

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

CAPSTONE APPLIED PROJECT REPORT

SOFTWARE INTEGRATION OPTIONS
FOR THE F-22 AND F-35 MAJOR DEFENSE

ACQUISITION PROGRAMS

June 2023

By: Pamela A. Kowal-Swartout

Advisor: Jeffrey R. Dunlap
Co-Advisor: Ceir Coral (DCMA-LMFW)

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2023 3. REPORT TYPE AND DATES COVERED
 Capstone Applied Project Report

 4. TITLE AND SUBTITLE
SOFTWARE INTEGRATION OPTIONS FOR THE F-22 AND F-35 MAJOR
DEFENSE ACQUISITION PROGRAMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Pamela A. Kowal-Swartout

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)

 Major DOD programs, such as the F-22 Raptor and F-35 Lightning II programs, have software challenges.
Given the recent top-down direction to improve the agility of critical software acquisition, development, and
deployment, it is crucial to understand the remaining factors preventing improvement. This research included
a broad review of government reports and recommendations, private-sector best practices and innovation, and
military efforts to work with the private sector. These efforts revealed factors slowing progress, including the
often-siloed structure of DOD programs, long development timelines, and rigid budget funding cycles.
Acquisition processes for software ideally differ from those for hardware, but they are often undifferentiated
in practice. Program leaders are frequently too invested in limited development approaches and resistant to
recommendations from software experts. The research pinpointed several areas of the DOD’s acquisition
programs within which to incorporate changes to current practices. These changes should result in program
improvements across areas of cost, schedule, and performance.

 14. SUBJECT TERMS
software development, software pathways, F-35 Lightning software challenges, F-22 Raptor
software factories, updating software acquisition practices in MDAPs per SWAP
recommendations

15. NUMBER OF
PAGES
 111
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Approved for public release. Distribution is unlimited.

SOFTWARE INTEGRATION OPTIONS FOR THE F-22 AND
F-35 MAJOR DEFENSE ACQUISITION PROGRAMS

Pamela A. Kowal-Swartout, Civilian, Office of the Secretary of Defense

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CONTRACT MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
June 2023

Approved by: Jeffrey R. Dunlap
 Advisor

 Ceir Coral
 Co-Advisor

 Michael R. Schilling
 Academic Associate
 Department of Defense Management

iii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

iv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

SOFTWARE INTEGRATION OPTIONS FOR THE F-22 AND F-35
MAJOR DEFENSE ACQUISITION PROGRAMS

ABSTRACT

 Major DOD programs, such as the F-22 Raptor and F-35 Lightning II programs,

have software challenges. Given the recent top-down direction to improve the agility of

critical software acquisition, development, and deployment, it is crucial to understand the

remaining factors preventing improvement. This research included a broad review of

government reports and recommendations, private-sector best practices and innovation,

and military efforts to work with the private sector. These efforts revealed factors slowing

progress, including the often-siloed structure of DOD programs, long development

timelines, and rigid budget funding cycles. Acquisition processes for software ideally differ

from those for hardware, but they are often undifferentiated in practice. Program leaders

are frequently too invested in limited development approaches and resistant to

recommendations from software experts. The research pinpointed several areas of the

DOD’s acquisition programs within which to incorporate changes to current practices.

These changes should result in program improvements across areas of cost, schedule, and

performance.

v

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

vi

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. PROBLEM STATEMENT .. 2
B. PURPOSE STATEMENT .. 4
C. RESEARCH METHODS ... 5

II. COMPARATIVE ANALYSIS: HARDWARE AND SOFTWARE IN
PROGRAM MANAGEMENT AND ACQUISITIONS 9

A. TANGIBILITY ... 9
B. INTELLECTUAL PROPERTY RIGHTS ... 10
C. DEVELOPMENT AND MAINTENANCE LIFE CYCLE 11
D. IN-HOUSE PERSONNEL ... 13
E. AUTHORITY RIGHTS ... 14
F. PARTIAL UPDATES ... 15
G. PERFORMANCE MEASUREMENTS AND STANDARDS 16
H. OBSOLESCENCE AND RISK MANAGEMENT 17
I. QUALITY PRODUCT DEVELOPMENT ... 18
J. SECURITY .. 19
K. CRITICAL PATHWAYS .. 20
L. ITERATION OF THE DESIGN ... 22
M. CONCLUSION ... 23

III. CURRENT STATE OF MDAP SOFTWARE ACQUISITION 25

A. SOFTWARE PATHWAYS.. 26
1. Waterfall .. 28
2. Agile/Scrum/Agile-Like .. 30
3. C2D2 ... 33
4. DevSecOps ... 35
5. Hybrid/Mixed .. 42

B. SOFTWARE FACTORIES ... 42
1. Kessel Run ... 45
2. Platform One ... 46
3. Limitations of Software Factories ... 48

C. FACTORS LIMITING INNOVATIVE MDAP SOFTWARE
PRACTICES ... 50
1. Culture ... 50
2. Communications ... 52
3. Knowledge-Based Practices ... 55

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

viii

4. Resources ... 57
5. Life Cycle ... 59
6. Hierarchy Levels ... 60
7. Stovepipes .. 61

D. STATE OF THE F-22 AND F-35 SOFTWARE EFFORTS 62
1. F-22 ... 62
2. F-35 ... 63

E. CONCLUSION ... 64

IV. CONCLUSIONS AND RECOMMENDATIONS .. 65

A. FINDINGS ... 65
1. Resistance to Agile Software Pathways..................................... 65
2. Software Challenges—Development and Acquisition

Comprehension ... 67
3. Misaligned Software Acquisition Pathways 68
4. Effects of Software Incentives .. 69
5. Human Resources—Government and Civilian Sectors 71
6. MDAP Lessons Learned—Too Big to Fail 72
7. Differences between Hardware and Software in Programs 73

B. RECOMMENDATIONS .. 74
1. Government Lead ... 74
2. Software Prioritization ... 75
3. Software Acquisition Methods ... 76
4. Congressional Mandate for Consulting Service CIOs 77
5. Centralized Life Cycle .. 77
6. DOD-Wide Software Office ... 78
7. Inertia/Momentum .. 79
8. Government—Contractor Business Structure 80
9. Program Management Shift to Portfolio Management 81
10. Government–Industry Software Pilot Program 81
11. Software Career Path Redesign ... 81
12. Summary .. 82

C. FUTURE RESEARCH ... 82
1. Create Pilot Programs .. 83
2. Update the Source Selection Process ... 83
3. Redesign the Contractor’s Role in MDAPs 84

LIST OF REFERENCES ... 85

INITIAL DISTRIBUTION LIST .. 95

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ix

LIST OF FIGURES

Figure 1. Air Force Project FoX. Source: Sutter (2021). ... 13

Figure 2. DOD’s Software Acquisition Pathway. Source: Brady and Skertic
(2022). ... 23

Figure 3. Waterfall Methodology. Source: Defense Science Board (2018). 29

Figure 4. Scrum Framework. Source: Scrum.org (2020). .. 32

Figure 5. Notional C2D2 Iterative Development Testing and Delivery
Schedule. Source: Ludwigson (2021, p. 30). .. 34

Figure 6. Current Software Development Process. Source: General Services
Administration (n.d.). .. 36

Figure 7. DevSecOps Software Development Process. Source: General
Services Administration (n.d.). ... 36

Figure 8. Iron Bank. Source: P1 (n.d.-b). ... 38

Figure 9. Kubernetes Reference Design Interconnections. Source: DOD
(2021a, p. 11). ... 39

Figure 10. DOD Enterprise DevSecOps Technology Stack. Source: Chaillan
(2019, p. 16). ... 40

Figure 11. From Waterfall to DevSecOps. Source: Chaillan (2019). 41

Figure 12. Software Factory Construct. Source: DOD (2021b). 42

Figure 13. Software Factory Hubs. Source: Office of the Chief Software Officer
(2019); P1 (n.d.). ... 44

Figure 14. C2 Model. Source: Hoehn et al. (2022). ... 46

Figure 15. Acquisition Milestone Process. Source: DAU (n.d.-c). 53

Figure 16. Adaptive Acquisition Framework. Source: DAU (n.d.-b) 54

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

x

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xi

LIST OF ACRONYMS AND ABBREVIATIONS

AAF Adaptive Acquisition Framework
ALIS Automated Logistics Information System
API application programming interfaces
ATO authority/authorization to operate
C2 command and control
C2D2 continuous capability development and delivery
CEO chief executive officer
CIO chief innovation officer
DAU Defense Acquisition University
DCAR DOD Centralized Artifact Repository
DevOps development and operations
DevSecOps development, security, and operations
DIB Defense Innovation Board
DOD Department of Defense
FoX Fighter Optimization Experiment
GAO Government Accountability Office
IP intellectual property
IT information technology
MDAP major defense acquisition program
MVP minimally viable product
ODIN Operational Data Integrated Network
OODA observe-orient-decide-act (loop)
OSA open systems architecture
OSD Office of the Secretary of Defense
P1 Platform One
PEO program executive officer
ROTC Reserve Officers Training Corps
SWAP Software Acquisition and Practices (Study)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xii

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiii

ACKNOWLEDGMENTS

I would like to acknowledge and warmly thank my advisors, Professor Jeffrey

Dunlap and Colonel Ceir Coral, who made this work possible. The guidance and support

of Chloe Woida from the Graduate Writing Center and her advice carried me through all

the project writing stages. I would also like to thank my DCMA F-35 team members for

letting my quest for knowledge be fed.

I would also like to give special thanks to my husband, Matthew Kowal, and my

son, Tyler, for their patience, love, and unwavering guidance while taking this journey to

satisfy this research and writing project.

Finally, without my faith in God, I would not have weathered all the challenges

I faced working as an acquisition professional and master’s student simultaneously.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1

I. INTRODUCTION

This capstone report explores the challenges of software acquisition practices in the

F-35 Lightning II and F-22 Raptor programs. Throughout defense acquisition history,

programs have addressed the “golden triangle” of cost, schedule, and performance. High-

profile defense programs, such the F-35 program, have significantly deviated from this

initial acquisition baseline over the past 20 years due to the realization of risks (Ludwigson,

2021). The F-35’s mission capabilities are controlled primarily by software, yet as

adversaries’ threats have evolved, the software has not. The F-35 was not considered a

software-intensive program when it was conceived in 2000; however, in 2020, in satisfying

designated acquisition criteria and blending technology and software upgrades, the

program encountered more strife and struggled to meet the cost, schedule, and performance

requirements (Walsh, 2021).

Despite former Secretary of Defense Ash Carter’s concerns over threats from

American adversaries China, Russia, Iran, and Korea and terrorism, the United States has

been complacent in minimizing software breaches. The challenges facing the Pentagon

involve developing, possessing, and integrating the latest and most current technology

(Carter, 2019, p. 54). Nevertheless, American software solutions do not adequately resolve

the highest-level threats, for one, because the mission, warfighter, and end-user experience

a delay in the software released. Moreover, the software is often outdated before the initial

release, so it represents a useless, wasteful application of taxpayer dollars.

The F-22 program was the precursor of the F-35 next-generation fighter jet. The

F-22 is one of the first Air Force aircraft to encounter challenges involving new user threats

in the field that require rapid software solutions. The Defense Innovation Board (DIB) in

its 2019 Software Acquisition and Practices (SWAP) Study recommended that software-

centric programs, such as those for the F-22 and F-35, incorporate the observe-orient-

decide-act (OODA) loop into software development (McQuade et al., 2019). The DIB has

emphasized improving development practices, planning, organization, and contracts given

recommendations by Defense Acquisition University (DAU) South (Brady & Skertic,

2021). McQuade et al. (2019) stress the importance of modernizing the warfighter,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

2

prioritizing delivery speed, supporting continuous adaption, and frequently upgrading

software.

Furthermore, speed and cycle time matter in software development, as the F-22 and

F-35 are combat-ready aircraft designed to react instantaneously. The lack of new, reliable

software acquisition pathways stunts the programs’ cost, performance, and schedule

requirements (Brady & Skertic, 2021). The jets rely heavily on data-intensive software—

at the speed of development—releasable to the warfighter. The Air Force Digital Service

team, which oversees software development for the F-22 program, understands the

importance of modernizing the technology more quickly while assuming additional risk

(Ulsh & McCarty, 2019). The F-35 program is even slower to react to the same issues,

according to the Government Accountability Office (GAO), which publishes annual

reviews of the programs (Ludwigson, 2021, 2022).

A 2021 GAO report pinpoints where the F-35 program has failed to meet its

software schedule. Ludwigson (2021) highlights “key practices that would enable [the

GAO] to assess how the program uses agile software development data to manage cost and

schedule concerns . . . identified in prior reports” and measure the results of new software

practices (p. 3). The GAO recommends that the DOD “update its modernization schedule

to reflect achievable time frames, identify and implement tools to enable automated data

collection on software development performance, and set software quality performance

targets” (Ludwigson, 2021, Highlights section). According to Ludwigson (2022), F-35

software delivery to the warfighter, particularly the timing and acceptance of software, is

currently designed to benefit the fleet; however, the goal of the program is to improve

software delivery to the user (Capaccio, 2022). Nevertheless, the F-35 program has been

unsuccessful at incorporating best practices, and it has failed to deliver on schedule

(Ludwigson, 2022).

A. PROBLEM STATEMENT

As major defense acquisition programs (MDAPs), the F-22 and F-35 programs

must maintain air dominance. The programs strive to improve software delivery to the user

but fail to meet all stakeholders’ needs (Capaccio, 2022, para. 3). The latest annual GAO

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

3

report on the F-35 program documents shortcomings in software delivery to the warfighter

(Ludwigson, 2022). One challenge for the F-22, and legacy programs no longer in

production, is that it still needs to develop software methodologies for late in the life cycle.

Software integration for the F-22 and F-35 at all stages of the programs is crucial for

developing and releasing software that meets the users’ immediate needs in the field.

The Air Force oversees the F-22 and F-35 programs to ensure best practices in

software acquisition are applied, but the programs are not performing equally well.

According to new guidance, the F-22 has experienced more success than the F-35 has in

software practices. The F-35 program has struggled to adopt an agile mindset concerning

software practices at the current production state, particularly because the program initially

adopted a dual path, both at development and production. A recent interview with the F-22

program office lends insight into the simplification and speed of developing the software

needed to address emerging threats. In sum, the divergent paths of both programs limited

the F-35’s software opportunities but benefited the F-22 in terms of agile development and

acquisition methods.

When highly visible programs (such as the F-22 and F-35) fail to achieve their

promised objectives, results-driven defense leaders notice these shortcomings. These

Pentagon-level leaders have recently agreed that upgrades to software processes are a

priority, with the goal of creating new acquisition capabilities (DIB, 2019). For example,

Ellen Lord, former under secretary of defense acquisition and sustainment, focused on

implementing the ownership of government-led software programs and resolving program

risks (Brady & Skertic, 2021). Another prominent example is Nicholas Chaillan, former

Air Force chief software officer, who championed the DOD’s preeminence in all software

areas under the tagline “mov [ing] at the pace of relevance” (Chaillan, 2023, p. 2). The

DIB’s 2019 recommendations address the ramifications of relying heavily on software for

mission execution in U.S. national defense (McQuade et al., 2019). The changes these

leaders have argued for will be essential in software acquisition, user agreements,

directions, and general alterations in the operating and execution of software.

Without effective updates, the F-22 and F-35 programs cannot counteract threats

unknown at the time of software development. The emerging threats facing the United

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4

States are China, Russia, Iran, and North Korea (Carter, 2019). Software is the primary

driver of the F-22 program and, even more so, the F-35 program; these programs require

that the DOD develop, acquire, and operate them. The DOD has fallen behind by not

understanding how to integrate new software acquisition and development processes

effectively into the programs. Furthermore, new threats require the DOD to adopt a new

phase that reacts outside the department’s existing processes. Developing at an appropriate

speed to transform these program processes to mitigate emerging threats is a challenge for

the F-22’s and F-35’s software suite today.

Despite clear goals set by DOD leadership, lacking buy-in from decision-makers at

the program level has effectively shifted delays in software deployment to the end-user

(Walsh, 2021, p. 34). Program leaders’ goals are misaligned in some cases with the

Pentagon’s goals—as mandated contract direction is absent—thereby delaying software

integration into their programs (National Research Council, 2010) and degrading schedule,

cost, and performance metrics (Oakley, 2022b). As a result, the programs cannot keep pace

with users’ demands, which are based on extreme, rapidly revolving conditions.

The benefits of developed software solutions include timely results, successful

software builds at scale, real-time solutions, and decoupling of software and hardware;

thus, rolling software releases can support built-in security features. Many program leaders

have little experience or training in mission execution and best practices for software from

the private sector. The absence of subject-matter experts and other savvy personnel in the

DOD to explain and justify the integration and use of software solutions hinders the

programs’ risk management capabilities. However, some programs succeed while others

falter. Understanding the factors causing this variation is necessary in guiding and

educating program administrators to meet the top-down direction of improving software

practices.

B. PURPOSE STATEMENT

The strategy of the research for this capstone report was to understand, describe,

and develop options, stopgaps, and recommendations for agile software acquisition. This

research focused on understanding the current state of software management in the F-22

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

5

and F-35 programs, including acquisition, performance, delivery, scope, cost-

effectiveness, and efficiency. The aim of this capstone was to explain the continuing

limitations of government capabilities in developing and administering a plan to own and

manage millions of lines of code for the aircraft alone. The research setting explored the

roles of several themes in shaping the software practices of these programs:

1. Ownership of intellectual property

2. Communication between roles that shape these outcomes

3. The lack of resources (e.g., money) to manage the programs.

The lack of an effective, standardized system management plan and integration

model for software development in MDAPs means that while some leaders update their

practices, others do not. One goal of this capstone was to find the root causes of (and

explain) leaders’ failing or refusing to incorporate agile software aspects, such as

development, security, and operations (DevSecOps; see Figure 1) into the programs they

manage. The research explored options for the F-22 and F-35 programs, both of which rely

on software for mission execution to support and protect national defense. The ultimate

research objective was to evaluate the program directives to encourage ownership of these

government-led software programs, thereby resolving current and future program risks.

C. RESEARCH METHODS

The research first employed a variety of methods to understand the current state of

software development in MDAPs and acquisition, as well existing government and military

analyses of and recommendations for the problems within these programs. Then, a set of

targeted approaches helped to identify which programs have performed better and why and

to develop a knowledge base of best practices from the private sector.

In exploring the current state of software development and acquisitions of these

MDAPs, the research surveyed a diverse set of documentation and literature. First, it was

important to review statements of work and performance, as well as other documentation,

related to the F-22 and F-35 programs. A review of related GAO reports revealed key

details about the state of the programs, areas needing growth and improvement, and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

6

potential risk. The review also involved analyzing reports from the DIB, particularly those

detailing the 2019 SWAP Study, which identified shortcomings and reiterated the gaps in

current practices. Also, to gain context and an understanding of the programs’ status, the

review considered books and articles from key leaders who defined the current and future

state of the programs, as well as successful practices.

To assess the current level of responsiveness to the goals and recommendations for

future development and to understand why some programs have failed, it was first

necessary to review guidance that leaders have already received. This process involved a

close reading of the National Defense Acquisition Act, publications by the Section 809

Panel, the SWAP Study and other publications by the DIB, DOD Instruction 5000.87, and

other transaction agreements. Other helpful documents included SWAP Study publications

referencing practices outside the military sphere and problems associated with MDAP

software development.

Some military programs have been successful at integrating and adopting updated

software guidance, so reviewing these successful programs could reveal what they have

done right. Certain defense-sponsored software factories serve as powerful examples. For

example, LevelUP, the Air Force’s cyber software factory team, spearheaded Platform One

(P1), and Kessel Run is a key driver of DOD innovation in software processes. The research

process involved reviewing successful cases of “agile teaming” involving industry and

government collaborations as examples of integrating DOD Instruction 5000.87. Two such

successes are the Ground Based Strategic Deterrent and the F-22’s SWAP vignette teaming

with the Air Force Digital Service to update the capabilities of software factory pipelines.

