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ABSTRACT 
Quantum computing has quickly become a highly active research area, and quantum machine 
learning has emerged as a potential manifestation of classical machine learning on quantum 
hardware. The widespread successes of classical machine learning in classification problems are 
extremely attractive, however they come at the cost of an exponential growth of parameters in 
modern network architectures (e.g. Generative Pre-trained Transformers). A possible benefit in 
addressing such problems with quantum networks is an increased expressibility of quantum bits 
over classical bits, which through quantum machine learning leads to an increased expressibility 
of a quantum neuron. 
Quantum computing is founded on the premise of using particles that are governed by quantum 
mechanics for the purposes of computation by leveraging key aspects such as superposition and 
entanglement. These properties have theoretical advantage in representing and manipulating 
information. Namely superposition allows for a fundamental bit of information to encode a 
continuous spectrum, while entanglement allows non-local effects to manipulate encoded 
information. Circuits of quantum gates are used to perform quantum computations, and when 
parameterized, can be optimized, or trained, using traditional methods in optimization. This leads 
to a quantum machine learning framework where classical information embedded in quantum 
bits can take advantage of quantum phenomena and increased expressibility for a potential 
reduction in network size and training time on quantum hardware. 
This manuscript serves as introductory material for researchers that are new to the areas of 
quantum mechanics and machine learning, in order to decrease the timeframe needed for 
developing new expertise. The notion of a Turing machine is used as a foundation and 
motivation for creating computers out of quantum hardware. Next, basic principles and notation 
of quantum mechanics are introduced, including superposition, phase space on the Bloch sphere, 
and entanglement of multiple quantum bits. A basic review of classical digital logic is used to 
propose notions of quantum gates that may leverage these key properties by a universal set of 
quantum gates. Next, we introduce classical deep learning concepts such as the artificial neural 
network, the gradient descent algorithm and its stochastic generalization, and the standard 
backpropagation approach to training a neural network. These are used as a foundation for 
introducing trainable quantum circuits as neural networks, including a derivation of the 
analogous gradient descent approach and its generalizations and methods of encoding classical 
information in a quantum circuit. Finally, these topics are combined in an illustrative example 
problem that highlights a potential advantage of quantum neural networks. The accompanying 
appendices offer greater detail of various derivations that are provided throughout the 
manuscript. 
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WHY QUANTUM COMPUTING 

The notion of a universal computer was first characterized by the description of the Turing 
machine [1] based on an infinitely long tape, or computation register, which through the machine 
could be used to encode any algorithm. These notions, along with the advent of the transistor, 
eventually led to the von Neumann architecture of computing we have today, where a central 
processing unit (CPU) performs sequential operations on an encoded stream of information, and 
separately stores this information in a memory register. With the trend of increasing transistor 
density per unit area, eventually a limit could be perceived. In addition, the polynomial time 
computational complexity constraint of this computing architecture, as suggested by the Church-
Turing thesis, made the quest for alternative architectures inevitable [2]. 
The idea of leveraging quantum physics to perform computations was first suggested by 
Feynman, and is by no means the only alternative to the von Neumann architecture (see [3], [4], 
and [5]), however its appeal is based on the ability to leverage attractive properties such as 
superposition and entanglement, which allow for a unique framework. Herein, one must 
carefully construct algorithms which yield a choreography of operations that use sequential 
constructive and destructive interference to promote the correct solution in probability while 
effectively cancelling out the probability of incorrect solutions, all without a-priori knowledge of 
the correct solution. In principle, this approach promises an exponential speedup over the von 
Neumann architecture [6]. 
The novelty and unique challenges of leveraging quantum physics for computing has led to not 
just one, but numerous computing architectures explored by a growing contingent of companies 
and organizations, each seeking to establish their approach as the dominant approach, and to be 
the first to demonstrate quantum supremacy. Among these are: a) using superconducting qubits 
(often referred to as SQUIDs) by IBM, Google, USTC, and Rigetti, b) trapped ions by IonQ and 
others, c) photonics by Xanadu and others, and trapped Rydberg atoms by QuEra and others. 
Beyond these hardware implementations, are several other floating notions, such as building 
quantum computing on qudits (d-level quantum bits, e.g. ternary quantum bit) as opposed to the 
binary quantum bit (qubit) [7], as well as abandoning the discrete framework altogether and 
instead building computing on a continuum quantum state [8] [9]. 
Outside the goal of universal quantum computing are also specific quantum realizations for 
specific applications, as in the case of quantum annealing [10] [11] for optimization problems, 
and quantum machine learning [12] [13] for learning problems. The rapid and heavy investment 
in quantum computing has led to a so-called race for quantum supremacy in which proponents 
suggest it can be achieved as soon as the early 2030s [14], yet there remain substantial hurdles 
before this dream may be realized. 

 

QUANTUM COMPUTING OVERVIEW 

Quantum Physics - Notation and Intro  
Quantum computing relies on the manipulation and measurement of quantum phenomena in 
order to process information. The behavior of quantum phenomena is described by quantum 
physics, so an understanding of quantum computing necessitates a basic understanding of 
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quantum physics. Quantum physics introduces math notation, known as Dirac notation, which is 
often quite foreign to other disciplines yet simplifies the introduction of main concepts and 
carries over to quantum computing. Dirac notation utilizes linear algebra, probability and 
statistics, as well as notational conventions used in physics. 
Linear algebra is used in Dirac notation to describe quantum states as vectors, and to describe the 
physical processes that can impart change to a quantum state as matrices1, which in quantum 
literature are referred to as operators. Operators ‘operate’ on these quantum states to give some 
new quantum state. A column vector is by convention used to represent some physical quantum 
state, for example whether an electron is in the spin up state or spin down state or a photon is in 
the horizontal or vertical linear polarization state. A vector state 𝜓𝜓 (the variable 𝜓𝜓 is often used in 
literature to describe a generic quantum state, usually called a ‘wavefunction’) with two 
quantities would normally be written as: 

𝜓𝜓�⃑ =  � 𝑎𝑎𝑏𝑏 �. 

( 1 ) 

In Dirac notation, the vector state 𝜓𝜓 would be written as: 

|𝜓𝜓⟩ =  � 𝑎𝑎𝑏𝑏 �, 

( 2 ) 

where |⋅⟩ is the right side of a bracket ⟨ ⋅ | ⋅ ⟩ and is called a “ket” vector. The complex conjugate 
transpose of a vector state is also widely used, and is written as: 

𝜓𝜓�⃑ ∗ 𝑇𝑇 =  [ 𝑎𝑎∗ 𝑏𝑏∗ ] =  𝜓𝜓�⃑ †, 
( 3 ) 

where * is the complex conjugate, T is the transpose, and the dagger (†) is a shorthand notation 
in quantum physics to combine the * and T into one symbol † for the complex conjugate 
transposed. In Dirac notation, the complex conjugate transposed of a vector state 𝜓𝜓 is written as:  

⟨𝜓𝜓| =  [ 𝑎𝑎∗ 𝑏𝑏∗ ], 
( 4 ) 

where ⟨ ⋅ | is the left side of a bracket ⟨ ⋅ | ⋅ ⟩ and is called a “bra” vector. A bra and a ket written 
next to each other in a full bracket denotes an inner product between the two vector states: 

⟨𝜓𝜓1|𝜓𝜓2⟩ =  𝜓𝜓�⃑1
† ∙ 𝜓𝜓�⃑ 2 = [ 𝑎𝑎1∗ 𝑏𝑏1∗ ] ∙  � 

𝑎𝑎2
𝑏𝑏2 � =  𝑎𝑎1∗𝑎𝑎2 + 𝑏𝑏1∗𝑏𝑏2. 

( 5 ) 

Unitary operators, represented by matrices, are used to change the quantum state. For example, 
some state 𝜓𝜓𝑖𝑖 can be modified to another state, 𝜓𝜓𝑖𝑖+1 after the application of an operator 𝑈𝑈� (the 

                                            
1 In the more general setting, an operator can act on an infinite vector space, but this brief introduction 
limits vectors to finite dimensional vector spaces where operators are simply described by standard 
matrices. 
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hat �  symbol is often used to denote an operator, though it is not always used). Operators are 
usually given capital letters for variable names, and a unitary operator is a special type of 
operator that satisfies the property: 

𝑈𝑈�𝑈𝑈�† = 𝑈𝑈�†𝑈𝑈� = 𝐼𝐼, 
( 6 ) 

where 𝐼𝐼 is the identity operator and corresponds to imparting no change to a quantum state. The 
action of an operator, represented as a matrix, is written as: 

�𝜓𝜓𝑖𝑖+1⟩ = 𝑈𝑈��𝜓𝜓𝑖𝑖⟩ =  �
𝑢𝑢11 𝑢𝑢12
𝑢𝑢21 𝑢𝑢22� �

𝑎𝑎𝑖𝑖
𝑏𝑏𝑖𝑖  � = �𝑢𝑢11𝑎𝑎𝑖𝑖 + 𝑢𝑢12𝑏𝑏𝑖𝑖

𝑢𝑢21𝑎𝑎𝑖𝑖 + 𝑢𝑢22𝑏𝑏𝑖𝑖
� = � 

𝑎𝑎𝑖𝑖+1
𝑏𝑏𝑖𝑖+1 �. 

( 7 ) 

One can similarly apply complex conjugates and transposes to an operator, 

𝑈𝑈�† = �𝑢𝑢11
∗ 𝑢𝑢21∗
𝑢𝑢12∗ 𝑢𝑢22∗

�, 

( 8 ) 

and the dagger of an operator is typically applied to bra vectors to update them: 

⟨𝜓𝜓𝑖𝑖+1|=  ⟨𝜓𝜓𝑖𝑖|𝑈𝑈�† =  [ 𝑎𝑎𝑖𝑖∗ 𝑏𝑏𝑖𝑖∗ ] �
𝑢𝑢11∗ 𝑢𝑢21∗
𝑢𝑢12∗ 𝑢𝑢22∗

� 

=  [𝑎𝑎𝑖𝑖∗𝑢𝑢11∗ + 𝑏𝑏𝑖𝑖∗𝑢𝑢12∗ 𝑎𝑎𝑖𝑖∗𝑢𝑢21∗ + 𝑏𝑏𝑖𝑖∗𝑢𝑢22∗ ] 
= [ 𝑎𝑎𝑖𝑖+1∗ 𝑏𝑏𝑖𝑖+1∗  ]. 

( 9 ) 

Some operators are used to represent measurable properties of quantum systems and are called 
‘observables’ or ‘observable operators’. These operators satisfy a slightly weaker requirement of 
being Hermitian. Hermitian operators are defined by satisfying the following relation: 

𝐴̂𝐴 = 𝐴̂𝐴†. 
( 10 ) 

An important property of Hermitian operators is that one can easily show that they have all real 
eigenvalues despite having potentially all complex entries. Furthermore, Hermitian operators 
typically represent ‘measurable’ operators, and in such cases their eigenvalues correspond to 
familiar quantities such as position, momentum, energy, etc., which also must be real-valued.  
The average value of all possible outcomes, based on the probability of each outcome, is referred 
to as the expectation value (or expected value) of that observable with respect to that quantum 
state. In Dirac notation, the expectation value is expressed as: 

�𝜓𝜓�𝐴̂𝐴�𝜓𝜓�, 
( 11 ) 

where 𝐴̂𝐴 is some observable (which we represent here by a matrix), and |𝜓𝜓⟩ is the quantum state 
just before the state is measured. The expectation value describes the average measurement 
outcome, so despite the discrete values of single measurements, an expectation value can (and 
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usually will) give a non-discrete value that does not correspond to a single possible measurement 
outcome. The possible discrete-valued outcomes of each measurement are given by the 
eigenvalues of observable 𝐴̂𝐴.  
Performing the calculation above will yield the average of the possible outcomes weighted by the 
probability of each outcome occurring. Expectation values can also be estimated empirically by 
performing repeated measurements and averaging the results. The probability will be inherent in 
the empirical histogram of each of the possible outcomes, and if measured an infinite number of 
times would result in the exact expectation value. Since infinite measurements are not practically 
feasible, an estimate for the expectation value can be obtained by a finite number of 
measurements and is often treated as the empirical expectation. 
Another important calculation in quantum physics is the probability of some general quantum 
state |𝜓𝜓⟩ being in the specified, known state |𝜙𝜙⟩. This is calculated by the magnitude squared of 
the inner product between |𝜓𝜓⟩ and |𝜙𝜙⟩, which in Dirac notation is represented as: 

|⟨𝜙𝜙|𝜓𝜓⟩|2 =  (⟨𝜙𝜙|𝜓𝜓⟩)†⟨𝜙𝜙|𝜓𝜓⟩ =  ⟨𝜓𝜓|𝜙𝜙⟩⟨𝜙𝜙|𝜓𝜓⟩. 
( 12 ) 

The inner product ⟨𝜙𝜙|𝜓𝜓⟩ is the projection of the state |𝜓𝜓⟩ onto the desired measurement state |𝜙𝜙⟩. 
The inner product describes the ‘amount of overlap’ due to the projection, and is called the 
amplitude of the probability or the ‘probability amplitude’. The square of the magnitude of the 
probability amplitude (which can also be computed by multiplication of the inner product with 
its complex conjugate), gives a real value that corresponds to the probability of finding the state 
|𝜓𝜓⟩ in the state |𝜙𝜙⟩ when measured.  
In quantum computing, most calculations are performed in the computational basis formed by 
the zero state |0⟩ and the one state |1⟩ where: 

|0⟩ =  � 10 �  and |1⟩ =  � 01 �. 

( 13 ) 

These states are unit vectors because they have a norm (or magnitude, computed as the inner 
product of a state with itself) of one:  

⟨0|0⟩ = 1 and ⟨1|1⟩ = 1.  
( 14 ) 

They are also orthogonal to each other, meaning inner products with each other yield zero: 
⟨0|1⟩ = 0 and ⟨1|0⟩ = 0  

( 15 ) 

Finally, the basis is ‘complete’, meaning that any arbitrary vector can be written as a linear 
combination of these two basis elements: 

|𝜓𝜓⟩ =  � 𝑎𝑎𝑏𝑏 � = 𝑎𝑎 � 10 � + 𝑏𝑏 � 01 �. 

