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ABSTRACT 

In January 2021, the DOD released its first Counter-Small Unmanned Aircraft 

Systems Strategy to address the growing risk to military personnel, facilities, and assets 

posed by the rapid technological advancement and proliferation of sUAS. Existing 

counter-drone capabilities—heavily reliant on electronic warfare to disrupt the 

communication link between user and device—no longer address an evolving threat that 

includes autonomous drones, COTS technology, and an increasing number of drones in 

the airspace that can overwhelm a C-sUAS operator. To counter the increasingly complex 

small drone threat, the Army-led Joint Counter-sUAS Office is pursuing materiel and 

non-materiel solutions for its new system-of-systems approach. One vexing C-sUAS 

challenge involves radar detection systems discriminating some sUAS from other flying 

objects, like birds, due to their comparable size, slow movement, and low altitude. 

Inaccurate or inefficient sUAS classification using radar data can be a force protection 

threat due to the limited number of electro-optical sensors and human operators for 

classification at-scale. This thesis uses bird and drone radar track data from two different 

training environments to explore hidden structure in the data, develop independent 

unsupervised and supervised learning models using the two datasets, and experiment with 

data sampling and feature engineering to improve upon model robustness to different 

environments and dynamic environmental conditions. 
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Executive Summary

The rapid advancement of drone technology—including sensor miniaturization, battery
longevity, flight efficiency, and improved control mechanisms—combined with the increas-
ing affordability and commercial utility of drones, has given rise to their ubiquity in society.
However, with the growing number of benevolent purposes for which drones can be used
comes the responsibility of appropriately regulating drone use to minimize the potential for
both high-risk accidental occurrences and nefarious activity by malevolent actors, includ-
ing terrorists and hostile regimes alike. While unmanned aircraft systems (UAS) have been
around for decades, the global proliferation of small unmanned aircraft systems (sUAS)
presents a particularly vexing challenge for the U.S. Department of Defense (DOD) because
of the requirement not only to protect U.S. airspace, installations, and critical infrastructure
from this increasingly capable new threat, but to extend this force protection to a forward
operating base (FOB) or transient mission support site (MSS), in addition to providing
mobile force protection (MFP) in combat. Azerbaĳan’s series of attacks (using low-cost
Turkish Baykar Bayraktar [TB2] drones) on its Armenian neighbor during a 44-day war in
Nagorno-Karabakh in 2020 and Ukraine’s stalwart defensive and counter-attacks (aided by
[TB2] drones and thousands of other sUAS) to negate the overwhelming military advantage
of the Russian advance early in the 2022 Russia-UkraineWar provide two striking examples
of the vulnerability of legacy combat systems to the asymmetric threat of drones at-scale.

While there are multiple aspects of the counter-small unmanned aircraft systems (C-sUAS)
problem set—fromdetection to kinetic or non-kinetic threat response—that defense industry
is working to address, data scientists have been particularly drawn to the challenge of
rapidly and efficiently discriminating sUAS from birds and other atmospheric clutter by
radar systems. Radar systems generally have two primary problems with detecting and
classifying sUAS. The first concerns the combination of their size (easily conflated with
birds) and speed (either very fast or slow, including their hover capability). The second
involves characterizing a diversity of sUAS types (between the two general rotary wing and
fixed-wing categories) that have a variety of flight phenomenology, radar cross sections
(RCS), optical emissions, reflectivity characteristics, and material structures. Although
some research in this area has been dedicated to exploring a system-of-systems approach that
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includes other sensor types—such as electro-optical (EO)/infrared (IR), acoustic, and human 
surveillance—to reduce radar system vulnerabilities, this solution assumes a present-day 
luxury of having such a sensor suite working in tandem at a fixed location. The importance of 
pursuing this “gold standard” solution for efficiently moving from detection to classification 
of aerial objects, however, does not negate the continued importance of improving upon the 
discriminatory performance of radar systems, either stand-alone or within an overarching 
system of different sensor types.

In consultation with Anduril Industries and using radar track data of birds and drones from 
two distinctly different training environments, this thesis purports to achieve two objectives. 
First, we sought to validate (or improve upon) the performance of existing classification algo-
rithms from defense industry using our independent unsupervised and supervised learning 
methodology with models trained in each of the two environments. Second, we attempted 
to enhance the robustness of our models to the two different environments and dynamic 
environmental conditions (i.e., precipitation and wind) that currently necessitate a lengthy 
and costly system calibration process in each new environment.

To achieve these two objectives, our research experimented with radar track data (provided 
by Anduril Industries) of hundreds of birds and drones from each of the two training 
environments by developing, testing, and validating the discriminatory performance of a 
variety of unsupervised and supervised learning models on birds and drones from both the 
environment in which we trained the models and the alternate environment. Through our 
independent methodology, our top-performing models for the two training environments 
successfully validated the performance of Anduril’s classifier (as provided to us by our data 
sponsor) by achieving 97% and 98% accuracy (respectively for the two environments), with 
our models trained and validated in the same environment. However, our observation of a 
20–25% decrease in accuracy (by the top-performing models) in an alternate environment 
validation and our intuition about the distinct differences in the datasets and models from 
the two environments prompted modifications to a second iteration of our methodology 
that achieved marginal improvements in model robustness. This thesis concludes with 
four recommendations to continue statistical and machine learning research using this 
methodology but exploring the collection of additional radar track data features with the 
goal of better capturing the flight phenomenology differences between birds and different 
types of drones.
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CHAPTER 1:
Introduction

The increased availability of inexpensive, capable sUAS [small unmanned 
aircraft systems] is allowing government, industry, and the public to 
employ what was once available only to the military and a small number of 
dedicated hobbyists. These systems are the fastest growing segment of the 
aviation industry, and this growth has dramatically increased the risk of 
sUAS hazards for the military. Improvements in sensor miniaturization, 
battery technology, flight performance, and control mechanisms, along with 
reductions in price and regulations, have led to increased interest in their 
commercial utility. As new technology continues to improve capabilities, 
commercial applications will also expand. Large commercial entities are 
pursuing UAS [unmanned aircraft systems] operations, resulting in a 
dramatic proliferation of highly capable drones occupying U.S. airspace and 
overflying DOD [Department of Defense] installations in the United States and 
around the world. To adapt to these changes in the air domain, the DOD must 
adopt a posture of anomaly detection by seeking ways to highlight abnormal 
behavior and focus attention on those sUAS identified as potential threats 
and hazards. (Miller 2021, p. 7)

1.1 Problem Statement
Towards the goal of rapidly and accurately detecting and classifying sUAS (specifically
groups 1 and 2, Figure 2.1), current systems have achieved an accuracy rate of 85–88%
using exclusively radar track data that includes the radar cross section (RCS) and trajectory
(velocity components and altitude) of an approaching aerial object to discriminate sUAS
from other objects like birds (Liu et al. 2021). Using a multi-modal detection system, the
process usually takes 4–5 seconds from detection to classification. For enhanced security,
the threshold of existing classification algorithms can be adjusted to ensure a fewer number
of “false negatives” occur when classifying drones, but this adjustment can result in an
unreasonably large number of “nuisance alerts” or “false positives” to be verified by a
human-in-the-loop using additional optical imagery or some other sensor. The additional
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screening process can be cumbersome and fatigue human operators, or quickly overwhelm
a limited quantity of electro-optical (EO) sensors, especially at a smaller forward operating
base (FOB) or transient mission support site (MSS). Experimental testing using a recurrent
neural network (RNN) has consistently achieved classification accuracy rates above 90%
and as high as 98%, but this work must be verified in different environments and should
be compared with more intuitive models employing supervised and unsupervised learning.
The research in this thesis will use labeled (drone or bird) radar track data from two training
sites with distinctly different environments to explore potentially hidden structure in the
data, develop and test models using supervised and unsupervised learning with data from
each training site, and evaluate the robustness of the respective models by validating their
performance at both training sites. In doing so, this research gleans important insights
for consideration in future model development for discrimination of drones and birds to
enhance counter-small unmanned aircraft systems (C-sUAS) performance.

1.2 Scope of Research
Using labeled drone and bird radar track data from two unique training sites, this thesis
applies a two-phase statistical and machine learning approach to develop, test, and validate
preferredmodels for classifying sUAS across different environmental conditions. Beginning
with mature radar track data, in 10 Hz increments, from a multi-modal detection system,
our research sought to scrupulously explore the data from each of the two training sites for
any potential hidden structure in the data using unsupervised learning methods in the first
phase. After analyzing the initial results, we considered some of the more promising data
clustering for integration with the development of supervised learning algorithms in the
second phase of our model development. In the second phase, we developed and tested a
range of different prominent supervised learning methods to compare with one another. We
then repeated this two-phase process with an independent data set from an alternate training
site having different environmental conditions. After validating our respective models on
unseen data from the same training site on which we trained them, we then assessed the
robustness of our top-performing models developed from each training site by performing
a second validation on the unseen labeled bird and drone track data from the alternate site.

After performing this complete methodology once to establish a benchmark classification
performance of our models on the alternate training site data, we attempted to reduce
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the apparent overfitting of our models and improve model robustness by altering our data
sampling and adding three components of the acceleration (derived from the velocity
components and timestep increments). In doing so, we observed improvements in the
validation of our models both using data from the same training site on which we trained the
models and on data from the alternate training site. Although we still observed a drop-off
in prediction accuracy of all of our models during our validation on the alternate training
site from the one on which we trained our models, we derived some insights through our
methodology, feature engineering, and sampling adjustments that exploited the differences
in the flight kinematics of birds and drones and can be further refined in future model
development using statistical and machine learning with radar track data.

While some of our clustering analysis using unsupervised learning in the first phase of our
methodology leads us to believe in the potential to also discriminate between the flight
kinematics of different design types of sUAS (i.e., fixed-wing and rotary) for identifying
particular threats or performing sponsor attribution, this thesis only designed and evaluated
models based on their ability to distinguish birds from drones both in the same environment
in which we trained them, and in a drastically different environment. Additionally, while
counter-unmanned aircraft systems (C-UAS) systems often incorporate other sensors, in-
cluding EO, infrared (IR), radio frequency (RF), acoustic, electronic intelligence (ELINT),
and light detection and ranging (LIDAR), during the complete process from sUAS threat
detection to mitigation, this research only considered features derived from radar sensors
in the development of its models. Although exclusively using radar data for this research,
we discuss the potential for generalizing this methodology to incorporate non-radar sensor
data in Section 5.2.1.

1.3 Analytical Framework
This thesis is composed of five chapters. Chapter 2 provides a basis for understanding the
problem set of detecting and classifying sUAS by providing the context of current UAS
and detection system capabilities and a review of existing C-sUAS strategy and research
to improve the discriminatory performance of radar detection systems. In Chapter 3, we
describe our two-phase statistical learning approach using unsupervised and supervised
learning with radar track data and the adjustments made in the second iteration of our
methodology to improve upon our models’ validation results against birds and drones in
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both the training environment and alternate environment. Chapter 4 explains the progression
of our work in terms of the initial benchmark results and subsequent improvements in our
methodology after analyzing the interim performance of our models from both training
sites. In Chapter 5, we summarize the key findings of our research and provide some
recommended areas of future research for improving C-sUAS performance using statistical
and machine learning.
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CHAPTER 2:
Background

The prevalence, cost-effectiveness and increasing sophistication of UAS has opened the
imaginations and ingenuity of many hobbyists, engineers, and entrepreneurs around the
world to the unending possibilities of employing them for amyriad benevolent and beneficial
purposes. The United States DOD, along with defense ministries across the globe, has
successfully employed unmanned systems to support combat operations for decades, and
this century has seen a proclivity of lethal kinetic strikes by unmanned systems as human
trust in their functionality and precision has improved. In its Roadmap of UAS for 2010-
2035, U.S. Army leadership describe “Army UAS supporting Army and Joint operations
[as providing] the Warfighter a disproportionate advantage” over its adversaries (Dempsey
and Rasmussen 2010, p. 7). At the time of the 2010 roadmap, only a handful of countries,
with huge defense budgets and the operational mandate to conduct such warfare against
legal combatants, retained the large-scale capability of unleashing lethal kineticwarfarewith
pinpoint accuracy through unmanned systems (Dempsey andRasmussen 2010). However, in
the last decade, the increasing demand for and prevalence of small unmanned systems in the
commercial sector has paralleled a widespread technological advancement and distribution
of unmanned systems with lethal payloads across the world (Miller 2021).

2.1 UAS Threat
Continuous drone testing and more frequent demonstration of successful large-scale and
costly drone strikes by state and non-state actors has exacerbated tensions in recent years,
evidenced by the strikes on Erbil Airport (Iddon 2021) and Saudi Arabia’s Aramco Oil
Refineries (Barrington 2021) in consecutive months in 2021. About 6 months earlier, Azer-
baĳan employed low-cost Turkish Baykar Bayraktar (TB2) drones in a series of attacks
against their Armenian neighbor, destroying “185 T-72 tanks; 90 armored fighting vehicles;
182 artillery pieces; 73 multiple rocket launchers; 26 surface-to-air missile systems (includ-
ing a Tor system and five S-300s); 14 radars or jammers; one SU-25 war plane; four drones
and 451 military vehicles” during a 44-day war over the mountainous enclave of Nagorno-
Karabakh (Dixon 2020, p. 4). In June 2020, the same TB2 drones avoided engagement and
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successfully employed laser-guidedmissiles to destroy dozens of Russian-made anti-aircraft
vehicles in Syria. In addition to the financial and human toll that such strikes can impose on
high-payoff targets, the attacks by Azerbaĳan’s drones against Armenian military assets and
Iran-backed Houthi rebel’s drones against Saudi Arabia’s oil refineries also demonstrated
the advent of a novel strategy in which unmanned aircraft exploited the vulnerabilities of air
defense systems (Dixon 2020). By carrying out sophisticated reconnaissance and complex
attacks with a succession of drone incursions to probe, saturate and find gaps in the existing
air defense systems, follow-on armed drones were able to find and exploit those vulnera-
bilities to effectively have free reign on unsuspecting and unprotected high-value targets.
Over the span of less than a year in 2020 and 2021, not only did these attacks highlight the
vulnerabilities in sophisticated air defense systems using comparatively inexpensive drones,
but they caused some to speculate that the attacks revealed the beginning of a new paradigm
in the dimensions of warfare previously dominated by ground battles and traditional air
power (Dixon 2020).

If there were still some naysayers skeptical about the immanency and pervasiveness of
this shifting combat advantage and the vulnerability of expensive legacy combat power to
comparatively lower cost combat drones, the loss of 400 out of Russia’s 1200 tanks within
the first month of its February 2022 invasion of Ukraine would cause anyone to pause and
take a closer look. As one example of the asymmetric UAS threat, Ukraine’s purchase of TB2
drones in the single-digit millions of dollars each pales in comparison to the Russian surface-
to-air missile system shown destroyed by that same drone in a March 13, 2022 video and
estimated to be worth up to $50 million (Wang 2022). After many military experts predicted
Russia would over-match Ukrainian defenses and defeat its military within a few weeks due
to its overwhelming combat power, two months later Russia was effectively stalemated and
unable to advance on key population centers due, in large part, to a two-pronged Ukrainian
drone strategy. In addition to the “U.S. provision of hundreds of kamikaze-like loitering
drones that can hunt targets for hours before dropping down to detonate a deadly munition,”
Ukraine’s complement of low-cost commercial-off-the-shelf (COTS) drones as spotters for
artillery and other munitions proved effective in reducing the exposure of its own troops,
stalling the Russian advance, and forcing the Russian military to divert a significant portion
of its resources to conducting anti-drone warfare (Detsch 2022). Two months into the
Russian invasion, experts noted an even greater impact of the COTS drone technology than
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in the 2020 Nagorno-Karabakh war, in which this era of drone prominence emerged. Also
noteworthy in this 2022 instance of drone warfare in Ukraine, observers saw a shift from
the heavier combat-capable drones to a ubiquity of Chinese-made DJI Mavic drones and
the Polish and Turkish counterpart surveillance drones that provided both Russians and
Ukrainians with a clearer common operational picture (COP) at times and improved each
side’s targeting to an effective stalemate (Detsch 2022). The war that originated with a
large-scale air and ground invasion and massive aerial bombardment across all of Ukraine
had been effectively reduced to both sides in the Donbas Region relying heavily on small
expendable drones that could be bought at big-box stores like Walmart and operated by a
child (Detsch 2022).