These key successes demonstrate how the services create software and purchase

information technology (IT) capabilities.

The research process also explored a variety of sources to understand private-sector

successes with software vis-à-vis military acquisitions. For example, symposium articles

and presentations revealed commercial applications for off-the-shelf software. Such

applications have the potential to forecast and mitigate software risks for the DOD.

Illustrating the difference between the private sector and military in this process, Nicholas

Chaillan is quoted as saying, “The military acts as an old Windows XT computer while the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

7

private sector is today’s Windows 10 or iPhone operating systems, ‘which continuously

roll out upgrades’ and pivot to new environments” (Naegele, 2021, p. 1). Other helpful

sources of information included articles from defense news outlets and military leaders

analyzing private-sector software development and acquisition processes. Websites and

news articles that disclosed private-sector software processes were also helpful. These

sources from the private sector demonstrated the importance of timeliness, successful

software builds at scale, real-time solutions, the decoupling of software and hardware, and

the rolling out of software with built-in security features.

Finally, this author interviewed leaders and subject-matter experts to gather their

perspectives and opinions based on questions derived from contracts and concerns of the

programs’ decision-makers and end-users regarding opportunities, risks, and issues. This

author submitted a list of interview questions to the Naval Postgraduate School’s

Institutional Review Board, which determined that neither the information obtained for this

capstone report nor the means of gathering it constituted human subject research.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

8

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

9

II. COMPARATIVE ANALYSIS:
HARDWARE AND SOFTWARE IN PROGRAM

MANAGEMENT AND ACQUISITIONS

This chapter identifies and defines the differences between hardware and software

to highlight potential risks in managing programs. These differences are distinct yet

interdependent aspects. Still, program managers can alleviate unforeseen problems with

hardware and software cost, schedule, and performance requirements by comprehending

the variances between the two disciplines. The research, complemented by this author’s

professional experience, identified differences in the following areas: tangibility,

ownership of intellectual property (IP), the development and maintenance life cycles, in-

house personnel, authority rights, partial updates, performance measurements and

standards, obsolescence and risk management, quality product development, security,

critical pathways, and iteration of the design. These topics are vital and deserve

consideration at all stages in any program where hardware and software are interdependent.

A. TANGIBILITY

Hardware is a tangible asset. It is an observable and known entity in procurement.

Software is an intangible but critical element in operating the program’s hardware. The

differences between hardware and software are not limited to the costs of materials, labor,

and production. The differences in cost estimation and auditability between the two

commodities are vast. The software design budget is estimated around this uncertainty and

dictates the path for adequately forecasting materials, labor, and resources.

Hardware is easier to estimate and audit because the design and required materials

are capable of being captured on a bill of material (BOM), a list of all elements required to

build the hardware and the costs quoted to deliver the quantity produced. The cost of

materials and production, for example, is known, so there is no need to estimate and work

with unknowns. The opposite is true of software.

The software cost estimate is based on source lines of code, so an iterative process

is needed to estimate the cost when the number of embedded lines in the hardware interface

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

10

required to operate the program is unknown. In a MDAP, the lines of code, as well as

changes to other software code, are not easily projected. In fact, Moore’s law predicts that

“software capacity doubles per unit expenditure every 18 months” (KK, 2009, para. 5).

The development or prototype process for software and hardware relies on

extensive individual testing, yet in the end, software and hardware must work as a cohesive

unit. Congress is currently reviewing possible reforms in the acquisition processes for

software and hardware, as this critical topic is at the center of many defense programs,

whose systems’ reliance on software has shifted and required tangible changes (Williams,

2021b). The software requires a development process, and often, how the final product will

look, how long it will take to produce, how many hours will go into that production, and

how it will integrate with hardware are unknown.

Additional differences between hardware and software involve the resources

required to write and develop software, which cannot be adequately forecasted. The

iterative nature of software is complex, which leads to a lack of appropriate human

resources.

B. INTELLECTUAL PROPERTY RIGHTS

Hardware and software are also different regarding ownership of design and IP

rights. Hardware is visible, and design authority is retained by the material review board

that retains ownership of the design. Software is invisible and depends on code to operate.

Property rights for software are building blocks in a constant state of flux.

Who owns the software’s design and possesses IP rights depends on various

agreements, ownership development, and contract negotiations of rights and usages. The

complexity and budget of programs are factors in the volume of software and the ability to

retain design and ownership control by retaining ownership of both hardware and software.

An example of the complexity of design is a commodity that has a design with multiple

subassemblies with embedded operating hardware architectures. Each of these entities is

subcontracted by the principal contractor. The budget and core competencies dictate at each

level the ability to change the design by retaining control over software to operate the

subassemblies required to operate the end unit.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

11

The SWAP Study’s recommendations identify that the most critical aspect of

software acquisition is owning the IP of a program (McQuade et al., 2019). While there are

numerous differences between hardware and software, IP ownership is the most critical

aspect. Obstacles to the government’s fully owning existing hardware and software IP are

often attributed to unknown requirements related to software that emerge during use in the

field, limited budgets, and the inability to secure human resources in the highly competitive

nature of the software coding field.

Another impact of not having software IP ownership is that it limits the

government’s ability to regulate the time to execute updates and release the hardware.

Program milestones at each stage of software and hardware development are unique but

function interdependently. The cost of hardware, while higher than that of software, usually

levels off after release unless repairs are needed. On the other hand, software, while

operating, must release updates to threats identified by the user. The costs of these updates

can be staggering if the government does not retain IP ownership at the beginning

of development.

C. DEVELOPMENT AND MAINTENANCE LIFE CYCLE

The responsibility for developing and maintaining the program over its life cycle is

another aspect that requires attention. A program’s life cycle is defined as the time from

conception to closure, with various phases and milestones interspersed. Hardware and

software are substantially different in the development and maintenance of programs at

each stage of the product life cycle. These differences primarily involve obsolescence.

With hardware, the responsible party for changes and updates is more straightforward.

Chiefly, the configuration manager has a clear role in updating all materials and managing

updates to the revision levels released for a part’s number rolls and engineering change

break-ins, for example. While some of these changes may correspond with software, those

that do not may be executed without considering software updates that ought to correspond

with each hardware update.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

12

The initial developer who owns the software IP rights is responsible for making

changes, and updates depend on numerous variables, including who developed the software

initially, how it integrates with hardware, what is driving the change, what is its commercial

application, whether there are security concerns, and who has IP rights at each level.

Crucially, the initial developer has dictated the language, code, architectures, design, and

ability to change actions of the software. If there are multiple co-dependent languages and

architectures of integrated software and multiple developers who own individual IP rights,

it amplifies the complexity of the government’s ability to incorporate the necessary

changes.

The drivers for change derive from multiple sources. The private and public sectors

want to go faster and innovate, but the DOD’s software acquisition methods cannot support

the current pace of innovation (Sutter, 2021). As demonstrated by the recent F-35 Fighter

Optimization Experiment (FoX; see Figure 1), the designer and developer may require

updates to realize software functionality, the end-user may need to adapt to new threats,

the subcomponents may need updates, and new requirements may be contracted to drive

the change. The program software estimations method includes the full life cycle cost, but

for constant software changes, a strategic approach is preferable (Brady & Skertic, 2021).

Notably, the drivers of such initiatives will define the costs and the owner’s responsibility

in executing these events.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

13

Figure 1. Air Force Project FoX. Source: Sutter (2021).

The ownership of IP dictates the speed and release of the changes. The IP owners

should encompass the resources and skillsets readily needed. Conversely, not owning the

IP rights creates delays due to the inability to develop and release software. An example of

commercial actions hampering the government is the recent Ukrainian request for U.S.

assistance to intercede with a Russian interpreter using a communications satellite. The

government did not own the IP, which would have allowed it to pivot rapidly, and SpaceX,

a commercial entity, could not assist due to its not possessing the IP and being incapable

of writing effective code to redirect the satellite. Four key software practices at leading

commercial companies, including SpaceX, were identified in a GAO study (Oakley,

2022a). These best practices highlight new capabilities currently missing in the DOD yet

recognized by various studies and reports.

D. IN-HOUSE PERSONNEL

Hardware and software differ on levels of availability of in-house personnel

responsible for the design, development, repair, and maintenance of critical details.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

14

Hardware design authorities and engineer support employ greater numbers of staff than

software authorities, whose coders mitigate design and interface issues. In-house personnel

develop, design, repair, and maintain software. In terms of personnel, there are more people

available to fulfill these functions for hardware than for software. Moreover, competition

for hardware and software differs based on opportunities, empowerment, creativity, and

end items. Still, hardware design and maintenance might lag within the services, but these

hardware outcomes are less risky than software performance, cost, and schedule, which are

a significant concern for programs across the government.

The problem with resources designated to develop, design, repair, and maintain is

twofold. Fewer software-centric positions are created in government and the military, and

the structural alignment of these positions is often ineffective. For the most part, the

government has been less effective than the private sector at creating enticing software-

focused career paths. The lack of creative freedom combined with stringent governmental

restrictions is not attractive to younger generations, which desire the creative

empowerment offered by gaming, Silicon Valley, and other software endeavors. The

private sector offers high competition for personnel, and fewer people join the government

or military to focus on software.

Even though some agile software resources do exist within the DOD—Kessel Run

and the Army Futures Command, to name two—they have a limited availability and

capability to respond to all emerging needs. Individual software paths are still not

cohesively managed as one system requirement, leading to unpredictable needs. The

current DOD workforce struggles with inexperience, cutting-edge software methods, roles,

enablers, and teaming hierarchy (Brady & Skertic, 2021). An overall strategy for

developing and recruiting a competent digital workforce is not available for many

programs, as research indicates. In those cases, managers of software programs cannot rely

on in-house talent as do managers of similar hardware programs.

E. AUTHORITY RIGHTS

Software and hardware designs require collaboration among contractors whose

expertise is in the product or service that the military service needs to procure. There are

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

15

key differences in the authority rights of the hardware and software purchasing, repair,

update, and maintenance requirements. Hardware requires software to operate in most

programs—and fundamental factors, if unknown, lead to failure when they do not follow

the same logic and initial development of testing.

Hardware changes rely on material design authority. Any needed change over the

product’s life cycle will be reviewed by the material review board. When a hardware

change is requested, associated software changes may be essential. The software changes

lag the hardware updates due to limitations or restrictions related to the software

architecture. Hardware engineering releases integrate changes whereas technical readiness

reviews and changes are integrated into software production differently.

The DOD has struggled to purchase software that keeps pace with updates.

Software must account for various subassembly architectures, and different code and

trickle-down requirements must be tested before a full release. Additionally, software

changes are iterative, so even once software is fully vetted, it might already be obsolete

upon release. Emerging threats within user environments are problematic for software

development in the current state of the DOD.

F. PARTIAL UPDATES

Hardware and software function differently concerning partial updates. Software

may be acceptable via partial updates. The inability to integrate updates rapidly presents a

new threat to military programs, so the ability to integrate agile updates means the aptitude

to release partial updates as necessary. By contrast, hardware revisions must satisfy

operational dimensions. Correlating these updates for software and hardware tends to be

broken into programs with less testing required than for software alone. Software changes

and updates in the current state require capabilities testing before the entire software block

is released to the program.

With hardware, patches or partial updates do not make sense. A hardware

component encompasses the entire end item and all changes that fulfill requirements; the

first article inspection ensures that the product meets the mandatory quality for

configuration management, which is satisfied when the updates are ready. Nevertheless,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

16

software releases in most programs are not released as minimally viable products (MVPs),

which require that only the functioning code be released. The quality parameters of

software are different from those of hardware, yet both are operational in the same system.

With software, the goal of an MVP is making a difference with often temporary or

partial updates. However, in most DOD programs, a full software release is the normal way

of delivering the product. Moving to partial software releases, when they make sense to the

end-user, is a sensible choice for the DOD as it would yield more rapid results.

G. PERFORMANCE MEASUREMENTS AND STANDARDS

The program requires performance measurements and standards to achieve the

outcomes of the end items. The performance of both hardware and software is measured

and standards used to report the overall progress of integration milestones in the program.

One difference between hardware and software standards involves criteria for

functionality. Hardware and software performance and measurements also differ in their

need for coexistence and interdependency. Chris Lynch, co-founder and CEO of Rebellion

Defense, supports both sentiments of hardware and software and the criticality of

understanding this era of the DOD:

When we think of the military, we think of an aircraft carrier, a tank, a jet,
or a satellite floating around in outer space. Now those things aren’t going
to go away. That’s very clear. But we’re entering into what I think of as the
software era of defense. And that’s going to be driven by the flawless
execution of software to do the mission of defense and national security.
(Williams, 2021a, para. 11)

Hardware performance is based on hard specifications that can be visibly measured

whereas software success is measured by the ability to execute the functions written in

code. Military innovation has migrated to invisible and lethal lines of code embedded in

the hardware. The change is momentous and gaining speed, as described by Lynch:

It’s cool to build big, heavy things. I get it. It’s super awesome. We should
think that those are great. But if you don’t get just as excited about rolling
out unlimited compute and unlimited storage, continuous integration and
continuous deployment, and the ability to have people use Application
Programming interfaces (APIs), I can tell you right now, none of it changes.
It will not change. And you know what, it doesn’t sound that exciting, but

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

17

you got to get excited about it. You should be like, hell yeah. I love APIs.
(Williams, 2021a, para. 12)

If hardware is within min–max tolerances, it is measured as working, and until it

reaches a certain threshold of limited functioning, it makes little sense to change or update

it. Hardware performance standards and measurements contain a matrix of parameters not

limited to overall specifications, nonconformance, tolerances, configurations, testing

limits, and contractual quality standards.

Software performance measurements are based on the software tested and deemed

operationally ready when testing hardware. The DIB’s SWAP Study identified the speed

and cycle time for software as the most important metric (Bellairs, 2022) This measure

allows the program to retain an advantage in supporting the mission need. Hardware that

is late for delivery or suffers from nonconformance can affect software development and

skew the measurement and standards of software design changes. Software performance

can also be rendered useless as soon as it is released—the software either works or it does

not.

The cost of negotiating between hardware and software performance standards may

be high. Individually, the hardware may meet all required parameters and the software all

standards, but when they interface, the question remains whether the overall performance

will meet the standards. Once software and hardware are combined, new standards and

measurements will require further development and updates.

H. OBSOLESCENCE AND RISK MANAGEMENT

The current supply chain environment of defense programs and contractors

constantly weighs potential obsolescence and risk. Program obsolescence differs between

hardware and software. Some programs actively include diminishing manufacturing

sources in the contract for the hardware supply chain. However, software source

requirements have no comparable supply chain for software procurement.

With hardware, diminishing sources, engineering changes, and obsolete

components, for example, could lead to obsolescence, but the process takes time.

Nevertheless, it is easy to predict and plan for when components will become obsolete and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

18

put in place risk mitigators. With software, obsolescence is always right around the corner

due to emerging security threats, changing architectures, and interfaces, and different parts

of the software rely on more unknowns, such as languages, platforms, and interfaces. While

hardware component obsolescence is contractually documented, with remedies to secure

the required assets to support the program through agreement, software obsolescence or

the failure to secure adequate resources to incorporate software via agile approaches is not

structured in the contract.

The importance of software and its ability to moderate threats are disproportionate

to hardware threats. For the hardware issues, contractors possess a defined understanding

of the costs and requirements to mitigate potential obsolescence. Conversely, for software,

unknown resources, code, architectures, interfaces, and languages, among other dynamic

elements, create unknown costs and risks for most programs.

I. QUALITY PRODUCT DEVELOPMENT

The cost of a quality product and the time to design and develop it depend on both

hardware and software. The measures and quality requirements are different for software

and hardware. Hardware quality requirements have various standards based on different

behaviors, constraints development, testing, and costs, vis-à-vis software, which meets

varying guidelines developed by subject-matter experts.

Hardware is designed and developed differently. With hardware, good and effective

design is built into the product from the beginning. If one has “done it right” since the start

of the process, the output is something that will function well for a long period. In contrast,

there is a built-in expectation for software that things will go wrong, and things will need

to change and be updated. Fundamentally, the two products offer vastly different

definitions of quality.

The quality software engineers completing the testing might not be the ones who

developed and coded the software. Yet, with hardware testing, those who engineered the

products also test them. Other quality differences between hardware and software include

testing for proofs of concept, approved environments, and time requirements. Moreover,

the tools required to build, test, and inspect the end product for a proof of concept and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

19

release to move to the next path vary greatly. Also, while the standards and organizations

establishing hardware and software quality differ, the interrelationships allowing

successful interoperability of quality design, development, and productions are critical to

meeting the desired executions.

The importance of these quality measures confirms that while the standards of

measurement are different, the end design and upgrades meet quality standards for both

software and hardware.

J. SECURITY

Program security affects both hardware and software. The applications for

hardware and software, while co-dependent, are established and achieved to utilize

different skillsets and competencies. Security in hardware programs is more

straightforward than in software programs, as cybersecurity demands in software are in a

constant state of flux. For example, while software security limits flexibility and

communications in the F-22 Raptor program, hardware does not face this issue (Ulsh &

McCarty, 2019). Security in software is an area of great concern for the government and

commercial sector. Their desired results are the same, but the time to integrate agile

changes is vastly different based on their IP ownership.

MDAPs face diverse challenges in integrating security in hardware and software.

Hardware security is usually straightforward regarding the physical device, design rights,

and configuration and process reviews. Software is much more complex and multilayered,

as it may be corrupted and hacked and pose unknown threats.

Mounting cyberthreats have made cybersecurity a DOD imperative. Hackers are

evolving rapidly; meanwhile, the DOD has mitigated the risk but not as effectively as

ensuring complete protection. In a report titled Resilient Military Systems and the Advanced

Cyber Threat, the Defense Science Board (2013) warns that the current information system

might not ward off attacks by rivals. In identifying various known, unknown, and

adversarial vulnerabilities, the board maintains that software systems and code must protect

government programs against unknown access, bugs, viruses, operability challenges, and

architectural defects, among other hazards. Software security also includes various

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

20

authentications, firewalls, and encryption to protect and detour attacks from internal and

external system threats (Jeng, 2019).

Hardware security is straightforward and visible whereas software is multilayered

and invisible. Hardware vulnerability alerts are another difference. Software and hardware

are required to interoperate, but hardware is at risk if the software is not adequately

protected against threats. Whereas the security of both hardware and software may become

outdated, the ramifications are different for each. While hardware is not easy to modify,

software may be changed more easily by modifying code. In defense programs, for

example, old hardware must be removed and new builds of physical products coordinated,

and software code must be updated, to accommodate evolving security threats

(Madhurihammad, 2022).

K. CRITICAL PATHWAYS

Critical paths and processes in programs are prototypical in planning and

forecasting both hardware and software, yet they have distinct and comingled lanes.

Hardware and software are the two major elements in most defense programs. The software

benefits from the hardware but can be degraded if the appropriately designed critical paths

for each are not coordinated.

The critical paths for software and hardware within a program differ greatly, yet

they overlap to successfully test and operate the desired end item. A critical path involves

the items that require significant time in a program to complete. Critical paths for software

depend on time development, manufacturing, and testing milestones, identifying and

managing tasks of the project and completion timelines for the available hardware

resources. The DOD’s software assurance concept demonstrates what to include in critical

paths for software, including critical program information and critical technology, which

outlines important factors of system architecture, design, and development activities

defined in the specification, statement of work, and testing of the following aspects:

1. evaluating teams,

2. appropriate security clearances,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

21

3. secure work environments,

4. contractor policies and outsourcing,

5. commercial off-the-shelf systems lineages,

6. trusted development and life cycle scenarios,

7. software shortcomings, and

8. impact of changes to code and potential security hazards (DIB, 2018).

