological baselines were collected. Once the 

baseline period was complete, the researcher reminded the participants of the CSWAG 

instructions.  

The researcher opened the MATB-II application, and then selected the trial run 

for the participant based on their assigned condition. Participants were instructed that to 

begin their trial, they would use the keystroke of Control + S. This keystroke entry would 
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display a prompt for the participant asking if they were ready to begin MATB-II. When 

they were ready, participants pressed the Enter key on the keyboard. The release of the 

Enter key served as the marker for when the trial started and allowed for a common 

starting point for data analysis. They were also instructed that when the scenario was 

over, they would need to press, and release Enter once more to close out MATB-II. 

Participants then executed the instructions for MATB-II and completed their first ten-

minute trial run in either the low or high workload condition.  

Once the first trial was complete, participants conducted an additional eye 

tracking calibration. Then, the researcher loaded the second MATB-II trial in accordance 

with the participant’s assigned trial condition. Participants were reminded that their 

CSWAG data would be collected again and that the keystrokes used in the first trial were 

the same. Barring any questions, the researcher initiated a new LSL recording in the same 

sequence as the first trial run. The participants were instructed to begin the second trial 

with the same keystrokes they used previously. Once participants were complete with 

their second trial, the researcher instructed the participants to rest for one minute. The 

researcher then saved and stopped the data collection. Participants were asked to remove 

the fNIRS headband and eye tracker and hand the devices back to the researcher.  

Next, the participants completed the NASA-TLX and the SART. Participants 

were given an iPad with the NASA-TLX application. They first conducted pairwise 

comparisons to establish workload rating weights. Participants then completed the 

assessment of their workload using the six scales listed in the NASA-TLX. When the 

participants were complete with providing their ratings in the NASA-TLX application, 

the researcher took the iPad and handed them a paper copy of the SART along with a 

pen. Participants were instructed to refer to the instructions on the SART and to complete 

the questionnaire as it pertained to their experience completing the MATB-II trials.  

The participants were then directed to the private changing room to remove the 

Polar H10 device. Once they returned to the study room, the researcher informed the 

participants that they had completed the study and thanked them for their participation. 

The researcher asked the participants to not discuss the study with others and that results 

would be available to them later upon publication of this research effort.  
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APPENDIX B. RECRUITING FLYER 

 

Figure 72. Recruiting flyer. 

  
 

Research Volunteers Needed! 
 

The Naval Postgraduate School’s Modeling, Virtual Environments, and Simulation 
(MOVES) Institute is seeking volunteers to participate in a research study to observe 
the impacts of cognitive workload when interacting with adaptive automation. The study 
aims to assess the impacts of adaptive automation’s unintended consequences through 
a series of studies using a simulated flight task. No flight experience required.  
 
You will participate in two sessions within 72 hours of each other. Each session 
will last approximately one hour in order to capture objective and subjective 
measures of cognitive workload.  
 
We invite and welcome all NPS Staff, Faculty, and Students to participate in this study. 
The end state is to assess ways of measuring cognitive workload in real-time when 
using adaptive automation. Additionally, the research seeks to provide design 
recommendations to one of the US Army’s Future Vertical Lift Program subsidiary 
efforts, the Holistic Situational Awareness and Decision Making (HSA-DM) Program. 
 
All volunteers must meet the following criteria:  

- At least 18 years old 
- Visual acuity within service standards (20/20 corrected) 
- Not wear bifocal, trifocal, or beyond glasses 
- Not wear corrective lenses that have near infrared blocking coating 
- Not be red-green colorblind 
- Not have experience using NASA’s Multi-Attribute Task Battery 

 
To sign up or for more information, please contact LTC Charles Rowan at 
charles.rowan@nps.edu.  
 
Points of Contact: If you have any questions or comments about this research, or you 
experience an injury or have questions about any discomforts that you experience while 
taking part in this study, please contact:  

- Principal Investigator: Dr. Lawrence Shattuck, lgshattu@nps.edu, 831.656.2473. 
- IRB Vice-Chair, Bryan Hudgens at bryan.hudgens@nps.edu, 831.656.2039. 
- IRB Vice-Chair, LT Aditya Prasad at aditya.prasad@nps.edu, 831.656.7675.  

