

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DIVIDE AND CONQUER MODIFICATION OF THE
BLUM-MICALI PSEUDORANDOM NUMBER GENERATOR

by

Daniel K. Gillespie

June 2023

Thesis Advisor: Pantelimon Stanica
Second Reader: Thor Martinsen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2023 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
DIVIDE AND CONQUER MODIFICATION OF THE BLUM-MICALI
PSEUDORANDOM NUMBER GENERATOR

 5. FUNDING NUMBERS

 6. AUTHOR(S) Daniel K. Gillespie

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The Blum-Micali pseudorandom number generator (PRNG) outputs cryptographically secure sequences
of pseudorandom bits. One of the primary drawbacks of the Blum-Micali PRNG is that it can be
computationally expensive and slow to run. This thesis proposes a modification to the Blum-Micali PRNG
that allows for more pseudorandom bits to be extracted per iteration of the algorithm while retaining
cryptographic security. We use the National Institute of Standards and Technology (NIST) Statistical Test
Suite for PRNGs to evaluate the performance of sequences produced using this modification. In addition we
compare the computational run time of our modification with that of the original Blum-Micali PRNG.
Previous research indicates that there is an upper limit on the number of bits that may be extracted per
iteration while retaining cryptographic security. Our test data suggest that our modification to the
Blum-Micali PRNG performs just as well as the original version when extracting up to 11 bits per iteration.
Furthermore, our data suggest that our modification can speed up computational run times in direct
proportion to the number of bits extracted per iteration. We consider additional possible extensions that
could further increase the speed of computation while still retaining randomness and cryptographic security.

 14. SUBJECT TERMS
Blum, Micali, Blum-Micali, pseudorandom, generator, cryptography, PRNG, pseudorandom
number generator

 15. NUMBER OF
PAGES
 73
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Approved for public release. Distribution is unlimited.

DIVIDE AND CONQUER MODIFICATION OF THE BLUM-MICALI
PSEUDORANDOM NUMBER GENERATOR

Daniel K. Gillespie
Lieutenant Junior Grade, United States Coast Guard

BS, United States Coast Guard Academy, 2019

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2023

Approved by: Pantelimon Stanica
 Advisor

 Thor Martinsen
 Second Reader

 Francis X. Giraldo
 Chair, Department of Applied Mathematics

iii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

iv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ABSTRACT

 The Blum-Micali pseudorandom number generator (PRNG) outputs

cryptographically secure sequences of pseudorandom bits. One of the primary drawbacks

of the Blum-Micali PRNG is that it can be computationally expensive and slow to run.

This thesis proposes a modification to the Blum-Micali PRNG that allows for more

pseudorandom bits to be extracted per iteration of the algorithm while retaining

cryptographic security. We use the National Institute of Standards and Technology

(NIST) Statistical Test Suite for PRNGs to evaluate the performance of sequences

produced using this modification. In addition we compare the computational run time of

our modification with that of the original Blum-Micali PRNG. Previous research

indicates that there is an upper limit on the number of bits that may be extracted per

iteration while retaining cryptographic security. Our test data suggest that our

modification to the Blum-Micali PRNG performs just as well as the original version

when extracting up to 11 bits per iteration. Furthermore, our data suggest that our

modification can speed up computational run times in direct proportion to the number of

bits extracted per iteration. We consider additional possible extensions that could further

increase the speed of computation while still retaining randomness and cryptographic

security.

v

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

vi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Number Theory Concepts . 3
1.4 Quadratic Residues . 4
1.5 Intuition for Modification . 4
1.6 Berlekamp-Massey and Linear Complexity Profiles 5

2 Blum-Micali PRNG 7
2.1 Classical Blum-Micali PRNG 7
2.2 Divide and Conquer Blum-Micali PRNG 8
2.3 Periodic Cycles with the Blum-Micali PRNG 10
2.4 A Note About Implementing the Blum-Micali PRNG 10

3 Methodology 11
3.1 Testing Sequences for Statistical Randomness 11
3.2 Generating Hard Prime Numbers and Choosing Primitive Roots 12
3.3 Generating Pseudorandom Sequences 13
3.4 Seed Selection . 14
3.5 Linear Complexity Profile Analysis 14

4 Results and Analysis 15
4.1 First Test Results: Classical Blum-Micali PRNG 15
4.2 Second Test Results: Divide and Conquer Blum-Micali PRNG 18

5 Conclusions and Future Work 29
5.1 Conclusions . 29
5.2 Future Work . 30

vii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Appendix A Python Scripts 33
A.1 Blum-Micali PRNG . 33
A.2 NIST Test Suite . 37
A.3 Hard Prime and Primitive Root Generator 42
A.4 Linear Complexity Profiles . 45

Appendix B Lists of Prime Moduli and Primitive Roots 49
B.1 First Results: Classical Blum-Micali PRNG 49
B.2 Second Results: Divide and Conquer Blum-Micali PRNG 51

List of References 53

Initial Distribution List 55

viii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of Figures

Figure 1.1 Example of a Favorable Linear Complexity Profile 5

Figure 4.1 Number ofNISTTests FailedUsing theClassical Blum-Micali PRNG 16

Figure 4.2 Proportion of Sequences Passed/Failed vs. NIST Test 17

Figure 4.3 Screenshot of Classical Blum-Micali Sequence with 𝑝 = 12877951 18

Figure 4.4 Classical and D&C PRNG Performance for 1-15 Bits Per Iteration 20

Figure 4.5 Performance of D&C PRNGw/ 15 Bits Per Iteration by Specific Test 21

Figure 4.6 Longest Run-Of-Ones Test Performance for 1-15 Bits Per Iteration 22

Figure 4.7 Number of NIST Tests Failed When Extracting 15 Bits Per Iteration 23

Figure 4.8 Number of NIST Tests Failed When Extracting 14 Bits Per Iteration 24

Figure 4.9 Average Run Times of the Classical and D&C Blum-Micali PRNGs 25

Figure 4.10 Linear Complexity Profile for 𝑝 = 10057699 w/ 1 Bit Per Iteration 26

Figure 4.11 Linear Complexity Profile for 𝑝 = 10057699 w/ 15 Bits Per Iteration 27

ix

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

x

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of Acronyms and Abbreviations

BBS Blum-Blum-Shub

DLP discrete logarithm problem

LFSR linear feedback shift register

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

PRNG pseudorandom number generator

xi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

xii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Executive Summary

This thesis proposes a modification to the Blum-Micali pseudorandom number genera-
tor (PRNG) that we term the Divide and Conquer Blum-Micali PRNG. The intention of
this modification is primarily to speed up the generation of pseudorandom sequences while
retaining statistical randomness and cryptographic security. This thesis compares the per-
formance of the Classical Blum-Micali PRNG with the Divide and Conquer Blum-Micali
PRNG. This is done by evaluating the randomness of the sequences produced by both
PRNGs using the National Institute of Standards and Technology (NIST) test suite for
assessing statistical randomness. Additionally, the computational run times required to gen-
erate pseudorandom sequences are used to assess the relative performance of the Divide
and Conquer Blum-Micali PRNG.

The Divide and Conquer Blum-Micali PRNG extracts multiple bits per iteration by ex-
tending the basic principle used for bit extraction in the Classical Blum-Micali PRNG.
In the Classical version, if the residue in a given iteration is greater than 𝑝−1

2 then a 1 is
extracted; otherwise, a 0 is extracted. In the Divide and Conquer modification, we extract
more bits by subdividing the interval of interest and then repeating the same process.

We observe in our experimental results that there are clear performance advantages to
using the Divide and Conquer Blum-Micali PRNG. Under our experimental conditions, up
to 11 bits per iteration can be extracted while producing outputs that are comparably ran-
dom to those generated under the same conditions using the Classical Blum-Micali PRNG.
When implemented, the Divide and Conquer modification can thus produce comparable
pseudorandom sequences in approximately 1/11th of the time required by the Classical
Blum-Micali PRNG. However, it appears that there is a strong upper limit to the number
of bits that can be extracted per iteration while still producing statistically random outputs.
We observe that when extracting 12 or more bits per iteration, the sequences produced by
the Divide and Conquer modification are non-random with high probability. Therefore, we
conclude that our modification, if implemented under similar conditions, should not be set
to extract more than 11 bits per iteration.

xiii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Incidental to our investigation of both versions of the Blum-Micali PRNG, we find that
the selection of an appropriate prime modulus is critical to the generation of random and
cryptographically secure outputs. We find that fewer than half of the prime moduli we
initially tested using the Classical Blum-Micali PRNG resulted in random or near-random
sequences. While further research is needed, it initially appears that certain prime moduli
result in short cycles when the Blum-Micali algorithm is applied.

Finally, we suggest some possible further extensions to our proposed modification to the
Blum-Micali PRNG that could further reduce computational run times while retaining
statistical randomness and cryptographic security.

xiv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Acknowledgments

I would like to thankmy thesis advisor, Dr. Pantelimon Stanica, for both his ongoing support
throughout this thesis process as well as for inspiring in me an interest in the mathematics of
secure communications. I would also like to thank Captain Thor Martinsen for his support
throughout my time here at Naval Postgraduate School (NPS). I am grateful to the Coast
Guard and the American taxpayer for affording me the opportunity to study at NPS. I should
remind myself that it is now my turn to fulfill my end of the deal by well and faithfully
discharging the duties of the office in which I am about to enter upon graduation.

xv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 1:
Introduction

1.1 Motivation
For centuries there has been a need for methods of secure communication given the presence
of an adversary. Cryptography is a field of research involving mathematics and computer
science that attempts to develop and implement such methods for modern applications.
One important sub-field of cryptography is the development of cryptographically secure
pseudorandom number generators (PRNGs). These generators are an important component
in many cryptographic implementations since they can introduce randomness into an al-
gorithm relatively efficiently. One such generator that is secure under certain conditions
is the Blum-Micali PRNG [1]. One challenge with the Blum-Micali PRNG is that it is
computationally expensive and can be slow. In this thesis, we develop a modification to
the Blum-Micali PRNG with the intent of speeding it up while still retaining statistical
randomness. We apply the National Institute of Standards and Technology (NIST) test suite
for statistical randomness to the outputs produced by this new PRNG, which strengthens
our claim that the modification we propose is worthy of further investigation.

1.2 Background
Random numbers have a variety of uses in cryptography that include generating public
keys, one-time pads, and session keys [2]. There are naturally occurring phenomena such as
radiation counters or radio-frequency noise that can act as sources of randomness; however,
in practice these methods are implemented as PRNGs [2]. PRNGs are initialized with a
short random seed and then use some deterministic algorithm to create a long random bit
stream. The outputs of PRNGs are in fact periodic, but with such long periods that for
practical purposes this fact is irrelevant. Additionally, it is important that an appropriate
random seed is chosen to initialize the generator. For example, many PRNGs will output a
bit stream of all 0’s if the initial seed chosen is 0. While PRNGs trade off provable security
for increased practicality, they are still considered secure for cryptographic purposes if
properly designed and implemented [2]. The use of PRNGs is widespread today in a world

1

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

that relies heavily on cryptographically secure information exchange protocols; the internet
(among other things) would not be the same without them.