When software design is unknown, hardware design can continue, though it may

create new and unplanned software demands. When hardware design is unknown, software

design is delayed or incomplete or needs to be updated with new, unexpected elements.

Critical paths for hardware include a bill of material and a manufacturing schedule

hierarchy dependent on the longest estimate to obtain materials, testing, and qualifications

to meet the blueprint.

The overall critical paths of hardware and software require optimizing and working

to meet both the schedules and simulations of the complex program. Software techniques

cannot identify hardware situations that overlap information and milestones. Where both

may forecast isolated system functions, they must ultimately work cohesively. An example

of such a hierarchy results in a manufactured piece of hardware operating with software.

The software cannot be developed or tested until the hardware is tested to meet the design

configurations. In the F-35, for example, the radar system cannot be tested unless the

subcomponents are installed and the architectures for other systems built.

The critical paths for software and hardware, while co-dependent, also operate

separately. Like a symphony conductor, the program manager coordinates the interactive

critical path milestones. Designing and measuring software are different tasks altogether.

The same metrics cannot be used to measure both. Unfortunately, some programs still try

to use metric means or software to measure hardware (McQuade et al., 2019). The lack of

a software-centric approach to technology acquisitions while continuing the previous

hardware-centric “always done it this way” approach fails to address the current state

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

22

operating today (Williams, 2020). The ability to recognize the shift to a software

environment highlights these changes between hardware and software pathways.

L. ITERATION OF THE DESIGN

The hardware and software designed have different iterations that may not always

be aligned or forecasted within the programs. Software iteration of design is different from

hardware, as depicted in Figure 2. Sean Brady, the DOD’s senior lead for software

acquisition, is one authority. Modernizing all aspects of software acquisition in most

MDAPs and understanding the pathways are critical (Brady & Skertic, 2021). According

to the DIB (2018), “Modern software methods make use of a much more iterative process,

often referred to as ‘DevOps,’ in which development and deployment (operations) are a

continuous process” (p. 3). The iterative nature of the design in hardware and software is

fundamentally different. The hardware design is static and comprises modeled engineering

platform software that is iterative, unnatural, and constantly developed, designed, and

updated based on the environments in which the hardware must operate.

Software changes rapidly, so iteration is fundamental to ongoing functioning and

maintenance. The continuous change in software development is different from the rigidity

of the hardware life cycle under which it operates. Furthermore, the testing requirements

for software and hardware evaluation diverge significantly. The tools and culture of

software and hardware support also differ based on rapid transitions, monitoring, and end-

user engagement.

Another discrepancy between software and hardware is the structure of the

composition and repeatable design parameters. Software changes are multiple and require

repeated testing cycles. Some iteration is expected but not extensive. The goal is to

minimize iteration.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

23

Figure 2. DOD’s Software Acquisition Pathway.

Source: Brady and Skertic (2022).

Hardware fluctuations are gauged through first article testing, blueprints, and

configuration margins. Software constraints, on the other hand, require frequent feedback

from the developers and users to test the viability of the efforts.

A critical variance in iterative design and development is that hardware is built and

tested while software is repeatedly built, tested, and fixed in a continuous loop. Software

updates and nature must be executable, or they are worthless. To illustrate, the scheduled

Block 4 upgrade for the F-35 program will consist of 80 percent software and only 20

percent hardware change integrations. Thus, based on the status of this aspect, the

percentage of hardware is far less important and desirable than the software iteration.

M. CONCLUSION

The DIB and subject-matter experts agree that the DOD program’s defense

software is vastly different from the hardware. The hardware development and

maintenance are straightforward, but the ongoing software capabilities may require

continuous development throughout the life of the program (Bellairs, 2022).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

24

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

25

III. CURRENT STATE OF
MDAP SOFTWARE ACQUISITION

Over the past decades, the DOD has faced new threats. Leaders at the Pentagon are

aware of the current state of weapons acquisition (Department of Defense [DOD], 2021b;

McQuade et al., 2019; Oakley, 2021b; Sager, 2021). Specifically, software development

and acquisition guidance are ineffective in the DOD’s structure today. The software

problem that programs face stems from the current acquisition and development system’s

failing to align the appropriate software type and pathway with the mission need. Each

weapons system is designed to operate under different parameters and to withstand these

different environments. Moreover, these weapons must perform at critical times regardless

of the era in which they were developed, yet system-required updates to improve

performance are often not easily executed because of unknown interoperability issues.

MDAPs are not created equal—each program requires specific results and

outcomes, and each encompasses different IP, operations, testing, and threat responses.

Former Secretary of Defense Ash Carter (2019) said, “I inherited a system that had not

been designed to respond nimbly to quickly evolving threats” (p. 31). The DOD has not

been consistently successful in incorporating the agile methods envisioned by leadership

when deciding the appropriate guidance for all software acquisition (McQuade et al.,

2019). The existing processes for software development and deployment take too long and

are expensive, and warfighters are not getting access to the software they need. Additional

risks delay access to the necessary resources and tools that software can provide to the end-

user, according to a 2019 DevSecOps memo about modernizing software development,

security, and operations (Deasy & Lord, 2019). The risks, issues, and opportunities in

software acquisition, based on this capstone research, support the consideration of

alternative software pathways.

The Pentagon acknowledges gaps in the DOD’s understanding of software’s

influence on its programs (Deasy & Lord, 2019). DOD leadership’s objective is to

modernize the military by increasing the use of appropriate software pathways in legacy,

current, or new programs (Deasy & Lord, 2019). While the most recent results have been

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

26

inadequate, division heads have yet to clearly define software improvement expectations

for the services. Given these gaps in software, the evolving threats from adversaries of the

United States, the world’s greatest superpower, put America at a significant disadvantage.

The software pathways have inherent potential if the DOD promotes updates in acquisition,

such as the Adaptive Acquisition Framework (AAF) and DevSecOps, which support the

use of software factories to speed up the development and processes. Leaders are taking

notice of these promising software pathways (Brady & Skertic, 2021). The move of

advanced software architecture to Kubernetes and cloud migration tools has proven an

admirable yet slow integration across MDAPs (DAU, 2023). Adopting knowledge-based

practices and interagency software sharing to identify potential roadblocks is one aspect

supporting these efforts.

This chapter defines software techniques and architectures and discusses software

pathways currently in use by MDAPs. Then, it explores innovative opportunities to

expedite software development, testing, and release to the field.

A. SOFTWARE PATHWAYS

There are various tools for acquiring and developing software in the DOD toolbox.

The challenge is to choose an adequate approach to software development with the desired

result of meeting the cost, schedule, and performance of the defense programs. Recent

program predicaments stem from the inability of older legacy software architectures to

interoperate without several workarounds. Software pathways offer a choice of the

methods: waterfall, agile, continuous capability development and delivery (C2D2),

DevSecOps, and hybrids of these. However, recently suggested software paths for many

of the mature defense programs might not be adaptable to these methods or, thus, capable

of pivoting to meet the established warfighter program schedules. Furthermore, DOD

Instruction 5000.87 requires a one-year software capabilities development and delivery

schedule (DOD, 2020), but these instruction requirements might not be feasible with older

systems. Some of these pathways reflect new policies and guidance from DOD leaders for

implementing software at the level of leading commercial-sector companies (Deasy &

Lord, 2019). The pathways show promise in expediting development cycles to deliver an

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

27

MVP, which provides essential capabilities to the user for evaluation and feedback to

developers.

A program’s software is never truly in a sustainment phase, as the OODA loop

perpetuates its development and redesign in the field (Maurer, 2019). One notable

challenge is that an MDAP’s software requirements are often misaligned with the program

stages of available software pathways (McQuade et al., 2019). For example, during the

production stage of a program, the software requirements are estimated, and in the

sustainment phase, the user provides feedback on how the software performs in the field.

These differences in operational needs for software could be a benefit if new software

pathways were made available to MDAPs (Walsh, 2021). Some legacy MDAPs contain

different versions of software that require additional software interfaces, which may

increase the lines of code required to operate (Department of the Air Force, 2008). These

excessive software efforts do not always increase the opportunities for the program or user.

Regarding program platforms, the interview responses from the F-22’s program

office suggest that the F-22 is in the sustainment phase. A common challenge for older

fielded platforms is the integration of “brownfield” software—those with legacy languages

and methods—with modern software languages, processes, and tools, along with limited

code refactoring. In the end, the introduction of open systems architecture (OSA) is an

important step for facilitating the shift in future development to a “greenfield” (John Adams

IT, 2020). An OSA is a modular software architecture approach that allows interoperability

in weapon systems (Brady & Skertic, 2021).

For many programs, software requirements are funded and budgeted primarily for

the development phase, during which most of the software progress, testing, and release

occurs. Delays in software development typically delay the production phase and carry

over to sustainment, the point at which acquiring the software and hardware to iteratively

develop new software for emerging threats offers limited responsiveness (B. Burton,

personal communication, September 15, 2021). The mindset of some program

administrators is that the production phase of the program involves only the hardware—

yet the hardware cannot function without the software (Francis et al., 2001).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

28

This faulty understanding of software and hardware categories in acquisitions

means that each is funded under different categories of money and time, as defined by the

planning, programming, budgeting, and execution process. These categories are known in

the DOD as the colors of money: research, development, test, and evaluation; procurement;

operations and maintenance; military personnel; and military construction (AcqNotes,

2021). Challenges arise when the software and hardware are authorized under different

colors of money but need to operate as one system. For example, when the first two

categories—research, development, test, and evaluation and procurement—are budgeted

for simultaneously, the rules for appropriating and obligating the funds dictate different

timelines for the completion of the contract.

The following subsections discuss the benefits and challenges of each software

path. The key takeaway is understanding whether and when to incorporate these paths into

the program.

1. Waterfall

The waterfall software development model, or the “simpler model,” is the

predominant architecture used in MDAPs today (Wheeler 2018). The waterfall method

requires compliance at each testing milestone before release to the field, incorporating a

linear path whereby each stage must be finished before the software can advance to the

next stage of development, cascading like a waterfall, through software implementation

(Oakley, 2021b; see Figure 3). The traditional waterfall method delivers software to the

field at an estimated time, between three and 10 years, according to the DOD (Chaillan,

2023). The DOD’s software development and acquisition process incorporates waterfall

techniques that comply with the Joint Capabilities Integration and Development System

and acquisitions processes (McCaney, 2020).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

29

Figure 3. Waterfall Methodology.

Source: Defense Science Board (2018).

The waterfall process was introduced in the 1970s by computer scientist Winston

Royce in an article titled” Managing the Development of Large Software Systems.”

Recognizing that this process involved risk, Royce (1987) recommended prototyping and

iterative processes in software. Unfortunately, the DOD and defense contractors

misinterpreted the intent of his linear work, as Royce’s (1987) recommendations did not

apply this path to software development because it exposed additional process risks. Given

this model’s reputation for simplicity, others have misinterpreted the waterfall model as

reducing risk for large military programs, yet Royce advised against its use based on these

increased risks (Wheeler, 2018).

The problem with waterfall development is that it delivers updates far more slowly

than DevSecOps does (Chaillan, 2023). Using the waterfall method, the software

application’s life, development process, architecture, deployment, and infrastructure

timelines are prolonged months or even years beyond those applying DevSecOps

(Chaillan, 2021a). The length of time makes it difficult to keep up with evolving

technologies. As Naegele (2021), writing for Air & Space Forces Magazine, explains,

“DevSecOps breaks development down into manageable pieces and pushes iterative

improvements out in periodic sprints, while waterfall development delivers updates far

more slowly. The difference can be compared between an old Windows XT computer and

today’s Windows 10 or iPhone operating systems, which continuously roll out” (para. 3).

The waterfall method fails to deliver software rapidly, particularly because release testing

takes too much time to address threats in the field. Thus, the waterfall method cannot keep

pace with the needs of the warfighter (McCaney, 2020).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

30

GAO and SWAP Study reports, as well as government software reforms, have

acknowledged that the current move to agile software development is necessary to address

threats (McCaney, 2020). Nevertheless, many legacy programs have not migrated from the

traditional waterfall method due to other accreditations required by the DOD. Program

administrators have not considered the potential long-term benefits of the change process

perhaps because they believe further delays are inevitable (McQuade et al., 2019).

Responses to the interview questions from the F-22’s system program office describe

concerns over moves from older brownfield software platforms to newer greenfield

platforms. The benefits of moving to modern software pathways from legacy platforms

that use, for example, the waterfall process, pose a significant challenge in merging two

diverse software system architectures (B. Burton, personal communication, September 15,

2021). However, brownfield applications can be used to address upgrades and redevelop

existing applications. Nevertheless, distinguishing between the two types of software

allows the program to innovate all the while sustaining its needs (B. Burton, personal

communication, September 15, 2021).

2. Agile/Scrum/Agile-Like

According to a 2019 GAO report, the term agile is deemed as an all-encompassing

term for a variety of software practices (Walsh, 2021). As described in the book Head First

Agile, “Agile calls for the delivery of software requirements in small and manageable

predetermined increments” (Ludwigson, 2022, p. 27). As revealed in multiple yearly GAO

reports, “this model is based on an inspect-and-adapt approach” wherein “requirements

change frequently and software is released in increments” (Ludwigson, 2022, p. 30; Walsh,

2021). GAO research has illustrated how the “Agile frameworks produce ongoing releases,

each time adding small changes to the previous release” (Ludwigson, 2022, p. 27).

According to DOD (2019a) guidance, the software is tested at each stage in the process, to

ensure that the product can be delivered to the user. According to a 2021 GAO report on

the F-35 program, in agile collaboration, the customers, developers, and testers work

together throughout the project (Oakley, 2021b, p. 4).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

31

Failing to consider agile aspects in older MDAPs represents missed opportunities

to modify any subsequent software upgrades to the mission. An environment that fosters

software program success must first have the right conditions for integrating these agile

development techniques. Guiding choices made along this path are favorable or

unfavorable condition of the market, the customer’s involvement, innovation, the

modularity of work, and the impact of interim mistakes. Agile and Scrum methods consider

the assets of methods and optimized methodologies, assisting with various software

problems while simplifying and streamlining the solutions. Adopting a sharing mindset is

crucial to successfully implementing an “agile manifesto” (Stellman & Greene, 2017).

The goal of an agile manifesto is to decipher the best path to solve software

development challenges. As outlined in the manifesto, the team needs an agile mindset, so

it can produce the most effective software for the end-user. Among the manifesto’s guiding

principles and values are delivering software early, continuously reducing timescales or

iterations, welcoming changing requirements, and discovering the most timely and vital

working software release for the stakeholders (Stellman & Greene, 2017).

As the most common approach to agile software methods, Scrum also promotes an

iterative software process (cPrime, n.d.). Scrum software development focuses on the

project’s development and framework (Stellman & Greene, 2017). The three team roles in

Scrum are the Scrum master, the project owner, and the development team, all of whom

guide and develop the team’s scope (see Figure 4). The workload of the software team

divides into sprints, otherwise known as cycles. According to Stellman and Greene (2017),

these cycles are equal timeframes, typically lasting 30 days or two weeks. The sprint begins

with planning and identifying what features to address from the backlog of products to

construct. These new items comprise the sprint backlog, which the team works to complete

(Stellman & Greene, 2017).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

32

Figure 4. Scrum Framework. Source: Scrum.org (2020).

The benefits of using agile development involve collaborative processes that reduce

software projects to smaller releases or sprints and automate the testing process (McCaney,

2020). Software functionality is tested against the operational needs of the weapons system

to provide continuous delivery to the user (McCaney, 2020). This software testing path

alleviates the requirement for authority to operate (ATO), a DOD manual testing procedure

for software accreditation (McCaney, 2020). The DOD is slowly moving toward

developing software through agile processes. As mentioned previously, these processes

break down software features into sprints (McCaney, 2020). In each sprint, the software

must pass the testing process and be released to upgrade the system for which it was

designed. The results allow the DOD to respond rapidly to new threats with software

upgrades (McCaney, 2020).

The limitations of these software methods may include bottlenecks in software

capability training in some functional areas (Tate & Bailey, 2020). Furthermore,

incorporating new software methods in some scenarios requires advanced and specialized

architectures (Tate & Bailey, 2020). This aspect of incorporating agile software methods

can add time to the delivery of the capability or system on contract. These additional

requirements may initially slow the software development process until the updated

training is satisfied.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

33

3. C2D2

The C2D2 concept, developed by Vice Admiral Mat Winter, former F-35 program

executive officer (PEO), applies an agile-like approach by delivering frequent incremental

software and hardware improvements. C2D2 software was intended to address changing

technology (Pant, 2019) and to release software incrementally to increase warfighting

capabilities (Guertin, 2022). According to Pant (2019), the following goals of C2D2

illustrate the method’s foundation in agile software development:

• Develop and test software changes;

• Identify deficiencies in testing;

• Shorten the design time;

• Complete design work on new data processors;

• “Establish laboratory and flight-test assets for modernization requirements

verification” (para. 5); and

• “Address deficiencies from developmental testing, and conduct planning

and systems engineering work for initial capabilities” (para. 5).

The benefits of C2D2 are similar to those of agile software development. For one,

the C2D2 software process utilizes commercial best practices and develops software

capabilities in smaller, more manageable increments while accelerating the capabilities to

the fleet (Ludwigson, 2021). The C2D2 software method was designed to reduce delays in

providing software capabilities needed by the warfighter. For example, with C2D2, system

enhancements for the radar and collision avoidance systems of the F-35 program are

delivered every six months (Ludwigson, 2021). However, the comptroller reported in

FY2021 defense budget that C2D2 has failed to meet the desired improvements to the

software capabilities (Guertin, 2022). While four incremental software releases—

development, testing, identification of defects, and fixes for release—were originally

planned, the C2D2 concept applied to the F-25 program produced multiple bugs in the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

34

software and increased the increments to 10, thereby delaying the forecasted software drops

(Pant, 2019; see Figure 5).

Figure 5. Notional C2D2 Iterative Development Testing and

Delivery Schedule. Source: Ludwigson (2021, p. 30).

The expectation for C2D2 was to correct the current deficiencies by incorporating

agile software methods and to test the capabilities, but the F-35 program saw only minimal

benefits because the software was released as the technology matured (Sullivan, 2018).

Robert Behler, the Pentagon’s operational test and evaluation director, characterizes these

limitations as follows: “The current Continuous Capability Development and Delivery

(C2D2) process has not been able to keep pace with adding new increments of capability

as planned” (Insinna, 2021, para. 18). Behler observes, “Software changes, intended to

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

35

introduce new capabilities or fix deficiencies, often introduced stability problems and

adversely affected other functionality” (Insinna, 2021, para. 18). The C2D2 effort is also

late to contract schedules. Congress has considered discontinuing current funding based on

GAO reports that the delivery milestones are unachievable and offer minimal benefit to the

F-35 program (Grazier, 2020). C2D2’s rapid implementation and testing of software

development code, vis-à-vis the waterfall approach, have been blamed for delays and

unachievable capabilities for the warfighter (Ludwigson, 2021).

The F-35’s program office and contractor Lockheed Martin are failing to deliver

the software milestones established by C2D2 software targets, thus missing the program

objectives. C2D2, the software development concept for the F-35 program’s development,

testing, and release requirements, is late to contract and in an overrun position of the

contract costs (Ludwigson, 2021). This is a classic case of software needs misaligned with

contract awards.

4. DevSecOps

DevSecOps is a collaborative software approach between developers and users that

provides software continuously to adapt to rapid challenges by the customer (Walsh, 2021).

