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1. Introduction

Ferrous metals include iron (Fe), steels, and other Fe-based alloys. When subjected
to large mechanical forces, these materials demonstrate a variety of deformation
mechanisms depending on their chemistries and microstructures: nonlinear elastic-
ity, dislocation plasticity, deformation twinning, solid-solid martensitic phase tran-
sitions, ductile fracture from voids, and brittle fracture from microcracks. Crys-
talline phases within the microstructure are usually body centered cubic (BCC),
body centered tetragonal (BCT), face centered cubic (FCC), or hexagonal close
packed (HCP). Under loading pertinent to dynamic impact, the extreme conditions
of high pressures, high shear stresses, high strain rates, and high temperatures can
be attained. Each of these conditions serves as a possible driving force for inelastic
deformation mechanisms, albeit in a different way.

The predilection for dislocation slip versus deformation twinning versus phase trans-
formation is often attributed to stacking fault energy (SFE),1–3 with a higher SFE
noted for those alloys that deform mostly by dislocation slip, referred to herein as
slip-dominated plasticity (SLIP) steels. Transformation-induced plasticity (TRIP)
steels characterized by ease of martensitic transformations tend to have a low SFE.
Twinning-induced plasticity (TWIP) steels tend to have SFEs in between those of
SLIP and TRIP steels.

Ferrous metals often demonstrate magnetic behavior. For example, α-Fe (BCC)
is ferromagnetic, whereas ϵ-Fe (HCP) is weakly paramagnetic or antiferromag-
netic.4–7 Because the free energy of a magnetic material changes with the local
magnetic field, an externally applied magnetic field will affect driving forces and ki-
netics for martensitic transformations between phases with different magnetic prop-
erties.6,7 Magnetic fields can also affect fundamental thermodynamic properties of
ferrous solids such as specific heat.8,9

Recent research by the coauthors10–12 has developed novel constitutive theories and
numerical implementations for ferrous metals. These continuum mechanical mod-
els capture the homogenized thermomechanical response of a polycrystalline mate-
rial element consisting of up to two coexisting solid phases. Sufficient numbers of
randomly oriented grains of each phase are assumed such that material isotropy is
justified. Two classes of constitutive model framework (CMF) are documented in
this report. Both frameworks satisfy established continuum balance laws and non-
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negative dissipation restrictions.

The first model framework to be described, denoted as CMF1, was theoretically
established in Clayton and Lloyd,11 including analytical solutions for hydrostatic
and shock compression of pure Fe, with and without external magnetic fields. A
numerical implementation of CMF1 was achieved by Clayton et al.12 Therein, nu-
merical solutions were obtained for the response of pure Fe and a ferrous alloy with
several heat treatments; calculations considered homogeneous magnetic fields and
were restricted to a single material point (e.g., represented by an integration point
within a single finite element [FE]).

The second framework to be described, denoted as CMF2, was theoretically estab-
lished earlier in Clayton and Lloyd.10 Numerical implementation in a single-point
FE context was also achieved in that reference. Calculated homogeneous responses
of a SLIP alloy, a TWIP alloy, and a TRIP alloy were obtained for different me-
chanical and thermal loading protocols. Multi-element simulations of a Taylor rod
impact experiment on these same alloys were documented in a subsequent tech-
nical report.3 The original theory and implementation of CMF2 did not explicitly
consider magnetic effects.

Features of CMF1 as implemented numerically12 are summarized as follows:

• Nonlinear pressure-volume-temperature equation of state (EOS) based on a
logarithmic volumetric strain measure;

• Additive decomposition of spatial deformation rate tensor with plasticity,
twinning, and deviatoric transformation strain rates combined;

• Composite flow rule with shear strength accounting for all inelastic deforma-
tion mechanisms in a physically justified manner;

• Relaxation equation for phase transition kinetics with metastable states driven
by the Gibbs free energy difference that depends on pressure, shear, temper-
ature, and magnetic field;

• Continuum damage mechanics with void-based kinetics and linear elastic
moduli degradation;
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• Objective stress rate (i.e., true Jaumann rate) consistent with logarithmic hy-
perelasticity derived under the assumptions of small deviatoric elastic stretch
and stretch rate;

• Free energy, specific heat, and phase transition kinetic parameters dependent
on magnetic field.

Features of CMF2 as implemented numerically10 are summarized as follows:

• Nonlinear pressure-volume-temperature EOS based on an Eulerian volumet-
ric strain measure;

• Additive decomposition of spatial deformation rate tensor with plasticity,
twinning, and deviatoric transformation strain rates combined;

• Composite flow rule with shear strength accounting for all inelastic deforma-
tion mechanisms in a physically justified manner;

• Direct differential equation for phase transition kinetics driven by pressure,
shear, and temperature;

• Continuum damage mechanics with void-based kinetics and self-consistent
elastic moduli degradation;

• Objective stress rate (i.e., modified Jaumann rate) consistent with Eulerian
hyperelasticity derived under the assumptions of small deviatoric elastic stretch
and stretch rate.

Key equations and further supporting references for each CMF are given in Sec-
tion 2 of this report. CMF1 is more recent and includes more physics, but it has
been implemented to date only in material point simulations.12 CMF2 is more ma-
ture, including implementation in a larger-scale host code for Taylor impact sim-
ulations,3 but it does not consider effects of electromagnetism. A phase transition
framework similar to that in CMF1 was exercised in multi-element plane-wave and
impact simulations,13 but that work did not use the EOS and strength models of
CMF1 or CMF2. Neither CMF1 nor CMF2 explicitly considers non-Schmid ef-
fects14,15 or residual lattice dilatation from dislocation core and nonlinear elastic
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fields (e.g, anharmonicity),15–17 either or both of which could be important for BCC
phases of ferrous materials.

The purpose of the current report is to document numerical implementations of both
frameworks in a user material subroutine (UMAT). This subroutine is intended to be
called by the constitutive update algorithm of a host FE code18–21 such as ABAQUS,
ALE3D, ALEGRA, or EPIC. The mechanical constitutive subroutine follows the
UMAT syntax of ABAQUS. It therefore should be compatible with other host codes
that support the ABAQUS UMAT, including the other three host codes just men-
tioned.

For coupled electromagnetic behaviors, a separate, supplementary magnetic user
material subroutine (MAGUMAT) is used to calculate the magnetization, magnetic
field energy, and specific heat. The MAGUMAT is given as input a local magnetic
flux density or a local magnetic field as the pointwise magnetic loading condition.
This routine also includes the capability to calculate the dissipated energies from
the local heat flux and electric current, both of which affect the temperature rate.
Whether or not this algorithmic breakdown is supported by the host code depends
on the structure of the host code, namely its magnetohydrodynamics solver. It may
be necessary to restructure the mechanical UMAT to contain or internally call the
MAGUMAT, rather than rely on the host code to make separate calls to the UMAT
and MAGUMAT. This task is left to the user.

The UMAT and MAGUMAT subroutines do not prohibit user invocation of differ-
ent aspects of each CMF. For example, the phase transition kinetics of CMF1 could
be used in conjunction with the Eulerian EOS of CMF2. However, mixed combina-
tions such as this have not undergone verification testing. The current report only
documents CMF1 and CMF2 with suggested inputs for those ensembles of fea-
tures that have been successfully used in previous works3,10,12 or that are verified
in this report. Some non-standard feature combinations may not be mathematically,
physically, or thermodynamically consistent, so such combinations should only be
attempted at the user’s discretion, with further verification strongly recommended
to be performed by the user.

This report also documents a material point simulator (MPS) that imposes macro-
scopically homogeneous deformation and magnetic states, noting that states among
individual phases in the mixed-phase domain may still differ within the material
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point. The MPS calls the UMAT and MAGUMAT separately and sequentially, and
the input syntax for material properties of the MPS follows the ABAQUS style. Ver-
ification problems are solved in this report using the MPS with each of CMF1 and
CMF2. All three routines, namely the UMAT, MAGUMAT, and MPS, are written
in the FORTRAN programming language. The source code for the MPS is included
in an appendix. For brevity, source code for the UMAT and MAGUMAT are not
included in this report. The authors may supply these files to interested parties upon
future request, to be considered on a case-by-case basis. Along these lines, any er-
rors discovered in the code or in the present documentation should be reported to
the authors for subsequent correction.

The layout of this report is as follows. Contents include those recommended for
standardized UMAT documentation by Gerlach et al.22 with the exception of exclu-
sion of the UMAT source code. Section 2 includes descriptions of the theoretical
features and key governing equations for each CMF. Section 3 describes the input
constants and input syntax for each CMF. Section 4 describes the state variables for
each CMF. Section 5 discusses code maturity and robustness. Section 6 documents
the MPS. Section 7 contains two classes of verification example problems for each
CMF. Section 8 is the conclusion. Following the references, Appendix A contains
the input files for the verification problems. Appendix B contains the FORTRAN
source code for the MPS. A list of acronyms and mathematical notation follows the
Appendices.

2. Descriptions of the Models

All models are consistent with the fundamental laws of continuum physics.23–26

These include conservation of mass, conservation of linear and angular momentum,
conservation of energy, the Clausius-Duhem inequality, and Maxwell’s equations in
the Galilean invariant approximation, all of which are summarized hereafter.

The models allow for coexistence of up to two solid phases at any material point
with reference coordinates X. At time t, the local volume fraction of the product
(i.e., transformed) phase is ξ(1) = ξ, and the local volume fraction of the parent
phase is ξ(0) = 1 − ξ. The initial value of ξ(X, t) is ξ0 = ξ(X, 0). The initial mass
density of the parent phase is ρ(0)0 , and the initial mass density of the product phase
is ρ(1)0 . The volume change associated with complete forward transformation 0 → 1

is δξ. The damage variable is ϕ(X, t) ∈ [0, 1] with initial condition ϕ0 = ϕ(X, 0) =
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0. Dilatation from damage is modulated by a material parameter cϕ ∈ [0, 1]. The
product cϕϕ is physically interpreted as the local void volume fraction.

Local mass conservation requires10,12

ρ0 = ρJ ; ρ0 = (1− ξ0)ρ
(0)
0 + ξ0ρ

(1)
0 ; (1)

J = detF = JEJξJϕ, J̇ = J ∇ · υυυ; (2)

J̇ξ

Jξ
=

δξ

1 + (ξ − ξ0)δξ
ξ̇, δξ =

ρ
(0)
0

ρ
(1)
0

− 1; (3)

J̇ϕ

Jϕ
=

cϕϕ̇

1− cϕϕ
. (4)

The Jacobian determinant of the deformation gradient F(X, t) is J . The initial and
current mass densities of the mixture of phases are ρ0 and ρ. The thermoelastic
volume change is measured by JE . The scalars Jξ and Jϕ describe, if different from
unity, the respective volume changes from phase transitions and induced voids. The
particle velocity vector is υυυ(X, t). Superposed dots are material time derivatives.

Denote the spatial magnetic flux density by B and the magnetization vector per unit
spatial volume by M. Local linear and angular momentum conservation require11,12

∇ · t + f̃ + f = ρ υ̇υυ, t − tT = B ⊗ M − M ⊗ B. (5)

The Cauchy stress tensor is t, the mechanical body force vector per unit spatial
volume is f , and the electromechanical body force per unit spatial volume is f̃ :

f̃ = J × B + (∇B) · M, (6)

with J the electric current density. The symmetric part of the Cauchy stress tensor
is

σσσ = t − 1
2
(B ⊗ M − M ⊗ B). (7)

For the isotropic constitutive models implemented in this report, Cauchy stress is
always symmetric, meaning t = σσσ, but this simplification does not hold in the gen-
eral theory for materials of arbitrary symmetry.11,23 Also for the present constitutive
models, the Cauchy stress t and Cauchy pressure p are decomposed into a symmet-
ric lattice part (·)E induced by thermoelastic deformation and an electromagnetic
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contribution:

t = tE +B⊗M, p = −1
3
tr t = −1

3
trσσσ = −1

3
(tr tE +B ·M) = pE − 1

3
B ·M. (8)

Denote by U the internal energy of the mixture per unit reference volume, q the
spatial heat flux vector, and r the local heat source per unit spatial volume. Denote
the electric current JJJ = J − υυυ∇ · D and electric field EEE = E + υυυ × B vectors en-
tering the Galilean-invariant formulation for non-polarizable conductors.11,23 Then
the local balance of energy is11,12

J−1U̇ = t : ∇υυυ + JJJ · EEE− M · Ḃ −∇ · q + r, (t : ∇υυυ = tji∂jυi). (9)

Isotropic models of constant thermal conductivity κ ≥ 0 and constant electrical
conductivity Σ ≥ 0 are implemented in some algorithms discussed later, whereby

q = −κ∇θ, JJJ = ΣEEE. (10)

The local absolute temperature is θ, the local Helmholtz free energy density is ψ,
and the local entropy density per unit reference volume is η:

ψ = U − θη. (11)

The local Clausius-Duhem inequality is

η̇ ≥ (J/θ)(r −∇ · q + {q/θ} · ∇θ), (12)

whereby from Eqs. 9 and 11,

−(1/J)(ψ̇ + ηθ̇) + t : ∇υυυ + JJJ · EEE− M · Ḃ − {q/θ} · ∇θ ≥ 0. (13)

For electromagnetics, the present implementation uses rationalized MKS units.24

Vacuum permittivity is ϵ0 = 8.854 · 10−12F/m, vacuum permeability is µ0 = 4π ·
10−7H/m, and light speed is c = 3 · 108 m/s, related by ϵ0µ0c

2 = 1.

