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ABSTRACT 

 Adversarial example attacks alter an image so the image appears largely unaltered 

to human eyes, but image-recognition models will misclassify it. This is a common type 

of attack, against which there is currently no good general defense. Most state-of-the-art 

methods of detecting adversarial example attacks only consistently succeed in 

recognizing a few known attacks. These defenses do not generalize well to detecting 

other attacks, which means an adversary only needs to change their attack to leave us 

without robust abilities to detect attacks. Military intelligence increasingly relies on 

machine learning image recognition for analyzing satellite images. Finding defenses 

against these adversarial example attacks is important for ensuring our 

intelligence-gathering capabilities are not compromised. This thesis seeks to contribute 

models which will push the state of the art towards successful recognition of adversarial 

attacks regardless of which type of attack was used. Models we named 3-Mix were 

trained using combinations of different attacked images; other models were trained using 

SaliencyMix. These defenses were evaluated against ten attacks: PGD, auto-PGD, 

autoattack, square, Carlini L2 and L-inf, deepfool, elasticnet, JSMA, and boundary. On 

average the attack success rate against the best defense model was 0.12 for 3-Mix, 0.31 

for SaliencyMix, and 0.77 for comparison model Mixup. 
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CHAPTER 1:
The Proliferation of Image Recognition

The benefits of machine learning are increasingly recognized in society as its use increases,
but the adoption of machine learning also brings security risks to its users. Computer vision
is a subset of machine learning in which computers imitate functions of the human visual
system. Image recognition is a subset of this field wherein a digital image is received by
the computer and the computer processes the digital information in the image to identify
what objects that data represents in the real-world. Image recognition is a well-developed
and very useful aspect of machine learning. It has common uses in real world industry
applications such as facial recognition for unlocking phones, quick response (QR) code
recognition using cell-phone cameras, character recognition for scanning written or typed
text and converting to digital text, agricultural use in identifying fruit which is ripe for
picking or sorting produce, reading of scans to detect medical conditions, and self-driving
vehicles identifying objects so the cars can navigate in the real-world. The U.S. govern-
ment and military use image recognition for tasks such as facial recognition for criminal
investigations, identifying and cataloging the military equipment of other countries from
spy-satellite images, monitoring the U.S. border using images from drones, self-piloting
military vehicles, and other applications which are not publicly disclosed.

Convolutional neural networks (CNNs) have been developed to be superb at image recog-
nition tasks. CNNs are widely used for all the applications listed above and others, and as
such have become an important digital tool. However, attacks against image recognition
using adversarial examples (AE) are possible.

1.1 Problem Statement
Adversarial example attacks, sometimes called evasion attacks, add perturbation directly
to an image such that a trained CNN will incorrectly classify the image, but to a human
observer the image looks virtually indistinguishable from the original. Small changes to
the input cause large changes to the output of the CNN. There are many evasion attack
algorithms which use different techniques to fool established image recognition algorithms:
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• Decision based which samples the image, then uses output to solve for perturbation.
• Gradient based which leverages gradient information to solve for perturbation.
• Score based which optimizes on the model output probability.
• White box wherein the model is known to the attacker.
• Black box where the attacker has limited model knowledge.

An adversary can add perturbation directly to an image or to objects in the real world. For
example, researchers have demonstrated that by strategically adding stickers to a stop sign
they could cause image recognition models to classify the sign as a yield sign. Adversaries
may also fool the model by adding excessive perturbation, but if the perturbation is poorly
concealed the attack will be less deceptive and easier to detect. In this paper we assume the
attacker will attempt to keep their perturbation subtle to avoid detection and that they will
be generating these adversarial examples to fool a fully trained model.

The general problem this thesis will seek to solve is that adversarial example attacks can lead
to incorrect results in image recognition, and currently there is no defense robust enough to
detect all attacks, virtually guaranteeing errors when a range of different attacks are applied.

If adversarial attack malware can be installed in the image processing software, or at another
stage in a data pipeline, before image recognition tasks are performed, the CNN models
trained to classify images will have their performance degraded or destroyed. Adversarial
attacks pose a problem because if an adversary can implement these attacks in actively
used systems without detection, the economic and strategic costs could be very large. If the
attacks were to be done subtly, it may take a long time before anyone realizes the system has
been attacked and how to fix the issue. To defend against this, one must develop systems to
detect if an adversarial attack has been used so that an attack can be quickly recognized and
rectified before significant damage is done. The earlier the problem is detected, the easier
it is to mitigate the damage, to find the source of the problem, and to prevent the problem
from happening in the future.

As the military becomes more reliant on image recognition, we must be sure these sys-
tems are robust against attacks. Military systems using automated guidance systems in
autonomous vehicles, facial recognition for security, target tracking through cities by se-
curity cameras, and recognizing objects from satellite images all need a high degree of
certainty they are correctly classifying the target. If a hostile governmental actor can access
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and modify images on-the-line this could devastate the affected military capability, while
potentially remaining undetected for months. Hence, it is important to develop defenses
against such attacks.

Presently, the state of the art in detecting attacks will, at best, only be able to detect one or
a tiny number of types of attack with a high degree of confidence. The lack of robustness
in detection is a significant problem. Robustness can be defined as how well the model can
prevent misclassifications from all types of adversarial attacks. A perfectly robust model
detects all attacks, a brittle model detects few attacks. Systems cannot efficiently have dozens
of models running to detect if an attack has occurred. Additionally, each new type of attack
could be effectively a zero-day attack. Any effective adversarial image detector must be
robust in detecting many attacks and should be general enough and robust enough that
either new attacks will be detected or it will be substantially harder to create a new attack
which remains undetected.

The work of Barton [1] in developing Padnet has shown great promise in this area. Padnet
adds to the list of possible object classes one additional class for attacks. For example,
with a normal image recognition model, an adversarial example image of a “cat” may
be misclassified as a “dog.” Training an image recognition model with Padnet would add
an 11th class of object which would be labeled the none of the above (NOTA) class. In
this case the Padnet image recognition model would see the same adversarial example
image of a “cat” and classify the image as “NOTA” instead of as a “cat” or “dog.” Any
image being classified as “NOTA” could then trigger an alert which would permit further
investigation, potentially enabling early detection of a devastating attack against an essential
system. Linear interpolation was used to create the NOTA class in the original paper. Mixup
and adversarial mixup are augmentation approaches that combine benign and adversarial
examples, and have led to improvements in robustness. However, robustness across different
attack types still needs to be improved on.

The specific solution proposed in this paper to solve the stated problem is to train a NOTA
class by mixing benign samples with various adversarial examples generated from the same
benign image. This will be done either by combining different attacks in the same image, or
by using SaliencyMix to combine a benign image with a corresponding adversarial example.
SaliencyMix is an augmentation strategy which adds the part of an image most salient to its
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correct classification to another image and applies mixed labels (soft labeling). The goal in
both cases is to cover as much of the multi-dimensional space as possible with the NOTA
class, while still correctly identifying unaltered images. By combining many attacks in the
training, we hope to greatly improve the robustness of the model against attacks not included
in the training. To evaluate the robustness of our defense, we measure the performance of
the defense against ten state-of-the-art attacks.