2.2 UAS Categories and Capabilities
The TB2 drone—featured in the 2020 Nagorno-Karabakh War, the 2021 Erbil and Saudi
Arabia high profile attacks, and Russia’s 2022 war in Ukraine—is an example of a group 4
UAS, considered a large UAS. Starting in 2009, the DOD began categorizing UAS in this
new group system, from 1 to 5, increasing in capability. As shown in Figure 2.1, sUAS are
those in groups 1, 2 and 3; groups 4 and 5 are larger and typically controlled or employed
by state actors. In accordance with its standards, sUAS are lighter in weight (less than 1320
lbs), operate at a lower altitude (less than 18,000 ft MSL) and fly at a slower airspeed (less
than 250 knots) than UAS in the larger groups (Miller 2021). As seen in the successful drone
attacks in 2020, 2021, and 2022, larger UAS continue to present an existential threat and
significant challenge for air defense systems across the world (including the U.S. Integrated
Air and Missile Defense Battle Command System) while travelling farther, flying faster
and carrying a larger explosive payload or more lethal weapon systems than sUAS. Due
to their destructive capacity and ability to exploit vulnerabilities in air defense systems,
novel strategies involving larger UAS will force the United States DOD and other defense
ministries to continually adapt their air defense systems to try and stay ahead of the threat.
In spite of the greater destructive capacity and higher payoff of the larger UAS threat, the
rapid proliferation and lower cost of sUAS, combined with their increasing weaponization
and other nefarious activities by criminals and non-state actors, can present an even greater
challenge for C-UAS systems with the responsibility for protecting personnel, critical assets,
or the operational maneuver of forces on the battlefield (Suits 2020).
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Figure 2.1. The DOD categorizes UAS into Groups 1-5, with UAS in higher
groups increasing in size, speed, and operating altitude. Groups 1-3 are con-
sidered sUAS. Source: Miller (2021, p. 29).

2.3 Adversarial sUAS
In focusing our research on countering the nefarious uses of sUAS, we relied heavily
on the 2020 sUAS Adversary Capabilities Study by the RAND Corporation’s Homeland
Security Operational Analysis Center (HSOAC). The study assessed the nefarious sUAS
uses by deriving use cases frommultiple sources but primarily the Department of Homeland
Security (DHS) C-UASCapabilities AnalysisWorking Group. Since the use cases could not
comprehensively address all types of targets and mission sets, the study focused on relevant
technologies and particular high-impact scenarios (Wilson et al. 2020). After establishing a
baseline set of nefarious sUAS uses, the study developed a framework of adversary sUAS use
cases (Figure 2.2) by extrapolating the baseline nefarious uses into more generic categories
of threats, or “threat vectors.”
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Figure 2.2. Framework of Adversary sUAS Use Cases Organized by Category
(Threat Vector). Threat vectors highlighted in black are those that were
used in a group risk analysis performed by RAND Corporation’s Homeland
Security Operational Analysis Center in its 2020 sUAS Adversary Capabilities
Study. Source: Wilson et al. (2020, p. 68).

From this framework of threat vectors–broadly categorized into attack and nonattack, and
further decomposed within each category–the study outlined 16 threat vectors (Table 2.1)
on which to perform a risk assessment using relative likelihood and consequence. After
applying a composite risk assessment of these threat vectors (Figure 2.3), the study iden-
tified a subset–intelligence, surveillance, and reconnaissance (ISR), conveyance, kamikaze
explosive attack, and chemical, biological, and radiological (CBR) attack–for case studies
as high-risk threat vectors scenarios (Wilson et al. 2020). Upon narrowing the focus of the
case studies to these four high-risk threat vectors, the study proceeded to further analyze
the likely and high-impact scenarios by determining the requisite performance capabilities
necessary to effectively engage in each of the missions. Although sUAS optimally designed
for the nonattack ISR or conveyance missions could conceivably be configured for attack
missions, we focused on sUAS optimally designed for mission success in the high-risk
attack missions: kamikaze explosive attack and CBR.
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Table 2.1. sUAS Threat Vectors. Source: Wilson et al. (2020, p. 69–70).

Threat Vector Description Example

Kamikaze point attack Adversary directs UAS chassis into a target, with only the UAS
itself used as a weapon

UAS intentionally flies into aircraft engine

Kamikaze point attack (with explosives) Adversary directs UAS chassis into a target, with the UAS
containing explosives for greater damage

UAS with plastic explosive lands on facility and detonates

CBR attack Adversary uses UAS to launch a CBR attack, which could
be kamikaze, spraying a substance, or firing a projectile from
stand-off

UAS deposits dirty bomb to facility roof at night, and bomb
activates the next day; UAS sprays aerosolized anthrax above
a facility

Stand-off attack (with firearm) Adversary uses UAS equipped with a firearm to engage target Uzi-mounted UAS shooting into crowd

Stand-off attack (with explosives) Adversary uses UAS for delivery of explosives at range UAS drops grenades into a crowd

Indirect ranged attack Adversary uses UAS for target acquisition and range-finding
for a human-operated long-range weapon

UAS surveils a facility for soft targets to cue mortars located
hundreds of meters away

Diversion in support of attack Adversary uses UAS to distract or divert friendly forces in
support of a larger, manned attack

UAS swarm draws security forces to far side of facility while
manned attack hits main entrance

Active cyberattack/ disruption Adversary uses UAS as a platform for other devices to launch
malicious cyberattack

UAS uses location to gain local network access and installs
malware that provides remote users access/ privileges

Passive electronic collection Adversary uses UAS as a platform for other devices to collect
electronic information from target

UAS with Wi-Fi sniffer lands on facility roof and monitors
traffic; UAS captures two-way radio transmission from law
enforcement

Communications, command, and con-
trol (C3) attack

Adversary uses UAS to support command of and communica-
tion between physically distant adversary actors

UAS serves a mobile relay node for line-of-sight-limited com-
munications (including for other UAS); UASs track multiple
smuggler operations for cartel boss

ISR Adversary uses UAS to detect, identify, and monitor friendly
forces to hinder friendly operations

UAS finds and follows U.S. Border Patrol (USBP) agents to
allow smugglers to evade them; UAS tracks security shift
changes at facility

Disruption/ harassment Adversary usesUASflying in close proximity to friendly forces
to hinder friendly operations

UAS swarm flies into law enforcement officers at outset of raid
to buy adversary time; UAS buzzes aircraft during training
exercise

Conveyance Adversary uses UAS to convey illicit items across or into re-
stricted areas

UAS transports drugs over border and into U.S. urban area;
UAS transports barred weapons into prison

Political symbolism Adversary uses UAS for act of political demonstration UAS defaces hard-to-reach symbol at government facility;
UAS spray paints slogan on government vehicles

Intimidation Adversary uses UAS in publicized demonstration of capability
to elicit concessions from friendly actors

Massive UAS swarm used in coordinated show of force; UAS
delivers supposed explosive payload and operators demand
ransom

Distraction Adversary uses UAS to distract friendly actors not in support
of an attack

UAS swarm pesters lone USBP agent on foot; UAS loiters
above facility courtyard
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Figure 2.3. Risk Assessment of Adversarial sUAS Threat Vectors. The high-
risk threat vectors, as determined by HSOAC team members and reviewers,
are those colored red. Source: Wilson et al. (2020, p. 71).

To better identify the types of adversarial sUAS posing the highest risk while executing the
likely and high-impact missions, the HSOAC study divided sUAS into three levels (low,
moderate, and high) based on four performance characteristics: range (miles), endurance
(minutes), payload (lbs), and speed (knots). The low, moderate, and high specifications for
each of the four sUAS performance characteristics can be seen in Figure 2.4, and both
the assessed sUAS performance level requirements and number of sUAS meeting those
requirements, for each of the high-risk missions, can be seen in Figure 2.5.
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Figure 2.4. Categories of sUAS Performance Capability. Source: Wilson et al.
(2020, p. 72).

Figure 2.5. sUAS Performance Requirements by Mission. Source: Wilson
et al. (2020, p. 73).

This triage of potentially adversarial sUAS and their respective capabilities is useful for
understanding the C-UAS threat picture in terms of most likely or most dangerous courses
of action and allows DHS, DOD or other agencies to better assess vulnerabilities in the
protection of U.S. institutions or forces operating around the world. For the purposes of this
research, understanding the commercially available sUAS platforms capable of effectively
conducting high-risk missions also allows analysts to improve C-sUAS systems by studying
the tracked flight motion patterns, known as white kinematics, to assist in the anomaly-
detection necessary to discriminate drones from birds. As an example, at the time of
this report, only 5% (72) of the commercially available sUAS were capable of carrying a
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moderate payload (between 2.2 and 10 lbs) and flying at a high speed (greater than 75 knots) 
in order to effectively engage in a kamikaze explosive attack mission. This information could 
be used to assess the range and endurance capabilities of those drones that can effectively 
engage in the mission to identify an appropriate sensor suite (in addition to radar) to improve 
timely classification at a shorter range. Although some research in this area, such as Liang 
et al. (2021), has explored methods for deriving malicious intent among multiple drones 
operating in the same air space, this research area continues to evolve as countries and 
localities establish and refine protocol and standards for authorized employment of sUAS.

2.4 The Challenge of sUAS
There are two primary problems involved in the detection and classification of sUAS. The 
first concerns the detection and classification of  very small objects moving at  either very 
fast or slow (including hover) speeds. Group 1 sUAS (i.e., DJI Phantom) are typically under 
9 :�, portable and manually launched. Group 2 sUAS (i.e., Puma LE) typically weigh 9 
to 25 :� and usually launch using more advanced mechanisms. In the visible, thermal, 
radar, and acoustic domains, the smaller signatures can be difficult to detect through the 
clutter echoes caused by various atmospheric conditions at greater ranges. The exceedingly 
slow or fast speeds pose a challenge for radar sensors because of their minimum detection 
velocity (MDV) or maximum measurable velocity (MMV) (Poitevin et al. 2017).

The second problem concerns the challenge of identifying the different types (rotary or 
fixed wing) sUAS because of their different flight phenomenology and diversity of  sUAS 
characteristics in their phenomenology because each has a variety of “material structures, 
optical emissions, reflectivity characteristics, and radar cross sections” (Henderson 2020, 
p. 3). This variability in the sUAS platforms means that the entire problem, from detection
to mitigation, cannot be addressed by a single system and will require a system-of-
systems approach to be successful discriminating based on the “key detectable
elements of an sUAS: shape, size, material structure, velocity, communication signals, and
high-frequency propeller or blade movement or acoustics” (Henderson 2020, p. 3).

Assuming that a potentially adversarial UAS is approaching a military base or other high 
value target with a lethal kinetic capability, the C-UAS process can be decomposed into 
three steps (Figure 2.6) and becomes a problem of detection, identification, and tracking to
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be able to classify the UASwith high enough confidence to make a threat decision regarding
an appropriate kinetic or non-kinetic response before it can effectively target friendly forces.

Figure 2.6. The C-UAS Process. Source: Herrera et al. (2017, p. 5)

Although the DOD has countermeasures designed to address this threat, Maj. Gen. Sean A.
Gainey, director for the counter-drone technologies program, explained that “close to 90%
of the military’s counter-drone capabilities are electronic warfare-type systems [that] use
lasers or microwave-signal propagation to disrupt the communications link between user
and device” (Suits 2020, p. 2). The current counter-drone capabilities, which are heavily
reliant on electronic warfare, will no longer be sufficient to address an evolving threat that
includes autonomous drones and COTS technology, as well as an increasing number of
drones in the airspace, including the potential for UAS swarm, that can overwhelm a limited
number of sensors and a C-sUAS operator (Suits 2020).
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In addition to the evolving UAS capabilities and their proliferation, sUAS employment
options have also expanded. At the benign end of the spectrum, small drones have been a
nuisance by entering the wrong air space at the wrong time. While occasionally innocent
mishaps, adversaries can afford to test the airspace boundaries with minimal operational
risk and a marginal financial loss if a drone is destroyed or intercepted and captured.
However, as seen most recently in Russia’s 2022 War in Ukraine, adversaries are using
drones for a variety of purposes: lasing targets or spotting for indirect and air-to-ground
fires, collecting intelligence, and becoming a weapon themselves (Detsch 2022). The ways
in which adversaries can disguise malevolent activities and perform serious operations
using sUAS is only growing. Additionally, with the incorporation of UAS technology
developments in artificial intelligence and autonomy, drone swarms have become even
easier to coordinate and integrate into operations and provide an offensive advantage against
mismatched air defense systems (Judson 2021).

Concurrent with the challenge of discriminating and countering the adversarial sUAS threat
in a rapidly growing population of drones across the globe, air defense systems (and their
human operators) cannot afford to lose any time or be imprecise in the process fromdetection
to classification of a drone. Since sUAS are both small and fast, if one or more pose a direct
threat, the timeline for mitigation of the threat is critical and will require an effective defeat
or neutralization of the sUAS within 40 B from 1 :< out (Henderson 2020). Using the
example of a DJI Phantom with a speed of 16</B and assuming a closest approach distance
for a micro UAS of 300<, a C-sUAS system requiring 10 B to detect and initiate an accurate
track and 20 B for assessment and neutralization would need a minimum detection range of
300< + (20 + 10)B ∗ 16</B = 780< (Poitevin et al. 2017).

Depending on the environment and the air defense systems, this process of detection and
classification can involve different complicating factors, including line-of-sight obstruc-
tions, atmospheric conditions, and obfuscation with other flying objects like birds. These
unwanted reflections that can be detected by a radar system are called clutter and can be
affected by “precipitation, terrain, urban landscape, sea surface, ground moving targets, and
birds” (Poitevin et al. 2017, p. 2). While the radar data we used in our research was mature
track data (after filtering out environment-related clutter), Anduril Industries acknowledged
that its radar systems can lose precious seconds during the detection process to ensure a
mature track as a result of the aforementioned environmental conditions. Additional im-
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provements in reducing environmental clutter to establish a mature track are beyond the 
scope of this thesis but present another area for improving the efficiency of discriminatory 
performance when considering the entire sequence from detection to mitigation.

2.5 C-sUAS Strategy
In June 2016, the International Conference on Unmanned Aircraft Systems (ICUAS) brought 
together a variety of “groups of qualified military and civilian representatives worldwide, 
organization representatives, funding agencies, industry, and academia [to] discuss the 
current state of UAS advances, and the roadmap to their full utilization in civilian and public 
domains” (IEEE Robotics and Automation Society 2016, p. 1). The conference included 
presentations of current and future research opportunities and the essential technologies 
that need to be utilized for further advancement in UAS (IEEE Robotics and Automation 
Society 2016). While an overwhelming number of articles and presentations from ICUAS 
2016 focused on a fascination with the new opportunities for the UAS technology to become 
increasingly integrated into the fabric of society through commercial industry, a few analysts 
had already recognized and begun work on the critical aspects of detecting and tracking 
sUAS, such as Ganti and Kim (2016).

Immediately following ICUAS 2016, analysts started contemplating the ways in which UAS, 
although still largely in their infancy, were a threat to defense and intelligence operations 
by providing advanced surveillance capabilities to enable adversaries to collect data and 
information to shape military tactics and swarming techniques as a means for adversaries 
to distract, to disorient, and disrupt. Earlier in the same year, several of the U.S. armed 
services were already exploring technologies to address the growing threat, though most 
of the initiatives were in the early stages (Yasin et al. 2016). Although the technological 
solutions for this growing threat were not yet in full development, the importance of a 
strategic framework could already be conceived based on the nature of the specific aspects 
of the C-UAS challenge (Figure 2.7) concerning shortfalls in sensor technology that the 
DOD, DHS, and other government agencies were beginning to address.
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Figure 2.7. C-UAS Challenges. Adapted from Yasin et al. (2016, p. 3).

If the C-UAS gaps in U.S. Army and joint doctrine and capabilities were not already self-
evident, the 25th Infantry Division’sWarfighter Exercise 20-03 revealed that “current Army
C-UAS capabilities and doctrine, especially that found in Army Techniques Publication
(ATP) 3-01.81,Counter-Unmanned Aircraft Systems Techniques, [were] insufficient to meet
the demands of the present and future battlefields” due to materiel and organizational
limitations at the echelons (brigade and below) mostly responsible for targeting sUAS
groups 1 and 2 (Scott 2021, p. 69). Scott (2021) also noted that the insufficient C-sUAS
resources experienced during the exercise relegated the division commander to a heavy
reliance on electronic warfare (EW) to find and target UAS ground stations (Figure 2.8).
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Figure 2.8. Visual Model of the 25th Infantry Division’s C-UAS Targeting
Efforts during Warfighter Exercise 20-03. Source: Scott (2021, p. 72)

Recognizing the sUAS threat posed by state and non-state actors alike, “in November 2019, 
the Secretary of Defense (SECDEF) designated the Secretary of the Army (SECARMY) as 
the DOD executive agent (EA) for C-sUAS” (Miller 2021, p. 3). Shortly thereafter, the 
SECARMY established the Joint C-sUAS Office (JCO) to lead, synchronize, and direct 
C-sUAS activities for unity of effort across the Department. About a year later, in December
2020, Acting SECDEF Christopher Miller signed the first U.S. DOD C-sUAS Strategy,
consisting of three objectives: “enhanc[ing] the Joint Force through innovation and collab-
oration to protect DOD personnel, assets, and facilities at home and abroad, develop[ing]
materiel and non-materiel solutions to facilitate the safe and secure execution of DOD
missions while denying adversaries the ability to impede our objectives, and build[ing] and
broaden[ing] our relationships with allies and partners to protect our interests at home and
abroad” (Miller 2021, p. 3). To address some of the present C-sUAS gaps, the Army is
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already augmenting and integrating its existing Integrated Air and Missile Defense Battle
Command System with its ongoing study of evolving C-sUAS capabilities to be institution-
alized at the Joint C-sUAS academy within the Fires Center of Excellence at Fort Sill, OK
by fiscal year 2024 (Suits 2020).