As noted in a 2023 GAO report, DevSecOps “is an iterative software development

methodology that combines development, security, and operations as key elements in

delivering useful capability to the user of the software” (Oakley, 2023, p. 17). Furthermore,

as described in a Red Hat (2023) article, “DevSecOps in software is a process which entails

running multiple agile paths at the same time to develop the next state of an application.”

When applying this approach, stakeholders need to bear in mind that development,

security, and operations are crucial aspects of the software user capability (Red Hat, 2023).

As documented in the SWAP Study, “DevSecOps is best described as the

conventions and practices creating collaborative and communicative partnerships between

development and operation groups” (McCaney, 2020). According to Chaillan, these

practices incorporate automated development of software delivery and infrastructure

changes within programs that adopt this method (Naegele, 2021). By incorporating the

DevSecOps mindset into software integration, all stakeholders can engage in all phase

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

36

strategies and create interoperability. See Figures 6 and 7 for a comparison of the “old”

and DevSecOps methods of software development.

Figure 6. Current Software Development Process.

Source: General Services Administration (n.d.).

Figure 7. DevSecOps Software Development Process.

Source: General Services Administration (n.d.).

The following are benefits of using DevSecOps, as demonstrated by Chaillan’s DOD

enterprise initiatives:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

37

• Collaboration among the Office of the Secretary of Defense, Acquisition

and Sustainment; the Office of the Chief Innovation Officer (CIO); and

the services;

• DOD program integration with agile software at a faster pace;

• Timeliness and centralization in using a DOD Centralized Artifact

Repository (DCAR), Iron Bank, with containers (see Figure 8);

• Faster mission software development using Kubernetes methods (see

Figure 9);

• Resilience (the ability to restart the process);

• Baked-in security (automatic checks for issues);

• Adaptability, which minimizes software downtime;

• Automation in designed infrastructure models;

• Auto-scaling based on the user’s need;

• Abstraction layer to eliminate software locked into one platform (Chaillan,

2023);

Furthermore, DevSecOps addresses the following barriers in software

development:

• Culture—Removes gaps from differing agendas and promotes a

willingness to change;

• Technology—Adopts best practices developed to keep pace with

warfighter needs;

• Training—Educates constantly on the best methods; and

• Contracting—Adopts the agile acquisition framework (Skertic, 2019).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

38

The Iron Bank DCAR with containers provides a central software capabilities

location to certify, secure, and develop software (Chaillan, 2023). This approach enables

access to the DOD community authorized in the supply chain for all software engineers.

This software initiative is important because it speeds up development by automating

the process in a secure environment (Office of the Chief Software Officer, 2019; see

Figure 8).

Figure 8. Iron Bank. Source: P1 (n.d.-b).

Kubernetes is a software development infrastructure that uses development-like

pods that act as small containers of data. This platform, which eliminates the program’s

reliance on one software supplier, is authorized using a centrally located repository with

security designed into the software (Chaillan, 2021a; see Figure 9).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

39

Figure 9. Kubernetes Reference Design Interconnections.

Source: DOD (2021a, p. 11).

When DevSecOps integrates DCAR/Iron Bank attributes using Kubernetes, every

stage of software development is automated through a commercial-like cloud method

(McQuade et al., 2019). As shown in Figure 10, a DevSecOps technology stack merges IT

capabilities with Cloud One commercially designed methods and P1 services (Chaillan,

2019). P1 is a software factor and service that allows access to Cloud One, a government

software hosting service (Chaillan, 2023). Cloud One supports the Air Force and provides

software testing, production, and computing applications (Chaillan, 2023).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

40

Figure 10. DOD Enterprise DevSecOps Technology Stack.

Source: Chaillan (2019, p. 16).

Additional benefits of DevSecOps include the increased security of software over

the outdated waterfall method (see Figure 11). When using DevSecOps, software security

concerns emerge earlier in the development phase than when using the waterfall method.

According to the DIB, security in software is an essential element (Oakley, 2021b). The

DOD benefits from the DevSecOps process because it provides better reporting metrics,

testing thresholds, and automation. Automation is an advantage to programs because it

removes the manual testing process, which requires ATO (McCaney, 2020). In

DevSecOps, ATO forms a continuous process of approving and certifying that the software

is ready to use (McQuade et al., 2019). This repeatable process is yet another key advantage

of DevSecOps (McLaughlin, 2019).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

41

Figure 11. From Waterfall to DevSecOps.

Source: Chaillan (2019).

A 2019 DOD memo documents the limitations of using DevSecOps (Deasy & Lord,

2019). Due to its unique structuring, timing, and challenges, DevSecOps could not be

applied in its existing form. For example, defense regulations require annual operational

releases, which are infeasible, based on an interview with a representative from the F-22

program office (B. Burton, personal communication, September 15, 2021). Furthermore,

the Navy’s F-22 release process cannot support anything more frequent than an annual

release. Moreover, the retrofit process, which includes only operational flight program

modifications, can be lengthy and must be balanced with F-22 combat-coded fleet

readiness. Thus, the F-22 program must weigh the capabilities included in each recurring

software release with its current inability to meet the annual release requirement

highlighted in DOD instruction. The F-22 program office expects that the guidance will

continue to evolve and be reevaluated as it does (B. Burton, personal communication,

September 15, 2021).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

42

5. Hybrid/Mixed

A 2021 GAO report describes this hybrid approach as a “combination of two or

more different methodologies” or “systems used to create a new model” (Oakley, 2021b,

p. 4). According to the F-22 program’s General David Basset, the Defense Contract

Management Agency commander, aspects of existing programs make it impractical or

impossible to use things or transition to start using updated agile software methods

(Basset, personal communication, July 15, 2021; B. Burton, personal communication,

September 15, 2021).

B. SOFTWARE FACTORIES

A software factory is an organized software development approach associated with

a supply chain for producing software solutions (DOD, 2021b). This approach can be

assimilated from the manufacturing process used for hardware items. Software factories

comprise assembly lines or pipelines consisting of different environments that rely on

hardware-like software (DOD, 2021b; see Figure 12).

Figure 12. Software Factory Construct. Source: DOD (2021b).

Two of the DOD’s software factories create repeatable paths for developing and

delivering software applications (VMware, n.d.). One software factory addresses

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

43

cybersecurity using a toolchain that identifies rules constituting vulnerabilities in the

software at every level. Through a style sheet, the software factory checks lines of code for

rule violations and communicates them to the programmers (Eckstein, 2021). The National

Institute of Standards and Technology supplies guidelines as a starting point for the cyber

rules established in a software factory environment. This repeatable process disseminates

the new code and identifies new exposures. The logic errors produced from testing user-

created capabilities automatically relay new issues to the team.

Software factories contribute options to the DOD (Chaillan, 2021a). Other

important elements that software factories supply include quick, consistent code releases

and refined development using innovative techniques (VMware, n.d.). Their approaches

include DevSecOps, agile software methods, and cloud technologies, which eliminate

excess infrastructure (VMware, n.d.). Software factories support innovation by combining

both software tools and teams, and their development practices standardize and reuse code

(VMware, n.d.). In sum, software factory teams use knowledge-based approaches to

produce more effective software.

The software services and data needed for the rapid acquisition of critical software

systems that support the warfighter require a collaborative effort among all stakeholders,

including members of industry and the military. Today, limited software personnel exist

in the military (McQuade et al., 2019). Indeed, most software coders opt to work in

the commercial sector rather than enlist in the services (Oakley, 2020). According to

Beachkofski and Helfrich (2021), it is vital to integrate military service software

professionals into collaborative efforts to guide technological decisions.

Software factories incorporate the needs of the entire defense enterprise, altering

the software frameworks and team collaboration efforts across many programs. There are

several identified benefits of software factories, such as P1 and Kessel Run:

• Platform services that enable rapid cross-platform application and cross-

environment portability;

• Common security authentication services;

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

44

• Common policy enforcement services;

• Consistent security-monitoring services;

• Continuous consumption of the industry’s leading platforms; and

• Collaborative cost savings by weighing sound buys against leases against

built business cases and decisions (Chaillan, 2023; Office of the Chief

Software Officer, 2019).

Figure 13 depicts the Air Force’s software factory hubs, which represent a single-

platform ecosystem for DOD weapons systems. The various innovative hubs allow

interaction with software factories across the country.

Figure 13. Software Factory Hubs. Source: Office of the

Chief Software Officer (2019); P1 (n.d.).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

45

1. Kessel Run

Kessel Run is an Air Force-owned software developer in Boston, Massachusetts,

that supports all capabilities of the warfighter (Hitchens, 2020). It scales software to design,

manufacture, and operate weapons systems. Kessel Run practices have adopted lean

development, extreme programming, and user-centered design (Office of the Chief

Software Officer, 2019). Lean development allows simple software development of the

most critical items by the quickest method possible. Extreme programming integrates the

speed of software development. Software testing and programming are linked and capable

of pivoting to any changes in code that arise. User-centered design is an approach that

highlights the value of the user to the team. The iterative nature of software is the main

driver that validates software conventions based on new testing or research (Office of the

Chief Software Officer, 2019).

In addition to its development practices, Kessel Run values continuous design

through delivery, feedback, and learning. Its embrace of these standards allows

responsiveness to unknown operational threats and enables a continuous feedback loop.

Kessel Run has been designed to recognize and mitigate risk. Its seven programs work to

transform, develop, and provide software solutions, focusing on command and control (C2)

capabilities intended to support its principles and values (Office of the Chief Software

Officer, 2019).

Kessel Run’s motto, “the speed of need,” promotes the integration of next-

generation software technology into weapons systems (Kessel Run, 2021, para. 3). The

goals alter the software paths to build and deliver capabilities (Office of the Chief Software

Officer, 2019). Kessel Run uses proven software methods developed by the commercial

sector (Office of the Chief Software Officer, 2019). This software factory has proven

successful in collaborating with military service members in major weapons systems,

resulting in innovative, agile software methods that are responsive to users in any

programming domain at any point in time (Office of the Chief Software Officer, 2019).

The benefits of using Kessel Run depend on the type of program, operational need,

platform, and applications identified by the program and end-user. One platform in Kessel

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

46

Run’s arsenal, the All Domain Common Platform, manages C2 globally with a vision of

an all-operational domain (Hitchens, 2020). C2 is how operational decisions are made

(Hoehn et al., 2022; see Figure 14). The goal of this platform is to provide network

communications in an end-to-end system. This platform is designed to simplify software

development, scaling software features to integrate new applications and services more

rapidly for the end-user from any location around the globe (Hitchens, 2020). The resulting

data help to improve program performance, as the mission’s applications are produced

quickly (Office of the Chief Software Officer, 2019).

Figure 14. C2 Model. Source: Hoehn et al. (2022).

2. Platform One

P1 is an Air Force–based modern cloud platform software factory. Its software

solutions begin with a 90% day-one mindset instead of starting from nothing (P1, n.d.-a).

The mission of P1 is to transform how software is delivered to the warfighter. P1

incorporates innovative software frameworks, collaborations, and security measures to

develop software solutions. The vision for P1 is for the platform to accelerate the

capabilities of the DOD, the goal being to retain DOD dominance over adversaries by

speeding up software deployability (P1, n.d.-a).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

47

P1 (n.d.-a) incorporates the following core principles into its mission: software to

scale, accountability, simplicity, a different culture, human resources, and training. The P1

concept of software to scale identifies the features that are not satisfied until all

requirements are met, including software testing, documentation, automation, and training

for all stakeholders (Office of the Chief Software Officer, n.d.). The next principle is

member accountability to one’s own work, words, and access to the team, which succeeds

or fails in every detail. A misunderstanding is not an excuse to ignore individual

responsibility; thus, a team member is successful only when the goals outlined by the team

are met (Office of the Chief Software Officer, n.d.). The team’s obsession is writing

baseline code for the DOD weapons systems at every level (Office of the Chief Software

Officer, n.d.).

A belief in accountability sets up the unique culture adopted by the P1 team

mission. The status of the team over the individual and the idea that mistakes are learning

opportunities depart from the normal credence of many MDAPs. Admitting imperfections

and recognizing the value of every team member are encouraged in P1. Moreover, the team

is encouraged to think creatively and foster changes that might deviate from normal

protocol (Office of the Chief Software Officer, n.d.).

Another benefit of P1 is having the right human resources. Everyone in P1 writes

code—there is no exception. This edict provides the quintessential cross-training for staff

and allows coverage for anyone unavailable for any reason. The code must go on. The P1

team promotes decision-making by members, and the individual with most of the data

needs to execute the choice. For example, for technical decisions, the expert in this field

makes the decision regardless of rank (Office of the Chief Software Officer, n.d.).

The training principle promotes continuous learning. The P1 culture strives always

to improve the brain inputs for each member, placing the greatest emphasis on investment

in people. The priority is to foster individual self-improvement. This momentum facilitates

paying it forward to the entire team (Office of the Chief Software Officer, n.d.).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

48

3. Limitations of Software Factories

Software factories are not appropriate for every program. For one, their inability to

synchronize structure contracts with hardware and software architectures is not commonly

communicated to the program’s decision-makers. Also, they lack transparency between the

government’s planning, programming, and budget execution and DOD stakeholders.

Moreover, such a software path misaligns with the colors of money typically used for

defense acquisition programs (Francis et al., 2001). In some circumstances, limitations lie

in the DOD’s software acquisition choices, which follow a linear path for software

development (DIB, 2019). This route incorporates the legacy model of estimating software

lines of code for each phase. The current software environment limits the ability to match,

detect, and defer U.S. adversaries with most legacy weapons.

As an Air Force CIO, Chaillan did not approve of the DOD’s bureaucratic

procedures. The absence of an acquisition team to award relevant software contracts is a

missed opportunity for DevSecOps across the DOD. The acquisition team works with the

program’s stakeholders and exercises the purchasing path to pursue. Normalizing the

integration of software factories into the DOD was the desired path of Chaillan. The

capability of “pushing over the air new software updates to weapons systems,” including

rapid software designs, was another goal (Chaillan, 2023, p. 7). Its misapplication of

software factories is a symptom of the DOD’s ailing acquisition culture (Chaillan, 2021a).

Another limiting factor is that the DOD continues to invest in parallel software

architectures. These software system stacks do not provide the desired benefit. Not all DOD

systems are adaptable to iterative development. Many legacy DOD platforms consist of

controls that no longer require development. Yet legacy systems that surpass their predicted

life cycle may benefit from some type of software automation.

The limitations of the waterfall method are exposed by other software pathways

(Walsh, 2021). In 2019, the DIB reported that the traditional waterfall approach was

inadequate for some programs, particularly because it could not compete with the potential

cost savings of iterative software development (Walsh, 2021). For example, Agile/Scrum

and software factories allow an incremental approach to smaller software blocks evaluated

by the user community (McQuade et al., 2019). Indeed, numerous commercial entities

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

49

migrated from the waterfall method long ago and established better ways for validating

software.

The limitations of software factories are related to the marketability and value of

their services to programs. One factor is a program’s capacity to identify which software

factories are at scale (Bailey & Tate, 2021). The program must decide whether its coding

conditions—the environment, customer, innovation, modularity, and impact of mistakes—

warrant moving to such an iterative development software pathway (Bailey & Tate, 2021).

The value that software factories offer to legacy programs includes that of the current

software’s development and operational effectiveness. Furthermore, when the weapons

system encompasses foreign allies and foreign partner nations, IP ownership may prove

problematic for a software factory. Likewise, complex software language conversions may

be limited in their operational aspects when different codes and architectures are not

considered or known by the developer.

Kessel Run’s limitations reflect whether the program’s culture accepts changes to

its existing software pathways. Kessel Run’s real-world applications integrate security

features using the DevSecOps process. Its ability to limit software weaknesses and deliver

code quickly to the field depends on the authority of use (Office of the Chief Software

Officer, n.d.). For example, the F-35 program’s vast allies and partner nations—Australia,

the United Kingdom, Belgium, the Czech Republic, Denmark, Poland, Switzerland,

Greece, Norway, Italy, Finland, Canada, Germany, Japan, the Republic of Korea, and

Israel—may have different rights and partner or foreign military service agreements that

prohibit integrating certain software changes for security reasons (DOD, 2017). Air Force

Major Rachel Mamroth, the deputy chief of acquisitions for Kessel Run, recognizes both

the opportunities and challenges of migrating all software responsibilities to software

factories (personal communication, February 25, 2022).

Another limiting factor of software factories is their lack of ownership and IP

management in developing new software. IP is intangible property that includes

information, products, or services protected by law (DOD, 2019b), but software and

technical data are intangible property. The government does not own adequate IP rights,

according to Ellen Lord, former undersecretary of defense acquisition and sustainment,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

50

who created guidance for retaining IP ownership in MDAPs (DOD, 2019b). Experts in the

field raise valid concerns about IP ownership issues given the government’s resources for

managing millions of lines of code. Major defense contractors and their subcontractors

benefit from the government’s developing and working on software code (McQuade et al.,

2019). A program might decide to retain IP through the contractors who possess the code

and incorporate the new methods. In addition to new capabilities that address threats

encountered by the warfighter, a faster response within the acquisition community requires

that resources be supported by the government and converted into a new tool for the

program’s arsenal.

When software code is not developed by the overseeing office, the office fails to

fully own all the IP rights. The changes implemented in DOD Instruction 5010.44 involve

educating the program teams to seek evolving software resources capable of delivering

rapid software architectures (DOD, 2019b). The new software pathways do not work for

everything. The DOD has only a handful of software factories, and the factories do not

have the capacity for every program. Besides, defense personnel are not accustomed to

working with these software factories. Nevertheless, security concerns minimize the

capability of leveraging software factories in some applications (Bailey & Tate, 2021).

C. FACTORS LIMITING INNOVATIVE MDAP SOFTWARE PRACTICES

Many factors limit innovative software practices in MDAPs and prevent the

programs from considering any innovative software pathways. These factors include

culture, communication, knowledge-based practices, resources, life cycle, stovepipe

methods, and hierarchy levels. These seven factors—combined with the linear structure

of DOD acquisition, development, and operational testing and evaluation—limit the

full scope.

1. Culture

Change is difficult for people and organizations to accept and integrate due to the

rigidity of the structure, bureaucracy, egotism, education, or the leadership’s agenda

(Thornberry, 2023). Creating an innovative environment and fostering an innovation

mindset offer advantages for service members.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

51

One potential reason for the lack of integration of new pathways lies in the

military’s chain of command. The military’s organizational norms involve leading and not

questioning authority. Additionally, it is standard practice not to encourage mistakes in

order to learn from them. This type of mindset is outdated (Thornberry, 2023). Fear exists

within the ranks when the services champion innovative methods (Coram, 2020). Studies

show the higher the rank of a military officer, the less likely she will initiate change

(Gleason, 2022). The military promotion process includes silent yet understood decision

protocols. To illustrate, once an officer becomes a colonel, the next promotion the board

considers is her eligibility for general. This critical timeframe signals the likelihood of this

promotion, so the impact of fostering innovation at this level weighs heavily on the

individual who embraces both but must decide her path: either her career or change within

the military. It is often not both (Coram, 2020).

The DOD desires to develop high-tech weapons, but it is risky and expensive

(Carter, 2019). The lessons not learned from failures were manifest in the hypersonic

missile program, which the DOD decided to halt (Thornberry, 2023). Leadership was

perplexed when China and Russia ramped up missile development efforts (Thornberry,

2023). The need to keep pace with U.S. adversaries requires developing innovative arms.

In generating technological advancements that align new requirements with the DOD’s

mission, the DOD must recognize that an initial failure often precedes the success of a

program (Carter, 2019). The pause in this effort now places the United States at a

disadvantage due to the cultural norms of the DOD mindset (Thornberry, 2023).

