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ABSTRACT

By means ofa vector notation for surfaces,
relations are derived among an incident wave-
front, reflector, and reflected wavefront. A
method is introduced for evaluating the deviation
of a wavefront surface from a plane. A number
of problems, including an analysis of the wave-
front from a Foster Scanner antenna, are included
in order to indicate the simplicity and utility of
the analysis.
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lem is continuing.
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ANTENNA WAVEFRONT PROBLEMS

INTRODUCTION

This report outlines a method of analysis of three-dimensional antenna wavefronts.
An application is made to the Foster Scanner antenna as well as to several other designs
of similar nature. In a previous paper, the author considered the problem of a two-
dimensional wavefront, which was a curve orthogonal to rays from a general reflecting
curve. The present investigation is an extension of the former treatment to include wave-
fronts and reflectors which are general, nonsingular surfaces. In particular, this analysis
relates an incident wavefront, a reflector, and a reflected wavefront so that given any two
of these surfaces, the third can be determined.

The methods used are based on a vector notation for the surfaces. Instead of the fa-
miliar representation

z =1(x7), (1)
the surface will be written as a vector with rectangular components
A=xi+yj+f(E k. (2)

Although such a notation is quite generally used? the reader unfamiliar with it may refer
to Figure 1 and the following explanation.

Each point on the surface in Figure la has a certain value of (x,y, 2) corresponding
to it. The same point in space could be reached, as in Figure 1b by following the three
vectors, xi, yj, zk = { (x, y) k, whose sum is A. It should be noted that the vector repre-
senting any surface is defined by the use of only two variables. This is evident for any
surface which can be written in the form of Equation (1). However the more general sur-
face vector would be written

X (uwv) = x(u,v)i+y(u,v)j+z(u vk,

where u and v are arbitrary parameters.

Kelleher, K. S., "4dnalysis of Antennc Wavefronts," NRL Report R-ggag, July 29, 1948
Blaschke, W., "Differential-Geometrie,”" New York, Dover Publications, 1945
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P THE REFLECTED WAVEFRONT

b
Given an incident wavefront surface,

A X(u, v) (Figure 2) and a reflector R(s, t),

zk the reflected wavefront Y(u, v) can be
obtained by using the wavefront defini-

y tion that all points of Y(u, v) lie at equal

ray path length from X(u, v), together

: with the fact that rays are orthogonal to

7 X the wavefront surfaces. From Figure 2,

two values of the general reflected ray

can be obtained and equated.

Y-R=(W-[R-Xlg, @)

where W is the total optical path length
from Y to X, IR-X] is the length of the incident ray, and £ is a unit normal to the reflected
wavefront, Y. The unit vector, £ , is determined from the fact that incident and reflected
angles at the reflector surface are equal.

R-X R-X
= —2 S —— ] 4
T Rox n{ln-x} 5

where n is the unit normal to the reflector at the genéral point (s, t). The proof of this ex-
pression, due to Silberstein,® is included in Appendix I.

.y

Figure 1 - Vector notation for surfaces

Substituting Equation (4) in Equation (3) and reducing, there results
Y =W¢ +X + 2n [n- (R-X)] . (5)

For most practical purposes, it is convenient to consider the reflected wavefront surface
at zero optical distance (W = 0) from the incident wavefront. This fictitious wavefront is

a parallel surface® to any actual reflected wavefront and cantherefore be used interchange-
ably in many problems.

With W = 0, Equation (5) reduces to
Y (u,v,s,t) =X (u,v) +2n(s, t) [n(s, t)- {R (s,t) - X(u, v)}] . (5a)
The parentheses here are used to indicate the dependence of the functions on the various
parameters involved. In order that Y be a funetion of two parameters only, a relation
between (u, v) and (s, t) is required. This auxiliary expression is obtained from the con-

dition that an incident ray be normal to the incident wavefront. Therefore the scalar prod-
uct of a ray and a tangent vector vanishes. Analytically there results,

(R-X) + Xy = 0 and (R-X) - Xy = 0, (6)

% Silberstein, L., "Simplified Method of Traocing Rays. Through Any Optical System," p. 1,
Longmans, Green and Company, 2918.

% Bisenhart, L. P., "An Introduction to Differential Geometry, " p. 272, Princeton,
Princeton University Press, 1940
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where the subscript denotes partial differ-
entiation. In general we may solve these
equationsfor s = s(u, v) and t = t(u, v) which
canbe substituted into Equation (5a) to give
the desired wavefront surface Y(u, v). Note
that when the incident wavefront is spherical,
that is, produced by a point source, the de-
fining vector X is a constant and Equation
(5a) can be used directly to give ¥Y(s,t).