1.2 Research Questions
Other studies have been done on detecting an adversarial attack and have had a high degree
of success in detecting if the named adversarial attack had been implemented. However,
these have not generalized well into detecting if a different attack occurs which the model
had not been trained to handle. Our contribution to the field is to work on methods of
generalizing the detection to cover many varied attacks. Specifically, we ask:

1. Can we train a model that reliably categorizes adversarial examples as the NOTA
class for multiple types of attacks in our test data?
Preliminary evidence suggests that multiple attack types can be correctly clas-
sified as NOTA, but the reliability and robustness of the models have not been
thoroughly tested.

2. Are some attacks more robust against detection than others?
Answering this gives us further clues into how we can tailor the training of the
model to optimize our measures of accuracy and robustness.

3. What impacts do different methods of generating the NOTA class have on the
accuracy and robustness of the model?
Experimenting with different methods of generating a NOTA class and testing
the accuracy and robustness of the subsequent model is the primary focus of this
thesis and provides substantive answers to the other questions. We find the new
methods of generating a NOTA class to offer substantially more robustness than
previous methods.
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1.3 Thesis Organization
Chapter 1 has briefly introduced the emergent problem of attacks against image recognition.
Chapter 2 discusses the fundamentals of image recognition and adversarial attacks against
image recognition. This provides useful background information to help with understanding
the later topics. Chapter 3 discusses the two methods which will be used to train the PadNet
models, 3-Mix and SaliencyMix, which are designed to achieve our research objectives.
Chapter 4 gives the results of the experiments. Chapter 5 offers conclusions and suggestions
for future work.
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CHAPTER 2:
Previous Work – A Survey of Similar Work in the Field

This section discusses previous work which led up to the research in this paper. First
is a discussion of how image recognition developed to become an essential technology
for many varied industries. Second is a discussion of the development of attacks against
image recognition. Third, we will look at the latest methods of defending against attacks,
particularly from the PadNet paper on which this research builds. The third section will also
discuss the SaliencyMix algorithm which has been incorporated into developing one of the
two defense methods.

Machine learning uses algorithms and models to enable computers to learn from data and
make predictions on new data without being explicitly programmed with exactly how to
make the predictions. The goal is to make correct predictions on new data. A feature is
a measurable property of the input data, and the feature space is the set of all possible
combinations and variations of these features. Models learn patterns within the feature
space, and use these patterns to map input data to the corresponding labels or outputs
through a function. When creating a model, the data is divided into training set, test set,
and sometimes validation set. The training set is used to train the model by adjusting model
parameters or weights to minimize the difference between predicted and actual labels.
The test set is not seen by the model during training and is used to evaluate the model’s
performance on unseen examples, allow us to see if the model generalizes to new data. The
validation set is used during training to fine-tune hyperparameters and prevent overfitting.

Hyperparameters control aspects of model training and include number of epochs, batch
size and learning rate. An epoch is one pass through of the training data during training. The
batch size is how many training examples are included in each iteration during an epoch.
The learning rate is how fast the system adapts to new data by adjusting model parameters.

This thesis’s research will use the CIFAR-10 dataset, which is well researched and carefully
curated dataset [2]. This dataset contains 50, 000 training images and 10, 000 testing images,
giving a total of 6, 000 images in each of the ten classes. Those ten classes of objects are
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airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each image is sized
32x32 and is in color giving a total of 32x32x3 pixel values.

2.1 Image Recognition and Object Detection
Research into computer vision has been ongoing since the 1960s [3] but has seen large
breakthroughs with the development of deep neural network (DNN)s and CNNs using
back-propagation [4], [5].

2.1.1 Convolutional Neural Networks
Artificial neurons are simple digital models of biological neurons. Each artificial neuron
receives digital inputs, performs computations on the inputs, and if an activation threshold is
reached it produces a binary output. Deep neural networks arrange the neurons into multiple
interconnected layers which allows the network to learn hierarchical representations of data,
capturing and modeling of complex information from multiple inputs.

CNNs are deep neural networks used to find useful patterns in high-dimensional data such as
images. In CNNs, groups of pixels must be evaluated in relation to other surrounding groups
of pixels to identify patterns. Those patterns form maps which combine to determine how
an image should be classified. Patterns between pixels can be found by applying predefined
convolution kernels or masks which contain predefined patterns. If the filter’s pattern
matches with the pixel values at a given location on an image, a threshold is reached which
contributes to a new layer of data, and it is combined with pattern matches over all the other
pixel locations to build a feature map. Figure 2.1 represents how layers of abstraction lead to
a classification of elephant from an input image of an elephant by determining increasingly
complex features. Through this process a trained model is created which can be used to
predict how a new image should be classified. The trained model will have an architecture
defining the number and size of layers, the type and arrangement of its layers, and how
data moves through the model. It will have weights determining the strength of connections
between neurons, and biases which adjust the output of each neuron.

8
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Figure 2.1. Combining data from convolution kernels in a CNN to recognize
an object belonging to the elephant class. Source: [6]

2.1.2 Overfitting and Underfitting
Overfitting is when the machine-learning model fits too closely to the data points on which
it is trained. This prevents the model from generalizing well to new data. For example, if
the model memorizes every image of a cat instead of learning a general pattern for cat, then
any new image of a cat will not be recognized as being one of the previously seen images
and may be misclassified. Underfitting is when the model does not fit closely enough to the
data the model has been trained on. For example, if the cats in a dataset were mostly black
and only a few dogs were black, an underfitting model might incorrectly classify all black
animals as cats.
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2.1.3 Distance Metrics
Four common distance metrics, sometimes called norms, are L0, L1, L2, and L∞. These
are different ways of measuring the distance between two vectors or the magnitude of
a single vector. For example we can have vectors 𝑎 = [4, 1, 3] and 𝑏 = [3, 2, 5]. L0 is
the highest number of nonzero elements in either vector. L0 example distance is 3. L1 is
the absolute value, the sum of absolute differences between the two vectors, sometimes
called the Manhattan distance. L1 example distance is |4 − 3| + |1 − 2| + |3 − 5| = 4.
L2 is the Euclidean distance, the root of the sum of squares. L2 example distance is√︁
(4 − 3)2 + (1 − 2)2 + (3 − 5)2 =

√
6. L∞ is the largest absolute value of any difference

between the vectors. L∞ example distance is |3 − 5| = 2.

2.1.4 Dropout
Dropout is when some number of neurons are removed at random during a part of the
training. This enables better regularization. Regularization is where we restrict a model
in some way to prevent overfitting. L1 regularization adds a penalty term to the model’s
loss function based on the L1 norm of the model’s weights. It encourages the model to
have sparse weights by making the least important weights zero. Dropout is a type of L1
regularization because some features are being ignored. This helps prevent any feature from
becoming too important and helps to eliminate the least important features.