While some segments of the DOD are using updated systems to drive

modernization, there are still prevalent cultural barriers limiting the agility and private–

public sector collaboration needed (Thornberry, 2023). The club that champions

admittance is a type of fraternity that incorporates other generals’ inputs into the decision

(Coram, 2020). Nonconformist leaders are viewed as outliers of the current behavioral

leadership norms (Coram, 2020). Moreover, according to the officers’ colleagues, the rank

they achieve denotes the belief in the type of leaders they are and the extent of their

capabilities (Coram, 2020). The rules of engagement in the military create a potentially

toxic atmosphere when officers buck the cultural climate of decision-makers (Coram,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

52

2020). This environment is based on the type of decisions executed by up-and-coming

innovative thinkers. Working outside the leadership’s unspoken cultural norms might be a

career killer if the decisions do not align with a leader’s agenda (Coram, 2020). Innovative

original thinkers who challenge the purpose and scope of generals’ and admirals’ programs

tend to be ostracized regardless of their overall contributions. For example, John Boyd,

who revolutionized aircraft fighter tactics and maneuverability in aeronautics, was an

outspoken innovator who created enemies and was treated as an outcast (Coram, 2020).

The services ultimately bypassed his promotion to general.

The benefits of establishing a new culture include a collaborative environment

among all stakeholders. Some aspects of agile methods are scaled into organizations, and

initiating communications with the team to listen and validate changes is a critical aspect

of culture shifts.

2. Communications

Communication problems result when MDAP requirements are ill defined. The

miscommunication of requirements may be unknown at the time of contract award. When

there is a lack of open communications, there can be new challenges incorporating software

changes (Miller et al., 2022). An inflexible organizational hierarchy, cultural inertia, and

security requirements might pose challenges for open communications (Miller et al., 2022).

These challenges highlight the importance of communicating realistic program

requirements and the opportunity for adequately forecasting the costs, schedules, and

resources needed. The program depends on both software and hardware for successful

operational performance. This dependency remains throughout the program’s life cycle

and requires the communication of any upgrades, problems, or corrections to mitigate

deficiencies disclosed in the system (Ludwigson, 2021). The entirety of needs is not

adequately revealed to or by all stakeholders in the planning and development stages

(Mortlock et al., 2022). The ramifications of poorly defined requirements involve delays

in meeting the weapons functions and testing milestones. These delays, whether not

communicated or filtered through messages, create additional problems that affect all

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

53

stakeholders’ obligations, including multiple levels of cost, delivery, performance, and

mission milestones in the entire program (Insinna, 2021).

The ineffective communication of program requirements contributes to the

misalignment of hardware and software program performance, costs, and overall

capabilities (Mortlock et al., 2022). Accurate communications enable insight into the

forecasted timeline and performance to adjust the plan for the next step of the acquisition

(Mortlock et al., 2022). Various program actors benefit from budgets allocated to new and

existing programs when only the upside is communicated. Yet, comments from anonymous

DOD software engineers on the fallout from inaccurate communications in software

pathways facilitate software change (Miller et al., 2022). These examples highlight another

factor in software delays—the trickle-down effect on the hardware from software

capabilities (Walsh, 2021). This problem has not been resolved nor has the time been

estimated to address it. The milestones of MDAPs require unfiltered communications to

report the timelines to meet each percentage of the driver (see Figure 15).

Figure 15. Acquisition Milestone Process.

Source: DAU (n.d.-c).

The trend of varying sizes and complexity of DOD programs may contribute to the

amount and quality of communications among stakeholders. Missed opportunities for

communication are the result of both individuals and agendas. The individuals and agendas

are not aligned with the intent of creating an open environment to collaborate. This setting

is ineffective in supporting the desired program outcomes. Underlying personal biases and

hidden agendas stifle open, honest communication (Gleason, 2022). Sharing expectations

across disciplines fosters a realistic measure of achievement, which is one goal of the new

Adaptive Acquisition Framework (see Figure 16). This framework’s tenets are to simplify,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

54

tailor, empower, use data analytics, manage risk, and highlight sustainment drivers (DAU,

2019).

Figure 16. Adaptive Acquisition Framework.

Source: DAU (n.d.-b)

These tenets allow program managers to exercise the option of using either a single

pathway or a combination of acquisition pathways (DAU, 2019). The communication

importance connected by the Adaptive Acquisition Framework is driven by milestone

achievement (Mortlock et al., 2022). If they are not adequately communicated, the critical

software requirements will fail to meet the milestone criteria (Mortlock et al., 2022). These

options facilitate the program’s ability to exercise an analysis of alternatives that considers

which pathway best suits the program’s needs. Each member is accountable for

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

55

determining the performance criteria that add to the system’s achievement of outcomes.

The stakeholders may benefit both in the short and long term from improving reliability,

maintenance, costs, and resource allocation and eliminating obsolescence.

3. Knowledge-Based Practices

A DOD acquisition approach to improving the outcomes in programs applies

knowledge-based practices (Oakley, 2019). This approach incorporates lessons learned for

programs that have insufficient knowledge in the development phase (Oakley, 2019). It

comprises three acquisition phases—technology development, system development, and

production (Oakley, 2019). The three phases align with three points of knowledge, whose

criteria differ (Oakley, 2019). Under a knowledge-based approach, technical readiness is

required before a program advances to the next phase. Other areas of focus include stable

design, testing, and integration capabilities (Oakley, 2019). These practices and oversight

can provide “rapid fielding of warfighter capabilities” (Oakley, 2019, p. 5).

The problem with incorporating the knowledge-based approach in software

acquisitions and development is the lack of skills across DOD personnel to address

maturing technology. The current program structure does not align with the design of

performance capabilities; neither does the DOD understand how to integrate emerging

technologies within a knowledge-based concept (Oakley, 2020). Defense programs have

attempted to restructure themselves to align with knowledge-based approaches, but the

result is that some programs are canceled when the restructuring fails to align with updates

to new milestones (Oakley, 2019).

With the knowledge-based concept, a successful program gains insight into and

confirms the maturity of the technology intended to stabilize the design and control of the

production processes (Oakley, 2019). The knowledge-based approach integrates three

points to provide information to the program to facilitate the decision-making process. The

first decision point is to identify all program needs and resources to invest in product

development (Oakley, 2019). This point includes identifying all resources that can achieve

all the customer’s requirements (Oakley, 2020). The second point identifies whether the

design is stable and can meet the performance criteria (Oakley, 2019). If the criteria are

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

56

met, the program may invest in building a product prototype and testing it. The third and

final decision point forecasts the elements of the program—the cost, schedule, and

performance. According to the GAO, if this criterion is met, the program may begin

manufacturing the first components (Oakley, 2020).

According to the GAO, some of the DOD’s historically poor-performing programs

serve as opportunities for using knowledge-based approaches (Sullivan, 2008). The GAO

recommends aligning the budgets of major programs to fit with the resources available to

develop a strategic priority with aspects of fiscal year appropriations that predict realistic

program outcomes (Oakley, 2020). According to one GAO report, the programs that fail

to adopt the knowledge-based approach will be reduced or terminated (Oakley, 2020). Such

an outcome helps to align dollars and resources with DOD objectives (Oakley, 2020).

Those programs that ignore the GAO’s recommendations toward a knowledge-based

approach might experience limited performance, higher costs, and schedule delays.

Secretary of Defense Lloyd Austin is quoted in the fiscal year 2023 Defense Budget

Overview as saying, “Strategic readiness is improving the Department’s understanding of

the comprehensive and cumulative impacts of the decisions we make today on our future

readiness” (Office of the Under Secretary of Defense (Comptroller)/Chief Financial

Officer [OUSD], 2022, p. 3-8). According to the OUSD (2022), the Strategic Readiness

Framework keeps the department’s eyes “on the horizon, ensuring the urgent competing

demands of the present are carefully balanced with the importance of preparing for the

future” (p. 3-8). Furthermore, the Defense Budget Overview “identifies the lapses within

the DOD where there are misaligned resources to strategy, strategy misalignment to policy,

and policy misalignments to the will of the American people” to recommit efforts to learn

and implement corrections into business processes (Austin, 2022).

A knowledge-based approach to software-centric programs would support the

program at each knowledge point (Oakley, 2019). Each year, the GAO reports whether

certain MDAPs are over budget and which ones have failed to learn from their mistakes

(Sullivan, 2008). The undesirable results include cost increases, schedule fluctuations, and

minimal software development practices (Francis et al., 2001; Ludwigson, 2021; Oakley,

2019, 2020; Sager, 2021; Walsh, 2021).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

57

These programs miss opportunities when their leadership chooses not to use

knowledge-based approaches. They have the potential to adopt best practices developed

through the proof of concept to improve an underperforming program. For example, the

first missed opportunity is in identifying the program requirements and matching the

available resources before deciding whether to invest in product development. The

program creates risks, issues, and opportunities for each critical pathway, including

realizing the desired outcomes identified through the first approach. The second missed

opportunity occurs when stabilizing the design and meeting performance criteria during

aircraft manufacturing, when missed milestones can be identified. The third missed

opportunity is manifest in the elements of the program—cost, schedule, and performance.

If this criterion is not satisfied, program administrators may decide not to begin

manufacturing the first components. When aircraft programs do not apply a knowledge-

based approach, their administrators do not understand the connections between

technology maturity, stability of the design, and producibility, thus delaying the schedule,

decreasing performance, and increasing costs (Oakley, 2020).

MDAPs that adopt the GAO’s recommendations relating to knowledge-based

acquisition concepts benefit from understanding the critical technology maturity

requirements before moving on to the next milestone (Oakley, 2019, 2020). The program

offices and contractors will identify the risks before they become an issue for the program,

thus forcing the DOD to revisit program expenditures and expectations in complex

programs to detect problems and leverage opportunities identified early in the entire

process. The final decision is whether the return on investment outweighs the savings from

canceling the entire program.

4. Resources

One contributing factor is the problem of securing, retaining, and attracting the

appropriate human capital. In their report, Francis et al. (2001) warn that human capital

does not align with the needs of programs to improve cost, schedule, and technological

maturity. The GAO identifies three key problems: resource gaps addressed before the next

phase of the program, inflexible stakeholders, and ill-defined roles and responsibilities

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

58

among the customers and developers (Francis et al., 2001). Programs cannot respond to

emerging threats if the appropriate technologies cannot be developed because of the lack

of adequate software development resources (Francis et al., 2001). A prime example of this

problem is the continual misalignment in aircraft systems, which is especially true of the

DOD’s F-35 program. The program’s missed milestones can be attributed to all three issues

(Ludwigson, 2022). Prioritizing the program schedules is essential for meeting milestones

but misapplied in meeting contract requirements (Capaccio, 2022). The next area is the

lack of flexibility in a schedule when the program is already experiencing delays and

contract realignment is not an option. Unavailable software resources due to milestone

delays constrain program execution, especially for software (Tate & Bailey, 2020). Moving

from the F-35 Automated Logistics Information System (ALIS) to the Operational Data

Integrated Network (ODIN) has hindered the F-35’s capabilities because the resources and

development paths are inconsistent with the program’s milestones (Hoehn & Gertler,

2022). Finally, the disconnect between the who, what, when, and where is not forecasted

to meet realistic timelines.

Lockheed Martin, the primary contractor for the F-35 program, is constantly under

scrutiny because it manages the software aspect as an area of development, not production.

The F-35 aircraft is a flying computer that operates with more than eight million lines of

software code (Capaccio, 2022). However, the DOD does not adequately control all the IP

rights for the 24 million lines of software code that the F-35 requires (Hoehn et al., 2022).

Without the required software code, the F-35 cannot communicate successfully with all the

support systems (Hitchens, 2020). This issue limits the alignment of resources between the

contractor and the government.

There are missed opportunities for both the DOD and industry when adequate

resources are not available, including the ability to protect profits and deliver goods and

services. These requirements misaligned with the skillsets of resources create a greater risk

for all stakeholders. If all program phases accurately align resources with timelines, they

allow time for growth and completion of a task. The two forces are compulsory, not to be

oppose one another but to accept opportunities to integrate new prospects for future growth

and profits.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

59

5. Life Cycle

The program’s life cycle is defined as multiple stages consisting of development,

production, and sustainment (McQuade et al., 2019). The life cycle of a program, as defined

by defense acquisition projects, is the basic structure broken into phases (Rendon & Snider,

2019). The sustainment phase is also known as operations and maintenance of the program

(McQuade et al., 2019). As noted on the DAU’s website, “The life cycle process takes the

program through research, development, production, deployment, support, upgrade, and

finally, demilitarization and disposal” (DAU, n.d.-a, para. 3). In the organizational

environment, the life cycle activities require the capability of supporting the use of

innovative software practices. The DOD has reported that out of 18 programs

implementing agile software methods, 12 concluded that the current program life cycle is

not supportable (Walsh, 2021). The various elements related to executing new software

development practices in the program’s life cycle have both challenges and opportunities.

Balancing legacy software with future software execution requires justifying all aspects of

cost, schedule, and performance (Department of the Air Force, 2008).

Adequate cost estimators are missing for the software requirement’s life cycle to

move from a traditional to agile approach (Brady & Skertic, 2021). The cost-estimating

tools that forecast the software’s life cycle are not evolving (McQuade et al., 2019). DOD

programs, such as MDAPs, are required by law to report all expenditures and obligations,

including budget performance, constraints, resources, funding colors of money, quality,

and stages of the operational software (Department of the Air Force, 2008). The cost

drivers associated with software innovation are often inexplicable. For example, some

programs might experience the opposite effect of savings but produce inefficiencies and

have to rework costs. The cost limitations of some programs may defer the availability of

innovative DOD software based on the return on investment to the government.

Software is a critical path that constantly evolves to solve complex glitches,

communicate, and interface with problems at all phases of the MDAP life cycle

(Department of the Air Force, 2008). The entire process requires decision support to align

with the program’s life cycle software needs. At each stage of the program’s life cycle,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

60

various innovative software options might be justified to support the changes in operational

scope (Chaillan, 2023).

During the development and production stages of the program, there are cost,

schedule, and performance thresholds. During the sustainment phase of the program’s life

cycle, these same thresholds are missing. The key is to adequately capture the progress

reported to the milestones correlated with the performance, cost, and schedule (McQuade

et al., 2019). This account will confirm whether the software is the driving factor in

weapons readiness if after production and during the sustainment phase there is a missed

opportunity to incorporate new software methods (McQuade et al., 2019).

The program’s performance over its life cycle is inadequate. The inability to

forecast the system’s “cradle to grave” requirements creates unknown gaps in the program.

These risks may emerge for numerous unforeseen reasons not captured in the development

or production phases. Software should be iterative, yet performance updates from the

development and production stage to the sustainment phase miss crucial opportunities to

refine the software. Once the weapon is released to the field, performance is monitored by

a multitude of organizations. Each team provides various product support elements, and a

lack of coordination means failing to analyze software readiness of the weapon in the field

(McQuade et al., 2019).

6. Hierarchy Levels

Government agencies are vastly different from commercial businesses. The levels

of hierarchy report to different individuals. Each of these individual stakeholders has

different needs. The levels of hierarchy stifle the speed and integration of changes but

ensure public accountability. The Pentagon has unusual demands. The programs it oversees

must comply with thousands of guidelines (Carter, 2019). The DOD’s stifling hierarchy

limits some programs’ innovation efforts but supplies transparency to the taxpayer and

Congress (Carter, 2019).

As revealed in a 2022 report published by the RAND Corporation, Voss and Ryseff

(2022) map a “series of hierarchical reviews of the Military Service for each of the systems

. . . initiated by inputs at the working level” (p. 12). According to McQuade et al. (2019),

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

61

the “senior enterprise-level decision-making body for requirements” is involved in the

acquisition decision-making process (p. 25). The structure includes a multitude of

parameters of oversight and compliance reports to justify actions. The changes in

administration and favored policies differ from a commercial corporation’s hierarchy

(Carter, 2019). The government’s hierarchy makes for a dysfunctional system response. In

addition to Congress, each individual may have one’s own agenda (Carter, 2019). These

individual projects change the rules of the federal government, leading to overly

burdensome levels of hierarchy.

7. Stovepipes

McQuade et al. (2019) argue that “the current DOD organizational structure

includes many separate stovepipes—each with its bureaucracy and staff—that are

empowered to say no, rather than work toward solutions to warfighter problems” (p. 3). A

stovepipe is “an isolated and narrow channel of communication” (Merriam-Webster, n.d.).

The DOD works like a program-centric model with stovepipe-driven requirements. This

operational structure feeds into the missing budget and acquisition processes. Stovepiped

methods yield isolated working levels. As revealed in the SWAP Study, “The budget and

acquisition officials exert control when they stay within their stovepipes” (McQuade et al.,

2019, p. S130). The SWAP Study illustrates that innovative software “efforts to coordinate

the processes have been less successful than hoped, and decision-making has remained

largely an ongoing process” (McQuade et al., 2019, p. S58). As described by McQuade et

al. (2019), “The result is a system in which senior decision-makers and their supporting

staffs devote too much attention to process, procedure, and paperwork, rather than focusing

on the major strategy and risk decisions that should be made at the working level” (p. S27).

They continue: “Too often, innovative solutions are bogged down by a micromanaged

process in which to support a decision” (McQuade et al., 2019, p. 125).

Changes to the DOD’s software pathways require, according to McQuade et al.

(2019), a “rapid, iterative approach to capability development” with swiftly evolving

software platforms (p. 83). Instead, the status quo comprises several programs using “static

configurations that [have lasted] more than a decade” (p. S79). Weapons system agencies

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

62

may have valid reasons for not moving away from the stovepipe decision mindset. The

report suggests some of these reasons include “reduc [ing] costs, technological

obsolescence, and acquisition risk” (McQuade et al., 2019, p. 1). However, this siloed

decision construct deters not only emerging “small, innovative programs, but also large

programs designed to meet future threats” (McQuade et al., 2019, S134). The authors

conclude that “the ability to respond to new threats and new technology developments” is

a limiting factor when software decisions do not include all stakeholders (p. S134).

Notably, product support strategies are different for each system and at each stage based

on the program’s organizational structure (Lee, 2020). Thus, the decision-making systems

embedded into military and intelligence communities are often disjointed and “stovepiped”

(Doubleday, 2023).

D. STATE OF THE F-22 AND F-35 SOFTWARE EFFORTS

Two major DOD aviation programs, the F-35 and F-22, illustrate the inadequate

alignment of decision-making with software methods within the entire acquisition

development cycle. The software acquisition programs for the F-22 and F-35 differ

primarily in the development and production phases.

1. F-22

The F-22 Raptor program was one of the first Air Force programs to identify

software gaps in program modernization. The F-22 program had to overcome cultural

changes before implementing new software pathways to bridge these gaps (Miller et al.,

2022). Among the SWAP Study’s suite of documentation is a vignette detailing viable

solutions through collaboration to achieve the desired results. In it, Ulsh and McCarty

(2019) identify an opportunity to incorporate modernization techniques that culminate in

“greater speed and agility while addressing new threats faster by delivering user-requested

software” (p. 1). The F-22 vignette also explores solutions not customarily considered for

the program but essential for rapidly mitigating current and future risks.

Addressing the program’s shortcomings has not been easy because it means the

program administrators’ admitting to them, including the fact that vendors have not been

meeting performance conditions. Symptoms of the F-22’s software underperformance have

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

63

included static, rigidly defined requirements, monolithic capability delivery, burdensome

documentation, contracting inefficiencies and duplications of efforts, and automation and

incremental testing challenges (Ulsh & McCarty, 2019). Harnessing the words of Mike

Tyson, researchers for the SWAP Study explain the pain of these admissions: “Everyone

has a plan until they get punched in the face” (Ulsh & McCarty, 2019, p. 54). The F-22

program’s ability to take the punch would mean incorporating changes while reducing

software releases and categorizing the current shortfalls of the business plan.

