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ABSTRACT 

Although federated learning and Bayesian neural networks have been researched, 

there are few implementations of the federated learning of Bayesian networks. In this 

thesis, a federated learning training environment for Bayesian neural networks using a 

public code base, Flower, is developed. With it is the exploration of state-of-the-art 

architecture, residual networks, and Bayesian versions of it. These architectures are then 

tested with independently and identically distributed (IID) datasets and non-IID 

datasets derived from the Dirichlet distribution. Results show that the MC Dropout 

version of Bayesian neural networks can achieve state-of-the-art results—91% 

accuracy—for IID partitions of the CIFAR10 dataset through federated learning. 

When the partitions are non-IID, federated learning through inverse variance 

aggregation of probabilistic weights does as well as its deterministic counterpart, with 

roughly 83% accuracy. This shows that Bayesian neural networks can be federated and 

achieve state-of-the-art results as well. 
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CHAPTER 1:
Introduction

1.1 Overview
Artificial intelligence (AI) has propelled traditional machine learning (ML) into new fields
once thought too complex or computationally expensive. This newfound capability rests on
the evolution of deep neural network (NN)s. NN are now able to accomplish complex human
tasks in computer vision such as classification, object detection, and image segmentation.
In 2016, AlphaGo defeated the top human Go players, a feat that was thought to be outside
the realm of computers. Now, AI and deep NNs are being used in every industry such
as medicine, finance, automotive industries, retail, advertising, and by the Department of
Defense (DoD). Another aspect of AI is deploying it to the edge. For the DoD, deploying AI
and ML models at the edge provides a huge benefit. One possible use case is passive sonar
analysis. Passive sonar analysis has been a human-only task, but developments in AI and ML
could increase performance and speed comparable to the developments in computer vision.
Passive sonar, however, can come with a lot of uncertainty due to ever-changing sound
propagation profiles and geographic locations, and knowing the uncertainty of a model’s
prediction is important. Bayesian NNs have the potential to achieve high performance
in analyzing passive sonar while providing key insights on their own uncertainty. When
paired with an operator, an AI-human team could increase performance in both speed and
accuracy for passive sonar analysis. When it comes to deploying these models for passive
sonar analysis, having the devices on the edge is an advantage. It reduces communication
overhead and increases the speed of inference.

However, there are inherent difficulties with deploying AI on edge devices. First is that
AI and ML models deployed on the edge are generally inference only. These models are
trained in a separate location and then deployed to the edge device. This introduces the
difficulty that each edge device may be exposed to different types of situations and datasets.
To overcome this, it would require many diverse locations to collaborate and share their
data in order to use AI on the edge, which may or may not be feasible due to the operating
environment or classification. Another option would be for edge devices to conduct training
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with their own dataset. However, this presents a scenario where an edge device could learn
vital properties but would be unable to share those properties with other edge devices.
The edge devices would be unable to contribute their own inferences and datasets to other
devices. The communication, collaboration, and time required to improve edge-AI devices
with the traditional AI and ML pipeline are significant. Despite these issues, there are
increased difficulties in creating large datasets with the addition of privacy laws such as
GDPR EU, CCPA, and China’s Cyber Security Law [1]. This problem is exacerbated with
the DoD for datasets that are classified. If the trend continues throughout the globe, datasets
are more likely to be distributed and isolated. One example of this is in the medical field.
Hospitals cannot share information about their patients with other hospitals. Each hospital is
a data silo separated from the rest. In the sense of the DoD, collaborating on a large dataset
between different branches and agencies is an intimidating task and difficult to coordinate at
the speed necessary to compete with other nations, such as China. In addition to difficulties
within the DoD, as the nation begins to rely more on partners and allies, the DoD is going
to have to work on various information-sharing agreements. The datasets that the DoD uses
to train its AI may not be readily shareable with allies and partners.

To address these issues of deploying devices to the edge and data privacy, the Navy and
DoD should use federated learning (FL). It would be further advantageous to use Bayesian
NNs in a FL setting. While it may be time and computationally expensive to train models
on the edge with a large dataset, FL removes the need for each site to contain a large dataset.
Sites with a small subset of the global dataset can conduct FL and perform nearly as well
as a centrally trained model with a large dataset, improve generality across the sites, and
reduce communication costs.

1.2 Considerations for the Navy
Using FL is an opportunity to employ AI at the edge and reduce the need to collect a large
dataset. This would immensely assist the Navy’s efforts in deploying and training AI models
in the fleet. Through the traditional AI pipeline, for example, creating an AI model for the
Navy would require each command to collaborate in creating a global dataset, whether for
passive sonar or network traffic analysis, maintenance, or human resources. It is a highly
expensive and time-consuming task that could be obsolete by the time it’s completed with the
advent of new data. However, FL provides a method for each command to train and deploy
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a model on their local, current data and aggregate their models with another command’s
AI models. The communication cost is also minimal since only the model’s weights are
passed rather than the entire dataset. While FL presents a method to deploy and train AI
models on the edge, a Bayesian NN is a model that can provide not only predictions but an
estimate of uncertainty to its evaluation. Warfighters operate in uncertain environments and
knowing when a deployed AI model is uncertain of its predictions prevents overconfidence
for both the AI and the warfighter. This feature can significantly help AI-warfighter teams
operate at a higher level of efficiency. Combining these two aspects of the distributed and
continual learning properties of FL and the uncertainty of Bayesian NNs would be a huge
advantage for the Navy in various applications, such as network traffic analysis, synthetic
aperture radar or drone imagery analysis, or passive sonar analysis.

1.3 Research Objectives and Contributions
To demonstrate this, I developed a FL framework for comparing Bayesian NNs to their
deterministic counterparts and analyzed their results in this thesis. The main contribution of
this thesis is this framework is benchmarked on a known dataset, CIFAR10 [2], to compare
results. The dataset is well-studied in FL research [3]–[6]. The AI model architecture used
is the residual network (ResNet) [7]. It is a state-of-the-art neural network architecture and
sets a baseline for the CIFAR10 dataset. This allows Bayesian ResNets to be compared to the
original’s state-of-the-art results in both a centralized and FL setting. The main questions
that this thesis intends to answer are the following:

• How to aggregate Bayesian NNs?
• How does FL impact the performance of a Bayesian NN?
• Can FL improve a NN’s overall performance?
• How does a Bayesian NN compare to a deterministic one in FL?

1.4 Organization
The rest of this thesis is organized into four additional chapters. Chapter 2 introduces
ResNets, Bayesian NNs and variational inference (VI), and FL. Chapter 3 discusses the
dataset in a centralized and FL training scheme, the ResNet models used, and the various
experiments conducted. Chapter 4 examines the experiment’s results to understand the
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impact of FL environments on Bayesian NNs. Chapter 5 presents my findings and suggests
future work and considerations going forward.
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CHAPTER 2:
Background

2.1 Overview of Neural Networks
NNs are the backbone of deep machine learning. With roots inspired by a human neuron,
NNs take the concept of having multiple inputs going to a neuron, which will activate if
a threshold is met. For a given activation function, 𝑧, the neuron activates and produces
an output such that 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑧(𝑖𝑛𝑝𝑢𝑡 ∗ 𝑤 + 𝑏), where 𝑤 is the weight value, and 𝑏 is the
bias. By combining multiple layers of neurons, the model gets “deeper”, hence the moniker
“deep” learning. NNs became more popular once GPUs were discovered to increase training
and inference speeds. This has resulted in significant progress in computer vision, natural
language processing, and etc. for AI.

One version of a NN has become famous for computer vision tasks such as object detection,
image segmentation, and object classification. This version is called a convolutional neural
network (CNN). Instead of using the entire image at once, it convolves a smaller kernel
across the image, creating a collection of activations called filters. In this way, the model is
able to learn about localized parts of the image. As the NN gets deeper, its receptive field
gets larger, meaning that a deeper convolutional layer in a NN is able to see outputs derived
from the entire image. Convolutional NNs have seen significant advances in computer vision
tasks and the ResNet uses these types of layers.