1.2.1 Cryptographic Security of Pseudorandom Sequences
In many cases it is difficult to determine whether a PRNG is provably secure. In such cases,
we resort to determining whether the output of a PRNG is experimentally secure. The
pseudorandom output of a PRNG is considered experimentally secure if it passes either the
next-bit test or all polynomial time statistical tests [3].

Definition 1.2.1. Passing the Next Bit Test
A PRNG passes the next bit test if “there exists no polynomial-time algorithm which, given
as an input the first 𝑛−1 bits of some sequence produced from a random seed by the PRNG,
can predict the 𝑛th bit of the string with a probability significantly greater than 12” [2], [3].

Definition 1.2.2. Passing All Polynomial-Time Statistical Tests
A PRNG passes all polynomial-time statistical tests if “no polynomial-time algorithm can
distinguish the output of the generator from a truly random bit string of the same length
with a probability significantly greater than 12” [2], [3].

In Chapter 3 we discuss the methodology used to show that our modification to the Blum-
Micali PRNG passes these tests for various prime moduli. NIST has a standard suite of tests
for statistical randomness for PRNGs.

1.2.2 Discrete Logarithm Problem
The security of many PRNGs is based on the computational intractability of a certain math-
ematical problem. One such problem is the discrete logarithm problem. The difficulty of
this problem, given a sufficiently large input, is the source of the security of the Blum-Micali
PRNG.

Definition 1.2.3. The discrete logarithm problem (DLP)
Given 𝛼 ∈ group 𝐺, 𝛽 ∈ ⟨𝛼⟩, find the least positive 𝑥 ∈ Z such that 𝛼𝑥 = 𝛽 [4].

2

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

The computational difficulty of the discrete logarithm problem depends on the choice
of the group𝐺. If the group𝐺 is chosen to be Z∗𝑝 where 𝑝−1 is the product of small primes,
then the discrete logarithm problem can be solved efficiently using the Pohlig-Hellman al-
gorithm [5]. Therefore, the choice of an appropriate prime modulus in any implementation
of the Blum-Micali PRNG is necessary for cryptographic security.

1.3 Number Theory Concepts
While it is assumed that the reader is already familiar with the basic constructs that form the
mathematical foundation for PRNGs, we briefly define a few key concepts here for clarity.

Definition 1.3.1. Congruences Modulo 𝑛

∀𝑎, 𝑏, 𝑛 ∈ Z, 𝑛 ≠ 0, if ∃𝑘 ∈ Z such that 𝑎 = 𝑏 + 𝑛𝑘 , then 𝑎 ≡ 𝑏 (mod 𝑛) [6].

In implementations of the Blum-Micali PRNG, we seek to avoid congruent residues mod-
ulo 𝑝, since these produce repeating periods in a sequence. If ∃𝑤 ∈ Z such that 𝑥𝑖+𝑤 ≡ 𝑥𝑖

(mod 𝑝), then the period of a sequence produced by Equation (2.1) is ≤ 𝑤.

Definition 1.3.2. Prime Fields
An algebraic structure that is isomorphic to the finite field Z∗𝑝 for some prime number 𝑝 is
called a prime field [7].

Prime fields are the algebraic environment for the exponentiation algorithm used in the
Blum-Micali PRNG. Furthermore various computational tricks (such as Fermat’s Little
Theorem) are based around the use of these structures, and allow for computations of large
exponentiations modulo 𝑛 that would otherwise result in overflow errors.

Definition 1.3.3. Primitive Roots/Generators
An element 𝑔 ∈ Z∗𝑝 is a primitive root (or generator) for Z∗𝑝 if ∀𝑎 ∈ Z∗𝑝, ∃𝑘 ∈ Z such that
𝑔𝑘 ≡ 𝑎 (mod 𝑝) [8].

Often angular brackets are used to denote the set of elements generated by some element.
If the element 𝛼 is a primitive root modulo 𝑝, then ⟨𝛼⟩ = Z∗𝑝.

3

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1.4 Quadratic Residues
In order to ensure thatwe are analyzing cryptographically secure residues, this thesis chooses
prime moduli congruent to 3 (mod 4) with the intention of only analyzing prime moduli
that appear to be more cryptographically secure. From the Prime Number Theorem, we
know that asymptotically, about half of the primes of some fixed length are ≡ 3 (mod 4),
and about half are ≡ 1 (mod 4) [9]. We do not have a theoretical reason to suspect that
Blum primes, that is, primes that are ≡ 3 (mod 4), play any significant role here, as they do
in the Blum-Blum-Shub (BBS) PRNG [10]. However, we find that they do appear to play
a role in our analysis, and thus treat this distinction as important. This may stem from the
fact that half the residues modulo 𝑝 are even and half are odd, so squaring, like in the BBS
PRNG, does occur.

We remind the reader why we make the choice to use Blum primes [10]. If you take 𝑦 = 𝑥2

(mod 𝑝), and have 𝑦, if 𝑝 ≡ 1 (mod 4), a solution 𝑥 would simply be 𝑥 ≡ ±𝑦
𝑝−1
4 . If 𝑝 is a

Blum prime there are two observations here. The first is that −1 is not a quadratic residue
modulo 𝑝, and the second is that if 𝑥 and −𝑥 are the quadratic residues of 𝑦, then exactly
one of them is a quadratic residue itself. Regarding BBS, exactly one of the four roots of
the Blum integer 𝑛 = 𝑝𝑞 (both primes are ≡ 3 (mod 4)) is a quadratic residue. That is, the
squaring is a one-to-one map from quadratic residues into quadratic residues.

1.5 Intuition for Modification
Long andWigderson discuss in their 1988 paper the possibility of extracting 𝑘 bits from each
iteration of the Blum-Micali PRNG by dividing the interval [0, 𝑝] into 2𝑘 sub-intervals [11].
They state that it is “natural... to extend the Blum-Micali pseudorandom bit generator to
output 𝑘 bits per step” [11]. While Long and Wigderson discuss the possibility of such
an extension and explore its theoretical effectiveness, they conduct no experimental or
computational tests of their idea [11]. We take their theoretical basis for an extension and
formalize the idea into the concept of ‘buckets’ and develop a decision rule mechanism to
assign unique bit strings to each bucket. This thesis serves as a preliminary experimental
exploration of the theoretical ideas posited by Long and Wigderson.

4

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1.6 Berlekamp-Massey and Linear Complexity Profiles
One good measure of the randomness of a sequence is to examine its linear complexity
profile. The linear complexity of a given sequence can be determined using the Berlekamp-
Massey algorithm [12]. The Berlekamp-Massey algorithm “find[s] the shortest linear feed-
back shift register (LFSR) for a given binary output sequence” [12]. The order of the
polynomial used to represent this shortest LFSR is the linear complexity of the sequence.
For a random sequence, the order the polynomial representing this shortest LFSR should be
approximately equal to 𝑛/2, where 𝑛 is the number of bits in the sequence [13]. The linear
complexity profile of a sequence is generated by applying the Berlekamp-Massey algorithm
to the first 𝑘 bits of a sequence, and taking the resulting linear complexities at every interval
𝑚𝑘 ≤ 𝑛 where 𝑚 ∈ Z and plotting these versus 𝑛 [13]. A favorable linear complexity profile
will closely track the function 𝑛/2 such as the profile displayed in Figure 1.1.

Figure 1.1. Example of a Favorable Linear Complexity Profile. Source: [13]

5

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

6

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 2:
Blum-Micali PRNG

2.1 Classical Blum-Micali PRNG
In this chapter, we explore the basic formulation of the Blum-Micali PRNG as well as our
proposed modification. The Blum-Micali PRNG was originally proposed by Manuel Blum
and Silvio Micali in their 1982 paper [1]. For the purposes of this thesis, we will refer to
the version described in [1] as the Classical Blum-Micali PRNG.

Definition 2.1.1. The Classical Blum-Micali PRNG

1. Choose an appropriate prime number 𝑝 that is sufficiently large to render the
DLP intractable in the algebraic environment Z∗𝑝.

2. Choose a primitive root 𝑔 such that ⟨𝑔⟩ = Z∗𝑝.
3. Choose an appropriate random seed 𝑥0.
4. Calculate 𝑥𝑖+1 using the following formula:

𝑥𝑖+1 = 𝑔𝑥𝑖 (mod 𝑝). (2.1)

5. If 𝑥𝑖+1 < 𝑝−1
2 , extract a 0; otherwise, extract a 1.

6. Repeat steps four and five until you generate a bit string of the desired length.

Example 2.1.1. Two Iterations of the Classical Blum-Micali PRNG

Note: The prime modulus chosen for this example is too small for the output to be crypto-
graphically secure or sufficiently random; it was selected for illustrative purposes only.

1. Let 𝑝 = 101.
2. Let 𝑔 = 2; ⟨𝑔⟩ = Z∗101.
3. Let 𝑥0 = 14.
4. 𝑥1 = 214 (mod 101) = 16384 (mod 101) = 22.
5. 101−12 = 50.

7

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

6. 22 < 50 so extract a 0 for the first bit of the pseudorandom bit string.
7. 𝑥2 = 222 (mod 101) = 4194304 (mod 101) = 77.
8. 77 ≥ 50 so extract a 1 for the second bit of the pseudorandom bit string.
9. Bit string = 01; Continue iterations until bit string is of desired length.

During each iteration of the Classical Blum-Micali algorithm, only one pseudorandom bit is
extracted. With this bit extraction rule, 𝑛 iterations of the algorithm are required to generate
a sequence of length 𝑛.

2.2 Divide and Conquer Blum-Micali PRNG
With the intention of increasing the speed of the Classical Blum-Micali PRNG, this thesis
uses the followingmodification to the bit extraction rule as proposed by Long andWigderson
[11].We call this modified version the Divide and Conquer Blum-Micali PRNG in reference
to the divide and conquer search algorithm used in its construction [14].

Definition 2.2.1. The Divide and Conquer Blum-Micali PRNG

1. Choose 𝑑, the number of bits to be extracted at each iteration.
2. Let bucket size 𝑏 = ⌊ 𝑝

2𝑑 ⌋. There are 2
𝑑 equally sized buckets.

3. Use the divide and conquer search algorithm to determine which bucket 𝑥𝑖+1
falls in. The divide and conquer search algorithm for finding the bucket that 𝑥𝑖+1
falls in provides the process for extracting a bit string of length 𝑑.