( 16 ) 

Together, these three properties describe the basis as being a complete orthonormal basis. 
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So far these states seem similar to the binary zeros and ones that are used to represent values in 
classical computing, however quantum mechanics offers more possible states, which quantum 
computing seeks to utilize. While 

|𝜓𝜓⟩ =  � 10 �  and |𝜓𝜓⟩ =  � 01 � 

( 17 ) 

would be the only possible states in a classical computing scheme, the state 

|𝜓𝜓⟩ =  � 11 � 

( 18 ) 

is a legitimate, though unnormalized, state in quantum mechanics. Normalization factors need to 
be added to ensure state probabilities sum to unity, which will be elucidated by an example. First, 
the importance of this state being allowed should be highlighted. The state |𝜓𝜓⟩ =  � 11 � is a linear 
combination of the zero state and the one state: 

|𝜓𝜓⟩ =  � 11 � =  � 10 � + � 01 � =  |0⟩ + |1⟩, 

( 19 ) 

and represents some quantum state at a certain point or time before measurement. The fact that 
multiple possible states are present simultaneously is called superposition, and is a property 
unique to quantum mechanics. This superposition of states is itself a quantum state; operations 
and gates applied to the state |𝜓𝜓⟩ are applied in their normal manner and act on both parts of the 
state present in the superposition state simultaneously. This key quantum phenomenon leads to a 
larger computational space that quantum computing seeks to leverage; the classical binary 
representation is replaced with a continuous space of possible superposition states. 
However, once a measurement is made only one of the possible measurable values remains, 
which was predicted with some probability. So before measurement, both quantum states exist 
simultaneously in the quantum superposition state, but upon measurement this quantum state 
“collapses”, and only one basis state is observed while the information for the other state is lost. 
This probability is mathematically determined by the complex coefficients that multiply each 
basis element, which are also used to normalize the quantum state.  
Now to show why those coefficients are needed, a counter example is presented. Starting with 
the unnormalized superposition state (without coefficients) introduced earlier: 

|𝜓𝜓⟩ =  |0⟩ + |1⟩ =  � 10 � + � 01 � = � 11 �. 

( 20 ) 

If we take its norm 

⟨𝜓𝜓|𝜓𝜓⟩ =  [1∗ 1∗] � 11 � = 2, 

( 21 ) 
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we obtain a value of 2. The issue with this becomes apparent when the magnitude of the inner 
product is squared: 

|⟨𝜓𝜓|𝜓𝜓⟩|2 =  (⟨𝜓𝜓|𝜓𝜓⟩)†⟨𝜓𝜓|𝜓𝜓⟩ =  ⟨𝜓𝜓|𝜓𝜓⟩⟨𝜓𝜓|𝜓𝜓⟩ = 2 ∗ 2 = 4. 
( 22 ) 

As described earlier, the magnitude of the inner product of two states is squared gives the 
probability that one state will be in the other state when measured. If the same operation is 
performed on a state with itself, it yields the probability of the state being in its own state, which 
must yield a probability of 1 or 100%. Without any normalization coefficients, this calculation 
gives a probability of 4, or 400%, which is a nonsensical and nonphysical result. Therefore, a 
condition is imposed that the magnitude of the norm of a state squared must always give a 
probability of one to ensure the physics remains consistent and logical: 

|⟨𝜓𝜓|𝜓𝜓⟩|2 ≡ 1. 
( 23 ) 

This condition also implies that 

|⟨𝜓𝜓|𝜓𝜓⟩|2 =  (⟨𝜓𝜓|𝜓𝜓⟩)†⟨𝜓𝜓|𝜓𝜓⟩ =  ⟨𝜓𝜓|𝜓𝜓⟩⟨𝜓𝜓|𝜓𝜓⟩ =  (⟨𝜓𝜓|𝜓𝜓⟩)2 ≡ 1 
( 24 ) 

⟨𝜓𝜓|𝜓𝜓⟩ ≡ 1. 
Coefficients are added to a state to ensure this condition remains true. This is often referred to as 
normalization. For the above superposition state: 

|𝜓𝜓⟩ = � 𝑎𝑎𝑏𝑏 �  =  𝑎𝑎|0⟩ + 𝑏𝑏|1⟩ =  𝑎𝑎 � 10 � + 𝑏𝑏 � 01 � 

( 25 ) 

this condition gives constraints on 𝑎𝑎 and 𝑏𝑏: 

⟨𝜓𝜓|𝜓𝜓⟩ =  [ 𝑎𝑎∗ 𝑏𝑏∗ ] � 
𝑎𝑎
𝑏𝑏 � =  𝑎𝑎∗𝑎𝑎 + 𝑏𝑏∗𝑏𝑏 ≡ 1 

|⟨𝜓𝜓|𝜓𝜓⟩|2 =  [ 𝑎𝑎∗ 𝑏𝑏∗ ] � 
𝑎𝑎
𝑏𝑏 � [ 𝑎𝑎∗ 𝑏𝑏∗ ] � 

𝑎𝑎
𝑏𝑏 � = 𝑎𝑎∗𝑎𝑎𝑎𝑎∗𝑎𝑎 + 𝑎𝑎∗𝑎𝑎𝑏𝑏∗𝑏𝑏 + 𝑏𝑏∗𝑏𝑏𝑎𝑎∗𝑎𝑎 + 𝑏𝑏∗𝑏𝑏𝑏𝑏∗𝑏𝑏 ≡ 1 

( 26 ) 

These constraints are the same, as squaring the first yields the second.  

The coefficients 𝑎𝑎 and 𝑏𝑏 are also used to describe the probability of measuring the state 
associated with that coefficient. For example, say a state |𝜓𝜓⟩ has coefficients 𝑎𝑎 = 1 √3⁄  and 𝑏𝑏 =
�2 3⁄ : 

|𝜓𝜓⟩ =  
1
√3

|0⟩ + �2
3

|1⟩ =  
1
√3

� 10 � + �2
3
� 01 � =

⎣
⎢
⎢
⎢
⎡

 

1
√3

�2
3

 

⎦
⎥
⎥
⎥
⎤

  

( 27 ) 
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Then to calculate the probability of measuring the zero state from this superposition state, take 
the square of the magnitude of the inner product of this state with the zero state: 

|⟨0|𝜓𝜓⟩|2 =  � 1
√3

�2
3

 �  � 10 � [ 1 0 ]

⎣
⎢
⎢
⎢
⎡

 

1
√3

�2
3

 

⎦
⎥
⎥
⎥
⎤

  

=  � 1
√3

�2
3

 �  �1 0
0 0�  

⎣
⎢
⎢
⎢
⎡

 

1
√3

�2
3

 

⎦
⎥
⎥
⎥
⎤

= � 1
√3

�2
3

 � � 
1
√3
0

 � =
1
3

. 

( 28 ) 

This means there is a 1 3⁄  probability of measuring the eigenvalue associated with the “zero” 
state. Performing a similar calculation for the one state yields 2 3⁄ , meaning there is a 2 3⁄  
probability of measuring the eigenvalue associated with the one state.  

It is also important to note that the magnitude squared of 𝑎𝑎 and 𝑏𝑏 gives the respective 
probabilities of each state’s eigenvalues being measured: 

𝑎𝑎∗𝑎𝑎 =  
1
3

   𝑎𝑎𝑎𝑎𝑎𝑎   𝑏𝑏∗𝑏𝑏 =  
2
3

 

( 29 ) 

This can be seen clearly by doing the probability calculations for measuring the zero state and 
the one state with a generic state |𝜓𝜓⟩ =  𝑎𝑎|0⟩ + 𝑏𝑏|1⟩ where 𝑎𝑎 and 𝑏𝑏 are left as variables.  

Zero state: 

|⟨0|𝜓𝜓⟩|2 =  [ 𝑎𝑎∗ 𝑏𝑏∗ ]  � 10 � [ 1 0 ] � 𝑎𝑎𝑏𝑏 �  

= [ 𝑎𝑎∗ 𝑏𝑏∗ ]  �1 0
0 0�  � 𝑎𝑎𝑏𝑏 � =  [ 𝑎𝑎∗ 𝑏𝑏∗ ] � 

𝑎𝑎
0 � =  𝑎𝑎∗𝑎𝑎 

( 30 ) 

One state: 

|⟨1|𝜓𝜓⟩|2 =  [ 𝑎𝑎∗ 𝑏𝑏∗ ] � 01 � [ 0 1 ] � 𝑎𝑎𝑏𝑏 �  

= [ 𝑎𝑎∗ 𝑏𝑏∗ ]  �0 0
0 1� � 

𝑎𝑎
𝑏𝑏 � =  [ 𝑎𝑎∗ 𝑏𝑏∗ ] � 0𝑏𝑏 � =  𝑏𝑏∗𝑏𝑏 

( 31 ) 

For further reading, see references [15], [16], [17], [18], [19]. 
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Superposition and Entanglement 
The two fundamental properties of quantum physics that are leveraged by quantum computing 
are superposition and entanglement. When operating with qubits, oftentimes the pertinent 
physical property being leveraged for quantum computing is known as the spin state. Let |𝑠𝑠〉 
represent the spin state of a 2-state particle (i.e. spin-up and spin-down). Then superposition is 
simply an expression of the spin state in terms of its basis elements 

|𝑠𝑠〉 = 𝛼𝛼|𝑢𝑢𝑢𝑢〉 + 𝛽𝛽|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 
( 32 ) 

Where 𝛼𝛼,𝛽𝛽 ∈ ℂ are complex numbers such that the state is normalized, i.e. |𝛼𝛼|2 + |𝛽𝛽|2 = 1,  
|𝑢𝑢𝑢𝑢〉 represents the particle being spin-up, and |𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 represents the particle being spin-down. 
At a given time, the particle is in a linear combination of its two basis states, which is also 
referred to as being in a superposition of its basis states, as described earlier. Upon measurement, 
the superposition collapses to a single state outcome, which is often referred to as ‘wave function 
collapse’. 
While this notion is quite simple from the perspective of linear algebra, it is far more interesting 
from the perspective of probability theory. As explored earlier, these complex coefficients of 
superposition are closely related to the respective probabilities of each outcome. For this reason, 
often times they are referred to as probability amplitudes. The association to probabilities in the 
classical sense comes by squaring these amplitudes, namely 

𝑃𝑃(|𝑢𝑢𝑢𝑢〉) = |𝛼𝛼|2,               𝑃𝑃(|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉) = |𝛽𝛽|2. 
( 33 ) 

Thus, if for the moment, we take these amplitudes to be purely real, assign the |𝑢𝑢𝑢𝑢〉 state to be a 
2-vector of unit length pointing in a positive-z direction, and assign the |𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 state to be a 2-
vector of unit length pointing in a negative-z direction, then superposition describes a 2D circle 
of unit length since we require |𝛼𝛼|2 + |𝛽𝛽|2 = 1. The vector orthogonal to the z-axis in this circle 
corresponds to a state |𝑠𝑠〉 = 1

√2
|𝑢𝑢𝑢𝑢〉 + 1

√2
|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉, where each outcome has equal probability, and 

this direction is assigned positive-x. Now, returning to the more general case of complex 
probability amplitudes, the imaginary direction creates a new y axis, and our 2D circular 
representation becomes a 3D sphere of unit length. This representation is called the Bloch sphere 
representation, and is depicted in Figure 12. 

                                            
2 This figure originated from https://demonstrations.wolfram.com/QubitsOnThePoincareBlochSphere/ 

https://demonstrations.wolfram.com/QubitsOnThePoincareBlochSphere/
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Figure 1: Bloch sphere representation of a qubit 

The property of entanglement is more complex, but also emerges mathematically in a 
deceptively simple form. Essentially, if one has two 2-state spin particles 

|𝑠𝑠1〉 = 1
√2

|𝑢𝑢𝑢𝑢〉 + 1
√2

|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉,  |𝑠𝑠2〉 = 1
√2

|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 + 1
√2

|𝑢𝑢𝑢𝑢〉, 

( 34 ) 

and can express their combined state |𝑠𝑠1, 𝑠𝑠2〉 as 

|𝑠𝑠1, 𝑠𝑠2〉 = 1
√2

|𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 〉 + 1
√2

|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢〉, 

( 35 ) 

then the two particles are said to be in a state of maximal entanglement. That is, since the total 
two-particle state is merely expressed by these two two-particle basis states, their states are 
coupled in such a way that if one were to measure the state of one of the particles (say in the up 
state), then they would have complete information of the state of the other (which must be in the 
down state). We say the particles are maximally entangled when each outcome has equal 
probability (50% for this example). For a two qubit system, there are four such maximally 
entangled states, known as Bell states. Since the act of measurement of one particle gives 
complete information of the other, entanglement is a nonlocal phenomenon, so that virtually all 
manipulations (i.e. through computing) of the state of one of the particles has some effect on the 
other particle, regardless of how separated the two particles are.  
It is however not the case that all multi-particle systems are entangled. If one can separate the 
total system state into products of subsystem states, then the state is not entangled. This can be 
depicted in the following way. Say we have the two-particle system state: 

|𝑠𝑠1, 𝑠𝑠2〉 = α|𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 〉 + β|𝑢𝑢𝑢𝑢,𝑢𝑢𝑢𝑢〉, 
( 36 ) 

This system is not in an entangled state because it can be expressed as a product of subsystem 
states as: 

|𝑠𝑠1, 𝑠𝑠2〉 = |𝑢𝑢𝑢𝑢〉(𝛼𝛼|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 + 𝛽𝛽|𝑢𝑢𝑢𝑢〉). 
( 37 ) 
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Thus, if we were to measure the first particle, which must be in an up state, we would not gain 
any information about the state of the second particle, which could still be either in the up or the 
down state. 

Fundamentals of Classical Computing 
In classical computing, we construct every computation from a fundamental set of building 
blocks: logical gates. These gates act on pairs of bits by conditionally flipping, summing, or 
otherwise manipulating the bit pair to yield a single output bit. A simple example is the AND 
gate shown in Figure 2. The AND gate returns 1 if both A and B are 1, and returns 0 otherwise, 
which is analogous to multiplying the inputs. The opposite of the AND gate is the NAND (NOT 
AND) gate, which returns 1 if both A and B are 0, and 0 otherwise. In contrast, the OR gate 
returns 1 if either A or B is 1, and 0 otherwise, which is analogous to addition. The NOR (NOT 
OR) gate is its opposite, returning 1 if either A or B is 0, and 1 otherwise. Another important gate 
is the XOR gate, which returns 1 if A and B are different, and 0 if they are the same, analogous to 
an equality test. Its opposite, the XNOR gate, returns 0 if A and B are different, and returns 1 if 
they are the same. 