 
This is an NPS Institutional Review Board Approved research protocol. 
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APPENDIX C. MATB-II REFERENCE SHEET 

 
Figure 73. MATB-II participant reference sheet. 
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APPENDIX D. CONTINUOUS SUBJECTIVE WORKLOAD 
ASSESSMENT GRAPH (CSWAG) REFERENCE GUIDES 

 

Figure 74. CSWAG participant reference visual. 

Continuous Subjective Workload Assessment Graph (C-SWAG)

Too low
0-33%

About Right
33-67%

Too High
67-100%

Rate your workload from 0-100 as a percentage of the maximum level using the scales below.   

0 10 20 4030 50 60 70 80 90 100
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APPENDIX E. DEMOGRAPHIC SURVEYS 

 

Figure 75. Studies 1 and 2 demographic survey.  

Demographic Questionnaire 
Participant #: ____________ 

 
1. Do you wear bifocal, trifocal, or beyond corrective lenses?  

 
_________________________________________________________  
 

2. Do you wear corrective lenses that have near infrared blocking coating? 
 
_________________________________________________________  

 
3. Have you been diagnosed as being red-green colorblind? 

 
_________________________________________________________  

 
4. Do you have previous experience using NASA’s Multi-Attribute Task Battery?  

 
_________________________________________________________  
 

5. What is your gender? 
 
_________________________________________________________  
 

6. What is your age? 
 
_________________________________________________________  
 
 

7. What is your visual acuity and dominant eye? 
 
_________________________________________________________  
 

-------------------Military Participants------------------- 
8. What is your branch of service? 

 
_________________________________________________________  
 

9.  What is your military occupational specialty? 
 
_________________________________________________________  
 

10. What is your rank? 
 
_________________________________________________________  
 

11. How many years in service do you have? 
 
_________________________________________________________  
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Figure 76. Study 3 demographic survey. 

Demographic Questionnaire 
Participant #: ____________ 

 
1. Do you wear bifocal, trifocal, or beyond corrective lenses?  

 
_________________________________________________________  
 

2. Do you wear corrective lenses that have near infrared blocking coating? 
 
_________________________________________________________  

 
3. Have you been diagnosed as being red-green colorblind? 

 
_________________________________________________________  

 
4. Do you have previous experience using NASA’s Multi-Attribute Task Battery?  

 
_________________________________________________________  
 

5. What is your gender? 
 
_________________________________________________________  
 

6. What is your age? 
 
_________________________________________________________  
 

7. What is your dominant hand? 
 
_________________________________________________________  
 

8. What is your visual acuity and dominant eye? 
 
_________________________________________________________  

-------------------Military Participants------------------- 
9. What is your branch of service? 

 
_________________________________________________________  
 

10.  What is your military occupational specialty? 
 
_________________________________________________________  
 

11. What is your rank? 
 
_________________________________________________________  
 

12. How many years in service do you have? 
 
_________________________________________________________  
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APPENDIX F. SITUATION AWARENESS RATING TECHNIQUE 
FORM 

 

Figure 77. Situation awareness technique questionnaire. 

Situation Awareness Rating Technique Date: _________ Participant ID: _________
The following is a Situation Awareness Rating Technique (SART) questionnaire (Taylor, 1990). Please 
answer each of the 10 questions by selecting a number between 1-7 on each scale as they relate to your 
experience performing the simulation. 