2. F-35

The list of challenges for the F-35’s software development is lengthy. Current

C2D2 and Block 3 upgrades are far behind the curve, and the subcontractors who support

most of the upgrades to the Electro-Optical Distributed Aperture System and radar are

failing to meet the agreed performance specifications. The current Block 4 upgrade

involves full combat capabilities, including a weapons suite with nuclear abilities.

According to Tirpak (2019), writing for Air & Space Forces Magazine, “Block 4 comprises

53 improvements to counter both air and ground-based threats emerging from China” (para.

3). As Tirpak (2019) explains, “They are primarily new or enhanced features executed in

software; the original rollout plan was in stages, with updates every April and October

starting in 2019 and continuing through at least 2024” (para. 17). However, the plan to

deliver these upgrades in 2023 is behind schedule and at risk of not meeting the milestones.

These delays are the result of other numerous delays in subcontractor-reliant software

changes before final integration into the F35 software architecture and infrastructure.

General Bogdan, former F-35 PEO, has noted that the complexity of Block 4 software is a

risk but that sharing similar capabilities across the battlefield for coordinated attacks is

difficult (Hoehn et al., 2022).

Hence, one risk is now a major problem. The plan was to create software drops in

four increments of code, thus allowing the contractor to develop, test, and fix the software,

and test it again, before moving to the jets in the field. The current software is behind

schedule, and the contractor faces difficulties achieving even simple efforts in real time. If

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

64

the current requirements are not achievable, the complex software development required

for Block 4 cannot realistically meet the contract.

E. CONCLUSION

The evolution of software pathways has shown both their benefits and limitations.

The benefits include a more rapid release of new software and upgrades to weapons

performance standards. The limitations mean that the systems may not have every software

change in the software release. Rapid acquisition offers significant benefits; however, the

software certification process is not constructed congruently, as demonstrated in timelines

that extend beyond one year. Therefore, development under DevSecOps could be quite

challenging and limited. The F-22 program took a proactive role in helping transform

software processes and procedures through the introduction of cloud-based solutions

through modern software metrics (B. Burton, personal communication, September 15,

2021). According to Chaillan, an agile path improves software acquisition and ensures the

development teams can “groom their backlog and move at the pace of relevance” (Chaillan,

2021a). He maintains that “only Platform One and teams like Kessel Run are truly end-to-

end agile” (Chaillan, 2021a, para. 2).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

65

IV. CONCLUSIONS AND RECOMMENDATIONS

The role that software plays in MDAPs today is critical. The DOD has identified

software concerns as a major threat to the execution of the mission. The DOD has made

developing, acquiring, certifying, testing, and deploying software the priority for future

missions (McQuade et al., 2019). Major DOD agencies require new ways of conducting

business to find and fix software-related capabilities (Eckstein, 2021). For a myriad

reasons, the department has adopted some new software development approaches but not

at the speed required to address emerging threats. All the findings and recommendations

in this chapter stem from the conclusion that software acquisition and development in

MDAPs need to be revamped across the DOD. There is no one reason, but rather a

combination of reasons for the current disjointed actions in MDAPs that creates inertia and

resistance to the alignment of effective software activities.

A. FINDINGS

The research has found several areas within the DOD’s MDAPs that should

incorporate changes to current practices. The changes should result in program

improvements across cost, schedule, and performance and disciplines, including

acquisition development, deployment, agility, and integration. Areas of concern include

resistance to change, inertia, inadequate program knowledge of software pathways,

acquisition structure, misaligned software strategies, civilian frustration, and

software/hardware misalignment of program requirements. Government reports dating

from the early 2000s have documented ongoing software issues that have plagued most

MDAPs, including the F-22 and F-35 programs, with little progress toward resolving

software deficiencies. The software-centric nature of the aircraft and their sustainment

means that no one remedy is an option.

1. Resistance to Agile Software Pathways

The research shows that in the DOD’s culture, there is resistance and barriers to

entry for technological changes in its programs. One example is the Air Force’s F-22

Raptor program, which had to overcome resistance to change the software acquisition and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

66

development processes (Miller et al., 2022). According to a 2019 GAO report, of the 22

military programs reviewed that claimed to incorporate agile software methods, only six

confirmed the software pathways adequately met the intent of agile (Oakley, 2019).

The resistance to risk paralyzes program leadership, so it does not explore agile

software pathways. This paralysis slows the program’s momentum toward innovation,

especially when it concerns software challenges. GAO and 2019 SWAP Study reports

challenge the blending in of the software technology and upgrades in the F-22 and F-35

programs. These challenges also affect the program’s momentum when the opportunities

to improve are wasted, thus creating disconnects in the program. Other factors contributing

to this resistance point include leadership beliefs and government hierarchy. Leaders with

software-centric programs fail to understand the critical importance of software in the wars

they are fighting today. They need to grasp that no one software pathway can adequately

solve all complexities of a software system, but understanding smaller sections that can

benefit from changes is not commonplace in the DOD.

One example of a program’s failing to explore agile software methods is the F-35

next-generation aircraft, which requires over 24 million lines of code to operate. The F-35

aircraft operates with various other logistics and communication systems. The reliance on

continual software updates is inadequate for the program since it interferes with other

maintenance actions. This inferior software performance has been reported by the GAO

year after year; meanwhile, the software pathway has not changed when leaders have had

the opportunity.

However, for the F-35 logistics system, an Air Force software factory was used to

improve its software development. The program office has made minor adaptations to P1’s

capabilities in the program, such as working with MDAP software transitions. Its plan was

to transition from ALIS, a software platform based on 1990s architecture, to the newer

ODIN technology (Hoehn & Gertler, 2022). The proposed updates to the ALIS system

would allow tracking and control of aircraft components and life cycle upgrades supporting

sustainment functions. The F-35 program office contracted the software updates with Air

Force software developers at Kessel Run (R. S. Mamroth, personal communication,

February 25, 2022). The requested work for the contract was completed, yet a follow-on

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

67

contract was not issued. The follow-on work went back to the contractor that had originally

developed ALIS, and the name changed to ODIN (R. S. Mamroth, personal

communication, February 25, 2022). The assumption is that MDAPs such as the F-35

program are transitioning to new software acquisition. However, these options are often

not supported because the software development and release schedule are chronically late.

2. Software Challenges—Development and Acquisition Comprehension

Within the DOD’s MDAPs, there are disconnects in understanding software

between the acquisition community and the development team. This capstone research,

supported by interviews, GAO reports, and SWAP Study reports, has offered examples of

comprehending and using software pathways successfully. There is no one-size-fits-all

development process, yet best practices may provide the opportunity to improve software

timelines from development to release—if the program’s leadership is aware of these

alternatives. Results will vary based on the program’s age, complexity, and amount of

required software. Nevertheless, the available options for securing software do not align

with the DOD’s contract strategies. These misaligned paths create challenges with software

development and acquisition practices, which ought to adequately address the software

methods that best fit the MDAP.

A major issue lies in the lack of ownership of IP, which extends the control of

updating software code. This lack of adequate IP management and ownership limits the

DOD’s ability to incorporate its software innovation directives. These directives intend to

drive truly agile DevSecOps aspects into legacy programs that were not designed for the

new operating environments they encounter today. Throughout this research, statements

by Ashton Carter, former secretary of defense, and Nicolas Chaillan, former CIO of the

Air Force, highlight the DOD’s need to update software across the programs (Carter, 2019,

2021a; Hitchens, 2020). These reactions show the DOD is falling behind its adversaries

and the commercial sector’s ability to respond.

The DOD has led the way for agile software development pathways within some

organizations, but the results are not what was expected or desired. The F-22 and F-35 are

combat-ready aircraft, but they cannot respond quickly to emerging threats due to their

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

68

software inadequacies. GAO reports indicate that as of 2022, the F-35’s software and

technology refresh has been delayed several times (Ludwigson, 2022). It is unacceptable

to take years when the opportunity exists to develop the same software solutions in a shorter

time. It is now possible for the DOD to adopt new platforms that yield results in weeks or

months. MDAPs must be willing to change the way they are developing software and to

produce better results.

The research found a lack of collaboration in individually managed programs.

Though overseen by the same military service, there was a failure to disclose lessons

learned across programs, resulting in missed opportunities. The advantages of sharing

knowledge-based and best practices concerning agile software development are

overlooked at the top levels of leadership. The F-22 has had software development success

using P1, as confirmed by the SWAP Study’s vignettes and Lieutenant Colonel Burton’s

written responses to the interview questions for this study (B. Burton, personal

communication, September 15, 2021). Benefits of the F-22 software were clear once the

cultural hurdles were solved (Miller et al., 2022). This resulted in the program’s promoting

agile development and acquisition methods.

The F-35 program, however, is failing to see the same results. New threats to

security are constantly fluctuating and, in many cases, are unknown. DOD leaders at each

level must embrace the capacity to adapt to emerging threats, which software can alleviate

at a much faster rate. The research has revealed that while many individuals in the DOD

understand the new software requirements, others do not embrace these new directions.

This uneven understanding creates gaps in re-forecasting software performance for the

entire program’s life cycle.

3. Misaligned Software Acquisition Pathways

The research has shown that the DOD acquisition structure and paths to procure

software are misaligned. This misalignment skews the goals of program leaders. In some

cases, the Pentagon’s end goals should be included in the contract awards when new

software acquisition pathways are absent. Otherwise, software integration into their

programs will be a lengthy, onerous process (National Research Council, 2010). Constant

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

69

delays result in the degradation of schedule, cost, and performance metrics (Ludwigson,

2022). The consequences are further delays in meeting users’ demands, which are based

on rapidly developing and critical conditions.

The important role that software plays in programs, especially the F-35 program,

has expanded exponentially over the past decades. According to a 2019 GAO report, the

F-35’s software acquisition has not explored all agile software (Oakley, 2019). The

software underperforms and cannot address new threats in the required timeframe. The

funding structure for authorization, appropriations, and obligations in the directions

allowed by the colors of money hinders fund transfers for software when they are needed.

While DOD instructions and other transaction agreements apply to new endeavors,

they do not apply to legacy DOD programs whose software needs to be refreshed,

according to the SWAP Study (McQuade et al., 2019). This can become a problem when

potential updates to the software are needed. When the decision to update the software

pathways is justifiable—for instance, a move toward innovative solutions such as software

factories—the plan must identify the ramifications. Moving away from the current sole-

source software structure can improve the government’s agility. One benefit of this

requirement is that the contractor and the government can interact and share best practices

and knowledge-based processes. Furthermore, the F-22 and F-35 programs incorporate

additional agile DevSecOps software practices in a few elements when opportunities arise.

The research has revealed examples of MDAPs whose administrators freely admit

they do not understand the role of software nor how best to develop and acquire it, while

other programs refuse to change paths (Hall, 2018). This mindset in program structure

enforces the existing inertia and gathers little momentum to change, which is part of a

larger cultural issue that plays a part in the research context (Hall, 2018).

4. Effects of Software Incentives

Another finding from the research is that the structure of contracts does not always

incentivize the desired results in software development. According to the GAO, despite

clear goals set by DOD leadership, limited buy-in from the decision-makers at the program

level has effectively shifted today’s current delays in software deployment to the end-user

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

70

(Sager, 2021). Over the past decade, the GAO has repeatedly reported on the software

challenges of the F-35 program. Since the software schedule is not a priority or aligned

with the current F-35 incentive structure, it is overlooked.

If the program office cannot fill vacant software positions, it is likely missing

software elements as part of the incentive requirement. Without personnel with software

subject-matter expertise in place, experience cannot play a role in shaping contract

incentive measures in the contract type (McQuade et al., 2019). Furthermore, a lack of

software development oversight results not only in missing key opportunities to improve

the contractor’s performance but also in neglecting to monitor the software performance

risks before testing, when it is too late to change. This monitoring practice should guide

each program’s understanding of what the software development options should be in the

award and how they flow down in the contract with the suppliers. Nevertheless, incentives

included in the contract file to produce agility in the software might end up incentivizing

the opposite behavior in development. This problem results in costs continuing to increase

as the quality diminishes and the schedule is chronically postponed.

The research has examined a different aspect of the F-35’s proposed ALIS system

that allows tracking and control of aircraft components throughout the program’s life cycle.

The upgrades support sustainment functions. The ALIS system is a logistics tool intended

to assist ground crews with tracking maintenance schedules and spare parts and producing

aircraft readiness reports (Hitchens, 2020). The problems with ALIS required a complete

system overhaul (Hitchens, 2020). The contractor failed to adequately develop, deliver,

and deploy to the government what it promised. The F35 program contracted software

development and improvement for the ALIS-to-ODIN transition to the team at Kessel Run,

an Air Force software factory (Hitchens, 2020).

The F-35 program pivoted to develop an improved logistics system. The ODIN

software development portion using P1 innovation was not funded in the following budget.

The work returned to Lockheed Martin in the next year’s contract award. The concerns

missed by the program leaders when incentives are included in the contract may result in

unintended consequences. These incentives drive bad behavior in some cases if not clearly

defined in the contract.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

71

5. Human Resources—Government and Civilian Sectors

The research found that the DOD struggles to retain personnel skilled in software

because opportunities in the private sector are often more attractive. The former first CIO

of the Air Force criticized the DOD’s inability to create, retain, and adopt rapid software

pathways. Talented individuals leave government service because they become frustrated

with being incapable of facilitating change and bringing innovation to the DOD as they

had envisioned (Chaillan, 2021a). They are not accustomed to the rigidity of the

government’s hierarchy, financing, and oversight. The decision-making process in the

government is slow. Congress is the watchdog over the taxpayer’s dollars. The structure of

the government is designed not to act rapidly, unlike the responsiveness of the commercial

sector. The challenge of retaining expert personnel creates flux in the department and

vacancies in a highly competitive software market.

The DOD’s limited ability to retain and attract these highly sought-after human

resources is a huge concern, as discovered during the research. The resignation of former

CIO Nicholas Chaillan was a result of the DOD’s challenges in retaining software experts.

In his resignation letter, Chaillan (2021a) said, “One of the main reasons for my decision

was the failure of OSD [Office of the Secretary of Defense] and the Joint Staff to deliver

on their own alleged top ‘priority’” (para. 36). According to Chaillan (2021a), “Saying

what was wanted was not backed up with the appropriate actions. They could not ‘walk the

walk.’ I put my reputation on the line” (para. 36).

The DOD’s failure to facilitate the desired changes in software to Agile and

DevSecOps was the result of being largely unempowered to fix basic issues (Chaillan,

2021a). The desired changes in the DOD have been interpreted differently by various

individuals. The DOD hires technologically talented individuals for their skill sets.

According to Chaillan (2021a), “The DOD, overall, needs to stop staffing Enterprise IT

teams as if IT is not a highly technical skill and expertise” (para. 36). The goal is to employ

technological innovations and software pathways that will bridge the current gaps in

MDAPs, but the rigidity of the government’s bureaucratic processes limits the achievement

of this goal.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

72

6. MDAP Lessons Learned—Too Big to Fail

MDAPs, such as the F-35 program, which has reported multiple underperforming

technological elements throughout its life cycle, are not adequately scrutinized by

leadership. The research findings show a need to adopt a knowledge-based approach to

weapons systems. This movement allows a clearer measure of the performance of the

system. The government’s ability to justify whether a program should continue to receive

funding, regardless of political pushback, has improved. Resistance to counseling

programs that fail to perform needs to be met with result-based decision-making without

pressure from policymakers. Findings from testimony before the Senate Subcommittee on

Readiness and Management Support, Committee on Armed Services, on DOD acquisition

reform do not support MDAPs’ proceeding without confirmation of the resources (Oakley,

2021a). The requirements should match the funding, technology, and schedule, unless the

three factors deviate.

F-22 and F-35 program challenges also diverge when accurately estimating and

purchasing adequate software designs. Certain aspects of the directives are more easily and

rapidly applied. Lockheed Martin, the primary manufacturer of both the F-22 and F-35,

controls the software segregating capability in the Navy’s system. When a major program

tries to execute any agile software solutions, the factors to consider include an inadequate

understanding of the software acquisition process, disjointed and overlapping software

requirements, limited software incentives, issues related to ownership and managing of IP

rights, and the lack of suitably trained human resources in software.

The Pentagon’s testing office reports that the current contractual requirements of

the F-35 continue to be delayed. Once the software is fully vetted, it is “immature, deficient,

and insufficiently tested” (Capaccio, 2022, para. 1). At the same time, the program office

continues to believe that product improvements are achievable without changing the

software development pathway. As detailed in a 2022 GAO report, the DOD testing officer

contends that the F-35 is unsuccessful in incorporating best practices and fails to deliver to

schedule (Ludwigson, 2022). The current DOD software contracts fail to achieve these

improvements. The methods are inefficient and fail to leverage the software resources

developed by other agencies. DOD leadership should identify any political pressures that

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

73

prevent programs from applying realistic evaluations of the budget to performance criteria.

The “zero defect mentality” is defined as trying something and scrubbing the program

when it fails (Hall, 2018, p. 12). The overall lessons learned from failing should justify the

decision to continue with less visible programs, such as the hypersonic missile. Being too

big to fail, along with the added political pressure, should not set the special criteria for

underperforming and cost-overrunning programs to continue (Grazier, 2020).

7. Differences between Hardware and Software in Programs

The research into the F-22 and F-35 programs suggests the difficulties of

holistically managing software and hardware in required paths to fit the programmatic

milestones. This research concludes that the Air Force’s legacy programs no longer in

production, such as those for the F-22, still need to develop software methodologies late in

the programs’ life cycle. Regarding software integration, at all stages of the F-22 and F-35

programs, it is important to develop and release software to meet the user’s immediate

needs in the field.

One crucial difference between hardware and software involves the effect of

security requirements. For example, the F-22 program has revealed the ways that security

requirements for software limit flexibility and communications but do not affect the

hardware (Ulsh & McCarty, 2019). Security in software is an area of significant concern

within the government as well as the commercial sector.

The estimation of costs also differs between hardware and software. It is extremely

complicated to estimate program software development efforts, for one, because the type

and amount of labor are unknown. Also, software lines of code are complicated and not

accurately forecasted in DOD programs. In contrast, hardware has a finite number of

materials and labor resources, so they are easier to estimate. The results show resistance

from the DOD toward aligning the requirements of software with a different color of

money, which would allow solid estimations and auditability to forecast and report

performance.

Hardware needs software to function. The critical paths and metrics for identifying

potential risks related to hardware are concrete since the hardware comprises tangible

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

74

assets. The critical paths for software are different and cannot be developed or tested

against the performance certifications until the hardware is available. Moreover, the

variables that affect hardware and software pathways and the funding of each in the

programs are vastly different.

The research found divergence in the hardware and software available to in-house.

Such differences result in additional risk to the programs in meeting cost, schedule, and

performance. Resistance to changing this problem is based on the timelines and resources

required for software development. These limitations are made manifest in the support

provided to the government’s digital workforce vis-à-vis the personnel of hardware

manufacturing programs.

B. RECOMMENDATIONS

The assessments derived from this capstone research encourage any applicable

DOD opportunity to meet the security requirements in software integration into military

programs that are responsible for long-term weapons system management. The strategies

recommended here can support a program’s software integrators, who are currently

struggling to facilitate change. MDAPs, such as the F-35 program, should not be exempt

or protected from SWAP Study directives, as long they make sense. The DOD’s program

hierarchy needs to change and be brought down to a level playing field when software is

concerned. The understanding that classified or sensitive data are exempt should not

exclude portions of programs that will benefit from deviation from the current methods.

1. Government Lead

The government, not the contractor, needs to spearhead the program’s directives.