Let D be the electric displacement vector and H the spatial magnetic field. For non-
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polarizable materials,

D = ϵ0E, B = µ0(H + M). (14)

Quasi-magnetostatic conditions23 are assumed, with free charges absent. Maxwell’s
equations at any spatial point x = x(X, t), expressed with respect to a fixed spatial
frame, are

∇ · E = 0, ∇ · B = 0, ∇× E = −∂tB, ∇× H = J. (15)

Time differentiation at fixed x is ∂t(·). Alternative forms of Maxwell’s equations can
be derived in the Galilean-invariant approximation, which presupposes that particle
velocity is small compared to the speed of light in a vacuum. The reader is referred
to the monograph of Maugin23 and the more succinct presentation in Clayton and
Lloyd11 for the pertinent derivations as well as boundary or jump conditions on sur-
faces, stationary or moving. Omitted in the present context are higher-order balance
laws pertinent to spin-exchange effects that have been modeled elsewhere using
more elaborate, generalized continuum theories.27,28 To obtain numerical solutions,
Maxwell’s equations in the quasi-static approximation are typically manipulated to
arrive at a magnetic diffusion equation.11,29

2.1 CMF1

Essential aspects of the formulation implemented numerically by Clayton et al.12

are reported here. This formulation (i.e., CMF1) contains several alterations of the
original, more rigorous theory of Clayton and Lloyd11 to enable efficient numeri-
cal implementation in hydrocodes. These differences are discussed at length in a
follow-up paper.12

2.1.1 EOS

A logarithmic EOS relates lattice pressure pE to thermoelastic volume change JE

and temperature θ. This EOS can be derived from third-order nonlinear elasticity
theory with a dependence of free energy on the material logarithmic strain ten-
sor25,30:

pE = − 1

J

[
B ln JE − 1

2
B0(B

′
0 − 2)(ln JE)2 − cV γ0∆θ

]
. (16)

The initial bulk modulus, pressure derivative of the bulk modulus, and Grüneisen
parameter are respective constants B0, B′

0, and γ0. The specific heat per unit refer-
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ence volume at constant volume is a mixture of the specific heats of phases:

cV (ξ, θ, |H|) = (1− ξ)c
(0)
V (θ, |H|) + ξc

(1)
V (θ, |H|). (17)

The tangent bulk modulus B degrades linearly with damage for tensile states as
follows, and the tangent shear modulus G entering later equations degrades linearly
regardless of local deformation state:

B = B0{1− ϕH(ln JE)}, G = G0{1− ϕ}. (18)

The right-continuous Heaviside step function is H(·). Dependence of elastic coef-
ficients on temperature (e.g., modeled in other works on dynamic crystal plastic-
ity31–35 or macroscopic plasticity36) is omitted.

2.1.2 Plastic Flow

The Eulerian velocity gradient is decomposed into an elastic part lE and a total
plastic part dP . For isotropic polycrystals, the latter is presumed symmetric and
accounts for plastic slip, deformation twinning, and the deviatoric contributions of
phase transitions in its isochoric (i.e., traceless) part d̄P :

∇υυυ = lE + dP ; dP = 1
3
(J̇ξ/Jξ + J̇ϕ/Jϕ)1 + d̄P

, tr d̄P
= 0. (19)

Associated deviatoric plasticity with a flow potential ΩP and von Mises-equivalent
yield and flow surface KP is invoked:

ΩP =
√

2
3
J(σ̄V −KP ), KP = KP (eP , ėP , ξ, ϕ, θ,H). (20)

The local von Mises stress is σ̄V , and the total deviatoric plastic strain rate is ėP :

σ̄V =
√

3
2
|(t + p1) : (t + p1)|1/2, ėP =

√
2
3
|d̄P

: d̄P |1/2. (21)

The total plastic strain rate ėP is work conjugate to σ̄V . The cumulative scalar plastic
strain is eP (X, t) =

∫
ėP (X, τ)dτ .

The composite yield stress KP , first introduced by the coauthors in prior work,10 is
used to modulate the total inelastic strain rate d̄P in the two-phase material, simi-
larly to Grujicic and Sankaran.37 Total strength KP depends on the total flow resis-
tance of each phase, phase interactions, and damage incurred in the solid. Mecha-
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nistic resistances depend on strain history, strain rate, and temperature. Dependence
of KP on local magnetic field H, which itself can be expressed as a function of
other state variables, is also admitted in the theory, though this feature has yet to be
implemented in the UMAT.

Let superscripts (α) = (0), (1) distinguish the two phases, recalling forward trans-
formation is α : 0 → 1. Let KP

0 denote the total composite flow resistance in the
absence of damage. A rule of mixtures is

KP = KP
0 · (1− cϕϕ) = {ξKP (1) + (1− ξ)KP (0)} · (1− cϕϕ). (22)

The degradation function 1 − cϕϕ is justified in prior research10,38,39 by equivalent
plastic work arguments.

For each phase α, slip and twinning resistances are embedded in strength function
Kχ(α), whereas transition flow resistance is embedded in Kξ(α). Since slip, twin-
ning, and phase transformations may operate in parallel,37

1/KP (α) = 1/Kχ(α) + 1/Kξ(α). (23)

A smooth double-well function of ξ is used to modulate Kξ(α), with zeroes at ξ −
ξ0 = 0, 1:

zξ(α)(ξ; θ,H) = 4ι(α)(θ,H) · (ξ − ξ0)(1− {ξ − ξ0}); (24)

Kξ(α) = Kχ(α)
(
1/zξ(α) − 1

)
⇒ KP (α) = Kχ(α)

(
1− zξ(α)

)
. (25)

The scalar function ι(α) ∈ (0, 1] when transformation strain accommodation in-
duces softening in phase α. This permits prediction of sigmoidal stress-strain curves
witnessed in some TRIP steels.40,41

Values of ι(0,1), which affect composite strength only for ξ ̸= ξ0 and hence de-
pict phase interactions, can most generally depend on the local temperature and
magnetic field.12 However, the present software implementation omits temperature
dependence, sets ι the same for each phase, and presumes linear dependence on the
local field magnitude:

ι(|H|) = ι(0)(|H|) = ι(1)(|H|) = ι0 + ι1µ0|H|, (26)

10



where ι0 and ι1 are constants. The second well in Eq. 24 is never attained in practice
if ξ0 > 0; in that case, some accommodation is permanent when ξ → 1. The
form in Eq. 24 is intended for situations when ξ ≥ ξ0 as in Clayton and Lloyd10;
conditional modifications are necessary to account for scenarios in which reverse
transformation renders ξ < ξ0.

Now consider Kχ(α), the resistance to slip and deformation twinning not comprised
by phase transitions. Let ė0 be a reference strain rate, and m(α), p(α) be material
constants for each phase α = 0, 1. Denote by k(α) the slip-twinning resistance at an
applied total deviatoric plastic strain rate ėP = ė0 and datum temperature θ = θR.
Let σ̄V (α) be the von Mises stress in phase α. When plastic flow is occurring, a local
viscoplastic flow rule is operative, where ėP is assumed the same in each phase:

ėP = ė0 · ⟨1− θ̄p
(α)⟩−1/m(α) [

σ̄V (α)/k(α)
]1/m(α)

, θ̄ =
⟨θ − θR⟩
θM − θR

. (27)

Thermal softening is measured by p(α) ≥ 0. The melt temperature at ambient pres-
sure is θM , and θR is treated as a universal constant.* Angled brackets denote the
operation that parses positive values: ⟨x⟩ = 1

2
(x+ |x|). Inversion of Eq. 27 gives

Kχ(α) = k(α) ·
(
ėP/ė0

)m(α)

⟨1− θ̄p
(α)⟩ = σ̄V (α) (28)

at local yield. The strain rate sensitivity for plastic flow in phase α is m(α) =

∂ ln σ̄V (α)/∂ ln ėP . The von Mises-equivalent strength function k(α) depends on the
cumulative work-conjugate inelastic strain eP as2

k(α)(eP ) = σ
(α)
0 +

Θ
(α)
0

2

[
eP − 1

δ(α)
ln{cosh[δ(α)(eP − ϵ(α))]}

]
+

Θ
(α)
0

2δ(α)
ln{cosh(−δ(α)ϵ(α))}.

(29)

The datum-state yield stress for each phase is σ(α)
0 . The strain hardening coefficient

with dimensions of stress is Θ(α)
0 , and δ(α) and ϵ(α) dictate the hardening profile2:

dk(α)

deP
=

Θ
(α)
0

2

[
1− tanh{δ(α)(eP − ϵ(α))}

]
. (30)

*In the present UMAT software, θR is hardcoded to 300 K; in prior work10 it was 293 K.
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The net dissipation per unit reference volume from deviatoric flow is

DP = Jβ̂σ̄V {ėP −
√

1
6
γξ(σ̄V , ėP )ξ̇} ≥ 0. (31)

The Taylor-Quinney factor β̂ ∈ [0, 1] is assumed constant and identical in each
phase, and γξ is the signed transformation shear.

An augmentation of Eq. 28 was introduced by Clayton and Lloyd10 to allow for
increased strength at very high rates of loading,42–44 for example manifesting from
increased viscous and phonon drag of dislocations. This augmentation is available
in the present software implementation of CMF1:

Kχ(α) = k(α) ·
(
ėP/ė0

)m(α)

⟨1− θ̄p
(α)⟩[1 + ks⟨ln(ėP/ės)⟩]. (32)

Material constants are ks and ės > 0, where the latter is generally a large strain rate
for metals (e.g., on the order of 104/s). When ks > 0, increased strength occurs for
ėP > ės.

2.1.3 Phase Transformations

To ensure non-negative net dissipation from the transformation rate ξ̇, the kinetic
law for transitions is required to satisfy11,12

Dξ = −∆∗G · ξ̇ ≥ 0. (33)

The total Gibbs free energy difference, specifically the local energy density of the
potentially transformed phase (1) minus that of the initial phase (0), is ∆∗G =

G(1) − G(0). For forward transitions, ξ̇ > 0 necessitates that the Gibbs free energy
must not increase: −∆∗G ≥ 0 ⇔ G(1) ≤ G(0). Analogously, the Gibbs free energy
must not increase for reverse transitions as well, where signs are reversed.

The theory of Boettger and Wallace and Lloyd et al.9,13 is extended in works by
the coauthors11,12 to allow ∆∗G to depend on shear (deviatoric) stress, magnetic
flux density, and other state variables in addition to just the classical pressure and
temperature dependencies of G(α) used in prior theory.9,13 The local metastable state
value of ξ, written ξm(X, t), is obtained from dξ = (1−ξ)dF̄, where the dimension-
less forward transition driving force is F̄ = −∆∗G/βF . The proportionality factor
βF for forward transformation may generally depend on the local state, as can the
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activation energy barrier αF , and αF
0 /β

F
0 = αF/βF is prescribed so integration

produces a metastable volume fraction ξm:∫ ξm

0

dξ
1− ξ

=

∫ −∆∗G/βF

αF
0 /βF

0

dF̄ ⇒ ξm(X, t) = 1− exp
[
αF +∆∗G(X, t)

βF

]
.

(34)
The trial (·)t forward transformation rate is given by linear relaxation kinetics9,45:

−∆∗G > αF and ξ(X, t) < ξm(X, t) 7→ ξ̇t = (ξm − ξ)/τF > 0, (35)

with τF > 0 a scalar with dimensions of time.

In reverse transformations, ξ̇t < 0 and dξ = −ξdF̄, wherein F̄ = ∆∗G/βR. Let
βR and αR be the proportionality constant and activation energy barrier for reverse
transformation with αR

0 /β
R
0 = αR/βR, and let τR > 0 be the time scale for kinetics.

Then∫ 0

ξm

dξ
ξ

= −
∫ αR

0 /βR
0

∆∗G/βR

dF̄ ⇒ ξm(X, t) = exp
[
αR −∆∗G(X, t)

βR

]
; (36)

∆∗G > αR and ξ(X, t) > ξm(X, t) 7→ ξ̇t = (ξm − ξ)/τR < 0. (37)

When conditions contrary to Eqs. 35 and 37 hold, no transformation is possible:

− αF ≤ ∆∗G ≤ αR and/or

−∆∗G < αF and ξ > ξm or

∆∗G > αR and ξ < ξm

 7→ ξ̇ = ξ̇t = 0. (38)

Quantities αF , αR, βF , βR, τF , and τR can all potentially depend on local material
state in the theory. However, in the current software implementation, τF and τR are
fixed constants, and the phase transition barriers αF , αR, βF , and βR are permitted
to depend only on local magnetic field strength |H| in a linear manner:

αF/R = α
F/R
0 + α1µ0|H|, βF/R = β

F/R
0 + β1µ0|H|. (39)

Six material constants are αF/R
0 , α1, β

F/R
0 , and β1. Note that the linear field depen-

dence is assumed identical for forward and reverse metastable states. Generally, αF

and αR are unrestricted in sign, but −αF ≤ αR, βF > 0, and βR > 0 are physical
restrictions.
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The shear strain rate due to phase transitions should not exceed the total deviatoric
plastic strain rate, the latter of which includes the sum of contributions from slip,
twinning, and phase transitions. Mathematically, this requirement leads to 2ϵ̇P ≥
γξ ξ̇ and ensures that Eq. 31 always holds. An additional constraint on ξ̇ is imposed
to enforce this condition. The transformation shear of Eq. 31 is defined as a function
of local von Mises stress state σ̄V as in earlier models of TRIP steels,40,41 and it
becomes zero if the total deviatoric plastic strain rate ϵ̇P =

√
3
2
ėP is zero:

ξ̇ =

 min(ξ̇t, 2ϵ̇P/γξ),

ξ̇t if γξ = 0;
γξ =

 γξ0 ·min(1, σ̄V /σ
(0)
0 ),

0 if ϵ̇P = 0;
γξ0 ≥ 0. (40)

The transformation shear strain for local stress exceeding the datum yield stress is
the material constant γξ0 . The datum yield stress of the parent phase is σ(0)

0 ≥ 0,
introduced explicitly in Eq. 29. Since ϵ̇P ≥ 0 and γξ ≥ 0 by definition, the first
of Eq. 40 only restricts forward transformations (i.e., those for which ξ̇t > 0).
If γξ0 = 0 (i.e., null transformation shear9,13), this constraint vanishes. Inequality
Eq. 33 is guaranteed by Eqs. 34–40.

The driving force ∆∗G is divided into mechanical (pressure and shear), magneto-
static, and chemical (compositional and thermal) contributions:

∆∗G = ∆∗Ĝ+∆∗G̃+∆∗Ḡ (total),

∆∗Ĝ = pJδξ/[1 + (ξ − ξ0)δ
ξ]−

√
1
6
Jσ̄V γξ (mechanical),

∆∗G̃ = ∆∗Φ (magnetostatic),

∆∗Ḡ = −∆∗A[B0 ln J
E∆θ]−∆∗ĉV [θ ln(θ/θ0)−∆θ]

− (λT/θT )(θ − θT ) + ψ0 (chemical).