2.2 Adversarial Attacks
Adversarial attacks add perturbation to an image, subtly changing the pixel values so that
the image looks virtually the same to a human observer, but causing an image recognition
model to misclassify the image. If an attacker gains unauthorized access to a system,
adversarial attacks can be applied to images by attackers between the time the picture is
taken and when the fully trained image recognition model is used to classify the image.
An image that has been altered by one of these attacks is an adversarial example. Figure
2.2 first shows a benign image which is correctly classified and then shows adversarial
examples generated by different adversarial attacks including DeepFool and Carlini Wagner
(CW), with the misclassification each attack caused labeled below the image. If an attacker
can change the image processing software to include an adversarial attack or can add
an adversarial attack somewhere in the pipeline between the image being captured and
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the image recognition model being applied to the image, this could cause the affected
company or government millions of dollars or cost people their lives in the cases of medical
scans or military intelligence. Because the images appear unchanged to human observers,
image misclassifications could go unnoticed for a significant period causing the system’s
functionality to be degraded, and once the misclassifications are discovered finding the
source of the problem could be a long expensive process. There are many types of adversarial
attacks. The current state-of-the-art models are only able to reliably detect or prevent a tiny
number of attacks. This means entities that wish to bypass defenses may only need to tweak
their adversarial attacks or change their attack type to bypass current defenses. Thus, the
defenses remains brittle.

Figure 2.2. Adversarial example samples generated from the “clean” CIFAR-
10 image. Source: [7]

Adversarial examples were first reported in a paper which showed that trained image recogni-
tion models were easily confused by barely noticeable changes to the image pixel values [8].
Since then new methods have been developed to create adversarial examples in the digital
and in the physical world [9], [10]. These adversarial examples pose a threat to the safety
of users and the security of the systems these models support.

To defend against attacks, a model must either correctly classify images in spite of adversarial
examples, or it must detect adversarial examples and alert those in charge of the system.
Previously explored methods of defending against adversarial examples included altering
the training data or training procedure to improve robustness through regularization [8], [9],
or train an adversarial example class using defensive distillation [11].
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It is not safe to assume that object recognition will only ever occur in a closed and trusted
environment where attackers will never be able to add code or alter the data pipeline. If
even 1% of attacks get through, this can be devastating, causing car crashes for autonomous
vehicles, misdiagnosis of life-threatening conditions, bad intelligence for the military, or
economic harm through mistakes in agricultural systems. An adversary disabling a system
would be noticed quickly and fixed, but using adversarial attacks could allow an adversary
to degrade function, with the attack potentially going unnoticed and causing damage over
an extended period.

The objective of the attacks being defended against in this paper is to alter pixel values,
which are the inputs to the classifying model. The altered inputs cause a misclassification
without substantially altering the image, such that a human checking the image would not
suspect that the image has been attacked and would believe the misclassification is the result
of a faulty model.

A white-box attack is where the attacker knows the architecture and parameters of a clas-
sifying model which lets them tailor their attack to maximize their effectiveness. With a
black-box attack, the attacker lacks access to this information so attacks must be more gen-
eral and are less likely to succeed. Nevertheless, black-box adversarial examples will often
cause misclassifications of models which do not defend against the attack used to generate
the adversarial example. A targeted attack specifies the class that the adversarial example
should be misclassified as, while an untargeted attack succeeds if the adversarial example
is misclassified as being in any class that is incorrect. The research in this paper will use
untargeted black-box and untargeted white-box attacks.

Another way to attack the accuracy of image detection models is through a poisoning attack.
This attacks the data the model will be trained on, or embeds malicious functionality into
a model that will be used by someone else. If data comes from social media or some other
untrusted source, an adversary can get wrongly labeled data or adversarial examples into
their target’s dataset. The adversary can cause targeted misclassification, neural trojans and
other attacks [12]–[16].
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2.2.1 Adversarial Robustness Toolbox
The adversarial robustness toolbox (ART) is an open-source Python library of attacks
on machine learning and defenses against those attacks made available to the research
community [12], [17]. This library allows users to benchmark novel attacks or novel defenses
against current attacks and defenses. The library has 73 different attacks in four main
categories: evasion attacks which are our focus, extraction attacks, inference attacks, and
poisoning attacks. Carlini L2 [18], deepfool [19], and square attack [20] are used to generate
the adversarial examples from which we create the our augmented datasets that are then used
for training our models. To show the robustness of our defense, we evaluate it against the
following state-of-the-art attacks implemented in the ART library: auto attack [21], projected
gradient descent (PGD) [22], auto-PGD, Carlini L-2, Carlini L∞ [18], deepfool, fast gradient
sign method (FGSM) [23], elastic net [24], and square attack. ART is maintained by IBM.

Normally in image classification a decision boundary occurs between each class, and the
goal of each attack in the ART is to tweak pixel values so that humans barely register any
change has been made, but the altered image’s classification has been pushed from one side
of a decision boundary to the other, so that an image classification model now misclassifies
the image.

All the attacks in Sections 2.2.2–2.2.6 are in ART and are used to create adversarial examples
which are either used to build the datasets on which our defensive models are trained, or to
test the trained models. Except for Square attack (Section 2.2.3) which is a black-box attack
and AutoAttack (Section 2.2.4) which uses Square attack, the rest of the attacks in Sections
2.2.2, 2.2.4–2.2.6 are white-box attacks.

2.2.2 Projected Gradient Decent
FGSM is an adversarial attack which adds perturbation to input data using the sign of the
gradient of the loss function, scaled by a small value of 𝜖 [9]. 𝜖 is a value [0 − 1] used
to control the magnitude of perturbations added when creating an adversarial example. A
smaller value of 𝜖 means less perturbation can be added. Projected gradient decent (PGD)
is an effective way to find adversarial examples which builds on FGSM by adding multiple
steps [22]. In each step PGD computes the gradient of the loss function with respect to the
input and alters the input in the direction of the gradient while still bound by constraints.
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These examples have their total perturbation limited (bounded) using the L2 or L∞ norms.
For example, when the L2 norm is used, 𝜖 represents the maximum Euclidean distance
between original and perturbed inputs.

2.2.3 Square Attack
Square attack is a black box attack with norm bounded perturbations [20]. Instead of relying
on local gradient information it uses randomized search, so gradient masking does not affect
it. In each iteration localized square-shaped updates are made at random positions to create
perturbations approximately at the boundary of the feasible set. This attack can outperform
some white box attacks.