2.1.1 Overview of ResNet
One of the issues with deep NNs such as the VGG nets [8], is that they contain millions
of parameters and require significant computer resources to use. Another issue was that the
deeper a NN got, the performance began to degrade [9], [10]. Motivated by this degradation
problem, Kaiming He et al. introduced the ResNet [7]. This network increased the depth of
the model while being less complex than the VGG net. The ResNet solves the degradation
from deep NNs by using a deep residual learning framework. He et al hypothesized that if
one considers, 𝐻 (𝑥) being the mapping of a few stacked layers and x being the initial input,
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these stacked layers can approximate a residual function. This function can be expressed as
𝐹 (𝑥) := 𝐻 (𝑥) − 𝑥. The original function, 𝐻 (𝑥), is then represented as 𝐹 (𝑥) + 𝑥 [7]. This
reformulation was motivated by the degradation problem that He et al. faced with models
with increasing depth.

The architecture of a residual network begins with a pair of convolutional layers with a
kernel size of 3 x 3. Any downsampling occurs with a stride of 2, halving the feature map.
This forms a residual block and follows two design rules:

1. The layers have the same filter size and
2. If the feature map is downsampled, the filter size is doubled.

To turn this architecture into a residual network, identity shortcuts are added to connect the
input and output of the residual block. These shortcuts also follow two rules:

1. Adding extra padding to match the increased dimension size or
2. A projection shortcut is used via a convolutional layer with a kernel size of 1 x 1 to

match the dimensions.

Figure 2.1 visualizes a residual block that takes input 𝑥, the identity, and adds it to the
activation of the two convolutional layers. This is based on He et al’s hypothesis that it
is “easier to optimize the residual mapping than to optimize the original, unreferenced
mapping” [7].

Figure 2.1. ResNet Residual Block. Source: [7].
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The ResNet was chosen for this research due to its success and documentation, specifically
the ResNet with a depth of 20 (ResNet20). The ResNet20 architecture consists of seven
32 x 32 convolutional layers with 16 filters, followed by six 16 x 16 convolutional layers
with 32 filters, then six 8 x 8 convolutional layers with 64 filters, ending with an average
pooling layer and dense layer with softmax activation. All layers used L2 regularization and
in between each residual block was a batch normalization layer. Figure 2.2 gives an example
of the model’s architecture [7].

Figure 2.2. ResNet Architecture Example. Source: [7].
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2.1.2 Overview of MLE and MAP
In general, the ResNet20, like many AI models, would attempt to model the likelihood given
by the probability of getting a label, 𝑦, given its features, 𝑥, and the model’s parameters,
𝜃 (𝑝(𝑦 |𝑥, 𝜃)). This is known as using maximum likelihood estimation (MLE) because it
attempts to maximize the likelihood. Assuming that this probability distribution is a normal
one, the log of the likelihood becomes

𝐿𝑜𝑔 − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = log
1

√
2𝜋𝜎2

− log𝜎 − |𝑦 − 𝜇 |2
2𝜎2 (2.1)

A MLE version of an AI model attempts to maximize the likelihood to get the best prediction
given an input’s features and the model’s parameters. In practice, the likelihood is maximized
by taking the negative log likelihood (NLL) and minimizing that value. The Loss function
is shown in equation 2.2.

𝐿𝑜𝑠𝑠 = − log
1

√
2𝜋𝜎2

+ log𝜎 + |𝑦 − 𝜇 |2
2𝜎2 (2.2)

In equation 2.2, the parameters, 𝜃, seem to disappear. However, 𝜇 is a function of 𝑥 and 𝜃
such that 𝑓 (𝑥, 𝜃) = 𝜇. During training, the loss of a model is calculated and then its gradient
is taken with respect to 𝜃. This can be done by the chain rule since 𝜇 is a function of 𝑥 and 𝜃.
For the CIFAR10 dataset, in order to maximize the likelihood, the loss must be calculated
with categorical cross-entropy. This allows the gradient to be taken with respect to each
of the datasets ten classes. This means that the NLL needs to be calculated across all the
classes in the dataset as shown below:

𝐿𝑜𝑠𝑠 = −
𝑐∑︁
𝑖=1

𝑝(𝑦 = 𝑖 |𝑥) ∗ log 𝑝(𝑦 = 𝑖 |𝑥, 𝜃) (2.3)

This type of loss, MLE, applied to a ResNet scores nearly 100% on the training data, but
only 89% on the test data. This is not ideal and is a sign of overfitting. Overfitting is when
the model adapts too well to the training data and loses generality for inputs outside of that
subset. While the MLE model was trying to maximize the prediction of 𝑦 given our features,
𝑥, and some model’s parameters, 𝜃, it is more effective to maximize the posterior or 𝑝(𝜃 |𝐷)
where 𝐷 is the training data given by 𝐷 = (𝑥0, 𝑦0)...(𝑥𝑖, 𝑦𝑖)...(𝑥𝑛, 𝑦𝑛) using a method known
as maximum a posteriori (MAP) estimation. These models are making predictions based on
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the parameters derived from the training data and get a point estimation of our posterior. The
posterior, 𝑝(𝜃 |𝐷), is summarized as the highest probability where 𝜃 is the set of parameters
given our data, 𝐷. By Bayes Law, the posterior can be broken up into the following equation:

𝑝(𝜃 |𝐷) = 𝑝(𝐷 |𝜃) ∗ 𝑝(𝜃)
𝑝(𝐷) (2.4)

The 𝑝(𝐷 |𝜃) should look familiar because it is the likelihood, 𝑝(𝑦 |𝑥, 𝜃). However, it now
adds a prior, 𝑝(𝜃). To use this in a MAP model, the loss is derived by first taking the log of
the posterior.

log 𝑝(𝜃 |𝐷) = log 𝑝(𝐷 |𝜃) + log 𝑝(𝜃) − log 𝑝(𝐷) (2.5)

This term is to be maximized but in practice, the negative of the log 𝑝(𝐷 |𝜃) is taken and
then minimized as seen below

argmin
𝜃

(log 𝑝(𝜃 |𝐷)) = argmin
𝜃

(− log 𝑝(𝐷 |𝜃) − log 𝑝(𝜃) + log 𝑝(𝐷)) (2.6)

To solve for the prior we use results from Eq. 2.1. The log 𝑝(𝐷) is ignored since we’re
taking the derivative of the loss concerning 𝜃 and the term is dropped. Further, it is assumed
that the 𝑝(𝜃) is of a normal distribution centered over zero. Therefore, if we take the log of
the prior it becomes

− log 𝑝(𝜃) = − log
1

√
2𝜋𝜎2

+ log𝜎 + |𝜃 |2
2𝜎2 (2.7)

The negative sign is brought down with the prior since in equation 2.6 the log prior is
subtracted from the log-likelihood. Also, 𝜇 could be removed since we assume the prior is
centered over zero. Since the loss is going to be taken with respect to 𝜃, the term log 𝑝(𝐷)
is removed and 1

2𝜎2 |𝜃 |2 is leftover. This is calculated over all the weight values and becomes
the

∑𝑤
𝑖=1

1
2𝜎2 |𝜃𝑖 |2. The likelihood, 𝑝(𝐷 |𝜃), is taken over all the data points, 𝑁 , and averaged.

The resulting loss equation is

argmin
𝜃

(− log 𝑝(𝜃 |𝐷)) = argmin
𝜃

(− 1
𝑁

𝑁∑︁
𝑖=1

log 𝑝(𝐷𝑖 |𝜃) −
1
𝑁

𝑤∑︁
𝑗=1

1
2𝜎2 |𝜃 𝑗 |

2) (2.8)
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As discussed in section 2.1.1, my implementation of the ResNet uses L2 regularization.
That is to say, the loss function is described in equation 2.8. This reduces the overfitting
problem from models using the MLE loss function described in equation 2.2 and produces
results as seen in He et al.’s paper [7].