For UAS of a large enough size (typically group 3 and higher), existing air defense sys-
tems at the U.S. Army Division level have sufficient means to detect, classify and make
a determination of whether the UAS is friendly or potentially foe with enough standoff to
give a decision-maker a variety of options to degrade or diminish the threat (Scott 2021).
However, in the case of sUAS, detection systems must be able to quickly identify, track and
classify hundreds of small flying objects to distinguish birds from drones when they are
first detected using passive radar sensors. To address this threat gap, the Defense Advanced
Research Projects Agency (DARPA) mobile force protection (MFP) program is seeking to
develop an “integrated system capable of defeating self-guided sUAS (i.e. those that do
not rely on a radio or GPS receiver for their operation)” and has been pursuing promising
sensing and neutralization technologies to complement existing MFP systems under devel-
opment (GlobalSecurity 2021a, p. 1). Improvements in the DOD C-sUAS capability will
clearly rely on technologies developed by commercial industries, evidenced by what Glob-
alSecurity (2021a, p. 2) describes as a C-UAS market estimated around “USD 1.8 Billion
in 2020 and expected to grow to USD 5.47 Billion by 2028.” In this market, ground based
platforms, including fixed and vehicle mounted platforms, are expected to continue their
dominance (GlobalSecurity 2021a).

In Section 2.6, we provide an overview of the key sUAS detection and mitigation technolo-
gies for executing steps 1 and 3 of the C-UAS process (Figure 2.6).

2.6 C-sUAS Detection and Mitigation Technologies
Since the 2016 ICUAS, a growing number of research efforts have been dedicated to detect-
ing, tracking, identifying, and mitigating UAS. The predominant detection technologies can
be broadly categorized into acoustic, vision (including EO and IR), passive RF or software
defined radio (SDR), radar, and data fusion. Current mitigation technologies that are be-
ing developed include physical capture (i.e. containment netting), jamming (including RF
communications, command, and control (C3) and global positioning system (GPS) jam-
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ming or spoofing), and destruction (including RF C3 intercept and control or attack using
another UAS or projectile) (Wang et al. 2021). For the scope of this thesis, we assumed a
high-threat sUAS, such as a kamikaze explosive or CBR attack threat, that would require
positive classification as a drone for destruction (i.e., could not be physically captured or
jammed). As such, we did not perform a wholesale review of current C-sUAS mitigation
technologies and whether an alternative detection strategy might be preferred to the positive
drone classification we aimed to achieve with our methodology. With this understood, we
focused our review of detection technologies towards those systems that have achieved suc-
cess in positively identifying sUAS with a high accuracy rate (minimal "false negatives") at
the maximum range possible in all environmental conditions.

In Figure 2.9, we can clearly see that no single detection method is dominant across the
key characteristics of range, position accuracy, and classification, without even considering
the robustness of the detection method in all environmental conditions. Therefore, an
optimal detection strategy must consider the trade-offs and relative importance of the key
characteristics.

Figure 2.9. Comparison of key characteristics between C-UAS sensors.
Source: Samaras et al. (2019, p. 2).

Human surveillance and EO/IR detection methods clearly outperform the top-performing
radar and acoustic sensors in accurately classifying sUAS. However, human-in-the-loop
surveillance systems, even in remote areas with minimal birds and drones, can easily be-
come taxing on a handful of trained human operators. Other vision-discriminating systems,
including EO/IR, also face limitations concerning weather conditions, line-of-sight, and
their maximum effective ranges. In their review of real-time drone detection from EO sen-
sors, Elsayed et al. (2021) explain that the use of IR thermal imaging and visual band
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imaging camera systems, from a cost-to-quality perspective, are extremely appealing, but
each has unique limitations. They note that “IR performs poorly in complex backgrounds”
or situations with no clear line-of-sight, such as in urban areas (Elsayed et al. 2021, p.
2). Low-cost commercial IR sensors also experience issues with moisture in some weather
situations (Elsayed et al. 2021). Within the visible band, they conclude that no model or
technique for EO sensors will work in all environments (Elsayed et al. 2021).

Meanwhile, radar sensors, despite sacrificing some classification accuracy, are uniquely
capable of providing the long-range detection (from a few kilometers to tens of kilometers)
in all light and weather conditions (Samaras et al. 2019). Their ability to detect and then
track multiple aerial objects with sufficient stand-off is highly desirable for the high-threat
environment in which our research is focused. Although the EO/IR detection ranges against
sUAS groups 1 and 2 (Figure 2.1) continue to increase with the improvement of high-
powered camera systems, the range advantage of radar systems (and additional decision
space they offer) more than makes up for their comparatively less accurate classification
performance.

Due to the trade-offs between range and classification accuracy, along with either self-
imposed constraints or other environmental constraints specific to different types of sensors,
an increasing amount of research has focused on data fusion from more than one sensor
to take advantage of the unique benefits of the various types of sensors, in combination,
to further optimize classification accuracy and reduce the “blind spots” that could be
vulnerabilities with any one sensor type. Although research in sensor fusion for drone
detection is relatively scarce, the available research points to this being a fertile area for
achieving more accuracy and robustness in different environments, by contrast with any
single sensor. In their review of sensor fusion results to date, Svanström et al. (2022) stress
that while some results clearly demonstrate improvements in accuracy by compensating for
weaknesses in individual sensors, other results indicate that more research is necessary to
discover optimal combinations of heterogeneous data sources such as audio, visual, and
RF surveillance to reduce information loss. Although our cursory review of the literature
regarding sensor fusion for drone detection leads us to believe that an optimal detection
strategy for achieving a sufficient classification accuracy at the greatest range in all or
specific environmental conditions lies in some combination of different sensors, research in
this area is beyond the scope of this thesis and discussed briefly in Section 5.2.1.
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While acknowledging that an optimal sUAS detection system will likely involve the fusion
of data from multiple different sensors, our research approached this problem set from the
standpoint of protecting a remote and transient FOB or MSS that would not likely have the
luxury of both a fixed passive EO/IR system and an active radar system acting in concert.
In this scenario, a small number of operators would be reliant upon one or more mobile
or vehicle-mounted radar systems that may be the last line of defense for detecting an
adversarial sUAS. Although this austere and transient force posture would be limited to one
or more radar systems, we assumed that the system could rely upon the necessary computing
capacity at the edge to be able to take advantage of statistical and machine learning for sUAS
discrimination.

In order to be effective classifying sUAS with RCS comparable to birds, radar-based drone
detection research has generally gone in one of two directions: utilizing the micro-Doppler
(m-D) signature or utilizing the kinematic data or other derived features from the Range
Doppler (Samaras et al. 2019). In Section 2.7, we conclude this chapter by reviewing other
prominent research that have looked into the improvement of classifying sUAS using the
features of radar track data.

2.7 sUAS Radar Detection Research
In the growing field of sUAS detection and classification using radar data, the “radar m-D
signature is the most commonly employed radar signal characteristic for automatic target
classification” and has been used for a variety of sensing activities, “including ground
moving targets, ship detection, human gait recognition, and other human activity” (Samaras
et al. 2019, p. 7). The m-D signature has proven successful not only discriminating birds
from drones but distinguishing different types of drones due to the ability to statistically
describe and differentiate the intrinsic movements of the rotation of rotor blades on a rotary
wing UAS or the flapping wings of a bird.

In 2016, the year of the ICUAS mentioned in Section 2.5, some promising results in this
research area emerged. Mendis et al. (2016) claimed to be the first to apply deep learning
techniques for radar signature extraction and recognition using the Doppler signatures and
spectral correlation functions of three different micro UAS in a laboratory environment.
Their work improved upon existing non-radar strategies using the distinct sound of UAS
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propellers and the radio signals from remotely controlled UAS, both of which were con-
strained by either the presence of wind and environmental noise or a fully autonomous
UAS. From their laboratory research, they demonstrated the promise of machine learning
by effectively detecting and classifying micro UAS with an accuracy above 90% when the
signal-to-noise ratio (SNR) is >= 0 3�. In other analysis of time velocity diagrams of small
helicopters and multicopters, Björklund (2018) performed feature extraction from the base
velocity or body radial velocity, total bandwidth of the Doppler signal, offset of the total
Doppler, etc. to attain greater than 90% classification accuracy, as well as model robustness
across different target behaviors, ranges, and backgrounds. While the m-D signature for
distinguishing drones from birds has been promising, much of the research has been at
close range and done in artificial simulations due to the scarcity of radar sensors specialized
for small target detection (Samaras et al. 2019). As a result, other research has turned its
attention to extracting sources of information from the motion and RCS related features
derived from surveillance radars.

There have been a variety of research exploring the most useful features for discriminating
between the aerial tracks of drones and birds. While it is certainly possible for an adversarial
controller of sUAS to mimic the flight kinematics of birds so as to reduce their likelihood of
being classified as drones, doing so would also come at the cost of a more efficient or direct
flight path towards an objective and increase the defensive response time for secondary
(or combined) sensors (i.e., EO/IR) or employment of mitigation measures. Mimicking
the flight kinematics of birds would also require additional investment by an adversary in
collecting large amounts of pertinent bird track data to understand and replicate the flight
patterns of its own sUAS. Given these considerations, it is likely that this field of detection
research will continue to be fruitful in drawing insight from the anomalous flight kinematics
of drones to improve discrimination performance.

Drone classification research using flight kinematics radar data begins with first optimizing
the speed at which a multi-modal radar system can detect and begin processing the radar
track data of an aerial object. Shin et al. (2016) used agent-based modeling to find the most
efficient configuration of short and long-range radar sensors to provide reasonable detection
rates at low cost. The arrangement and type of radar sensors can not only impact the range
and speed at which the system can begin processing the aerial object’s track data, but it can
also affect the quality of some of the features of track data that we describe in Section 3.3. For
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this thesis however, we limited the scope of our problem set to improving the classification
performance once the aerial object radar track has been validated or considered a mature
track of an aerial object.

Some research in this area has focused specifically on the RCS while performing statistical
analysis upon the flight telemetry of different types of multicopter and fixed-wing drones
to improve detection (Sedivy and Nemec 2021). Others have analyzed the flight mechanics
and behavior mode differences between drones and birds to derive a small number of
features for a supervised learning random forest classification model, achieving a greater
than 85% classification rate among three target types: drones, birds, and precipitation (Liu
et al. 2021). In addressing the limitations of their research, Liu et al. (2021) make three
specific recommendations for futurework. These research recommendations includemaking
improvements in the tracking accuracy of target motion characteristics, adding RCS to the
target motion characteristics, and correlating aerial object track information with different
surveillance environments to “distinguish between trackswith smooth and consistentmotion
patterns” (Liu et al. 2021, p. 9). Due to the importance of collecting a large quantity of
labeled data for improving the machine learning methods at the heart of discriminating
drones from birds, other research has focused specifically on the problem set of collecting
accurate ground truth classification data (Sim et al. 2019).

This thesis carries forward some of the future work recommendations of Liu et al. (2021),
includes RCS as a feature, as in Sedivy and Nemec (2021), and uses labeled radar track
data from two uniquely different environments in order to explore potential improvements
in classification accuracy while also introducing flight kinematic features with the intent
of improving model robustness to the conditions affecting the flight of birds and drones in
different environments. In Chapter 3, we review our methodology and model development
to pursue these objectives.
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CHAPTER 3:
Methodology and Models

COTS drones continue to evolve in complexity, threaten military and civil-
ian safety, and disrupt operations. Anduril’s end-to-end C-UAS system supports
the entire kill chain in one, easy to use interface with precision, accuracy and re-
liability. Rogue drones are identified, tracked, and disabled in any environment,
day or night. Anduril’s goal is to provide human operators with a comprehensive
picture enabling them tomake critical decisions quickly. Sentry Towers connect
to Lattice to detect and track rogue drones threatening perimeters of military
bases, large public event venues or privately managed critical infrastructure.
Lattice cuts through the noise and creates a shared real-time understanding of
the battlespace. Lattice autonomously parses data from thousands of sensors
and data sources into an intelligent common operating picture in a single pane
of glass. Lattice uses technologies like sensor fusion, computer vision, edge
computing, and machine learning and artificial intelligence to detect, track, and
classify every object of interest in an operator’s vicinity. (Anduril Industries
2022)

3.1 Methodology Strategy and Overview
The ultimate goal of our methodology is to improve upon a system’s discriminatory perfor-
mance using only radar data from the mature track of an unknown aerial object. Although
our consultation with Anduril Industries for our data resulted in some exposure to its ex-
isting models and methodological approach that also informed a baseline understanding
of its current best practices, we embarked upon an independent methodology that made
no assumptions about what had already been tried and tested. Despite Anduril’s relative
satisfaction with the performance of its existing algorithms, the best performing algorithms
relied heavily on a trial-and-error process and “black box” algorithms from extensive ma-
chine learning that seemed to lack a degree of mathematical or flight kinematics intuition.
Additionally, while Anduril has incurred the costs associated with training its system in
each new environment before achieving a satisfactory level of classification accuracy, it is
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unclear how much training is sufficient, how often the system might require retraining due
to changes in the environment, and whether a system’s models can be developed through a
methodology that sustains their performance in different environments rather than requiring
retraining in each new environment. We considered the degree to which a model performed
as well in a different environment (the alternate training site) as in the environment (training
site) in which we developed it, the model’s robustness.

With this understanding of Anduril’s limitations in the context of its own methodology,
our approach sought to first corroborate the performance of its existing models using
our independently developed models with its data. After validating the performance of our
models on unseen bird and drone data from the same environment (training site) in which we
developed our models, we then established a baseline performance of our top-performing
models by validating them on unseen bird and drone data from a drastically different
environment (the alternate training site). In the second iteration of our methodology, we
then adjusted our sampling and added three additional features (acceleration components
derived from the aerial track data) to assess whether our modifications could sustain or
improve upon our baseline performance in the corresponding training environment while
also increasing the model’s robustness to a new environment (the alternate training site).

To do this, we employed a two-phase methodology (Figure 3.4) for training and testing
a variety of models. In the first phase, we performed exploratory data analysis and used
unsupervised learning methods to discover any hidden structure in the data. In the second
phase, we built upon any insights about the structure of the data gained in the first phase to
augment the development, training, and testing of our supervised learning models. Aside
from the goal of improving the prediction accuracy of our models trained in a given
environment, our desire for models that could sustain their prediction accuracy in a different
environment led us think about and test other ways of distinguishing the flight kinematics
of birds vs. drones regardless of the environment in which they are flying. By using a
methodology that validated model performance in two distinctly different environments,
we aimed to provide a more comprehensive and intuitive analysis that could lead to some
useful insights for future model development rather than focusing exclusively on improving
model performance in a given environment that may not translate well elsewhere.

In Section 3.2, we describe the overarching workflow, beginning with our data acquisition,
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in the context of a commonly used computational information design process. Section 3.3
provides an overview of the track data structure and a summary of the sample data we
received from two distinct training environments. In Section 3.5, we conclude this chapter
by describing the statistical learning approach and progression of steps we took to develop
our models in the two-phase training and testing methodology.

3.2 Workflow
As a guide for ensuring a sound and relevantworkflow,we derived ourmethodology fromDr.
Benjamin Fry’s “Computational Information Design” process (Fry 2004) that data scientists
commonly reference in forming the building blocks of their research. In our adaptation of
Fry’s seven-step process (Figure 3.1), the first two steps, acquiring and parsing the data,
involved several interactions with Anduril to provide requisite understanding of both the
track data itself and some contextual understanding of the pre-processing and filtering of
the radar sensor output that resulted in the mature (system validated) track data we received.
For our analysis of radar track data from each testing site, Coastal Training Site (CTS) and
Nevada National Security Site (NNSS), we parsed JavaScript Object Notation (JSON) and
Newline Delimited JavaScript Object Notation (NDJSON) data from hundreds of files for
sUAS (groups 1 and 2) and birds that the system’s sensors detected and visually validated. For
CTS, this included 233 files containing exclusively bird track data and 144 files containing
exclusively drone (sUAS groups 1 and 2) track data. For NNSS, this included 79 files of
bird track data and 112 files of drone track data. Figure 3.2 provides a summary of the track
data received for the two training sites.

27
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



Figure 3.1. Our thesis workflow, as a computational information design pro-
cess, consisted of two separate data acquisitions from our sponsor and a
reiteration of model development after validating model performance and
robustness. Adapted from Fry (2004).

In step three, we initially filtered themature track data to extract eighteen numerical features,
one categorical (binary) response variable, a sub-category (in the case of drones), and a
prediction confidence (assessed by Anduril’s proprietary algorithms) for each time step.
In Section 3.3, we describe the pertinent quantitative features of each mature radar track.
After an initial iteration of model development and testing using a sample taken every
one hundred timesteps (1% sample size), we later performed another iteration of model
development and testing using a random sample (10% sample size) of each bird and drone
track. In the second iteration, we also derived three acceleration components (in the same
directions as the velocity components) and added these numerical features to our model. In
Section 3.4, we discuss our sampling method used in each iteration and assumptions made
when training and testing our models.