(41)

The difference in thermal expansion coefficients (transformed phase minus initial
phase) is ∆∗A = A(1) − A(0), with A(α) the volumetric coefficient of thermal ex-
pansion of phase α, treated as a constant. The magnetic field-independent part of
specific heat is ĉV . The latent heat coefficient of transformation is λT , and θT is a
material constant called the transformation temperature. Energy density ψ0 is the
free energy of the transformed phase relative to the free energy of the initial phase
at the reference temperature θ0, at null lattice deformation (i.e., at no mechanical or
thermal loads), and at null applied magnetic field. Further details are explained by
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Clayton et al.11,12

2.1.4 Damage Mechanics

Dissipation from damage is constrained to be non-negative, leading to the following
inequality:

Dϕ = Ξ̂ϕ̇ = −{Jp[cϕ/(1− cϕϕ)]− ω̂}ϕ̇ ≥ 0; ω̂ = −∂ψ/∂ϕ ≥ 0. (42)

Thus, the rate of irreversible damage should be constrained as follows noting J > 0:

cϕp > 0 7→ ϕ̇ = 0; cϕp ≤ 0 7→ ϕ̇ ≥ 0. (43)

Because cϕ ∈ [0, 1], dilatational damage is possible only when pressure is tensile.
When cϕ = 0, any kinetic equation with ϕ̇ ≥ 0 is admissible. In Clayton and
Lloyd,11 a generalized Tuler-Butcher spall model46–48 was prescribed that obeys
Eq. 43. Here,12 Cocks-Ashby void growth kinetics38,39,49 is implemented for general
loading protocols, with slight modifications as outlined by Clayton and Lloyd10:

ϕ̇ =


√

3
2
sinh

[
2(2m̂−1)
2m̂+1

Σ̃
] [

1
(1−ϕ)m̂

− {1− (ϕ+ c0)}
]
ėP (if Σ̃ ≥ 0),

0 (if Σ̃ ≤ 0 or σ̄V = 0).
(44)

The initial condition is ϕ(t = 0) = ϕ0 = 0. Two constant parameters are m̂ ≥ 1
2

related to viscoplastic rate sensitivity and c0 > 0 to enable damage growth without
assignment of an initial pore fraction. In Eq. 44, damage can only increase under
conditions in which the triaxiality Σ̃ = −p/σ̄V > 0 (i.e., tension) and plastic flow
rate ėP > 0. It can be verified using Eqs. 43 and 44 that damage is irreversible and
Eq. 42 is unconditionally obeyed.

2.1.5 Magnetization

In the present theory,11,12 like that of Daniel et al.,50 the magnetic field H is pre-
sumed identical among coexisting phases at space-time location x(X, t). In the ho-
mogenized description, coexisting phases at X experience the same motion x and
the same deformation gradient F = ∇0 x.

The magnetization vector M is the local volume average of the local magnetization
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in each phase (α). Thus,

B(α) = µ0(H − M(α)), M = J−1[(1− ξ)M(0)
0 + ξM(1)

0 ]. (45)

The magnetization per unit reference volume is M(α)
0 = JM(α). For an isotropic

solid, B(α)||H.29 It follows from Eq. 45 that Mα||H, meaning

H = Hi, B(α) = B(α)i, M(α) =M (α)i = J−1M
(α)
0 i;

H = H · i, B(α) = B(α) · i, M (α) = M(α) · i;

i = H/H = B(α)/B(α) = M(α)/M (α) = i(0) = i(1);

M = (1− ξ)M(0) + ξM(1) =M i, B = µ0(H + M) = Bi.

(46)

In other words, the vectors of magnetic field, local magnetic flux, and local magne-
tization are parallel among all coexisting phases at (X, t), as are their macroscopic
counterparts. This description simplifies the more rigorous frame-indifferent for-
mulation of Clayton and Lloyd.11 Signed magnitude H , which can be positive or
negative, is the same in each coexisting phase, but M (α), and therefore B(α), can
differ locally among coexisting phases. Since B||M, verification is straightforward
that Cauchy stress t is symmetric in Eq. 5:

t = tT = σσσ = tE + (MB)i ⊗ i. (47)

Denote the saturation magnetization byMS . In typical ferromagnetic ferrous alloys,
the contribution of magnetostriction energy to magnetization11 is at most on the
order of 10−2MS and is deemed negligible in CMF1.

The magnitude of the local magnetization per unit reference volume, M (α)
0 , of a

phase of an alloy with complex chemistry is furnished as a combined function, not
necessarily analytical, of magnetic field H and temperature θ:

M
(α)
0 =M

(α)
0 (H, θ) ⇒ M(α)(H, θ, J) = J−1M

(α)
0 (H, θ) i. (48)

Quadratic functions used by Clayton et al.12 are obtained from modeling with the-
oretical formulae, elemental mixture rules, and thermodynamic databases.6,7 The
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magnetostatic energy is likewise a function of local field and temperature:

Φ(α)(H, θ) = −µ0

∫ H

0
M(α)

0 · dĤ = −µ0

∫ H

0

M
(α)
0 (Ĥ, θ) dĤ. (49)

As a standard example, assume a ferromagnetic phase at temperature θ is saturated
with magnetization magnitude MS(θ) ≥ 0. In this case, with sgn(·) denoting the
signum function, the local signed magnetization isM (α)

0 (H, θ) =MS(α)(θ)sgn(H),
directed parallel to and in the same sense as H. Then Eq. 49 produces a field energy
Φ(α)(θ) = −µ0HM

S(α)(θ) ≤ 0, consistent with other theories.4,50,51

Two local magnetic loading protocols are addressed in algorithms applied at a ma-
terial point with space-time coordinates (x(X, t), t). In both situations, assume ξ, F
and θ are locally known.

In the first, H = Hi is imposed pointwise, where both H and i are given explicitly.
Since i is given, B = µ0(H +M), though none of B,H,M is required to be non-
negative. In this case, Eq. 48 is directly solved for magnetization in each phase α.
Then the last line of Eq. 46 furnishes the average (global) magnetization M and total
magnetic flux density B. The magnetostatic energy is found directly from Eq. 49.

In the second protocol, B = Bi is imposed, where both B and i are given explicitly.
Again, B = µ0(H + M) and none of B,H,M is required to be non-negative.
Then inserting Eq. 48 into the second of Eq. 14 and taking the scalar product with i
produces an implicit equation to be solved for H:

H(B, θ, ξ, J) = µ−1
0 B − J−1{(1− ξ)M

(0)
0 (H, θ) + ξM

(1)
0 (H, θ)}. (50)

For general constitutive functions in Eq. 48, this equation is solved numerically. For
simple functions (e.g., M0 = MS = constant), analytical solutions are possible.
Once H is found from Eq. 50, local magnetization in each phase is found from
Eq. 48 and local magnetostatic energy from Eq. 49. Average magnetization M is
then obtained from the last line of Eq. 46.

Average specific heat is prescribed similarly to Eqs. 48 and 49, with ĉ(α)V the specific
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heat of phase α at reference temperature θ0 and null H:

cV (H, θ, ξ) = (1−ξ)
(
ĉ
(0)
V − θ

∂2Φ(0)(H, θ)

∂θ2

)
+ξ

(
ĉ
(1)
V − θ

∂2Φ(1)(H, θ)

∂θ2

)
. (51)

In Clayton et al.,12 specific heats are obtained from modeling with theoretical for-
mulae, elemental mixture rules, and thermodynamic databases.6,7 Derivatives of
magnetic energy density ∂Φ(α)/∂θ (α = 0, 1) are obtained the same way as cV
and are likewise used in the temperature rate equation that follows in Section 2.1.7.

In the present software implementation (i.e., the MAGUMAT), properties that de-
pend on magnetic field are approximated by quadratic polynomials at θ = θ0 = 300

K, namely total specific heat per unit reference volume, magnetization per unit ref-
erence volume, magnetostatic energy per unit reference volume, and the tempera-
ture derivative of magnetostatic energy per unit reference volume:

c
(α)
V = c

(α)
V 0 + c

(α)
V 1µ0|H|+ c

(α)
V 2 (µ0)

2|H|2,
M

(α)
0 = m

(α)
0 +m

(α)
1 µ0|H|+m

(α)
2 (µ0)

2|H|2,
Φ(α) = Φ

(α)
0 + Φ

(α)
1 µ0|H|+ Φ

(α)
2 (µ0)

2|H|2,
Φ′(α) = ∂Φ(α)/∂θ = Φ

′(α)
0 + Φ

′(α)
1 µ0|H|+ Φ

′(α)
2 (µ0)

2|H|2.

(52)

The right side of each equation above contains three material constants, with each
such constant having a subscript 0, 1, or 2. Since each material point is idealized
as an isotropic polycrystal typically consisting of a mixture of coexisting phases,
average magnetization M is assumed to vanish in the absence of an external aligning
field. In such cases, ferromagnetic domains are randomly oriented to minimize total
energy.23,29

2.1.6 Stress and Stress Rate

The lattice-originated part of the Cauchy stress, tE in Eq. 8, consists of the lattice
pressure pE from the EOS of Eq. 16, the deviatoric thermoelastic contribution from
the elastic shear modulus t̄e, and the magnetostriction contribution t̄M , where the
latter is deviatoric by construction11,50:

tE = −pE1 + t̄e + t̄M = σσσ − (MB)i ⊗ i, (53)

t̄M = −J−1G0

[
(1− ξ)e

M(0)
|| + ξe

M(1)
||

]
(3i ⊗ i − 1). (54)
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The initial shear modulus G0 is identical in each phase, and magnetostriction strain
constants for each phase are eM(α)

|| .

The dynamic numerical implementation of the UMAT updates the deviatoric spatial
elastic stress tensor t̄e by integrating an objective rate form over time. The mathe-
matically consistent objective rate is a Jaumann rate derived from logarithmic ther-
moelasticity30 under the assumptions of small deviatoric elastic stretch and small
deviatoric elastic stretch rate12:

∇
t̄tt
e
= 2Ĝ[d̄ − d̄P

] = ˙̄ttte −ωωωt̄tt
e
+ t̄tt

e
ωωω +

[
ϕ̇

1− ϕ
+ trd

]
t̄e; (55)

Ĝ =
1

J
(1− ϕ)G0. (56)

The tangent shear modulus is Ĝ. Spin tensor ωωω is the skew part of ∇υυυ, which is
equal to the skew part of lE of Eq. 19. Denoted by d = ∇υυυ − ωωω is the deformation
rate tensor with deviatoric part d̄, and the deviatoric plastic deformation rate is d̄P .

The local yield condition with magnetic coupling entering Eq. 20 is obtained from
similar small deviatoric elasticity assumptions as12

√
3
2
(̄te : t̄e)1/2 ≤ {ξKP (1) + (1− ξ)KP (0)} · (1− cϕϕ) +MB ≥ 0. (57)

Algorithms assume that magnetostriction stress is small compared to the yield stress.11

Also assumed negligible in the UMAT is the product of deviatoric thermoelastic
strain with MB.

2.1.7 Temperature

The local temperature rate derived by Clayton et al.,12 simplified for cases consid-
ered in the present software implementation, is

cV θ̇ =DP +Dξ +Dϕ + J [Σ|EEE|2 + κ∇2θ]

− θcV γ0
J̇E

JE
+ θ

[
∂(∆∗Φ)

∂θ
− (∆∗A)B0 ln J

E −∆∗ĉV ln
θ

θ0
− λT
θT

]
ξ̇.

(58)

The first three terms on the right of Eq. 58 are dissipation from plasticity, phase
transitions, and damage kinetics. In the latter, contributions of deviatoric strain en-
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ergy to ω̂ of Eq. 42 are omitted in the numerics, consistent with the small deviatoric
elastic stretch assumptions used in Section 2.1.6. The next two terms are dissipation
from isotropic electrical and thermal conduction. Local point heat sources are ab-
sent: r = 0. On the subsequent line, contributions from thermoelastic coupling (i.e.,
temperature change from a nonzero Grüneisen parameter γ0) and phase differences
in thermal-magnetostatic energy, thermal expansion coefficients, specific heat, and
latent heat follow sequentially.

2.2 CMF2

The CMF2 implementation is based on the theory of Clayton and Lloyd,10 which
omits explicit magnetization, meaning M = 0 for each phase and for the mixture.
Isotropic heat conduction and electric conduction, the latter not addressed by the
original model of Clayton and Lloyd,10 are both supported by the present software
implementation within the MAGUMAT.

Governing equations listed in the preliminary part of Section 2 all still hold, but are
reduced as follows. Equations 1–4 apply verbatim. Equations 5–8 become

∇ · σσσ + f̃ + f = ρ υ̇υυ, σσσ = σσσT, f̃ = J × B; (59)

σσσ = σ̄σσ − p1, p = −1
3
trσσσ, (60)

where σσσ is the Cauchy stress with deviatoric part σ̄σσ and p is the Cauchy pressure.
Equations 10, 11, and inequality 12 remain the same (i.e., no simplifications). Equa-
tion 9 and inequality 13 reduce to, respectively,

J−1U̇ = σσσ : ∇υυυ + JJJ · EEE−∇ · q + r, (σσσ : ∇υυυ = σji∂jυi); (61)

−(1/J)(ψ̇ + ηθ̇) + σσσ : ∇υυυ + JJJ · EEE− {q/θ} · ∇θ ≥ 0. (62)

Maxwell’s Eqs. 15 are unchanged, but the second of Eq. 14 reduces to B = µ0H.
In the terminology of CMF1, stress and pressure of CMF2 are simply

t = tE = σσσ, p = pE. (63)
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2.2.1 EOS

An Eulerian EOS relates pressure p to thermoelastic volume change JE and tem-
perature θ. This EOS can be derived from third-order nonlinear elasticity theory
with a dependence of free energy on the material Eulerian strain25,52:

p =
JE

J
[3
2
B0(J

E−7/3 − JE−5/3)

· {ζB − 3
4
(B′

0 − 4)(1− JE−2/3)}+ JE−5/3cV γ0∆θ].