 

                                                                                               
Figure 2: The AND gate  

These 6 gates may be applied in a sequence, referred to as a circuit, to create complex networks 
of logical operations that in turn may be used to construct any algorithm or set of operations. 
Connecting back to the ideas of Turing, these logical gate building blocks form a universal 
computer, and are the foundation of modern digital computing. An interesting thing to note is 
that many of these gates can be created by circuits of a different gate. For example, as depicted in 
Figure 3, one can construct an OR gate from a circuit of only NAND gates. Actually, one can 
construct any gate with a circuit of only NAND gates. Similarly, one can construct any gate with 
a circuit of only NOR gates. We refer to each of these individually as their own universal gate 
basis set. This is an important notion that will be explored shortly. 
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Figure 3: The OR gate 

 
Fundamentals of Quantum Computing 
Similar to the notion of a classical gate, the main thread of quantum computing research seeks to 
compose quantum computers out of similarly defined logic gates and circuits of logic gates in 
order to rebuild the classical computing architecture we are familiar with today from the ground-
up, and thus produce a universal computer out of quantum components. Instead of acting on bits, 
these components act on quantum bits, or qubits, which are binary representations of quantum 
states in a 2-state system. 
Consider again the spin state of an electron. This state can either be spin-up or spin-down. We 
previously used the ket notation to describe this as the |𝑢𝑢𝑢𝑢〉 state and the |𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑〉 state, but 
equivalently, one can write them, respectively, as |0〉 and |1〉, so that we have encoded the two 
possible spin state outcomes into a binary representation. These encoded binary representations 
both simplify our notation, but also generalize to cases where the primary leveraged property is 
not spin, but some other 2-state property (e.g. the excited/ground state of a Rydberg atom).  
The fundamental difference in how this binary state behaves is again the notion of superposition. 
When each qubit is observed (measured), it must be either in the |0〉 or the |1〉 state, however 
during the sequence of gate operations, it is described by a superposition state 

|𝑠𝑠〉 = 𝛼𝛼|0〉 + 𝛽𝛽|1〉 . 
( 38 ) 

Thus, similarly, our quantum logic gates must be able to act not only on binary states, but also on 
any superposition of binary states. Since we always describe states with respect to this basis, it is 
convenient to write the state vector only in terms of the probability amplitudes 𝛼𝛼 and 𝛽𝛽 as 

|𝑠𝑠〉 = �
𝛼𝛼
𝛽𝛽�, 

( 39 ) 

Where by convention the top entry corresponds to the amplitude of the |0〉 basis state and the 
bottom entry corresponds to the amplitude of the |1〉 basis state. 
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Another complication arises from the time-reversibility of quantum mechanics. This requirement 
states that one must be able to run any sequence of operations either forwards or backwards. 
Mathematically, this means that every gate operation must be one-to-one, that is, an operation on 
some unique input produces some unique output. Thus each quantum gate operation must be 
invertible. This is not true of classical gates; a variety of different inputs can produce the same 
output, and furthermore, the size of the input space and the size of the output space need not 
match. This can be clearly seen in the AND logic gate diagram. Two inputs produce a single 
output, and the output is not unique to the set of inputs (e.g. there are several input pairs that 
produce 0). Thus, since we have a binary representation, and our input and output sizes must 
match, it is natural to describe quantum gate operations on single qubits using 2x2 matrices, and 
quantum gate operations on pairs of qubits using 4x4 matrices. 
Finally, operations must preserve the normalization of the quantum state. As was explained 
earlier, quantum states, and thus gates that operate on quantum states, must preserve probability. 
Mathematically, this means that for an operator 𝐴̂𝐴 acting on a state |𝜓𝜓〉 as 𝐴̂𝐴 |𝜓𝜓〉 = |𝜓𝜓′〉, the new 
state |𝜓𝜓′〉 must satisfy |𝜓𝜓′|2 = 1. In the context of operator theory, this requirement implies that 
gate operations must be unitary and thus satisfy 

𝐴̂𝐴𝐴̂𝐴† = 𝐴̂𝐴𝐴̂𝐴−1 = 𝐼𝐼. 
( 40 ) 

Since we regard quantum gates as square matrices, we thus require unitary matrices. Notice that 
this condition is stronger than the invertibility condition, and that any unitary operator is also 
invertible. As such, typically these two requirements are just expressed as a single unitary 
requirement, despite originating from different fundamental concepts. 

 

Single-Qubit Gates 
Building on this intuition, we can now attempt to create quantum interpretations of classical 
logic gates, now represented as unitary matrices. The first gate we will attempt to reproduce is 
the NOT gate. Assume we have the general single-qubit state as before  

|𝑠𝑠〉 = �
𝛼𝛼
𝛽𝛽�,     |𝛼𝛼|2 + |𝛽𝛽|2 = 1. 

( 41 ) 

Now, the NOT gate, often denoted as an operator by 𝑋𝑋�, should transform a |0〉 state to a |1〉 state 
and vice-versa, so that the amplitudes are flipped 

𝑋𝑋� �
𝛼𝛼
𝛽𝛽� =  �𝛽𝛽𝛼𝛼�. 

( 42 ) 

It may be straightforward to see that the only matrix representation of 𝑋𝑋� that satisfies this is  

𝑋𝑋� =  �0 1
1 0�, 

( 43 ) 

which is indeed the quantum NOT gate for a single qubit. 
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Before we move forward with two-qubit gates, it is interesting to note that while the only non-
trivial single classical bit gate is the NOT gate, this is not the case for qubits. There are many 
non-trivial single-qubit gates, but two important single-qubit gates are the Z gate and the 
Hadamard gate. The single qubit Z gate is given by 

𝑍̂𝑍 =  �1 0
0 −1�. 

( 44 ) 

This gate simply flips the sign of the amplitude of the |1〉 state while leaving the |0〉 state 
unchanged. Note that this does not change the probability of the |1〉 state, since probabilities are 
squares of amplitudes; instead, it adds a phase of 𝜋𝜋.  
 The Hadamard gate is given by 

𝐻𝐻� = 1
√2
�1 1
1 −1�. 

( 45 ) 

To understand the effect of this gate, consider the effect of applying 𝐻𝐻� to the |0〉 state: 

|𝑠𝑠〉 = �10�,     𝐻𝐻
�|𝑠𝑠〉 = 1

√2
�11� = 1

√2
(|0〉 + |1〉) 

( 46 ) 

Similarly, consider the effect of applying 𝐻𝐻� to the |1〉 state: 

|𝑠𝑠〉 = �01�,     𝐻𝐻
�|𝑠𝑠〉 = 1

√2
� 1
−1� = 1

√2
(|0〉 − |1〉) 

( 47 ) 

These states are ‘halfway’ between the two basis states, thus the Hadamard gate generates 
superpositions where each basis state has a probability of ½. We may think of these two states as 
a uniform (symmetric and antisymmetric, resp.) superpositions, since the probabilities are 
uniformly distributed over outcomes (i.e. basis states). Note that 𝐻𝐻�2 = 𝐼𝐼, so applying the 
Hadamard gate to a uniform symmetric superposition returns the |0〉 state, and applying the 
Hadamard gate to a uniform antisymmetric superposition returns the |1〉 state. The Hadamard 
gate is typically used in circuits at the very beginning to generate a uniform superposition state 
that will be leveraged by the rest of the circuit. 

We briefly mention a few other single qubit gates. The 𝑋𝑋 and 𝑍𝑍 gates described above are often 
described as Pauli gates, of which there are three. The Pauli 𝑌𝑌 gate is given by 

𝑌𝑌� = �0 −𝑖𝑖
𝑖𝑖 0 �. 

( 48 ) 

A well-known feature of Pauli operators is that the set {𝐼𝐼,𝑋𝑋,𝑌𝑌,𝑍𝑍} forms a basis over the space of 
2x2 complex Hermitian operators. The phase gate 𝑆𝑆 is given by 
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𝑆̂𝑆 = �1 0
0 𝑖𝑖 �, 

( 49 ) 

and is given this name simply because it maps a generic state |𝑠𝑠〉 = �
𝛼𝛼
𝛽𝛽� to the state |𝑠𝑠〉 = �

𝛼𝛼
𝑖𝑖𝑖𝑖�, 

thus creating a complex phase.  

 The 𝜋𝜋/8 gate is given the symbol 𝑇𝑇 and is given by 

𝑇𝑇� = �1 0
0 𝑒𝑒𝑖𝑖𝑖𝑖/4�. 

( 50 ) 

Note that √𝑖𝑖 =  𝑒𝑒
𝑖𝑖𝑖𝑖
4 = cos �𝜋𝜋

4
� + 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋

4
� = √2

2
+ 𝑖𝑖 √2

2
, so the 𝑇𝑇 gate is the square root of the 𝑆𝑆 

gate and corresponds to a 𝜋𝜋
4
 rotation in the complex plane as opposed to a 𝜋𝜋

2
 rotation with the 𝑆𝑆 

gate.  

 Finally, the rotation gates 𝑅𝑅𝑥𝑥(𝜃𝜃), 𝑅𝑅𝑦𝑦(𝜃𝜃), 𝑅𝑅𝑧𝑧(𝜃𝜃) are given by 

𝑅𝑅�𝑋𝑋(𝜃𝜃) = 𝑒𝑒−𝑖𝑖
𝜃𝜃
2⋅𝑋𝑋� =  � cos 𝜃𝜃/2 −𝑖𝑖 sin𝜃𝜃/2

−𝑖𝑖 sin𝜃𝜃/2 cos 𝜃𝜃/2 � 

𝑅𝑅�𝑌𝑌(𝜃𝜃) = 𝑒𝑒−𝑖𝑖
𝜃𝜃
2⋅𝑌𝑌� =  �cos𝜃𝜃/2 − sin𝜃𝜃/2

sin𝜃𝜃/2 cos 𝜃𝜃/2 � 

𝑅𝑅�𝑍𝑍(𝜃𝜃) = 𝑒𝑒−𝑖𝑖
𝜃𝜃
2⋅𝑍𝑍� =  �𝑒𝑒

−𝑖𝑖𝑖𝑖/2 0
0 𝑒𝑒𝑖𝑖𝑖𝑖/2�. 

( 51 ) 

These gates are analogous to the rotation matrices in three Cartesian axes, and equivalently rotate 
the amplitude vector on the Bloch sphere described in Figure 1 about the corresponding axis. In 
this context of rotations on the Bloch sphere, one can generalize all single-qubit gates to a 
product of rotations. Namely, any arbitrary single-qubit gate 𝑈𝑈 can be decomposed as  

𝑈𝑈� = 𝑒𝑒𝑖𝑖𝑖𝑖𝑅𝑅�𝑧𝑧(𝛽𝛽)𝑅𝑅�𝑦𝑦(𝛾𝛾)𝑅𝑅�𝑧𝑧(𝛿𝛿) = 𝑒𝑒𝑖𝑖𝑖𝑖 �𝑒𝑒
−𝑖𝑖𝑖𝑖/2 0

0 𝑒𝑒𝑖𝑖𝑖𝑖/2� �
cos 𝛾𝛾/2 − sin 𝛾𝛾/2
sin 𝛾𝛾/2 cos 𝛾𝛾/2 � �𝑒𝑒

−𝑖𝑖𝑖𝑖/2 0
0 𝑒𝑒𝑖𝑖𝑖𝑖/2� 

=  �cos 𝛾𝛾/2 𝑒𝑒𝑖𝑖(𝛼𝛼−𝛽𝛽/2−𝛿𝛿/2) −sin 𝛾𝛾/2 𝑒𝑒𝑖𝑖(𝛼𝛼−𝛽𝛽/2+𝛿𝛿/2)

sin 𝛾𝛾/2 𝑒𝑒𝑖𝑖(𝛼𝛼+𝛽𝛽/2−𝛿𝛿/2) cos 𝛾𝛾/2 𝑒𝑒𝑖𝑖(𝛼𝛼+𝛽𝛽/2+𝛿𝛿/2) �, 

( 52 ) 

which equates to four parameters on three sequential one-parameter gates (and a phase scaling 
parameter). This property is quite useful, and may be leveraged for the design of quantum 
circuits. 
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Two-Qubit Gates 
In the case of two-qubits we have four outcomes, as opposed to the two in the single-qubit case. 
These are given by |00〉, |01〉, |10〉, and |11〉. Thus these states define the computational basis, 
and one can describe superpositions of these basis states in the general form 

|𝑠𝑠〉 =  𝛼𝛼00|00〉 + 𝛼𝛼01|01〉 + 𝛼𝛼10|10〉 + 𝛼𝛼11|11〉 = �

𝛼𝛼00
𝛼𝛼01
𝛼𝛼10
𝛼𝛼11

� . 

( 53 ) 

Instead of measuring the entire state as in the case of a single qubit, here we may measure just 
one of the two qubits, which has a ‘back action’ effect on the other. Say we measure the first 
qubit. The probability of a |0〉 state on the first qubit is |𝛼𝛼00|2 + |𝛼𝛼01|2, and such an outcome 
would cause a post-measurement state of  

|𝑠𝑠′〉 =
𝛼𝛼00|00〉 + 𝛼𝛼01|01〉 
�|𝛼𝛼00|2 + |𝛼𝛼01|2 

=
1

�|𝛼𝛼00|2 + |𝛼𝛼01|2 
�

𝛼𝛼00
𝛼𝛼01

0
0

� 

( 54 ) 

Thus, two-qubit gates are defined by 4x4 unitary matrices. Among the most famous two-qubit 
gates is the CNOT gate, given by 

CNOT = �
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

� =  �𝐼𝐼 0�
0� 𝑋𝑋�

�. 

( 55 ) 

In essence, this gate flips the second qubit if the first qubit contains the |1〉 state, and does 
nothing otherwise. To see this, let us apply it to the |00〉 state: 

CNOT �
1
0
0
0

� =  �
1
0
0
0

� 

( 56 ) 

Thus when the first qubit is |0〉, the total state is unchanged. The same occurs to the state |01〉. 
Next apply CNOT to the |10〉 state 

CNOT|10〉 = CNOT �
0
0
1
0

� =  �
0
0
0
1

� = |11〉, 

( 57 ) 

So, the second qubit is flipped when the first qubit contains the |1〉 state. The same qubit flip 
occurs in the case of the |11〉 state, producing |10〉. More generally, 
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CNOT �

𝛼𝛼
𝛽𝛽
𝛾𝛾
𝛿𝛿
� =  �

𝛼𝛼
𝛽𝛽
𝛿𝛿
𝛾𝛾
�,       ∀ 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 ∈ ℂ  𝑠𝑠. 𝑡𝑡.   |𝛼𝛼|2 + |𝛽𝛽|2 + |𝛾𝛾|2 + |𝛿𝛿|2 = 1. 

( 58 ) 

There are a variety of other two-qubit gates that use the first qubit as a control, and conditionally 
apply any of the single-qubit gates described above. Examples include the controlled-Z gate 
(sometimes called CZ), given by 

controlled-Z = �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

�, 

( 59 ) 

and the controlled-phase gate (sometimes called CS), given by 

controlled-phase = �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 𝑖𝑖

�. 

( 60 ) 

Another widely used two-qubit gate is the swap gate, given by 

swap = �
1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

�. 