After establishing and automating a method for steps one through three of the process,
we spent the bulk of our time in model development and testing by looping through steps
four, five, and six using our two-phase statistical learning approach presented in Section
3.5. Although the scope of this research lent itself to this methodology for systematically
designing, training, testing, and redesigning our prototype models using exclusively radar
data in steps four, five, and six, this workflow could also be adapted for data fused from a
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multi-sensor system (briefly discussed in Section 5.2.1) that could include vision (EO or
IR), RF or SDR, and acoustic sensors.

In Section 3.3, we elaborate on our acquired radar track data, including the data composition
and pre-processing performed in steps one through three prior to our model development.

3.3 Radar Track Data
To perform our methodology we acquired two batches of mature radar track data for aerial
objects (birds or drones) that were detected and tracked by one or more sensors by Anduril’s
system. The data we received was considered mature because the detection system had
already filtered out any noise and verified the presence of an aerial object. Although it is
theoretically possible that the detected aerial object track could be something other than a
bird or drone, our sponsor only provided radar track files for aerial objects that had been
verified as a bird or drone using a secondary sensor (usually optical). In Section 5.2.3, we
discuss ongoing research opportunities in this area where an analyst may have a combination
of labeled and non-labeled radar track data. In our data pre-processing stage, we also ensured
that the batches of files for both the CTS and NNSS locations were complete. In other words,
we had all of the relevant features for the aerial object’s track at every timestep and the
binary categorical response variable. In our NNSS dataset, we discovered and removed
timesteps and, in some cases, entire bird or drone tracks that were missing RCS values.
Although other research, such as Medaiyese et al. (2021), has explored using a combination
of labeled and non-labeled aerial track data by exploiting RF signals or other “fingerprints”
of the aerial object, we had sufficient labeled data to be able to exclude aerial object tracks
with an inconclusive categorical designation. In Section 5.2.3, we also briefly discuss the
reality of collecting labeled track data in a combat environment and the potential for future
research using semisupervised learning to build upon the research in this thesis.

Accounting for our sample data from Anduril, for the CTS location, we received more than
250,000 timesteps of bird track data and more than 150,000 timesteps of drone track data.
The CTS data accounted for 230 unique bird tracks, ranging in length from 230 to 1,480
timesteps, and 144 unique drone tracks, ranging in length from 88 to 1,527 timesteps. For
the NNSS location, we received more than 237,000 timesteps of bird track data and more
than 386,000 timesteps of drone track data. The NNSS data included 79 unique bird tracks,
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ranging in length from 310 to 10,117 timesteps, and 112 unique drone tracks, ranging
in length from 119 to 16,206 timesteps. However, for the NNSS location, after removing
timesteps with incomplete data, we were left with approximately 206,000 and 295,000
timesteps respectively for bird and drone tracks. All of the recorded data had timesteps of
0.1 B42 (10 �I radar system), and a summary of the data can be seen in Figure 3.2 below.

Figure 3.2. Summary of Bird and Drone Radar Track Data

We initially extracted eighteen fields and derived three fields (Table 3.1) relevant to our
analysis. However, we relied exclusively on the three velocity components (East, North, and
Up), three acceleration components (East, North, and Up), RCS, and altitude (meters above
ground level) as the eight principal features and object class (bird or drone) as the binary
categorical response variable for our model development. Although RCS is not the same
as the area of the target, due to the intercepting surface of the object producing varying
levels of reflected power back at the radar during flight, there is an area component of the
measurement that is commonly measured in decibels relative to one square meter (3�B<).
As a reference point in classifying aerial objects, we know that the average bird has a radar
cross section of approximately -20 3�B< (roughly 0.01 <2) (GlobalSecurity 2021b). The
six velocity covariance components account for noise in the radar’s velocity calculations but
were not used in this analysis. During the second iteration and sampling of our training data,
we also derived the east, north, and up acceleration components by calculating the change in
the respective velocity components from the prior timestep to the current timestep (roughly
0.1 B42). Lastly, although we did not have access to Anduril’s proprietary algorithms for
classifying the aerial objects, we did have access to their system’s object class prediction,
prediction confidence, and, in the case of drone predictions, the predicted drone group. This
allowed us to compare Anduril’s prediction accuracy with that of our preferred models.

After performing data pre-processing of the track data, we made one additional decision
with respect to data sampling (Section 3.4) before going into model development.
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Table 3.1. Radar Track Data. With the exception of the eastern, north-
ern, and upward components of the acceleration (derived from the velocity
components and timestamps between timesteps), we extracted the follow-
ing bird and drone radar track data for analysis and statistical learning by
our algorithms. The objectClass and objectClassConfidence variables refer to
Anduril’s predicted object class (bird, drone, or unknown) and the prediction
confidence of its classifier respectively. The objectDescriptor variable refers
to the actual drone group (1–2) of the drone (if known).

Data Name Description Units
timestamp Timestamp of each timestep record in a track B42>=3B−6

createTimestamp Timestamp at the creation of a track B42>=3B−6

lastMeasurementTimestamp Timestamp at the end of a track B42>=3B−6

enuVel_e East(+)/West(-) Velocity Component m/sec
enuVel_n North(+)/South(-) Velocity Component m/sec
enuVel_u Up(+)/Down(-) Velocity Component m/sec

enuVelCov_mxx Velocity Covariance xx Component N/A
enuVelCov_mxy Velocity Covariance xy Component N/A
enuVelCov_mxz Velocity Covariance xz Component N/A
enuVelCov_myy Velocity Covariance yy Component N/A
enuVelCov_myz Velocity Covariance yz Component N/A
enuVelCov_mzz Velocity Covariance zz Component N/A

enuAcc_e East(+)/West(-) Acceleration Component </B422

enuAcc_n North(+)/South(-) Acceleration Component </B422

enuAcc_u Up(+)/Down(-) Acceleration Component </B422

altAgl Altitude (Above Ground Level) meters (m)
rcs Radar Cross Section decibels (dB)

objectClass Predicted Object Class (Anduril Classifier) N/A
objectClassConfidence Prediction Confidence (Anduril Classifier) N/A

objectDescriptor Drone Group (1-2) *if known N/A
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3.4 Data Sampling
Due to our dataset being a set of time series tracks of birds and drones, we initially decided to
sample 1%of the observations (once every 100 timesteps or about every 10 seconds) from all
of our tracks in order to reduce correlation between observations in the development of our
models. Although we could have chosen an even smaller sample size (i.e. every 500 or 1000
timesteps) to reduce correlation further, we balanced our decision with the consideration
of not excluding some of our shorter bird and drone track lengths. The minimum bird and
drone track lengths from the CTS dataset were 230 and 88 respectively. The minimum bird
and drone track lengths from the NNSS dataset were 310 and 119 respectively. For the
purposes of model development, we assumed that our sampling of the tracks every 100
timesteps reduced correlation sufficiently while also ensuring a representative sample of the
bird and drone tracks we received from our sponsor.

Upon completing an initial iteration of training, testing and validating our models using a
1% sample (Samp100), we decided to contrast our results with a 10% random sample (Rand-
Samp) from each of the bird and drone tracks in the second iteration of our methodology.
By randomly selecting 10% of the timesteps from each bird and drone track, we acknowl-
edge a degree of increased correlation in our dataset but wanted to investigate whether this
larger sample dataset could allow our models to learn more from the feature space that
also included the three derived acceleration components. Figure 3.3 shows the resulting
sample sizes for both the initial iteration (Samp100) and second iteration (RandSamp) of
our methodology.

Figure 3.3. Summary of Bird and Drone Radar Track Samples Data

Having discussed our data sampling considerations and assumptions, Section 3.5 elaborates
on our statistical learning approach for developing our models using those samples.
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3.5 A Statistical Learning Approach
In this section, we present our thesis methodology (Figure 3.4) as a two-phase statistical
learning approach performed separately using the bird and drone track data from each of
the two training sites: CTS and NNSS. In the first phase (Section 3.5.1), we performed
exploratory data analysis (EDA) and unsupervised learning methods to extract important
variables, understand variable relationships, analyze outliers, and ultimately reveal any un-
derlying structure in the data to provide insights and potentially gain marginal improvements
in prediction accuracy during the second phase. In the second phase (Section 3.5.2), we
trained, tested, and analyzed our supervised learning models both with and without an
additional cluster group feature derived from the first phase. We concluded our two-phase
model development by validating our models using the unseen track data from both of the
CTS and NNSS training sites. We discuss our validation process and results in Chapter 4.
Following the initial iteration (Samp100) to establish a baseline performance of our eight
models (four models trained on each of the CTS and NNSS training site track data), we fol-
lowed an abbreviated version (excluding some of the unsupervised learning methods) of the
first phase of the two-step model development process in the second iteration (RandSamp)
to contrast with the baseline performance of our eight models.
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Figure 3.4. Our thesis methodology consisted of two iterations, each involving
different data sampling techniques (Section 3.4) of a two-phase statistical
learning approach (Section 3.5). We then analyzed and assessed each of our
trained algorithms by comparing their respective performances from the two
iterations by validating each algorithm’s prediction accuracy using both the
entire dataset from the training site on which the algorithm was trained and
the entire dataset from the alternate training site.

In Section 3.5.1, we describe our insights from performing EDA on the track data from
each of the two training sites and the unsupervised learning methods we used to reveal any
inherent structure in the data and relationships between our features.

3.5.1 Model Development Phase 1 (Iteration 1 - Samp100)
We began this methodology using our Samp100 (1% sample described in Section 3.4) of
the respective CTS and NNSS datasets. In our EDA, the plots of RCS vs. altitude for both
the CTS and NNSS datasets (Figure 3.5) showed some natural separation in the data beyond
which we might expect to find almost exclusively either drones or birds. At the CTS site
(Figure 3.5a), aerial objects with a RCS of −133�B< or higher (less negative) are almost
exclusively drones. At the NNSS site (Figure 3.5b), we can say the same for aerial objects
with a RCS of −153�B< or higher (less negative). When examining altitude above ground
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level (AGL), we can see a similar phenomenon in which aerial objects above 300< AGL
at both the CTS and NNSS sites are almost exclusively birds. Based on these plots alone,
we can expect that our models will be able to exploit the separation in these features for
predictive power with respect to birds and drones.

a. CTS b. NNSS

Figure 3.5. Two-dimensional plot of RCS (x-axis) vs. altitude (y-axis) for the
Samp100 (1st Iteration) of drones (red) and birds (blue) for CTS (left) and
NNSS (right) data showing clear distinctions in RCS and altitude between
birds and drones in both datasets.

We performed similar two-dimensional plots of the eastern vs. upward velocity (Figures
3.6a and 3.6b) and northern vs. upward velocity (Figures 3.6c and 3.6d) components, and
we found less clear separation in the data for discriminating birds and drones at the CTS
site. However, at the NNSS site, we found that aerial objects traveling faster than 15</B42
upwards or downwards were almost exclusively drones. This distinction between the CTS
andNNSS datasets is noteworthy because it could likely lead to overfitting bymodels trained
and tested using the NNSS dataset during the alternate environment (CTS) validation.
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a. Velocity East vs. Up (CTS) b. Velocity East vs. Up (NNSS)

c. Velocity North vs. Up (CTS) d. Velocity North vs. Up (NNSS)

Figure 3.6. Two-dimensional plots of the eastern (x-axis) vs. upward (y-
axis) and northern (x-axis) vs. upward (y-axis) components of the velocity
for the Samp100 (1st Iteration) of drones (red) and birds (blue) for CTS
(left) and NNSS (right) data showing a clear separation between the two
at speeds greater than 15</B42 in the upward or downward directions for
NNSS dataset.
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Principal Component Analysis (PCA) - Samp100
While the two-dimensional plots can help provide some superficial trends in the data, we
next turned our attention to some unsupervised learning methods, beginning with principal
component analysis (PCA), to garner some additional insights regarding our features.

Although analysts typically use PCA to reduce the dimensionality of their feature space to a
handful of principal components that can explain a large percentage (usually above 85%) of
the variance in a more simplified form (James et al. 2017), our analysis of the Samp100 track
data began with only five predominant features: RCS, altitude, and the northern, eastern,
and upwards components of the velocity.

When we consider the number of components that can explain greater than 85% of the cu-
mulative variance in the response variable of the CTS (Figure 3.7a) and NNSS (Figure 3.7b)
Samp100 datasets, we could have potentially reduced our feature space by one dimension
(four dimensions instead of five) while being able to explain about 85% of the cumulative
variance. However, we chose to keep our original feature space.

a. CTS - Samp100 b. NNSS - Samp100

Figure 3.7. The graph of the cumulative variance proportion (y-axis) ex-
plained by number of principal components (x-axis) for the CTS (left) and
NNSS (right) Samp100 (first iteration) datasets did not provide a convincing
case for reducing the number of principal components used in our models.
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Clustering Analysis - Samp100
We then turned to clustering analysis to discover distinguishing groups of drones and
birds in multi-dimensions beyond what we saw in the two-dimensional plots of RCS vs.
altitude (Figure 3.5) and the upward velocity component vs. the northern and eastern
velocity components (Figure 3.6). Our approach set forth to identify a handful of potentially
promising insights in the first phase of our model development to use as a categorical input
(i.e. by cluster or grouping) within some of the more promising supervised learning models
for marginal improvements in prediction accuracy. This approach has proven successful
in handling the classification of outliers, as in the credit card fraud detection research
of Carcillo et al. (2021), and for efficiently handling new spatial-temporal data for human
activity recognition in Budisteanu and Mocanu (2021).

To identify an optimal number of clusters using the sample data from each of our training
sites, we began with a traditional approach using the k-means algorithm (with Euclidean
distance) to establish a baseline assessment. We then proceeded to two other common
clustering algorithms: a k-medoids algorithm, pam (partitioning around medoids), that
is comparable to k-means but more resistant to outliers, and three different hierarchical
clustering algorithms–hclust, agnes (agglomerative nesting), and diana (divisive analysis)–
with two different linkage methods (complete and Ward’s) using the hcut function featured
in the factoextra package in R.We used the additional k-medoids and hierarchical clustering
algorithms in order to corroborate our results using k-means by both observing the change in
average silhouette width score and observing the number of significantly larger and distinct
clusters that form while increasing the number of clusters : .

To analyze our k-means clustering performance, we began by looking at how increasing the
number of clusters : affects the sum of square distances in clusters using an “elbow plot”
to focus our search for an optimal number of clusters. In Figure 3.8, we see two promising
elbows in the CTS plot (Figure 3.8a) at two and three clusters and two promising elbows in
the NNSS plot (Figure 3.8b) at three and four clusters.
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a. CTS - Samp100 b. NNSS - Samp100

Figure 3.8. Using an “elbow plot” for our k-means clustering analysis, we
can see that either two or three clusters for the CTS Samp100 (left) and
either three or four clusters for the NNSS Samp100 (right) may be promising
clustering configurations.

To corroborate these visual results and aid us in selecting a preferred number of clusters,
we can use a silhouette plot and look for the number of clusters that maximizes the average
silhouette width across all of the clusters. For our CTS and NNSS Samp100 datasets, we
observed the average silhouette performance across number of clusters : (Figure 3.9) using
Pam, Hclust, Agnes, and Diana.
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a. CTS - Samp100 b. NNSS - Samp100

Figure 3.9. Our clustering analysis of the average silhouette width for differ-
ent numbers of clusters : for multiple algorithms led us to conclude that the
optimal number of clusters for the CTS (left) and NNSS (right) Samp100
datasets are two and three clusters respectively.

For the CTS Samp100 dataset (Figure 3.9a), the highest average silhouette width across
all clustering algorithms occurred with two clusters. For the NNSS Samp100 dataset (Fig-
ure 3.9b), although the k-means, along with the Hclust, and Agnes algorithms using the
Ward’s linkage (minimizing within-cluster variance), resulted in marginally higher average
silhouette widths above three clusters, we only see three prominent clusters and negative
average silhouette widths among some of the clusters as we increase : beyond three clusters
(Figure 3.10). Separately, the Diana algorithm, along with the Hclust and Agnes algorithms
using Complete linkage (for more compact clusters), achieve their highest average silhou-
ette widths at three clusters. In our assessment of average silhouette widths, only the Diana
algorithm showed a slight preference for two clusters (rather than three clusters), while our
Hclust and Agnes algorithms usingComplete linkage scored the same for both two and three
clusters. This tells us that our optimal cluster configuration would most likely be two or
three clusters for the NNSS Samp100 dataset.
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a. NNSS - Samp100 (3 Clusters) b. NNSS - Samp100 (4 Clusters)

Figure 3.10. Although the K-means silhouette plot of silhouette width (y
axis) within each cluster (x axis) of the NNSS Samp100 dataset with four
clusters (right) achieves a slightly higher average silhouette width score than
with three clusters (left), only three prominent clusters appear in both plots.

From our apparent identification of three distinct clusters in the NNSS Samp100 dataset (as
opposed to two prominent clusters in the CTS Samp100 dataset), we hypothesize that our
algorithms may be able to not only discriminate birds from drones, but potentially between
different types of drones (i.e. rotary and fixed-wing) due to their unique flight patterns.
Although we were unable confirm our hypothesis regarding different proportions of rotary
wing and fixed-wing drones in the NNSS and CTS datasets, our observation of mostly
rotary wing drones at the CTS site and understanding of the terrain differences—open
desert terrain (NNSS) and coastal mountains (CTS)—leads us to believe that the difference
in number of prominent clusters could reflect the proportional difference of UAS types at
the two sites. In Section 5.2.4 we discuss the potential implications of such analysis.