4. Repeat this process until the pseudorandom bit string is of the desired length.

Note: Step three of this process requires the use of the divide and conquer search algorithm.

Given there are 2𝑑 buckets, where 𝑑 is the number of bits extracted per iteration, the
number of bits that can be uniquely extracted per iteration using this method is upper
bounded by the prime modulus 𝑝. Specifically:

2𝑑 < 𝑝. (2.2)

Additionally, given that 𝑝 is prime, 2𝑑 cannot be a divisor of 𝑝. Therefore, the buckets

8

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

cannot all be of exactly equal size and must be made to be approximately equal in size.
There are several ways to deal with this issue. This thesis uses the following procedure to
assign bucket sizes:

1. The baseline bucket size is 𝑏 = ⌊ 𝑝

2𝑑 ⌋.
2. The remainder 𝑟 = 𝑝 − 𝑏 · 2𝑑 .
3. The 𝑖th bucket size will be adjusted to be 𝑏 + 1, where 𝑖 = 𝑥 · ⌊ 𝑝

𝑟
⌋. Repeat ∀𝑥 ∈ [1, 𝑟] .

Definition 2.2.2. The Divide and Conquer Binary Search Algorithm
Let 𝐿 be a list of 𝑛 terms in increasing order. Let 𝑥 be the element to located. Compare
𝑥 to 𝑘th term of the list where 𝑘 = ⌊ 𝑛2⌋. If 𝑥 < 𝑘 , discard all terms greater than or equal
to the comparison term. Otherwise, discard all terms less than the comparison term. Take
the remaining terms and form a new list 𝑀 with the ⌊ 𝑛2⌋ remaining terms and repeat the
process until 𝑥 is located. For a list with 𝑛 terms, this algorithm has the complexity class
O(log2 𝑛) [14].

Example 2.2.1. Two Iterations of the Divide and Conquer Blum-Micali PRNG

Note: The prime modulus chosen for this example is too small for the output to be crypto-
graphically secure or statistically random; it was selected for illustrative purposes only.

1. Let 𝑝 = 101.
2. Let 𝑔 = 2; ⟨𝑔⟩ = 𝑍∗

101.
3. Let 𝑥0 = 14.
4. Let the number bits extracted per iteration, 𝑑 = 2.
5. Calculate bucket size 𝑏 = ⌊ 1012𝑑 ⌋ = 25.
6. Buckets= [[0, 𝑏), [𝑏, 2𝑏), . . . , [((2𝑑)−1)𝑏, 𝑝]] = [[0, 24], [25, 49], [50, 74], [75, 101]].
7. 𝑥1 = 214 (mod 101) = 16384 (mod 101) = 22.
8. 22 falls in the first bucket [0, 24] so extract 00 for the first two bits of the pseudorandom
bit string.

9. 𝑥2 = 222 (mod 101) = 4194304 (mod 101) = 77.
10. 77 falls in the fourth bucket [74, 101] so extract 11 for the third and fourth bits of the
pseudorandom bit string.

11. Bit string = 0011; Continue iterations until bit string is of desired length.

9

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

𝑏

2.3 Periodic Cycles with the Blum-Micali PRNG
The prime field Z ∗

𝑝 h as 𝑝 − 1 e lements. I n t he B lum-Micali a lgorithm, 𝑥 𝑖+1 i s directly
determined by the value of 𝑥𝑖. Therefore, any sequence generated by the Blum-Micali al-
gorithm will have a period of length at most 𝑝. Furthermore, in many cases the period of
the sequence will be significantly less than 𝑝; this occurrence is called a short cycle in this
thesis. To generate a pseudorandom sequence of length 𝑛 using the Classical Blum-Micali
PRNG, 𝑛 iterations are required. Therefore, under the best case scenario with the Classical
Blum-Micali PRNG, when generating a sequence of length 𝑛, the prime modulus must be
large enough that 𝑝 > 𝑛. If 𝑝 < 𝑛, then periodicity is guaranteed within the output sequence.
Since the presence of short cycles is always possible when 𝑝 is randomly chosen within a
given range, it is highly recommended that 𝑝 be chosen such that 𝑝 ≫ 𝑛 (at least several
orders of magnitude larger). Doing so ensures the probable length of any short cycle, 𝑠, is
still sufficiently large such that 𝑠 > 𝑛.

Since the Divide and Conquer Blum-Micali algorithm extracts 𝑏 bits per iteration, to
generate a sequence of length 𝑛, only 𝑑 = ⌈ 𝑛 ⌉ iterations are required. This means that
when implemented, the modified algorithm requires a modulus large enough that 𝑝 ≫ 𝑑.
Thus, a smaller prime modulus is required when compared to the classical version in direct
proportion to the number of bits extracted per iteration. Depending on the nature of the
implementation, this can greatly reduce the computational run time of the algorithm.

2.4 A Note About Implementing the Blum-Micali PRNG
When implementing the Blum-Micali algorithm computationally, much care should be
taken to choose an appropriate expression for 𝑥𝑖+1 = 𝑔𝑥𝑖 (mod 𝑝) within the code. Some
expressions use number theoretic tricks to increase the speed of this very large exponentia-
tion while others do not. In Python implementations, a good function to use to address this
issue is the pow(root, power, modulus) function that is built in to most Python distributions.
We find in Python implementations there is approximately a 1000 : 1 run time difference
between the following two expressions:
Slow: x1 = (g**x0)%p
Fast: x1 = pow(g, x0, p)

10

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 3:
Methodology

3.1 Testing Sequences for Statistical Randomness
In this thesis, we use the “Statistical Test Suite for Pseudorandom Number Generators for
Cryptographic Applications” published by NIST to determine whether sequences generated
by the Classical Blum-Micali and the Divide and Conquer Blum-Micali PRNGs are statis-
tically random [15]. Detailed explanations of the purpose, method, and structure of each
test can be found in the NIST documentation [15]. In this thesis, we use the following 16
statistical tests from Bassham et al. to assess the performance of each bit sequence:

1. The Frequency (Monobit) Test.
2. The Frequency Test within a Block.
3. The Runs Test.
4. The Longest-Run-of-Ones in a Block Test.
5. The Binary Matrix Rank Test.
6. The Discrete Fourier Transform (Spectral) Test.
7. The Non-Overlapping Template Matching Test.
8. The Overlapping Template Matching Test.
9. Maurer’s ‘Universal Statistical’ Test.
10. The Linear Complexity Test.
11. The Serial Test.
12. The Approximate Entropy Test.
13. The Cumulative Sums Test (Forward).
14. The Cumulative Sums Test (Reverse).
15. The Random Excursions Test.
16. The Random Excursions Variant Test. [15]

It is important to note that several of the statistical tests within the NIST test suite require
sequences that are at least one million bits in length [15]. Therefore, in this thesis we use
sequences with a length of one million bits for all tests.

11

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

We use a Python script created by Kho-Ang and Churchill to implement this suite of tests
computationally [16]. For each test, we use a p-value benchmark of 0.01. In this thesis, we
consider a sequence random if it passes all 16 NIST tests with a p-value of 0.01 or higher.
We consider a sequence near-random if it passes 15 of the 16 NIST tests with a p-value
of 0.01 or higher. We consider a sequence non-random if it passes 14 or fewer NIST tests.
While not an industry standard, this scheme was chosen to provide a more detailed analysis.

3.2 Generating Hard Prime Numbers and Choosing Prim-
itive Roots

3.2.1 Choice of Prime Moduli
When implementing either version of the Blum-Micali PRNG, an appropriate prime mod-
ulus must be chosen. Prime moduli are appropriate candidates for use in implementation
if they are sufficiently large hard prime numbers. It is worth noting that not all sufficiently
large hard prime numbers are guaranteed to generate random or near-random sequences
when implemented under every set of initial conditions. In our analysis, we only generated
sequences using sufficiently large hard prime numbers as moduli. For the purposes of this
thesis, a hard prime number, 𝑝, is one that has the following properties:

1. The prime factorization of 𝑝 − 1 includes at least one large prime factor, 𝑞. We
consider a prime factor, 𝑞, large if it has at least 16 bits such that 𝑞 > 216 = 65, 536.

2. The prime 𝑝 ≡ 3 (mod 4).

We consider a hard prime 𝑝 sufficiently large if it is large enough that it is probable that the
period of a pseudorandom sequence of 1 million bits generated using the Classical Blum-
Micali PRNG with modulus 𝑝 is longer than 1 million bits. We observe experimentally that
this means the hard prime should be chosen such that 𝑝 > 10, 000, 000.

3.2.2 Generation of Prime Moduli
In this thesis we used a Python script titled “generateHardPrimeList.py” (Appendix A.3.1)
to generate and select appropriate pairs of hard primes and associated primitive roots. Each
sufficiently large hard prime modulus was generated using the following process:

12

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1. Randomly generate a large prime factor, 𝑞, of at least 16 bits using the Python script
published by Tabmir [17].

2. Generate a candidate hard prime, 𝑐, by using the formula 𝑐 = (2 · 𝑥 · 𝑞) + 1. Start with
𝑥 = 1.

3. If 𝑐 is prime and > 10, 000, 000, stop and let the candidate 𝑐 be the hard prime
number, 𝑝.

4. If not, let 𝑥 = 𝑥 + 1 and repeat steps two and three until an appropriate candidate is
found.

Once each sufficiently large hard prime, 𝑝, was generated, we chose an associated primitive
root, 𝑔, using the following process:

1. Select a candidate primitive root, 𝑟, from the set of the prime numbers in ascending
order, 𝐻 = [2, 3, 5, 7, 11, . . .].

2. If 𝑟
𝑝−1
2 ≡ −1 (mod 𝑝), then let the candidate 𝑟 be the primitive root 𝑔 associated with

the hard prime 𝑝.
3. Otherwise, select the next candidate 𝑟 from the set 𝐻 and return to step two.

3.3 Generating Pseudorandom Sequences
This thesis implements both the classical Blum-Micali and the Divide and Conquer Blum-
Micali PRNGs using a series of Python scripts. These Python scripts are included in Ap-
pendix A.1 for reference. The following procedure was used to generate the pseudorandom
sequences for our analysis:

1. Generate a list of sufficiently large hard prime numbers and their associated primitive
roots.

2. Conduct one million iterations of the Classical Blum-Micali PRNG and output the
resulting bit sequences for each hard prime.

3. Test these sequences using the 16 NIST tests. Only retain pairs of hard primes and
primitive roots that produce random or near-random sequences using the Classical
Blum-Micali PRNG. Repeat steps one and two until 100 such pairs of hard primes
and primitive roots are found.