Since the incident and reflected wave-
fronts couldbe interchanged, without chang-
ing the above treatment, an expression
similar to Equation (5a) yields the incident
wavefront when the reflector and reflected
wavefront surfaces are known.

Figure 2 - Geometry of the wavefront
THE REFLECTOR problem (dotted lines indicate ray path)

The remaining problem in relating our
three surfaces is that of determining the reflector which transforms a given incident wave-
front into a given reflected wavefront. In order to do this, use is made of Equation (3) with
the sign of unit normal, £ , reversed:

R =Y+ (W-IR-XI)¢ , X= X(p,q). (7

In order to evaluate [R-XI, X should be subtracted from both sides of Equation (7) after
which both sides are squared. The result reduces to

_ W+ (Y-XF + 2W(Y-X) ¢

2 [W+¢ - (Y-X)]
Upon substitution of this, Equation (7) becomes

IR - XJ

w2 - (Y-X)?
2 [W+£-(Y-X)]

In order to obtain R as a function of u and v alone, use is made of the condition that R-X is
normal to the surface X,

R=Y+ ¢ =Y+G¢. (7a)

(R-X) - Xy = (R-X) - Xy =0
or

(Y-X + G¢)-X;= 0 and (Y-X + G§)- X, =0~

These two expressions can be solved for p and q in terms of u and v so that Equation (7a)
defines the reflector R as a function of u and v alone. As before, if one of the wavefronts
is spherical, emanating from a point source, its defining vector is a constant, therefore
Equation (7a) gives R in terms of only two parameters.
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ABERRATIONS

Once a general reflected wavefront sur-
face is known, it is often of value to determine
how greatly this differs from a plane wave-
front tangent at some point of the surface.
Referring to Figure 3, let the wavefront be
represented as Y(u, v), and a unit normal to
the planeas N. Inthefigure, A isthe distance
which must be evaluated. Set up a constant
vector, ¥,, from the origin to the point of
tangency of the plane with the surface. By
constructing vector Y-Ygp, it can be seen
that Ais the projection of Y-Y, on N. Ana-
lytically stated,

A(u,v) = [¥-Yg| cosp = (Y-Yp)- N. (8)

Therefore for any point (u, v) of the surface, Figure 3 - Geometry of the aberration
the aberration can be determined. problem

If it is difficult to determine the value
of a Y, vector, any value, such as Y, = 0, may be chosen. The A function will then have
some constant phase error which may be subtracted out. Any constant in the phase func-
tion can be eliminated since such a subtraction merely shifts the position of the plane so
that it more closely fits the surface.

APPLICATION
Cylindrical Parabola Reflector

The remainder of this report will be devoted to applications of the theory in an effort
to demonstrate its simplicity and utility.
One of the simplest type of reflec-
tors is a parabolic cylinder. Using the
z previous notation, its defining vector and
unit normal are (Figure 4)

R=Si+—éj+zk,

4f
X %
g 5 sl 2fj .
7 y Vs® + 4af°
Line Source—One possible feed for this
reflector consists of a line source paral-
lel to the cylinder elements and placed at
FIG 4 the focus. Its equation is (Figure 4)

Figure 4 - Cylindrical parabola with line X =1] + vk.
sSource
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The reflected wavefront can be obtained from
Y=X+2n[n-(R-X)] (5a)
by substituting the above values of X, R, and n. After some reduction this becomes
Y=si-fj+vk
which requires no auxiliary relation since it is a function of two parameters only. This is
a plane perpendicular to the y axis at the point -f, which may be verified by showing that

the deviation of this surface from the plane is zero.

In order to do this, use is made of Equation (8) with N = j and the constant vector,
Yo = - fj. Then the expression for the deviation is

A=(Y-Yo)-N;
A=(si+vk)-j=0.
Point Source—If the feed is a point source located on the focal line, the reflected wavefront

can be obtained from the previous example. The feed vector,; X, is now fj. This means
that the previous expression for X can be used with v = 0. Placing v = 0 in the previous re-
flected wavefront, there results

Y=si-ff
which is a line intersecting the y axis at -f and parallel to the x axis. The parallel surfaces
to this wavefront are circular cylinders, therefore a point source feeding a parabolic cyl-
inder gives a cylindrical wavefront.