2.2 Overview of Variational Inference
The ResNet that utilizes a MAP loss function can be described as a deterministic model.
Meaning that for a given input, the model will always give the same output. This is because
MAP seeks to learn a point estimation of the posterior, 𝑝(𝜃 |𝐷). However, a Bayesian NN
seeks to learn the distribution of the posterior, a continuous value. Unfortunately, calculating
the exact probability distribution of the posterior is an intractable problem in most cases.
Usually, approximating the posterior’s probability distribution is sufficient and Bayesian
models do just that. By approximating a probability distribution instead of point estimation,
the model is able to express epistemic uncertainty. This approximation is given as 𝑞(𝜃). The
goal is to have the model learn a 𝑞(𝜃) that is as close as possible to the posterior, 𝑝(𝜃 |𝐷). To
understand the distance between the approximated posterior, 𝑞(𝜃), and the actual posterior,
𝑝(𝜃 |𝐷), the Kullback-Leibler divergence (KLD) is used. Therefore, the goal for the model
is for the KLD between 𝑞(𝜃) and 𝑝(𝜃 |𝐷) to be as small as possible. In equations 2.9 -
2.19, Bayes theorem defines the posterior in the KLD as the likelihood, prior, and data
distributions.

𝐾𝐿 [𝑞(𝜃) | |𝑝(𝜃 |𝐷)] (2.9)

By definition of KLD this becomes the expectation for 𝑞(𝜃) between the log of 𝑞(𝜃) over
𝑝(𝜃 |𝐷):

𝐸𝑞(𝜃) [log
𝑞(𝜃)
𝑝(𝜃 |𝐷) ] (2.10)

Applying Bayes theorem to the definition of the posterior and the rules of log gets the
following series:

𝐸𝑞(𝜃) [log
𝑞(𝜃)

𝑝(𝐷 |𝜃)𝑝(𝜃)
𝑝(𝐷)

] (2.11)

𝐸𝑞(𝜃) [log
𝑞(𝜃)𝑝(𝐷)
𝑝(𝐷 |𝜃)𝑝(𝜃) ] (2.12)

𝐸𝑞(𝜃) [log 𝑞(𝜃) + log 𝑝(𝐷) − log 𝑝(𝐷 |𝜃) − log 𝑝(𝜃)] (2.13)

10
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



𝐸𝑞(𝜃) [− log 𝑝(𝐷 |𝜃) + log 𝑞(𝜃) − log 𝑝(𝜃) + log 𝑝(𝐷)] (2.14)

𝐸𝑞(𝜃) [− log 𝑝(𝐷 |𝜃) + log
𝑞(𝜃)
𝑝(𝜃) + log 𝑝(𝐷)] (2.15)

𝐸𝑞(𝜃) [− log 𝑝(𝐷 |𝜃)] + 𝐸𝑞(𝜃) [log
𝑞(𝜃)
𝑝(𝜃) ] + 𝐸𝑞(𝜃) [log 𝑝(𝐷)] (2.16)

𝐸𝑞(𝜃) [− log 𝑝(𝐷 |𝜃)] + 𝐾𝐿 [𝑞(𝜃) | |𝑝(𝜃)] + 𝐸𝑞(𝜃) [log 𝑝(𝐷)] (2.17)

𝐿𝑜𝑠𝑠 = argmin
𝜃

(𝐸𝑞(𝜃) [− log 𝑝(𝐷 |𝜃)] + 𝐾𝐿 [𝑞(𝜃) | |𝑝(𝜃)]) (2.18)

In the above equations, 𝑝(𝐷) is removed since it has no impact on the change of 𝜃. Getting
the exact distribution of 𝑞(𝜃) is intractable in most cases. To compensate for that difficulty,
Monte Carlo (MC) sampling, of size M, is used to approximate the distribution. This means
that the loss of M sample models is taken and then averaged to get the final result.

𝐿𝑜𝑠𝑠 = argmin
𝜃

1
𝑀

𝑀∑︁
𝑖=1

[− log 𝑝(𝐷 |𝜃𝑖)] + 𝐾𝐿 [𝑞(𝜃𝑖) | |𝑝(𝜃𝑖)]) (2.19)

2.2.1 Monte Carlo Dropout
A method for conducting variational inference is through MC Dropout [11]. This is done by
taking a MAP model and adding dropout layers throughout the architecture. These layers
would probably drop a neuron for the preceding layer. Therefore, dropout at inference
allows multiple models to be sampled via MC sampling. Due to the dropout layers, the
approximation function for the posterior assumes that it is either sampling a normal Gaussian
distribution, 𝑁 (0, 𝜎2), or a Gaussian distribution over the weight, 𝑁 (𝑤, 𝜎2) as seen in
equation 2.20. In practice, however, 𝜎 is considered to be so insignificantly small that the
means of these distributions, 0 or 𝑤, are used during sampling.

𝑞(𝜃) = 𝑝𝑑𝑟𝑜𝑝𝑁 (0, 𝜎2) + 1 − 𝑝𝑑𝑟𝑜𝑝𝑁 (𝑤, 𝜎2) (2.20)
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2.2.2 Variational Inferencing with Flipout
Another method of conducting variational inference is through flipout. In a Flipout model,
the model approximates a Gaussian distribution.

𝑞(𝜃) = 𝑁 (𝜇, 𝜎2) (2.21)

During inference 𝜃𝑖 = 𝜇𝑖 + 𝜎𝑖 ∗ 𝜖𝑖 ∗ 𝑟, where 𝜖 ∼ 𝑁 (0, 1) and 𝑟 = [−1, 1]. A single flipout
model can assume various configurations based on 𝑟 without increasing the parameters.
Therefore the loss function for a flipout model remains the same as equation 2.19.

2.3 Overview of Federated Learning
FL has been a rising area of research due to AI being deployed on the edge and increased data
regulations [1]. McMahan et al. and Konecny et al. have explored using federated learning
for updating language models on mobile phone devices [3], [4], [12]. In terms of data, mobile
phones use private data to enable their keyboard’s autocorrect functionality. Another use of
federated learning was by Sarma et al. [13] for analyzing clinical prostate imaging across
three different sites without sharing any of the patient’s data. Their research found that
FL improved overall accuracy for three different hospital sites than if they were trained
on their own datasets separately. Already, FL has a practical application today. According
to Yang et al., federated learning is an algorithmic framework that has the following four
characteristics:

• Two or more parties want to jointly build a neural network.
• The data does not leave either party during training a model.
• The model can be transferred in a manner that either party cannot reverse-engineer 

the training data.
• The performance of the model results in an approximation of the ideal model if it was 

trained centrally with all the data. [1]

In addition to these observations, federated learning systems generally perform less than
their centrally trained counterparts [1], [3], [4]. However, the additional data security and
privacy guarantees outweigh that potential performance loss [1], [13].
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Figure 2.3. Client-Server Federated Learning. Source: [1].

Figure 2.4. Peer-to-Peer Federated Learning. Source: [1].

The usual federated learning concept is a client-server where the server provides the global
model and aggregates the client models. As seen in Figure 2.3, the clients receive and train
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the global model on their local datasets. They then send their updates or weights back to the
server. Another type of network is the peer-to-peer network as seen in Figure 2.4 where the
global model is updated without a coordinating server. The goal is to improve a model than
what an individual site can achieve alone while not sharing any data between participants.
Either due to privacy and security concerns or because of communication overhead, FL
becomes a viable solution for deploying AI on distributed and embedded hardware. Figure
2.3 shows an example of a client-server model. Notice that each data owner updates the
global model with their data, and then transmits the updates to a trusted, coordinating
server that then aggregates the updates and distributes the new global model back to each
data owner. In Figure 2.4, a peer-to-peer network is represented. The key difference is that
the data owners trade updates with each other without a coordinating server. Figure 2.5
demonstrates that this type of model updating can happen with K trainers in either a cyclic
transfer or random transfer, also known as Gossip Learning [1], [14].

Figure 2.5. Peer-to-Peer Federated Learning with K Trainers. Source: [1].

Besides the network architecture, federated learning can be divided into three different
categories:
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• horizontal federated learning (HFL)
• vertical federated learning (VFL)
• federated transfer learning (FTL)

Each type is influenced by the dataset’s feature space and inference goals of the participants
in the federation scheme. Horizontal learning is when each federation site observes the same
feature space but has a different subsection of labels. It is known as a sample-based partition
of the total dataset [1]. One example is Google Keyboard, where each user and their phone
acts as a site observing the same or similar feature space but with different labels. Figure
2.6 demonstrates how two entities can coordinate in a federated learning environment to
increase the sample space that the neural network is exposed to.