2.2.4 Auto-PGD and AutoAttack
PGD is a popular method for testing adversarial robustness, but can fail for various reasons,
including having a fixed step size and only using one type of loss measurement causing
robustness to be overestimated. Croce and Hein [21] discuss Auto-PGD and AutoAttack
which expand the capabilities of PGD. Auto-PGD removes the fixed step size problem by
adding a momentum variable and at fixed intervals checks if the step size should be halved.
This allows the algorithm to converge on a better local optimization. AutoAttack combines
two variations of Auto-PGD with FAB [25] and Square Attack [20] to form an ensemble
attack with attacks that generalize well across models and datasets.

2.2.5 Carlini L2 and L∞
Carlini Wagner (CW) attacks use either L0, L2, or L∞ distance metrics to create different
adversarial attacks designed to find the least amount of perturbation which is still effective
in causing misclassification [18]. L2 and L∞ are norms which measure the magnitude
of matrices or vectors as discussed in 2.1.3. CW L2 attacks use the Euclidean norm to
maximize distance while minimizing total perturbation, and L∞ maximizes on change to
any pixel in the image while minimizing total perturbation. Each attack uses a function to
minimizes the total distance between the original 𝑥 and the adversarial example 𝑥′ for all
pixel values in the range [0,1].
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2.2.6 JSMA
Jacobian saliency map attack (JSMA) forces misclassification by iteratively perturbing the
parts of the image that are salient to misclassifying it as a new target class [26]. This iterative
perturbing continues until a stopping condition is met, usually when the decision boundary
has been crossed so that a model is likely to misclassify the image. Gamma measures
what percentage of the features may be perturbed. For an image with 3072 pixel values
(32 ∗ 32 ∗ 3 = 3072), a gamma of 0.1 means a maximum of 307 pixel values may be altered.
Theta is the amount of perturbation that can be introduced at each modifiable feature per
step.

2.3 Defending Against Attacks
This paper will build on previous work on mitigating evasion attacks on deep neural
networks from Cao and Gong [27] which studied a general mitigation strategy for adversarial
examples. This paper also builds on the work of Klingner et al. [28] which showed that it is
possible for a CNN to detect if a certain type of evasion attack was used on an image.

The primary strategies for defending against attacks are runtime detection of adversarial
examples and model hardening. Runtime detection seeks to classify adversarial example
images as attacks on the model and alert those monitoring the system. This could be accom-
plished by generating adversarial images for an attack and training a model to recognize
that attack, or it could use a more complicated process to determine if an attack has taken
place [29].

Model hardening seeks to train models that will not be fooled by AEs and which will
correctly classify the image regardless of whether the image has been modified by an attack.
This can be done by generating AEs and training the model to classify them correctly [30].

2.3.1 Mixup
Mixup is a data augmentation defense approach which creates new training examples by
linearly interpolating between two benign images, and between their corresponding labels
using soft labeling [31]. This linear behavior reduces the amount of undesirable oscillations
when making predictions outside the training examples. By blending features and labels of
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different samples, a new model trained on this data learns more generalized representations
improving robustness.

2.3.2 Adversarial Vertex Mixup
Adversarial Vertex Mixup is similar to Mixup but instead of mixing two benign images, a
benign image is mixed with an adversarial example [32]. Additionally, instead of having
the adversarial example perturbations be a set distance from the benign input, a scaling
factor is multiplied with the distance of the perturbation from the source image to generate
additional adversarial examples. This helps to reduce overfitting on adversarial features.
Soft labeling with a label smoothing function is also used. The new model trained on this
augmented dataset adjusts where decision boundaries are set between classes to be more
robust against the attacks on which it is trained. Adversarial vertex mixup is among the most
robust defenses currently available.

2.3.3 PadNet
The PadNet paper my research builds on is a form of runtime detection [1]. PadNet is
the idea that rather than having a fine line for the decision boundary separating each
class (see Figure 2.6), we can create a much wider border similar to a demilitarized zone.
Boundary padding is an augmentation strategy which creates a padding class that acts as this
demilitarized zone between benign classes. Anything in this padding region falls outside
the correct classification areas and is labeled as an adversarial example. In some areas the
boundary region between classes will be wider than in other areas. If there are n classes,
this border area becomes the (𝑛 + 1)th class, and we assert that images falling within this
widened decision boundary border area are likely adversarial attacks. Some parts of that
border can be much wider than other parts because much of the information in the image
has no value to determining its classification, and the decision boundary in these areas is
somewhat arbitrary. The padding class between true classifications is termed the NOTA
(none of the above) class. Figures 2.7 and 2.8 illustrate a simplified example of the concept.
Figure 2.7 shows adversarial examples being generated and labeled NOTA. Figure 2.8 shows
a new model trained on this data with a NOTA class boundary padding region.

Similar to mixup, adversarial mixup is an augmentation technique which mixes a benign
sample 𝑥 with its adversarial example counterpart 𝑥′ and labels the resulting sample as
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belonging to the NOTA class. Pixel values from the benign image (such as the clean image
in Figure 2.2) are combined and averaged with the pixel values from one of the corresponding
adversarial examples to create an adversarial mixup image.

Ordinarily, adversarial examples will push just enough past the decision boundary to get
a false classification, but by adding the NOTA class, getting just past the old decision
boundary will put the adversarial image within the NOTA class and thus lead to the image
being labeled a potential adversarial example, which could trigger an alert to someone
monitoring the system to investigate the image or to investigate the system if enough images
are falling within the NOTA class. It will also make adversarial attacks harder to create
because for an attack to get past the NOTA class to an incorrect classification requires the
addition of significantly more perturbation. This added perturbation is likely to be much
more noticeable to a human observer which forces an attack to be more easily discovered.
A human could check the raw image data from the source, compare it to the image analyzed
by the model and easily see that the image has been attacked, or they may simply observe
the amount of noise in the image and recognize it as an attack. The NOTA class region
is in multi-dimensional space rather than on a simple 2D or 3D graph, so the border can
cover complex multi-dimensional terrain which is vulnerable to attacks which are too subtle
for human eyes to easily notice. Figure 2.3 shows a t-SNE visualization of data sparse
regions between classes. The t-SNE visualization in Figure 2.4 shows how the addition of a
padding class, generated from adding Gaussian noise to benign images, populates the high
dimensional space between classes. Figure 2.5 shows a t-SNE of how training the NOTA
class using adversarial mixup samples fills in the data sparse regions near benign samples.
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Figure 2.3. t-SNE visualization of MNIST classes before Boundary Padding
or Adversarial Mixup. Source: [1]
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Figure 2.4. t-SNE visualization of MNIST classes after Boundary Padding.
Source: [1]
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Figure 2.5. A t-SNE visualization of MNIST classes after Boundary Adver-
sarial Mixup. Sparse regions near benign samples within the manifold are
filled in with Adversarial Mixup samples. Source: [1]

The PadNet research has shown promising results by providing a more robust defense against
attacks, but the research has focused on developing the NOTA class with individual attacks
(using PGD to create the NOTA class, or using Carlini Wagner L2, or using Deepfool to
create the NOTA class). In Chapter 3 of this paper, we discuss expanding this idea from
mixing two images (benign sample 𝑥 and adversarial example counterpart 𝑥′) to mixing a
benign image with n-number of adversarial examples generated using different attacks on
the same benign image where n can be any number.