After completing the first phase of our model development using the CTS and NNSS
Samp100 datasets, we next turned our attention to our supervised learning model develop-
ment in phase two.
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3.5.2 Model Development Phase 2 (Iteration 1 - Samp100)
After using unsupervised learning methods and clustering analysis in the first phase, phase
two, of our first model development iteration, encompassed the training and testing of
supervised learning models both with and without cluster groups (as categorical variables)
derived from the first phase. Since our ultimate goal was the validation of ourmodels on both
the entire CTS and NNSS datasets, we sought to investigate and compare an assortment
of models while maintaining interpretability and speed. We chose to investigate logistic
regression, classification and regression tree (CART), k-nearest neighbors (KNN), random
forest, and boosting (Adaboost) algorithms by using an 80/20 split between the training
and testing sets of the sample data in order to derive our top performing CTS and NNSS
models for validation in both their training environment and the alternate environment. In
the first iteration, we performed this supervised modeling process (Figure 3.11) using five
numerical features (excluding the acceleration components from Table 3.1) both with and
without the categorical cluster group from the first (unsupervised) phase of our modeling.

Figure 3.11. The supervised modeling process (phase 2) consisted of a com-
petition among algorithms that were trained, tuned, and tested on the CTS
(green) and NNSS (orange) samples to develop top performing models with
and without the cluster groups (as categorical variables) from the first phase.
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Logistic Regression - Samp100
We began by fitting a logistic regression model after centering and scaling the five numeric
predictors. For both the CTS and NNSS Samp100 datasets, although the initial models only
included RCS, altitude, and the northern velocity component as significant predictors, we
added the upward velocity component as well after performing a stepwise model selection
process, known as feature subsetting. Appendix A.1.1 shows a comparison of the logistic
regression models. Using a fitted logistic regression model via stepwise model selection,
we can see the strong influence of RCS and altitude and the nearly linear relationship in
two-dimensional feature space that fairly accurately approximates what are birds (blue) and
drones (red) (Figure 3.12). The comparable linear relationship between RCS and altitude,
observed in the CTS (Figure 3.12a) and NNSS (Figure 3.12b) Samp100 plots, indicates the
potential robustness of the logistic regression models to different environmental conditions.
However, we next turned to KNN for a simple instance-based machine learning algorithm
that could potentially discover similarity among birds and drones in higher dimensions of
our feature space without some of the rigidity of our logistic regression.

a. CTS - Samp100 (Logistic) b. NNSS - Samp100 (Logistic)

Figure 3.12. Although the fitted stepwise logistic regression model includes
four predictors, we can see the strong influence of RCS and altitude within
the models for both the CTS (left) and NNSS (right) Samp100 datasets.
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K-Nearest Neighbors (KNN) - Samp100
Similar to our logistic regression model development, we began by centering and scaling
the five numeric predictors before training and tuning our models using different numbers of
nearest neighbors : to find our best model. We applied both a 10-fold cross-validation and
bootstrapping to thoroughly test our performance on the training set and discovered the best
performance using : = 5 for both the NNSS and CTS KNNmodels. Appendix A.1.2 shows
the comparison of our cross-validation and bootstrapping results. We can see the expected
improvement of both the CTS (Figure 3.13a) and NNSS (Figure 3.13b) KNN models over
their respective logistic regression models in their ability to understand the feature space
using basic instance-based machine learning and indicated the potential promise of more
sophisticated methods.

a. CTS - Samp100 (KNN) b. NNSS - Samp100 (KNN)

Figure 3.13. Our best performing KNN models for the CTS (left) and NNSS
(right) Samp100 datasets demonstrated an improved ability to understand
the feature space using basic instance-based machine learning and the po-
tential promise of more sophisticated methods.

After observing this improved performance, we then looked to compare the results with
CART models that could allow us to interpret how our models were dissecting the feature
space, including their improved handling of outliers and interactions between the predictors.
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Classification and Regression Trees (CART) - Samp100
While our logistic regression models seemed to perform well using four out of the five
predictors, their prediction performance exploited some natural separation between birds
and drones mostly in terms of RCS and altitude alone to derive their models. Although
the KNN models, as basic instance-based supervised learning algorithms, improved upon
the performance of the logistic regression models, as an instance-based method, the model
depends on its training set and would not generalize to other instances. In addition, since
the KNN models treat all predictors equally, we cannot see which predictors are strongly
correlated to the response variable. We then developed CART models to fine-tune our
prediction capacity (over the logistic regression models) while also being able to interpret
how our algorithm chose to categorize the feature space into a tree-based structure for
improved classification of birds and drones. Although the best-performing CART models
for the CTS and NNSS Samp100 datasets (Figure 3.14) produced results comparable to
their respective logistic regression models due to the weighted importance of both RCS
and altitude in each of them, the resulting tree diagrams (Figures A.3 and A.4) and CART
model summaries (Appendix A.1.3) offered some additional insights about the other three
velocity component predictors and greater fidelity about the distinguishing features of birds
and drones. Using a determination of RCS alone, our CTS and NNSS CART models
would achieve a prediction accuracy near 80% and 78% respectively. For our NNSS CART
model, also knowing the altitude would allow us to increase our prediction accuracy from
78% to nearly 91%, and also knowing the northern velocity component would increase
our prediction accuracy above 93% (interpreting the respective CART model summaries in
AppendixA.1.3). The achievement of thismodel performance using simple and interpretable
CART models gave us confidence that the succeeding models developed using random
forests and boosting, though less interpretable, would achieve superior performance.
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a. CTS - Samp100 (CART) b. NNSS - Samp100 (CART)

Figure 3.14. Our best performing CART models for the CTS (left) and NNSS
(right) Samp100 datasets performed comparably to their respective logistic
regression models but provided insights in their respective tree diagrams
(Figures A.3 and A.4) contrasting birds and drones at the two training sites.

Random Forests - Samp100
After gaining a better understanding of how birds could be discriminated from drones using
the CART models developed using the Samp100 datasets at each of the training sites, we
then sought to improve the prediction performance further using random forest models
with the five original features before adding a sixth cluster group feature from our best-
performing unsupervised learning models during the first phase of our model development.
As expected, our best-performing models derived from random forests using the original
five features in our Samp100 datasets (Figures 3.15 and 3.16) outperformed their respective
logistic regression, KNN, and CART models.
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a. CTS - Samp100 (Random Forest) b. NNSS - Samp100 (Random Forest)

Figure 3.15. Our best performing Random Forest models for the CTS (left)
and NNSS (right) Samp100 datasets improved upon the prediction accuracy
of the logistic regression, KNN, and CART while losing some interpretability.

a. CTS - Samp100 (Random Forest) b. NNSS - Samp100 (Random Forest)

Figure 3.16. Confusion Matrices for our best performing Random Forest
models for the CTS (left) and NNSS (right) Samp100 datasets show greater
than 91% and 97% accuracy respectively.

Although we also tested our random forest models with an additional categorical cluster
group feature, we observed no improvement by including them. We next looked at an
adaptive boosting (AdaBoost) algorithm to gain any additional marginal improvements.
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Boosting (AdaBoost) - Samp100
Boosting, a common technique for making minor improvements on models for binary
classification problems, consists of improving the prediction power through the conversion
of weaker learners to stronger ones. Adaptive Boosting (AdaBoost) uses decision trees of
one-level to accomplish this. Using the adabag package and boosting method in R, we
were able to accurately classify three additional aerial objects in both the CTS and NNSS
Samp100 datasets and achieve a marginal accuracy improvement (Figure 3.17).

a. CTS - Samp100 (AdaBoost) b. NNSS - Samp100 (AdaBoost)

Figure 3.17. Confusion Matrices for our best performing Adaptive Boosting
(AdaBoost) models for the CTS (left) and NNSS (right) Samp100 datasets
show a slight improvement over their respective random forest models.

Although our random forest and adaptive boosting models validated their performance
(achieving comparable results as Anduril’s classifier) on unseen data from their respec-
tive training environments, our initial evaluation of their performance in the alternate
environment demonstrated a large degree of overfitting to their respective training environ-
ments. This initial robustness evaluation of the CTS and NNSS models generated using the
Samp100 datasets can be seen in Section 4.2.

As a result of our dissatisfaction with the performance of our models in the alternate
environment, we performed a second iteration of the methodology but modified our track
sampling (Section 3.4) and added the derived acceleration components (northern, eastern,
and upward) to our feature space with the goal of both reducing the overfitting we observed
by seeking to discover any hidden components of the flight kinematics to more effectively
differentiate birds from drones. In our second iteration, discussed in Sections 3.5.3 and
3.5.4, we revisited our methodology from the first iteration but with eight features (instead
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of five) in our RandSamp dataset. Due to the larger sample size and additional features
(making the runtime of our unsupervised learning models cost prohibitive), we performed
an abbreviated first phase in our second model development iteration and focused on
contrasting our supervised learning models and results with those from the first iteration.

3.5.3 Model Development Phase 1 (Iteration 2 - RandSamp)
During the first phase of our RandSamp (Iteration 2) model development, we performed an
abbreviated EDA by first looking for any observable separation between birds and drones
among the added acceleration components. While we observed some minimal separation of
drones around the periphery (higher acceleration values) of the CTS and NNSS acceleration
component plots in Figure 3.18, we did not see the degree of separation between birds and
drones that we had expected. We also observed some possible erroneous radar sensor track
data (birds and drones with unnaturally high component acceleration values) that could not
be resolved with our data sponsor after using our process of deriving the acceleration com-
ponents. Since the data points (representing both birds and drones) with high acceleration
values (> 100</B422) can potentially be explained by sporadic wind gusts, we chose to
not remove any data points from our models and generally acknowledge the impact that
wind can have in obscuring a differentiation between birds and drones with respect to their
velocity and acceleration components within the models. In Section 5.2.2, we elaborate on
our recommendation to capture the real-time wind-speed and direction at the geographic
location of the aerial object to improve the discriminatory capability of the models.
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a. Acceleration East vs. Up (CTS) b. Acceleration East vs. Up (NNSS)

c. Acceleration North vs. Up (CTS) d. Acceleration North vs. Up (NNSS)

Figure 3.18. Two-dimensional plots of the eastern vs. upward and northern
vs. upward acceleration components of drones (red) and birds (blue) for
CTS (left) and NNSS (right) RandSamp datasets show minimal separation
between birds and drones for either of the training sites.

We then conducted PCA to determine whether our addition of the acceleration compo-
nents had cluttered our feature space with any unnecessary noise and could be reduced in
dimensionality.

50
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



PCA - RandSamp
Similar to our assessment of the cumulative variance explained by the principal components
in the first iteration of our model development, we could have reduced the dimensionality
by one (from eight to seven) due to the proportion of cumulative variance (0.9) explained
by seven components in both the CTS (Figure 3.19a) and NNSS (Figure 3.19b) Rand-
Samp datasets. However, we chose to keep the eight original features intact for our model
development process in the second iteration.

a. CTS b. NNSS

Figure 3.19. We made the same determination not to reduce our number
of principal components using the CTS (left) and NNSS (right) RandSamp
datasets due to the lack of significant reduction in dimensionality (potentially
from 8 to 7 dimensions) of the feature space.

Following our PCA, we revisited an abbreviated clustering analysis (using only k-means)
to discover whether any new clustering may have emerged in our RandSamp datasets that
were not evident in the Samp100 datasets.
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Clustering Analysis - RandSamp
As in the first iteration, we used our respective CTS and NNSS “elbow plots” of our total
within cluster sum of squares to identify where our potentially optimal k-means number
of clusters might occur (Figure 3.20). While our CTS RandSamp “elbow plot” (Figure
3.20a) seemed to indicate two clusters as optimal, our NNSS RandSamp plot (Figure 3.20b)
provided a pronounced “elbow” at three clusters.

a. CTS - RandSamp b. NNSS - RandSamp

Figure 3.20. Our k-means clustering “elbow plots” for our RandSamp
datasets suggest a likelihood of two clusters for the CTS RandSamp dataset
(left) and three clusters for the NNSS RandSamp dataset (right).

Due to the exponential increase in run-time for the unsupervised learning algorithms we
used in the first iteration, we did not perform any additional clustering analysis beyond
our observation of the k-means “elbow plots.” However, if anything, the second iteration
k-means clustering analysis provided an even clearer observed difference between the num-
ber of clusters between the CTS and NNSS training site datasets. After completing an
abbreviated first phase of the second iteration, we then repeated the second phase of our
model development to identify any noticeable differences in our model selection processes
and performance of our CTS and NNSS models using the RandSamp datasets.
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3.5.4 Model Development Phase 2 (Iteration 2 - RandSamp)

Logistic Regression - RandSamp
In the second iteration, despite our addition of the three acceleration components to the
feature space, only the northern acceleration component (CTS) and upward acceleration
component (NNSS) provide any additional predictive power to their respective logistic re-
gression models. It is also noteworthy that all three velocity components (as opposed to
only two of the velocity components using the Samp100 datasets) are included in both the
CTS and NNSS logistic regression models using the RandSamp datasets. Appendix A.2.1
provides additional comparative analysis of the resulting CTS and NNSS logistic regression
step models using the RandSamp datasets. While the RandSamp models altered signifi-
cantly from their respective Samp100 models, their accuracy rates showed only marginal
improvement (Figure 3.21).

Figure 3.21. The optimal CTS and NNSS logistic regression models devel-
oped using the RandSamp datasets both improved their prediction accu-
racy in comparison to their respective models developed using the Samp100
datasets.

After observing the logistic regression models’ marginal improvements in prediction accu-
racy with the inclusion of all three velocity components and a portion of the acceleration
components, we also expected an improvement in the respective KNN models by using the
RandSamp datasets.
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KNN - RandSamp
While the CTS and NNSS KNN model training, using both bootstrapping and 10-fold
cross validation methods, resulted in an optimal selection of : = 5 using the Samp100
dataset, our application of the same methods using the RandSamp dataset (second iteration)
resulted in an optimal selection of : = 3 for both the CTS and NNSS KNN models and an
improved prediction accuracy. This decrease in the optimal : value (from : = 5 to : = 3)
suggests that the KNN model using both the CTS and NNSS RandSamp datasets were able
to capture the finer structure of their respective feature spaces better than their respective
KNN models using the Samp100 dataset. We also observed a large improvement in the
prediction accuracy of the RandSamp KNN models (Figure 3.22).

Figure 3.22. The optimal CTS and NNSS KNN models developed using the
RandSamp datasets both improved in prediction accuracy compared to their
respective models developed using the Samp100 datasets.

After observing the improved performance of both the logistic regression and KNNmodels
developed using the CTS and NNSS RandSamp datasets, we next looked to their respective
CART models to interpret any changes to the prominent features in their respective models
by observing the tree diagram and model summary.
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CART - RandSamp
In our second iteration of CART model development, we observed an improved prediction
performance in comparison with the respective Samp100 CART models. Although we
observed both RCS and altitude as prominent features in both the Samp100 and RandSamp
CTS and NNSS CART models, if anything, those two features increased in importance
in the respective CTS and NNSS CART models using the RandSamp datasets as seen in
the CTS and NNSS model summaries (Appendix A.2.3). As with the logistic regression
and KNN RandSamp models, our respective CART RandSamp models also improved their
prediction performances (Figure 3.23).

Figure 3.23. The optimal CTS and NNSS CART models developed using the
RandSamp datasets both improved their prediction accuracy in comparison
to their respective models developed using the Samp100 datasets.

After observing the improvements in both model interpretability and performance for the
CTS andNNSSCARTmodels trained using theRandSamp datasets, we expected to observe
the same for our random forest and boosting algorithms.

Random Forests - RandSamp
As in the first iteration of random forests model development, we trained and tested CTS and
NNSS random forest models using our eight features before adding a ninth cluster group
categorical feature from our best-performing unsupervised learning models during the first
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phase of the second iteration. During the second iteration, we not only observed improved
performance in both the CTS and NNSS base random forests models (Figure 3.24), but
we were also able to achieve an additional improvement using the additional cluster group
feature using two, three, and four cluster k-means models. Appendix A.2.4 discusses the
improved model performance with cluster groups, including our highest observed accuracy
rate (99.2%) for the NNSS random forest model with four cluster groups.

Figure 3.24. The optimal CTS and NNSS Random Forest models developed
using the RandSamp datasets both improved in prediction accuracy by com-
parison with their respective models developed using Samp100 datasets.

After observing improved performance in our CTS and NNSS random forests models (both
with and without cluster groups) trained using the RandSamp datasets, we then concluded
our model development by revisiting our adaptive boosting algorithm.

Boosting (Adaboost) - RandSamp
To complete our model comparison, we trained and tested our adaptive boosting algorithm
using the RandSamp datasets and improved upon both of our respective Samp100 CTS and
NNSS AdaBoost models (Figure 3.25). Although our RandSamp CTS and NNSS AdaBoost
models both improved upon their respective Samp100models, their respective random forest
models (Figure 3.24) achieved the highest prediction performances of any of our models
during our testing.
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Figure 3.25. The optimal CTS and NNSS Adaptive Boosting (AdaBoost)
models developed using the RandSamp datasets both improved in prediction
accuracy by comparison with their respective models developed using the
Samp100 datasets.