Figure 2.6. Horizontal Federated Learning Example. Source: [1].

Theoretically, it is the same as expanding a database without sharing the data. VFL is
when participants of a federation are observing different feature spaces of the same sample.
It is known as a feature-based partition of the total dataset [1]. This type of federated
learning can be used when two entities are providing different services but share the same
sample space, such as a bank and an e-commerce company [1]. Figure 2.7 displays how
two entities share the same sample space, but have different feature sets. In cases where
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horizontal or vertical federated learning is not practical due to highly heterogeneous data,
federated transfer learning can be applied to fill in the gaps between participating parties.
It attempts to build neural networks for a resource-scarce domain by exploiting knowledge
from a resource-rich domain. It is generally divided up into three categories: instance-based,
feature-based, and model-based [15].

Figure 2.7. Vertical Federated Learning Example. Source: [1].

I explore the use of HFL in a client-server setting for Bayesian NNs. This will be done
by dividing the dataset into independently and identically distributed (IID) partitions that
will be trained by a local site. Each site will communicate its model’s weights back to the
server which will then aggregate the updates and redistribute them back to the sites. One
of the foundational aggregation methods would be FedAvg [12]. FedAvg takes a weighted
average of the sites’ updates based on their sample number. Instead of taking the weighted
average of the gradient, the weighted average of the weights is calculated as the new NN
parameters. Given 𝑈 users, each one has a subset of the data, 𝐷𝑡

𝑢 out of the total 𝐷𝑡 . By

16
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



taking the weighted average of each user’s weights, 𝜃, the following equation is given:

𝜃𝑡+1 =
1

|𝐷𝑡 |

𝑈∑︁
𝑢=0

𝛿𝑡+1
𝑢 (2.22)

In equation 2.22, the global NN parameters after a federation round, 𝜃𝑡+1, is equal to the sum
of the site parameters, 𝛿𝑡+1

𝑢 , where 𝛿𝑡+1
𝑢 = |𝐷𝑡

𝑢 |𝜃𝑡+1
𝑢 . This type of federated learning reduces

the communication overhead required for its gradient-averaging counterpart. However, while
federated learning via gradients guarantees a global model’s convergence, federating across
the site’s weights does not [1].

This method of aggregation has primarily been used for NNs with deterministic weights, but
there’s no consensus on the proper way of aggregating probabilistic weights. I also explore
the aggregation of Bayesian models with probabilistic weights which are really aggregating
a mean and standard deviation. For instance, in order to take the weighted average of a
series of Gaussian probability distributions, 𝜃𝑡𝑢 = 𝑁 (𝜇𝑢, 𝜎2

𝑢 ) and the average of Gaussian’s
is given by 𝑁 (𝜇𝑡 + 1, 𝑉 𝑡 + 1) = 1

|𝐷𝑡 |
∑𝑈
𝑢=0 |𝐷𝑡

𝑢 |𝑁 (𝜇𝑡+1
𝑢 , 𝑉 𝑡+1

𝑢 ). I use this method and refer to it
as federated averaging (FedAvg) as well. I do test another averaging formula as well, inverse
variance weighted average [16]. In addition to using the number of examples a site has, it
weights the parameters by their inverse variance. The mean and variance are calculated by
the following equations:

𝜇̄ =

∑
𝑖
𝜇𝑖

𝜎2
𝑖∑

𝑖
1
𝜎2
𝑖

(2.23)

𝑉̄ =
1∑
𝑖

1
𝜎2
𝑖

(2.24)

The inverse variance weighting in a FL scheme will be referenced as federated with inverse
variance weighting (FedIV).
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CHAPTER 3:
Methodology

This chapter discusses how I explored the concept of implementing FL for Bayesian NNs.
First, the original purpose of this thesis was to use FL on edge devices, but due to hardware
and time complications, a simulation framework was used instead. The experiment process
of comparing Bayesian and deterministic versions of the ResNet20 in both a centralized and
FL training scheme is also discussed. These experiments strived to achieve the results of
Kaiming He et al’s ResNet20 accuracy results, roughly 91% [7]. Next, Bayesian versions of
the ResNet20 will be established using MC Dropout and Flipout as discussed in Chapter 2.
Once the centralized baseline is established, four different FL experiments will be conducted.
Two will be conducted for IID data partitions but will change the number of local epochs,
and the last two will be for non-IID data partitions of different degrees.

3.1 Framing the Problem
Originally, the goal of my thesis was to implement Bayesian NNs in a FL setting for passive
sonar and to analyze the results. Previously, experiments have been done on FL for edge
devices but not for Bayesian NNs [17]. This presented some unknowns as Bayesian NNs
have probabilistic weights and a standard averaging may not provide the required results
or even be mathematically accurate. Another issue was choosing a framework to conduct
FL. At first NVIDIA’s NVFLARE python package was investigated for my thesis. With
it, I was able to aggregate a MC Dropout Bayesian NN with three clients and one server.
Unfortunately, running a ResNet20 required an entire GPU, and I could only afford to have
three clients. NVFLARE did not have a simulation function to expand the number of clients
and most FL research papers have tens or hundreds of clients involved. Then I discovered
the Flower python package which did FL like NVFLARE, between a server and client, and
supported embedded development and deployment of AI systems. The key factor was that it
also had a simulation function to expand the number of clients with limited resources. I was
able to replicate my results with Flower and expand it for Flipout Bayesian NNs too. The
next step was conducting full experiments using Flower’s simulation function. Ten clients
were chosen to demonstrate my experiments.
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3.2 CIFAR10 Dataset
Next, it helps to understand the dataset used for the benchmark. The CIFAR10 dataset
consists of 60,000 images of 10 classes. Figure 3.1 shows what the 10 classes are and
some sample images. This dataset has been used as the problem set and baseline for many
papers [2], [7], [12], [18]. The images are 32x32 RGB and are divided into a training set of
50,000 images and a testing set of 10,000 images. The ten classes are uniformly distributed
with 6,000 samples each.

Figure 3.1. CIFAR10 Images and Labels. Source: [2].

3.2.1 Dataset for Centralized Training
For the centralized training, the training set of 50,000 is divided into a training and validation
set of 45,000 and 5,000 respectively. The test set of 10,000 is kept together for evaluation
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after training. Prior to training, the images are converted into float values and divided by 255
to scale the values between 0 and 1. Then the mean of the training data is subtracted from
each set of images. During training, the images are padded by 4 zeros, randomly flipped
horizontally, and then cropped back to a 32 x 32 sized image. In addition, the class label
values are one-hot encoded.

3.2.2 Data Partitions for Federated Learning
The dataset for FL takes on two parts. One that is IID and divided evenly amongst ten clients.
This was rather simple to implement, but it took significant work to implement a non-IID
data distribution. At first, the two-class per client method of developing a non-IID data
partition was explored as seen in McMahan’s paper [4]. That required sorting the CIFAR10
dataset into their classes and randomly assigning them to each client. However, other papers
explored a more realistic non-IID data partition that used a Dirichlet distribution. The
Dirichlet distributions in my experiments have alpha values of 1.0 and 0.5 with the dataset
exhibiting more non-IID properties as the alpha approaches zero. The goal of this was to
implement a real-world scenario as they generally have non-IID and small datasets [1].
A 2,500-image validation set was set aside for each site to use, giving them the same
validation set. This was under the assumption that a server has a known validation set
outside of any site’s training data. The remaining data were divided evenly across all sites
for a total of 4,750 training samples per site. The server uses the test set for evaluation after
each federation round. The data augmentation follows the same process for the centralized
training except that each site would have a different training mean subtracted based on their
subset of data. The server uses the test mean for the subtraction as it remains agnostic of
each site’s data.

3.3 Neural Network Architecture
As mentioned in Chapter 2, the ResNet was used as the baseline architecture. The determin-
istic architecture was developed to use a MAP loss function by adding an L2 regularization
rate of 0.0001. For the Bayesian models, specific layers were either replaced or added.
Tensorflow Probability’s flipout layers replaced their corresponding ones in the ResNet
architecture. A flipout architecture was chosen because it provides a robust estimation of
the posterior distribution during VI [19]. Specifically, the convolutional and dense layers
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were replaced with flipout versions. The other type of Bayesian NN used in this paper was
the MC Dropout [11]. This was achieved by creating a custom dropout layer that would be
active during training and inference. This custom dropout layer was added after each con-
volutional layer and before the final dense layer. Figure 3.2 shows how the original ResNet
architecture was modified to create the Bayesian versions. In addition to having a slightly
different architecture, the probabilistic models were evaluated using MC sampling, with a
sample size of 25. This allowed the uncertainty metrics to be evaluated and the primary
ones used in this paper was variance, a measure of epistemic uncertainty.