( 61 ) 

This gate swaps the |01〉 state for the |10〉 state, but leaves other states unaffected. For the 
generic two-qubit state, we have 

swap �

𝛼𝛼
𝛽𝛽
𝛾𝛾
𝛿𝛿
� =  �

𝛼𝛼
𝛾𝛾
𝛽𝛽
𝛿𝛿

�,      ∀ 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 ∈ ℂ  𝑠𝑠. 𝑡𝑡.  |𝛼𝛼|2 + |𝛽𝛽|2 + |𝛾𝛾|2 + |𝛿𝛿|2 = 1. 

( 62 ) 

The Quantum Universal Gate Set 
One can quickly see that the richness of the quantum description yields many more usable 
operations in comparison to the classical case; one has a variety of non-trivial single-qubit gates 
in contrast to only one non-trivial single bit gate. The basic intuition behind this feature is that 
quantum gates can cause complex amplitudes to interfere with each other, thus canceling out 
quantum amplitudes. The feature of having a much larger (uncountably infinite) gate set is much 
more pronounced with larger multi-qubit operators. The trade-off is that there is significant 
added complexity to define the universal gate basis set, that is, the set of quantum gates that can 
produce any unitary operator with sufficient precision.  
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The challenge with a universal quantum gate set is that it asks to compose a finite set of 
operators that when put in sequence can produce an uncountably infinite set of n-qubit operators. 
Thus, the claim of classical universality is weakened for the quantum case by only requiring that 
we produce any unitary operator with sufficient precision. Some requirements for a universal 
quantum gate set are that it must be able to create superposition (e.g. Hadamard), that it must be 
able to create entanglement, and that it must be able to create complex amplitudes as well as real 
ones. 

It has been shown [6] that one such universal quantum gate set is the set {CNOT, 𝑆𝑆, 𝑅𝑅𝑋𝑋(𝜋𝜋/4)}. 
This set is not unique; one can substitute the 𝑅𝑅𝑋𝑋(𝜋𝜋/4) gate for nearly any rotation gate. Such a 
universal set enables the quantum computing paradigm to recreate, and generalize the classical 
computing paradigm. 

 

Fundamental Challenges of Quantum Computing 
Here we describe one of the major difficulties in realizing quantum computers. The increased 
richness in the expressibility of a quantum superposition state also leads to one of the hardest 
problems in realizing quantum computing hardware, the problem of quantum error correction 
[18]. To elucidate this, consider first the classical computing case.  
There is always noise that can induce errors in any information processing channel. As a result, 
even in classical computing there can sometimes be random errors that change a bit from a 0 to a 
1, which are called bit flip errors. In classical computing, any channel of communicating 
information typically appends redundant information to a binary string in order that one can use 
the redundant information to decode the binary string and recover the intended information 
despite the error. For example a repetition code with majority voting is a simple classical error 
correction scheme, where if you intend to communicate a 0 bit, you instead send 000, and 
similarly to send the 1 bit you send 111. At the receiving end, you simply decode the bit of 
information based on the majority of 0 or 1 bits communicated, such that you can always protect 
against a single bit flip error. 
In the quantum error correction case, since our qubit states are superpositions of basis states, 
errors can be understood as changing the probability amplitudes of outcomes. Consider a single 
qubit as before: 

|𝑠𝑠〉 = 𝛼𝛼|0〉 + 𝛽𝛽|1〉 =  �
𝛼𝛼
𝛽𝛽�,     |𝛼𝛼|2 + |𝛽𝛽|2 = 1. 

( 63 ) 

As in the case of the X gate, the qubit flip yields: 
|𝑠𝑠′〉 =  �𝛽𝛽𝛼𝛼� = 𝛽𝛽|0〉 + 𝛼𝛼|1〉. 

( 64 ) 

We can similarly apply the classical repetition code for qubits as: 
|0〉 → |0〉𝐿𝐿 ≡ |000〉, 
|1〉 → |1〉𝐿𝐿 ≡ |111〉, 

( 65 ) 
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where | ⋅ 〉𝐿𝐿 corresponds to a logical qubit, so that the single qubit state becomes a three-qubit 
state: 

|𝑠𝑠〉 = 𝛼𝛼|0〉L + 𝛽𝛽|1〉𝐿𝐿 . 
( 66 ) 

As before, we can diagnose and correct a single qubit flip by majority voting.  

When viewed as a Pauli rotation on the Bloch sphere, a single bit flip is equivalent to a 𝜋𝜋 rotation 
about the x-axis. A fundamental challenge arises upon realizing that the error may rotate our 
qubit not only about the x-axis, but about any axis in 3D. Thus for a single qubit, we must also 
perform a similar error diagnosis on the phase flip of a qubit, which has a similar flavor to the bit 
flip diagnosis, but in a rotated basis corresponding to the x-axis on the Bloch sphere 

|+〉 =
1
√2

(|0〉 + |1〉) 

|−〉 = 1
√2

(|0〉 − |1〉). 

( 67 ) 

Logical qubits can be formed in this basis such that a phase flip is diagnosed using a similar 
majority voting repetition code. 
A famous result in quantum error correction is known as the Shor code, which can correct an 
arbitrary error (i.e. any single qubit rotation error), by encoding a 9-qubit logical qubit, however 
there are codes that can correct any single qubit error by encoding as small as a 5-qubit logical 
qubit. Thus a quantum computer with only single qubit errors must implement 5 times the 
number of qubits to attain a given number of logical qubits. 
Coupled to this issue is that circuits of increasing numbers of qubits suffer from cross-talk errors, 
which is when qubits in different channels become undesirably entangled to each other, which 
requires another level of quantum error correction. There are a variety of quantum errors that 
appear in hardware that must be diagnosed and corrected, which leads to a complex problem of 
quantum error correction over arbitrary width quantum circuits. A major challenge in quantum 
computing is finding codes that reduce the necessary number of qubits to achieve a logical qubit, 
and building a large enough quantum computer with enough fault tolerance to be able to perform 
useful operations on these logical qubits. 
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INTRODUCTION TO CLASSICAL DEEP LEARNING ALGORITHMS 

The primary goal of machine learning and more specifically deep learning is to optimally 
approximate some functional mapping that encodes a challenging task. These tasks historically 
drew heavy inspiration from the everyday tasks that are accomplished by the animal brain. 
Today, a vast variety of interesting problems are addressed using machine learning and deep 
learning, from understanding protein folding for better drug discovery [20], to predicting 
complex weather patterns [21], to processing and/or translating language [22], to autonomous 
driving [23], to realizing nuclear fusion technology for green energy production [24]. 
For example when a fox sees the movement of an animal in the distance, its visual cortex must 
quickly determine if that animal is a bear and the fox should scurry away, or if the animal is a 
rabbit and the fox should pursue it. This general perception task is highly studied in machine 
learning literature and known as the task of classification. Here, the natural processes of the brain 
that classify the visual image of an animal as a bear or a rabbit can be understood as a functional 
mapping between images and classes of animals. 
Another example is based on the motor cortex, where a human might want to pick up a glass of 
water in order to drink from it. The motor cortex evaluates the current position, velocity, and 
acceleration of the arm, and the current position of the cup, and must determine the electrical 
signals that are sent to the arm to cause it to extend and grasp the cup. This general task is also 
highly studied in robotics literature and known as the task of control (i.e. controlling the hand 
and arm to grasp the cup). Here again, the natural processes of the brain can be understood as a 
functional mapping between generalized locations and muscular actuation signals. 
This sort of input-output mapping representation of a process or relationship is extremely 
flexible and general, perhaps universal. Using this framework, the goal of machine learning is to 
closely approximate the inherent relationship between input and output by a function that 
contains many, often millions, of flexible parameters often referred to as weights. The mapping is 
most commonly represented, or modeled, using a highly parameterized Artificial Neural 
Network (ANN), and the learning in machine learning refers to optimizing the parameters of the 
model so that it can mimic the process or relationship to high accuracy and precision. The 
adaptability and expressibility of ANNs have been one of the biggest motivators of their wide 
spread use. In this section, the basics of ANNs will be covered. 

Overview of Classical Machine Learning Problems and Terminology 
In machine learning the general goal is to learn a model from a system with known inputs, and 
sometimes outputs, so that the model can predict or enhance understanding of the underlying 
data. In the most general case there are two types of machine learning algorithms; supervised and 
unsupervised. In the unsupervised case, only the inputs to a system are known and the goal is 
generally to better describe the data itself. For example, a common unsupervised learning task is 
called clustering, wherein the machine learning model is attempting to find patterns in the data 
that identify common characteristics of portions of the data so that homogeneous data is grouped, 
or clustered, together. In the supervised case, both the inputs and outputs of the system are 
known and the goal is to accurately predict the systems outputs given the inputs. We will focus 
on the supervised case as that is more related to our current work. 
In the supervised machine learning framework there are again two tasks that machine learning 
performs; classification and regression. In the classification task machine learning models seek 
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to identify membership of the input data to categories known as classes. For example, 
determining if an image contains a cat or a dog is understood as determining if the object in the 
image belongs to the ‘cat’ class or the ‘dog’ class. This type of model will often be referred to as 
a classifier, as its purpose is generally to assign the correct class to an input, where the outputs 
are effectively binary ‘yes or ‘no’ for class membership of each class. The regression task is very 
similar except that instead of being binary in the output, models generally output a continuous 
value, e.g. given an image of a dog, predict the weight in kilograms of said dog. The differences 
in these tasks usually comes down to the type of data available and the setup of the optimization 
problem. 
Once the task and model have been defined, the model’s parameters are optimized such that the 
model fits the data as closely as possible. This optimization procedure is often referred to as 
training, and is the critical phase of a machine learning algorithm. Here, some function ℱ that 
quantifies some abstract measure of distance, or error, between the predicted labels 𝑦𝑦� and the true 
labels 𝑦𝑦 of the training data 𝑥𝑥 is minimized as 

𝜃𝜃best = arg min𝜃𝜃ℱ(𝑦𝑦�(𝜃𝜃, 𝑥𝑥), 𝑦𝑦), 
( 68 ) 

where ℱ(𝑦𝑦�(𝜃𝜃, 𝑥𝑥),𝑦𝑦) is the function to be minimized (e.g. mean squared error) measuring some 
notion of ‘badness’ of the model’s prediction of the class label. This function is sometimes called 
an objective function, a cost function, or a loss function depending on the community. All 
machine learning models can be represented by an equation that maps the input to the desired 
output, and in this case the predicted labels 𝑦𝑦� are a function of the model parameters 𝜃𝜃 and the 
training data 𝑥𝑥. 
Before beginning to train, the available data is usually divided into three categories: training 
data, validation data, and test data. The training data is the data that is used to optimize the model 
parameters, while the validation data is used to prevent overfitting. Overfitting occurs when the 
optimization process learns the training data too well and does not generalize to other data. 
During training, the validation data is evaluated using the same function as the training data, 
generally referred to as the validation loss, however the model is never updated using the 
validation loss. The validation loss is monitored over training iterations, and overfitting is 
generally indicated by an increase in the validation loss for a decreasing training loss. When the 
validation loss begins increasing, training can be stopped to prevent overfitting. The final step in 
the machine learning process is the testing phase. Here the model is evaluated to determine true 
performance. This phase requires a completely blind set of data called test data, i.e. neither the 
validation nor training data can be used. This ensures that the performance of the model on the 
test data captures what typical performance would look like in practice. 
If we consider a general classification task such as the one described above, the goal of training 
is to separate the input space into multiple regions where each region contains only a single class 
label. This clearly requires that the data is separable in some way; and the simplest case is where 
the data is linearly separable. Let’s assume that our data has two classes, if a straight line can be 
drawn between the classes that data is linearly separable and any machine learning model will be 
able to correctly classify this data. This very rarely happens in real world data, thus many 
advanced models have been developed to handle data of various complexities, such as data that 
is not linearly separable. One such model will be covered next. 
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Neural Networks 
The beginnings of ANNs trace back to 1957 with Rosenblatt's perceptron [25]. The perceptron 
classifier is a simple linear classifier/regression model. In the perceptron a group of weights are 
used to transform the input variables into the desired output. The perceptron uses the equation, 
𝒚𝒚 = 𝑾𝑾𝑾𝑾, where 𝒙𝒙 is the input vector, 𝑾𝑾 are the weights, and 𝒚𝒚 is the output which is either a 
scalar value or a new vector. This is a linear mapping which is severely limited in its real world 
application as demonstrated by the following example.  
The XOR problem is often used for illustrations on the decision boundaries obtained with neural 
networks. The XOR problem generally consists of four clusters of data which are grouped into 
two classes. The clusters are generally created in a square, i.e. the four cluster centers are located 
at (-1, -1), (-1, 1), (1, 1), and (1, -1), with the diagonal clusters labeled as one class and the off-
diagonal clusters as the opposite class. The perceptron is shown graphically on the left side of 
Figure 4, and the image on the right shows the limitations of the perceptron in solving the XOR 
problem. In the image, the different colors each indicate a different class. Since the perceptron is 
a linear classifier it can only define a simple linear decision boundary. Therefore, the perceptron 
is unable to correctly separate the diagonal and off-diagonal classes. 

 
Figure 4: Perceptron Example 

To improve upon the perceptron it was found that performance could be greatly improved by 
combining multiple perceptrons together. The combinatorial process involves creating layers of 
perceptrons. A layer is generated by having several perceptrons in parallel, with each perceptron 
using the same inputs. When combined in this fashion each perceptron is generally called a 
neuron. As the single perceptron case is simply an inner product between the inputs and the 
weights, a layer can be seen as a linear mapping from the input space to the space defined by the 
weights of each neuron. Thus each layer is computed as a matrix multiplication. The output from 
each linear mapping is then fed into a non-linear function often referred to as an activation 
function, which is named after its approximation of the step activation of a biological neuron. 
This is often referred to as the Wiener method [26], which has the non-linear activation following 
the summation in Figure 4. The purpose of the non-linear activation is to increase expressibility 
of the network, as without non-linearities a series of linear mappings will always reduce to a 
single linear mapping. Stacking multiple layers together, by connecting the outputs of a layer to 
the inputs of the following layer, creates what is called the Multi-Layered Perceptron (MLP) 
[27], and is shown in the left side of Figure 5. In the diagram each circle is considered a neuron. 
The outputs from the final layer, generally called the logits, are often converted to probabilities 
via the softmax function, which is defined as 
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𝜎𝜎(𝒛𝒛)𝑖𝑖 =
𝑒𝑒𝛽𝛽𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝛽𝛽𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 for 𝑖𝑖 = 1, … ,𝐾𝐾, 

( 69 ) 

where 𝐾𝐾 is the number of logits in the output layer, 𝒛𝒛 is the vector of output logits with 𝑧𝑧𝑖𝑖 being 
the 𝑖𝑖th element of the vector, and 𝛽𝛽 is referred to as the temperature which is a hyperparameter 
that controls the smoothness of the softmax function. 