After completing a second iteration of our two-phase model development, we brought
forward sixteen total models for validation: four types of supervised models (logistic re-
gression, CART, random forests, and AdaBoost), each trained and tested using two different
datasets (Samp100 and RandSamp) sampled from each of the two different training site
environments (CTS and NNSS). In chapter 4, we contrast the performance of our respective
models by validating their prediction accuracy both on unseen bird and drone tracks from
their respective training environments and the alternate environment.
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CHAPTER 4:
Application, Results, and Analysis

Towards our goal of improving the prediction performance of our topmodels, we established
a baseline prediction accuracy for four models (logistic regression, CART, random forests,
and AdaBoost) at two unique training site environments (CTS and NNSS) using a sample
from the bird and drone tracks every one hundred timesteps (Samp100). We originally
performed unsupervised learning during the first phase of model development with the
intent of either reducing dimensionality or identifying cluster groups that could be used to
improve the performance of the supervised learning models in the second phase. However,
we chose to keep the original set of features intact, rather than potentially reducing the
dimensions by one. We also excluded the k-means cluster group feature in our baseline
random forest models because we did not observe any improvement to our models when
including the additional feature during our model testing. Despite not incorporating the
unsupervised learning results from the first phase of our model development into our
supervised learning models, our EDA aided our intuition regarding the supervised learning
models, and our cluster analysis of the differences between the CTS and NNSS track data
allowed us to speculate about the ability of our algorithms to not only discriminate between
birds and drones but between different types of drones. We discuss the latter in Section
5.2.4 within the context of potential future work with drone discrimination.

Our top baseline prediction accuracy (models trained using the CTS and NNSS Samp100
datasets) was 91.6% and 97.8% for the CTS and NNSS datasets respectively. Although our
top-performing models performed as well or better than Anduril’s classifier (as provided to
us by the data sponsor) in discriminating birds from drones within the training environment,
we were dissatisfied with the robustness of our models during the validation results of our
CTS and NNSS models against the track data from the alternate training site. The drop in
prediction accuracy indicated model overfitting to the track data from the respective training
environments.

As a result of our findings from this initial iteration of model development and testing, we
conducted a second iteration of model development and testing by modifying our training
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data sampling in two ways. We added three additional features, the three acceleration com-
ponents (derived from the change in our velocity components per timestep), and randomly
sampled 10% (as opposed to 1%) of the data from each of the bird and drone tracks. In
Section 4.1 we evaluate the validation of our CTS and NNSS models developed using the
(RandSamp) datasets to improve upon the performance of our respective models developed
using the Samp100 datasets. In Section 4.2, we compare the validation of those samemodels
against the bird and drone track data from the alternate environment from which we trained
them to assess any improved performance in the unseen environment.

4.1 Training Environment Validation
For our validation of model performance in the training environment, we ran our sixteen
models—four types of supervised models (logistic regression, CART, random forests, and
AdaBoost), using two different data sampling methods (Samp100 and RandSamp) on the
track data from each of the two training sites (CTS and NNSS)—on the complete dataset
from the training environment on which the models were trained. Although we already
had an indication of how our models would perform based on their testing during the
second phase of both iterations of the model development, we evaluated a comparison of
the prediction accuracy of the models and accounted for each model’s receiver operating
characteristic (ROC) curve by comparing themodel area under the curve (AUC) scores. This
would allow us to compare the models with one another by plotting each model’s sensitivity
(probability of correctly interpreting drones as drones) against its specificity (probability
of correctly interpreting birds as birds). Although we still compared the models with one
another (and the classifier that our data sponsor provided us), analysts also typically want
models to achieve AUC scores above 0.8. While the accuracy rates and AUC scores against
the training environment dataset were important to our analysis, our ultimate goal was
improving upon our validation results against the alternate environment dataset using the
respective models developed using the RandSamp dataset without sacrificing our prediction
accuracy (or AUC scores) in the training environment. In Appendix A.3, we discuss the
training environment performance using balanced prediction accuracy to compare the four
model types for each of the training CTS and NNSS models. Although the comparison of
balanced prediction accuracy gave us a strong sense of how the models compared with one
another, we also compared the model ROC curves and AUC to visually and quantitatively

60
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



evaluate the respective models. Figure 4.1 shows an AUC score comparison for each of
the four model types using the Samp100 and RandSamp datasets with the highlighted
scores indicating the better performing model. Overall, we observed similar AUC scores
in all eight of the model comparisons, with three out of the four CTS models and all
four NNSS models using the RandSamp dataset improving their AUC scores. With the
exception of the CTS logistic regression model, the improvements in AUC scores using the
RandSamp dataset agreed with the balanced accuracy comparisons (Figure A.10). Although
we ultimately sought improved performance in the alternate environment, in this effort, we
had not sacrificed performance in the training environment.

Figure 4.1. Using AUC scores to compare the performance of CTS and NNSS
models built using the RandSamp datasets with their respective models built
using the Samp100 datasets, we observed improvement (highlighted in yel-
low) in three out of the four CTS and all four NNSS model types built using
the RandSamp datasets.

After performing a quantitative evaluation of all four model types for our CTS and NNSS
training environments using AUC scores, we also wanted to evaluate the visual represen-
tation of all four model types for each of the two training environments by comparing the
respective ROC curves with one another.

4.1.1 CTS Models - Training Environment Validation
In contrasting the CTS ROC curves from our training environment validation (Figure 4.2) of
the models built using the Samp100 (Figure 4.2a) and RandSamp (Figure 4.2b) datasets, we
observed a marginal decrease in performance of the AdaBoost (orange) model and marginal
increase in performance of the random forest (red) model. Meanwhile, we observedminimal
changes to our logistics regression (black) and CART (green) models developed using the
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RandSamp dataset. However, as we would see in our alternate environment validation using
AUC scores (Figure 4.4), the CTSAdaBoost model using theRandSamp dataset improved in
performance while the respective random forest model decreased in performance, exhibiting
a trade-off between performance in the two environments.

a. CTS - Samp100 - Validation b. CTS - RandSamp - Validation

Figure 4.2. In our training environment comparison of the ROC curves for
each of the model types trained using the CTS Samp100 (left) and Rand-
Samp (right) datasets, we can observe consistent performance between all of
the models with the exception of the AdaBoost (orange) model whose ROC
curve shows a marginal decrease in performance compared to the random
forest model (red) showing a marginal increase performance.

4.1.2 NNSS Models - Training Environment Validation
When we contrasted our NNSS ROC curves from our training environment validation
(Figure 4.3) of the models built using the Samp100 (Figure 4.3a) and RandSamp (Figure
4.3b) datasets, we did not observe any discrepancies between our model types that differed
from our expected performances. When comparing the CTS and NNSS models to one
another, it is noteworthy that theNNSS logistic regression (black) andCART (green)models
(Figure 4.3) were able to achieve superior performance in comparison with their respective
CTS models (Figure 4.2). In fact, we observed that our NNSS logistic regression and CART
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models were able to discriminate birds from drones in the track data almost as effectively as
the random forest and AdaBoost models, while their respective CTS models were far less
effective. We believe this difference in the respective logistic regression and CART models
between the two training sites may reveal an important environmental difference that we
discuss further in Section 5.2.2.

a. NNSS - Samp100 - Validation b. NNSS - RandSamp - Validation

Figure 4.3. In our training environment comparison, the models developed
using the NNSS Samp100 (left) and RandSamp (right) datasets showed
comparable performance in terms of their ROC curves. Notably, the logistic
regression (black) and CART (green) models appear to perform better than
their respective models trained using the CTS datasets (Figure 4.2).

After evaluating the comparative training environment performance of the four model types
between those developed using the Samp100 and RandSamp datasets for both the CTS and
NNSS training environments, in Section 4.2, we then evaluated the comparative robustness
of the models by validating the models using the labeled track data from the alternate
environment from which the models were trained.

63
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



4.2 Alternate Environment Validation
In our evaluation of the comparative model performance against bird and drone tracks in
the alternate environment, similar to our performance evaluation, we were less focused
on the raw balanced accuracy and AUC scores (although we did consider them) than on
whether our new data sampling from the second iteration of our methodology had achieved
improved performance (in terms of balanced accuracy and AUC scores). While we observed
an improvement in all four of our CTS models and three out of the four NNSS models from
our balanced accuracy comparison (Figure A.11), our comparison of AUC scores revealed
the same improvement in all four of the CTS models but improvement in only one of
the four NNSS models. Although we observed some disagreement between our balanced
accuracy and AUC score comparison with respect to the NNSS models, it is clear that
our adjusted sampling in the second iteration of our model development improved the
robustness of our CTS models more than it did the NNSS models. It is also noteworthy that
our random forest and AdaBoost models (with the exception of the NNSS random forest
model), which are most likely to overfit to a particular training environment, achieved the
most significant performance improvements during the alternate environment validation
using the RandSamp dataset. Although we observed a balanced accuracy decrease by
20-25% in our top performing models when we compare their performance between the
training environment (Figure A.10) and alternate environment (Figure A.11) AUC scores,
all but the two CART models achieved AUC scores above 0.8 (Figure 4.4). These results
suggest the importance of calibrating the models in a new environment, especially when the
environments are drastically different. In Appendix A.4, we discuss the apparent trade-off
in balanced accuracy between model calibration for a particular environment and the goal
of increasing a model’s robustness for multiple different environments. In Section 5.2.2,
we discuss some of the environmental impacts on bird and drone track data and make
some recommendations for improving a model’s robustness to changing environmental
conditions.
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Figure 4.4. Using AUC scores to compare the respective model types de-
veloped using the CTS and NNSS RandSamp and Samp100 datasets, we
observed improvement in all four of the CTS models but only one of the four
NNSS models developed using the RandSamp datasets.

In addition to quantitatively comparing the alternate environment performance of our respec-
tive CTS and NNSS models using AUC scores, we also compared the visual representation
of the model ROC curves in Sections 4.2.1 and 4.2.2.

4.2.1 CTS Models - Alternate Environment Validation
For our CTS models, aside from observing that each model’s AUC score improved during
the second iteration using the RandSamp dataset, we can observe that the ROC curves
(Figure 4.5) for the random forest (red) and AdaBoost (orange) models become less erratic
and more consistent. The apparent robustness of the logistic regression (black) model to
environmental conditions indicates that the model’s heavier reliance on an aerial object’s
RCS and altitude features as discriminators among the CTS track data proved most valuable
in discriminating birds from drones in the NNSS training environment track data.
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a. CTS - Samp100 - Robustness b. CTS - RandSamp - Robustness

Figure 4.5. In the alternate environment validation, the models developed us-
ing the CTS RandSamp dataset (right) demonstrated improved performance
by comparison with the models developed using the Samp100 dataset (left).

4.2.2 NNSS Models - Alternate Environment Validation
Since our alternate environment balanced accuracy (Figure A.11) and AUC score (Figure
4.4) model comparisons provided a mixed result regarding two of the four models developed
using the NNSS training environment datasets, we took a closer look at the model ROC
curves to better understand this phenomena.

In our observation of the ROC curves for the NNSS models (Figure 4.6), other than the
AdaBoost (orange)model, the decrease in AUC score performance by the other threemodels
is not immediately evident. For the random Forest and logistic regression RandSampmodels
that marginally improved (less than 1%) in balanced accuracy, both did so with marginal
decreases in sensitivity (prediction rate against drones) and marginal increases in specificity
(prediction rate against birds). The most significant overall observation from the ROC
curve analysis is the dramatic improvement of the AdaBoost RandSamp (orange) model by
comparison with the other three models. This improvement is largely due to the model’s
dramatic relative reduction in its false positive rate (predicting birds as drones).Nevertheless,
ourNNSS comparative analysis of theROCcurves,AUCscores, and balanced accuracy rates
between the two iterations revealed only marginal success towards our goal of improving
model robustness to conditions in the alternate environment.
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a. NNSS - Samp100 - Robustness b. NNSS - RandSamp - Robustness

Figure 4.6. For our NNSS RandSamp dataset (right) only the AdaBoost (or-
ange) model improved upon its Samp100 dataset (left) performance during
the alternate training environment validation.

From our alternate environment comparison of NNSS and CTS ROC curves, although the
CTS random forest and AdaBoost models made the most significant improvements in the
second iteration, our NNSS random forest and AdaBoost models still performed better than
their respective CTS models. Although we could not confirm any additional information
about drone types in the specific track data batches we received for each training site, our
observation of a consistent difference in the number of prominent clusters (two and three
clusters in the CTS and NNSS datasets respectively), discussed in Sections 3.5.1 and 3.5.3,
leads us to hypothesize that there may have been different proportional representations of
rotary wing and fixed-wing drones in our track data between the two training sites. With
the understanding that our more sophisticated learning algorithms (i.e. random forest and
AdaBoost) rely more heavily on understanding the differences in flight phenomenology
between birds and drones, an algorithm only able to identify one homogeneous drone
type (as opposed to two) would be disadvantaged in discriminating birds from drones in
an environment with a comparable proportion of rotary wing and fixed-wing drones. We
discuss this topic and its implications for future research in Section 5.2.4.
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CHAPTER 5:
Conclusion

5.1 Summary of Results
From our original consultation with Anduril Industries, we designed our research plan
with the intent of accomplishing two goals. First, we wanted to apply a more systematic,
methodical, and rigorous approach towards developing an improvedmodel (or corroborating
the performance of Anduril’s existing classifier) for discriminating birds from drones.
Second, we wanted to determine whether we could develop a model with greater robustness
towards discriminating birds from drones in an unfamiliar environment from the one in
which we trained it. The latter result would have an impact on the time spent calibrating a
system’s model in each new environment.

Towards the first goal, our top performing CTS model, using random forests, achieved a
balanced accuracy above 97% using the RandSamp dataset (with additional acceleration
components) in the second iteration. Our top performing NNSS models, using random
forests and an adaptive boosting (AdaBoost) algorithm, both achieved a balanced accuracy
above 98% from the second iteration. Both models improved upon the performance of
Anduril’s classifier (per the CTS and NNSS datasets provided by our data sponsor).

Towards our second goal of developing a more robust model, we did not develop a model
whose performance in an unseen environment would have been acceptable to use without
re-calibrating for that new environment. However, after completing a first iteration of model
development, our modified sampling and inclusion of acceleration components in our
models led to marginal improvements in most of our models in discriminating birds from
drones in an unseen environment.

As a result of our systematic, comprehensive, and rigorous model development process, we
derived insights about the learning process of our models to help improve the performance
of existing models and identify areas for future model improvements in discriminating
between birds and drones. In Section 5.2, we discuss several areas for future work.
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5.2 Future Work
As a result of our systematic, comprehensive, and rigorous model development process,
we were not only able to enhance intuition and interpretability of our models, but we were
able to understand how our models adapted with the change in sampling techniques and the
addition of features to the models. In doing so, we identified some additional opportunities
for future work in this growing research area of C-sUAS. From our research, we identified
four of these opportunities.

5.2.1 Combining Radar and Optical Sensor Data
Our research demonstrated an effective two-phasemodel development process using entirely
radar data to first perform unsupervised learning and identify preferred cluster groups to
add as categorical features to the supervised learning model development in the second
phase. Although we observed some marginal improvement in the accuracy of random forest
models in the second iteration of our model development using a two-cluster, three-cluster,
and four-cluster categorical feature (Appendix A.2.4), we did not use any models with
cluster group features in our validation process. However, we believe that this process could
be used to include categorical cluster group features from other sensor data, to include
EO/IR or RF. This hybrid semi-supervised learning approach has proven effective in other
areas by producing robust models capable of accurately classifying outliers in the fraud
detection research in Carcillo et al. (2021) and producing more efficient (in terms of speed
and accuracy) classification models requiring the addition of new spatial-temporal data for
human activity recognition research in Budisteanu and Mocanu (2021). We recommend
continuing to use a two-phase process and employing the best combination of unsupervised
and supervised learning methods while incorporating other sensor data that may contribute
to enhancing the prediction accuracy. In addition to improving prediction accuracy, the
inclusion of other sensor data less sensitive to environmental conditions will improve model
robustness while reducing the vulnerabilities of any one type of sensor data. Siewert et al.
(2019, p. 1) demonstrated the feasibility of reducing false positives using a combination
of EO/IR, acoustic, and radar sensor data by adding features such as “target characteristic
shape, texture, and spectral data.” Corradino et al. (2021) offered a similar application of this
technique involving machine learning classification algorithms with a combination of radar
and optical satellite imagery data to improve the change detection performance for mapping
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lava flows. While continued improvement should be pursued using exclusively radar data,
the scale of improvement necessary to stay ahead of the adversarial drone population will
inevitably require the incorporation of other sensor data in models.