(64)

The initial bulk modulus, pressure derivative of the bulk modulus, and Grüneisen
parameter are respective constants B0, B′

0, and γ0. The specific heat per unit refer-
ence volume at constant volume is a constant10 (i.e., differences in specific heats of
phases, temperature, and magnetic field dependence are ignored in CMF2):

cV = ĉV = c
(0)
V = c

(1)
V = constant. (65)

The tangent bulk modulus B degrades with damage for tensile states and the tangent
shear modulus G degrades regardless of local deformation state, where ζB and ζG

are non-negative functions of ϕ:

B(ϕ, JE) = ζB(ϕ, JE)B0, G(ϕ) = ζG(ϕ)G0. (66)

The Poisson’s ratio of the undamaged material at its initial state is

ν0 = (3B0 − 2G0)/(6B0 + 2G0). (67)

Dilatational and deviatoric strain energy densities are affected by voids using coef-
ficients obtained from the analysis of Mackenzie53:

κB =
3(1− ν0)

(1 + ν0)ϕ+ 2(1− 2ν0)
, κG =

15(1− ν0)

7− 5ν0
. (68)

Notice that κB is not a constant since it depends on ϕ. The following degradation
functions54 are then used for 0 ≤ ϕ < 1 :

ζB(ϕ, q̂(JE)) =


1− κBϕ if q̂ ≥ 0 and ϕ < 1/κB,

0 if q̂ ≥ 0 and ϕ ≥ 1/κB,

1 if q̂ < 0;

(69)
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ζG(ϕ) =

 1− κGϕ if ϕ < 1/κG,

0 if ϕ ≥ 1/κG.
(70)

The value of function q̂ = JE − 1 indicates elastic compression (q̂ < 0) versus
tension (q̂ > 0) or neutral loading (q̂ = 0). If κB ≥ 1 or κG ≥ 1, the corresponding
minimum of ζB or ζG is set to zero when ϕ ≥ 1/κB or ϕ ≥ 1/κG, respectively.

2.2.2 Plastic Flow

The composite plastic flow theory for CMF1 in Section 2.1.2 is likewise invoked in
CMF2, for which it originated in Clayton and Lloyd,10 with the hardening function
of Eq. 29 credited to Lloyd et al.2 The following simplifications arise for CMF2
relative to CMF1. First, the Cauchy stress rather than Kirchhoff stress is used in the
yield and flow potential ΩP , and possible dependence of yield and flow stress on H
is omitted, meaning Eq. 20 is

ΩP =
√

2
3
(σ̄V −KP ), KP = KP (eP , ėP , ξ, ϕ, θ). (71)

Second, since M = 0 in CMF2, the local von Mises stress in Eq. 21 is now

σ̄V =
√

3
2
|σ̄σσ : σ̄σσ|1/2 =

√
3
2
|(σσσ + p1) : (σσσ + p1)|1/2, σσσ = tE. (72)

Finally, any possible dependence of phase interaction factor ι of Eq. 24 on H and θ
is likewise omitted, leading to

ι = ι(0) = ι(1) = constant. (73)

2.2.3 Phase Transformations

A notably different phase transition model is used in CMF2 versus that of CMF1
in Section 2.1.3. The model of CMF2, established by Clayton and Lloyd,10 is based
on earlier thermodynamic ideas of Turteltaub and Suiker.55,56 Like the theory of
CMF1 and Clayton et al.,11,12 the theory of CMF2 is thermodynamically consistent,
meaning that dissipation from transition kinetics is always non-negative. However,
the theory of CMF2 does not explicitly use the Gibbs free energy difference ∆∗G
as the driving force, nor is a linear relaxation kinetic equation toward a metastable
state employed.
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Rather, the sum of Helmholtz free energy difference and stress power of transfor-
mation act as driving forces10 and a nonlinear differential equation is prescribed
directly for the transformation rate in CMF2. Since magnetization and specific heat
differences between phases are ignored in CMF2, the Helmholtz free energy dif-
ference only includes the latent heat (e.g., thermal) contribution in addition to an
athermal resistance that can be related to defect content10 or more generally to ψ0

of CMF1. Finally, the theory and implementation of CMF2 only address forward
transitions:

ξ̇ ≥ 0. (74)

The condition in Eq. 74 are adequate for modeling deformation-driven forward
transitions in TRIP steels.10,40,41 The kinetic rules that follow have yet to be thor-
oughly tested for modeling transitions driven purely by temperature and pressure
differences in the absence of deviatoric flow, that is, hydrostatic conditions when
transformation shear is zero. Restrictions of Eq. 74 do not apply for CMF1 of Sec-
tion 2.1.3.

The dissipation per unit reference volume from phase transitions in CMF2 is10

Dξ = [fσ + fθ + f0]ξ̇ ≥ 0. (75)

Mechanical, thermal, and athermal driving forces are, respectively,

fσ = −pJδξ/[1 + (ξ − ξ0)δ
ξ] +

√
1
6
Jσ̄V γξ, (76)

fθ = (λT/θT )(θ − θT ), f0 = −ψ0 < 0. (77)

The sum fσ+fθ+f0 equals −∆∗G of CMF1 and Section 2.1.3 when magnetostatic
energy and specific heat differences between phases vanish in Eq. 41. Since only
forward transitions are permitted, the datum free energy of the transformed phase
ψ0 must be positive; otherwise, spontaneous reverse transformation should occur,
and these are precluded by Eq. 74.

The kinetic law for transformation per unit volume ensuring that Dξ ≥ 0 is*:

ξ̇

1− ξ
= ξ̇m tanh

〈
1

µξ

fσ + fθ + f0
f0

〉
·
[
1 + H(ėP − ė1){

(
ėP/ė1

)−R − 1}
]
. (78)

*The term in brackets in Eq. 78 corrects a misprint in Eq. 74 and Box 1 of Clayton and Lloyd.10
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The maximum transformation rate is ξ̇m ≥ 0, and a dimensionless viscosity con-
stant is µξ > 0. Note that tanh(0) = 0 and limx→∞ tanh(x) = 1. Denoted by ė1 is
constant reference strain rate above which the time scale for transformation kinetics
limits the maximum effective transformation rate relative to the total plastic strain
rate ėP . Dimensionless constant R ≥ 0 controls the magnitude of this rate-limiting
effect.

The maximum transformation rate ξ̇m is not always constant; it occurs when the
deviatoric transformation strain rate approaches the total plastic strain rate10:

ξ̇m =

 2ϵ̇P/γξ (γξ > 0 and ϵ̇P > 0),

ξ̇0 = constant ≥ 0 (γξ = 0 and/or ϵ̇P = 0).
(79)

The material constant ξ̇0 modulates transition conditions that have no shear strain
and/or for which total deviatoric plastic flow is nonexistent (e.g., purely thermal or
hydrostatic loadings). The total effective inelastic strain rate ϵ̇P =

√
3
2
ėP consists

of summed contributions from slip, twinning, and phase transformations (deviatoric
part only). Relations in Eq. 79 are necessary conditions that prohibit the transforma-
tion contribution from exceeding this sum. The product of other terms multiplying
ξ̇m in Eq. 78 is always less than or equal to unity according to definitions of each
variable. In the present numerical implementation of CMF2, the twinning shear γξ

is a user-defined, non-negative constant.

2.2.4 Damage Mechanics

The implementation of damage kinetics for CMF2 is nearly identical to that of
CMF1 described in Section 2.1.4. Equations 42–44 apply for CMF2. The only dis-
tinction is that for CMF2, ω̂ = −∂ψ/∂ϕ is different than that for CMF1, since the
elastic strain energy density degrades differently in the two frameworks.

In CMF2, ω̂ follows from differentiation of Eq. 66 with respect to ϕ, while in CMF1,
ω̂ follows from differentiation of Eq. 18 with respect to ϕ. Details are contained in
the original references.10–12 In both frameworks, Dϕ ≥ 0 and ϕ̇ ≥ 0 ensure physical
and thermodynamic irreversibility of damage.

2.2.5 Stress and Stress Rate

The total Cauchy stress is σσσ = σ̄σσ−p1, where the pressure p is given by the Eulerian
EOS in Eq. 64. Unlike CMF1, the theory of CMF2 does not consider magnetostric-
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tion, so σ̄σσ results solely from deviatoric elasticity (i.e., the effect of the tangent shear
modulus Ĝ) in CMF2.

The dynamic numerical implementation of the UMAT updates the deviatoric spatial
stress tensor σ̄σσ by integrating an objective rate form over time. The objective rate
is a modified Jaumann-type rate derived from Eulerian thermoelasticity52 under the
assumptions of small deviatoric elastic stretch and small deviatoric elastic stretch
rate10:

∇
σ̄σσ = 2Ĝ[d̄ − d̄P

] = ˙̄σσσ −ωωωσ̄σσ + σ̄σσωωω −
[
ϕ̇

ζG
dζG

dϕ
− 5

3
trd + 2

3
trdP

]
σ̄σσ; (80)

Ĝ =
JE−4/3

J
G =

JE−4/3

J
ζGG0. (81)

The same notation used in Eq. 55 applies for Eq. 80. The tangent shear modulus is
Ĝ. Spin tensor ωωω is the skew part of ∇υυυ and lE of Eq. 19, d = ∇υυυ − ωωω is the de-
formation rate tensor with deviatoric part d̄, and the deviatoric plastic deformation
rate is d̄P .

2.2.6 Temperature

The local temperature rate derived by Clayton and Lloyd,10 modified to allow for
cases considered in the present software implementation, is

cV θ̇ = DP +Dξ +Dϕ + J [Σ|EEE|2 + κ∇2θ]− θcV γ0
J̇E

JE 5/3
− θ

λT
θT
ξ̇. (82)

The first three terms* on the right of Eq. 82 are dissipation per unit reference volume
from plasticity, phase transitions, and damage kinetics. In Dϕ, contributions of de-
viatoric strain energy to ω̂ are omitted in the algorithms, consistent with the small
deviatoric elastic stretch assumptions used in Section 2.2.5. The next two terms
are dissipation from isotropic electrical and thermal conduction. Local point heat
sources are absent: r = 0. Contributions from thermoelastic coupling and latent
heat follow subsequently.

*These terms were missing a factor of J in some instances (e.g., Box 1) of the equations in
the original publication,10 but numerical calculations in that work correctly included this factor. The
complete set of correct thermodynamic equations is documented by Clayton et al.12

25



3. Input Constants

Input constants for CMF1 are tabulated in Section 3.1, and input constants for
CMF2 are tabulated in Section 3.2. The syntax for an ABAQUS-style UMAT in-
put file is given in Section 3.3. The current software implementation accepts 96
input constants for each CMF, though not all entries are used. Some constants are
dummy variables carried over from legacy code with other modeling options not
documented herein. The input constants are labeled by number from 1 to 96 in
forthcoming tables of Sections 3.1 and 3.2 in the sequence in which they appear in
the input file syntax of Section 3.3.

Temperature is always in units of Kelvin (K). In the mechanical UMAT, pressure
units (i.e., stress or energy per unit volume) are arbitrary, labeled by P. Time units
are likewise arbitrary in the mechanical UMAT, labeled by t. Note that SI units
in the MKS system are enforced for electromagnetic quantities in the MAGUMAT,
and thus for certain entries in the input file of syntax in Section 3.3. Transformations
to other systems of units are avoided since these are cumbersome.23 Regarding units
for Σ, the conjugate electric field EEE to electric current JJJ is assumed to be provided
to the MAGUMAT by the host code in unscaled SI units of V·m−1. Regarding units
for κ, the gradient and divergence of temperature, respectively ∇θ and ∇2θ, are
assumed to be provided by the host code in respective unscaled SI units of K·m−1

and K·m−2.

Mass density ρ0 is not a required input constant for the syntax of Section 3.3, but it
will be required by any dynamic host code in order to calculate stress wave speeds
and inertial forces. In such cases, mass density is typically input by other means.

3.1 CMF1

Input constants 1 through 32 for CMF1 are identified in Table 1, constants 33
through 64 in Table 2, and constants 65 through 96 in Table 3. The first (i.e., left-
most) column numbers each constant according to the scheme just described. The
second column labels each constant by its name in the FORTRAN source code of
the UMAT subroutine. The third column gives the data type: floating point number
(F) or integer (I). The fourth column gives the mathematical symbol used in the
theoretical formulation of Section 2.1 and/or the original references.11,12 The fifth
column gives the units. The sixth (i.e., rightmost) column gives the definition.
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Table 1 Input constants 1–32 for CMF1

Number Name Type Symbol Units Definition
1 lambda F λ0 P Lamé modulus λ0 = B0 − 2

3G0

2 mu0 F G0 P undamaged reference shear modulus
3 theta0 F θ0 K reference temperature (not necessarily initial θ)
4 tempmelt F θM K melting temperature
5 hsltype I - - set to 3 for plastic potential of CMF1 and CMF2
6 hsl1 F σ

(0)
0 P initial yield strength of parent phase

7 hsl2 F Θ
(0)
0 P affects strain hardening of parent phase

8 hsl3 F δ(0) - affects strain hardening of parent phase
9 hsl4 F ϵ(0) - affects strain hardening of parent phase

10 hsl5 F ė0 t−1 reference normalization strain rate
11 hsl6 F m(α) - strain rate sensitivity; same for all phases
12 hsl7 F p(α) - thermal softening; same for all phases
13 hsl8 F ėmin t−1 minimum allowed value of ėP in Eq. 28
14 dmgtype I - - damage model type∗

15 d1 F m̂ - damage growth parameter
16 d2 F c0 - damage nucleation parameter
17 d3 F - - not used; set to 0.0
18 d4 F - - not used; set to 0.0
19 d5 F - - not used; set to 0.0
20 d6 F - - not used; set to 0.0
21 d7 F - - not used; set to 0.0
22 d8 F ϕc - max local damage at failure∗

23 d9 F ϕm enforces∗ cϕ = ϕm/ϕ for ϕ ≥ ϕm

24 d10 F pmin P limit tensile pressure if ϕ ≥ ϕc

25 eostype I - - set to 3 for EOS of Eq. 16; −3 for θ̇ = 0

26 cv0 F ĉV 0 P·K−1 initial specific heat per unit volume
27 b0 F B0 P undamaged reference bulk modulus
28 dbdp F B′

0 - pressure derivative of bulk modulus
29 cte F A K−1 vol. thermal expansion; γ0 = AB0/ĉV 0