3.3.1 Flipout Variations
The unique thing about the Flipout Bayesian model is that each weight is a Gaussian
distribution with both a mean and standard deviation. With that comes many ways of
handling the aggregation of the weights. While FedAvg was adapted to be used with
aggregating the means and variances of the distributions between the 10 sites, FedIV was
also used to evaluate how different aggregations could affect performance. Another aspect of
the Flipout model is that it uses the KLD between the approximation of the posterior and the
prior. A naive prior was used for these experiments, meaning that it was a standard normal
distribution with a standard deviation of one. In a Flipout model, the KLD is weighted by the
number of training samples, but remembering equation 2.7, the standard deviation can be
used to affect the prior. By altering the standard deviation of the prior, the model can learn
different distributions. As this thesis did not have an ideal prior to start with, the standard
prior of 𝑁 (0, 1) was used along with 𝑁 (0, 10) to evaluate the results and effects on FL.
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Figure 3.2. Residual Blocks and Variants. Source: [7].

3.4 Experiment Architecture
One of the major products of this thesis was a federated learning framework, utilizing the
Flower module, to conduct further research. Flower is a FL framework that has been used
to conduct various experiments [20]–[23]. I originally explored implementing Flower in a
client-server scenario where each client had one GPU. That limited the number of my clients
to three. The way Flower and NVFLARE worked was that a custom client class needed to
be developed that received and handled specific arguments from the server during the fit
and evaluation phases of training. I implemented a new class for the client which trained on
a subset of the CIFAR10 dataset and evaluated their models with VI using MC sampling.
Flower implements aggregation through a strategy class. I developed my own strategy class
that works for probabilistic weights. Not only did it handle weights represented as a mean and
standard deviation, but custom aggregation functions could also be developed and provided
to the strategy. For my thesis, I implemented FedIV and FedAvg. After implementing a
new strategy class, I investigated different training methods. At first, I approached training
as if the server had a pre-trained model which was distributed to the clients. The clients
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would then train on their local data that was separate from the server’s dataset. This was
to simulate a continual learning scenario which would be ideal for deployed AI. However,
I ended up not pursuing this method since it did not provide an authentic insight into how
Bayesian NNs handle a FL scenario comparable to other research. To increase the number
of clients and to provide a FL scenario similar to that seen in other papers, I utilized Flower’s
simulation capability. With the Flower architecture, I conducted simulations of 10 clients
with randomly initialized results over the IID and non-IID dataset distributions. Each site
would run for one or five epochs on their local dataset and then send their weights back
to the server for aggregation. The server would then evaluate the aggregated results on the
10,000-image test set and start the cycle over again. This process is represented in Figure
3.3. This was done for at least 200 federation rounds. These experiments provide a baseline
understanding of the immediate impacts of FL to model performance. In addition to this
experiment, the models were tested on the IID dataset with sites completing five local
epochs before sending their weights back and on two non-IID datasets with varying degrees
of distributions.
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Figure 3.3. The Federated Learning Cycle. 1. Model Distribution 2. Local
Training 3. Local Model Updates 4. Server Aggregation

3.4.1 Aggregation Methods
As discussed in Chapter 2, the primary method for aggregation was FedAvg which calculates
the weighted average for the global model. Each site’s model weights were weighted by the
number of samples in their dataset. Since each site received the same amount of data, it
becomes a basic averaging formula [12]. For the Flipout models, two different aggregation
methods were used, FedAvg and FedIV. The FedAvg function had to be modified in order
to take the average of the means and variances separately. In order to average just the means
and variances together, functions were developed to create a set of masks for Flipout models.
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These masks were provided to the Flower strategy when the model used was Flipout. In
addition to FedAvg, I explored a different aggregation function for the Flipout models,
FedIV. This weighted the means and variances by their inverse variance and the number of
samples [16]. However, it was not my goal to find the perfect method of aggregation but to
demonstrate that it could make a significant impact on a model’s performance. Depending
on the information domain and the purpose of the AI model, certain aggregation methods
could be preferred over the standard FedAvg.

3.4.2 Simulation Experiments and Expected Results
Because of limited resources and time, I utilized Flower’s simulation function to emulate a
real-world operating environment by adding ten clients to the federated learning scenario.
This significantly reduces the data partition size of each client as they are only exposed
to one-tenth of the CIFAR10 dataset, presenting the challenge faced by many distributed
sites in real-world scenarios. The training hyperparameters were kept identical to that
of the centralized training. Unfortunately, due to the nature of the simulation, specific
callbacks were not able to be utilized and there’s a loss of flexibility in the pipeline. This
is because, during simulation, the clients are torn down and reconstructed every federation
round. This means that the clients lose their previous state. Despite this drawback, these
simulations provided a comparison of Bayesian models to their deterministic counterparts
in both an IID and non-IID scenario. The first experiment was much like McMahan’s et
al.’s experiment [4]. It divided the dataset into IID data partitions for ten clients where each
client trained for only one epoch before sending back their weights. Like their experiment,
I am expecting to see a reduction in performance when compared to the centralized results.
For the same data partitions, I am also running a similar experiment except with each client
conducting five training epochs before sending their weights back to the server. Potentially,
this could overcome the degradation in performance expected from the previous experiment.
The next two experiments are on non-IID data partitions in order to see how more non-IID
distributions affect performance. These two experiments are much like previous experiments
[5], [6] and had clients perform one local training epoch to establish the effect of non-IID
data distributions during FL for both Bayesian and non-Bayesian NNs. The expectation is
that Bayesian NNs perform as well or better for non-IID data partitions in a FL scenario.
The results of these simulations are discussed in the next chapter, Chapter 4.
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CHAPTER 4:
Results

The simulations tested on the CIFAR10 dataset are comparable to other works [4]–[6];
however, it expands on this research by comparing state-of-the-art Bayesian and determin-
istic NNs. By first training the centralized versions of the different types of ResNet20s, an
accurate portrayal of how these types of models fare in an FL scenario can be established.
My results show how Bayesian NNs that have achieved state-of-the-art results compare to
that of deterministic ones. My work also explores the different possibilities that Bayesian
NNs bring to the problem set: probabilistic weights and prior distributions. These aspects
are addressed through different aggregation functions and by adjusting the prior of a Flipout
model. Overall, my thesis contribution provides a foundation for future experiments when it
comes to federating a Bayesian NN. The metrics used in analyzing the models and federated
learning schemes are accuracy, negative log-likelihood (Eq. 2.2), and variance.

4.1 Centralized Training Results
As previously stated, the centralized training results established a comparison between
the deterministic and Bayesian model performances. The goal was to achieve state-of-the-
art performance as seen in Kaiming He et al.’s approach [7] for both the deterministic
and Bayesian versions of the ResNet20. Each version of the centralized trained ResNet20
achieved results comparable to that in the original paper as seen in Table 4.1, although the
Flipout model with a standard prior of 1 was only able to achieve up to 87% accuracy on
the test set during my experiments. During training, it was discovered that changing the
Flipout prior’s standard deviation significantly impacted results. The MC Dropout model
and Flipout model with a standard prior of 10 were trained to achieve results slightly
exceeding the deterministic version. The prior of 10 was chosen through a grid search and
evaluated on the criterion of having the lowest NLL and variance. In addition to the priors,
the Flipout with the prior 𝑁 (0, 1) training pipeline did not include data augmentations.
The reasoning was that the strong prior regularized the training so much that there was no
additional improvement from the data augmentation. This edit to the training pipeline was
also repeated for the Flipout models in the federated learning experiment with the same
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prior. Figure 4.1 shows the centralized learning curves over accuracy. These learning curves
give an idea of how well the different types of models train. The deterministic and MC
Dropout models are very similar in their learning curves with the gap between training
and validation being smaller for the MC Dropout. This similarity between the training and
validation curves could be because of the regularizing effect of the added dropout layers.
The figure also shows how different the Flipout models trained compared to every other
model, even to each other. These figures will provide a baseline for comparison to the
learning curves of the global models in the FL experiments throughout this chapter.

