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EXECUTIVE SUMMARY 

This final closeout report documents research done from FY20 through FY22 on a 6.1 NRL base 
program effort entitled “Combining Perception with Structured Knowledge for Rich Causal Reasoning in 
a Computational Cognitive Architecture.”  During the course of the project advances were made along 
several fronts to be described herein.  Firstly, the ARCADIA computational cognitive architecture was 
extended with significant new capabilities to visually extract, encode, and use relational information present 
in videos, along with having been endowed with an episodic memory capable of storing hierarchical 
representations of temporally ordered events and episodes.  ARCADIA’s existing capabilities for visually 
verifying causal relations was extended to handle the tricker case of omitted events being recognized as 
causes.  Finally, these capabilities were brought together and married with a simplified approach to 
counterfactual reasoning in which ARCADIA was able to deliberate about what would have happened in a 
video sequence had an omitted event (or more than one omitted event) actually happened.  Secondly, a 
psychologically plausible model of the blame attribution process was implemented in ARCADIA allowing 
the system to visually inspect text strings that described interactions between agents where moral violations 
were described and to output initial and subsequent updated attributions to blame as more text describing 
the context of the violation was provided.  The model was tested on published human data and matched 
using the same stimuli with a good fit being obtained.  While the intention of this project was to combine 
this new approach to blame attribution with the previously described ARCADIA extensions, this work is 
still yet to be finished.  Finally, several human subject studies were done looking to investigate how humans 
represent and reason about causes, including omitted causes interact with norms and other situational 
constraints.  These basic findings were used to inform the computational approach wherever possible.  In 
summary, the results of these three project thrusts provide some initial evidence that it may be possible to 
have an autonomous system be able to perceptually parse up complex social interactions between agents in 
situations where norms are violated and to initially apportion and update blame judgments accordingly. 
While not addressing what might be done with these blame judgments after the fact, it seems quite 
reasonable to suppose that they would make a different to trust and other dimensions of human-machine or 
machine-machine teaming.  
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COMBINING PERCEPTION WITH STRUCTURED KNOWLEDGE FOR RICH 
CAUSAL REASONING IN A COMPUTATIONAL COGNITIVE ARCHITECTURE 

INTRODUCTION 

Technical Objectives 
Of the handful of existing computational models of causal cognition, none deal explicitly with the 
relationships between perception, memory, language, and reasoning. To do so would require an 
approach to causal reasoning within the framework of a broader computational approach to human 
cognition. The project we describe herein is a continuation. As one part of a larger effort funded by a 
FY17 base program project, a loose amalgam of the ARCADIA cognitive architecture and the mental 
model theory of human causal reasoning was developed that could observe simple causal interactions 
in video clips, constructing mental models, and making corresponding causal judgments. Capacity 
limits on perception and in memory (determined by attention) precluded the system being able to keep 
large amounts of causal information in mind at a single time, leading to incremental, human-like causal 
inference. The resulting system exquisitely fit human judgment data, including eye movements. The 
perceptual demands in these clips were relatively low, and no significant background knowledge about 
the events in the clips was required to make sense of the interactions. Given these initial successes, the 
goal of this follow-on effort is to create a system that is robust for more realistic tasks where causal 
reasoning features centrally, i.e., ones that go beyond simple physical interactions to perceptually 
dense social interactions. We will focus on the dynamics of blame attribution as an example of a 
complex social interaction that critically involves inferences about causes in the presence of norms 
and norm violation and use it as a target for our computational modeling activities.  Ideally, we will 
develop our own human subjects experiments that consist in visual/video stimuli in which we can 
explore the dynamics of human blame judgments using both the usual set of metrics for text-based 
stimuli along with additional measures to probe the role of attention over the course of individual trials.   
Evaluation will consist in our extended version of  ARCADIA being a virtual human subject in an 
experiment on the dynamics of blame attribution using stimuli from an existing human subjects study. 
Success will be determined by the fit of ARCADIA’s judgments over time to those of the human 
subjects.  

 Prior to modeling blame, we will construct a variety of video examples in which blame 
features centrally.  We have in mind a simplified over-head view of a stretch of roadway, with police 
officers (both on-duty, and off-duty) interacting with civilian drivers, some of whom are obeying the 
law, and some not. We are interested in studying how background knowledge, including norms,  drive 
the causal judgments that ultimately bear on how blame is apportioned.  Several fundamental 
extensions must be made to ARCADIA to support the ongoing parsing of visual and textual input into 
units that can be subsequently analyzed and used to produce blaming behaviors and to support the 
complex forms of reasoning about how events might have gone differently (i.e., counterfactual 
reasoning).   We do not propose any formal evaluation for this portion of the project since it is primarily 
concerned with building up computational foundations for the modeling work on blame attribution. 