30 gruna F - - not used; set to 0.0
31 ecolds F - - not used; set to 0.0
32 ecold0 F - - not used; set to 0.0

∗ see text
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Table 2 Input constants 33–64 for CMF1

Number Name Type Symbol Units Definition
33 ecold1 F - - not used; set to 0.0
34 ecold2 F - - not used; set to 0.0
35 beta F β̂ - constant Taylor-Quinney factor
36 objrate I - - objective rate formulation type∗

37 vf0 F ξ0 - initial fraction of second (product) phase
38 pttype I - - set to 4 for ξ̇ of Eq. 40; set to 0 for ξ̇ = 0

39 pt1 F δξ - transformation volume change
40 pt2 F γξ0 - tranformation shear strain
41 pt3 F αF

0 P forward transition barrier
42 pt4 F αR

0 P reverse transition barrier
43 pt5 F βF

0 P forward transition factor
44 pt6 F βR

0 P reverse transition factor
45 pt7 F ψ0 P free energy offset of product phase
46 pt8 F λT P latent heat parameter
47 pt9 F θT K transition temperature
48 pt10 F ι0 - transition strength accommodation
49 pt11 F σ

(1)
0 P initial yield strength of product

50 pt12 F Θ
(1)
0 P affects strain hardening of product

51 pt13 F δ(1) - affects strain hardening of product
52 pt14 F ϵ(1) - affects strain hardening of product
53 pt15 F τF 10−9t forward relaxation time (ns, SI units)
54 pt16 F τR 10−9t reverse relaxation time (ns, SI units)
55 hsl9 F ks - strength amplification, viscous drag
56 hsl10 F ės t−1 normalizing strain rate, viscous drag
57 mskip I - - set to 1 for |M | ≥ 0; if 0, |M | = 0∗

58 stressfac F - - conversion factor = Pa/P to SI unit∗

59 econd F Σ 106A(Vm)−1 electrical conductivity
60 tcond F κ W(Km)−1 thermal conductivity
61 em1 F e

M(0)
|| 10−6 magnetostriction µ-strain, parent∗

62 em2 F e
M(1)
|| 10−6 magnetostriction µ-strain, product∗

63 hsat1 F µ0H
S(0) T |H| ≥ HS(0) ⇒M

(0)
0 →MS(0)∗

64 hsat2 F µ0H
S(1) T |H| ≥ HS(1) ⇒M

(1)
0 →MS(1)∗

∗ see text
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Table 3 Input constants 65–96 for CMF1

Number Name Type Symbol Units Definition
65 msat1 F µ0M

S(0) T saturation magnetization, parent
66 msat2 F µ0M

S(1) T saturation magnetization, product
67 temp0 F θi K initial temperature θ(t = 0)

68 pt17 F ∆∗A K−1 difference in thermal expansion
69 pt18 F α1 P·T−1 linear H-dependence of αF/R

70 pt19 F β1 P·T−1 linear H-dependence of βF/R

71 pt20 F ι1 T−1 linear H-dependence of ι
72 magmod I - - quadratic spline if 1; saturation if 0∗

73 ma1 F m
(0)
0 T constant mag term, parent phase

74 mb1 F m
(0)
1 - linear mag term, parent phase

75 mc1 F m
(0)
2 T−1 quadratic mag term, parent phase

76 ma2 F m
(1)
0 T constant mag term, product phase

77 mb2 F m
(1)
1 - linear mag term, product phase

78 mc2 F m
(1)
2 T−1 quadratic mag term, product phase

79 ga1 F Φ
(0)
0 P constant mag energy term, parent

80 gb1 F Φ
(0)
1 P·T−1 linear mag energy term, parent

81 gc1 F Φ
(0)
2 P·T−2 quadratic mag energy term, parent

82 ga2 F Φ
(1)
0 P constant mag energy term, product

83 gb2 F Φ
(1)
1 P·T−1 linear mag energy term, product

84 gc2 F Φ
(1)
2 P·T−2 quadratic mag energy term, product

85 dga1 F Φ
′(0)
0 P·K−1 constant mag energy θ-derivative, parent

86 dgb1 F Φ
′(0)
1 P·K−1·T−1 linear mag energy θ-derivative, parent

87 dgc1 F Φ
′(0)
2 P·K−1·T−2 quadratic mag energy θ-derivative, parent

88 dga2 F Φ
′(1)
0 P·K−1 constant mag energy θ-derivative, product

89 dgb2 F Φ
′(1)
1 P·K−1·T−1 linear mag energy θ-derivative, product

90 dgc2 F Φ
′(1)
2 P·K−1·T−2 quadratic mag energy θ-derivative, product

91 cva1 F c
(0)
V 0 P·K−1 constant total specific heat, parent

92 cvb1 F c
(0)
V 1 P·K−1·T−1 linear total specific heat, parent

93 cvc1 F c
(0)
V 2 P·K−1·T−2 quadratic total specific heat, parent

94 cva2 F c
(1)
V 0 P·K−1 constant total specific heat, product

95 cvb2 F c
(1)
V 1 P·K−1·T−1 linear total specific heat, product

96 cvc2 F c
(1)
V 2 P·K−1·T−2 quadratic total specific heat, product

∗ see text
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Those constants that require further explanation, as marked by an asterisk in the
sixth column, are discussed next:

• dmgtype: set to 6 for damage model of CMF1 and Section 2.1.4 with cϕ = 0

(i.e., no dilatation, brittle damage); set to 7 for damage model of CMF1 and
Section 2.1.4 with cϕ = 1 (i.e., dilatation, ductile damage); set to 0 to disable
damage model (i.e., ϕ = 0 and ϕ̇ = 0)

• d8= ϕc: sets ϕ(t+) → 1 when ϕ(t) ≥ ϕc to rapidly fail material

• d9= ϕm: constrains maximum dilatation from voids to cϕϕm to avoid singu-
larity in Jϕ as ϕ→ 1

• objrate: set to 5 to invoke full version of Eq. 55; set to 4 to invoke Eq. 55
with ωωω = 0; set to 1 to invoke classic Jaumann rate (i.e., Eq. 55 with right

term [·]̄ttte omitted); set to 0 to deactivate objective rate (i.e.,
∇
t̄tt
e → ˙̄ttte in Eq. 55)

• mskip: enables magnetization models of CMF1 if set equal to 1; disables
magnetization, magnetic energy, and explicit magnetic contribution to spe-
cific heat if set to 0 (these MAGUMAT features become redundant)

• stressfac: converts base SI units to arbitrary pressure units used in me-
chanics calculations (e.g., if P is in MPa, stressfac = 10−6); multiply
quantity in base SI units of Pa by stressfac to obtain quantity in P units

• em1: implements magnetostriction strain of this magnitude in parent phase
for |H| equal to or exceeding hsat1

• em2: implements magnetostriction strain of this magnitude in product phase
for |H| equal to or exceeding hsat2

• hsat1: local field strength required to induce magnetic response in parent
phase; if |H| is less than hsat1, then magnetic field and magnetostriction
are zero in parent phase

• hsat2: local field strength required to induce magnetic response in product
phase; if |H| is less than hsat2, then magnetic field and magnetostriction
are zero in product phase
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• magmod: set to 1 to enable quadratic splines for specific heat, magnetization,
magnetostatic energy, and temperature derivative of magnetostatic energy in
Eq. 52 of CMF1; set to 0 to invoke classic ferromagnetic saturation model11,12

wherein |H| ≥ HS(α) ⇒ M
(α)
0 → MS(α) with M (α)

0 = 0 for |H| < HS(α);
setting magmod to 0 uses properties 63–66 but does not use properties 73–96
that are accessed when magmod is set to 1; the same model, but with possibly
different parameters, must be used for all phases (i.e., only one value of 0 or
1 is input as magmod for both phases)

3.2 CMF2

Input constants 1 through 32 for CMF2 are identified in Table 4. Constants 33
through 64 are identified in Table 5. Constants 65 through 96 are identified in Ta-
ble 6. The first (i.e., leftmost) column numbers each constant. The second column
labels each constant by its name in the FORTRAN source code of the UMAT sub-
routine. The third column gives the data type: floating point number (F) or integer
(I). The fourth column gives the mathematical symbol used in the theoretical for-
mulation of Section 2.2 and/or the original reference.10 The fifth column gives the
units. The sixth (i.e., rightmost) column gives the definition of the constant.

Since CMF2 does not explicitly consider magnetization, many of the 96 input con-
stants are not used. Notably, as is evident from Table 6, constants 68–96 are ir-
relevant for the standard CMF2 prescription of mskip of 0 that disables electro-
magnetism consistently with Section 2.2. However, the standard input file syntax
of Section 3.3 requires that all 96 constants be supplied in this file; hence, floating
point values of 0.0 should be entered for constants 68–96 when the input syntax
expects all 96. Thermal and electrical conduction are still permissible and thermo-
dynamically admissible in CMF2.

Regarding eostype, a positive value enables temperature change, while a neg-
ative value invokes the same theory but forces the temperature rate to zero, such
that isothermal conditions are maintained. In the isothermal case, the temperature
remains fixed at temp0 (θi, input constant 67) for all calculations, including the
EOS, plastic yield and flow rules, and phase transition kinetics. The same scheme
(i.e., sign convention on eostype) is used for CMF1.
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Table 4 Input constants 1–32 for CMF2

Number Name Type Symbol Units Definition
1 lambda F λ0 P Lamé modulus λ0 = B0 − 2

3G0

2 mu0 F G0 P undamaged reference shear modulus
3 theta0 F θ0 K reference temperature (not necessarily initial θ)
4 tempmelt F θM K melting temperature
5 hsltype I - - set to 3 for plastic potential of CMF1 and CMF2
6 hsl1 F σ

(0)
0 P initial yield strength of parent phase

7 hsl2 F Θ
(0)
0 P affects strain hardening of parent phase

8 hsl3 F δ(0) - affects strain hardening of parent phase
9 hsl4 F ϵ(0) - affects strain hardening of parent phase

10 hsl5 F ė0 t−1 reference normalization strain rate
11 hsl6 F m(α) - strain rate sensitivity; same for all phases
12 hsl7 F p(α) - thermal softening; same for all phases
13 hsl8 F ėmin t−1 minimum allowed value of ėP in Eq. 28
14 dmgtype I - - damage model type∗

15 d1 F m̂ - damage growth parameter
16 d2 F c0 - damage nucleation parameter
17 d3 F - - not used; set to 0.0
18 d4 F - - not used; set to 0.0
19 d5 F - - not used; set to 0.0
20 d6 F - - not used; set to 0.0
21 d7 F - - not used; set to 0.0
22 d8 F ϕc - max local damage at failure∗

23 d9 F ϕm enforces∗ cϕ = ϕm/ϕ for ϕ ≥ ϕm

24 d10 F pmin P min tensile pressure supported if ϕ ≥ ϕc

25 eostype I - - set to 2 for EOS of Eq. 64; −2 for θ̇ = 0

26 cv0 F cV P·K−1 constant specific heat per unit volume
27 b0 F B0 P undamaged reference bulk modulus
28 dbdp F B′

0 - pressure derivative of bulk modulus
29 cte F A K−1 vol. thermal expansion; γ0 = AB0/cV

30 gruna F - - not used; set to 0.0
31 ecolds F - - not used; set to 0.0
32 ecold0 F - - not used; set to 0.0

∗ see text
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Table 5 Input constants 33–64 for CMF2

Number Name Type Symbol Units Definition
33 ecold1 F - - not used; set to 0.0
34 ecold2 F - - not used; set to 0.0
35 beta F β̂ - constant Taylor-Quinney factor
36 objrate I - - objective rate formulation type∗

37 vf0 F ξ0 - initial fraction of second (product) phase
38 pttype I - - set to 2 for ξ̇ of Eq. 78; set to 0 for ξ̇ = 0

39 pt1 F δξ - transformation volume change
40 pt2 F γξ0 - tranformation shear strain
41 pt3 F γξ/γξ0 - 1.0 for CMF2; redundant scaling for γξ

42 pt4 F - - not used; set to 0.0
43 pt5 F ψ0 P free energy offset of product phase
44 pt6 F R - transition rate scaling exponent
45 pt7 F ξ̇0 t−1 ξ̇m = ξ̇0 if γξ = 0 and/or ėP = 0

46 pt8 F λT P latent heat parameter
47 pt9 F θT K transition temperature
48 pt10 F ι - transition strength accommodation
49 pt11 F σ

(1)
0 P initial yield strength of product

50 pt12 F Θ
(1)
0 P affects strain hardening of product

51 pt13 F δ(1) - affects strain hardening of product
52 pt14 F ϵ(1) - affects strain hardening of product
53 pt15 F ė1 t−1 normalizes transition rate scaling
54 pt16 F µξ - dimensionless transition viscosity
55 hsl9 F ks - strength amplification, viscous drag
56 hsl10 F ės t−1 normalizing strain rate, viscous drag
57 mskip I - - set to 0 for CMF2
58 stressfac F - - not used in CMF2; Pa/P to SI unit∗

59 econd F Σ 106A(Vm)−1 electrical conductivity
60 tcond F κ W(Km)−1 thermal conductivity
61 em1 F e

M(0)
|| 10−6 not used; set to 0.0 for CMF2

62 em2 F e
M(1)
|| 10−6 not used; set to 0.0 for CMF2

63 hsat1 F µ0H
S(0) T not used; set to 0.0 for CMF2

64 hsat2 F µ0H
S(1) T not used; set to 0.0 for CMF2

∗ see text
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Table 6 Input constants 65–96 for CMF2

Number Name Type Symbol Units Definition
65 msat1 F µ0M

S(0) T not used; set to 0.0 for CMF2
66 msat2 F µ0M

S(1) T not used; set to 0.0 for CMF2
67 temp0 F θi K initial temperature θ(t = 0)

68 pt17 F ∆∗A K−1 not used; set to 0.0 for CMF2
69 pt18 F α1 P·T−1 not used; set to 0.0 for CMF2
70 pt19 F β1 P·T−1 not used; set to 0.0 for CMF2
71 pt20 F ι1 T−1 not used; set to 0.0 for CMF2
72 magmod I - - not used; set to 0 for CMF2
73 ma1 F m