13

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4. Now implement the Divide and Conquer Blum-Micali PRNG for 2 to 15 bits per
iteration on each of the 100 pairs of hard primes and primitive roots. Generate
pseudorandom sequences with a length of one million bits.

5. Test all sequences generated using the NIST test suite.

Note: With a list of hard primes where each hard prime is > 10 million, one will typically
require an initial list of approximately 200-250 hard primes to end up with 100 hard primes
that produce sequences that are random or near-random when used as the moduli for the
Classical Blum-Micali PRNG.

3.4 Seed Selection
Both the Classical Blum-Micali and the Divide and Conquer Blum-Micali PRNGs require a
random seed to be initialized. While there are 𝑝 − 1 possible choices for the seed, and much
analysis could be done to investigate the effects of different seed choices, this thesis chooses
to use the same seed for all test sequences. This is done with the intention of standardizing
the test sequences so that the choice of seed is not a relevant factor in our analysis. We
use the seed 𝑥0 = 12345 when generating all test sequences. This seed is large enough that
for any primitive root, 𝑔, and hard prime modulus, 𝑝, between 10 million and 20 million,
𝑦 = 𝑔𝑥0 > 𝑝. Since 𝑦 > 𝑝, 𝑦 ≠ 𝑥1 = 𝑔𝑥0 (mod 𝑝); this ensures that the DLP is intractable
from the first iteration of the implementation.

3.5 Linear Complexity Profile Analysis
This thesis uses a Python script in order to determine the linear complexity profiles of
sequences generated by the Classical and Divide and Conquer Blum-Micali PRNGs. The
Python script for the implementation of the Berlekamp-Massey algorithm was taken from
work by Reid [18]. The Python script that ultimately generates and outputs the linear
complexity profiles was written by the author and is included in Appendix A.4. Due to
challenges with long computational run times, we only test the first 100, 000 bits of a
sequence for its linear complexity profile and assume that the results are representative
of the full 1, 000, 000 bits. Additionally, we apply the Berlekamp-Massey algorithm in
increments of 5000 bits, since this increment provides sufficient detail without prohibitive
run times.

14

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 4:
Results and Analysis

In this chapter we discuss the results of our analysis. Our analysis is split into two parts.
In the first part, we generate sequences using various hard primes with the Classical Blum-
Micali PRNG and examine the results using the NIST test suite. In the second part, we use
100 prime moduli known to produce random or near-random sequences with the Classical
Blum-Micali PRNG, and then use them to generate sequences with the modified Divide and
Conquer Blum-Micali PRNG. We examine the resulting sequences using the NIST tests,
computational run times, and linear complexity profiles.

4.1 First Test Results: Classical Blum-Micali PRNG
We generated hard primes and used each as the modulus for a run of the Classical Blum-
Micali PRNG.We then tested each sequence of onemillion bits to determine if the sequences
were random or near-random (passed all, or all but one of the NIST tests). We repeated this
process until we found 100 prime moduli that produce random or near-random sequences.
Appendix B.1 contains the list of hard primes and primitive roots used for this portion of
the analysis.

In total, 210 prime moduli were required to produce 100 random/near-random sequences.
Interestingly, the sequences produced either passed all or nearly all of the NIST tests, or
they failed most of them. There were very few sequences that failed some, but not most, of
the NIST tests. Of the 210 hard prime moduli, only 26 failed between two and ten of the
16 NIST tests; 84 prime moduli failed 11 or more of the NIST tests. Figure 4.1 shows a
summary of the results of this analysis.

15

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.1. Frequency of Number of NIST Tests Failed Using the Classical
Blum-Micali PRNG

When examining the 100 hard prime moduli that produced random/near-random sequences
with respect to each specific NIST test, we find that some NIST tests were failed much more
frequently than others. Specifically, the Spectral test, the Serial test, and the Approximate
Entropy test were each failed more than 100 times. At the same time, some of the tests were
significantly underrepresented in terms of test failures. Specifically, these were the Block
Frequency test, Binary Matrix Rank test, Random Excursions test, and Random Excursions
Variant test. Figure 4.2 presents a visual summary of these findings.

16

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.2. Proportion of Sequences Passed/Failed vs. NIST Test

The average run time to generate a one million bit sequence using the Classical Blum-Micali
PRNG was 3.032 seconds. With the sample of hard primes (𝑝 > 10, 000, 000) used, we
found that 47.6%were random or near-random. If a strict criterion for randomness was used
(i.e., the sequence must pass all NIST tests), then we found that there is a 41.4% success
rate. Furthermore, we found that given a sequence fails, it is probable that it failed quite
significantly (i.e., failed more than 10 of the 16 NIST tests). While further investigation and
research is required in this area, upon cursory visual inspection of some of the sequences that
failed a majority of the NIST tests, we found that they appeared to be periodic. Intuitively,
this suggests that there is a short cycle occurring with these prime moduli. Indeed, when
examining the .txt files containing the bit sequences, we found that the sequences that failed
most of the NIST tests exhibit a consistent patterned structure that can be observed visually
by scrolling through the file. Sequences that are random or near-random do not appear
to have the same property. Of course, this is not an acceptable mathematical method of
analysis, and it is mentioned simply to inform our intuition. Figure 4.3 provides an example
of this patterned property for a sequence that failed 15 of the 16 NIST tests.

17

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.3. Screenshot of Classical Blum-Micali Sequence with 𝑝 = 12877951
and 𝑔 = 3

4.2 Second Test Results: Divide and Conquer Blum-Micali
PRNG

We conducted this portion of the analysis by taking the 100 hard prime moduli from the
previous results that yielded random/near-random sequences (see Appendix B.2) and then
used themwith the Divide and Conquer modified Blum-Micali PRNG.We chose to generate
sequences by extracting 2 to 15 bits per iteration for each of the 100 hard prime moduli. We
compare the performance of the sequences generated with the Divide and Conquer Blum-
Micali PRNG to those generated with the Classical Blum-Micali PRNG in terms of both the
proportion of the sequences that were random/near-random, as well as the computational
run times of each implementation.

18

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4.2.1 2 to 11 Bits Per Iteration
We found that extracting between 2 and 11 (inclusive) bits per iteration using the Divide and
Conquer Blum-Micali PRNG yielded performance comparable to the sequences generated
by the Classical Blum-Micali PRNG. For the sample of 100 hard prime moduli, we saw
relatively stable and consistent performance in terms of number of random and near-random
sequences; we did not observe any significant or anomalous decreases in performance. The
worst performing case in this range was 6 bits per iteration; there were 79 random and 17
near-random sequences, with 4 non-random sequences. Even in this case, the results were
still comparable to the Classical Blum-Micali baseline of 87 random and 13 near-random
sequences. The overall performance was still at 96% of baseline, with 90.8% as many
random sequences and 130.7% as many near-random sequences. Furthermore, it is worth
noting that the fact that there were no non-random sequences in the Classical Blum-Micali
baseline is an artifact of the selection process that discarded any non-random sequences
in phase one of our analysis. At 11 bits per iteration, there were still 87 random and 11
near-random sequences, with only 2 non-random sequences. For reference, when extracting
11 bits per iteration, there were 2048 buckets. Since all hard prime moduli used were greater
than 10 million, the ratio of the prime modulus to the number of buckets was at least 4882:1.

4.2.2 12 to 15 Bits Per Iteration
We found that once we extracted 12 or more bits per iteration, there was a precipitous
decline in overall performance. While the number of near-random sequences remained
roughly constant between 16 and 28, as expected, the number of random sequences fell
rapidly and was displaced by non-random sequences. Figure 4.4 displays these findings in
graphical form.

19

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.4. Overall Performance of Classical and D&C PRNGs from 1-15
Bits Per Iteration

The data clearly suggest that there is an upper bound to the number of bits per iteration
that can be extracted using the Divide and Conquer Blum-Micali algorithm to produce a
pseudorandom sequence. Furthermore, it appears that this bound is significantly less than
the trivial upper bound of 𝑝 (the prime modulus). It appears that a ratio of approximately
5000:1 for the prime modulus to the number of buckets (2𝑏 where 𝑏 = bits per iteration) is a
reasonable estimate for this upper bound when the prime modulus is between 10, 000, 000
and 20, 000, 000. Further research is needed to determine whether specific properties of the
prime modulus (such as the factors of 𝑝 − 1) and its primitive root have an effect on this
upper bound.

20

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Examining the results of the 12-15 bits per iteration sequences in isolation and looking
at the individual NIST tests, we found that there were several tests that are failed with high
probability. Specifically, these were the Longest Run-Of-Ones in a Block test, the Over-
lapping Template Matching test, the Approximate Entropy test, and the Serial test. On the
other hand, most of the other NIST tests failed with relatively low probability even at 15 bits
per iteration. Figure 4.5 displays the results by specific NIST test for the implementation
extracting 15 bits per iteration and is quite illustrative of these findings.

Figure 4.5. Performance of D&C PRNG w/ 15 Bits Per Iteration by Test

Looking at the Longest Run-Of-Ones in a Block test in isolation, we found that a sequence’s
individual test performance appears tomirror (and perhaps even drive) the sequence’s overall
performance across all implementations from 1-15 bits per iteration. While further research
and investigation is needed in this area, it seems that Divide and Conquer Blum-Micali
PRNG implementations that extract more than 11 bits per iteration generate sequences that
have long runs of ones resulting from an iteration residue value that is close to 𝑝. Recalling
the bit extractionmethod fromChapter 2, we know that if a residuewas for example 𝑥𝑖 = 𝑝−1
in a given iteration, when extracting 11 bits per iteration the output would be 11111111111.
Perhaps the previous residue 𝑥𝑖−1 resulted in the output 10001011111 and the next residue
𝑥𝑖+1 resulted in the output 11111100100. This would result in the concatenated sequence

21

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

100010111111111111111111111100100 which has a run of 22 consecutive ones in it. This
is obviously a contrived example; however, the data seem to suggest that occurrences similar
to this were not uncommon. Figure 4.6 shows the individual test performance of the Longest
Run-Of-Ones in a Block test from 1-15 bits per iteration.

Figure 4.6. Longest Run-Of-Ones In a Block Test Performance for 1-15 Bits
Per Iteration

When examining the worst performing case, that is the sequences generated by extracting
15 bits per iteration, we found that most sequences only failed a fewNIST tests. In fact, 69 of
the 100 sequences tested only failed four or fewer NIST tests. Notably none of the sequences
tested failed more than nine NIST tests. Figure 4.7 shows the frequency of the number of
NIST tests failed among the sequences generated by extracting 15 bits per iteration.