 
Figure 5: Multilayer Perceptron Example 

With the addition of multiple layers and non-linearities the MLP is now capable of classifying 
data that is not linearly separated as in the right side of Figure 5. The stacking of layers allows 
the MLP to define multiple regions that can be separated linearly by the final classification layer. 
For example, in the XOR problem shown in the right side of Figure 5 the hidden layer can divide 
the feature space into the four quadrants shown. The classification layer then classifies the 
quadrants into their proper classes as the first layer projects the data into a space where the 
quadrants are linearly separable. To be considered a MLP there must be at least three layers: the 
input layer, the output layer, then at least one hidden layer. The hidden layer(s) fall between the 
other two layers as shown in the left side of Figure 5. In general multi-layer networks, there are 
many layers of matrix-vector multiplications which can be expressed as  

𝑓𝑓(𝒙𝒙𝑛𝑛;𝑾𝑾) = 𝜎𝜎𝑁𝑁ℎ �𝑾𝑾𝑁𝑁ℎ𝜎𝜎𝑁𝑁ℎ−1 �𝑾𝑾𝑁𝑁ℎ−1𝜎𝜎𝑁𝑁ℎ−2�…𝜎𝜎1(𝑾𝑾1𝒙𝒙𝑛𝑛)���, 

( 70 ) 

where 𝒙𝒙𝑛𝑛 is an input, 𝑁𝑁𝐻𝐻 is the number of hidden layers, 𝜎𝜎ℎ(. ), ℎ = 1, 2, … ,𝑁𝑁𝐻𝐻 are activation 
functions, and 𝑾𝑾 are the weights. To describe the potential capabilities of the MLP the Universal 
Approximation Theorem was proved in [28] which states that MLPs are capable of 
approximating any continuous function to an arbitrary accuracy given that the hidden layer is of 
sufficient size.       

Shared Weight Neural Networks     
The standard MLP is effective for a broad category of tasks, however the MLP also introduces a 
bias toward interconnectivity of every data point. While this is often a good strategy, it can 
introduce significant redundancy, and specifically many classification problems rely on images, 
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for which local relationships are more important. In adding more capability to the MLP, the next 
big advancement was the shared weight network from [29]. This is easiest to visualize via the 
convolutional neural network (CNN) [30]. Convolution networks are based on the standard 
convolution operation defined as: 

(𝑓𝑓 ∗ 𝑔𝑔𝜃𝜃)[𝑛𝑛] = � 𝑓𝑓[𝑚𝑚]𝑔𝑔𝜃𝜃[𝑛𝑛 −𝑚𝑚]
𝑁𝑁−1

𝑚𝑚=0

, 

( 71 ) 

where 𝑓𝑓 and 𝑔𝑔𝜃𝜃 are functions to be convolved, and 𝑔𝑔𝜃𝜃 is parameterized by 𝜃𝜃 and is often referred 
to as the convolution filter. Note that convolution is usually implemented as correlation in 
convolution networks, because correlation requires fewer operations and the convolution filter is 
learned therefore the two are effectively equivalent. To better explain what is happening see 
Figure 6. In the figure a simple convolution example is shown using two vectors, one of size 4 
and another of size 3.  

 
Figure 6: Simple convolution example 

For this demo only the valid portion of the convolution is used meaning only the locations where 
two vectors fully overlap are used, these two positions are shown in the center line of the figure. 
The last line of the diagram shows the output of the convolution as an equation of the individual 
elements of 𝑓𝑓 and 𝑔𝑔𝜃𝜃. The last line can also be represented as a matrix multiplication as in: 

(𝑓𝑓 ∗ 𝑔𝑔𝜃𝜃)[𝑛𝑛] = �𝑔𝑔𝜃𝜃
[3] 𝑔𝑔𝜃𝜃[2]
0 𝑔𝑔𝜃𝜃[3]

𝑔𝑔𝜃𝜃[1] 0
𝑔𝑔𝜃𝜃[2] 𝑔𝑔𝜃𝜃[1]�

⎣
⎢
⎢
⎡𝑓𝑓

[1]
𝑓𝑓[2]
𝑓𝑓[3]
𝑓𝑓[4]⎦

⎥
⎥
⎤
 . 

( 72 ) 
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With this representation if we write the 2 × 4 matrix as 𝑾𝑾, with 𝑤𝑤𝑛𝑛 = 𝑔𝑔𝜃𝜃[𝑛𝑛], and the vector of 
𝑓𝑓[𝑛𝑛] as 𝒙𝒙, with 𝑥𝑥𝑛𝑛 = 𝑓𝑓[𝑛𝑛] we are left with exactly the equation of a perceptron, 𝒚𝒚 = 𝑾𝑾𝑾𝑾 as was 
seen before. With this new representation we can rewrite the convolution operation we started 
with as the simple single layer neural network shown in Figure 7.  

 
Figure 7: Simple convolution layer 

In this representation the weights (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) are shared across both of the neurons represented 
by the summation symbols, thus a small set of weights can be shared across the input space. This 
type of network is in general applied to images, and can dramatically reduce the number of 
network parameters, which can reduce overfitting, reduce training time, and reduce model 
complexity. 

Gradient Descent 
Training for all types of neural networks uses some flavor of gradient descent. Gradient descent 
is an optimization strategy that is widely used for fitting many different types of models and 
data. Assuming a convex function, for a given point the sign of the gradient points away from the 
minimum. For example, in Figure 8, assume we are trying to find the minimum of the function 
𝐹𝐹(𝑥𝑥) while starting at the point 𝑥𝑥1 = 2. Computing the gradient of 𝐹𝐹(𝑥𝑥) at 𝑥𝑥1 results in 
𝐹𝐹′(𝑥𝑥1) = 4. If 𝐹𝐹′(𝑥𝑥1) is added to 𝑥𝑥1 we would move in the opposite direction of the actual 
minimum located at 𝑥𝑥 = 0. This also happens for 𝑥𝑥2 on the opposite side of the minimum. With 
this example we can see that by taking a small step in the direction of the negative gradient we 
can move closer to the true minimum function value. 
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Figure 8: Example of gradient calculation. 

Gradient descent is simply repeatedly over many iterations (update evaluations) computing the 
gradient and taking a small step in the direction of the gradient. Therefore, the rule for updating 
any model via gradient descent is as follows, 

𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙𝑜𝑜𝑙𝑙𝑙𝑙 − λ∇𝒙𝒙𝐹𝐹(𝒙𝒙), 
( 73 ) 

where 𝐹𝐹(𝒙𝒙) is the objective function parameterized by the parameter 𝒙𝒙 and 𝜆𝜆 is the step size that 
controls how far to move in the direction of the gradient. Repeatedly applying ( 73 ) until 
convergence will return the value of 𝒙𝒙 that minimizes 𝐹𝐹(𝒙𝒙). 

Gradient descent for machine learning follows the same basic formula as above except that the 
function being minimized typically takes the form, 

ℱ(𝑾𝑾,𝑿𝑿,𝒀𝒀) =
1
𝑛𝑛
�ℒ(𝑾𝑾,𝑿𝑿𝑖𝑖 ,𝒚𝒚𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

, 
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where  ℒ(𝒘𝒘,𝒙𝒙𝑖𝑖 ,𝒚𝒚𝑖𝑖) is a function often called the loss function (squared error for example), which 
depends on the model parameters 𝒘𝒘, training data 𝒙𝒙, and training labels 𝒚𝒚. The loss function is 
then summed over the 𝑛𝑛 samples available in the training dataset, this is an unbiased estimator 
for the expected value of ℒ(𝒘𝒘,𝒙𝒙𝑖𝑖 ,𝒚𝒚𝑖𝑖) over the inputs 𝒙𝒙𝑖𝑖. For example, using the perceptron 
discussed earlier as the model with mean squared error as the loss function yields, 

ℱ(𝒘𝒘,𝑿𝑿,𝒚𝒚) =
1

2𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝒘𝒘T𝒙𝒙𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

. 

( 75 ) 
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Here the training data 𝑿𝑿 and the training labels 𝒚𝒚 are known, therefore optimization is done 
solely on the model parameters 𝒘𝒘. Evaluating the gradient and using Equation ( 73 ) generates 
the following update equation for the perceptron algorithm, 

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜆𝜆
𝑛𝑛 �

��𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜
T 𝒙𝒙𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

� 𝒙𝒙𝑖𝑖 . 
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This method is commonly referred to as the batch gradient descent update. Here the entirety of 
the training set is used to compute a single update to the model, so there is only a single update 
in each iteration.  
Another version of gradient descent is commonly called stochastic gradient descent. In this 
variant instead of using the entire training dataset to compute a single gradient update, only a 
single data point is used for each update. Therefore, the stochastic gradient descent update 
equation is reduced to, 

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜆𝜆�𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜
T 𝒙𝒙𝑖𝑖�𝒙𝒙𝑖𝑖 . 

( 77 ) 

The biggest difference between the two methods is in how many updates are performed. For the 
batch gradient descent there was only one update for each pass of the dataset, however, for the 
stochastic gradient descent method there will be 𝑛𝑛 updates each pass. A pass through the dataset 
is commonly called an epoch. A way to interpret the differences between the batch and the 
stochastic versions is that, effectively, the batch method computes the average of all the 
individual updates to compute its one update. This allows a smoother convergence to the correct 
solution. The stochastic update leads to a much noisier convergence curve as the model is 
reacting to each data sample individually. The noisy convergence curve cab be beneficial though, 
as the randomness in the updates allows the model to jump out of local minima during training to 
potentially find better solutions. 
There is a third type of gradient descent that is far more widely used, especially in the deep 
learning community, which is the mini-batch method. Mini-batch gradient descent is a hybrid of 
the batch and stochastic methods. Whereas the batch gradient method uses the entire dataset to 
compute the gradient, the mini-batch method uses only a small subset, larger than 1, to compute 
the gradient. This also allows for updating the model multiple times during an epoch but does not 
require updating after every single training sample. It also incorporates stochasticity by randomly 
sampling the mini-batches of data. The full algorithm for the mini-batch gradient descent is 
shown in Algorithm 1 below. This method incorporates the benefits of both methods by allowing 
the optimizer to have some randomness in the updates like the stochastic method but limits the 
amount of randomness by controlling the batch size. A small batch size increases the 
randomness, and thus optimization behaves more like the true stochastic version, while 
increasing the batch size reduces the randomness so the optimization behaves like the standard 
batch gradient descent method. 
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Algorithm 1: Mini-batch gradient descent algorithm. 

Inputs: Training data 𝑿𝑿, training labels 𝒚𝒚, number of 
epochs 𝑁𝑁, batch size 𝑚𝑚 
1. Randomly initialize model parameters 𝒘𝒘 
2. For 𝒊𝒊 = 𝟏𝟏, … ,𝑵𝑵 do 

2.1. Randomly shuffle 𝑿𝑿 & 𝒚𝒚 
2.2. Divide 𝑿𝑿 & 𝒚𝒚 into batches of size m (𝑿𝑿𝒋𝒋 & 𝒚𝒚𝒋𝒋), 

save number of batches 𝑴𝑴 
2.3. For 𝒋𝒋 = 𝟏𝟏, … ,𝑴𝑴 do 

2.3.1. 𝒘𝒘 ← 𝒘𝒘− 𝝀𝝀 𝟏𝟏
𝟐𝟐𝟐𝟐

∑ 𝛁𝛁𝒘𝒘𝓛𝓛(𝒘𝒘,𝑿𝑿𝒋𝒋,𝒚𝒚𝒋𝒋)𝒎𝒎
𝒋𝒋  

2.4. If Converged 
2.4.1. Exit loop 

3. Return 𝒘𝒘 

Backpropagation (Gradient descent for Neural Networks) 
Gradient descent as it is defined above works well in many cases, however with neural networks 
the sheer number of parameters and serial-ness of the operations can make differentiating with 
respect to each parameter inefficient. Combining Equation ( 70 ) with the mean squared loss (for 
simplicity) leaves: 

ℒ(𝒙𝒙𝑛𝑛, 𝑦𝑦𝑛𝑛,𝑾𝑾) =
1
2
�𝑦𝑦𝑛𝑛 − 𝜎𝜎𝑁𝑁ℎ �𝑾𝑾𝑁𝑁ℎ𝜎𝜎𝑁𝑁ℎ−1 �𝑾𝑾𝑁𝑁ℎ−1𝜎𝜎𝑁𝑁ℎ−2�…𝜎𝜎1(𝑾𝑾1𝒙𝒙𝑛𝑛)����

2
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as the full loss function to be optimized. Following the process described above for gradient 
descent we would differentiate with respect to 𝑾𝑾 to find the update equation. However, a single 
expression cannot be found to optimize over each individual 𝑾𝑾𝑁𝑁ℎ simultaneously as was done 
before. A separate update function could be found by differentiating with respect to each 𝑾𝑾𝑁𝑁ℎ, 
however as mentioned this is inefficient as each set of parameters will have a unique update 
equation, also many of the calculations for each of these differentiations are repeated. On top of 
that this process is not universal for all neural networks. Backpropagation is a way to compute 
the gradients in a systematic fashion to efficiently calculate all the gradients in a neural network 
one layer at a time that can be universally applied to all neural networks that also minimizes the 
amount of duplicate calculations. At a high level backpropagation can be thought of as a large 
chain rule. The per-layer loss gradient, often called the local gradient, is computed backwards 
across layers of the network. In this manner the local gradient for layer 𝑖𝑖 is computed with 
respect to only the inputs and outputs of layer 𝑖𝑖. When applied in a chain-rule like manner the 
loss is passed backwards, starting at the output, through each layer. Each layers’ parameters are 
updated in accordance with how much those parameters attribute, via the gradient, to the total 
loss. For detailed explanation please see [31]. 
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CURRENT STATE OF QUANTUM COMPUTING 

Quantum Circuit Architecture 
The currently dominant approach to quantum computing is to create a quantum circuit. This 
approach is similar to classical digital logic circuits in organization and structure, but there are 
some key differences. In classical digital logic circuits, a set of bits are typically initialized in the 
binary 0 state, and are fed through logic gate operations sequentially until the computation is 
complete and the results are read out. These circuits are often represented graphically by 
sequences of lines between symbols representing logic gates that eventually lead to an output. 
Critically, the values of the bits of the circuit can be measured at any point throughout the circuit 
without affecting the rest of the circuit.  
With quantum circuits, qubits are similarly prepared in some initial state, usually the qubit’s zero 
state, and are also fed through sequences of gate operations that are also graphically represented 
by symbols (typically rectangles) connected by lines that eventually lead to some output which is 
read by quantum measurement. However a major difference from classical digital circuits is that 
a qubit measured before the end of the circuit will have significant effects on the rest of the 
circuit. This is because there is an associated back-action as a result of any quantum 
measurement, and often the measurement back-action collapses the quantum wave function of 
the measured qubit, reducing it to a single classical value from that point on. This aspect is 
represented graphically in quantum circuits using double lines for classical values and single 
lines for quantum values.  
Another major difference from digital logic is regarding circuit structure. As described in the 
fundamentals of quantum computing section, digital logic gates are allowed to have a different 
number of inputs than outputs, while quantum gates must be unitary and thus have equal 
numbers of inputs and outputs. For example classical gates such as AND, OR, and XOR gates 
have two inputs and only one output, such that the operations are irreversible and the total 
number of bits at any given point in the circuit is not fixed. Since quantum gate operations must 
be unitary and reversible, the total number of qubits is conserved throughout the circuit3. For 
example, consider the classical XOR digital logic gate and the quantum CNOT gate. These two 
gates have similar outputs that produce similar truth tables. For the digital XOR gate shown 
below, two inputs, A and B, are fed in and one output, C, is produced. If A and B are the same, 
the output is a value of 0. If A and B are different, the output is a value of 1.  