My research in this thesis studies two methods of combining attacks to create a NOTA class.
Both methods use Deepfool, Carlini Wagner L2 and Square attack to build NOTA classes
which should be more resistant to attacks than when building the NOTA class using any
single attack. This should ultimately provide a model which is robust against more types of
attacks. Figure 2.9 illustrates that the goal of adding additional types of attacks is to widen
the boundary padding creating a defense which is more robust against attacks. Figure 2.10
illustrates a what we seek to avoid, wherein using only one type of adversarial attack causes
the boundary padding to concentrate in certain areas, leaving a decision boundary in other
areas which is vulnerable to other types of attack.
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Figure 2.6. An adversarial example being misclassified.

Figure 2.7. Many adversarial examples being generated which all cross the
decision boundary.
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Figure 2.8. A NOTA class drawn around the initial adversarial examples.

Figure 2.9. New adversarial examples included in the training to widen the
NOTA class.
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Figure 2.10. With only one type of adversarial attack there is a risk that the
model will form pockets of NOTA class, leaving unprotected regions with
only a decision boundary between true classes, which may be vulnerable to
other types of attacks.

2.4 Data Augmentation Algorithms
Data augmentation artificially increases the diversity and size of the dataset by modifying
or transforming copies of existing samples. The two algorithms in Sections 2.4.1 and 2.4.2
are relevant to the research done in this paper. These algorithms are data augmentation
strategies used to regularize the model and reduce overfitting. They have an additional
benefit of providing more robustness against adversarial examples.

2.4.1 CutMix
CutMix [33] replaces a section of an image with a section of another image. The label for the
new image is adjusted to give weight to each label proportional to the number of pixels each
image represents. This can lead to more robust results because it helps expand the dataset
and prevents the model from being overly reliant on specific features. However, there is no

23

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



guarantee that relevant aspects of the image will be included in the new image because the
area of focus is not always in a specific part of an image. It is possible that the relevant part
of one image could be replaced with an irrelevant part of another image, creating a training
example image which is actively detrimental to the training because it teaches the model to
recognize irrelevant features of the image. For example, if an indoor cat image and a dog
image get wrongly combined, the image could be labeled as 40% cat, 60% dog, but only
show 40% couch, 60% grass. Then, if a cat is pictured near grass, it could be misclassified
as a dog.

2.4.2 SaliencyMix
SaliencyMix is from a well know research paper, and has been shown to improve regu-
larization and slightly increase robustness [34]. It improves on CutMix for model training
outcomes. SaliencyMix maps the part of the image to which the image recognition model
gives the highest probability of determining the image’s classification. This part of the
image is the most salient part. A rectangular area from the most salient part of an image
replaces a rectangular area of the same size from another image with the label getting a
proportional weight from each original image (soft labeling). Figure 2.11 demonstrates this
process. Now the most relevant part of the cat, the head and some body, will replace the
corresponding section removed from the dog image. This method of data augmentation has
been shown to improve model prediction accuracy.

Figure 2.11. SaliencyMix data augmentation determining and extracting the
salient part of the source image and patching it onto the target image.
Source: [34]
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In this paper’s research, the most salient part of an adversarial example image will replace
the removed section of the other image. This data augmentation strategy helps to improve
regularization in models which detect adversarial images by helping to improve learning
appropriate feature representation.

2.5 Threat Model
We assume the attacker has gained sufficient access and will use adversarial examples to
attack a trained deep neural network. The attack is successful if and only if the trained model
classifies the adversarial example 𝑥′ as a class other than its benign class 𝑦 or the padding
class 𝑦𝑁𝑂𝑇𝐴.

𝐹 (𝑥′) ≠ 𝑦 ∧ 𝐹 (𝑥′) ≠ 𝑦𝑁𝑂𝑇𝐴

The attacker may use any attack mentioned in this paper, black-box or white-box. We assume
that the attacker will seek to degrade the performance of the system and prevent their attacks
from being detected. If an attack is discovered, steps would be taken to prevent future attacks
and deny the attacker system access. If the performance of the system decreases, a human
will investigate, so we assume the attacker will seek to keep from using obviously modified
images in their attack to reduce the likelihood of their attacks being discovered. There
are very obvious attacks such as patch attacks but these would be easily recognized when
investigated. Although there are some attacks using high perturbation, we evaluate on small
perturbation which is a more challenging problem.

Nation-states could potentially use these attacks to degrade the automated analysis of spy
satellite images. External threats such as hackers and insider threats such as manipulated or
disgruntled employees could manipulate images in the data pipeline. Perturbations can be
replicated in the real world to create camouflage, or to prevent recognition by surveillance
systems, or malicious actors could use graffiti to cause self-driving cars to malfunction
leading to deaths.

If our defense detects an attack it could alert the person monitoring the system such as the
system administrator and ignore or reject that classification until a human makes a decision.
In the case of an autonomous vehicle it could take precautions, alert the driver to the issue
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and request they assess the situation and take control, and simultaneously it could alert the
system administrator and potentially local authorities to investigate.
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CHAPTER 3:
Methodology

In this chapter the motivation behind the defense is discussed, the framework chosen to
execute it, and the methodology of the algorithm. The principle is to create a new class, in
addition to the existing object classes, which represents the space of all attacks. This new
class we call the NOTA (None of the Above) class.

3.1 Design
Our defense, the detection of the adversarial examples, relies on the following general steps:

1. Generate adversarial examples which are variants on true examples in the
CIFAR-10 dataset.

2. Combine the adversarial examples with normal examples using N-Mix or Salien-
cyMix to create augmented datasets with the NOTA class label.

3. Train models using the augmented datasets.
4. Test the accuracy of the new models to ensure the original classes are still

recognized with high accuracy. Evaluate the performance of the models against
many varied adversarial examples, generated from different classes of adversarial
attacks, to determine how robust the model is against varied attacks.

The first step was to create a dataset of images which have been attacked with adversarial
example attacks using the Adversarial Robustness Toolbox (ART) [12], using the Carlini
Wagner L2 [18], deepfool [19], and square attack [20] algorithms. The adversarial examples
will be combined with the benign images using either the N-Mix or SaliencyMix algorithms,
described in Section 3.2, to generate new datasets on which the models will be trained. A
set of benign images with no perturbations will also be kept for training in a 1:1 ratio with
the NOTA labeled images.

N-Mix combines adversarial examples from multiple types of attacks to create a composite
of adversarial examples in each NOTA labeled image. In these experiments, N was always 3,
but N could represent any number of attacks. This method, it was hoped, would generalize to
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recognizing a broader range of adversarial examples than other detection methods. In another
method we combined adversarial examples with benign images using SaliencyMix to try
to create a tighter boundary around the correctly classified classes, hopefully improving
detection accuracy. By creating small perturbations bounded by a small value of 𝜖 (0.031)
in the adversarial examples we create a tighter boundary around the true classes.