22

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.7. Frequency of Number of NIST Tests Failed When Extracting 15
Bits Per Iteration

In the second worst case of 14 bits per iteration, we found that the frequency of number of
NIST tests failed was much more favorable. In this case, 98 of the 100 sequences failed four
or fewer NIST tests. None of the sequences failed more than six NIST tests. This suggests
that although the number of random/near-random sequences declined rapidly after 12 bits
per iteration were extracted, there are still many sequences that almost met the criteria for
randomness even with 14 bits per iteration. The appropriateness of using such sequences
will depend on the specific application and there is indeed a trade-off between the number of
bits extracted per iteration and the probability of statistical randomness. Figure 4.8 shows the
frequency of the number of NIST tests failed among the sequences generated by extracting
14 bits per iteration.

23

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.8. Frequency of Number of NIST Tests Failed When Extracting 14
Bits Per Iteration

4.2.3 Run Time Performance
The Divide and Conquer Blum-Micali PRNG is indeed faster computationally than the
Classical Blum-Micali PRNG. There is a linear improvement in run time between the
Classical Blum-Micali PRNG and the Divide and Conquer PRNG for 𝑑 bits per iteration;
that is, the Divide and Conquer version will run 𝑑 times faster than the Classical version. We
observed that in our Python implementations of the Blum-Micali PRNG, run times were not
prohibitive to generate onemillion bit sequences formany applications. The average run time
for a one million bit sequence was just over three seconds. The run time increases linearly
with the length of the sequence, so a 10 million bit sequence will take approximately 30
seconds to generate using our implementation of the Classical Blum-Micali PRNG. Figure
4.9 displays the observed average computational run times collected during our analysis.

24

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.9. Average Run Times of Classical and D&C Blum-Micali PRNGs
for a One Million Bit Sequence

Testing Equipment Used:
MSI GT70 (2013 model)
OS: Windows 10; Python 3.9 running on Spyder 5.5
Processor: Intel i7-3630QM@ 2.40GHz
RAM: 16GB DDR3
Graphics: Nvidia GeForce GTX675MX; 4GB DDR5

4.2.4 Linear Complexity Profiles
We conducted some preliminary analysis of the linear complexity profiles of sequences
generated by the Divide and Conquer Blum-Micali PRNG. We found that all sequences
that we tested appeared to have very favorable linear complexity profiles. Though we only
tested a small (and not necessarily representative) subset of sequences, we found that the
presence of universally favorable linear complexity profiles among those tested suggests

25

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

that most or all sequences generated using the Divide and Conquer Blum-Micali PRNG
performed very well even when they failed multiple NIST tests. The case of the prime
modulus 𝑝 = 10057699 with primitive root 𝑔 = 2 is illustrative in this regard. When using
the Classical Blum-Micali PRNG, the sequence generated with this modulus and root passed
all NIST tests and had the linear complexity profile shown in Figure 4.10. When using the
Divide and Conquer Blum-Micali PRNG extracting 15 bits per iteration with this modulus
and root, the sequence generated failed 9 of the NIST tests. This was the worst performing
sequence among all sequences generated for the analysis in this thesis in terms of the
number of NIST tests failed. However, even this sequence possessed a very favorable linear
complexity profile as seen in Figure 4.11. It is worth noting that these linear complexity
profiles are near-identical despite the fact that the sequence produced with the Divide and
Conquer Blum-Micali PRNG with 15 bits per iteration failed a majority of the NIST tests.

Figure 4.10. Linear Complexity Profile for 𝑝 = 10057699 with 1 Bit Per
Iteration

26

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.11. Linear Complexity Profile for 𝑝 = 10057699 with 15 Bits Per
Iteration

27

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

28

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 5:
Conclusions and Future Work

5.1 Conclusions
This thesis compares the performance of the Classical Blum-Micali PRNGwith a modifica-
tion we call the Divide and Conquer Blum-Micali PRNG. When extracting 11 or fewer bits
per iteration using the Divide and Conquer version, we found that overall performance was
comparable to the classical version. Furthermore, in some cases where a short cycle occurs
due to the choice of prime modulus, the Divide and Conquer version is preferable because it
requires fewer iterations and therefore it is less probable that the output will be periodic for a
given sequence length.When extracting 12 or more bits per iteration, the performance of the
Divide and Conquer Blum-Micali PRNG rapidly declined. The NIST test most often failed
by sequences generated under these conditionswas the Longest Run-Of-Ones in a Block test.

The Divide and Conquer modification of the Blum-Micali PRNG provides a significant
run time improvement when compared to implementations of the Classical Blum-Micali
PRNG. This run time improvement increases in approximately linear proportion to the
number of bits extracted per iteration. That is, a sequence generated using the Divide and
Conquer modification with 𝑑 bits per iteration will require approximately 1/𝑑 the number
of operations as the Classical Blum-Micali PRNG. Our results strongly suggest that the
choice of prime modulus is critical to the successful implementation of both the Classical
and Divide and Conquer Blum-Micali PRNGs. Much care should be taken to ensure that
the prime modulus chosen is a hard prime and does not produce short cycles when imple-
mented. Without a formal decision rule, or look-up table of acceptable prime moduli, some
trial and error is needed to select an appropriate modulus for implementation. Additionally,
we found that the size of the prime modulus must be sufficiently large to ensure randomness;
this requirement is determined by the length of the sequence desired. Among prime moduli
specifically selected to meet these criteria, we found that still only roughly 45% of them
will produce sequences of one million bits that are random or near-random when used as
moduli for the Classical Blum-Micali PRNG.

29

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

5.2 Future Work
While our test data indicate that the performance of the Divide and Conquer Blum-Micali
PRNG and the Classical Blum-Micali PRNG are comparable in terms of the randomness
of sequences produced for 11 or fewer bits per iteration, many areas of future investigation
and research remain.

There could be further modifications made to the Divide and Conquer decision rule con-
struction to attempt to retain comparable performance while increasing the number of bits
per iteration. One possible method we think will be effective in this pursuit is interlacing
parity bits in the binary outputs during each iteration of the Divide and Conquer algorithm.
We suspect that it may be possible to modify the decision rule of the Divide and Conquer
algorithm (even without incorporating interlacing of parity bits) to avoid failing the Longest
Run-Of-Ones in a Block test with high probability when extracting 12 or more bits per
iteration.

The analysis done in this thesis is purely statistical in nature and there is no formal proof
or theoretical investigation of the cryptographic security of the Divide and Conquer Blum-
Micali PRNG. While it appears that the Divide and Conquer Blum-Micali PRNG performs
comparably to the Classical version, certain applications may require stronger assurances
than mere intuition. There is further work to be done linking the experimental results of this
thesis to the O(log (log 𝑛)) bound proposed by Long and Wigderson regarding the number
of bits extracted per iteration [11]. Using the smallest prime modulus 10033759 as an exam-
ple, we see that log (log (10033759)) ≈ 4.54. This suggests that, with a constant coefficient
𝑐 ≥ 2.42, our experimentally observed upper bound of 11 bits per iteration supports Long
and Wigderson’s claim [11].

There is much potential for future work regarding the selection of prime moduli for im-
plementations of the Divide and Conquer Blum-Micali PRNG. Ideally, one would be able
to formalize a decision rule or algorithm that enables the user to select an appropriate
prime modulus that is, at minimum, guaranteed to produce random sequences of a given
length using the Classical Blum-Micali PRNG. If devising a formal decision rule is not
possible, generating a look-up table of prime moduli that are known to perform well when
implemented in the Classical or Divide and Conquer Blum-Micali PRNGs would be of

30

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

great utility. While it would be acceptable for some applications to have a fixed modulus
(and primitive root) and simply vary the random seed, other applications may require that
a prime modulus be selected uniquely for each specific instance of the implementation.

In addition to the potential future work regarding prime moduli mentioned above, there
is much room for investigation into the nature of the short cycles produced by some prime
moduli. It would be of great interest to us to know what determines the occurrence and
length of these cycles, and whether these properties can be formally stated.

31

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

32

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

APPENDIX A:
Python Scripts

A.1 Blum-Micali PRNG
This section shows the Python scripts used to implement both the Classical and Divide and
Conquer Blum-Micali PRNGs. The main file is called “blumMicaliIterable.py” and is set
up to implement the PRNG for multiple different prime moduli so as to expedite sequence
generation for analysis. All user defined functions are also included in this section.

A.1.1 Main: “blumMicaliIterable.py”
1 import time

2 from modulo import reduce

3 from readPrimeList import readPrimeList

4 from defineBounds import generateBounds

5 from binaryOutputs import generateOutputs

6 from boundSearch import searchBounds

7

8

9 globalStartTime = time.time()

10

11 ### How Long Do You Want Your Bit Streams to Be and How Many Bits Per Iteration

12 lengthOfStream = 1000000

13 maxBitsPerIteration = 15 ### Number of buckets = 2**bitsPerIteration

14 notificationRate = 100000

15

16

17 ### Define Your Seed

18 seed = 12345 # The standard seed

19

20

21 ### Generate List of Primes

22 listOfHardPrimes = readPrimeList("listOfHardPrimesAndRootsFinal.txt") ### Adjust the

readPrimeList function file based on your prime list

23

24 ### Initialize List of Outputs

25 runTimes = []

26 fileNamesList = []

27 fileNames2List = []

28

29 ### THE MAIN LOOP!

30 for number in range(len(listOfHardPrimes)):

33

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

31

32 p = listOfHardPrimes[number][0]

33 g = listOfHardPrimes[number][1]

34 x0 = seed

35

36 listOfResidues = []

37

38 startTime = time.time()

39

40 for calculation in range(lengthOfStream):

41

42 x1 = reduce(g,x0,p)

43 listOfResidues.append(x1)

44 x0 = x1

45 if calculation%notificationRate == 0 and calculation !=0:

46 print(str(calculation) + " Base Iterations Complete")

47

48 endTime = time.time() - startTime

49 runTimes.append([p,endTime])

50

51 for bits in range(1,maxBitsPerIteration+1):

52

53 fileName = f"{bits:02d}" + "bits" + "P" + str(p) + "G" + str(g) + ".txt"

54 fileNamesList.append(fileName)

55 fileName2 = "Data" + f"{bits:02d}" + "bits" + "P" + str(p) + "G" + str(g) + ".txt"

56 fileNames2List.append(fileName2)

57

58 boundsList = generateBounds(bits, p)

59 outputs = generateOutputs(bits)

60

61 #Output File for Each Bit Stream

62 with open(fileName , ’w’) as f:

63 print("Writing Bit Stream for Prime = " + str(p) + " and Root = " + str(g) + "

with " + str(bits) + " bits per iteration")

64

65 numberOfIterations = int(lengthOfStream/bits)

66

67 for iteration in range(numberOfIterations):

68

69 ### Search Algorithm to determine which bounds the outputs is between

70 boundIndex = searchBounds(listOfResidues[iteration], boundsList)

71

72 ### Write the string to a text file

73 bitExtraction = str(outputs[boundIndex -1])