 
 
 

                                            
3 Note that quantum measurement performed before the end of the circuit may often be graphically 
represented as reducing the number of qubits, however these qubits continue to exist classically after 
measurement. 

Input Output 

A B C 
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Figure 9: The XOR gate 

In contrast, the quantum CNOT gate uses the state of one of the input qubits as a control qubit, 
and determines the action on the other qubit, the target qubit, based on the control qubit’s state. 
This is represented graphically in Figure 10, where 𝑞𝑞0 is the control qubit and 𝑞𝑞1 is the target 
qubit. The CNOT gate itself is represented by a unique symbol. The ⊕ symbol represents the 
NOT operation being applied to 𝑞𝑞1, which is connected to the 𝑞𝑞0 qubit and terminates in a dot 
representing 𝑞𝑞0 as the control of the NOT operation. If 𝑞𝑞0 is in the zero state, 𝑞𝑞1 is unaffected, 
while if 𝑞𝑞0 is in the one state, the NOT operation will be applied to 𝑞𝑞1 and its state will be 
flipped, which is equivalent to rotation by 𝜋𝜋 about the x-axis. In contrast to the digital XOR gate, 
both input qubits are conserved throughout the calculation and are measured at the end of the 
circuit. 
Also unique to quantum computing is that the output of the quantum measurement process is not 
the quantum state. Instead, an observable associated with the qubit is measured, yielding one of 
the possible eigenvalues of the operator corresponding to  the the quantum state the qubit was in. 
This is highlighted in the truth table in Figure 10, where the inputs are quantum states 
represented in ket notation, and the outputs are the measured eigenvalues of the operator, and 
associated with the two possible quantum state outcomes.  
 
 
 
 
 

 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Input Output 

𝑞𝑞0 𝑞𝑞1 𝑀𝑀0 𝑀𝑀1 

|0> |0> 0 0 

|0> |1> 0 1 
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Figure 10: The quantum CNOT gate 

In this diagram, 𝑀𝑀0 is the measurement outcome on 𝑞𝑞0, and 𝑀𝑀1 is the measurement outcome on 
𝑞𝑞1. If we omit the 𝑀𝑀0 column, then we recover the truth table for the classical XOR gate. Note 
however that this truth table does not include the continuum of possible superpositions of qubit 
states, which are valid inputs in the analogous quantum gate. Additionally, the 𝑞𝑞1 qubit is still 
present at the end of the circuit which, for unitary gates, allows for reversibility and 
reconstruction of the input states given the output and operation applied. Graphically, gates are 
applied sequentially from left to right, as depicted below. 

 
Figure 11: Simple quantum circuit example 

There are some gates that operate on larger numbers of qubits. They can be generically 
represented graphically by rectangles that cover multiple qubit lines, however some specific 
multi-qubit gates have their own representations. Any unitary single qubit operation can be 
turned into a controlled operation that depends on the state of another qubit. This is shown by the 
appropriate box/symbol on the qubit to be operated on, with a vertical line extending from the 
box to the horizontal line of the controlling qubit with a dot placed at their intersection.  
Another contrast to classical logic circuits is that in quantum circuits, one measurement is not 
enough to deduce the quantum state of the output qubit(s). For example, a qubit in the 
superposition state 

|𝑞𝑞〉 =
1
√2

|0〉 +
1
√2

|1〉 =  

⎣
⎢
⎢
⎡

1
√2
1
√2⎦
⎥
⎥
⎤
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has a measurement outcome of 0 with probability ½ and a measurement outcome of 1 with 
probability ½. Thus several measurements of the same qubit must be made in order to deduce 

|1> |0> 1 1 

|1> |1> 1 0 



 

31 

that it is in the given superposition state. Thus the expectation value is estimated by repeating the 
measurement many times. Also, since the measurement value only returns the magnitude, the 
expectation value will be equivalent for a set of quantum states that have the same magnitude but 
different phase, for example the state 

|𝑞𝑞〉 =
1
√2

|0〉 −
1
√2

|1〉 =  

⎣
⎢
⎢
⎡

1
√2

−
1
√2⎦
⎥
⎥
⎤
. 

( 80 ) 

These two states are identical except for a phase factor, and this type of measurement protocol 
(with a single Z measurement) does not have the resolution to discern between such states. There 
are workarounds, for example measuring with respect to the x-axis instead of the z-axis, but this 
leads to extra care that is necessary in designing quantum circuits. For further reading on the 
fundamentals quantum gates and quantum information, see references [18] and [19]. 
 

Embedding Classical Data in Quantum Circuits 
Since quantum data and classical data are inherently different in nature, methods must be used to 
encode classical data in a way that is usable in quantum circuits. Currently, there are two main 
strategies for building quantum machine learning circuits that use classical data. The first 
strategy is to use classical dimensionality reduction techniques to reduce the dimension of the 
classical data to match the number of qubits available in the circuit, such as principle component 
analysis. In order to embed binary data specifically, an additional step is necessary to convert the 
reduced dimension data to binary values. An example of a method to reduce dimensionality and 
convert to binary values is shown in Appendix A. 
Another type of encoding is often called gate encoding. In this paradigm the original floating 
point data is encoded directly into a quantum circuit with the use of rotation gates. For this type 
of encoding, the original data is normalized to be in the range of [0,𝜋𝜋]. This range is used to 
ensure that large and small values are not unintentionally confused for being close together, as 
they could be if the full [0, 2𝜋𝜋) range was used. In cases where the data has fewer or the same 
dimensions as the number of qubits, each value of the original data can be directly encoded into 
the rotation parameter of a rotation gate. In this setup each dimension of the data is encoded by 
exactly one rotation gate per qubit during the encoding, which can then be used by additional 
circuit elements for machine learning. 
An extension of this method, called block encoding, takes this method and applies it to higher 
dimensional data. Here the data is represented as a quantum circuit containing many rotation 
gates applied to the same qubits in order to generate a unique encoding for each data point. Four 
numbers are important for the design of this encoding scheme: the dimensionality of the data 
(𝐷𝐷), the number of qubits (𝑄𝑄), the number of layers of the circuit (𝐿𝐿), and the number of gates 
per block (𝐺𝐺). The values of 𝐷𝐷 and 𝑄𝑄 should already be known and the values of 𝐿𝐿 and 𝐺𝐺 are 
design variables. To select the values of 𝐿𝐿 and 𝐺𝐺 follow the rule that 𝐷𝐷 ≤ 𝑄𝑄𝑄𝑄𝑄𝑄 while also trying 
to minimize the product 𝑄𝑄𝑄𝑄𝑄𝑄. For example, if the data consists of 192 total dimensions, and we 
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are using a quantum computer/simulator with 16 qubits, we can set 𝐿𝐿 to 4 and 𝐺𝐺 to 3. With the 
design settled, the circuit can be created. 
The circuit will consist of creating blocks of sets of cycling rotation gates (i.e. an x rotation gate 
followed by a z rotation gate followed by another x rotation gate). Consecutive rotation gates 
must be around different axes. The circuit is created by stacking these blocks together evenly 
across all qubits. After a layer of blocks is created a series of CNOT gates are used to connect 
consecutive qubit pairs. This process is repeated 𝐿𝐿 times. The rotation amount is defined by the 
data itself as was done with the gate encoding above. If there are more gates than data 
dimensions the excess rotation gates use 0 for the rotation angle, so they act as pass through 
gates. The outputs from this encoding circuit now encode the full data and return unique values 
for each of the inputs, without needing to follow a complicated dimensionality reduction 
technique. An example of a circuit with eight qubits, four layers, and two gates per block is 
shown below in Figure 12.  

 
Figure 12: Example of block encoding method 

Quantum Machine Learning 
Quantum machine learning is a new and emerging sub-field of quantum computing that 
combines two specialized fields into one. The overall process of quantum machine learning is 
actually very similar to machine learning on classical computers, since quantum machine 
learning is really a hybrid quantum-classical computation [32]. In quantum machine learning a 
few key components of the classical machine learning process are replaced by the output of a 
quantum computer. Most importantly, the error function to be optimized is at least partially 
calculated by a quantum computer. At least one expectation value of a qubit of a quantum circuit 
is used to compose the error function [33], though classical components may be included as well, 
which in some cases increases the functionality. For example, in a classification problem the 
correct label will be a purely classical value, while the label predicted by the network is 
calculated on a quantum computer. Also in order to be able to tune and train the quantum 
network, the network must include some classical parameters that can be kept track of and 
updated by the algorithm [32] [33]. 
Once the data has been encoded into the quantum circuit using one of the encoding methods 
mentioned, multi-qubit operations are applied to the data qubits and the readout qubits with the 
goal of manipulating the readout qubits to some desired state corresponding to the data input. 
Typically these operations are parametrized controlled rotation gates applied to the readout qubit 
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and controlled off of the data qubits, though non-controlled gates can also be applied to the 
readout qubit. Upon running the circuit multiple times, the expectation value of the measured 
readout qubit is used as the final output of the circuit and used to compute a loss function. An 
example circuit for quantum machine learning is shown below, this example used the single 
rotation gate data encoding method mentioned above. 

 
Figure 13: Example quantum machine learning circuit 

In this setup, qubit 0 is the readout qubit and the only one that is measured for the output. The 
first two gates acting on qubit 0 place the qubit into an unbiased initial state before the network 
operations are applied. Qubits 1-5 are the data qubits. Each rotation operation on each of those 
qubits is parameterized by some classical value based on the input data. The remaining gates on 
qubit 0 are trainable rotation gates controlled by the state of the data qubits. The network gates 
are parameterized by the trainable network variables 𝑎𝑎[1], 𝑏𝑏[1], 𝑎𝑎[2], 𝑏𝑏[2], … ,𝑎𝑎[𝑛𝑛], 𝑏𝑏[𝑛𝑛].  
Similar to classical machine learning, the most common method used to find the optimal 
parameter values in quantum machine learning is a variant of gradient descent [32]. Since at least 
part of the error function is calculated on a quantum computer, the gradient calculation also 
requires partial computation on a quantum computer, which leads to another major difference 
between classical and quantum machine learning. In classical machine learning fast gradient 
calculation is enabled by backpropagation. Backpropagation requires intermediate results to be 
measured/calculated and stored for later use to avoid recalculating them many times. Obtaining 
intermediate results in the calculation on a quantum computer would require intermediate 
measurements. However, on a quantum computer these intermediate measurements would 
destroy any quantum behavior being utilized by the quantum computer. This means that in order 
to maintain any true quantum calculation, backpropagation is not possible [32] [34] and other 
methods must be used for calculating the gradient on quantum computers [34]. Fortunately, other 
methods of calculating the gradient called parameter-shift rules have been developed and fit very 
well into the architecture of quantum computing. 

Parameter-Shift Rule  
The parameter-shift rule is a very useful tool that allows for an analytically exact gradient 
calculation that can be performed on a quantum computer using the same circuit used to 
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calculate the loss, but with shifted parameter values [34] [35]. In practice, this results in an 
approximate gradient due to the approximation of the expectation value. This is also the case in 
the classical machine learning context defined above, however in that case we defined the loss as 
the finite approximation (under finite data) to the true expectation value. However, in the 
quantum machine learning context, there are in effect two expectations: an expectation with 
respect to measurement outcomes and an expectation over the data. In contrast to the finite data 
problem, expectation values over measurement outcomes can be run as many times as necessary 
to give sufficient precision. 
To show the derivation of this rule, a generic loss function in the form of an expectation value 
from a readout qubit will be used. Let the loss function 𝐶𝐶(𝜃𝜃) be defined as an expectation value 
[34] [35] [36]: 

𝐶𝐶(𝜃𝜃) ∶=  �𝜓𝜓�𝑈𝑈�𝐺𝐺
†(𝜃𝜃) 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� 

( 81 ) 

where |𝜓𝜓⟩ is the vector representing the quantum state and ⟨𝜓𝜓| is its complex conjugate 
transpose, 𝑈𝑈�𝐺𝐺(𝜃𝜃) is a unitary operator parameterized by 𝜃𝜃 with the form 𝑈𝑈�𝐺𝐺(𝜃𝜃) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺�  where 
𝐺𝐺� is a Pauli operator, 𝑈𝑈�𝐺𝐺

†(𝜃𝜃) is the complex conjugate transpose of 𝑈𝑈�𝐺𝐺(𝜃𝜃), 𝐴̂𝐴 is the observable 
being measured, and 𝑎𝑎 is a fixed constant. Taking the derivative with respect to the parameter 𝜃𝜃: 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑

�𝜓𝜓�𝑈𝑈�𝐺𝐺
†(𝜃𝜃) 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓�, 
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requires the use of the product rule, giving: 
𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  �𝜓𝜓� 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑈𝑈�𝐺𝐺
†(𝜃𝜃)) 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� + �𝜓𝜓� 𝑈𝑈�𝐺𝐺

†(𝜃𝜃) 𝐴̂𝐴 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑈𝑈�𝐺𝐺(𝜃𝜃))�𝜓𝜓� 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑
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†(𝜃𝜃) 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)(−𝑖𝑖𝑖𝑖𝐺𝐺�)�𝜓𝜓� 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  𝑖𝑖𝑖𝑖��𝜓𝜓� 𝑈𝑈�𝐺𝐺
†(𝜃𝜃) 𝐺𝐺�𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� − �𝜓𝜓� (𝑈𝑈�𝐺𝐺

†(𝜃𝜃) 𝐴̂𝐴 𝐺𝐺�𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓�� 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  𝑖𝑖𝑖𝑖�𝜓𝜓� 𝑈𝑈�𝐺𝐺
†(𝜃𝜃) �𝐺𝐺�, 𝐴̂𝐴�𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓�, 

( 83 ) 

where [𝐺𝐺�, 𝐴̂𝐴]  is the commutator 𝐺𝐺�𝐴̂𝐴 − 𝐴̂𝐴𝐺𝐺�. While having a commutator in the calculation seems 
to complicate things, it does allow for the following identity to be used [35] [36] [37]:   

�𝐺𝐺�, 𝐴̂𝐴� =  −𝑖𝑖 �𝑈𝑈�𝐺𝐺
† �
𝜋𝜋
2
�  𝐴̂𝐴 𝑈𝑈�𝐺𝐺 �

𝜋𝜋
2
� − 𝑈𝑈�𝐺𝐺

† �−
𝜋𝜋
2
�  𝐴̂𝐴 𝑈𝑈�𝐺𝐺 �−

𝜋𝜋
2
��, 

( 84 ) 

where 𝑈𝑈�𝐺𝐺 =  𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺� , and 𝐺𝐺� is assumed to be some Pauli operator. Using this identity does limit 
the application of the final result to be valid only with Pauli operator-based unitary gates; but 



 

35 

with how commonly used Pauli gates are, this result is still applicable. For a proof of this 
identity, see Appendix B. 