(0)
0 T not used; set to 0.0 for CMF2

74 mb1 F m
(0)
1 - not used; set to 0.0 for CMF2

75 mc1 F m
(0)
2 T−1 not used; set to 0.0 for CMF2

76 ma2 F m
(1)
0 T not used; set to 0.0 for CMF2

77 mb2 F m
(1)
1 - lnot used; set to 0.0 for CMF2

78 mc2 F m
(1)
2 T−1 not used; set to 0.0 for CMF2

79 ga1 F Φ
(0)
0 P not used; set to 0.0 for CMF2

80 gb1 F Φ
(0)
1 P·T−1 not used; set to 0.0 for CMF2

81 gc1 F Φ
(0)
2 P·T−2 not used; set to 0.0 for CMF2

82 ga2 F Φ
(1)
0 P not used; set to 0.0 for CMF2

83 gb2 F Φ
(1)
1 P·T−1 not used; set to 0.0 for CMF2

84 gc2 F Φ
(1)
2 P·T−2 not used; set to 0.0 for CMF2

85 dga1 F Φ
′(0)
0 P·K−1 not used; set to 0.0 for CMF2

86 dgb1 F Φ
′(0)
1 P·K−1·T−1 not used; set to 0.0 for CMF2

87 dgc1 F Φ
′(0)
2 P·K−1·T−2 not used; set to 0.0 for CMF2

88 dga2 F Φ
′(1)
0 P·K−1 not used; set to 0.0 for CMF2

89 dgb2 F Φ
′(1)
1 P·K−1·T−1 not used; set to 0.0 for CMF2

90 dgc2 F Φ
′(1)
2 P·K−1·T−2 not used; set to 0.0 for CMF2

91 cva1 F c
(0)
V 0 P·K−1 not used; set to 0.0 for CMF2

92 cvb1 F c
(0)
V 1 P·K−1·T−1 lnot used; set to 0.0 for CMF2

93 cvc1 F c
(0)
V 2 P·K−1·T−2 not used; set to 0.0 for CMF2

94 cva2 F c
(1)
V 0 P·K−1 not used; set to 0.0 for CMF2

95 cvb2 F c
(1)
V 1 P·K−1·T−1 not used; set to 0.0 for CMF2

96 cvc2 F c
(1)
V 2 P·K−1·T−2 not used; set to 0.0 for CMF2

∗ see text
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Though generally untested in this regard, the present software implementation does
permit mixing of features among those of CMF1 and CMF2. For example, the EOS
of CMF1 (eostype ±3) could be used with the phase transition theory of CMF2
(pttype 2). Mixing of choices of dmgtype and objrate among those recom-
mended in the two frameworks is also possible, but such non-standard mixing may
not be theoretically consistent.

Furthermore, mskip can be set to 1, with magmod set to 0 or 1, to enable mag-
netism irrespective of the other model options. When magnetism is enabled, con-
stants 68–96 should be chosen according to their physical definitions in Table 3.
The user is cautioned that all possible combinations of features have not undergone
verification testing, and some combinations might not be thermodynamically con-
sistent even if apparently reasonable numerical results are obtained. Thus, combi-
nations of features that are deviations from CMF1 and CMF2 should be undertaken
at the user’s own risk. In these cases, the user should consult the source code for a
full understanding of the underlying calculations.

Those constants that require further explanation, as marked by an asterisk in the
sixth column, are discussed next:

• dmgtype: set to 4 for damage model of CMF2 and Section 2.2.4 with cϕ = 0

(i.e., no dilatation, brittle damage); set to 5 for damage model of CMF2 and
Section 2.2.4 with cϕ = 1 (i.e., dilatation, ductile damage); set to 0 to disable
damage model (i.e., ϕ = 0 and ϕ̇ = 0)

• d8= ϕc: sets ϕ(t+) → 1 when ϕ(t) ≥ ϕc to rapidly fail material

• d9= ϕm: constrains maximum dilatation from voids to cϕϕm to avoid singu-
larity in Jϕ as ϕ→ 1

• objrate: set to 3 to invoke full version of Eq. 80; set to 2 to invoke Eq. 80
with ωωω = 0; set to 1 to invoke classic Jaumann rate (i.e., Eq. 80 with right

term [·]σ̄σσ omitted); set to 0 to deactivate objective rate (i.e.,
∇
σ̄σσ → ˙̄σσσ in Eq. 80)

• mskip: set to 0 to disable magnetization, magnetic energy, and magnetic
contribution to specific heat consistently with CMF2; enables magnetization
models of CMF1 if equal to 1
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• stressfac: converts base SI units to arbitrary pressure units used in me-
chanics calculations (e.g., if P is in MPa, stressfac = 10−6); multiply
quantity given in base SI units of Pa by stressfac to obtain quantity in P
units; not used in the code if mskip is set to 0

3.3 Syntax for Input Files

Syntax for an ABAQUS-style UMAT input file is given below. The syntax may differ
for other host codes. Here, cmname is an arbitrary 8-character identifier. Denoted
by nstatv is an integer specifying the number of state variables, to be elaborated
in Section 4. For the present models, nstatv should be set to 27. Denoted by
nprops is the integer number of input constants whose value should be set to 96
for the present models. These input constants, defined in Section 3.1 and Section 3.2
and Tables1–6 are entered in a comma-separated fashion, 8 per line. The eight pa-
rameter of each line is not followed by a comma. Free spaces are optional between
commas and input values when the MPS of Section 6 is used in lieu of a host code.

*MATERIAL, NAME = cmname

*DEPVAR
nstatv (27)
*USER MATERIAL, CONSTANTS = nprops (96)
lambda, mu0, theta0, tempmelt, hsltype, hsl1, hsl2, hsl3

hsl4, hsl5, hsl6, hsl7, hsl8, dmgtype, d1, d2

d3, d4, d5, d6, d7, d8, d9, d10

eostype, cv0, b0, dbdp, cte, gruna, ecolds, ecold0

ecold1, ecold2, beta, objrate, vf0, pttype, pt1, pt2

pt3, pt4, pt5, pt6, pt7, pt8, pt9, pt10

pt11, pt12, pt13, pt14, pt15, pt16, hsl9, hsl10

mskip, stressfac, econd, tcond, em1, em2, hsat1, hsat2

msat1, msat2, temp0, pt17, pt18, pt19, pt20, magmod

ma1, mb1, mc1, ma2, mb2, mc2, ga1, gb1

gc1, ga2, gb2, gc2, dga1, dgb1, dgc1, dga2

dgb2, dgc2, cva1, cvb1, cvc1, cva2, cvb2, cvc2
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4. State Variables

User-defined state variables CMF1 are listed in Table 7. The same state variables are
defined for both frameworks, that is, CMF1 and CMF2. However, some are dummy
variables for the standard implementation CMF2, since magnetic effects are omitted
by the default input file selections for CMF2, as discussed in Section 3.2.

Other standard state variables (i.e., those that are not purely user-defined) are also
passed in and out of the UMAT subroutine. These standard state variables include
the deformation gradient F at the beginning (dfgrd0) and end (dfgrd1) of the
time step and a vector of six components (stress) of the symmetric Cauchy stress
tensor σσσ that are updated within the UMAT. The solution time at the beginning of
the step (t, time) and the time step (dt, dtime) are also standard input. The user is
referred to the documentation of the host code (e.g., ABAQUS) for more information
on standard input/output variables.

The layout of Table 7 is similar to that of Tables 1–6. State variables are numbered
from 1 to nstatv, the latter with a fixed value of 27 in the current software imple-
mentation. The first (i.e., leftmost) column numbers each user-defined state variable
according to its sequence in the statev array that is passed in/out of the UMAT
subroutine. The second column labels each variable by its name used in the FOR-
TRAN source code of the UMAT subroutine. The third column gives the data type:
floating point number (F) or integer (I). The fourth column gives the mathemati-
cal symbol used in the theoretical formulation of Section 2.1, Section 2.2, and/or
the original references.10–12 The time value t at the beginning of the time step of
size dt corresponds to the input value of any state variable. If the state variable is
updated within the UMAT, its output value passed to the host code corresponds to
that at the end time of the step, that is, at t + dt. The fifth column gives the units.
The sixth column gives the initial condition (IC) if prescribed by the UMAT itself.
Those variables without an IC listed in this column are initialized by the host code
or the MPS. The seventh (i.e., rightmost) column gives the definition of the state
variable.
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Table 7 User-defined state variables for CMF1 and CMF2

Number Name Type Symbol Units IC Definition
1 epsl0 F eP (t) - 0.0 cumulative plastic strain
2 epdsl0 F ėP (t) t−1 0.0 deviatoric plastic strain rate
3 energy F U(t) P ĉV 0θi internal energy relative to 0 K
4 tempsv F θ(t) K θi temperature
5 dmg F ϕ(t) - 0.0 damage, continuous ∈ [0, 1]

6 dmgflag F - - 0.0 0.0 (not failed) or 1.0 (failed)∗

7 dmgdot F ϕ̇(t) t−1 0.0 damage rate
8 mu F Ĝ(t) P G0 tangent shear modulus, obj. rate
9 vf F ξ(t)− ξ0 - 0.0 phase fraction minus initial frac.

10 vfdot F ξ̇(t) t−1 0.0 phase transition rate
11 vfq F - - 0.0 identifies strain-assist transition∗

12 tebar(1) F t̄e11(t) P 0.0 deviatoric elastic stress 11-comp.
13 tebar(2) F t̄e22(t) P 0.0 deviatoric elastic stress 22-comp.
14 tebar(3) F t̄e33(t) P 0.0 deviatoric elastic stress 33-comp.
15 tebar(4) F t̄e12(t) P 0.0 deviatoric elastic stress 12-comp.
16 tebar(5) F t̄e13(t) P 0.0 deviatoric elastic stress 13-comp.
17 tebar(6) F t̄e23(t) P 0.0 deviatoric elastic stress 23-comp.
18 bmag F B(t) T ∗∗ signed magnitude magnetic flux∗

19 xmag F M(t) P·T−1 ∗∗ signed magnitude magnetic field∗

20 bdir(1) F i1(t) - ∗∗ magnetic field direction 1-comp.
21 bdir(2) F i2(t) - ∗∗ magnetic field direction 2-comp.
22 bdir(3) F i3(t) - ∗∗ magnetic field direction 3-comp.
23 cv F cV (t) P ∗∗ total specific heat cV (ξ, θ, |H|)
24 delcv F ∆∗cV (t) P ∗∗ c

(1)
V (θ, |H|)− c

(0)
V (θ, |H|)

25 delphi F ∆∗Φ(t) P ∗∗ Φ(1)(θ, |H|)− Φ(0)(θ, |H|)
26 ddelphi F ∆∗Φ′(t) P ∗∗ Φ′(1)(θ, |H|)− Φ′(0)(θ, |H|)
27 dtempcond F ∆θc(t) K ∗∗ ∆θc = J [Σ|EEE|2 + κ∇2θ]dt/cV ∗

∗ see text
∗∗ host code
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Those variables that require further explanation, as marked by a single asterisk in
the seventh column, are discussed next:

• dmgflag: takes value of 0.0 or 1.0; becomes 1.0 when ϕ ≥ ϕc; when
dmgflag equals 1.0, material has no strength (σ̄V → 0), becomes non-
magnetic (M → 0), and supports little tensile pressure (p ≥ −pmin); failed
material can support unlimited compressive pressure p > 0 and can conduct
heat and electricity

• vfq: initial value of 0.0 for no transition, then returns 1.0 if transition oc-
curs with eP (t) = 0 (e.g., a thermally driven or pressure assisted transition),
or returns 2.0 if transition occurs with eP (t) > 0 (i.e., plastic strain before
transition initiates, a strain-assisted transformation)

• bmag: spatial magnetic flux density vector is B = Bi; recall B can be zero,
positive, or negative; input variable to the UMAT supplied by host code or
MPS

• xmag: spatial magnetization vector is M = M i; recall M can be zero, posi-
tive, or negative; SI units are scaled such that B ·M is stress unit (P); input
variable to the UMAT supplied by host code or MPS

• dtempcond: temperature increment from electrical and thermal conduction;
input variable to the UMAT supplied by host code or MPS

The custom subroutine referred to as the MAGUMAT has been implemented to up-
date electromagnetic and conductive variables outside the magnetohydrodynamic
routines of the host code. The MAGUMAT accesses the same props and statev
arrays that are implemented in the mechanical UMAT subroutine. Additional in-
put/output variables for the UMAT routine are associated with the electromagnetic
and conductive loading conditions prescribed by the MPS. These variables are dis-
cussed in Section 6 in the context of documentation for the MPS.
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5. Code Maturity

In addition to verification examples presented in Section 7, the two model frame-
works have been implemented in predictive numerical simulations in prior pub-
lished works.10–12 Table 8 lists, for each framework, the ferrous materials, loading
conditions, and source references of these prior studies. Further remarks follow for
CMF1 in Section 5.1 and for CMF2 in Section 5.2. In fact, the verification examples
of Section 7 are a subset of cases listed in Table 8.

As will be clear from subsequent discussion, CMF2 is considered more mature
since it has been used to solve more problems and has been implemented in a large-
scale host code. However, CMF1 is more theoretically robust since it improves on
the theory of CMF2 to include electromagnetic effects and reversible phase transi-
tions, physics that are omitted by CMF2.

Table 8 Successful prior research implementations of CMF1 and CMF2

Model Material Mechanical Magnetic Reference
framework -thermal loading loading

CMF1 pure Fe hydrostatic constant H Clayton et al.12

adiabatic uniaxial strain constant B
adiabatic uniaxial strain constant H

austentic steels (2) isothermal extension constant H
CMF2 Mn steels (3) isothermal extension none Clayton and Lloyd10

isothermal compression none
adiabatic extension none

adiabatic compression none
adiabatic uniaxial strain none
dynamic simple shear none

shear + tension/compress none
Taylor cylinder impact none Limmer et al.3

5.1 CMF1

The present numerical framework for CMF1 originated with the publication of
Clayton et al.12 That work contained simulations of the high-pressure α ↔ ϵ tran-
sition in pure Fe for verification of numerical methods with analytical solutions11

and for validation with experimental data.4,57–61 Cases considered for pure Fe were
hydrostatic compression with and without constant applied magnetic fields, and

40



adiabatic uniaxial strain compression with and without applied constant magnetic
fields or fluxes. The latter sought to replicate planar shock impact experiments.4,59

The work of Clayton et al.12 also contained simulations of quasi-static, uniaxial
stress tensile loading of two austenitic steels of the same chemical composition but
different heat treatments. Magnetic loading conditions, if nonzero, considered ap-
plied constant H orthogonal to the direction of mechanical extension. Those isother-
mal simulations sought to replicate experiments performed at ARL first documented
in the same publication.12 The phase transitions in these alloys primarily involved
γ/ϵ → α for tensile loading. The γ and ϵ phases were homogenized into a sin-
gle close-packed phase in simulations since CMF1 can explicitly address only two
phases simultaneously.