5.2.2 Environmental Impacts on Track Data
After observing the inherent challenge of developing a robust model that can sustain its
discriminatory performance in different environments, we sought to first specify some of
the aspects of the problem and then offer some potential future research to pursue. Due
to the dynamic conditions in the environment (i.e. wind and precipitation), along with the
unique landscape of the environment itself, a supervised learning methodology reliant on
features of the flight patterns and phenomenology of birds and drones for model discrim-
ination will inevitably have noisy datasets due to the changing environmental conditions
or unique wind patterns or obstacles based on the particular landscape. Although drones
will generally fly along pre-programmed or human-controlled routes without any regard for
wind patterns or other environmental conditions, birds will adjust their flight pattern based
on the conditions (such as drafting back and forth into a headwind). Liu et al. (2021, p. 2–3)
also recognized the importance of this problem set as they performed “flight mechanic and
behaviour analysis” and “motion characteristic modelling” to distinguish bird and drones
under dynamic environmental conditions. Our recommendation for improving supervised
learning model performance would be the inclusion of real-time wind speed and direction at
the geographic location of the aerial object being tracked. By also identifying and mapping
the geographic locations that may serve as obstacles or avoidance areas for drones (but not
for birds), it may also be possible to add to the discriminatory performance by learning the
behavior of aerial objects that may be affected differently by the landscape and obstacles
within a particular environment. In an effort to improve the robustness of our models in
different environments, the desire to pursue models that can account for the environmental
conditions will ultimately need to be balanced with the time and effort involved in calibrat-
ing a system in a new environment. We recommend additional research studying how much
track data may be necessary to train, test, and validate a new model to a given standard and
how much of the track data must be labeled data. In Section 5.2.3 we discuss the potential
future research with semi-supervised learning.
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5.2.3 Semi-supervised Learning with Radar Track Data
Although our researchwas fortunate to have complete radar track data for hundreds of labeled
bird and drone tracks, gaining access to such data in an austere or combat environment
can be challenging, time-consuming, and costly. Consistent with the problem of knowing
how much labeled track data is necessary to calibrate a system in a new environment, a
related problem is what proportion of the tracks need to be labeled for adequate model
development for a given standard. To answer this question, it is also important to understand
the consequences of performing supervised learning with labeled datasets that do not
accurately reflect a balanced sampling of the different types of drones and their respective
flight phenomenologies to be learned by the models. In Section 5.2.4, we discuss the
importance of this finding.

5.2.4 Drone Discrimination: Rotary Wing and Fixed-Wing
Through the unsupervised learning phase of our model development during both iterations,
our clustering analysis clearly identified a difference in the number of prominent clusters
(two and three respectively for the CTS and NNSS track data) that indicated the ability of
our models to not only understand the different flight phenomenology of birds and drones,
but between different types of drones (i.e. rotary wing and fixed-wing drones). In particular,
during our clustering analysis for the NNSS track data, we believe our unsupervised learning
methods were able to distinguish birds, rotary wing drones, and fixed-wing drones as
three distinct clusters. Meanwhile, we hypothesize that our clustering analysis for the CTS
track data resulted in only two prominent clusters because the CTS track data may not
have included a sufficient number of fixed-wing drones, or the fixed-wing drone flight
phenomenologywas easily conflatedwith that of birds within the CTS training environment.
Although the datasets Anduril Industries provided for this research did not include additional
labeled information about the types of drones, our anecdotal observation of a predominance
of rotary wing drones at the CTS training site and understanding of the distinct differences
in the two training environments leads us to conclude that the proportional representation
of drone types in a dataset and the environmental impact on the flight patterns of different
drone types should be considered within the context of future research in this area.
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5.3 Summary of Findings
In our post mortem of the research conducted in this thesis, while initially embarking on a
mission to improve upon the performance of existing algorithms that discriminate birds from
drones, we found that our methodology—including a comprehensive exploration of the data
in two unique training environments and experimentation with data sampling and additional
derived features—provided the most illuminating insights towards this problem set. From
the time of our initial consultation with our data sponsor to the completion of this study,
Anduril Industries has continued to improve upon its existing algorithms and radar system
calibration to new environments, while also integrating other non-radar sensors within its
system-of-systems design. During the same time period, the Russia-Ukraine War played out
in real-time and extended beyond the one-year mark, in part due to Ukraine’s ability to
leverage some asymmetric advantages of sUAS to exploit vulnerabilities in what was once
thought to be an insurmountable and overwhelming Russian military advantage. Although
C-UAS defense technologies will inevitably gravitate towards protecting large installations
and critical infrastructure against the threat of larger UAS (groups 3 and higher) with a
greater destructive capacity, research efforts cannot ignore and must continue to pursue
incremental improvements in statistical and machine learning models for radar data alone
against the menacing challenge that sUAS (groups 1 and 2) will continue to be, especially
at-scale. While the optimal C-sUAS solution lies in an “all of the above” approach that
includes improved technological system capabilities, increased ingest and processing of
real-time data, and the integration of different sensor types to reduce the vulnerabilities of
any one sensor, rigorous testing and evaluation of statistical and machine learning models,
as explored in this thesis, must keep pace with technological advancements to stay ahead of
adversarial sUAS.
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APPENDIX: Additional Graphics and Outputs

A.1 Supervised Learning Modeling Outputs (Samp100)

A.1.1 Logistic Regression - Model Selection Comparison
For both the CTS and NNSS Samp100 datasets, using the stepwise model selection process
allows us to slightly improve our Akaike Information Criteria (AIC) score (by comparison
with their respective baseline regression models) and to derive some additional insight
regarding the additional importance of the upward velocity component as a predictor after
eliminating the eastern component of the velocity from our models.

CTS - Samp100 (Logistic Regression Step Model Summary)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.3161 -0.4329 -0.1525 0.4255 3.1335

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.82804 0.06616 -12.515 < 2e-16 ***

scale(enuVel_n) -0.27878 0.06265 -4.450 8.6e-06 ***

scale(enuVel_u) 0.11820 0.06046 1.955 0.0506 .

scale(altAgl) -0.87139 0.08383 -10.394 < 2e-16 ***

scale(rcs) 2.97347 0.10453 28.446 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4362.2 on 3265 degrees of freedom

Residual deviance: 1991.3 on 3261 degrees of freedom

AIC: 2001.3
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Number of Fisher Scoring iterations: 6

By comparing the CTS Samp100 logistic regression step model summary (above) with the
NNSS Samp100 model summary (below), we can see that both the northern and upward
velocity components offer greater predictive power in the NNSS Samp100 model, and the
NNSS model also provides a better balance of goodness of fit and complexity (measured
by a lower AIC score).

NNSS - Samp100 (Logistic Regression Step Model Summary)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.8961 -0.1183 0.0324 0.1861 3.1690

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.05295 0.09067 11.613 < 2e-16 ***

scale(enuVel_n) -0.38696 0.08310 -4.656 3.22e-06 ***

scale(enuVel_u) 0.16816 0.06435 2.613 0.00896 **

scale(altAgl) -3.08305 0.17685 -17.434 < 2e-16 ***

scale(rcs) 3.93341 0.15646 25.140 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5417.8 on 4014 degrees of freedom

Residual deviance: 1434.8 on 4010 degrees of freedom

AIC=1444.77

Number of Fisher Scoring iterations: 7
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A.1.2 K-Nearest Neighbors (KNN) - Testing for :
Using both bootstrapping and a 10-fold cross-validation, we were able to quickly and
thoroughly tune and test our KNN models using : values from 1 to 40 to corroborate our
best-performing models using the CTS and NNSS Samp100 datasets. Our optimal : values
(lowest error) using both bootstrapping (brown) and cross-validation (gold), appear in the
first ten using the NNSS Samp100 dataset (Figure A.2) but for much higher : values for
the CTS Samp100 dataset (Figure A.1). We ultimately chose : = 5 for both the (CTS) and
(NNSS) Samp100models by observing our earliest “knee” that seems to agree between the
two algorithms and approximates the minimum error observed.
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Figure A.1. For the CTS Samp100 dataset, although we observed marginally
lower error rates for some higher : values using both the bootstrapping
(brown) and cross-validation (gold) methods, we ultimately chose : = 5
because of the “knee” that appears at an approximate minimal error rate
using both methods.
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Figure A.2. For the NNSS Samp100 dataset, while ignoring : = 1 due to
the likelihood of overfitting to the training set, we chose : = 5 because of
the “knee” in the bootstrapping (brown) graph that also approximates the
minimum error rate observed for both methods.

A.1.3 Classification and Regression Trees (CART) - Model Diagrams
Although the best-performing CTS and NNSS CART models provided comparable results
as their respective logistic regression models, the CART models offered some additional
insights with respect to howwe can distinguish birds from drones across all of the predictors
using their model tree diagrams. Additionally, the tree diagrams and CARTmodel summary
data allow us to contrast the numerical differences between the distinguishing features of
birds and drones observed in the CTS and NNSS training environments. Using the CTS
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Samp100 dataset, ourCARTmodel summary (below) andCARTmodel tree diagram (Figure
A.3) tell us that nearly 92% of the aerial objects having a RCS less than −13.7 are birds and
nearly 86% of the aerial objects having a RCS greater than −13.7 are drones. We can also
quantitatively see the overwhelming importance of RCS and altitude by comparison with
the three velocity components that have comparable importance with one another.

CTS - Samp100 (CART Model Summary)

CP nsplit rel error xerror xstd

1 0.7277032 0 1.0000000 1.0000000 0.02197910

2 0.0100000 1 0.2722968 0.2762431 0.01395221

Variable importance

rcs altAgl enuVel_u enuVel_e enuVel_n

84 10 2 2 2

Node number 1: 3266 observations, complexity param=0.7277032

predicted class=OBJECT_CLASS_BIRD expected loss=0.3879363 P(node) =1

class counts: 1267 1999

probabilities: 0.388 0.612

left son=2 (1288 obs) right son=3 (1978 obs)

Primary splits:

rcs < -13.71406 to the right, improve=939.50680, (0 missing)

altAgl < 255.2532 to the left, improve=165.68750, (0 missing)

enuVel_n < 1.012891 to the left, improve=136.34710, (0 missing)

enuVel_e < -0.2071627 to the right, improve= 72.16830, (0 missing)

enuVel_u < 0.2295878 to the left, improve= 22.41724, (0 missing)

Surrogate splits:

altAgl < 17.55489 to the left, agree=0.655, adj=0.124, (0 split)

enuVel_u < -2.565018 to the left, agree=0.614, adj=0.022, (0 split)

enuVel_e < 13.4608 to the right, agree=0.614, adj=0.021, (0 split)

enuVel_n < -18.82278 to the left, agree=0.614, adj=0.021, (0 split)

Node number 2: 1288 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.1420807 P(node) =0.3943662
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class counts: 1105 183

probabilities: 0.858 0.142

Node number 3: 1978 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.08190091 P(node) =0.6056338

class counts: 162 1816

probabilities: 0.082 0.918

Figure A.3. Using rpart in R, the Samp100 CART tree diagram only shows
the primary split between birds and drones based on RCS alone.

Using the NNSS Samp100 dataset, our CART model summary (below) and tree diagram
(Figure A.4) tell us that nearly 95% of the aerial objects having a RCS greater than −16.1
are drones and nearly 82% of the aerial objects having RCS less than −16.1 are birds. The
NNSS CART model tree diagram tells us that we can assert an even higher percentage
of those respective drone and bird populations if we also know whether the aerial object
is flying above or below 135< and 407< above ground level and faster or slower than
5.2</B42 to the south and 9</B42 to the north. Additionally, by comparison with the CTS
Samp100 CARTmodel, the NNSS model attributes a greater relative importance to altitude
(as opposed to RCS) and the velocity components.
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NNSS - Samp100 (CART Model Summary)

CP nsplit rel error xerror xstd

1 0.72027110 0 1.0000000 1.0000000 0.01915925

2 0.03696858 1 0.2797289 0.2797289 0.01236382

3 0.02926679 2 0.2427603 0.2501540 0.01177051

4 0.02156500 4 0.1842267 0.2045595 0.01075248

5 0.01000000 5 0.1626617 0.1817622 0.01018641

Variable importance

rcs altAgl enuVel_u enuVel_n

56 37 4 3

Node number 1: 4015 observations, complexity param=0.7202711

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.4042341 P(node) =1

class counts: 2392 1623

probabilities: 0.596 0.404

left son=2 (2174 obs) right son=3 (1841 obs)

Primary splits:

rcs < -16.09467 to the right, improve=1161.31200, (0 missing)

altAgl < 240.1558 to the left, improve= 792.89790, (0 missing)

enuVel_n < -13.22583 to the left, improve= 91.38170, (0 missing)

enuVel_u < -1.404805 to the right, improve= 45.08646, (0 missing)

enuVel_e < -14.64278 to the left, improve= 23.31037, (0 missing)

Surrogate splits:

altAgl < 175.6927 to the left, agree=0.747, adj=0.448, (0 split)

enuVel_u < -0.9123494 to the right, agree=0.570, adj=0.063, (0 split)

enuVel_e < 5.219891 to the left, agree=0.543, adj=0.003, (0 split)

Node number 2: 2174 observations, complexity param=0.03696858

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.05427783 P(node) =0.5414695

class counts: 2056 118

probabilities: 0.946 0.054

left son=4 (2114 obs) right son=5 (60 obs)

Primary splits:
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altAgl < 406.8718 to the left, improve=110.373000, (0 missing)

rcs < -15.33152 to the right, improve= 35.631710, (0 missing)

enuVel_e < -3.335563 to the right, improve= 2.455990, (0 missing)

enuVel_n < 8.308707 to the right, improve= 2.093409, (0 missing)

enuVel_u < -1.788771 to the right, improve= 1.368066, (0 missing)

Node number 3: 1841 observations, complexity param=0.02926679

predicted class=OBJECT_CLASS_BIRD expected loss=0.1825095 P(node) =0.4585305

class counts: 336 1505

probabilities: 0.183 0.817

left son=6 (441 obs) right son=7 (1400 obs)

Primary splits:

altAgl < 135.0366 to the left, improve=142.380000, (0 missing)

rcs < -17.82246 to the right, improve= 75.468890, (0 missing)

enuVel_n < -13.04793 to the left, improve= 63.875410, (0 missing)

enuVel_u < 1.361603 to the left, improve= 9.870249, (0 missing)

enuVel_e < 1.573629 to the left, improve= 6.878949, (0 missing)

Surrogate splits:

enuVel_n < -14.18647 to the left, agree=0.767, adj=0.027, (0 split)

enuVel_u < -8.515464 to the left, agree=0.761, adj=0.002, (0 split)

Node number 4: 2114 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.02743614 P(node) =0.5265255

class counts: 2056 58

probabilities: 0.973 0.027

Node number 5: 60 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0 P(node) =0.01494396

class counts: 0 60

probabilities: 0.000 1.000

Node number 6: 441 observations, complexity param=0.02926679

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.4671202 P(node) =0.1098381

class counts: 235 206

probabilities: 0.533 0.467
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left son=12 (155 obs) right son=13 (286 obs)

Primary splits:

enuVel_n < -5.201084 to the left, improve=35.774770, (0 missing)

rcs < -17.95087 to the right, improve=32.675870, (0 missing)

enuVel_u < -1.200639 to the right, improve=11.465660, (0 missing)

enuVel_e < 1.748426 to the left, improve=10.088750, (0 missing)

altAgl < 103.1564 to the left, improve= 6.543585, (0 missing)

Surrogate splits:

enuVel_e < -0.338431 to the left, agree=0.667, adj=0.052, (0 split)

rcs < -17.16393 to the right, agree=0.664, adj=0.045, (0 split)

altAgl < 133.9505 to the right, agree=0.651, adj=0.006, (0 split)

Node number 7: 1400 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.07214286 P(node) =0.3486924

class counts: 101 1299

probabilities: 0.072 0.928

Node number 12: 155 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.1935484 P(node) =0.03860523

class counts: 125 30

probabilities: 0.806 0.194

Node number 13: 286 observations, complexity param=0.021565

predicted class=OBJECT_CLASS_BIRD expected loss=0.3846154 P(node) =0.07123288

class counts: 110 176

probabilities: 0.385 0.615

left son=26 (75 obs) right son=27 (211 obs)

Primary splits:

enuVel_n < 9.038784 to the right, improve=24.724270, (0 missing)

rcs < -17.17303 to the right, improve=20.353760, (0 missing)

enuVel_e < -3.367993 to the right, improve=14.102560, (0 missing)

altAgl < 104.0111 to the left, improve= 3.827577, (0 missing)

enuVel_u < -1.200639 to the right, improve= 3.772067, (0 missing)

Node number 26: 75 observations
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predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.2666667 P(node) =0.01867995

class counts: 55 20

probabilities: 0.733 0.267

Node number 27: 211 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.2606635 P(node) =0.05255293

class counts: 55 156

probabilities: 0.261 0.739

Figure A.4. By contrast with the Samp100 CTS CART model tree diagram
(Figure A.3), the Samp100 NNSS tree diagram shows multiple levels of splits
and distinguishes birds from drones based on RCS, altitude, and the northern
velocity component.
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A.2 Supervised Learning Modeling Outputs (RandSamp)

A.2.1 Logistic Regression - Model Selection Comparison
Using both the CTS and NNSS RandSamp datasets, our respective fitted logistic regression
step models (below) indicate that RCS, altitude, all three velocity components, and only
one of the acceleration components in each model is significant enough to be included: the
northern acceleration component in the RandSamp CTS model and the upward acceleration
component in the RandSamp NNSS model. The additional velocity and acceleration com-
ponents in both the CTS and NNSS RandSamp logistic regression models tells us that these
models can detect additional discriminatory behavior, between the velocity and acceleration
of birds and drones, that their respective Samp100 logistic regression models could not.