Table 4.1. Centralized Training Results. This table shows the accuracy and
variance of the centrally trained ResNet with the lowest NLL. These models
were trained with very similar training pipelines except for the Flipout w/
prior std 1. This is due to the severe regularization of this prior and therefore
they were not trained on augmented images, however, the normalizing of
the pixels remains the same. It is important to emphasize that deterministic
model results match benchmark performance reported by He et al. [7] on
Cifar10 dataset

Model Accuracy NLL Variance
Deterministic 90.14% 0.462 0.0
MC Dropout 90.91% 0.273 0.0406

Flipout w/ prior std 1 87.21% 0.386 0.0905
Flipout w/ prior std 10 90.42 0.286 0.0474
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Figure 4.1. Learning Curves over Accuracy for Centrally Trained Models. The
Flipout models had priors with different standard deviations. The determin-
istic and MC Dropout learning curves are nearly identical but with less of a
gap between the training and validation curves. Learning rates for that were
effective for the ResNet were just as effective for the MC Dropout. For the
Flipout models, the one with a stronger prior, prior std of 1, saw little to no
improvement after the first hundred epochs. However, a weaker prior shows
that the model was able to train to the level of the other types of models.

4.1.1 Bayesian vs Deterministic Models
Before diving into the effects of FL on Bayesian NNs compared to deterministic ones, it
is important to understand the difference between them. First is the concept of uncertainty.
Although all NNs give a probability value for a given inference, non-Bayesian ones have a
poor ability to express uncertainty. Although it can give insight into the aleatoric uncertainty,
the deterministic NNs cannot express epistemic uncertainty since its output will always be

29
_________________________________________________________

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



the same for a given input. On the other hand, a Bayesian model provides a different
output each time since it is learning a probability distribution as discussed in Chapter
2. This learned probability distribution allows the Bayesian NN to express its epistemic
uncertainty. Expressing uncertainty is a valuable property for applications for which it helps
to have high accuracy and uncertainty metrics. As previously discussed, if the Navy applied
AI to assess passive sonar, the uncertainty metric could be used to prioritize which samples
needed to be reviewed by a human expert. In the health industry, a doctor could prioritize
uncertain evaluations to ensure that the AI labeled a patient’s condition accurately. Overall,
the uncertainty provides a method to understand when the model might be wrong. To
demonstrate this difference, example images from the CIFAR10 test dataset were chosen.
An example image of a ship and airplane (Figure 4.2) is used to compare the models’
predictions to each other.

Figure 4.2. Images of a Ship and Airplane.

The first image, the ship, in Figure 4.2, is an example of all three models getting the
prediction correct. The second, the airplane, is an example of all three models guessing
incorrectly. This section aims to show the stark contrast between the results of all three
models. In Figure 4.3, the softmax probability values for the ResNet, MC Dropout, and
Flipout, in that order, are plotted for the ship image. Since the Bayesian models are using a
Monte Carlo sampling of 25, there are 25 plots on the graphs. In all three cases, the models
show high confidence in their predictions with the Bayesian models showing little variance
in their sampling. The Flipout model shows a little bit of variance toward the automobile
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label, which makes sense because a ship and automobile share some properties.

Figure 4.3. Predictions on the Ship Sample.

The next image, the airplane, provides a more interesting situation. Each model guessed 
incorrectly and shows a level of uncertainty for their guesses. The deterministic ResNet 
shows a bit of uncertainty dispersed between the different l abels, b ut n ot t o t he degree
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to doubt the model’s guess. However, in Figure 4.4, the MC Dropout and Flipout form a
distribution of predictions with high degrees of variance in two to three classes. The MC
Dropout model had guesses that were high in both the airplane, bird, and truck classes. The
Flipout model had a wide range in the cat and dog with a few votes for the airplane class.
Despite the results being off the mark, it is quite clear that the Bayesian NNs are uncertain
in their predictions. They were not as uncertain in the ship example. This section hopes to
demonstrate the value that Bayesian NNs bring to a problem.
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Figure 4.4. Predictions on the Airplane Sample

4.2 Federated Learning – IID Results
This section discusses the results of the federated learning with an IID data partitioning
with one and five local epochs per federation round. These models were trained using the
methods discussed in Chapter 3. And give a clear understanding of how Bayesian NNs
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compare to the deterministic NN during FL. The expected results are to see a degradation
in performance when compared to the centralized model as seen in McMahan et al’s tests
on the CIFAR10 dataset [4]. For the increase of local epochs to five, the expectation is that
there would be a marked improvement for each of the models.

4.2.1 One Local Epoch
Table 4.2 and Figure 4.5 are the results of the federated learning with IID data partition-
ing with one local epoch per federation round. As expected, the models experienced a
degradation in performance, however, the impact on the Bayesian models was much more
significant. With one local epoch per federation round, the deterministic model’s accuracy
dropped by 2%, but the NLL improved. This suggests that FL could provide a regularizing
effect on state-of-the-art architectures and be a way to improve generality in models. The
Bayesian models saw a more significant degradation with worse NLLs and a 4% - 8% drop
in accuracy. The unique part of this experiment is seen through the Flipout models. For
this experiment, the aggregation function made a huge impact on the results. Both Flipout
models were able to achieve results comparable to the MC Dropout through FedIV. The
FedAvg results showed significant degradation, barely hitting 80% accuracy on the test set.
Even though the overall performance decreased for Bayesian NNs, they were more certain in
their predictions evidenced by the decrease in variance. Overall, this shows that federating
Bayesian NNs is not as easy as federating deterministic ones. The impact of FL has a higher
penalty as seen in Table 4.2 and the method of weight aggregation is a significant factor. It
is also important to note the learning curves in Figure 4.5. Each model did not see the steps
in performance witnessed in Figure 4.1, but there’s an insight into how federated models
train. The curves for the highest-performing models (ResNet, MC Dropout, Flipout FedIV)
are actually very similar. For the Flipout FedAvg models, the learning curves are similar to
that in Figure 4.1, but no improvement when the standard prior is one. However, the Flipout
FedAvg model with a standard prior of ten looks as if additional federation rounds could
see further improvement.
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Table 4.2. IID Data Partition Simulation Results - Site Epochs (E = 1).
This table shows the accuracy and variance of the global models with the
lowest NLL. These global models were trained using 10 clients and used the
hyperparameters from the centralized training. Each model was trained for
at least 200 federation rounds.

Model Agg. Fn. Accuracy NLL Variance
Deterministic FedAvg 88.22 0.349 0.0
MC Dropout FedAvg 86.29 0.416 0.0311

Flipout w/ prior std 1 FedAvg 79.62 0.595 0.0284
FedIV 87.84 0.361 1.26e-11

Flipout w/ prior std 10 FedAvg 80.61 0.598 0.0718
FedIV 86.73 0.409 8.66e-12
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Figure 4.5. Learning Curves of Accuracy for FL on IID Dataset Models with
1 Local Epoch.

4.2.2 Five Local Epochs
Table 4.3 and Figure 4.6 show the models when they are trained for five local epochs at each
site before aggregating the model weights at the server. For the majority of the models, this
sees a vast improvement with the deterministic model meeting centralized performance and
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the MC Dropout actually exceeding it with 91.11%. Again, the Flipout models provided
an interesting situation as now the model’s prior had a significant impact on the results.
Contrary to expectations, the Flipout model with a standard prior to one did not improve
from the previous experiment. It deteriorated in performance. This could be because with
five local epochs, each client’s model could be settling on different local minima and when
the weights are aggregated, it degrades the overall performance. However, this impact seems
to be reduced when the prior is weaker. The Flipout model with the standard prior of ten also
improved dramatically from the experiment before with the FedIV and FedAvg algorithms
scoring identically. Of note, while the weight aggregation function had a significant impact
on the previous experiment, it did not have as big of an impact on this one. When more
epochs are involved for each client, the type of model seems more important than the
aggregation function.