We also seek to build on the base of human subjects studies initiated in the prior base program 
effort to specifically investigate the role of situational norms in biasing causal judgment.  Finally, we 
plan to follow up on an important discovery from the prior project on whether causal information is 

____________
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mentally represented as being discrete (i.e., caused(x,y), ~caused(x,y))  or continuous (e.g., caused(x,y, 
0.75)) or whether both are available but used under different circumstances.  Evaluation of our theories 
will follow the usual standards in psychological science and will be subject to peer review in 
appropriate journals. 

 
 
 
TECHNICAL APPROACH AND PROGRESS AGAINST OBJECTIVES 
 
Preliminaries 

This effort combines human subject studies along with computational cognitive 
modeling to support the building of intelligent systems capable of sophisticated social 
cognition.  The human subjects studies reported on here were primarily conducted using 
Amazon Mechanical Turk and the Qualtrics platform in collaboration with partners and 
NRL colleagues at Duke University.  With one exception, the computational modeling 
results reported here were generated using the ARCADIA architecture, under continuous 
development in Code 5512 since FY15.  ARCADIA was initially designed as a 
computational framework for modeling human attention and to explore its role in all 
aspects of cognition.  Early to midterm work has focused on ARCADIA as a platform 
for modeling the role of attention in perception (Briggs et al. 2017), including 
multisensory integration between vision and audition.  More recently, ARCADIA 
research has been focused on the role of attention in cognitive control (Bello & Bridewell 
2017), including applications to multitasking (Bridewell et al. 2018) and object tracking 
(Lovett et al. ), along with aspects of planning, deliberation, and higher-level reasoning 
as reported below. 

 
Computational Modeling: ARCADIA Extensions 

Briefly, ARCADIA consists of a set of modules called “components” whose 
computations are performed in parallel and are influenced and organized by a set of 
attentional priorities.  On each cycle of operation, components individually produce their 
outputs and one of these is ultimately selected with respect to attentional priorities and 
subsequently broadcast to all components on the subsequent cycle (Bridewell & Bello 
2016).  At this point, if any of the components are “focus-responsive” and have means 
to process the broadcast element from the prior cycle, they do so.  The rest of the 
components continue to operate in their default state.  In this way, attentional priorities, 
which are associated with task/goal representations in ARCADIA, bias system operation 
from the top-down.  The selection operation on each cycle should not necessarily be 
identified with the act of attending, however.  We see attention as the overall effect of 
various mechanisms operating in concert over short periods of time, rather than being 
one omnibus algorithm or mechanism within ARCADIA (Lovett et al. 2021). 

It should be noted that ARCADIA components are designed for distributed 
heterogeneous computations.  They each implement their own proprietary data 
structures and algorithms internally which are chosen specifically with respect to the 
tasks that they perform.  For example, some components process structured rules, while 
others use control-theoretic machinery, and others use algorithms for processing raw 
sensor data.  Every component must implement an interface that allows for cross-
component communication.  This is done by requiring that all components read from 
and write to ARCADIA’s common representational format called “interlingua.”  
ARCADIA components are either domain-general or task-specific.  By domain-general 
we mean that they are used or usable by every ARCADIA model.  Some examples might 
be the image segmentation, feature-binding, and sensory short-term memory 
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components in ARCADIA’s visual pipeline, as well as components involved in 
maintaining task representations.  Task-specific components might perform task-
specific skills, such as learned driving behaviors.   

Over the course of this project, we sought to build and test new components in 
ARCADIA to support the visual parsing of videos where complex interactions between 
agents would be used to drive blame judgments.  One notable characteristic of blame 
judgments is that they are retrospective. An observing agent will have encoded a 
memory of the events in question and then use these memories in service of arriving at 
a judgment of blame.  Most, if not all forms of substantive social interaction require a 
ledger of events be kept in memory.  Events themselves are complex (see figure 1), often 
involving agents, outcomes, and various types of relations between them that may 
change in certain respects over the course of what we might call an “episode.”  In this 
project, we built and tested an initial implementation of episodic memory in the 
ARCADIA system.  The core assumption in our implementation is that attention is 
necessary to populate an episode with events, agents, relations, and so on, as well as 
being necessary for determining the boundaries of episodes. 