Applying this identity to the commutator in 𝑖𝑖𝑖𝑖�𝜓𝜓� 𝑈𝑈�𝐺𝐺
†(𝜃𝜃) �𝐺𝐺�, 𝐴̂𝐴�𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� leads to a form more 

compatible with quantum circuits: 
𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  𝑖𝑖𝑖𝑖 �𝜓𝜓� 𝑈𝑈�𝐺𝐺
†(𝜃𝜃)(−𝑖𝑖) �𝑈𝑈�𝐺𝐺

† �𝜋𝜋2�  𝐴̂𝐴 𝑈𝑈�𝐺𝐺 �
𝜋𝜋
2� − 𝑈𝑈�𝐺𝐺

† �−𝜋𝜋2�  𝐴̂𝐴 𝑈𝑈�𝐺𝐺 �−
𝜋𝜋
2��  𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  𝑎𝑎 ��𝜓𝜓�𝑈𝑈�𝐺𝐺
†(𝜃𝜃)𝑈𝑈�𝐺𝐺

† �𝜋𝜋2�  𝐴̂𝐴𝑈𝑈�𝐺𝐺(𝜃𝜃) 𝑈𝑈�𝐺𝐺 �
𝜋𝜋
2� �𝜓𝜓�

− �𝜓𝜓�𝑈𝑈�𝐺𝐺
†(𝜃𝜃)𝑈𝑈�𝐺𝐺

† �−𝜋𝜋2� 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃) 𝑈𝑈�𝐺𝐺 �−
𝜋𝜋
2� �𝜓𝜓�� 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  𝑎𝑎 ��𝜓𝜓�𝑈𝑈�𝐺𝐺
† �𝜃𝜃 + 𝜋𝜋

2�  𝐴̂𝐴 𝑈𝑈�𝐺𝐺 �𝜃𝜃 + 𝜋𝜋
2� �𝜓𝜓� − �𝜓𝜓�𝑈𝑈�𝐺𝐺

† �𝜃𝜃 − 𝜋𝜋
2�  𝐴̂𝐴 𝑈𝑈�𝐺𝐺 �𝜃𝜃 −

𝜋𝜋
2� �𝜓𝜓�� 

( 85 ) 

In this form, each term is an expectation value so it can be calculated by a quantum circuit. Of 
even more importance to this application is that each term is in the same form as the original loss 
function 𝐶𝐶(𝜃𝜃) except for the shift by ±𝜋𝜋 2⁄ . This means the gradient calculation can utilize the 
exact same circuit as the original loss function. For each parameter’s gradient calculation all that 
is required is running the circuit twice more, once with the parameter shifted up by 𝜋𝜋 2⁄ , and 
once with the parameter shifted down by 𝜋𝜋 2⁄  [35]. Using the circuit given in Figure 11 as an 
example, to calculate the gradient for the first gate parameter, 𝑎𝑎[0], and letting 𝑘𝑘 = 𝜋𝜋 2⁄ , the 
circuits in Figure 14 would both be run and the output measured for each circuit.  

The difference between the outputs of the two circuits in Figure 14 and the factor of 𝑎𝑎 can be 
calculated classically in the hybrid quantum-classical scheme, which will then give the gradient 
necessary for gradient descent optimization without requiring intermediate measurements nor 
interrupting the quantum behavior of the quantum computer. The gradient calculation process is 
repeated for every network parameter, and the parameters are updated according to the gradient 
result. With a way to efficiently calculate gradients on a quantum computer, the overall quantum 
machine learning process can be described by Algorithm 2. 

 



 

36 

 
Figure 14: Circuits for parameter a1 upshift (top) and downshift (bottom) 
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Algorithm 2: Process for quantum machine learning 

Inputs: Training data 𝑿𝑿𝑖𝑖 , … ,𝑿𝑿𝑚𝑚, training labels 𝒚𝒚, randomly initialized 
parameters w1,…, wn, learning rate r, shift k 
1. For 𝒊𝒊 = 𝟏𝟏, … ,𝒎𝒎 

1.1. Run circuit with parameters 𝐰𝐰 = [𝐰𝐰𝟏𝟏, … ,𝒘𝒘𝒏𝒏], and calculate the 
expectation value of the output 〈𝑨𝑨�(𝑿𝑿𝒊𝒊,𝒘𝒘)〉 

1.2. Calculate loss using data label and circuit output 𝑪𝑪(𝒚𝒚𝒊𝒊,𝑿𝑿𝒊𝒊,𝒘𝒘) =  𝒚𝒚𝒊𝒊 −
〈𝑨𝑨�(𝑿𝑿𝒊𝒊,𝒘𝒘)〉 

1.3. For 𝐣𝐣 = 𝟏𝟏, … ,𝐧𝐧 do 
1.3.1. Upshift 𝒋𝒋th parameter: 𝒘𝒘+ = [𝒘𝒘𝟏𝟏, … ,𝒘𝒘𝒋𝒋 + 𝒌𝒌, … ,𝒘𝒘𝒏𝒏] 
1.3.2. Run circuit with new parameter set 𝒘𝒘+ and measure output 

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 = 〈𝑨𝑨�(𝑿𝑿𝒊𝒊,𝒘𝒘+ )〉 
1.3.3. Downshift 𝒋𝒋th parameter: 𝒘𝒘− = [𝒘𝒘𝟏𝟏, … ,𝒘𝒘𝒋𝒋 − 𝒌𝒌, … ,𝒘𝒘𝒏𝒏] 
1.3.4. Run circuit with new parameter set 𝒘𝒘− and measure output 

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒇𝒇𝒇𝒇 = 〈𝑨𝑨�(𝑿𝑿𝒊𝒊,𝒘𝒘− )〉 
1.3.5. Calculate gradient with respect to 𝒋𝒋th parameter 𝛁𝛁𝒘𝒘𝒋𝒋𝑪𝑪(𝒚𝒚𝒊𝒊,𝑿𝑿𝒊𝒊,𝒘𝒘) =

 𝟏𝟏
𝒂𝒂

(𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 − 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) 
1.4. Update parameter 𝒘𝒘𝒋𝒋 =  𝒘𝒘𝒋𝒋 − 𝒓𝒓𝛁𝛁𝒘𝒘𝒋𝒋𝑪𝑪(𝒚𝒚𝒊𝒊,𝑿𝑿𝒊𝒊,𝑾𝑾) 

 

Stochastic Parameter-Shift Rule 
The stochastic parameter-shift rule allows for a more generalizable gradient calculation that is 
applicable to a wider variety of gates including multi-qubit gates [38]. This is done by replacing 
the operator 𝐺𝐺� in 𝑈𝑈�𝐺𝐺(𝜃𝜃) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺�  with 𝐺𝐺�(𝜃𝜃) = 𝐻𝐻� + 𝜃𝜃𝑉𝑉� , where 𝐻𝐻� is an arbitrary linear 
combination of Pauli operator tensor products, and 𝑉𝑉�  is a tensor product of Pauli operators. Since 
multi-qubit operators can be constructed as a sum of tensor products of Pauli operators, the use 
of 𝐻𝐻� and 𝑉𝑉�  in this form allows for generalization to arbitrary gates and calculation of the gradient 
analytically. The loss function 𝐶𝐶(𝜃𝜃) then becomes: 

𝐶𝐶(𝜃𝜃) =  �𝜓𝜓�𝑈𝑈�𝐺𝐺
†(𝜃𝜃) 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� = �𝜓𝜓�𝑒𝑒𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) 𝐴̂𝐴 𝑒𝑒−𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) �𝜓𝜓�. 

( 86 ) 

To find the gradient of this loss function and manipulate it into a form compatible with quantum 
computers requires several identities. The Baker-Campbell-Hausdorff (BCH) identity [39] is 
derived in Appendix C, and is given by: 

𝑓𝑓(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴� = ��
(𝜆𝜆)𝑛𝑛[𝐴̂𝐴,∙]𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

�𝐵𝐵� = 𝑒𝑒𝜆𝜆[𝐴𝐴�,∙]𝐵𝐵�    

( 87 ) 

We also apply the commutator identity in Equation ( 84 ), and the following exponential 
derivative rule (derived in Appendix D) [38] [39]: 
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𝜕𝜕e𝑧̂𝑧(𝜃𝜃)

𝜕𝜕𝜕𝜕
=  � 𝑒𝑒(1−𝑠𝑠)𝑧̂𝑧(𝜃𝜃) 𝜕𝜕𝑧̂𝑧(𝜃𝜃)

𝜕𝜕𝜕𝜕
e𝑠𝑠𝑧̂𝑧(𝜃𝜃) d𝑠𝑠

1

0

 

( 88 ) 

With this, we derive an analytic form of the gradient that may still be evaluated by a quantum 
computer. The starting point is the loss function as before, given by: 

𝐶𝐶(𝜃𝜃) =  �𝜓𝜓�𝑈𝑈�𝐺𝐺
†(𝜃𝜃) 𝐴̂𝐴 𝑈𝑈�𝐺𝐺(𝜃𝜃)�𝜓𝜓� = �𝜓𝜓�𝑒𝑒𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) 𝐴̂𝐴 𝑒𝑒−𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) �𝜓𝜓� 

( 89 ) 

Applying the BCH identity ( 87 ) yields: 

𝐶𝐶(𝜃𝜃) =  �𝜓𝜓�𝑒𝑒𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] 𝐴̂𝐴  �𝜓𝜓� 
( 90 ) 

Next, the derivative is taken and passed into the expectation: 
𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=   
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜓𝜓�𝑒𝑒𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] 𝐴̂𝐴  �𝜓𝜓� =  �𝜓𝜓� 𝜕𝜕𝜕𝜕𝜕𝜕 𝑒𝑒
𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] 𝐴̂𝐴  �𝜓𝜓� 

( 91 ) 

From here the exponential derivative rule in Equation ( 88 ) is applied, where  𝑒𝑒𝑧̂𝑧(𝜃𝜃) = 𝑒𝑒𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] 
and 𝜕𝜕𝑧̂𝑧(𝜃𝜃)

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑖𝑖𝑎𝑎�𝐻𝐻� + 𝜃𝜃𝑉𝑉� ,⋅� = 𝑖𝑖𝑖𝑖[𝑉𝑉� ,∙], giving: 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=   �𝜓𝜓� 𝜕𝜕𝜕𝜕𝜕𝜕 𝑒𝑒
𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] 𝐴̂𝐴  �𝜓𝜓� = �𝜓𝜓� � 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙]𝑖𝑖𝑖𝑖[𝑉𝑉� ,∙]e𝑠𝑠𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙]𝐴̂𝐴 d𝑠𝑠

1

0
�𝜓𝜓� 

( 92 ) 

Next, the constants are moved to the front and BCH is applied to the term inside the red curly 
braces: 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

=  𝑖𝑖𝑖𝑖 �𝜓𝜓� � 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙][𝑉𝑉� ,∙]{e𝑠𝑠𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙]𝐴̂𝐴} d𝑠𝑠
1

0
�𝜓𝜓�

= 𝑖𝑖𝑖𝑖 �𝜓𝜓� � 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙][𝑉𝑉� ,∙]e𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝐴̂𝐴e−𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) d𝑠𝑠
1

0
�𝜓𝜓�

= 𝑖𝑖𝑖𝑖 �𝜓𝜓� � 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙]�𝑉𝑉� , e𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝐴̂𝐴e−𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)�d𝑠𝑠
1

0
�𝜓𝜓�, 

( 93 ) 

where we use the commutator notation �𝐴̂𝐴,∙�𝐵𝐵� = �𝐴̂𝐴,𝐵𝐵��. Since the commutator now only contains 
𝑉𝑉� , we can now apply the commutator identity ( 87 ): 

𝑑𝑑𝑑𝑑(𝜃𝜃)
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑖𝑖 �𝜓𝜓 �� 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙](−𝑖𝑖) �𝑈𝑈�𝑉𝑉
† �
𝜋𝜋
2
� e𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝐴̂𝐴e−𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝑈𝑈�𝑉𝑉 �

𝜋𝜋
2
�

1

0
 

−𝑈𝑈�𝑉𝑉
† �
−𝜋𝜋
2
� e𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝐴̂𝐴e−𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝑈𝑈�𝑉𝑉 �

−𝜋𝜋
2
��  d𝑠𝑠� 𝜓𝜓� 
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= 𝑎𝑎 �𝜓𝜓 �� 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] �𝑈𝑈�𝑉𝑉
† �
𝜋𝜋
2
� e𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝐴̂𝐴e−𝑠𝑠𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�)𝑈𝑈�𝑉𝑉 �

𝜋𝜋
2
�

1

0
 

−𝑈𝑈�𝑉𝑉
† �
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where 𝑈𝑈�𝑉𝑉(𝜃𝜃) =  𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉� and 𝑏𝑏 is another constant 𝑏𝑏 ≠ 𝑎𝑎. The BCH identity is applied once more 
to the entire term inside the brackets where  
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is treated as the matrix 𝐵𝐵�  in 𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴� = 𝑒𝑒𝜆𝜆[𝐴𝐴�,∙]𝐵𝐵� , and 𝑒𝑒(1−𝑠𝑠)𝑖𝑖𝑖𝑖[𝐻𝐻�+𝜃𝜃𝑉𝑉�,∙] is the exponential. This 
BCH identity application yields: 
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which is the stochastic parameter-shift rule [38] [39]. Using the BCH identity, the gradient was 
able to be manipulated back into the form of a difference of two expectation values with the 
observable 𝐴̂𝐴 at the center, the gate operations and state vector |𝜓𝜓⟩ on its right, and their complex 
conjugates transposed on its left. Comparing ( 96 ) to the original loss function, 𝐶𝐶(𝜃𝜃) =
 �𝜓𝜓�𝑒𝑒𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) 𝐴̂𝐴 𝑒𝑒−𝑖𝑖𝑖𝑖(𝐻𝐻�+𝜃𝜃𝑉𝑉�) �𝜓𝜓�, the gradient contains more terms as well as an integral. In order 
to perform this gradient calculation, a second quantum circuit that represents the gradient 
calculation would need to be set up and run in conjunction with the original circuit used to 
calculate the loss [38]. Additionally, the integral is approximated by the following sampling 
scheme: 
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𝑀𝑀

𝑖𝑖

1

0
,  with 𝑠𝑠𝑖𝑖 ~ 𝑈𝑈(0,1) 
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A value for s is randomly sampled from a uniform distribution for each run of the circuit [38] and 
expectations are averaged. While this does require more resources to run, it is an accurate 
quantum calculation of the gradient of the quantum loss function. 
 