74 f.write(bitExtraction)

75

76 # Info File for Each Bit Stream

77 with open(fileName2 , ’w’) as h:

78 h.write("--- Run Time: " + str(endTime/bits) + " seconds")

79 h.write("\n")

34

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

80 h.write("--- Modulus: " + str(p))

81 h.write("\n")

82 h.write("--- Root: " + str(g))

83 h.write("\n")

84 h.write("--- Seed: " + str(seed))

85 h.write("\n")

86 h.write("--- Bits Per Iteration: " + str(bits))

87 h.write("\n")

88 h.write("--- Iterations: " + str(numberOfIterations))

89 h.write("\n")

90 h.write("--- Length of Stream: " + str(lengthOfStream) + " bits")

91

92

93 # Completed Round

94 print()

95 print("ROUNDS COMPLETE: " + str(number+1))

96 print("Rounds Remaining: " + str(len(listOfHardPrimes)-number -1))

97 print()

98

99

100 with open("listOfFileNames.txt", ’w’) as j:

101 for name in range(len(fileNamesList)):

102 j.write(str(fileNamesList[name]))

103 j.write("\n")

104

105 with open("listOfRunTimes.txt",’w’) as k:

106 for runTime in range(len(runTimes)):

107 k.write(str(runTimes[runTime]))

108 k.write("\n")

109

110

111 print("Finally Complete")

112 globalEndTime = time.time() - globalStartTime

113 print("--- Run Time: " + str(globalEndTime) + " seconds")

A.1.2 “modulo.py”
1 def reduce(root,power,modulus):

2 remainder = pow(root,power,modulus)

3 return remainder

A.1.3 “readPrimeList.py”
1 def readPrimeList(listFileName):

2

3 with open(listFileName) as f:

4 lines = f.readlines()

5

35

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

6 listOfHardPrimesAndRoots = []

7

8 for line in range(len(lines)):

9 tempList = []

10 tempString = lines[line]

11 prime = int(tempString[1:9])

12 tempList.append(prime)

13 root = int(tempString[11])

14 tempList.append(root)

15 listOfHardPrimesAndRoots.append(tempList)

16

17 return listOfHardPrimesAndRoots

A.1.4 “defineBounds.py”
1 def generateBounds(numberOfBuckets ,primeModulus):

2 from math import floor

3 boundsList = []

4 for i in range(2**numberOfBuckets):

5 bound = i*floor((primeModulus)/2**numberOfBuckets)

6 boundsList.append(bound)

7 return boundsList

A.1.5 “binaryOutputs.py”
1 def generateOutputs(exp):

2 binOutput = []

3 for j in range(2**exp):

4 string = ’0’+str(exp)+’b’

5 bitStream = format(j,string)

6 binOutput.append(bitStream)

7 return binOutput

A.1.6 “boundSearch.py”
1 def searchBounds(xValue,bounds):

2

3 previous = int(len(bounds))

4 current = int(previous/2)

5 update = 256 #dummy

6

7 while update >= 1:

8 if xValue <= bounds[current]:

9 update = int(abs(previous-current)/2)

10 previous = current

11 current = current - update

12 else:

36

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

13 update = int(abs(previous-current)/2)

14 previous = current

15 current = current + update

16

17 if xValue <= bounds[current]:

18 current = current

19 else:

20 current = current + 1

21

22 return current

A.2 NIST Test Suite
This section shows the Python scripts used to apply the NIST statistical test suite to the
sequences generated using the “blumMicaliIterable.py” file. It is designed to work without
any need for the user to move files to a different directory. This script will NOT work if the
user changes the location of any of the files generated in the previous step. All user defined
functions are included in this section with the exception of those sourced from Kho-Ang &
Churchill [16].

A.2.1 Main: “testandWriteFile.py”
1 from iterableTest import nistTest

2 from readFileList import readFileList

3 import xlwt

4

5

6 fileNameList = readFileList("listOfFileNames.txt")

7 fileNameList.sort()

8 numOfFiles = len(fileNameList)

9

10 maxBitsPerIteration = 15

11 primesPerSheet = int(numOfFiles/maxBitsPerIteration)

12

13

14 resultList = []

15

16 for file in fileNameList:

17 testResult = nistTest(file)

18 resultList.append(testResult)

19 print("NIST Tests Completed for P=" + str(file[7:15]) + " with " + str(file[0:2]) + "

bits per iteration")

20

21

22 ### Set up Headers

37

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

23 titles = [’PRIME NUMBER’,’PRIMITIVE ROOT’,’Bits Per Iteration’,’Overall Pass’,’Number

Failed’,\

24 ’Monobit’, ’BlockFreq’, ’RunsTest’,\

25 ’LongestOneBlock’, ’BinaryMatrixRank’, ’Spectral’, ’NonOverlapping’,\

26 ’Overlapping’, ’UniversalStatistical’, ’LinearComplexity’, ’SerialTest’,\

27 ’ApproximateEntropy’, ’CumulativeSumFWD’, ’CumulativeSumREV’,\

28 ’RandomExcursion’, ’RandomVariant’]

29

30 ### Initialize Workbook

31 wb = xlwt.Workbook()

32 for i in range(1,maxBitsPerIteration+1):

33 sheet = wb.add_sheet(str(i)+" Bits")

34

35 # Add titles

36 for j in range(len(titles)):

37 sheet.write(0,j,titles[j])

38

39 ## Input the Results

40 for l in range(primesPerSheet): # Range = number of primes

41 sheet.write(l+1,0,int(fileNameList[l][7:15])) # Prime

42 sheet.write(l+1,1,int(fileNameList[l][16])) # Root

43 sheet.write(l+1,2,int(fileNameList[l][0:2])) # Bits Pear Iteration

44 sheet.write(l+1,3,int(resultList[l][1])) # Overall Pass

45 sheet.write(l+1,4,int(resultList[l][2])) # Number Failed

46 for k in range(len(resultList[l][0])):

47 sheet.write(l+1,k+5,int(resultList[l][0][k])) # Individual Test Results

48

49 for l in range(primesPerSheet): # Range = number of primes

50 resultList.pop(0)

51 fileNameList.pop(0)

52

53 ### Save the Workbook

54 wb.save("Results.xls")

A.2.2 “iterableTest.py”
All of the user defined functions in this script, with the exception of “boolTrue.py”, were
sourced from Kho-Ang & Churchill [16].

1 from ApproximateEntropy import ApproximateEntropy as aet

2 from Complexity import ComplexityTest as ct

3 from CumulativeSum import CumulativeSums as cst

4 from FrequencyTest import FrequencyTest as ft

5 from Matrix import Matrix as mt

6 from RandomExcursions import RandomExcursions as ret

7 from RunTest import RunTest as rt

8 from Serial import Serial as serial

9 from Spectral import SpectralTest as st

38

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

10 from TemplateMatching import TemplateMatching as tm

11 from Universal import Universal as ut

12 from boolTrue import testPass

13

14

15 ### Declaring Test Functions

16 testFunction = {

17 0:ft.monobit_test ,

18 1:ft.block_frequency ,

19 2:rt.run_test ,

20 3:rt.longest_one_block_test ,

21 4:mt.binary_matrix_rank_text ,

22 5:st.spectral_test ,

23 6:tm.non_overlapping_test ,

24 7:tm.overlapping_patterns ,

25 8:ut.statistical_test ,

26 9:ct.linear_complexity_test ,

27 10:serial.serial_test ,

28 11:aet.approximate_entropy_test ,

29 12:cst.cumulative_sums_test ,

30 13:cst.cumulative_sums_test ,

31 14:ret.random_excursions_test ,

32 15:ret.variant_test}

33

34 monobitFreq = testFunction[0]

35 blockFreq = testFunction[1]

36 runTest = testFunction[2]

37 longestSingleBlock = testFunction[3]

38 binaryMatrixRank = testFunction[4]

39 spectral = testFunction[5]

40 nonOverlappingTemplate = testFunction[6]

41 overlappingTemplate = testFunction[7]

42 universal = testFunction[8]

43 linearComplexity = testFunction[9]

44 serial = testFunction[10]

45 approximateEntropy = testFunction[11]

46 cumulativeSumForward = testFunction[12] # Mode = 0

47 cumulativeSumReverse = testFunction[13] # Mode = 1

48 randomExcursion = testFunction[14]

49 randomVariant = testFunction[15]

50

51

52 def nistTest(fileName):

53

54 ### Read In your Input

55 with open(fileName) as f:

56 contents = f.read()

57

58 results = []

59

39

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

60 test1 = monobitFreq(contents)

61 results.append(test1[1])

62

63 test2 = blockFreq(contents)

64 results.append(test2[1])

65

66 test3 = runTest(contents)

67 results.append(test3[1])

68

69 test4 = longestSingleBlock(contents)

70 results.append(test4[1])

71

72 test5 = binaryMatrixRank(contents)

73 results.append(test5[1])

74

75 test6 = spectral(contents)

76 results.append(test6[1])

77

78 test7 = nonOverlappingTemplate(contents)

79 results.append(test7[1])

80

81 test8 = overlappingTemplate(contents)

82 results.append(test8[1])

83

84 test9 = universal(contents)

85 results.append(test9[1])

86

87 test10 = linearComplexity(contents)

88 results.append(test10[1])

89

90 test11 = serial(contents)

91 results11 = [test11[0][1],test11[1][1]]

92 pass11 = testPass(results11)

93 results.append(pass11)

94

95 test12 = approximateEntropy(contents)

96 results.append(test12[1])

97

98 test13 = cumulativeSumForward(contents)

99 results.append(test13[1])

100

101 test14 = cumulativeSumReverse(contents, mode=1)

102 results.append(test14[1])

103

104 test15 = randomExcursion(contents)

105 results15 = []

106 for i in range(len(test15)):

107 results15.append(test15[i][4])

108 pass15 = testPass(results15)

109 results.append(pass15)

40

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

110

111 test16 = randomVariant(contents)

112 results16 = []

113 for i in range(len(test16)):

114 results16.append(test16[i][4])

115 pass16 = testPass(results16)

116 results.append(pass16)

117

118

119 ### Prepare Output

120 output = []

121 overallPass = testPass(results)

122 numFailures = len(results)-sum(results)

123

124 output.append(results)

125 output.append(overallPass)

126 output.append(numFailures)

127

128 return output

A.2.3 “readFileList.py”
1 def readFileList(fileName):

2

3 with open(fileName) as f:

4 lines = f.readlines()

5

6 listOfFileNames = []

7

8 for line in lines:

9 tempString = line.replace("\n", "")

10 listOfFileNames.append(tempString)

11

12 return listOfFileNames

A.2.4 “boolTrue.py”
1 def testPass(testList):

2 if len(testList) == 0:

3 raise Exception("There is nothing in your test list")

4 for item in testList:

5 if item == False:

6 return False

7 return True

41

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

A.3 Hard Prime and Primitive Root Generator
This section shows the Python scripts used to generate the list of sufficiently large hard
prime numbers and associated primitive roots for each. The list output by the main script
here is a primary input for the “blumMicaliIterable.py” file.