Next, a CNN was trained on the augmented dataset that includes benign samples along
with adversarial mixup samples. By training on the augmented dataset, we show during
test time that the models maintain high benign accuracy while being able to detect AEs by
classifying them as NOTA. The CNN will use graphics processing units (GPUs) to ensure
fast processing of the data.

3.2 Algorithms
Each of the following algorithms will be used on the CIFAR-10 dataset because it is a
well-researched dataset, thus making comparisons to other models much easier.

3.2.1 N-Mix
The idea behind N-Mix is taking the pixel values from a benign image and from n number
of adversarial examples derived from the same base image, each modified with a different
method from the ART library, and combining them with a weighted average. In our experi-
ments, we tested 3-Mix algorithms where 𝑛 = 3. The three adversarial examples combined
with one corresponding benign image. For example, an image of a cat was combined with
three copies of the same image of the cat which had each been attacked using Carlini Wagner
L2, Deepfool, or Square attack. A weighted average was taken for each pixel value to create
the new adversarial examples.

For creating N-Mix adversarial mixup samples, we first start with a benign sample 𝑥. Then,
we create n adversarial examples from n different attacks denoted by {𝑥′1, 𝑥

′
2, ...𝑥

′
𝑛}. The

N-Mix adversarial mixup sample is created by combining the benign sample with the n
adversarial example counterparts.

We set a weight to the contributions of the benign and adversarial examples to cause the
model to have linear behavior in-between benign samples and adversarial mixup samples.
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To add this extra stochasticity, a variable 𝛼 is drawn from the uniform distribution. Then, 𝛽
is set to 1 − 𝛼. The weighted N-Mix sample is then given by:

𝑥𝑛−𝑀𝑖𝑥 = 𝛼𝑥 + 𝛽

𝑛
𝑥′1 +

𝛽

𝑛
𝑥′2 + ... + 𝛽

𝑛
𝑥′𝑛 (3.1)

This we refer to as fixed-beta because the weight 𝛽 is distributed equally to each adversarial
example. In another experiment we added an element of randomness to what percentage of
the weight 𝛽 each adversarial image contributed. The weights 𝑤1 through 𝑤𝑛−1 are a random
value between 1

𝑛−1 and 1
𝑛+1 . To ensure the weights always add up to one, the last weight 𝑤𝑛

is given by:

𝑤𝑛 = 1 − (𝑤1 + 𝑤2 + ... + 𝑤𝑛−1) (3.2)

Then the formula for generating variable-beta N-Mix adversarial examples is given by:

𝑥𝑛−𝑀𝑖𝑥 = 𝛼𝑥 + 𝛽

𝑛
𝑤1𝑥

′
1 +

𝛽

𝑛
𝑤2𝑥

′
2 + ... + 𝛽

𝑛
𝑤𝑛𝑥

′
𝑛 (3.3)

3.2.2 SaliencyMix
SaliencyMix will take the most salient part of the benign image (the part containing the most
information which the CNN uses to determine its class) and replaces that section with the
same section from an adversarial example. SaliencyMix by default also uses soft labeling
which gives two weights for the label instead of one. One weight is for the proportion of
the image that comes from the benign sample and one weight for the portion of the image
that comes from the adversarial sample. For example, an image from class 2 with a NOTA
labeled adversarial example may be labeled [.0 .0 .558 .0 .0 .0 .0 .0 .0 .0 .442]. The model
generated with these adversarial examples we termed SaliencyMix multi-label. We also ran
an experiment with a single label for SaliencyMix adversarial samples where the label was
always set to be 100% in the NOTA class ([.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 1.]).
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SaliencyMix first uses the 𝑐𝑣2.𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦.𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐹𝑖𝑛𝑒𝐺𝑟𝑎𝑖𝑛𝑒𝑑_𝑐𝑟𝑒𝑎𝑡𝑒() function
to determine the salient part of the image and generate a map of that part so that part of the
benign sample can be replaced. Let 𝐼𝑠 ∈ R𝑊×𝐻×𝐶 be the source image, W is width, H is
height, and C is color. 𝑦𝑠 is where patch will be cut. Saliency map detection is represented
as 𝐼𝑣𝑠 = 𝑓 (𝐼𝑠) where 𝐼𝑣𝑠 ∈ R𝑊×𝐻 is the visual saliency map of the given source image
𝐼𝑠 as shown in Figure 2.11 with function 𝑓 () representing the saliency detection model.
Then we search for a pixel 𝐼𝑖, 𝑗vs in the saliency map that has the maximum intensity value.
The 𝑖, 𝑗 represent the 𝑥 and 𝑦 coordinates of the most salient pixel and can be found as
𝑖, 𝑗 = arg max(𝐼𝑣𝑠).

A patch is selected, either by centering on the 𝐼
𝑖, 𝑗
vs − 𝑡ℎ pixel if possible, or keeping the

𝐼
𝑖, 𝑗
vs − 𝑡ℎ pixel on the selected patch to ensure the patch is selected from in the target and not

from the background. Patch size is determined by ration 𝜆. Once the patch is determined
on the source it must be applied to the target. Let 𝐼𝑡 ∈ R𝑊×𝐻×𝐶 be the target image with
label 𝑦𝑡 . 𝐼𝑠 and 𝐼𝑡 are mixed to create augmented image 𝐼𝑎 with label 𝑦𝑎. The mixing is
defined as 𝐼𝑎 = 𝑀 ⊙ 𝐼𝑠 + 𝑀′ ⊙ 𝐼𝑡 where 𝑀 ∈ {0, 1}𝑊×𝐻 represents a binary mask, 𝑀′ is
the compliment of 𝑀 and ⊙ represents the element-wise multiplication. 𝑀 is set to 1 and
𝑀′ set to 0 to create the training sample. The target image is an AE and the target label is
the NOTA class. Multi-label which mixes the labels based on the size of the patches uses:
𝑦𝑎 = 𝜆𝑦𝑡 + (1−𝜆)𝑦𝑠 while single-label uses: 𝑦𝑎 = 𝑦𝑡 where 𝑦𝑎 is the label for the augmented
sample and 𝜆 is the combination ratio.
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CHAPTER 4:
Results

In this chapter the results of the 3-Mix NOTA aware models and the SaliencyMix NOTA
aware models are discussed. Comparisons are made between the models and some common
defense models as benchmarks. We are developing defenses against attacks and therefore
want the accuracy of predictions to be high and the attack success rates to be low. The lower
the rate of successful attacks, the more robust the model is in defending against those named
attacks. The models were trained using adversarial examples from three types of attack and
were tested against ten types of attacks to determine how well the defense generalizes.