Quantum Computing Example – The XOR Problem 
The exclusive-or (XOR) problem was discussed earlier in the introduction to artificial neural 
networks. The problem consists of two classes of data on a grid separated into four blocks, where 
blocks diagonal from each other contain points in the same class, as depicted in Figure 5. This 
results in a classification problem where the two classes are not linearly separable. Comparing 
and contrasting the classical and quantum solutions highlights some of the advantages of 
quantum computing. Due to the non-linear separation between classes, a classical neural network 
requires multiple perceptrons to solve the XOR problem. However, it has been shown that a 
simple quantum circuit, shown in Figure 15, using only one qubit as a single perceptron can 
solve the XOR problem. This approach leverages the phase of the qubit as an extra degree of 
freedom [40].  

 
Figure 15: Quantum circuit to solve XOR problem 

This circuit is fairly simple and consists of only three gates, a Hadamard gate followed by a Z-
rotation gate, and then an X-rotation gate. The rotation angles of the gates are determined by the 
following classical expressions [40]: 

Z-rotation angle: 𝜃𝜃1𝑥𝑥1 + 𝛼𝛼 

X-rotation angle: 𝜃𝜃2𝑥𝑥2 + 𝛼𝛼 
( 98 ) 

In these expressions, 𝜃𝜃1 and 𝜃𝜃2 are trainable parameters, 𝑥𝑥1 and 𝑥𝑥2 are the input values, and 𝛼𝛼 is 
another trainable parameter. Here, there is a direct solution by using 𝜃𝜃1 =  𝜃𝜃2 = 𝜋𝜋 and 𝛼𝛼 =
 −𝜋𝜋 2⁄  [40], however this circuit could be trained by gradient descent. Indeed, for the input 
vectors (0, 0) and (1, 1) the circuit gives a result near the zero state (up to quantum hard 
precision), and for the input vectors, (0, 1) and (1, 0) the circuit gives an output near the one state 
(up to quantum hard precision) [40]. Finally, with “noisy” non-integer inputs between 0 and 1 the 
circuit gives output states between the zero state and one state (see Table 2 in [40]). 
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Extending the circuit and methods introduced above, nearly identical results are obtained using a 
quantum machine learning framework and training on a larger data set. To do this, the circuit 
from [40] is modified to make it more compatible with the parameter-shift gradient descent 
method described earlier. This modified circuit is shown below in Figure 16. 

 
Figure 16: Modified XOR circuit used in training 

This circuit added two qubits so that the rotation data embedding scheme can be used. The initial 
Hadamard gate applied to the readout qubit remains that same. The CRZ(𝜃𝜃1) controlled on Qubit 
1 for the first data input is an equivalent representation of the 𝜃𝜃1𝑥𝑥1 part of the input parameters to 
the original Z rotation gate, and similarly for CRX(𝜃𝜃2) and 𝜃𝜃2𝑥𝑥2. Since originally the 𝛼𝛼 
parameter is added as a constant, it can be applied in the new circuit as another gate applied in 
series with the respective controlled gate. Additionally, the single 𝛼𝛼 parameter has been split into 
𝛼𝛼1 and 𝛼𝛼2 for the Z and X rotations, respectively, to allow the circuit to be more flexible.  
The data for training and testing this new circuit is generated from a random uniform distribution 
between 0 and 1 for the x and y values of each data point, though values of exactly 0.5 were 
excluded as they would be on the class boundary and degenerate. 1000 sample points were 
generated, with 750 being used for training, 63 used for validation during training, and 187 used 
for blind testing after training was complete. This dataset is shown in Figure 17. 
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Figure 17: Generated XOR dataset 

The yellow data points are assigned to class 0, corresponding to a zero state output of the read-
out qubit, and the purple data points are assigned to class 1, corresponding to a one state output 
of the read-out qubit. The observable used is the Pauli Z gate, which has two possible 
eigenvalues {+1,-1}, which are used as the labels for the classes, respectively. The goal for the 
network is to rotate the read-out qubit towards the zero state for data from class 0, and towards 
the one state for data from class 1. The expectation value should be closer to +1 for inputs from 
class 0, and closer to -1 for inputs from class 1. The loss function to be optimized is given by the 
mean squared error of the expectation value. 
To optimize the loss function, mini-batch gradient descent optimization was used, with a batch 
size of 25 data samples and a learning rate (or step size) of 0.025. The network was trained over 
150 epochs. The loss function was averaged over the 25 samples in each mini-batch and that 
average loss function was used in the gradient calculation. The gradient was calculated using the 
parameter-shift rule in Equation ( 85 ). To classify a sample in the validation and testing phases 
of the machine learning process, the continuously valued expectation value output from the 
network is thresholded. Outputs greater than or equal to 0 are classified as class 0 and outputs 
less than 0 are classified as class 1.  
Using these methods, the network was successfully trained and the results found match the 
results given in [40]. The loss was recorded for every batch, and the plot of the loss vs. batch is 
shown below in Figure 18. 
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Figure 18: Loss by batch over the training period 

The loss decreased to less than 0.5 on average, and plateaued fairly early in the training process. 
The plot of validation accuracy per batch over the training period also plateaued early in training 
as well, as shown in Figure 19. 

 
Figure 19: Validation accuracy vs batch over training period 

The validation accuracy converges to 100% after about 1000 batches, which is an indicator of 
good network performance. In testing the network performed very well, correctly classifying 
100% of the testing data samples. The correct labels and the classification results from the 
network on the test set are shown below in Figure 20. 
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Figure 20: Correct (left) and network assigned (right) labels for test data 

 
The plots are identical, showing that the network assigned the correct label to every testing 
sample. Furthermore, the parameters used and the values they converged to are in full agreement 
with the parameters used in [40]. The evolutions of the parameters over the training period are 
shown below in Figure 21 and Figure 22, where the ideal parameter values from [40] are shown 
by dashed lines. 

 
Figure 21: Theta parameter training 

In Figure 21, the dashed lines are at exactly 𝜋𝜋, which correspond to the value used for 𝜃𝜃1 and 𝜃𝜃2 
in [40]. The network parameters trained here, shown with solid lines, converge to approximately 
𝜋𝜋. The final values for 𝜃𝜃1 and 𝜃𝜃2 at the end of training were 3.14147 and 3.14479, respectively.  
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Figure 22: Alpha parameter training 

 

The results for the 𝛼𝛼 parameters are shown in Figure 22. The dashed lines are at exactly −𝜋𝜋 2⁄ , 
which correspond to the values used for 𝛼𝛼1 and 𝛼𝛼2 in [40]. The network parameters 𝛼𝛼1 and 𝛼𝛼2 
converged to values of 4.71247 and 4.71022. At first it appears that the network parameters are 
not in agreement as they converged to different values, however these values are approximately 
equal to +3𝜋𝜋 2⁄ . Since rotations wrap from 2𝜋𝜋 back to 0, a rotation by +3𝜋𝜋 2⁄  is equivalent to a 
rotation by −𝜋𝜋 2⁄ . Thus the circuit trained here is equivalent to the circuit presented in [40]. 
These results indicate that quantum circuits can be trained (in simulation) using quantum 
machine learning methods. Since the XOR problem is an example of a problem that can be 
solved with a single quantum neuron in contrast to a multi-layer classical perceptron, this 
simulated demonstration highlights some of the potential advantages of quantum computing and 
quantum machine learning.  
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CONCLUSIONS 

This manuscript introduces the relevant concepts of quantum machine learning, and serves as 
introductory material. The basic notions of quantum mechanics are described, including quantum 
phase, superposition, entanglement, and expectations. These are used to introduce quantum gates 
as fundamental building blocks of the quantum computing framework in comparison with the 
classical digital logic framework. The basics of classical machine learning are introduced 
specifically related to deep learning for classification, and are used as a background in order to 
introduce standard notions in quantum machine learning. Finally these notions are applied to an 
example problem that highlights some potential advantages of quantum machine learning over its 
classical counterpart. With the growing capabilities of quantum computers, quantum machine 
learning holds promise for solving hard problems in a variety of domains, and warrants further 
investigation into the quantum advantage of quantum machine learning. 
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APPENDIX 

A. Binary Dimensionality Reduction Example 
In this example we will assume that our data has a starting dimension of 200 and that we are 
using a quantum computer/simulator that has 16 qubits. For this example we will assume that we 
are embedding binary values. To convert the high dimensional floating point data to a 16 bit 
binary vector, an ensemble of weak classifiers will be used.  
For the weak classifier, the perceptron mentioned in the main document is used. This works well 
in the ensemble case as the algorithm can be optimized through direct optimization via 

𝒘𝒘 = 𝒚𝒚𝑿𝑿𝑇𝑇(𝑿𝑿𝑿𝑿𝑇𝑇)−1, 
( 99 ) 

where 𝒚𝒚 is the vector of true labels in {−1, 1} and 𝑿𝑿 is the set of all training data. This is the 
solution to solving the equation 𝒚𝒚 = 𝒘𝒘𝒘𝒘 for 𝒘𝒘.  

To train an ensemble of perceptrons the training data is split into 𝑁𝑁 sets of equal size, where 𝑁𝑁 is 
the number of desired bits in the quantum encoding. A perceptron is then trained, using Equation 
( 99 ), for each of the 𝑁𝑁 sets. The entirety of the data is then passed through each of the 𝑁𝑁 
perceptrons. Each −1 is converted to zero, and the 𝑁𝑁 outputs are combined together to form the 
binary representation for the algorithm comparisons. 
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B. Proof of the Pauli Commutator identity 
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C. Baker-Campbell-Hausdorff Derivation/Proof 

Starting with the function 𝑓𝑓(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴�, which is the same form as what is typically found 
in an expectation value calculation, write it as a Taylor series expansion. Taylor series have the 
form: 

𝐹𝐹(𝑥𝑥) =  �
𝐹𝐹(𝑛𝑛)(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

 

( 100 ) 

So taking the first derivative of 𝑓𝑓(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴�: 

𝑓𝑓′(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐴̂𝐴𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴� −  𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝐴̂𝐴𝑒𝑒−𝜆𝜆𝐴𝐴� =  𝑒𝑒𝜆𝜆𝐴𝐴�[𝐴̂𝐴,𝐵𝐵�]𝑒𝑒−𝜆𝜆𝐴𝐴� 
( 101 ) 

Then evaluating for 𝜆𝜆 = 0: 

𝑓𝑓′(0) = 𝑒𝑒0∗𝐴𝐴��𝐴̂𝐴,𝐵𝐵��𝑒𝑒−0∗𝐴𝐴� =  �𝐴̂𝐴,𝐵𝐵�� = [𝐴̂𝐴,∙]1𝐵𝐵� , 
( 102 ) 

where [𝐴̂𝐴,∙]1𝐵𝐵�  is an alternative notation whose usefulness will become apparent shortly. 
Repeating the above steps for the second derivative gives: 

𝑓𝑓′′(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐴̂𝐴�𝐴̂𝐴,𝐵𝐵��𝑒𝑒−𝜆𝜆𝐴𝐴� −  𝑒𝑒𝜆𝜆𝐴𝐴��𝐴̂𝐴,𝐵𝐵��𝐴̂𝐴𝑒𝑒−𝜆𝜆𝐴𝐴� =  𝑒𝑒𝜆𝜆𝐴𝐴� �𝐴̂𝐴, �𝐴̂𝐴,𝐵𝐵��� 𝑒𝑒−𝜆𝜆𝐴𝐴� = 𝑒𝑒𝜆𝜆𝐴𝐴�[𝐴̂𝐴,∙]2𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴�  

𝑓𝑓′′(0) = 𝑒𝑒0∗𝐴𝐴� �𝐴̂𝐴, �𝐴̂𝐴,𝐵𝐵��� 𝑒𝑒−0∗𝐴𝐴� =  �𝐴̂𝐴, �𝐴̂𝐴,𝐵𝐵��� = [𝐴̂𝐴,∙]2𝐵𝐵� . 

( 103 ) 

Using the developing pattern, the nth derivative evaluated at zero can be written as:  
𝑓𝑓(𝑛𝑛)(0) =  [𝐴̂𝐴,∙]𝑛𝑛𝐵𝐵� . 

( 104 ) 

Then writing 𝑓𝑓(𝜆𝜆) as a Taylor series expansion ( 100 ) centered at zero (i.e. with 𝑎𝑎 = 0) gives: 

𝑓𝑓(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴� = �
𝑓𝑓(𝑛𝑛)(0)(𝜆𝜆 − 0)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

=  �
[𝐴̂𝐴,∙]𝑛𝑛𝐵𝐵�(𝜆𝜆)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

  

( 105 ) 

The final form of the expression looks like the definition of an exponential, 

𝑒𝑒𝜆𝜆𝐴𝐴� = �
𝜆𝜆𝑛𝑛𝐴̂𝐴𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

. 

( 106 ) 

Rewriting 𝑓𝑓(𝜆𝜆) in exponential form yields: 
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𝑓𝑓(𝜆𝜆) = 𝑒𝑒𝜆𝜆𝐴𝐴�𝐵𝐵�𝑒𝑒−𝜆𝜆𝐴𝐴� = �
[𝐴̂𝐴,∙]𝑛𝑛𝐵𝐵�(𝜆𝜆)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= ��
(𝜆𝜆)𝑛𝑛[𝐴̂𝐴,∙]𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

�𝐵𝐵� = 𝑒𝑒𝜆𝜆[𝐴𝐴�,∙]𝐵𝐵� , 

( 107 ) 

which is the Baker-Campbell-Hausdorff identity. 
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D. Derivation of the Derivative of a Parametric Exponential Operator 
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