 
 
 

 
Figure 1: : How a complex event such as an observed collision is represented in episodic memory 

 
 
 

Episodes consist of a series of temporally extended moments (see figure 2, shown as 
black boxes) that are populated by streams of events.  Many ongoing events may be 
happening contemporaneously at a particular moment.  Often events are extended in 
time, motivating our choice of representing events as streams.  Streams are populated by 
the ongoing observation of an event through time and thus required us to equip 
ARCADIA with functionality for making ongoing judgments about whether an event 
observed at time ti was the same event as the currently observed event at time tj.  These 
equality checks are the basis for extending an event stream.   Because all the previously 
mentioned computations depend on timely observation, there is a danger of dropping an 
event stream due to attention being occupied by other stimuli.  To deal with this issue, 
we assigned activation to event streams that decays with time but allows episodic 
memory to smooth out discontinuity due to inattention.  Episodes are chunked and put 
onto an episodic history whenever an event stream is either dropped or added to the set 
of active event streams for task-related reasons.  It should be noted that ARCADIA’s 
current approach to episodic memory was strongly influenced by our colleagues in Code 
5515 (Khemlani et al 2015) as part of their broader investigation of human reasoning 
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about temporal relations.  Indeed, the ARCADIA implementation also provides full 
support for reasoning about the standard set of temporal relations including “before” 
“after” “during” and “while” through querying episodic history.  Notably, ARCADIA’s 
episodic representations do not tag observations with times.  Doing so sets up roadblocks 
for compressing episodic memory representations and leads to inefficient search. 
 
 
 

 

 
Figure 2: The organization of episodic memory in ARCADIA 

 
 
 
The final bit of functionality that was added to our implementation of episodic memory 
was the ability to query along several dimensions to produce context-specific recall.  For 
the purposes of our investigation, this meant being able to preferentially retrieve 
episodes containing norm-violation events, violations driven by an overt action (rather 
than an omission) of an offending agent, and specifically actions that were highly 
abnormal, statistically speaking.  To ground this out a bit, we can think about slightly 
violating the speed limit while driving as being a relatively normal violation with respect 
to intentionally running a traffic light in a busy intersection.   

In general, the blame process that we seek to model ideally depends on 
counterfactual reasoning, which is reasoning about what could have been the case had 
some particular fact about the world been different.  It is well known that counterfactuals 
often come to mind as a function of norm violation.  With counterfactuals, we attempt 
to work out in our minds how a more norm-conforming situation might have played out.  
The connection to blaming behavior is rather obvious here: when we observe an agent 
violate a norm and cause what looks to be a bad outcome, we might think about how the 
world might have turned out (better) had that agent done something different.  
Interrogating the result of this reasoning might well be the basis for assigning degrees 
of blame.  While we did not address counterfactual reasoning during this project given 
the massive challenge involved, we did incorporate counterfactuals around the edges of 
the demonstration project that we built for episodic memory. 

Our demonstration project involved an overhead traffic scene with five interacting 
agents.  There were two police officers, one civilian car who was speeding, another who 
was obeying the traffic laws and another who rapidly approaches the latter car on a 
collision course.  We wrote a set of simple rules that applied to agents depending on 
their status as a civilian or an officer.  Civilians were prohibited from speeding, 
tailgating, and disobeying the instructions of an officer.  Officers were obligated to pull 
over speeders, prevent collisions, respond to any calls for backup, and to complete any 
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citations in progress before leaving the scene of a crime.  ARCADIA, extended with 
episodic memory, was shown a video sequence in which an officer pulls over a speeder 
on the bottom portion of the screen, calls a second officer on the top portion of the screen 
for backup and begins writing a citation.  The second officer fails to respond, an omission 
considering the norms.  In the meantime, the law-abiding civilian car is driving along 
and is approached at high speed by another speeder on a collision course.  The second 
officer remains in place, failing also to pull over this new speeder.  The first officer 
responds to the more urgent collision possibility, leaving the scene of the crime and 
violating the norm to complete all citations; however, the original speeder drives away 
in the meantime, escaping a speeding ticket – yet another violation.  ARCADIA 
employed its capability to extract dynamic relations from video data to populate episodic 
memory with temporally ordered events, including norm violations.  This was possible 
because norms set up expectations for what should or shouldn’t happen in particular 
situations.  Comparing the events extracted in perception to these expectations allowed 
inferences to be made about norm violations and stored episodically along with more 
pedestrian episodic information about agents, objects, and visible relations.   