Phased Line Source—In order to determine the wavefront from the Foster Scanner
antenna, a line source, positioned as before along the focus of the parabolic cylinder, should
be considered. If this source has a linear phase distribution, a conical wavefront is pro-
duced (Ap_pendix II). In such case, the incident wavefront (Figure 5) is given by

1
X = [(h-v)? tan®a- (u-9)2] 2 i + uj + vk
X = Fi + yj + vk.

Upon substitution of X, R, and n into Equation (5a) on page 2, the reflected wavefront

is

[s(s +4uf) = (s* - 46 F] [sz(u - 2f) - 4uf® + 4st]]. ot
s? + 4f2 s? + 4f° ;

In this case, an auxiliary relation is required and may be obtained from the fact that
(R - X) - Xu =0. This relation turns out to be :

(s? - 4f) F = 4fs(u - 1).
When it is substituted, the expression for Y becomes

Yo==si +(i'—“—- 9j+vk
cos 6
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v

e

X
Figure 5 - Cylindrical parabola with conical wavefront

<2

(u,v)

X

Figure 6 - Relation betweenreflector angle, &, and cone angle, a

where cos 0 =Lf - (s®/4f)] /[f+(s?/4f)] . Figure 6 indicates the relation between cos 6 and
the parameters which are being used. From the figure, it can be determined that
f-u

= (h-v) tan a,
cos 8
and therefore the reflected wavefront can be written

Y=si-[(f-htana) + vtan @ ]j + vk.
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This defines a plane which intersects the x - y plane in a line y = (f - htan @) and at an
angle 7 - a.

As before, in order to prove that this wavefront surface is a plane, it must be demon-
strated that the deviation is zero. The plane inclined at an angle 7 - @ has a unit normal

N = (cos @)j + (sin @)k.

The constant vector to a point on the plane is

Y, = - (f - htan 0)j.
The deviation can now be found from
A =(Y-Y,) N.
A =(is - jvtan @ + kv)- (j cos @ + k sin a),
A = - vtangcos @ + vsine = 0.

Therefore, the reflected wavefront is a plane inclined at an angle which is the supplement
of the cone angle, c. i

Tilted Liné Source—For some purpose, it may be desirable to rotate the previously de-
scribed simple line source about some point on the focal line (Figure 7). In such a case,
the feed vector is

X =(f + vtana)j + vk.

The reflected wavefront is

Y=(s+vtanasinf)i - (f + vtana cos 0 )j + vk.

P

Figure 7 - Cylindrical parabola with tilted line source
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Here ¢ is the same angle as shown in Figure 6. It is related to the f/D ratio (tan6/2 = D/4f)
and will be retained in order to visualize aberration as a function of {/D. The aberration
will be expressed as deviation of this surface from the same plane used in the previous
example. It has unit normal,

N=jcosa + ksin o,
In this case, the plane will be positioned by the constant vector Yo = fj.

With such a choice, the deviation is
A =vsina (1 - cosé).

As a practical example, for £f/D ratio of 0.6, a=%10°, and source length 10 ; the error is
about ¥ 3 /4 as a maximum.

Spherical Reflector

When a point source is used to feed a spherical reflector, it is possible to obtain a
nearly plane wavefront characteristic by placing the feed near the half-radius point of the
sphere. Ashmead and Pippard® investigated this problem using the classical analysis.
The method of this paper enables one to obtain more accurate results.

Figure 8 is a sketch of a spherical reflector with center at the origin. For con-
venience all points are normalized to the radius of the sphere.

With the same notation as before, the reflector, unit normal, and feed vectors may
be written

R =xi+ [1-r’]%j+zk
u =R
X =jd

where r* = x* + z°,

The wavefront, Y, is found by substitut-
ing these vectors. R

L . y
Y =Gxi+(G 1 -r%% + d)j + Gzk - i
1
where G = 2 -2d[1 - r*] 2.
The deviation of this wavefront from
a plane is determined using N=jand Y, =
(2 - d)j. X

£):
A = 2[1 & ra:lz +2(dr® - 1) Figure 8 - Spherical reflector with
point source

8 Ashmead, J. and Pippard, A. B., "The Use of Spherical Reflectors as Microwave Scanning

Aerials " JIEE, March-Nay 1946
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It is evident that A (0) = 0, but A will also vanish at another value of r if d, the feed
position, is properly chosen. Setting A = 0 and solving for d, there results
1
- (1~ r)"

ra

d=

Therefore, given a value of r for which it is desired to make the deviation zero, d can be
easily calculated. Several values are tabulated below:

- 35 -
0.2 .503
0.4 .522
0.6 .556
0.8 625

It is evident that as r increases, the feed position moves nearer the reflector, For a
shallow reflector, which corresponds to a large f/D ratio, the feed is placed near the half-
radius point, while as the f/D ratio decreases, the feed moves in toward the reflector.