The contractor is often currently in the lead, but the program’s leaders should take back the

decision-making. The DOD should deviate from the traditional defense contractor sole-

source mentality and assume the role of an integrator that responds to emerging weapons

software needs. This shift in responsibilities could help develop and integrate software

updates and field releases rapidly. This concept is essential to enticing the contractor to this

shift from its current roles. The benefit for industry partners, government stakeholders, and

the program office would be a new partnership to mitigate risks and reshape accountability.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

75

Partnership with industry could provide faster software development and releases

to the field. The PEO should have the insight to provide industry partners with what the

program needs to achieve changes in the software. Existing limitations hinder access to

adequate software pathways in both the acquisition and program life cycle. A shift to this

new type of oversight responsibility, however, allows the programs to address some of the

current software constraints. The government’s taking this initiative should incentivize

sole-source defense contractors to connect with non-traditional suppliers to provide

competencies for the best value for the government as well as their bottom line. The

government could also increase competition for the integration contract as it would not be

limited by contractor-developed software IP rights.

Through these changes, MDAPs could integrate innovative software factories’

knowledge-based and best practices into meeting software needs. Additionally, selecting

the best contract type to protect all software development in the acquisition structure is

needed. The structure should adopt the AAF to drive the industry to field new software

developments and testing based on these adaptive milestones. The results should also pivot

from the standard program management hierarchy to one of a portfolio mindset. It will take

all stakeholders to come to a meeting of the minds, and the services will have to persuade

the large defense contractors that it is in their best interest to invest in this path.

Another out-of-the-box recommendation is for the DOD to change its rigid culture

by rewarding new software perspectives at the Pentagon. These new practices should allow

employee movement from private industry into the government. The benefit to MDAPs is

that it will provide the DOD with highly developed individuals who have industry

experience and skill sets that the DOD is lacking. The DOD must shift to becoming a

competitive option for tech-savvy resources whom it is currently missing among its

personnel.

2. Software Prioritization

The software directives should be prioritized whenever feasible. Understanding the

limitations of managing IP and code not developed by the overseeing office should drive

the program development teams to seek evolving resources that can deliver rapid software

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

76

architecture. Legacy systems that surpass their predicted life cycle may benefit from

software automation associated with software factors at some scale. Systems not adaptable

to iterative development consist of platform controls that no longer require development.

MDAPs should apply favorable/unfavorable conditions in prioritizing software

development methods. If the user’s environment will not benefit from agile software, then

the potential impact of use should serve as a checklist for whether to move toward iterative

development. These methods cannot quickly adapt to realize the potential benefits due to

their inability to change the overall Defense Acquisition System, thus leaving few other

options.

3. Software Acquisition Methods

Acquisition reviews should always include agile software practices in some

capacity within the programs. DOD Instruction 5000.85 deviates from the standard

acquisition life cycle for acquiring software, yet the software instructions deviate from the

current DOD processes concerning software options (DOD, 2021c). The AAF streamlines

software acquisition. Contracting officers should be trained and empowered to incorporate

aspects of this framework to be responsive to emerging software development

requirements. The program terms are authorized to incorporate these pathways for different

needs in the same program. This flexible approach should provide the contracting officers

with the authority to act at the lowest level to incorporate new software pathways to satisfy

software procurement.

The software acquisition directives explored in this research reveal that several

program variables are often misunderstood. These aspects are not adequately considered

in the entire life cycle of the program. Software decisions should reflect the system,

operating structure, policies, stakeholders, acquisition options, new directives, agile

pathways, and budget colors of money, and the overall effort across development,

production, and sustainment needs. The research includes all of these factors, so it offers

an inclusive source selection method that justifies the path to support the entire program.

The recommendation of this research is to allow acquisition professionals to

execute this path when acquiring software. The complexity of software with the underlying

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

77

IP rights limits the integration. Program offices’ contracting officers struggle to adequately

capture the entire cost of the software. The ability to adequately estimate an unknown effort

or requirement is impossible. Government regulations fail to align with emerging software

pathways as the planning, programming, budgeting, and execution process misses the

intent to adequately meet all aspects to protect software acquisition. The recommendation

to justify purchasing program software under the AAF needs to be examined during the

source selection review. Its inclusion in the yearly program objective memorandum created

by each MDAP should be reviewed by software specialists to align the program’s cost,

schedule, and performance parameters.

4. Congressional Mandate for Consulting Service CIOs

The DOD should establish a comprehensive software program for all leaders,

officers, and the acquisition community to use for bidding and procurement strategies. All

program managers should approach CIOs for software development and support options.

The DOD’s chief software officer must expect more robust engagement from program

officers to fully vet the best available software ecosystem for the multiple innovation hubs

developed for MDAPs.

Congressional leaders control the regulatory and statutory requirements under

which the DOD conducts business. Congress also has the power to require the

implementation of modern software practices by the government. The SWAP Study

provided a list to the legislative branch outlining the “do’s and don’ts” of software (DIB,

2018). The recommendations are difficult to accomplish but worth implementing. Their

value lies in removing roadblocks and facilitating service collaboration. The establishment

of the yearly budget process requires CIOs to justify the software pathways the programs

are choosing.

5. Centralized Life Cycle

Programs should transition to a centralized life cycle management mindset.

Introducing new software capabilities requires updating the overall software process from

the cradle to the grave of the code. Flaws in software programs should be segregated at the

baseline development process and treated differently from software in the field that needs

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

78

updating. Outlining the type of software architecture requirements while applying the

correct software approach to legacy software, as opposed to new program development

software, may create diverse situations for software operators. The programs should first

propose what may be developed as another system that best meets the user’s needs.

Software guides program operations at all life cycle stages. Software is an adaptive

tool to supply rapid responses to emergent threats. Software code at each stage of the life

cycle has risks. The DOD should identify the appropriate leadership guidance that

incorporates Panel 809, the National Defense Acquisition Act, SWAP, DIB, DOD

Instruction 5000.87, other transaction agreements, and whatever is justifiable in the

decision-making process. The recommendations should be adopted holistically across the

life of the program. The result is transparency in that the true costs of the software reside

in the program. The alignment of each life cycle stage—development, production, and

sustainment—can reveal potential requirement shifts for both tangible and intangible

assets. The forecasting requirements change in production and then in the sustainment

stage. The estimated resources needed to execute software updates and testing have

different critical paths for software than for hardware. These paths should be constantly

reviewed for potential misalignment risks that would affect the program’s milestones.

6. DOD-Wide Software Office

The future command of a congressionally mandated DOD-wide software office

would avoid wasted resources and duplicated effort. Tackling software problems with a

team from each of the five services—the Air Force, Navy, Army, Marines, and Space

Force—would help to integrate lessons learned. This shift from stovepiping to

collaboration should incorporate knowledge-based practices that identify performance,

schedule, and cost risks to the government. It is important to challenge the team to develop

and release what once took months to years to accomplish. This adaptation ensures that

once the software is thoroughly tested and loaded on any system to support the warfighter,

it is not outdated and a waste of funds (McQuade et al., 2019). The DOD should migrate

away from the usual way the government conducts software deployment to a better option

that produces the desired results.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

79

When the DOD encompasses service-wide software capabilities, it should be

capable of rapid deployment, its optimal goal. Collaborative teams, including in the

software community, need to gain complete insights into all available methods of making

well-informed options and decisions for future program capabilities (Sherman, 2022).

Moreover, a new creative software-centric office should connect all systems to

communicate with one another. The goal should be one integral “force-wide” combat

system (Eckstein, 2021, para. 19).

7. Inertia/Momentum

The government’s failure to act on emerging software threats is not due to a lack of

acknowledgment of the problem but rather a question of how to correct the software gaps.

The different services all encounter a level of software concerns in their systems. Some of

the services have developed software commands, such as the Army Futures Command, the

Air Force’s P1 and Kessel Run, and the Navy’s Forge. MDAP leadership has not

incorporated these resources for various reasons, some of which are by design or self-

imposed, for self-preservation, or from government construct.

Legacy MDAPs contain different software architectures that may not be fully

understood by the program offices. The contractor owns the IP development rights by

design, so the decision to integrate new software changes is often not executed. This fact

is also a condition of the program’s self-imposed inertia. The control of IP is solely within

the defense contractors’ wheelhouse. Thus, the MDAP manages potential software delays

reactively instead of proactively. This reactive approach limits the opportunities to realign

software development and requirements. Furthermore, the competitive software

professional career field leads to software vacancies in the programs. These gaps leave

software progress and monitoring neglected in the program. The result is that many

software risks are unknown until they become issues. The contractor currently has no

monetary incentive to relinquish software development to the government. Still, the

government does not possess the IP rights or employ adequate software professionals to

manage the entirety of software management.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

80

8. Government—Contractor Business Structure

Government contracting personnel within the acquisition community should be

encouraged to think creatively about what is sensible in purchasing software. Software is

iterative and fluctuates wildly in some applications—the expectation that the acquisition

community exercises all available options for procurement should be a priority for the

DOD. Executable actions that provide agile and compliant results require clear objectives

to meet the program milestones while achieving the appropriate software strategy. It is vital

to have stakeholder transparency and buy-in. This approval empowers the team to analyze

software alternatives with senior leadership support. Future cultural shifts must identify

what software pathways will best fit each stage of the entire software life cycle to mitigate

new threats facing the DOD.

The model of the Navy’s Forge team could inspire a shift of the contractor’s role

as an integrator within the services that develop and manage MDAPs. The contractor would

be incentivized in a revised acquisition source selection to incorporate agreements with the

team. This team would include newly created, unbiased government software

communities. The benefit would be in utilizing best practices and knowledge-based

approaches to meet the warfighter’s requirements earlier. The MDAP, not the contractor,

would decide the level of software oversight in defense projects and the point at which to

pivot to another pathway.

Future software-intensive MDAP contracts could include a rapid bidding process

that involves all stakeholders. The government’s software commands, defense contractors,

and industry could collaborate to develop the solution to the software problem. The source

selection structure should incentivize this process as a requirement. The metrics would

report and measure the cost, schedule, and performance of these software practices. This

architecture would incentivize both the government and industry teams as a cost savings

for the software. The process would require streamlining and encouraging teams with

technology leaders in industry and academia.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

81

9. Program Management Shift to Portfolio Management

The SWAP Study and other DOD experts support changing the MDAP

management structure. Programs would transition to a centralized team responsible for

similar classes of weapons systems to exercise decisions based on updates in guidance,

regulations, statutes, and threats. According to Chaillan, “During the global COVID

pandemic, we witnessed the benefits of DevSecOps thanks to the fantastic Platform One

team and its incredible delivery of capabilities” (In the Nic of Time, 2021, para. 32).

Chaillan continues: “There is no valid reason not to use and mandate DevSecOps now for

custom software” (In the Nic of Time, 2021, para. 38). According to Chaillan (2021a), “It

is effectively guaranteeing a tremendous waste of taxpayer money and creates massive

cybersecurity threats as well as prevents us from delivering capabilities at the pace of

relevance” (In the Nic of Time, 2021, para. 39). Furthermore, the imminent risk loss of life

and potentially prevents capabilities from being made available when needed—often

overnight whenever world events demand.

10. Government–Industry Software Pilot Program

The DOD continues to raise concern over the absence of software personnel and

training. These concerns include the ability to compete with the private sector, career

growth, compensation, creative ability, and rigidity. The solution may be for the

government to create a pilot program that allows a cooperative agreement with industry

that allows movement for experts to work for both stakeholders. This option might involve

teaming with academia to have the flexibility to exercise actions that benefit the program

but may be restricted by the government’s stovepiped structure. Potential benefits might

include knowledge-based sharing across industry and the DOD of lessons learned and

cutting-edge technology. Congress could create this new service policy and issue actions

that could be updated annually through the National Defense Acquisition Act to promote

this type of innovative behavior.

11. Software Career Path Redesign

Congress controls decisions concerning DOD directives. The SWAP Study

recommends generating new software career fields that could attract software experts.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

82

These new fields might attract individuals who previously saw no promotional

opportunities in the military. Potentially, ROTC programs at universities that specialize in

software development would entice new potential candidates. Additionally, the MDAP’s

PEO could engage the services of CIOs to recruit students by sharing new opportunities

available in the DOD. Examples of new software factories and their ability to solve

emerging issues within this government discipline would be critical selling points for any

potential candidates. This opportunity might incorporate the recommendation to work in

tandem with any pilot program in industry to incorporate new commercial best practices.

The required skill set of software personnel will depend on the complexity of

change, the age of the code, the processes used to develop it, the amount of risk introduced

if pursuing new software processes, and the number of budgetary constraints to implement

the software fully. Quick error identification, continual and immediate user feedback,

and the mitigation of security risks and unknown daily threats are among the most crucial

skill sets.

12. Summary

Can new and agile pathways decrease costs, integrate automation, and increase

security checks for leaks and hacking? The options, authority, and capability, while

available, require scrutiny, knowledge, and cultural change and, in many cases, need

momentum to keep progressing to meet the user in the field of software struggles. This

research substantiates the current software challenges of many MDAPs, and one of the

goals in moving toward the right software pathway would be identifying new processes to

lessen the burdens on the programs. The conclusions gathered here reinstate past

recommendations and identify stagnant software processes in the DOD. These methods

cannot quickly adapt to realize the potential benefits due to one’s inability to change the

overall Defense Acquisition System.

C. FUTURE RESEARCH

In order to most effectively achieve the recommendations from the previous

section, more understanding is needed in the following areas.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

83

1. Create Pilot Programs

How could a pilot program be designed to retain software experience in the DOD?

The allegiance of personnel historically lies in which party funds their paychecks. The

creation of a pilot program could enable personnel to move freely between private industry

and the government when justified. When a problem arises that can be solved with

software, the private sector can maneuver with less red tape and obstacles than the

government can in similar problem-solving. This flexibility in funding, from both the

government and contractor, could attract more personnel to the government service who

have the technological expertise to be competent software developers. Commercial

enterprise, such as SpaceEx software solutions and other Silicon Valley initiatives, might

benefit the programs. This research could explore existing pilot programs and investigate

how such programs could be applied industry-wide. The residual problem that would face

this type of program involves overly cautious individuals with security concerns. The

personnel who would participate in these programs have equal allegiance to the

government and industry.

2. Update the Source Selection Process

The updates Congress should create in the entire source selection process will

require software pathway requirements when justified. Updates in the source selection

process would assign new opportunities whereby the MDAP’s PEOs meet with the

services’ CIOs to explore the applicable software paths for the entire program’s life cycle.

The DOD would need to adapt new acquisition processes to achieve the purchasing goal at

every stage in the program life cycle. The result could be optimal software performance

and development throughout the program. The derived metrics will measure the software’s

performance and time to release and pivot when necessary. A future research question

could explore how to streamline and identify the levels to achieve this new mindset. The

process to answer these questions could be to build a business case that includes all

proposed directives and instructions and outlines the benefits and limitations.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

84

3. Redesign the Contractor’s Role in MDAPs

How can the government incentivize the defense contractors’ relinquishing control

to the government in MDAPs? As discussed in the previous section, the defense

contractor’s role needs to shift from design authority to integrator. Understandably, such a

proposition would be difficult to sell to Congress, whose lifeblood comes from lobbyists

who represent special interests. Indeed, the largest defense contractors have offices in

Washington, DC, to keep their fingers on the pulse of policymakers. The Navy is piloting

a program that will reinstate its ship-building control. If the change in roles is attractive for

the contractor, this role might gain momentum. Another option would be to create more

competition among smaller parties.

A future researcher could ask the question of how the military might retain this new

role of design authority. The unseen benefits of this role include less oversight when the

contractor seeks the best practices created within the larger DOD software enterprise and

fewer contractors to expend future funding exploring potential software solutions when a

fix already exists. This type of collaboration in all disciplines could improve cost,

performance, and delivery.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

85

LIST OF REFERENCES

AcqNotes. (2021, August 26). PPBE process: Color of money. https://acqnotes.com/
acqnote/acquisitions/color-of-money

Austin, L. J., III. (2022, March 28). The Department of Defense releases the president’s
fiscal year 2023 defense budget. Department of Defense. https://www.defense.
gov/News/Releases/Release/Article/2980014/the-department-of-defense-releases-
the-presidents-fiscal-year-2023-defense-budg/

Beachkofski, B. K., & Helfrich, T. M. (2021). Platform One, Kessel Run, we “believe”
software principles [Memorandum]. Department of the Air Force. https://kessel
run.af.mil/resources/images/news/We-Believe-Memo-P1-and-KR.pdf

Bellairs, R. (2022, October 15). SWAP report for defense software overview. Perforce.
https://www.perforce.com/blog/qac/what-is-swap-report.html

Brady, S., & Skertic, B. (2021). DOD’s software acquisition pathway: Digital delivery at
the speed of relevance [Presentation slides]. DAU South. https://www.dau.edu/
Lists/Events/Attachments/305/D1%20S5%20-%20Software%20Pathway.pdf

Capaccio, A. (2022, January 26). Lockheed’s F-35s get a flawed $14 billion software
upgrade. Bloomberg. https://www.bloomberg.com/news/articles/2022-01-26/f-
35-fighter-jet-s--14-billion-software-upgrade-is-deployed-despite-flaws#xj4y7
vzkg

Carter, A. (2019). Inside the five-sided box: Lessons from a lifetime of leadership in the
Pentagon. Dutton.