A.3.1 Main: “generateHardPrimeList.py”
1 from generateLargePrime import generateLargePrime

2 from generateHardPrime import generateHardPrime

3 from checkPrimitiveRoot import checkPrimitiveRoot

4

5

6 ### Generate List of Primes

7 setOfPrimes = set()

8 for prime in range(200):

9 generator = generateLargePrime(17) ### Keep an eye on the size of your generators!

10 setOfPrimes.add(generator)

11 print("done1")

12 listOfHardPrimes = []

13 for prime in setOfPrimes:

14 listOfHardPrimes.append(generateHardPrime(prime, 12584660)) ### Hard primes will be at

least 10,000,000

15 listOfHardPrimes.sort()

16 print("done2")

17 ### Generate List of Potential Roots

18 listOfPossibleRoots = [2,3,5,7,11,13,17,19]

19

20

21 ### Generate List of Primitive Roots

22 listOfRoots = []

23 tempG = 0

24

25 for number in range(len(listOfHardPrimes)):

26

27 p = listOfHardPrimes[number]

28

29 for index in range(len(listOfPossibleRoots)):

30 g = listOfPossibleRoots[index]

31 if checkPrimitiveRoot(g, p) == True:

32 tempG = g

33 listOfRoots.append(tempG)

34 break

35 if g >= 17:

36 tempG = 17

37 listOfRoots.append(tempG)

38 print("done3")

39 ### Thin Out Primes with Large Roots (>11)

42

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

40 for index in range(150):

41 if listOfRoots[index] > 9:

42 listOfRoots.pop(index)

43 listOfHardPrimes.pop(index)

44

45

46 ### Take Only the First Hundred Primes

47 listOfHardPrimes = listOfHardPrimes[0:110]

48 listOfRoots = listOfRoots[0:110]

49

50 ### Generate Combined List

51 listOfPrimesAndRoots = []

52 for index in range(len(listOfHardPrimes)):

53 tempList = []

54 tempList.append(listOfHardPrimes[index])

55 tempList.append(listOfRoots[index])

56 listOfPrimesAndRoots.append(tempList)

57

58 print(listOfPrimesAndRoots)

A.3.2 “generateLargePrime.py”
This script was sourced from [17].

1 # Large Prime Generation

2 import random

3

4

5

6 def nBitRandom(n):

7 return random.randrange(2**(n-1)+1, 2**n - 1)

8

9 def getLowLevelPrime(n):

10

11 # Pre generated primes

12 first_primes_list = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

13 31, 37, 41, 43, 47, 53, 59, 61, 67,

14 71, 73, 79, 83, 89, 97, 101, 103,

15 107, 109, 113, 127, 131, 137, 139,

16 149, 151, 157, 163, 167, 173, 179,

17 181, 191, 193, 197, 199, 211, 223,

18 227, 229, 233, 239, 241, 251, 257,

19 263, 269, 271, 277, 281, 283, 293,

20 307, 311, 313, 317, 331, 337, 347, 349]

21 ’’’Generate a prime candidate divisible

22 by first primes’’’

23 while True:

24 # Obtain a random number

25 pc = nBitRandom(n)

43

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

26

27 # Test divisibility by pre-generated

28 # primes

29 for divisor in first_primes_list:

30 if pc % divisor == 0 and divisor**2 <= pc:

31 break

32 else: return pc

33

34

35 def isMillerRabinPassed(mrc):

36 ’’’Run 20 iterations of Rabin Miller Primality test’’’

37 maxDivisionsByTwo = 0

38 ec = mrc-1

39 while ec % 2 == 0:

40 ec >>= 1

41 maxDivisionsByTwo += 1

42 assert(2**maxDivisionsByTwo * ec == mrc-1)

43

44

45 def trialComposite(round_tester):

46 if pow(round_tester , ec, mrc) == 1:

47 return False

48 for i in range(maxDivisionsByTwo):

49 if pow(round_tester , 2**i * ec, mrc) == mrc-1:

50 return False

51 return True

52

53 # Set number of trials here

54 numberOfRabinTrials = 20

55 for i in range(numberOfRabinTrials):

56 round_tester = random.randrange(2, mrc)

57 if trialComposite(round_tester):

58 return False

59 return True

60

61

62 def generateLargePrime(bits):

63

64 if 1 == 1:

65 while True:

66 n = bits

67 prime_candidate = getLowLevelPrime(n)

68 if not isMillerRabinPassed(prime_candidate):

69 continue

70 else:

71 break

72 return prime_candidate

44

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

A.3.3 “generateHardPrime.py”
1 import math

2

3 def isPrime(n):

4 for i in range(2,int(math.sqrt(n))+1):

5 if (n%i) == 0:

6 return False

7 return True

8

9 def generateHardPrime(primeCandidate ,minimum):

10 multiplier = 2

11 while multiplier <=1000:

12 hardPrimeCandidate = (multiplier*primeCandidate) + 1

13 if hardPrimeCandidate > minimum:

14 if isPrime(hardPrimeCandidate) == True and hardPrimeCandidate%4==3:

15 break

16 multiplier = multiplier + 1

17 return hardPrimeCandidate

A.3.4 “checkPrimitiveRoot.py”
1 def checkPrimitiveRoot(root,prime):

2 exp = int((prime -1)/2)

3 mod = pow(root,exp,prime)

4 if mod == prime -1:

5 return True

6 else:

7 return False

A.4 Linear Complexity Profiles
This section shows the Python scripts used to generate the linear complexity profile of a
given sequence.

A.4.1 “linearComplexity.py”
1 import numpy

2 import copy

3 import time

4 import matplotlib.pyplot as plt

5 from berlekampMassey import berlekamp_massey_algorithm

6

7 upperLimit = 100000

8 interval = 5000

9 startTime = time.time()

10 fileName = ’15bitsP10057699G2.txt’

45

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

11 with open(fileName) as f:

12 contents = f.read()

13

14 xValues = []

15 yValues = []

16

17 for i in range(interval, upperLimit + interval , interval):

18 string = contents[0:i]

19 linComp = berlekamp_massey_algorithm(string)

20 xValues.append(i)

21 yValues.append(linComp)

22

23 w = numpy.linspace(0,upperLimit ,10)

24 z = w/2

25 plt.plot(w, z, ’--b’, label=’N/2’)

26 plt.plot(xValues, yValues, ’-r’, label=’Linear Complexities’)

27

28 plt.axis([0, upperLimit , 0, upperLimit/2])

29 plt.title(’Linear Complexity Profiles’)

30 plt.xlabel(’x’, color=’#1C2833’)

31 plt.ylabel(’y’, color=’#1C2833’)

32 plt.legend(loc=’upper left’)

33 plt.grid()

34 plt.show()

35

36 endTime = startTime - time.time()

37 print(endTime)

38

39 with open(’outputs.txt’, ’w’) as g:

40 g.write(str(xValues))

41 g.write(’\n’)

42 g.write(str(yValues))

A.4.2 “berlekampMassey.py”
This script was sourced from Reid [18].

1 def berlekamp_massey_algorithm(block_data):

2

3 n = len(block_data)

4 c = numpy.zeros(n)

5 b = numpy.zeros(n)

6 c[0], b[0] = 1, 1

7 l, m, i = 0, -1, 0

8 int_data = [int(el) for el in block_data]

9 while i < n:

10 v = int_data[(i - l):i]

11 v = v[::-1]

12 cc = c[1:l + 1]

46

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

13 d = (int_data[i] + numpy.dot(v, cc)) % 2

14 if d == 1:

15 temp = copy.copy(c)

16 p = numpy.zeros(n)

17 for j in range(0, l):

18 if b[j] == 1:

19 p[j + i - m] = 1

20 c = (c + p) % 2

21 if l <= 0.5 * i:

22 l = i + 1 - l

23 m = i

24 b = temp

25 i += 1

26 return l

47

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

48

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

APPENDIX B:
Lists of Prime Moduli and Primitive Roots

This section shows the lists of sufficiently large hard prime numbers and associated primitive
roots used for the analysis presented in Chapter 4 of this thesis. Each pair is listed in the
following format: (Hard Prime Modulus, Primitive Root).

B.1 First Results: Classical Blum-Micali PRNG
1. 10033759, 3
2. 10033831, 3
3. 10057699, 2
4. 10099147, 2
5. 10130839, 3
6. 10157767, 3
7. 10161911, 7
8. 10162571, 2
9. 10181947, 2
10. 10183463, 5
11. 10189651, 2
12. 10195051, 2
13. 10195543, 3
14. 10208851, 2
15. 10211087, 5
16. 10235047, 3
17. 10267051, 2
18. 10288727, 5
19. 10303247, 5
20. 10304579, 2
21. 10316743, 3
22. 10318423, 3
23. 10360447, 2

24. 10369627, 3
25. 10379119, 2
26. 10392983, 3
27. 10424851, 5
28. 10458419, 2
29. 10465379, 2
30. 10470791, 2
31. 10497511, 7
32. 10537679, 3
33. 10564187, 5
34. 10593923, 2
35. 10603823, 2
36. 10627039, 5
37. 10640947, 3
38. 10652063, 2
39. 10735903, 5
40. 10745363, 3
41. 10773731, 2
42. 10779827, 2
43. 10831207, 2
44. 10840147, 3
45. 10856071, 2
46. 10877627, 3

47. 10894843, 2
48. 10902107, 2
49. 10933831, 2
50. 10945871, 3
51. 11012087, 3
52. 11041951, 5
53. 11085983, 5
54. 11093171, 3
55. 11095739, 5
56. 11099771, 2
57. 11118911, 2
58. 11138299, 2
59. 11185919, 2
60. 11211071, 7
61. 11288623, 7
62. 11295631, 3
63. 11317259, 2
64. 11370839, 3
65. 11398939, 3
66. 11432591, 2
67. 11435027, 7
68. 11453467, 2
69. 11459447, 7

49

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

70. 11460871, 2
71. 11483191, 2
72. 11499071, 5
73. 11524231, 3
74. 11549467, 3
75. 11608907, 3
76. 11682943, 2
77. 11692091, 2
78. 11714707, 2
79. 11759131, 3
80. 11778607, 2
81. 11794723, 2
82. 11848787, 2
83. 11867027, 3
84. 11873483, 2
85. 11888719, 2
86. 11913179, 2
87. 11979167, 2
88. 12055811, 3
89. 12079999, 2
90. 12091103, 5
91. 12121547, 2
92. 12146527, 3
93. 12163031, 5
94. 12188107, 2
95. 12188863, 3
96. 12226351, 2
97. 12241679, 3
98. 12300203, 3
99. 12343631, 3
100. 12378859, 7
101. 12403939, 2
102. 12467551, 2