CTS � RandSamp (Logistic Regression Step Model Summary)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.3156 -0.4492 -0.1629 0.4221 3.1026

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.84941 0.02070 -41.040 < 2e-16 ***

scale(enuVel_e) -0.05258 0.01892 -2.779 0.00546 **

scale(enuVel_n) -0.30712 0.01979 -15.517 < 2e-16 ***

scale(enuVel_u) 0.10271 0.01780 5.770 7.93e-09 ***

scale(enuAcc_n) -0.03678 0.01823 -2.018 0.04361 *

scale(altAgl) -0.89001 0.02626 -33.898 < 2e-16 ***

scale(rcs) 2.87620 0.03203 89.798 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 43441 on 32648 degrees of freedom

Residual deviance: 20227 on 32642 degrees of freedom

AIC: 20241
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Number of Fisher Scoring iterations: 6

In our comparison of the RandSamp CTS logistic regression step model summary (above)
andNNSSmodel summary (below), the only big distinction between the two is the additional
marginal importance of the northern acceleration component in the CTS model and the
upward acceleration component in the NNSS model. It is also noteworthy that in both
the CTS and NNSS models, the northern and upward velocity components are far more
important than the eastern velocity component, suggesting that birds and drones can bemore
easily distinguished from one another by how fast they are flying north, south, upwards, or
downwards than in the east/west direction. We can intuitively understand this distinction in
terms of the migration patterns of birds (north/south) and unique upward and downward
movement of drones (rotary wing, in particular).

NNSS - RandSamp (Logistic Regression Step Model Summary)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.1542 -0.1151 0.0298 0.1818 3.2961

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.95022 0.02888 32.907 < 2e-16 ***

scale(enuVel_e) 0.07415 0.02313 3.205 0.00135 **

scale(enuVel_n) -0.41318 0.02730 -15.134 < 2e-16 ***

scale(enuVel_u) 0.13900 0.02221 6.258 3.9e-10 ***

scale(enuAcc_u) -0.04611 0.02346 -1.965 0.04940 *

scale(altAgl) -3.24244 0.05885 -55.093 < 2e-16 ***

scale(rcs) 3.96723 0.05002 79.307 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54386 on 40154 degrees of freedom
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Residual deviance: 14206 on 40148 degrees of freedom

AIC: 14220

Number of Fisher Scoring iterations: 7

A.2.2 K-Nearest Neighbors (KNN) - Testing for :
Using theRandSamp dataset,we observed similar shaped graphs between the respectiveCTS
(Figure A.5) and NNSS (Figure A.6) bootstrapping (brown) and 10-fold cross validation
(gold) graphs. For both the CTS and NNSS KNN models, we chose : = 3 as our optimal
result due to the observed “knee” in both cross-validation (gold) graphswhile approximating
the minimum error rate using both methods. The observed change in preferred : value (from
: = 5 to : = 3), between the first and second iterations of model development, meant that
the respective CTS and NNSSKNNmodels developed using the RandSamp dataset (second
iteration) were able to better capture finer structure of the space without having to increase
: to reduce the model’s sensitivity to noise present in the dataset.

88
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



Figure A.5. For the CTS RandSamp dataset, we observed a lower optimal
value (: = 3) than we observed for the CTS Samp100 dataset (Figure A.1).
(Note: we avoided choosing : = 1 for our optimal model due to the likelihood
of overfitting to the training set.)
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Figure A.6. For the NNSS RandSamp dataset, while ignoring : = 1 due to
the likelihood of overfitting to the training set, we chose an optimal value
of : = 3 (lower than the optimal value of : = 5 in Figure A.2).

A.2.3 Classification and Regression Trees (CART) - Model Diagrams
When comparing the RandSamp CART models with the Samp100 models from the first
iteration, we do not see significant differences in the overarching regression trees and
only some small refinements in the relative importance of the top discriminating features:
RCS and altitude. For the CTS datasets, our regression trees (Figures A.3 and A.7) are
nearly identical, reinforcing the importance of determining whether an aerial object is a
bird or drone at the CTS training environment almost exclusively on whether the RCS is
greater than or less than −13.7. In our comparison of the Samp100 (Appendix A.1.3) and
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RandSamp (below) CTS CART model summaries, we only see a slight increase in the
relative importance of altitude with respect to RCS and the velocity components in the
RandSamp dataset.

CTS - RandSamp (CART Model Summary)

CP nsplit rel error xerror xstd

1 0.7067585 0 1.0000000 1.0000000 0.007031932

2 0.0100000 1 0.2932415 0.2941224 0.004571954

Variable importance

rcs altAgl enuVel_n enuVel_e enuVel_u

84 12 2 1 1

Node number 1: 32649 observations, complexity param=0.7067585

predicted class=OBJECT_CLASS_BIRD expected loss=0.3824926 P(node) =1

class counts: 12488 20161

probabilities: 0.382 0.618

left son=2 (12810 obs) right son=3 (19839 obs)

Primary splits:

rcs < -13.7605 to the right, improve=8999.5450, (0 missing)

altAgl < 257.3084 to the left, improve=1539.3980, (0 missing)

enuVel_n < 1.022928 to the left, improve=1233.0560, (0 missing)

enuAcc_n < -0.1175795 to the right, improve= 713.4543, (0 missing)

enuVel_e < -0.2942276 to the right, improve= 630.2046, (0 missing)

Surrogate splits:

altAgl < 17.78213 to the left, agree=0.664, adj=0.143, (0 split)

enuVel_n < -18.39431 to the left, agree=0.616, adj=0.020, (0 split)

enuVel_e < 15.76142 to the right, agree=0.613, adj=0.013, (0 split)

enuVel_u < -4.691854 to the left, agree=0.610, adj=0.006, (0 split)

enuAcc_u < -11.89433 to the left, agree=0.608, adj=0.002, (0 split)

Node number 2: 12810 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.1555035 P(node) =0.392355

class counts: 10818 1992
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probabilities: 0.844 0.156

Node number 3: 19839 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.08417763 P(node) =0.607645

class counts: 1670 18169

probabilities: 0.084 0.916

Figure A.7. Using rpart in R, the RandSamp CTS CART tree diagram is
nearly identical to the Samp100 tree diagram (Figure A.3), reinforcing the
importance of RCS in discriminating birds from drones.

In our comparison of the Samp100NNSSCARTmodel summary (Appendix A.1.3) with the
RandSampmodel summary (below), we can see a slight increase in the relative importance
of RCSwith respect to altitude and the velocity components. Otherwise, we still see the same
relative importance of altitude and the northern velocity component in both the Samp100
and RandSamp NNSS CART models.
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NNSS - RandSamp (CART Model Summary)

CP nsplit rel error xerror xstd

1 0.72900255 0 1.0000000 1.0000000 0.005974547

2 0.03811659 1 0.2709975 0.2714822 0.003823091

3 0.02742092 2 0.2328809 0.2331839 0.003574426

4 0.01672525 4 0.1780390 0.1786450 0.003167158

5 0.01000000 5 0.1613138 0.1627076 0.003033246

Variable importance

rcs altAgl enuVel_u enuVel_n

58 37 3 1

Node number 1: 40155 observations, complexity param=0.7290025

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.4109575 P(node) =1

class counts: 23653 16502

probabilities: 0.589 0.411

left son=2 (21691 obs) right son=3 (18464 obs)

Primary splits:

rcs < -16.20122 to the right, improve=11762.9800, (0 missing)

altAgl < 238.409 to the left, improve= 7930.2960, (0 missing)

enuVel_n < -12.54041 to the left, improve= 892.1239, (0 missing)

enuAcc_u < -0.3179844 to the left, improve= 388.1491, (0 missing)

enuVel_u < 1.265286 to the left, improve= 371.0078, (0 missing)

Surrogate splits:

altAgl < 168.9208 to the left, agree=0.744, adj=0.443, (0 split)

enuVel_u < -1.314294 to the right, agree=0.563, adj=0.050, (0 split)

enuAcc_e < 13.8791 to the left, agree=0.541, adj=0.003, (0 split)

enuAcc_n < 22.67206 to the left, agree=0.541, adj=0.002, (0 split)

enuVel_e < -42.7362 to the right, agree=0.540, adj=0.000, (0 split)

Node number 2: 21691 observations, complexity param=0.03811659

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.0578581 P(node) =0.5401818

class counts: 20436 1255

probabilities: 0.942 0.058
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left son=4 (21050 obs) right son=5 (641 obs)

Primary splits:

altAgl < 390.3699 to the left, improve=1149.41100, (0 missing)

rcs < -15.53665 to the right, improve= 440.28230, (0 missing)

enuVel_e < -3.468423 to the right, improve= 31.77806, (0 missing)

enuVel_u < 1.065537 to the left, improve= 24.04432, (0 missing)

enuVel_n < 7.65508 to the right, improve= 23.29457, (0 missing)

Surrogate splits:

enuVel_u < 83.60214 to the left, agree=0.971, adj=0.003, (0 split)

Node number 3: 18464 observations, complexity param=0.02742092

predicted class=OBJECT_CLASS_BIRD expected loss=0.1742309 P(node) =0.4598182

class counts: 3217 15247

probabilities: 0.174 0.826

left son=6 (4526 obs) right son=7 (13938 obs)

Primary splits:

altAgl < 138.9378 to the left, improve=1337.26400, (0 missing)

rcs < -17.89272 to the right, improve= 675.12410, (0 missing)

enuVel_n < -12.54558 to the left, improve= 580.16880, (0 missing)

enuVel_u < -0.8404117 to the right, improve= 92.46351, (0 missing)

enuAcc_n < 0.7257759 to the right, improve= 90.01032, (0 missing)

Surrogate splits:

enuVel_n < -14.28176 to the left, agree=0.760, adj=0.022, (0 split)

enuVel_u < -11.97032 to the left, agree=0.756, adj=0.003, (0 split)

enuVel_e < -24.5335 to the left, agree=0.755, adj=0.002, (0 split)

enuAcc_n < -123.3815 to the left, agree=0.755, adj=0.000, (0 split)

enuAcc_u < 59.63613 to the right, agree=0.755, adj=0.000, (0 split)

Node number 4: 21050 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.02945368 P(node) =0.5242187

class counts: 20430 620

probabilities: 0.971 0.029

Node number 5: 641 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.009360374 P(node) =0.01596314
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class counts: 6 635

probabilities: 0.009 0.991

Node number 6: 4526 observations, complexity param=0.02742092

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.491825 P(node) =0.1127132

class counts: 2300 2226

probabilities: 0.508 0.492

left son=12 (1685 obs) right son=13 (2841 obs)

Primary splits:

rcs < -18.10796 to the right, improve=363.96400, (0 missing)

enuVel_n < -5.201592 to the left, improve=311.70130, (0 missing)

enuVel_u < -0.6997 to the right, improve=122.23860, (0 missing)

altAgl < 103.2503 to the left, improve=100.91730, (0 missing)

enuVel_e < 2.471117 to the left, improve= 96.24622, (0 missing)

Surrogate splits:

enuVel_n < -13.16103 to the left, agree=0.654, adj=0.071, (0 split)

enuVel_e < -15.21119 to the left, agree=0.638, adj=0.028, (0 split)

enuAcc_e < -8.27922 to the left, agree=0.629, adj=0.004, (0 split)

enuVel_u < 18.14574 to the right, agree=0.628, adj=0.002, (0 split)

enuAcc_n < 28.3576 to the right, agree=0.628, adj=0.001, (0 split)

Node number 7: 13938 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.06579136 P(node) =0.347105

class counts: 917 13021

probabilities: 0.066 0.934

Node number 12: 1685 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.231454 P(node) =0.0419624

class counts: 1295 390

probabilities: 0.769 0.231

Node number 13: 2841 observations, complexity param=0.01672525

predicted class=OBJECT_CLASS_BIRD expected loss=0.3537487 P(node) =0.07075084

class counts: 1005 1836

probabilities: 0.354 0.646
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left son=26 (574 obs) right son=27 (2267 obs)

Primary splits:

enuVel_n < -9.18256 to the left, improve=215.10040, (0 missing)

enuVel_u < -0.3224806 to the right, improve= 81.52646, (0 missing)

enuVel_e < 2.471117 to the left, improve= 66.26289, (0 missing)

rcs < -20.60717 to the right, improve= 57.71213, (0 missing)

altAgl < 97.59573 to the left, improve= 57.11493, (0 missing)

Surrogate splits:

enuAcc_n < -62.6169 to the left, agree=0.799, adj=0.005, (0 split)

enuAcc_u < -35.99866 to the left, agree=0.799, adj=0.005, (0 split)

enuAcc_e < 58.34052 to the right, agree=0.799, adj=0.003, (0 split)

altAgl < 138.7773 to the right, agree=0.798, adj=0.002, (0 split)

rcs < -18.11798 to the right, agree=0.798, adj=0.002, (0 split)

Node number 26: 574 observations

predicted class=OBJECT_CLASS_AIR_VEHICLE expected loss=0.2595819 P(node) =0.01429461

class counts: 425 149

probabilities: 0.740 0.260

Node number 27: 2267 observations

predicted class=OBJECT_CLASS_BIRD expected loss=0.2558447 P(node) =0.05645623

class counts: 580 1687

probabilities: 0.256 0.744
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Figure A.8. Similar to the Samp100 NNSS CART model, the RandSamp
NNSS CART model primarily discriminates birds from drones based on a
combination of RCS, altitude, and the northern velocity component. Al-
though this tree diagram agrees with the first split in the Samp100 tree di-
agram (Figure A.4), its subsequent splits in altitude, RCS and the northern
velocity component are different and ultimately produced a better performing
CART model for the NNSS dataset.
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A.2.4 Random Forest Models with Cluster Group Feature
In addition to achieving improved performance in both our CTS and NNSS base random
forestmodels using theRandSamp dataset, we observed an additional improved performance
after adding a ninth cluster group categorical feature to the base random forestmodels. Using
the cluster group assignments from the k-means algorithms for two, three, and four clusters,
we saw marginal improvements in prediction accuracy. Figure A.9 shows the respective
confusion matrices for the optimal RandSamp CTS and NNSS random forests models with
cluster groups and their respective base random forest models.

Figure A.9. Although we did not observe any improved performance in our
Samp100 random forests models when we included a cluster group categori-
cal feature, our random forests RandSamp CTS and NNSS models achieved
improved prediction performance by adding a cluster group feature from our
optimal k-means algorithms in the first phase of the second model develop-
ment iteration.

A.3 Training Environment - Prediction Accuracy
Although we ultimately sought to improve the performance of our respective RandSamp
models on the alternate environment dataset, we also observed an improved performance
(measured by balanced accuracy) by all four of our RandSamp NNSS models and two of
the four RandSamp CTS models in the training environment (Figure A.10). Our highest
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performing model for both our CTS and NNSS training environments were our random
forest models, achieving 97.2% and 99.0% balanced accuracy respectively. The respective
random forest models also improved the most (in terms of balanced accuracy percentage)
between the first and second iterations. It is also noteworthy that, in the case of all four model
types and in the use of both the Samp100 and RandSamp datasets, the balanced accuracy
rates against the NNSS training environment dataset were 2–6% better than against the
CTS training environment dataset. We discuss the impact of the differences in the two
environments on the model development in Section 5.2.2.

Figure A.10. Our use of balanced accuracy allowed us to not only compare
the respective CTS and NNSS models between those developed using the
Samp100 and RandSamp datasets (higher balanced accuracy highlighted)
but to also compare the models between the training sites despite the differ-
ences in the ratios of bird and drone track data between the environments.

A.4 Alternate Environment - Prediction Accuracy
In our evaluation of the comparative performance (in terms of balanced accuracy) between
the respectiveCTSandNNSSmodels developed using the Samp100 andRandSamp datasets,
we observed improved performance (highlighted in yellow) in all four of our CTS models
and three out of the four NNSS models (Figure A.11). We only observed a decrease in
balanced accuracy with the NNSS CART model using the RandSamp dataset. Although all
of our models had balanced accuracy rates below 80%, we observed a 1–5% improvement
in balanced accuracy among our random forest and AdaBoost models using the RandSamp
CTS and NNSS datasets. This is significant because it indicated that our models with the
greatest propensity to overfit, showed the greatest improvement in balanced accuracy using
the RandSamp datasets for building their models. Despite the strong improvements by the
random Forest and AdaBoost CTS models using the RandSamp dataset, the CART and
logistic regression models, with balanced accuracy rates of 79.7% and 78.9% respectively,
performed the best of the four model types against the alternate environment track data.
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Figure A.11. In our comparison of the performance of our respective CTS and
NNSS models on the alternate environment track data, higher balanced ac-
curacy (highlighted in yellow) between those models built using the Samp100
and RandSamp datasets occurred in all four of our model types built using
the CTS RandSamp dataset and three out of the four model types built
using the NNSS RandSamp dataset.
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