Once encoded in episodic memory after the video completed, ARCADIA was able 
to query episodic memory for highly available counterfactuals based on the statistical 
likelihood of a particular norm being violated (e.g., speeding/high, leaving a crime 
scene/low), episodes containing norm violations versus those that didn’t, and so on.  
Indeed, episodic memory returned the final part of the sequence in which the first officer 
and the first speeder respectively left the scene of the crime, with episodes containing 
the doubly negligent second officer’s omissions coming in behind in terms of 
counterfactuals generated.  

 
 
Computational Modeling: Blame Judgments 

Significant progress was made towards developing a computational cognitive model of 
norm-guided blaming in the ARCADIA framework.  We took Bertram Malle’s Path 
Model of Blame (Monroe & Malle 2019) as a guide for our implementation.   
 
 
 

 
Figure 3: The path model of blame: blame-related concepts and information processing pathways. 
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The path model is shown above in figure 3 and details empirically validated pathways 
by which blamers receive and process information in settings where a violation has 
occurred.  There are two major pathways in the process of blame assignment that diverge 
at a judgment of whether an agent intentionally caused the bad outcome in question.  If 
the action was performed intentionally, blamers will expect reasons to be given, and the 
quality of these reasons will impact the degree to which blame is assigned.  If it is 
determined that the outcome wasn’t intended by the offending agent, a more complex 
search for information ensues.  First, the blaming agent ascertains whether the offending 
agent had an obligation to prevent the bad outcome in question and if it is determined 
that no such obligation was in force, little to no blame is assigned.  If, however there was 
an obligation to prevent the bad outcome, the blaming agent attempts to determine 
whether the offending agent had the capacity (understood broadly) to prevent the bad 
event from happening.  If the offending agent didn’t have the capacity to prevent, little 
to no blame is assigned, but if they did, then an appropriate degree of blame is assigned.  
We built a set of components and attentional strategies in the ARCADIA system to take 
perceptual descriptions of vignettes where violations occur.  In these vignettes, pertinent 
information that drive movement down the various blame pathways is presented 
sequentially to ARCADIA such that system makes initial judgments that are revised as 
new information about causation, intentionality, reasons, obligation, and capacity 
becomes available over time.  A partial sketch of the overall model is shown below. 
 
 
 

 
Figure 4: A partial selection of ARCADIA's blame-assignment model. 

 
 
 
Missing from the left-hand side of the model-sketch is a substantial number of 
components for visual perception and the assignment of semantic features to perceived 
objects.  In the implemented model, all stimuli were visual images of sentences that were 
perceived and subsequently “read” by a natural language processing capability in 
ARCADIA.  In the third layer, several “highlighter” components that request attentional 
focus be shifted to particular words or pairings of words in the input sentence.  For 
example, if given “He wanted to prevent George from damaging Molly’s car” as an input 
sentence, the reason-highlighter picks up on the fragment “wanted to prevent” and 
outputs an impression.  Notably, an evaluation of the reason in question hasn’t occurred 
yet.  The fourth layer in the figure above is fed information from outputs of the 
highlighter components and perform task-specific operations to produce component 
judgments that will be stored in working memory and integrated over time to yield a 
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final blame assignment.  In the case of the sentence given above, the reasons-reporter in 
the fourth layer has access to semantic information in the form of rules about cars being 
damaged and judges that George has good reasons for doing whatever prima facie bad 
action he did that subsequently initiated the whole blame attribution process.   

Finally, it is worth mentioning that the ordering of steps in the path model of blame 
is realized in ARCADIA through the dynamic modulation of attentional priorities.   We 
treat the blame attribution process as a form of information foraging.  ARCADIA starts 
at the top, looking for violations or bad outcomes.  Once identified, attentional priorities 
are modified to search for information indicating an agent who is causally connected to 
the outcome.  Once found and stored in working memory, the process of reprioritization 
continues until a final blame judgment is generated.  As an evaluation of the model, we 
used available stimuli and human judgment data in (Monroe & Malle 2019) to give 
quantitative shape to the judgments produced by ARCADIA, being only concerned with 
the stepwise dynamics of the blame process as more information became available to the 
system within each trial.  Our overall results were excellent and can be seen in the graphs 
below.   