Changing 
suddenly

1. How changeable is the situation? [Instability of Situation]

Stable and 
straightforward

A large number of
factors changing

3. How many variable are changing with the situation [Variability of Situation]

Very few variables 
changing

Complex with many 
interrelated 
components

2. How complicated is the situation [Complexity of Situation]

Simple and 
straightforward

Alert and ready for 
activity

4. How aroused are you in the situation [Arousal]

A low degree 
of alertness

7. How much mental capacity do you have to spare in the situation [Spare Mental Capacity]

Sufficient to attend 
to many variables

Nothing to 
spare at all

Concentrating on 
many aspects of the 
situation

5. How much are you concentrating on the situation? [Concentration of Attention]

Focusing on 
only one

Concentrating on 
many aspects of the 
situation

6. How much is your attention divided in the situation? [Division of Attention]

Focusing on 
only one

A great deal of 
knowledge

8. How much information have you gained about the situation [Information Quantity]

Very little

A great deal of 
value

9. How valuable or accurate was information you gained about the situation [Information Quality]

Very little

Great deal of 
relevant experience

10. How familiar are you with the situation? [Familiarity with Situation]

New situation
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APPENDIX G. NASA-TLX 

 

Figure 78. NASA-TLX. 

Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of per formance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High
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APPENDIX H. TASK ANALYSIS QUESTIONNAIRE 

 

Figure 79. MATB-II task analysis questionnaire. 

Purpose of this interview

This project will focus on developing an IMPRINT model for 

different MATB scenario configurations. The model will map 

user tasks to generate an understanding of what tasks are 

contributing to cognitive workload changes. This research is 

aligned with the HSA‐DM focus area of determining cognitive 

workload drivers.

Project Objective:

The objective of this research  is to better understand the 

unintended negative impacts of adaptive automation to be 

able to apply that understanding to future system design. This 

will be accomplished by: 

1. Developing an IMPRINT model which can be validated and 

accurately depicts interaction with MATB. 

2. Modeling MATB user workload and providing data on what 

types of tasks may intentionally or unintentionally increase 

cognitive worklaod when interacting with adaptive 

automation.

Expert Info and Background

Now I am going to ask you some admin and background 

questions. This is intended to help understand your experience 

as an experienced MATB user and how those experiences 

might differ from other MATB users. 

Occupation:
Total hours using MATB:

Total hours configuring/coding MATB: 

Self‐reported assessment of your familiarity with MATB:

Task Transition Statement

Now, we will go over that tasks in MATB individually to get 

your assessment of their cognitive workload demands. Please 

use the reference sheet that lists the values on a scale from 0 

to 7 along with descriptions of their demands to guide your 

feedback on each task. 

Task Task Title
Task Owner 

(User/Automation)

Task Time (in 

seconds)

Standard Deviation 

(in seconds)

Frequency (time 

interval)
Auditory Cognitive Fine Motor Visual Sequence of Events

1 Perform System Monitoring

2 Perform Tracking Control
3 Perform Communications Procedures

4 Perform Resource Management

5 Maintain Scheduling 

Conclusion/Comments/Question
Based on this interview, is there anything I missed that should 

be considered as a task for the model, or do you have 

anything else to add?
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APPENDIX I. STUDY 3 IMPRINT DIAGRAMS 

 

Figure 80. Group 1 researcher-derived model external event triggers. 
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Figure 81. Group 2 researcher-derived model external event triggers. 
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Figure 82. Group 3 researcher-derived model external event triggers. 
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Figure 83. Group 4 researcher-derived model external event triggers. 
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Figure 84. Study 3 researcher-derived model group 1 IMPRINT workload 
graph. 
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Figure 85. Study 3 researcher-derived model group 2 IMPRINT workload 
graph.  
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Figure 86. Study 3 researcher-derived model group 3 IMPRINT workload 
graph.  
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Figure 87. Study 3 researcher-derived model group 4 IMPRINT workload 
graph.  
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Figure 88. Group 1 expert-derived model external event triggers. 
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Figure 89. Group 2 expert-derived model external event triggers. 
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Figure 90. Group 3 expert-derived model external event triggers. 
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Figure 91. Group 4 expert-derived model external event triggers. 
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Figure 92. Study 3 expert-derived model group 1 IMPRINT workload graph. 
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Figure 93. Study 3 expert-derived model group 2 IMPRINT workload graph. 
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Figure 94. Study 3 expert-derived model group 3 IMPRINT workload graph 
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Figure 95. Study 3 expert-derived model group 4 IMPRINT workload graph 
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