Table 4.3. IID Data Partition Simulation Results - Site Epochs (E = 5). This
table shows the accuracy and variance of the global models with the lowest
NLL when trained for 5 epochs at each client. Everything else is as the same
as the previous simulation results.

Model Agg. Fn. Accuracy NLL Variance
Deterministic FedAvg 90.17 0.333 0.0
MC Dropout FedAvg 91.11 0.272 0.0390

Flipout w/ prior std 1 FedAvg 73.76 0.829 0.0690
FedIV 74.23 1.07 6.56e-11

Flipout w/ prior std 10 FedAvg 88.64 0.338 0.0513
FedIV 88.91 0.389 6.81e-12
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Figure 4.6. Learning Curves of Accuracy for FL on IID Dataset Models with
5 Local Epochs.

4.3 Federated Learning Non-IID Simulation Results
The next set of experiments evaluates how Bayesian NNs perform on non-IID data partitions
as compared to the deterministic ones. The expectation was Bayesian NNs would perform
as well or better in FL environment. As a review, the non-IID datasets used an alpha value
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of 1.0 and 0.5 for the Dirichlet distribution. The experiment results are shown in tables
4.4 and 4.5 with their respective learning curves depicted in figures 4.7 and 4.8. When
compared to the results in Table 4.2, the models see at least a 4% drop in accuracy and
worse NLLs. The results get worse as the data partitions become more non-IID, although
the FedIV Flipout with a standard prior of ten and the MC Dropout had the best consistency
in performance between the two distributions. Unfortunately, a non-IID data partition had a
significant impact on the Flipout models, specifically those with strong priors and/or using
FedAvg. Overall, the Flipout models took a 4% to 12% performance drop in accuracy.
The worst impact occurred on the Flipout model with the standard prior of one. Unlike
in the first experiment, FedIV did not guarantee an improvement in results for the Flipout
model. The Flipout model with the stronger prior performed well below baseline for both
data distributions with or without FedIV. In contrast, the Flipout model with a standard
prior of ten using FedIV performed better than MC Dropout and roughly 8% better than
FedAvg. Although a decrease in performance is expected for all the models, the expectation
that Bayesian NNs would fare better as well or better than their deterministic counterparts
was incorrect. The Flipout models using FedAvg struggled significantly more with non-
IID datasets. However, it wasn’t just the weight aggregation function that mattered for
these datasets, the model itself greatly impacted performance. One observation that was
unexpected was that two of the Bayesian NNs had similar performance on both of the non-
IID distributions. Bayesian NN’s could provide a more robust method of handling operating
environments when the local datasets have unknown distributions or even overlapping ones.

Table 4.4. Non-IID Data Partition Simulation Results - alpha = 1.0. This
table shows the accuracy and variance of the global models with the lowest
NLL when trained for on a non-IID data distribution using the Dirichlet
distribution with alpha = 1.0.

Model Agg. Fn. Accuracy NLL Variance
Deterministic FedAvg 86.03 0.418 0.0
MC Dropout FedAvg 82.94 0.515 0.0325

Flipout w/ prior std 1 FedAvg 73.99 0.741 0.0515
FedIV 72.33 0.803 1.40e-11

Flipout w/ prior std 10 FedAvg 76.75 0.682 0.0287
FedIV 84.26 0.493 7.58e-11
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Figure 4.7. Learning Curves for FL Models on Non-IID Dataset (Alpha=1.0).
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Table 4.5. Non-IID Data Partition Simulation Results – alpha = 0.5. This
table shows the accuracy and variance of the global models with the lowest
NLL when trained for on a non-IID data distribution using the Dirichlet
distribution with alpha = 0.5.

Model Agg. Fn. Accuracy NLL Variance
Deterministic FedAvg 84.24 0.462 0.0
MC Dropout FedAvg 81.77 0.546 0.0323

Flipout w/ prior std 1 FedAvg 68.87 0.850 0.0391
FedIV 68.44 0.889 1.23e-11

Flipout w/ prior std 10 FedAvg 74.17 0.776 0.0891
FedIV 83.52 0.515 1.04e-11
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Figure 4.8. Learning Curves for FL Models on Non-IID Dataset (Alpha=0.5).

4.4 Analysis of Simulation Results
Over the four different experiments, it can be determined that Bayesian NNs are capable of
FL. However, the Bayesian models do not inherently outperform their deterministic counter-
parts in FL. If a model is going to be naively deployed in an FL situation, the deterministic
NN has the best initial results. However, there are a few cases where the Bayesian versions
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of the models perform as well or better than their deterministic counterparts while providing
additional information on uncertainty. In experiment two, MC Dropout was able to achieve
results that surpassed the centralized training baseline, while the Flipout models with a
standard prior of ten were only a few percentages behind the top performers. Depending on
the situation, 2% or 3% could be a valid sacrifice in performance in order to have uncertainty
metrics and data privacy offered by federated Bayesian NNs.

4.4.1 Deterministic ResNet
The standard ResNet provided the essential baseline for comparing the Bayesian models.
In three out of the four experiments, it had the highest performance in accuracy and NLL
demonstrating that Bayesian NNs do not perform as well in FL. One thing of interest is
that in the second experiment, shown in Table 4.3, the FL models can achieve state-of-the-
art performance. Despite the degradation in results shown in McMahan’s experiment with
CIFAR10 [4] and observations by Yang et al [1] that weight aggregation does not converge,
federated models can, in fact, achieve centralized results. Although further experimentation
would have to be conducted for different datasets and state-of-the-art architectures, it is
worth noting in of the possibility. With the introduction of FL to a deterministic ResNet,
the performance follows similarly with other works on non-IID datasets [4], [6]. Except for
the second experiment, FL and non-IID data partitions degraded the deterministic model’s
performance.

4.4.2 MC Dropout ResNet
In terms of ease of deployment, the MC Dropout was the easiest Bayesian NN to implement.
Due to its inherent properties, I did not have to modify Flower’s FL architecture in order
to deploy and aggregate MC Dropout models. In terms of performance, the MC Dropout
performed closely to the deterministic counterpart as witnessed by all of the learning curve
figures. In all the IID experiments, the MC Dropout performed closely to the deterministic
version in FL, actually achieving the top performance when the sites performed five local
epochs per federation round. This could be because, during training, a random neuron is
dropped as discussed in Chapter 2. With more iterations, there’s a wider distribution of
neurons that have been trained, improving the model overall. Also, in experiment one, the
NLL improved for the deterministic model. Usually, an improvement in NLL equates to
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an improvement in the generality of a model. Although the MC Dropout did not have this
effect in the first experiment, it could have occurred in the second. Therefore this dropout
property when paired with FL seems to complement one another, allowing the global model
to achieve greater than its baseline results in the second experiment. These properties seem
to scale well with additional training epochs at the site level. In terms of the non-IID
data partitions, it had one of the lowest change in performance between the two Dirichlet
distributions. This could mean that MC Dropout in federated learning handles varying data
distributions well, making it a valuable model when data distributions at each site are not
guaranteed to be IID.

4.4.3 Flipout ResNet – FedIV vs FedAvg
The Flipout ResNet provides the most unique and complex situation with the FL scheme.
As the weights are the mean and standard deviation of a Gaussian distribution, there are
many ways to interpret how to aggregate the weights. The following compares the inverse
variance aggregation method, FedIV, and the averaging of random variables discussed in
Chapter 2 via FedAvg. FedIV, in many situations, dramatically improved results. The models
trained with FedIV performed closest to the deterministic model and the centrally trained
version in terms of accuracy and NLL on the IID datasets. The improvement from FedIV
is effective when trained for one local epoch at the site as the improvement is negligible
for the Flipout models when the local epochs are increased to five per federation round.
This could be because each site trains on a different dataset, they reach different local
minima and when the local minima are too far apart, the aggregation lands somewhere in
between. When aggregated, the weights might not even fall on a local minimum anymore
contributing to the degradation in performance as seen in the second experiment. For non-
IID data partitions, the FedIV actually improved results when compared to FedAvg, at
least for the Flipout models with a standard prior of ten. It even had the lowest change
in performance between the two data distributions. This shows that Flipout models with
FedIV can perform consistently well on data partitions with varying degrees of non-IID
distributions. Overall, FedIV improved results for the Flipout model. The models were more
certain in their inferences which could be due to the variance-reducing properties of the
inverse variance algorithm [16]. When paired with the Flipout model with a standard prior
of ten, the FedIV aggregation function outperformed FedAvg in every experiment. More
experimentation would have to be done for different datasets, but FedIV appears to be a
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viable improvement to FedAvg. In any case, this experiment shows that the type of weight
aggregation function significantly impacts results.