All prior and current numerical simulations that invoke CMF1 rely on the MPS
(see Section 6) to call both the UMAT and MAGUMAT subroutines. All of these
simulations are thus restricted to a single material point (i.e., a single integration
point or a single 3-D hexahedral finite element with reduced integration). Mechan-
ical and electromagnetic fields are necessarily constant over the homogenized do-
main, though magnetization and local deviatoric stress may differ among coexisting
phases. The MAGUMAT subroutine has not, as of the date of this report, been im-
plemented in a host code capable of modeling spatially heterogeneous response
(i.e., capable of representing multiple finite elements).

5.2 CMF2

The present numerical framework for CMF2 originated with the publication of
Clayton and Lloyd.10 That work contained numerous simulations of the coupled
mechanical and thermal response of three different medium-high manganese (Mn)
steels with different SFEs. The alloy with highest SFE was a SLIP steel, that with
moderate SFE a TWIP steel, and that with lowest SFE a TRIP steel. Phase transi-
tions were only significant in the latter (TRIP) material, dominated by, and modeled
as, γ → α transformations.

Complementary experiments for many, but not all, of the simulated loading pro-
tocols are reported in that work and four others.2,62–64 Simulations that were ei-
ther calibrated or validated versus experimental data addressed static and dynamic
tension and static and dynamic compression, under room-temperature and high-
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temperature conditions. Adiabatic uniaxial strain compression was also considered,
primarily for validation of the EOS versus experimental shock compression data
on other steels.65 Predictive simulations also considered dynamic adiabatic simple
shear, with and without superposed tensile or compressive pressure.

Simulations and results of Clayton and Lloyd10 were all obtained with the MPS,
which called a previous generation of the UMAT and did not require the MAGU-
MAT since explicit magnetic effects were not modeled. More recent simulations re-
ported by Limmer et al.3 modeled Taylor impact experiments performed at ARL on
the same three steels (SLIP, TWIP, and TRIP). These 3-D dynamic simulations in-
voked the same generation of UMAT subroutine installed in the ALE3D host code.19

These simulations predicted the deformation and failure of a cylindrical projectile
striking a flat surface, which necessitated numerous finite elements to resolve the
geometry and heterogenous response. Qualitative agreement, with experiments, in
trends of deformed shapes of the cylinders was predicted by this implementation
of CMF2. The parameters for Taylor impact simulations of all three steels were
obtained from the prior study10 and were not tuned to match the observations.

6. Standalone Simulator (MPS)

The MPS is used in lieu of a large-scale FE code. Simulations using the MPS are
restricted to a single continuum point, with spatially homogeneous boundary condi-
tions. The current MPS imposes mechanical and/or magnetic loading on the contin-
uum point, both input by the user. The magnitude of electric field and the Laplacian
of temperature are also imposed on the continuum point as specified by the user.
Analogous loading conditions would be imposed by the larger-scale host code on
an element-wise basis. For each time increment within the user-specified load his-
tory, the MPS calls the UMAT to obtain the mechanical response and the MAGU-
MAT to obtain the electromagnetic response. Results are output to two different
files throughout the loading history.

An overview of procedures entering the MPS, including input/output of the UMAT
and MAGUMAT, is given in Section 6.1. Input file syntax is described in Sec-
tion 6.2. Output files are discussed in Section 6.3. The source code for the MPS
is in Appendix B, a FORTRAN file called mps.f. This file, in turn, accesses the
UMAT source, called umat.f, and the MAGUMAT source, called magumat.f.
Source files umat.f and magumat.f are not included in the current report.
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6.1 Procedures

The workflow of the MPS follows the general sequence below:

1. Initialize time, deformation, temperature; set null electromagnetic variables

2. Open input file sim.inp and output files sim.txt and out.txt

3. Read material properties and loading conditions from input file

4. Call MAGUMAT to update electromagnetic state at null deformation

5. Call UMAT to obtain initial tangent stiffness

6. Write out initial state with imposed electromagnetic field but null deformation

7. Increment one time step; update applied loads

8. Call MAGUMAT to update magnetism and conduction

9. Call UMAT to update stress and state variables (energy, temperature, etc.)

10. Write incremental results to sim.txt, and out.txt

11. Return to step 7 if load history incomplete; otherwise close files and end

Depending on the loading protocols, the MPS performs time step cutbacks (i.e., re-
duction in dt) to achieve convergence consistent with the boundary conditions (e.g.,
uniaxial stress). Time step increases can be enabled when convergence is achieved
with a single iteration using the current step size dt. These details are included in
the software but were omitted from the documentation of the workflow.

The primary variables that enter and exit the UMAT and MAGUMAT subroutines
are listed in Table 9. A one-to-one correspondence between input and output quan-
tities on the same row of this table does not generally apply; the exception is corre-
spondence of magnetic field and flux density for the MAGUMAT. If B is imposed
as the input loading condition, then H is calculated and output by the MAGUMAT
according to assumptions in Section 2.1.5, and vice versa (i.e., if H is imposed, then
B is calculated and output).
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Table 9 Primary input and output variables for UMAT and MAGUMAT subroutines

Routine Input (name; symbol) Output (name; symbol)
UMAT material properties (props) Cauchy stress (stress; σσσ)

deformation gradient (dfgrd0,1; F) temperature∗ (θ)
magnetization and magnetic flux∗ (M , B) plastic strain∗ (eP )
time and time step (time,dtime; t, dt) phase fraction∗ (ξ)

damage∗ (ϕ)
MAGUMAT material properties (props) magnetization (M)

magnetic field OR flux (H OR B) magnetic flux OR field (B OR H)
phase fraction∗ (ξ) total specific heat∗ (cV )
temperature∗ (θ) magnetic energy difference∗ (∆∗Φ)

temperature Laplacian (∇2θ) mag-thermal energy difference∗ (∆∗Φ′)
electric field magnitude (E) specific heat difference∗ (∆∗cV )

time and time step (time,dtime; t, dt) conduction temperature rise∗ (∆θc)
∗statev array

6.2 Syntax for Input File with Loading Conditions

The input file read by the MPS is named sim.inp. The first 16 lines of this file
are identical in format to the input file syntax for state variable designation and
user material constants described in Section 3.3. To these lines are appended the
electromagnetic, thermal, and mechanical boundary conditions and the protocols
for time step incrementation. The present implementation only admits one loading
step for electromagnetic and thermal conditions but multiple steps for mechanical
conditions, the latter consistent with capabilities of the ABAQUS software (though
this, or any other, host code is not used simultaneously with the MPS). A “loading
step” of duration t1 − t0, where t0 and t1 are start and end times of the step, should
not be confused with a local “time step” of typically much smaller duration dt. The
syntax is given below for an input file prescribing a single loading step:

*MATERIAL, NAME = cmname

*DEPVAR
nstatv (27)
*USER MATERIAL, CONSTANTS = nprops (96)
lambda, mu0, theta0, tempmelt, hsltype, hsl1, hsl2, hsl3

... (properties 9 through 88) ...
dgb2, dgc2, cva1, cvb1, cvc1, cva2, cvb2, cvc2
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mloading mode, fmag, frate, bdir(1), bdir(2), bdir(3), efield, dtempdx, d2tempdx2

*STEP
dtime, time max, dtime max

loading mode[i][j], velocity, velocity2

Line 17 (small font size immediately above) defines the electromagnetic and ther-
mal loading:

• mloading mode: a single character; to be input as H for applied magnetic
field H or input as B for applied magnetic flux density B

• fmag: constant applied field magnitude µ0H0 or B0 (units of T)

• frate: linear applied field rate µ0Ḣ0 or Ḃ0 (units of T·t−1)

• bdir(1),bdir(2),bdir(3): i1, i2, i3 components of fixed direction i
for applied H or B

• efield: constant applied electric field magnitude E = |EEE| (units V·m−1)

• dtempdx: constant temperature gradient magnitude |∇θ| (units K·m−1)

• d2tempdx2: constant temperature Laplacian ∇2θ (units K·m−2)

For mloading mode H, the local applied magnetic field is, in units of Tesla (T),

µ0H(t) = [µ0H0 + µ0Ḣ0t]i. (83)

For mloading mode B, the local magnetic flux density is, in units of T,

B(t) = [B0 + Ḃ0t]i. (84)

Line 19 defines the time integration settings for the current loading step:

• dtime: initial time step dt (units of t)

• time max: end time of the loading step (e.g., t1) (units of t)

• dtime max: maximum size of dt permitted by convergence relaxation (units
of t); minimum dt for convergence tightening hardcoded at 10−15 (units of t)
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Time t is initialized to t0 = 0 for the first loading step. If multiple loading steps are
prescribed, lines 18 through 20 are repeated for each additional step, and t0 for the
next step is set to t1 of the previous step. An example with two steps is provided in
Section 7.1. Line 20 defines the mechanical load history for the load step:

• loading mode: single character; input as C for uniaxial-stress compres-
sion or tension, input as T for torsion, input as P for plane strain, input as S
for simultaneous compression or tension with torsion, input as B for biaxial
tension or compression, input as U for uniaxial strain compression or tension,
input as V for volumetric (i.e., spherical) compression or expansion, input as
Z for simple shear with possible spherical compression or expansion

• [i][j]: each a single integer, written as i or j in what follows, specifying
the loading direction

• velocity,velocity2: each a floating point number, written as υ1, υ2 in
what follows, specifying the loading rate; velocity2 is not used for all
loading modes (units of t−1, no length scale)

For modes C, P, S, B, U, V, and Z, the corresponding υ1 or υ2 should be positive in
sign for tensile loading and negative in sign for compressive loading. Table 10 lists
the form of the applied deformation gradient components F and three quantities that
are written to the out.txt file described in Section 6.3: output strain measure
ϵ, output normal stress measure P (units of P, possible scaled), and output shear
stress measure τ (units of P, possibly scaled). Output strain measures are hardcoded
for particular loading directions, and certain output stresses are scaled by 10−3 for
convenience; see the source code for mps.f in Appendix B. For loading mode C,
the axial component of the total nominal stress T̂ = JTF−T is used for output. The
total stress tensor11,12,23 is T includes Cauchy and Maxwell stress contributions.
Effective total strain e = (2

3

∫
|d : d|dt)1/2 is used for ϵ in several protocols that

await further verification (i.e., P, S, and B) , with p for P and zero for τ . The source
code can be easily edited to supply definitions of the user’s convenience in these
cases. Loading conditions follow conventional mechanics definitions. For example,
orthogonal components of displacement to the loading direction are null for uniaxial
strain but are generally nonzero for uniaxial stress.
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6.3 Output Files

The MPS writes output to two different text files: sim.txt and out.txt. The
sim.txt file duplicates the output that is simultaneously printed to the terminal.
Quantities output to the sim.txt file for the initial conditions and for every time
increment spanned by dt thereafter are the following:

• Load step number (integer) and total time t (units of t)

• Effective total strain e = (2
3

∫
|d : d|dt)1/2

• All six independent components of symmetric Cauchy stress σσσ (units of P)

• Six components of deformation gradient: F11, F22, F33, F12, F23, F13

• Effective deviatoric plastic strain eP and its rate ėP (units of t−1)

Quantities written to the out.txt file for the initial conditions and for every time
increment spanned by dt thereafter are the following:

• Load step number (integer) and total time t (units of t)

• Strain measure ϵ as defined per mechanical loading mode in Section 6.2

• Determinant of deformation gradient J = detF

• Normal stress measure P as defined per loading mode in Section 6.2

• Shear stress measure τ as defined per loading mode in Section 6.2

• Temperature θ (units of K)

• Damage ϕ

• Damage flag dmgflag; see Section 4

• Damage rate ϕ̇ (units of t−1)

• Tangent shear modulus Ĝ (units of P); see Section 4

• Change in phase volume fraction ∆ξ = ξ − ξ0

• Phase transition rate ξ̇
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• Strain-assisted transition indicator vfq; see Section 4

• Magnetic flux density, signed magnitude B (units of T)

• Magnetization, signed magnitude µ0M (units of T)

• Magnetic energy difference ∆∗Φ (units of P)

7. Verification Examples

Two classes of verification problem for each CMF are included. The physical prob-
lems and results are discussed in Sections 7.1 and 7.2. Corresponding input files for
the MPS are contained in Appendix A in respective Sections A.1 and A.2.

7.1 CMF1

The first problem for CMF1 considers a sample of pure Fe subjected to hydrostatic
compression followed by hydrostatic decompression. This problem exercises the
logarithmic EOS, the phase transformation model, and the magnetization model
with saturation option (magmod of 0). Plasticity and damage are absent for hydro-
static compression. Isothermal conditions are assumed (θ = 300 K), with no ther-
mal or electrical conduction. The imposed magnetic field µ0H is time-independent,
of strength 0, 25, or 50 T. The loading is of spherical compression to a volume
reduction of around 15%, leading to a maximum Cauchy pressure of 25.5 GPa.
The input file to the MPS is the first given in Section A.1. That particular version
sets a field strength of 50 T (i.e., 50.0 in bold font on line 17). This number can be
changed to 0.0 or 25.0 to obtain results for the corresponding imposed field strength.
Simulation results described next are obtained from the file out.txt.

Selected results are shown in Fig. 1. In the top image, the experimental data of
Taylor et al.57 are obtained from diamond anvil cell (DAC) experiments. In the bot-
tom two images, the evolution of the phase volume fraction (left) and density of
the mixture (right) are compared for different field strengths. For compressive pres-
sures exceeding around 13 GPa, forward transformation from α to ϵ phases begins.
Reverse transformation occurs on decompression. The magnetic field increases the
pressure required for transformation. Results are discussed in more detail by Clay-
ton et al.12
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Fig. 1 Hydrostatic compression and decompression of pure Fe, with model results obtained
from CMF1. Top image shows results of ϵ phase ξ vs. pressure p for null applied magnetic field
compared to experimental DAC data.57 Bottom left image shows predicted ξ for field strengths
of 0, 25, and 50 T for loading-unloading cycles to 25.5 GPa; bottom right image shows density
ratio J = ρ0/ρ vs. p for the same cycles, with hysteresis enclosed by the curves.