 
 
 

 
Figure 5:  Human blame judgments for stimuli given in (Monroe & Malle 2019) on the left and on the right, blame 

judgments produced by ARCADIA given identical stimuli. 

 
 
 
 
Further research is needed to advance the model’s representation of norms and 
background knowledge, which, in turn, will support more sophisticated perception of 
and reasoning about blame-relevant information, especially in the case of reasoning 
about multimodal stimuli (e.g., audio, video). To this end, we have been exploring 
multiple open scientific questions including: 
 

1. How do humans internally represent the norms that frame initial judgments in 
the path model? 

2. How do humans detect norm violations in an environment? 

3. How do norms guide attention in the process of blaming? 

4. How people identify whether sufficient information is available for a particular 
blame concept (e.g., intentionality, reasons for acting): 
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– Is there a waiting threshold involved? 

– Is partial or low-confidence information sufficient for traversing between 
parts of the path model?  

5. In the case that people determine that there is not sufficient information: 

– Do they make a plan to find the information? 

– Do they move on to the next blame concept, leaving some sort of 
placeholder concept/object in their mental representation of the scenario? 

Notably, all the information needed to make the blame judgments in the Monroe study 
was given in short bursts and was kept in ARCADIA’s working memory.  While we 
made substantial progress on developing functionality for episodic memory in 
ARCADIA, we didn’t have occasion to use it in the context of blame attribution.  
Partially, this was due to the nature of the Monroe et al stimuli.  Our initial plan was to 
generate a canonical set of episodic stimuli that would have required ARCADIA to 
visually process a stream of events similar to the traffic scenario mentioned earlier. 
Unfortunately, running short on remaining time in FY22 and having a major loss of 
personnel in the final year of the effort made it infeasible. While admittedly very 
preliminary, we have taken some steps toward addressing an underserved issue in human 
machine teaming, and one that will undoubtedly arise once autonomous systems become 
taskable in natural language and routinely engage with the same human confederate over 
a series of interactions.  Much of the recent focus on explainable systems within the DoD 
research community is laudable, but if those explanations are disconnected from socio-
moral practices such as blame attribution, they will be missing vital connections to team-
centric learning and the development of trust. 

 
 
The Psychology of Causal Representation, Reasoning, and Judgment 

From a theory perspective, we have conducted a wide-ranging meta-analysis of the 
literature on so-called “selection effects”  in causal judgments which concern how, out 
of all the possible contributing causal factors for an event, we humans manage to select 
a singular cause.  The objective wasn’t to wade into the debates on the various drivers 
for causal selection, but rather to look at whether those studies might tell us something 
about whether we mentally represent causes in a binary way or whether our 
representations are inherently probabilistic.  Probabilistic models of causal judgment 
have risen to prominence in recent years, but the results of our analysis suggest that at 
the very least, causal judgments  appear to be primarily binary, with confidence 
judgments about candidate causes predicting when they shift from binary to being 
graded.  Our analysis seems to point out methodological flaws in a non-trivial number 
of published studies that suppose causal judgments to always be graded.  The results of 
this work were submitted to the journal Cognition and was accepted (O’Neill et al. 
2022).  

A second line of empirical work conducted during the period of performance 
involved extending and refining a psychological theory of how humans represent and 
reason about so-called omissive causes developed in a prior base program project, and 
recently published (Khemlani et al. 2021).  Omissive causes are challenging for both 
psychology and for artificial intelligence for a variety of reasons.  First, it isn’t 
immediately clear how humans mentally represent absences or non-events and further 
how we manage to focus in on non-events to represent, since there are potentially 
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infinitely many choices.  Secondly, from the perspective of artificial intelligence, 
detecting an omission or constructing one from an episodic trace of behavior is similarly 
challenging.  One way to narrow the space of possible omissions to look out for is 
through their interaction with norms – rules that dictate what agents should do, are 
permitted to do, and are forbidden from doing (Henne et al. 2021).  These normative 
categories can often mark particular actions and outcomes as important, but they can 
also mark classes of actions and events as important as well.  In either case, norms help 
to narrow how we look for omissions along with interacting with background knowledge 
for reasoning about norm violations.  This latter feature was especially of concern to the 
generation and elaboration of counterfactuals, mentioned earlier in the discussion of 
episodic memory.  Under this scheme omitted events can be counterfactually replaced 
by their non-omitted counterpart, with mental simulation working out the consequences 
of how things might have turned out better (or worse).  This capability is central to 
complex socio-moral practices such as blaming, and we would also argue is critical for 
complex human-like one-shot learning that goes beyond the data-driven approaches 
typical of contemporary machine learning research. 
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CONCLUSIONS  
 

Substantial progress was made on both empirical and computational fronts toward capturing 
complex socio-cognitive and particularly socio-moral human practices for eventual application to 
human-machine teaming.  Admittedly we didn’t get as far as we would have liked with 
integrating the three threads of this project, but we believe that enough progress has been made 
on these fronts to push our efforts forward into the future. 