Once the value of r and d have been established, it is possible to evaluate the maximum
value of A (r) in the usual manner. The result for a reflector of unit radius is

2
Amax = —(d-0.5),

and for a reflector of radius, R

B "
Amax = 5 (d-0.57R.

As a practical example, for f/Dratio of 0.6, r is approximately 0.4 and d = 0.522. The
maximum deviation is then

Apax = —2— (.022)°R = 0.0018R.

0.522

In order to place a value on R, note that r = 0.4R, therefore,

= D
B = _
0.4 0.8

where D is the reflector aperature. For an aperture of 20 wavelengths, the deviation from
a plane is

= (0.0018) 202 _ 0 045 .

A
max 0.8

The value of this deviation, given by Ashmead and Pippard was

it D
By = = = . =(0.046 ).
(f/D)* 2000
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Reflectors Which Yield Virtual Point Sources

A catalogue of the reflectors which will produce a spherical wavefront from a point
source can be obtained from Equation (7a). In terms of this equation, two point sources
are given and it is desired to determine the reflectors which focus rays from one point to
the other. By choosing the ray path length, W, to be less than the distance between the
sources, other reflectors are obtained which produce virtual sources.

From the analysis, the reflector desired is

Reys W -(¥-%X-(Y-X
2[w+t - (Y -X))

X and Y, the incident and reflected wavefronts, are in this case points. Let X = 0 and
Y = ai. The unit normal to the Y wavefront is

E. (7a)

E=(x-a)i+yj+2k
where y=[1-2% - (x - a)’]% :
Substituting these values, the reflector is
R =r,i+rsj+rsk

R= [(x - a) (W? + 2% + 2aW]i + y (W? - 2%)j + z(W? -a?)k.
2[W+a(x-a)

It is possible to eliminate the parameters here, and obtain

(r, - a/2)? +r§ + T 1

— —

w* W -a 4

From inspection of this equation, the following tabulation may be made. For W>a, the
reflector is an ellipsoid, unless a = 0, in which case it is a sphere of radius W/2.

For W< a, the reflector is a hyperboloid of revolution, unless W = 0, in which
case it is a plane, r, = a/2.

For W = a, the result is a point reflector at the origin, the position of the second
source.

* % %



APPENDIX I
The Reflected Unit Vector®

From geometrical optics, the incident ray, normal to the reflector, and reflected
ray all lie in the same plane (Figure 9). Since the incident and reflected angles are equal,
it can be seen that

n*r=-n-§

EXn=rxn, ¢
Taking the vector product of the last equation by
n this results,

nx (kExn) =nx(rxn)
oc n
or — =
¢(n-n) -n(n-g) = r(n-n) - n(n-r).

Substituting for n-£& and transposing, "

E=r - 2n(n-r).

Since r in the case under discussion is

R-X ,
IR - X|
) h Figure 9 - Unit vectors at point
equation (4) of the text is valid. of reflection

. Silberstein, op cit

* % X%
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APPENDIX 1T
Conical Wavefront from Phased Line Source

A line source can be interpreted physically as an infinite number of point sources,
each of whose wavefronts has a radius proportional to its phase. With linear phase dis-
tribution, the radii vary linearly with position on the line. Figure 10 shows the line source
in the y - z plane. If point b lags point a by A, then b¢, a ray from b perpendicular to
the wavefront, has length AX = (b - a) sina, and this is the radius of the sphere with center
at b. Analytically, this general spherical wavefront is

Z+¥ +(z-b)?=(-a)sin’a.

As b is varied, there results a one-parameter family of spheres, one for each point source.
The wavefront is the envelope of this family, which is obtained in the usual manner:

X+y +(z-bf - (a-bfsin®a=0;
and
(z - b) = (a - b)sin®*a

are the equations from which b must be elimi-

nated. The first equation may be rewritten, a
x° + y° - cos’a(a - bf sina=0
where
b = B asin®a
cos’a
o
Substituting the value of b, there results, AN b
x* + y° - cos’a sin® a(a cos’@ -z +a szaf,: 0,
cos’a /]
or
y
X2 +y? =(a - z)tan’e,
which is a cone of height, a, and angle, a. Figure 10 - Cross sectionof canical wavefront

* ¥ ¥
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