4.1 Experimental Setup
For each of the 3-Mix models 50,000 adversarial examples from each of the three attacks
were combined with 50,000 benign images to generate 50,000 3-Mix adversarial examples,
each labeled as belonging to the NOTA class. The dataset used to generate for each of
the 3-Mix models had 50,000 benign and 50,000 3-Mix images. In making comparisons,
we wanted to ensure differences between SaliencyMix and 3-Mix were not due to choice
of adversarial attack used to generated the SaliencyMixed images, and training time was
prohibitive for training and testing many SaliencyMix models (taking over a week each). The
decision was made to generate a dataset containing SaliencyMixed adversarial examples
from each of the same three attacks as used for 3-Mix. A total of 150,000 SaliencyMixed
images were generated, with 50,000 benign being mixed with 50,000 adversarial examples
from each of the three attacks. Sampling from the 150,000 images to select 50,000 could
have introduced issues with some classes potentially being poorly represented for some
attacks, so we elected to use all 150,000 SaliencyMixed adversarial examples. 50,000
benign examples with each of the ten classes having 5,000 samples compared to 150,000
NOTA class samples could have led to problems with an imbalanced dataset. Three copies
of each benign image were used to have a total of 150,000 SaliencyMixed adversarial
examples and 150,000 benign images. In both cases there is a ratio of 1:1 benign images to
adversarial examples.
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To evaluate the 3-Mix and SaliencyMix data augmentation strategies for generating a NOTA
aware model, we set up experiments to create variations of these datasets and trained a model
for each.

After the datasets have been generated using SaliencyMix and N-Mix, training is consistent
for both datasets. The TensorFlow model is trained for 1000 epochs with the option of early
stopping [35]. The batch size is 128, the learning rate is 0.001. We use a wide residual
network (WRN) architecture and SAM optimizer as part of our hyperparameters which are
state of the art methods that give good results in image classification [36]. WRN solves
two gradients to find the best area to converge on. The SAM optimizer in turn uses the
Adam optimizer with a beta of 0.9. The model is trained using categorical cross-entropy
and mean loss is used for the loss function. A wide residual neural network (ResNet) model
is used for the CNN with width 6, depth 12, and 11 classes [37]. The input shape of
[32, 32, 3] reflects the size of images in the CIFAR-10 dataset. The two models used for
comparison (Section 4.2) were trained using the same architecture, optimizer, and other
hyperparameters to ensure differences in results were due to algorithms rather than of
differences in the architecture.

The trained models were then evaluated. Each model’s accuracy in correctly classifying new
benign images was checked. The adversarial attacks used in evaluation were PGD, AutoPGD,
AutoAttack, Square attack, Carlini L2, Carlini L∞, deepfool, elasticnet, boundary attack,
and eight versions of JSMA with different sets of parameters. One hundred adversarial
examples were generated for each attack and the robust accuracy and attack success rate
was calculated for each model on each attack. Trained models of mixup and adversarial
vertex mixup were evaluated using the same method so the new models could be compared
with state-of-the-art models with industry leading results.

With one exception, accuracy refers to classification accuracy, the proportion of benign
images which a model correctly classifies. The exception is "robust accuracy" which specif-
ically refers to how many of the adversarial examples were correctly classified as belonging
to the base class 𝑦 instead of a false class with adversarial label 𝑦′. Attack Success Rate
(ASR) is the measure of what percentage of attacks were successful. For example if a model
is fooled by 35 out of 100 adversarial examples, the ASR is 35%. It is desirable to have
accuracy and robust accuracy at 1 (100% accuracy) and Attack Success Rate at 0. We expect
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our robust accuracy to be low because our models are detectors which should predict 𝑦𝑁𝑂𝑇𝐴
instead of the base class 𝑦 when attacked.

4.2 Comparison Model Results
First, to get a benchmark against which results can be compared, two previously trained
models representing defenses considered strong (Mixup and Adversarial Vertex Mixup)
were evaluated using the same evaluation program with which the SaliencyMix and 3-Mix
models were evaluated. First the program evaluates the accuracy with which each model
successfully classifies benign images. Then the program creates adversarial examples using
ten different attacks and tests the rate at which attacks are successful in fooling the models,
the rate at which these attacks cause each model to incorrectly classify the adversarial
examples. The last attack, JSMA, is run 8 times using two different values of theta (0.1 and
0.01) and 4 different values of gamma (0.1, 0.2, 0.5, and 1).

On benign samples Mixup had an accuracy of 0.92 and Adversarial Vertex Mixup had
an accuracy of 0.87 in correctly classifying the images. Image classification accuracy on
benign images for all evaluated models is in Table 4.1. In the following tables (Table 4.2,
Table 4.3, and Table 4.4) "robust accuracy" is a measure of how many images were correctly
classified as belonging to their original class in spite of the image being attacked. "attack
success rate (ASR)" is a measure of how often the model was fooled by the attack and gave
an incorrect classification. It is desirable to have robust accuracy at 1 (100% accuracy), and
Attack Success Rate at 0 meaning all attacks failed.

These models correctly classified some images that had been attacked as seen in the robust
accuracy column of Table 4.2, but on average did a poor job of defending against most
attacks. Not including JSMA the average attack success rate was 0.749 for Mixup and 0.781
for Adversarial Vertex Mixup. Including JSMA with 𝑡ℎ𝑒𝑡𝑎 = 0.1 and 𝑔𝑎𝑚𝑚𝑎 = 0.1 the
averages were 0.771 for Mixup and 0.777 for Adversarial Vertex Mixup. Figure 4.1 displays
the ASR for each attack against the models. Figure 4.2 displays the ASR for the JSMA
attack variations against the models.
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Table 4.1. Table of accuracy in correctly classifying benign images

Model Accuracy
Mixup 0.92

Adversarial Vertex Mixup 0.87
3-Mix variable beta 0.89

3-Mix fixed beta 0.87
SaliencyMix single label 0.83
SaliencyMix multi-label 0.88
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Table 4.2. Table of results for comparison models, Mixup and Adversarial
Vertex Mixup (t=theta, g=gamma)

Attack Mixup Adversarial Vertex Mixup
Robust Accuracy ASR Robust Accuracy ASR

autoattack 0 1 0 1
PGD 0.33 0.67 0.27 0.73

square 0.81 0.19 0.45 0.55
carliniL2 0.02 0.98 0.04 0.96
carliniL∞ 0 1 0.39 0.61
deepfool 0 1 0.09 0.91

auto-PGD 0.97 0.03 0.57 0.43
elasticnet 0 1 0 1
boundary 0.13 0.87 0.16 0.84

JSMA t.1 g.1 0.03 0.97 0.26 0.84
JSMA t.1 g.2 0.02 0.98 0.1 0.9
JSMA t.1 g.5 0.01 0.99 0.01 0.99
JSMA t.1 g1.0 0 1 0.01 0.99
JSMA t.01 g.1 0.1 0.9 0.24 0.76
JSMA t.01 g.2 0.07 0.93 0.15 0.85
JSMA t.01 g.5 0.07 0.93 0.02 0.98
JSMA t.01 g1.0 0 1 0.01 0.99
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Figure 4.1. Graph showing how successful each attack was in fooling the
mixup and adversarial vertex models
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Figure 4.2. ASR for JSMA attacks on the comparison models

4.3 SaliencyMix Results
Table 4.3 displays the results for the SaliencyMix models. Figure 4.3 displays the ASR for
each attack against the models. Figure 4.4 displays the ASR for the JSMA attack variations
against the models.