Chaillan, N. (2019). DOD Enterprise DevSecOps Initiative (Software Factory)
[Presentation slides]. Office of the Chief Software Officer. https://software.af.mil/
wp-content/uploads/2019/12/DOD-Enterprise-DevSecOps-Initiative-Keynote-v1.
7.pdf

Chaillan, N. M. (2021a). It is time to say goodbye! LinkedIn. https://www.linkedin.com/
pulse/time-say-goodbye-nicolas-m-chaillan/

Chaillan, N. M. (2021b). Let’s catch-up with China within 6 months. LinkedIn.
https://www.linkedin.com/pulse/lets-catch-up-china-within-6-months-nicolas-m-
chaillan/

Chaillan, N. (2023, February 28). DevSecOps: Modern cyber posture. In the Nic of Time.
https://www.inthenicoftime.us/

Coram, R. (2020). Boyd: The fighter pilot who changed the art of war. Back Bay Books.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://www.inthenicoftime.us.html/

86

cPrime. (n.d.). What is Agile? What is Scrum? https://www.cprime.com/resources/what-
is-agile-what-is-scrum/

Deasy, D., & Lord, E. (2019). Software development, security, and operations for
software agility [Memorandum]. Office of the Secretary of Defense.
https://software.af.mil/wp-content/uploads/2020/05/DevSecOps-Memo_Final_
20191024.pdf

Defense Acquisition University. (n.d.-a). Acquisition life cycle. Retrieved June 2, 2023,
from https://www.dau.edu/acquipedia/pages/ArticleContent.aspx?itemid=516

Defense Acquisition University. (n.d.-b). Adaptive acquisition framework. Retrieved May
31, 2023, from https://aaf.dau.edu

Defense Acquisition University. (n.d.-c). Major capability acquisition. Retrieved June 2,
2023, from https://aaf.dau.edu/aaf/mca/

Defense Acquisition University. (2019). Acquisition of services. In Defense acquisition
guidebook. Defense Acquisition University. https://www.dau.edu/pdfviewer/
Source/Guidebooks/DAG/DAG-CH-10-Acquisition-of-Services.pdf

Defense Acquisition University. (2023, March 22). 2023 DAU acquisition update—2 day
event. https://www.dau.edu/event/2023-Acquisition-Update

Defense Innovation Board. (2018). Do’s and don’ts for software. https://innovation.
defense.gov/Portals/63/DIB_DOS_DONTS_SOFTWARE_2018_10_05.pdf

Defense Innovation Board. (2019). How to justify your budget when doing DevSecOps.
https://media.defense.gov/2019/May/02/2002127287/-1/-1/0/HOWTOJUSTIFY
YOURBUDGETWHENDOINGDEVSECOPS.PDF

Defense Science Board. (2013). Resilient military systems and the advanced cyber threat.
Office of the Under Secretary of Defense for Acquisition, Technology, and
Logistics. https://apps.dtic.mil/sti/pdfs/ADA569975.pdf

Defense Science Board. (2018). Design and acquisition of software for defense systems.
Office of the Under Secretary of Defense for Research and Engineering.
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-
2018.pdf

Department of the Air Force. (2008). Weapon systems software management guidebook.
https://www.acqnotes.com/Attachments/USAF%20Weapon%20System%20Sofw
are%20Management%20Guide.pdf

Department of Defense. (2017, April 28). Contracts for April 28, 2017. https://www.
defense.gov/News/Contracts/Contract/Article/1167080/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://www/

87

Department of Defense. (2019a). Contracting considerations for Agile solutions: Key
Agile concepts and sample work statement language. https://www.dau.edu/cop/
it/DAU%20Sponsored%20Documents/Contracting%20Considerations%20for%2
0Agile%20Solutions%20v1.0.pdf

Department of Defense. (2019b). Intellectual property (IP) acquisition and licensing
(DOD Instruction 5010.44). https://www.esd.whs.mil/Portals/54/Documents/
DD/issuances/dodi/501044p.pdf

Department of Defense. (2020, October 2). Operation of the software acquisition
pathway (DOD Instruction 5000.87). https://www.esd.whs.mil/Portals/54/
Documents/DD/issuances/dodi/500087p.PDF

Department of Defense. (2021a). DOD enterprise DevSecOps reference design: CNCF
Kubernetes. https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps
ReferenceDesign.pdf

Department of Defense. (2021b). DOD enterprise DevSecOps strategy guide.
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecO
psStrategyGuide.pdf

Department of Defense. (2021c). Major capability acquisition (DOD Instruction
5000.85). https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/
500085p.pdf

Doubleday, J. (2023, January 18). DIA CIO sees intel community moving beyond
“stovepipe” IT model. Federal News Network. https://federalnewsnetwork.com/
inside-ic/2023/01/dia-cio-sees-intel-community-moving-beyond-stovepipe-it-
model/

Eckstein, M. (2021, April 12). Navy software factory, the Forge, wants to reshape how
ships get upgraded. USNI News. https://news.usni.org/2021/04/12/navy-software-
factory-the-forge-wants-to-reshape-how-ships-get-upgraded

Francis, P., Lea, M., Sullivan, M., & Taylor, K. (2001). Best practices: Better matching
of needs and resources will lead to better weapon system outcomes (GAO-01-
288). Government Accountability Office. https://www.gao.gov/assets/gao-01-
288.pdf

General Services Administration. (n.d.). What is DevOps? Tech at GSA. https://tech.gsa.
gov/guides/what_is_devops/

Gleason, J. P. (2022, April 15). Optimal ignorance: A filter for intent-based leadership
above the tactical level. From the Green Notebook. https://fromthegreennotebook.
com/2022/04/15/optimal-ignorance-a-filter-for-intent-based-leadership-above-the-
tactical-level/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://news.usni.org/2021/04/12/navy-software-factory-the-forge-wants-to-
https://news.usni.org/2021/04/12/navy-software-factory-the-forge-wants-to-

88

Grazier, D. (2020). Spare us the F-35 parts mismanagement. Project on Government
Oversight. https://www.pogo.org/investigation/2020/07/spare-us-the-f-35-parts-
mismanagement

Guertin, N. H. (2022, January). Director, operational test & evaluation, FY 2021 annual
report. Office of the Operational Test and Evaluation Director. https://www.dote.
osd.mil/Portals/97/pub/reports/FY2021/2021DOTEAnnualReport-opt.pdf?ver=_
3wA1DAoalkLSLJEmAQARg%3D%3D

Hall, J. S., & O’Connor, J. M. (2018, March). Learning technology adoption: Navy
barriers and resistance [Master’s thesis, Naval Postgraduate School]. Defense
Technical Information Center. https://apps.dtic.mil/sti/citations/AD1052658

Hitchens, T. (2020). From “Mad Hatter” to “Torque”: Kessel Run makes software for
F-22, CV-22. Breaking Defense. https://breakingdefense.com/2020/07/from-mad-
hatter-to-torque-kessel-run-makes-software-for-f-22-cv-22/

Hoehn, J. R., Campbell, C., & Bowen, A. S. (2022). Defense primer: What is command
and control? (CRS Report No. IF11805). Congressional Research Service.
https://crsreports.congress.gov.pdf

Hoehn, J. R., & Gertler, J. (2022). F-35 Joint Strike Fighter (JSF) Program (CRS Report
No. RL30563). Congressional Research Service. https://crsreports.congress.gov

Insinna, V. (2021, March 23). F-35 program moves too slowly in deploying software,
says government watchdog. Defense News. https://www.defensenews.com/air/
2021/03/23/f-35-program-not-moving-quick-enough-to-get-software-out-on-time-
congressional-watchdog-finds/

In the Nic of Time. (2021, September 2). It is time to say goodbye! https://www.inthenic
oftime.us/it-is-time-to-say-goodbye/

Jeng, A. (2019, September 11). The good, the bad, and the ugly of hardware security.
PUF Security. https://blog.pufsecurity.com/2019/09/11/the-good-the-bad-and-the-
ugly-of-hardware-security/

John Adams IT. (2020, December 3). Greenfield vs. brownfield: Understanding the
software development differences. https://www.johnadamsit.com/software-
development-greenfield-vs-brownfield/

Kessel Run. (2021, October 20). ACC & Kessel Run reach historic agreement.
https://kesselrun.af.mil/news/ACC-KR-agreement.html

KK. (2009, July 17). Was Moore’s law inevitable? The Technium. https://kk.org/
thetechnium/was-moores-law/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://blog.pufsecurity.com/2019/09/11/the-good-the-bad-

89

Lee, C. (2020, December 3). I/ITSEC news: Defense Department wants to expand
acquisition framework. National Defense. https://www.nationaldefensemagazine.
org/articles/2020/12/3/defense-department-wants-to-expand-acquisition-
framework

Ludwigson, J. (2021). F-35 Joint Strike Fighter: DOD needs to update modernization
schedule and improve data on software development (GAO-21-226). Government
Accountability Office. https://www.gao.gov/assets/gao-21-226.pdf

Ludwigson, J. (2022). F-35 Joint Strike Fighter—Cost growth and schedule delays
continue (GAO-22-105128). Government Accountability Office. https://www.
gao.gov/assets/gao-22-105128.pdf

Madhurihammad. (2022 June 16). Difference between hardware security and software
security. Geeks for Geeks. https://www.geeksforgeeks.org/difference-between-
hardware-security-and-software-security/

Maurer, D. (2019). F-35 aircraft sustainment: DOD needs to address substantial supply
chain challenges (GAO-19-321). Government Accountability Office.
https://www.gao.gov/assets/gao-19-321.pdf

McCaney, K. (2020, June 17). DOD software behind the times? DevSecOps to the rescue.
GovLoop. https://www.govloop.com/dod-software-behind-the-times-devsecops-
to-the-rescue/

McLaughlin, M. (2019). How DevSecOps and Kubernetes can help transform the
Pentagon. C4ISRNET. http://hub.c4isrnet.com/whitepapers/

McQuade, J. M., Murray, R. M., Louie, G., Medin, M., Pahlka, J., & Stephens, T. (2019).
Software is never done: Refactoring the acquisition code for competitive
advantage. Defense Innovation Board. https://media.defense.gov/2019/May/01/
2002126688/-1/-1/0/SWAP%20ABRIDGED%20REPORT.PDF

Merriam-Webster. (n.d.). Stovepipe. In Merriam-Webster dictionary. Retrieved June 2,
2023, from https://www.merriam-webster.com/dictionary/stovepipe

Miller, A. W., Giachetti, R. E., & Van Bossuyt, D. L. (2022). Challenges of adopting
DevOps for the combat systems development environment. Defense Acquisition
Research Journal, 29(1), 22–48. https://doi.org/10.22594/dau.21-870.29.01

Mortlock, R., Jones, R. D., Stewart, C. W., Deitrich, A. T., & Reid, J. M. (2022).
Program management versus portfolio management in defense acquisition. In
Proceedings of the Nineteenth Annual Acquisition Research Symposium (pp. 163–
187). Naval Postgraduate School. https://dair.nps.edu/bitstream/123456789/
4553/1/SYM-AM-22-040.pdf

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://www.geeksforgeeks.org/difference-between-
https://www.geeksforgeeks.org/difference-between-

90

Naegele, T. (2021, September 2). What drove Air Force Software Chief Chaillan to quit.
Air & Space Forces Magazine. https://www.airandspaceforces.com/what-drove-
air-force-chief-software-officer-to-quit/

National Research Council. (2010). Achieving effective acquisition of information
technology in the department of defense. National Academies Press.
https://doi.org/10.17226/12823

Oakley, S. S. (2019). Weapon systems annual assessment: Limited use of knowledge-
based practices continues to undercut DOD’s investments (GAO-19-336SP).
Government Accountability Office. https://www.gao.gov/assets/gao-19-336sp.pdf

Oakley, S. S. (2020). Defense acquisitions annual assessment: Drive to deliver
capabilities faster increases the importance of program knowledge and consistent
data for oversight (GAO-20-439). Government Accountability Office.
https://www.gao.gov/assets/gao-20-439.pdf

Oakley, S. S. (2021a). DOD acquisition reform: Increased focus on knowledge needed to
achieve intended performance and innovation outcomes (GAO-21-511T).
Government Accountability Office. https://www.gao.gov/assets/gao-21-511t.pdf

Oakley, S. S. (2021b). DOD software acquisition: Status of and challenges related to
reform efforts (GAO-21-105298). Government Accountability Office.
https://www.gao.gov/assets/gao-21-105298.pdf

Oakley, S. S. (2022a). Leading practices: Agency acquisition policies could better
implement key product development principles (GAO-22-104513). Government
Accountability Office. https://www.gao.gov/assets/gao-22-104513.pdf

Oakley, S. S. (2022b). Weapons systems annual assessment: Challenges to fielding
capabilities faster persist (GAO-22-105230). Government Accountability Office.
https://www.gao.gov/assets/gao-22-105230.pdf

Oakley, S. S. (2023). Software acquisition: Additional actions needed to help DOD
implement future modernization efforts (GAO-23-105611). Government
Accountability Office. https://www.gao.gov/assets/gao-23-105611.pdf

Office of the Chief Software Officer. (n.d.). Platform One products and services:
Customer DevSecOps Platform. Retrieved June 4, 2023, from https://software.af.
mil/dsop/services/

Office of the Chief Software Officer. (2019, November 15). Kessel Run. https://software.
af.mil/softwarefactory/kessel-run/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

91

Office of the Under Secretary of Defense (Comptroller)/Chief Financial Officer. (2022,
April). Defense budget overview: United States Department of Defense fiscal year
2023 budget request. Department of Defense. https://comptroller.defense.gov/
Portals/45/Documents/defbudget/FY2023/FY2023_Budget_Request_Overview_B
ook.pdf

Pant, A. (2019, August 8). C2D2: An Agile defense acquisition model. Indian Defense
Review. http://www.indiandefencereview.com/spotlights/c2d2-an- agile- defence-
acquisition-model/

Platform One. (n.d.-a). Home page. Retrieved May 31, 2023, from https://p1.dso.mil/

Platform One. (n.d.-b). Iron Bank. Retrieved June 2, 2023, https://p1.dso.mil/services/
iron-bank

Red Hat (2023, March 10). What is DevSecOps? https://www.redhat.com/en/topics/
devops/what-is-devsecops

Rendon, R. G., & Snider, K. F. (2019). Management of defense acquisition projects.
American Institute of Aeronautics and Astronautics.

Royce, W. (1987). Managing the development of large software systems: concepts and
techniques. In Proceedings of the 9th International Conference on Software
Engineering, 328–338. https://doi.org/5555/41765.41801

Sager, M. (2021). High-risk series: Dedicated leadership needed to address limited
progress in most high-risk areas (GAO-21-119SP). Government Accountability
Office. https://www.gao.gov/assets/gao-21-119sp.pdf

Scrum.org. (2020). Scrum framework. https://scrumorg-website-prod.s3.amazonaws.com/
drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf

Sherman, J. B. (2022, January 24). Software development and open source software
[Memorandum]. Department of Defense. https://dodcio.defense.gov/portals/
0/documents/library/softwaredev-opensource.pdf

Skertic, R. (2019, December 12). DCAR registry [Video]. Defense Acquisition
University. https://media.dau.edu/playlist/dedicated/62956591/1_fpz21i6j/1_
m7dxgldf

Stellman, A., &. Greene, J. (2017). Head first Agile: A brain-friendly guide to Agile
principles ideas, and real-world practices. O’Reilly.

Sullivan, M. J. (2008). Defense acquisitions: A knowledge-based funding approach could
improve major weapon system program outcomes (GAO-08-619). Government
Accountability Office. https://www.gao.gov/assets/gao-08-619.pdf

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

http://www.indiandefencereview.com/spotlights/c2d2-an-

92

Sullivan, M. J. (2018). F-35 Joint Strike Fighter: Development is nearly complete, but
deficiencies found in testing need to be resolved (GAO-18-321). Government
Accountability Office. https://www.gao.gov/assets/gao-18-321.pdf

Sutter, J. (2021, April 19). Reserve airman makes history with innovative Project FoX/F-
35 development. U.S. Air Force. https://www.af.mil/News/Article-Display/
Article/2577421/reserve-airman-makes-history-with-innovative-project-foxf-35-
development.html

Tate, D., & Bailey, J. (2020). Software speed limits: What controls how fast we can
modernize? [Master’s thesis, Naval Postgraduate School]. Defense Acquisition
Innovation Repository. https://dair.nps.edu/handle/123456789/4227

Tate, D., & Bailey, J. (2021). Factors limiting the speed of software acquisition. In
Proceedings of the Eighteenth Annual Acquisition Research Symposium (pp. 152–
161). Naval Postgraduate School. https://dair.nps.edu/bitstream/123456789/4383/
1/SYM-AM-21-076.pdf

Thornberry, M. (2023, February 2). The Pentagon must make a culture shift to embrace
innovation. Defense News https://www.defensenews.com/opinion/commentary/
2023/02/02/the-pentagon-hasnt-made-the-culture-shift-key-to-embracing-
innovation/

Tirpak, J. A. (2019, February 25). Keeping the F-35 ahead of the bad guys. Air & Space
Forces Magazine. https://www.airandspaceforces.com/article/keeping-the-f-35-
ahead-of-the-bad-guys/

Ulsh, C., & McCarty, Z. (2019). Vignette 2—F22: DevOps on a hardware platform.
Defense Innovation Board. https://media.defense.gov/2019/May/01/2002126695/-
1/-1/0/VIGNETTE%202%20-%20F22%20DEVOPS%20ON%20A%20
HARDWARE%20PLATFORM.PDF

VMware. (n.d.). Software factory: Modern software development. Retrieved June 1,
2023, from https://tanzu.vmware.com/software-factory

Voss, N., & Ryseff, J. (2022). Comparing the organizational cultures of the Department
of Defense and Silicon Valley. RAND Corporation. https://www.rand.org/pubs/
research_reports/RRA1498-2.html

Wallace, M. (2017, July 5). How software is eating the military and what that means for
the future of war. Fast Company. https://www.fastcompany.com/40436077/how-
software-is-eating-the-military-and-what-that-means-for-the-future-of-war

Walsh, K. (2021). Software development: DOD faces risks and challenges in
implementing modern approaches and addressing cybersecurity practices (GAO-
21-351). Government Accountability Office. https://www.gao.gov/assets/gao-21-
351.pdf

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://www.af.mil/News/Article-
https://www.defensenews.com/opinion/commentary/2023/02/02/the-pentagon-
https://www.defensenews.com/opinion/commentary/2023/02/02/the-pentagon-
https://www.fastcompany.com/40436077/how-software-is-eating-the-military-
https://www.fastcompany.com/40436077/how-software-is-eating-the-military-

93

Wheeler, D. A. (2018, April 28). The waterfall model. David A. Wheeler [blog].
https://dwheeler.com/essays/waterfall.html

Williams, L. C. (2020, December 21). Software factories are the new “crown jewels,”
Air Force official says. FCW. https://fcw.com/security/2020/12/software-
factories-are-new-crown-jewels-air-force-official-says/258550/

Williams, L. C. (2021a). DIU director: Look beyond reform to keep the technological
edge. Washington Technology. https://washingtontechnology.com/2021/11/diu-
director-look-beyond-reform-to-keep-the-technological-edge/355510/

Williams, L. C. (2021b). Why DOD is so bad at buying software. FCW. https://fcw.com/
acquisition/2021/11/why-dod-is-so-bad-at-buying-software/259180/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://dwheeler.com/essays/waterfall.html
https://fcw.com/acquisition/2021/11/why-dod-is-so-bad-at-buying-
https://fcw.com/acquisition/2021/11/why-dod-is-so-bad-at-buying-

94

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

95

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

WWW . N P S . E D U

W H E R E S C I E N C E M E E T S T H E A R T O F W A R F A R E

	I. INTRODUCTION
	A. PROBLEM STATEMENT
	B. PURPOSE STATEMENT
	C. RESEARCH METHODS

	II. COMPARATIVE ANALYSIS: HARDWARE AND SOFTWARE IN PROGRAM MANAGEMENT AND ACQUISITIONS
	A. TANGIBILITY
	B. INTELLECTUAL PROPERTY RIGHTS
	C. DEVELOPMENT AND MAINTENANCE LIFE CYCLE
	D. IN-HOUSE PERSONNEL
	E. AUTHORITY RIGHTS
	F. PARTIAL UPDATES
	G. PERFORMANCE MEASUREMENTS AND STANDARDS
	H. OBSOLESCENCE AND RISK MANAGEMENT
	I. QUALITY PRODUCT DEVELOPMENT
	J. SECURITY
	K. CRITICAL PATHWAYS
	L. ITERATION OF THE DESIGN
	M. CONCLUSION

	III. CURRENT STATE OF MDAP SOFTWARE ACQUISITION
	A. SOFTWARE PATHWAYS
	1. Waterfall
	2. Agile/Scrum/Agile-Like
	3. C2D2
	4. DevSecOps
	5. Hybrid/Mixed

	B. SOFTWARE FACTORIES
	1. Kessel Run
	2. Platform One
	3. Limitations of Software Factories

	C. FACTORS LIMITING INNOVATIVE MDAP SOFTWARE PRACTICES
	1. Culture
	2. Communications
	3. Knowledge-Based Practices
	4. Resources
	5. Life Cycle
	6. Hierarchy Levels
	7. Stovepipes

	D. STATE OF THE F-22 AND F-35 SOFTWARE EFFORTS
	1. F-22
	2. F-35

	E. CONCLUSION

	IV. CONCLUSIONS AND RECOMMENDATIONS
	A. FINDINGS
	1. Resistance to Agile Software Pathways
	2. Software Challenges—Development and Acquisition Comprehension
	3. Misaligned Software Acquisition Pathways
	4. Effects of Software Incentives
	5. Human Resources—Government and Civilian Sectors
	6. MDAP Lessons Learned—Too Big to Fail
	7. Differences between Hardware and Software in Programs

	B. RECOMMENDATIONS
	1. Government Lead
	2. Software Prioritization
	3. Software Acquisition Methods
	4. Congressional Mandate for Consulting Service CIOs
	5. Centralized Life Cycle
	6. DOD-Wide Software Office
	7. Inertia/Momentum
	8. Government—Contractor Business Structure
	9. Program Management Shift to Portfolio Management
	10. Government–Industry Software Pilot Program
	11. Software Career Path Redesign
	12. Summary

	C. Future Research
	1. Create Pilot Programs
	2. Update the Source Selection Process
	3. Redesign the Contractor’s Role in MDAPs

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST
	Branding_Back Cover File.pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