103. 12490507, 2
104. 12514043, 7
105. 12575527, 3
106. 12576943, 2
107. 12584659, 2
108. 12590111, 7
109. 12657859, 2
110. 12659819, 2
111. 12682987, 2
112. 12689099, 2
113. 12692027, 2
114. 12717259, 2
115. 12720427, 2
116. 12728503, 3
117. 12740579, 2
118. 12757439, 7
119. 12774787, 2
120. 12776207, 5
121. 12793663, 3
122. 12827239, 3
123. 12850051, 2
124. 12862651, 2
125. 12877951, 3
126. 12900227, 2
127. 12907571, 2
128. 12910087, 3
129. 12910279, 3
130. 12923243, 2
131. 12934619, 2
132. 12955759, 3
133. 12965027, 2
134. 13009027, 2
135. 13016299, 2

136. 13026707, 2
137. 13056011, 2
138. 13065883, 2
139. 13076603, 2
140. 13081339, 2
141. 13107803, 2
142. 13156063, 3
143. 13165639, 3
144. 13170343, 3
145. 13223087, 5
146. 13226123, 2
147. 13231651, 2
148. 13264963, 2
149. 13273739, 2
150. 13303811, 2
151. 13313647, 3
152. 13314163, 2
153. 13322531, 2
154. 13325387, 2
155. 13337603, 2
156. 13356103, 3
157. 13366963, 2
158. 13409303, 5
159. 13411303, 3
160. 13450219, 2
161. 13489699, 2
162. 13490227, 2
163. 13496383, 3
164. 13525907, 2
165. 13532551, 3
166. 13542743, 5
167. 13543963, 2
168. 13549519, 3

50

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

169. 13570103, 5
170. 13572971, 2
171. 13593007, 3
172. 13610899, 2
173. 13625419, 2
174. 13656859, 2
175. 13673783, 5
176. 13761203, 2
177. 13791263, 5
178. 13815691, 2
179. 13828211, 2
180. 13828351, 3
181. 13914151, 3
182. 13972811, 2

183. 13979027, 2
184. 13988551, 3
185. 13991479, 3
186. 13993787, 2
187. 14009731, 2
188. 14029723, 2
189. 14051879, 7
190. 14080279, 3
191. 14142439, 7
192. 14143639, 3
193. 14181359, 3
194. 14234063, 2
195. 14251547, 5
196. 14298283, 2

197. 14330747, 2
198. 14347279, 2
199. 14358899, 3
200. 14390339, 2
201. 14391011, 2
202. 14393299, 2
203. 14400839, 2
204. 14443343, 5
205. 14487311, 5
206. 14649347, 2
207. 14732743, 2
208. 14837687, 2
209. 14908319, 3
210. 15051451, 5

B.2 Second Results: Divide and Conquer Blum-Micali
PRNG

1. 10033759, 3
2. 10033831, 3
3. 10057699, 2
4. 10157767, 3
5. 10161911, 7
6. 10162571, 2
7. 10181947, 2
8. 10183463, 5
9. 10189651, 2
10. 10195051, 2
11. 10208851, 2
12. 10211087, 5
13. 10304579, 2
14. 10316743, 3

15. 10318423, 3
16. 10458419, 2
17. 10564187, 5
18. 10593923, 2
19. 10773731, 2
20. 10779827, 2
21. 10902107, 2
22. 11085983, 5
23. 11211071, 7
24. 11295631, 3
25. 11317259, 2
26. 11435027, 7
27. 11524231, 3
28. 11759131, 3

29. 11848787, 2
30. 11913179, 2
31. 12091103, 5
32. 12121547, 2
33. 12146527, 3
34. 12188107, 2
35. 12188863, 3
36. 12403939, 2
37. 12575527, 3
38. 12590111, 7
39. 12657859, 2
40. 12659819, 2
41. 12682987, 2
42. 12689099, 2

51

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

43. 12692027, 2
44. 12720427, 2
45. 12740579, 2
46. 12757439, 7
47. 12776207, 5
48. 12793663, 3
49. 12862651, 2
50. 12900227, 2
51. 12907571, 2
52. 12910087, 3
53. 12910279, 3
54. 12923243, 2
55. 12934619, 2
56. 12955759, 3
57. 12965027, 2
58. 13009027, 2
59. 13016299, 2
60. 13026707, 2
61. 13076603, 2
62. 13107803, 2

63. 13156063, 3
64. 13170343, 3
65. 13223087, 5
66. 13231651, 2
67. 13264963, 2
68. 13273739, 2
69. 13303811, 2
70. 13325387, 2
71. 13337603, 2
72. 13356103, 3
73. 13409303, 5
74. 13411303, 3
75. 13450219, 2
76. 13489699, 2
77. 13525907, 2
78. 13542743, 5
79. 13543963, 2
80. 13570103, 5
81. 13572971, 2
82. 13593007, 3

83. 13625419, 2
84. 13791263, 5
85. 13828211, 2
86. 13828351, 3
87. 13914151, 3
88. 13972811, 2
89. 13979027, 2
90. 13988551, 3
91. 13993787, 2
92. 14009731, 2
93. 14051879, 7
94. 14251547, 5
95. 14298283, 2
96. 14330747, 2
97. 14390339, 2
98. 14391011, 2
99. 14443343, 5
100. 14649347, 2

52

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of References

[1] M. Blum and S. Micali, “How to generate cryptographically strong sequences of
pseudorandom bits,” SIAM Journal on Computing, vol. 13, no. 4, pp. 850–864,
1984.

[2] P. Stanica, “Pseudorandom bit/number generators part 1,” unpublished.

[3] A. C. Yao, “Protocols for secure computations,” in 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982), 1982, pp. 160–164.

[4] “Discrete logarithm,”Wikipedia. Accessed October 12, 2022 [Online]. Available:
https://en.wikipedia.org/wiki/Discrete_logarithm

[5] “Pohlig-hellman algorithm,”Wikipedia. Accessed November 16, 2022 [Online].
Available: https://en.wikipedia.org/wiki/Pohlig-Hellman_algorithm

[6] W. Trappe and L. Washington, Introduction to Cryptography with Coding Theory,
2nd ed. Saddle River, NJ, USA: Pearson, 2006.

[7] J. Fraleigh, A First Course in Abstract Algebra, 7th ed. Saddle River, NJ, USA: Pear-
son, 2003.

[8] B. Lynn, “Number theory - generators,” Stanford University, Accessed Dec. 9, 2022
[Online]. Available: https://crypto.stanford.edu/pbc/notes/numbertheory/gen.html

[9] D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd ed. New York,
NY, USA: Chelsea Publishing Company, 1978.

[10] M. Blum, L. Blum, and S. Micali, “A simple unpredictable pseudo-random number
generator,”,” SIAM Journal on Computing, vol. 15, no. 2, pp. 364–383, 1986.

[11] D. Long and A. Wigderson, “The discrete logarithm hides o(log n) bits,” SIAM Jour-
nal on Computing, vol. 17, no. 2, pp. 363–372, 1988.

[12] “Berlekamp-massey algorithm,”Wikipedia. Accessed December 6, 2022 [Online].
Available: https://en.wikipedia.org/wiki/Berlekamp-Massey_algorithm

[13] P. Stanica, “Pseudorandom bit/number generators part 2,” unpublished.

[14] K. Rosen, Discrete Mathematics and Its Applications, 8th ed. New York, NY, USA:
McGraw-Hill, 2018.

53

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Pohlig-Hellman_algorithm
https://crypto.stanford.edu/pbc/notes/numbertheory/gen.html
https://en.wikipedia.org/wiki/Berlekamp-Massey_algorithm

[15] L. Bassham et al., “A statistical test suite for random and pseudorandom number
generators for cryptographic applications,” National Institute of Standards and Tech-
nology, December 2010 [Online]. Available: https://csrc.nist.gov/publications/detail/
sp/800-22/rev-1a/final

[16] S. Kho-Ang and S. Churchill, “Python nist randomness test suite,” GitHub, Accessed
Nov. 15, 2022 [Online]. Available: https://github.com/stevenang/randomness_
testsuite

[17] Tabmir, “How to generate large prime numbers for rsa algorithm,” GeeksforGeeks,
Accessed Nov. 12, 2022 [Online]. Available: https://www.geeksforgeeks.org/how-to-
generate-large-prime-numbers-for-rsa-algorithm

[18] S. Gordon-Reid, “Python implementation of the berlekamp-massey algorithm,”
GitHub, Accessed Dec. 3, 2022 [Online]. Available: https://gist.github.com/
StuartGordonReid/a514ed478d42eca49568

54

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://github.com/stevenang/randomness_testsuite
https://github.com/stevenang/randomness_testsuite
https://www.geeksforgeeks.org/how-to-generate-large-prime-numbers-for-rsa-algorithm
https://www.geeksforgeeks.org/how-to-generate-large-prime-numbers-for-rsa-algorithm
https://gist.github.com/StuartGordonReid/a514ed478d42eca49568
https://gist.github.com/StuartGordonReid/a514ed478d42eca49568

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

55

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

WWW . N P S . E D U

W H E R E S C I E N C E M E E T S T H E A R T O F W A R F A R E

	23Jun_Gillespie_Daniel_First8
	23Jun_Gillespie_Daniel
	Introduction
	Motivation
	Background
	Number Theory Concepts
	Quadratic Residues
	Intuition for Modification
	Berlekamp-Massey and Linear Complexity Profiles

	Blum-Micali PRNG
	Classical Blum-Micali PRNG
	Divide and Conquer Blum-Micali PRNG
	Periodic Cycles With the Blum-Micali PRNG
	A Note About Implementing the Blum-Micali PRNG

	Methodology
	Testing Sequences for Statistical Randomness
	Generating Hard Prime Numbers and Choosing Primitive Roots
	Generating Pseudorandom Sequences
	Seed Selection
	Linear Complexity Profile Analysis

	Results and Analysis
	First Test Results: Classical Blum-Micali PRNG
	Second Test Results: Divide and Conquer Blum-Micali PRNG

	Conclusions and Future Work
	Conclusions
	Future Work

	Python Scripts
	Blum-Micali PRNG
	NIST Test Suite
	Hard Prime and Primitive Root Generator
	Linear Complexity Profiles

	Lists of Prime Moduli and Primitive Roots
	First Results: Classical Blum-Micali PRNG
	Second Results: Divide and Conquer Blum-Micali PRNG

	List of References
	Initial Distribution List

	Branding_Back Cover File.pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