 
 
REFERENCES 
 

1. Lovett, A., Bridewell, W., & Bello, P. (2021). Selection, engagement, & enhancement: a 
framework for modeling visual attention. Proceedings of 43rd Annual Meeting of the Cognitive 
Science Society, 1893–1899. Vienna, Austria. 

 
2. Lovett, A., Bridewell, W., Bello, P. (2019). Selection enables enhancement: an integrated model 

of object tracking. Journal of Vision, 19(14):23. 
 

3. Monroe, A., Malle, B. (2019). People systematically update moral judgments of blame. Journal 
of Personality and Social Psychology, 116(2):215. 

 
4. Bridewell, W., Wasylyshyn, C., Bello, P. (2018). Towards an attention-driven model of task 

switching. Advances in Cognitive Systems, 6, 85–100. 
 

5. Bello, P., Bridewell, W. (2017). There is no agency without attention. AI Magazine, 38(4), 27–33. 
 

6.  Briggs, G., Bridewell, W., Bello, P. (2017). A computational model of the role of   
attention in subitizing. Proceedings of the Thirty-Ninth Annual Conference of the  
Cognitive Science Society, 1672–1677. London, UK. 

 
7.  Bridewell, W., Bello, P. (2016). A theory of attention of cognitive systems. 

Proceedings of the Fourth Annual Conference on Advances in Cognitive Systems, 
3. Evanston, IL. 

 
 
PUBLICATIONS  
 
Journal/Book 

1. O’Neill, K., Henne, P., Bello, P. Pearson, J. & De Brigard, F. (2022). Confidence and gradation 
in causal judgments.  Cognition. 223.  

 
2. Bello, P., Malle, B. (in press). Computational approaches to morality. In R. Sun (ed), Cambridge 

Handbook of Computational Psychology, Cambridge University Press. 
 

3. Henne, P., O’Neill, K., Bello, P., & Khemlani, S. (2021). Norms affect prospective causal 
judgments.  Cognitive Science, 44, e12931. 

 
4. Khemlani, S., Bello, P., Briggs, G., Harner, H. & Wasylyshyn, C. (2021). Much ado about 

nothing: The mental representation of omissive relations. Frontiers in Psychology, 11. 
 
 



 
Combining Perception with Structured Knowledge for Rich Causal Reasoning in a Computational Cognitive 
Architecture  11 
 

 

Conference 
  

1. LeBlanc, E. (2021). Toward a model of the dynamics of norm-guided blaming. Paper presented at  
Qualitative Reasoning 2021.  

 
2. O’Neill, K., Henne, P., Bello, P., Pearson, J., De Brigard, F. (2021) Confidence effects on causal 

judgment. Abstract/Poster presented at the 62nd Annual Meeting of the Psychonomics Society. 
 

3. O’Neill, K., Henne, P., Bello, P., Pearson, J., De Brigard, F. (2021) Degrading causation.  
Abstract/Poster presented at the 47th Annual Meeting of the Society for the Philosophy of 
Psychology. 

 
4. O’Neill, K., Henne, P., Bello, P., Pearson, J., De Brigard, F. (2021). “Confidence effects on 

causal judgment“. Psychonomics. 
 
 
NAVAL NEED 

We have identified several applications of interest to the Navy/NRL that potentially can 
benefit from work on computationally modeling representations of causality, causal 
reasoning, and associated capacities for social/moral judgment such as blame attribution: 
 

1. Autonomous systems that must interact with humans and other autonomous 
agents as teammates.  

2. A capability for machine perception guided by high-level knowledge of norms 
and causal relationships between entities and events in a scene to facilitate 
decision-making. 

3. A framework for dynamically generating attributions of blame to teammates 
who violate norms and expectations, and a way to use this information to guide 
future interactions (both positive and negative) with the offender. 

These applications share the research challenge of needing to understand and represent 
the relationships between causes and norms for enhancing the capability of autonomous 
systems to engage in team behavior. 

 
 
 
 
 
 