Across all the attacks, excluding JSMA, the average attack success rate for single-label was
0.344, and for multi-label it was 0.313. Including JSMA with 𝑡ℎ𝑒𝑡𝑎 = 0.1 and 𝑔𝑎𝑚𝑚𝑎 = 0.1
the averages were 0.405 for SaliencyMix single-label and 0.374 for SaliencyMix multi-label.
While there were significant differences in how successful each defense was against each
attacks, the averages across the ten attacks were very similar. These scores show a significant
reduction in attack success rates when contrasted with the comparison models. Figure 4.5
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shows the SaliencyMix results next to the Comparison model results. The JSMA results are
also significantly improved when contrasted with the comparison models.

Table 4.3. Table of results for SaliencyMix (t=theta, g=gamma)

Attack SalMix single label SalMix multi-label
Robust Accuracy ASR Robust Accuracy ASR

autoattack 0 0.11 0 0.96
PGD 0.15 0.07 0.01 0.67

square 0.19 0.07 0.16 0.2
carliniL2 0 0.59 0.06 0.16
carliniL∞ 0 0.59 0 0.16
deepfool 0.04 0.44 0 0.19

auto-PGD 0.37 0.26 0.22 0.2
elasticnet 0 0.67 0.02 0.14
boundary 0.04 0.3 0.04 0.14

JSMA t.1 g.1 0 0.96 0 0.92
JSMA t.1 g.2 0 0.52 0 1
JSMA t.1 g.5 0.15 0.85 0 0
JSMA t.1 g1.0 0 0.89 0 0.84
JSMA t.01 g.1 0.03 0.66 0.039 0.75
JSMA t.01 g.2 0 0.74 0 0.96
JSMA t.01 g.5 0.04 0.41 0.04 0.73
JSMA t.01 g1.0 0 0.81 0.06 0.94
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Figure 4.3. Attack success rate for each attack in fooling the SaliencyMix
models

39

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



Figure 4.4. Results of JSMA attacks on SaliencyMix models with different
values of gamma and theta

40

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



Figure 4.5. Comparison of attack success rates on mixup, adversarial vertex
mixup, and SaliencyMix models

4.4 3-Mix Results
Not including JSMA the average attack success rate was 0.023 for 3-Mix with variable-beta
and 0.096 for 3-Mix with fixed-beta. Both averages are better than the averages for either of
the SaliencyMix models or the Comparison models. Including JSMA with 𝑡ℎ𝑒𝑡𝑎 = 0.1 and
𝑔𝑎𝑚𝑚𝑎 = 0.1 the averages were 0.115 for 3-Mix with variable-beta and 0.173 for 3-Mix
with fixed-beta. Figure 4.6 shows a side by side comparison of the ASR results from the
SaliencyMix and 3-Mix models. For the most part the 3-Mix models have significantly
better results.
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Figure 4.6. Side by side comparison of attack success rate on SaliencyMix
and 3-Mix models

For the 3-Mix models the average attack success rates over the JSMA results were 0.845
for variable-beta and 0.808 for fixed-beta. Figure 4.7 show all JSMA results for the 3-Mix
models. For SaliencyMix the JSMA averages were 0.893 for multi-label and 0.73 for single-
label. For the Comparison models the JSMA average were 0.963 for mixup and 0.9 for
Adversarial vertex mixup. None of these models had high degree of robustness against the
JSMA attacks although SaliencyMix NOTA aware models and 3-Mix NOTA aware models
performed slightly better than the comparison models. Figure 4.8 shows JSMA results for
both 3-Mix and SaliencyMix.
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Figure 4.7. Results of JSMA attacks on 3-Mix models with different values
of gamma and theta
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Figure 4.8. Results of JSMA attacks with different values of gamma and
theta for SaliencyMix and 3-Mix models
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Table 4.4. Table of results for 3-Mix (t=theta, g=gamma)

Attack 3mix variable beta 3mix fixed beta
Robust Accuracy ASR Robust Accuracy ASR

autoattack 0 0 0 0
PGD 0 0 0 0

square 0 0.01 0 0
carliniL2 0 0.06 0.01 0.06
carliniL∞ 0 0 0 0
deepfool 0 0.03 0 0

auto-PGD 0 0.08 0 0.05
elasticnet 0 0.03 0 0.03
boundary 0 0 0 0

JSMA t.1 g.1 0.01 0.94 0.01 0.65
JSMA t.1 g.2 0 0.76 0 0.87
JSMA t.1 g.5 0 0.89 0 0.89
JSMA t.1 g1.0 0 1 0 0.88
JSMA t.01 g.1 0.02 0.83 0.06 0.89
JSMA t.01 g.2 0.01 0.99 0 0.85
JSMA t.01 g.5 0 0.66 0.01 0.8
JSMA t.01 g1.0 0 0.69 0 1

45

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



THIS PAGE INTENTIONALLY LEFT BLANK

46

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



CHAPTER 5:
Conclusion and Future Work

Using datasets with multiple types of attacks to train a NOTA aware model will create a
more robust defense than previous models were able to achieve. Combining the attacks
into a single image using 3-Mix produced the best results. SaliencyMix still produced good
results with each adversarial example only having one type of attack. Previous models only
blocked around 25% of the surveyed attacks. The new 3-Mix models block around 85% of
the surveyed attacks.

Lessons learned: Creating a pre-trained dataset is much faster than training a dataset on
the fly each time an experiment is run. This saved considerable time. However, it may
have reduced the robustness because the same adversarial examples are seen repeatedly in
training. In future work this could be somewhat offset by further increasing the number
of adversarial examples in the dataset. Given more processing time and power, generating
new AE adapted to the model at intervals in the training (perhaps every 300 epochs) could
help to widen the NOTA class making it more effective, more closely resembling the goal
illustrated in figure 2.9.

In the future 3-Mix could use different combinations of attacks. Including a JSMA attack
could be particularly useful. 3-Mix could also be expanded to N-Mix by including more
attacks as discussed in section 3.2.1. The greater the number of different attacks the NOTA
class is trained on, the more robust it is likely to be. Hopefully this robustness will extend to
blocking newly created attacks in the future, or at least make it more difficult to create new
attacks. Although the fixed-beta performed better than the variable-beta in my experiments,
it may still be worthwhile to explore different implementations of adjusting the randomness
on the beta weights in each N-Mix image to see how the robustness is effected.
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