4.4.4 Flipout ResNet – Strong vs Weak Priors
Another aspect of the Flipout model that significantly impacted results in both a centralized
and FL setting was the prior. When developing a Flipout model with Tensorflow-Probability,
the Flipout layers are initialized with a standard prior set around one. During my development
of a Flipout ResNet, I struggled to find the right training pipeline to achieve state-of-the-
art performance as seen in Table 4.1. In general, the Flipout models saw a significant
degradation in performance when compared to the MC Dropout and deterministic versions
in both a centralized and FL setting. I assess that this is an impact of how the loss is
calculated for a Flipout model. In equation 2.18, the KLD is taken with respect to the
model’s learned distribution and the prior. In practice, the first term in equation 2.18 is
averaged by the number number of its training samples, meaning that the second term,
the KLD, is also averaged by the same. In an FL setting, the number of training samples
was reduced by a factor of ten, meaning that the KLD term in equation 2.18 is ten times
stronger for each client. This means that the Flipout model at each client would prioritize
being close to the prior versus learning the dataset. This is even further exacerbated by
the strength of the prior. When the prior has a small standard deviation, let’s say one,
then the regularization factor in the KLD is approximately 0.5. Most L2 regularization
is set to 0.0001 by default. This means that a standard prior of one is potentially 5,000
more regularized than a standard model. To mitigate this, the prior was increased to ten
to achieve a regularization rate closer to standard practice. These two factors presented by
a FL scenario and the model itself could explain why the Flipout model achieved sub-par
results. These observations are further supported by the fact that the Flipout model with a
standard prior of ten consistently outperformed the other in both centralized learning and
FL. For instance, in figures 4.5, 4.7, and 4.8, the strong prior achieved optimal performance
early and then did not improve. On the other hand, the weaker prior had the same trend
but did improve with additional federation rounds. Exploring the effects of a prior for on
Bayesian NNs is essential to understand how to deploy them in a FL environment.
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4.4.5 Overall
The results from these experiments demonstrate that deploying Bayesian NNs in a FL setting
is not as easy as the deterministic NNs. In a perfect data environment where the dataset is
IID, Bayesian models can achieve state-of-the-art while providing metrics of uncertainty.
Although they perform worse in a non-IID FL scenario, the distribution factor did not make
a significant impact on the results. The MC Dropout and FedIV Flipout model (w/ prior
std 10) had the best consistency between the two non-IID distributions, a valuable property.
Perhaps by increasing the number of epochs for non-IID data partitions, Bayesian NNs
could achieve results similar to an IID dataset. Another alternative would be deploying
a different weight aggregation function that could handle non-IID data partitions better.
These experiments conclude that the operating and training environments for Bayesian
models deeply impact the results of FL and must be taken into account. It also shows that
Bayesian NNs are capable of handling varying degrees of non-IID data partitions while
providing quality uncertainty metrics.
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CHAPTER 5:
Conclusion

5.1 Contributions
The main contribution of my thesis was an evaluation of benchmark quality CNN models
in both deterministic and Bayesian configurations with FL. Second, I expanded a well-
established framework with the ability to handle Bayesian CNNs with mathematically
correct aggregations of probabilistic weights. After exploring NVFLARE and Flower python
packages, I settled on using Flower in order to run simulations run on the CIFAR10 dataset
using 10 clients. The objective of this was to be able to produce repeatable results even
when using FL platforms. For example, if the Navy or DoD decided to use NVIDIA
hardware, Flower is supporting NVIDIA embedded boards [20]. In addition to providing a
FL framework, I also explored how different types of Bayesian NNs were affected by FL. I
created different classes and functions that made it possible to federate a Bayesian NN like
Flipout. My framework also has the capability of being expanded on with different datasets,
callbacks, clients, and NN architectures for further research discussed later in this chapter.

With the federation of Bayesian NNs there are some key insights that my thesis contributes.

1. Bayesian NNs can be utilized in a federated setting and achieve state-of-the-art results
like MC Dropout scoring 91%.

2. Weight aggregation function has a significant impact on results. In most cases, the
inverse variance aggregation method, FedIV, improved the Flipout model’s results. It
improved results ranging from 6% - 9%, depending on the experiment.

3. The model’s prior also has a significant impact on Bayesian NNs in both centralized
training and FL. This could be due to clients having smaller dataset sizes, which
means the KLD term in the loss function (equation 2.18 is not as heavily weighted
during FL. It is possible that during FL the models tended to prioritize reducing the
KLD term instead of the NLL.

4. Bayesian NNs can handle non-IID data distributions consistently. The MC Dropout
and FedIV Flipout (w prior std 10) had a 1% change in accuracy when the Dirichlet
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distribution alpha was halved. However, further research is required to improve the
overall performance of Bayesian NNs on non-IID data distributions.

5.2 Future Work
Although this thesis provided a framework for testing Bayesian NNs, it does not do a
comprehensive study of how to optimize FL for them. Further studies on the Bayesian
models with weights expressed as Gaussian distributions are necessary to determine what
kind of aggregation functions work best. There’s not a lot of consensus on how a Gaussian
distribution should be averaged and each method has its statistical reasoning. It could be
dependent on the dataset or the needs of the user. Either way, more studies need to be
conducted. Another area of work would be to repeat Hsu et al. work on the effects of
non-IID datasets on FL [6] but with Bayesian NNs. By investigating how the distributions
affect a Bayesian NN in FL, it could validate or invalidate my claim that Bayesian NNs
are more consistent with non-IID datasets. In addition to these effects, there needs to be
further work on combating the negative effects of non-IID and small datasets. This would
further help the Navy and DoD since it would require less time, energy, and taxpayer dollars
to build a dataset if it didn’t have to be IID. Further work could also be done on different
datasets. This experiment only explored one dataset, CIFAR10. Other experiments could
be done on CIFAR100 or other benchmark datasets. This would validate any trends seen
in my thesis and provide a collective insight into how the data domain affects a federated
Bayesian NN’s performance. Other datasets could be passive sonar or drone imagery for
applications in the Navy and DoD. When it comes to deploying AI for the Navy and private
industries, transfer learning cannot be overlooked. My experiment could also be adapted to
conduct FTL or even continual learning. By doing weight aggregation on a subset of a NN’s
layers, FTL can be accomplished, but the effects of FL on transfer learning are not clear,
especially for Bayesian NNs. Lastly, my experiments were conducted using a simulation
of ten clients. Initially, my thesis was meant to federate edge devices with Bayesian NNs,
but it now falls into the category of future work. The next step would be to implement
various edge devices in a network that conducts FL. Noting the hardware impacts of FL,
such as network, CPU, and electricity usage is important to understand for edge devices.
This would be the prototype stage for Navy and DoD applications. Using this framework
for sonar buoys or drones can demonstrate the real-life importance of this kind of research.
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5.3 Final Remarks
To summarize, this thesis met its goal of federating Bayesian NNs. It provides the necessary
framework to apply FL to other areas of research. By providing the necessary datasets and
NNs, this experiment can quickly be adapted to a specific problem set. I believe FL has
the potential to effectively deploy AI on the edge for the Navy and DoD. When paired
with Bayesian NNs, it has the capability of continual learning and removing the need to
have a large database. This is advantageous when deploying AI across commands, services,
and even agencies. The potential for AI to be on the edge, can also improve warfighting
capabilities by reducing the need for communications. If the AI was Bayesian, it could
provide even more information through its ability to express uncertainty. Decisions need
to stay with decision-makers, but it always helps to have cutting-edge technology and
information and to know when that information or system could be wrong. To conclude, FL
could be the most ideal way of deploying effective and continually growing AI for the Navy
and the rest of the DoD.
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