The second problem for CMF1 considers a ferrous alloy (steel) designed and fab-
ricated at ARL. Experiments and simulations12 subject a sample of this material
to quasi-static, uniaxial stress extension, with or without a magnetic field applied
orthogonal to the direction of mechanical loading. If applied, the static magnetic
field is of strength µ0H = 0.9 T. Isothermal conditions at 300 K, without electrical
or thermal currents, are again assumed. Experiments at null applied field, and both
simulations, continue extension of the sample until mechanical failure.

This problem exercises the logarithmic EOS, the plasticity model, the phase tran-
sition model, the quadratic spline magnetization model (magmod of 1), and the
damage model. The input file to the MPS is the second given in Section A.1. The
particular version there sets a field strength of 0.9 T (i.e., 0.9 in bold font on line
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17). This number can be changed to 0.0 to obtain the results for null applied field.
Simulation results described next are obtained from the file out.txt.

Selected results are shown in Fig. 2. In the top left image, no field is imposed (i.e.,
H = 0), and the predicted nominal stress T̂33 matches the experimental data includ-
ing the failure point signified by the abrupt load drop. In the top right image, the
magnetic field is of strength 0.9 T, and the simulation matches the experiment to the
applied strain at which the latter was ceased. In the bottom image, the evolutions of
the phase volume fractions are compared versus experimental data obtained from
electron backscatter diffraction (EBSD). The transformation is of forward type only,
from the close-packed γ/ϵ phase to the less dense α phase. The initial fraction of α
is 0.058. The magnetic field reduces the applied tensile stress and strain required for
transformation. Results are discussed in more detail by Clayton et al.12; the alloy is
labeled AR for as-rolled in that reference.
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Fig. 2 Tension of a ferrous alloy, with model results obtained from CMF1. Respective top left
and right images show engineering stress without and with applied field of strength 0.9 T.
Bottom image shows volume fraction of α phase including experimental data from EBSD.12
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7.2 CMF2

The first problem class for CMF2 considers adiabatic uniaxial-strain compression
to a volume reduction of 35% (i.e., to J = 0.65). Also addressed is isothermal
hydrostatic compression to the same volume reduction. In each problem, the ini-
tial temperature θi = θ(0) is 300 K, and the material is a TRIP steel designed
and processed at ARL.3,10 The material consists primarily of γ phase initially, and
the possible phase transition modeled by CMF2 is γ → α. The high-pressure state
modeled in this example precludes transformation to the less dense α phase, and the
model predicts that no transition to α occurs for hydrostatic or uniaxial strain com-
pression. Similarly, no damage in the form of voids arises for compressive loading.
This problem exercises the Eulerian EOS and the plasticity model, where the latter
becomes inactive for hydrostatic compression.

The input files to the MPS are the first and second given in Section A.2. The first
corresponds to adiabatic uniaxial strain, the second to isothermal spherical com-
pression. Deformation rates are quasi-static. Simulation results described next are
obtained from the file out.txt.

No corresponding experiments for these loading protocols have been performed on
this material, so results of axial stress P for uniaxial-strain compression are com-
pared with plate impact shock-compression data on several stainless steels.65 Com-
parisons are shown in the top image of Fig. 3. The hydrostat is slightly lower than
the adiabat because the hydrostat omits material strength and thermal expansion. At
large compression ϵ = 1 − J ≳ 0.25, the model underpredicts the shock response
since the homogeneous strain approximation omits shock dissipation that is order
three in compressive strain.25,26,52 The bottom left image in Fig. 3 shows the tem-
perature θ, the bottom right the shear stress τ . As physically expected, isothermal
hydrostatic compression produces no shear stress.
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Fig. 3 Adiabatic uniaxial-strain and isothermal hydrostatic compression of a TRIP steel, with
model results obtained from CMF2. Top image compares predictions with shock compression
data on three stainless steels.65 Respective bottom left and right images show temperature and
shear stress.10

The second problem class for CMF2 considers uniaxial-stress compression of the
same TRIP steel2,10,64 at low and high loading rates and low and high initial temper-
atures. Quasi-static loading is imposed with ϵ̇ = 10−3/s under isothermal conditions
at either 293 K or 473 K. Dynamic loading is imposed with ϵ̇ = 2500/s under adia-
batic conditions with an initial temperature θi of either 293 K or 473 K. No failure
by void coalescence arises for compressive loading; the model correctly predicts
this. Even though the pressure is compressive, the shear driving force is sufficient
to initiate the γ → α transition for uniaxial stress loading at initially room tem-
perature conditions (i.e., θi = 293 K). At elevated temperature (i.e., 473 K), the
phase transition is suppressed. This class of problems exercises the Eulerian EOS,
the plasticity model, and the phase transformation model.
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The input files to the MPS are the third, fourth, fifth, and sixth given in Section A.2.
Notice that θ0 is set to the initial temperature θi in every case to avoid pressure
from thermal expansion, manifesting from θ ̸= θ0 the EOS, that would otherwise
arise before deformation is applied, at t = 0. Simulation results are again obtained
from the file out.txt. The source code of wrapper.txt is edited so the true
Cauchy stress component σ = |σ33| is printed to the file out.txt rather than the
nominal (i.e., engineering) stress printed by default in Section 7.1. This source code
is likewise edited to output the logarithmic strain | lnF33| used in Fig. 4.
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Fig. 4 Uniaxial-stress compression of a TRIP steel, with model results obtained from CMF2.
Respective top left and right images show quasi-static and dynamic compression. Results of
simulations and experiments obtained at room temperature and elevated temperature. Bottom
image shows volume fraction of α phase including experimental data from EBSD.10

True stress-strain predictions from CMF2 are compared with experimental data in
the top two images of Fig. 4. The phase volume fraction ξ is compared with EBSD
data in the bottom image of Fig. 4. Experimental data on ξ do not exist for static
compression, but static tensile data do exist and are shown for reference. Stress-
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strain predictions agree closely with experimental data at high temperatures when
transitions are absent. They agree reasonably well with experimental data at lower
temperatures when transitions occur. Predicted phase volume fractions are less ac-
curate, but are still regarded as reasonable given the uncertainty and sample-to-
sample variations affecting experimental measurements of the α phase. Detailed
discussion of these results, as well as origins of material parameters used to obtain
them, can be found in Clayton and Lloyd.10

8. Conclusion

Theory and software for numerical simulations of the constitutive response of fer-
rous metals have been documented for two model frameworks Both frameworks ac-
count for nonlinear elasticity, plasticity, phase transitions, and damage. One frame-
work also includes magnetization and electromechanical forces. Verification prob-
lems have been documented for both frameworks. A standalone simulator that can
be used, for homogeneous loading conditions, as a substitute for a larger scale host
code has also been documented. Corresponding input and source files for the simu-
lator are included in Appendices A and B.
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Appendix A. Input Files for Verification Examples
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Inputs necessary to solve the verification problems of Section 7 follow subsequently.
Each input should be saved in a file called sim.inp for use with the material
point simulator (MPS) of Appendix B. If the MPS is not used, the syntax will dif-
fer according to that required by the host code. Recall that only CMF1 formally
accommodates magnetic fields and explicit magnetization effects.

A.1 CMF1

The input syntax below is used to generate results for hydrostatic compression and
decompression of pure Fe under an applied magnetic field. These results are shown
in Fig. 1 and discussed in Section 7.1.

*MATERIAL,NAME=pureiron
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
103666.7, 89000.0, 300.0, 1811.0, 3,600.0, 0.0,5.0
0.0, 0.001, 0.0, 10.0, 0.000001, 0, 10.0, 0.01
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
-3, 3.54, 163000.0, 5.29, 0.000038, 0.0, 0.0, 0.0
0.0, 0.0, 0.60, 5, 0.0, 4, -0.05122, 0.0
0.0, 0.0, 90.5, 90.5, 519.0, 171.0, 763.0, 0.0
600.0, 0.0, 5.0, 0.0, 25.0, 25.0, 0.0,10000.0
1,0.000001, 10.0,78.5, -11.9,0.0, 0.05,0.05
2.15,0.0, 300.0, 0.0,0.0,0.0,0.0, 0
2.15,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0
0.0, 0.0,0.0,0.0, 0.0,0.0,0.0, 0.0
0.0,0.0, 3.54,0.0,0.0, 3.54,0.0,0.0
H,50.0,0.0, 0.0,0.0,1.0, 0.0,0.0,0.0
*STEP
0.001, 160.0, 0.01
V33, -0.001
*STEP
0.001, 160.0, 0.01
V33, 0.001

The input syntax below is used to generate results for tension of a ferrous alloy
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deformed under an applied magnetic field. Results are shown in Fig. 2 and discussed
in Section 7.1.

*MATERIAL,NAME=steelone
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
120312.5, 94531.3, 300.0, 1811.0, 3,610.0, 5000.0,0.1
1.0, 0.001, 0.0, 10.0, 0.000001, 7, 15.0, 0.01
0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.05, 5.0
-3, 3.665, 183333.3, 5.29, 0.0000607, 0.0, 0.0, 0.0
0.0, 0.0, 0.90, 5, 0.058, 4, 0.03325, 0.1
469.0,9999.0,22.0,1.0, -0.0655,-8433.41,315.64,0.195
1800.0, 2000.0, 0.1, 3.0, 25.0,25.0, 0.0,10000.0
1,0.000001, 10.0,78.5, 0.0,-11.9, 0.05,0.05
0.0,1.64, 300.0, -0.0000228,7.77778,7.77778,-0.062222, 1
0.0,0.0001238,0.0, 1.64,0.000139,0.0, 0.0,0.0
-0.00005, 0.0,-6.86,0.981, 0.0,0.0,0.0, 0.0000369
0.000813,-0.000165, 3.6746,0.0,0.0, 3.5113,0.000366,-0.000079
H,0.9,0.0,1.0,0.0,0.0,0.0,0.0,0.0
*STEP
0.0001, 1000, 0.5
C33, 0.001

A.2 CMF2

The input syntax below is used to generate results for confined compression of a
TRIP steel. Results are shown in Fig. 3 and discussed in Section 7.2. The first input
data correspond to adiabatic uniaxial-strain compression:

*MATERIAL,NAME=tripstee
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
109615.0,73077.0,300.0, 1800.0,3,450.0,2200.0,20.0
0.6, 0.001, 0.003, 0.55, 0.000001, 5, 10.0, 0.001
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
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2, 3.59, 158333.3, 5.3, 0.0000519, 0.0, 0.0, 0.0
0.0, 0.0, 0.80, 3, 0.10, 2, 0.04, 0.26
1.0, 0.0, 1.0, 0.08, 0.003, -100.0, 180.0, 0.02
2300.0, 0.0, 5.0, 0.6, 0.001, 5.0, 0.25, 10000.0
0,0.000001, 10.0,38.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 300.0, 0.0,0.0,0.0,0.0, 0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
H,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0
*STEP
0.001, 350, 0.01
U33, -0.001

The second input data correspond to isothermal hydrostatic compression:

*MATERIAL,NAME=tripstee
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
109615.0,73077.0,300.0, 1800.0,3,450.0,2200.0,20.0
0.6, 0.001, 0.003, 0.55, 0.000001, 5, 10.0, 0.001
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
-2, 3.59, 158333.3, 5.3, 0.0000519, 0.0, 0.0, 0.0
0.0, 0.0, 0.80, 3, 0.10, 2, 0.04, 0.26
1.0, 0.0, 1.0, 0.08, 0.003, -100.0, 180.0, 0.02
2300.0, 0.0, 5.0, 0.6, 0.001, 5.0, 0.25, 10000.0
0,0.000001, 10.0,38.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 300.0, 0.0,0.0,0.0,0.0, 0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
H,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0
*STEP
0.001, 410.0, 0.01
V33, -0.001
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The input syntax below (four sets) is used to generate results for unconfined com-
pression of a TRIP steel. Results are shown in Fig. 4 and discussed in Section 7.2.
The next input data correspond to quasi-static, room-temperature compression:

*MATERIAL,NAME=tripstee
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
109615.0,73077.0,293.0, 1800.0,3,450.0,2200.0,20.0
0.6, 0.001, 0.003, 0.55, 0.000001, 5, 10.0, 0.001
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
-2, 3.59, 158333.3, 5.3, 0.0000519, 0.0, 0.0, 0.0
0.0, 0.0, 0.80, 3, 0.10, 2, 0.04, 0.26
1.0, 0.0, 1.0, 0.08, 0.003, -100.0, 180.0, 0.02
2300.0, 0.0, 5.0, 0.6, 0.001, 5.0, 0.25, 10000.0
0,0.000001, 10.0,38.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 293.0, 0.0,0.0,0.0,0.0, 0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
H,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0
*STEP
0.0001, 500.0, 5.0
C33, -0.001

The next input data correspond to quasi-static, high-temperature compression:

*MATERIAL,NAME=tripstee
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
109615.0,73077.0,473.0, 1800.0,3,450.0,2200.0,20.0
0.6, 0.001, 0.003, 0.55, 0.000001, 5, 10.0, 0.001
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
-2, 3.59, 158333.3, 5.3, 0.0000519, 0.0, 0.0, 0.0
0.0, 0.0, 0.80, 3, 0.10, 2, 0.04, 0.26
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1.0, 0.0, 1.0, 0.08, 0.003, -100.0, 180.0, 0.02
2300.0, 0.0, 5.0, 0.6, 0.001, 5.0, 0.25, 10000.0
0,0.000001, 10.0,38.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 473.0, 0.0,0.0,0.0,0.0, 0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
H,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0
*STEP
0.0001, 500.0, 5.0
C33, -0.001

The next input data are for dynamic, initially room-temperature compression:

*MATERIAL,NAME=tripstee
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
109615.0,73077.0,293.0, 1800.0,3,450.0,2200.0,20.0
0.6, 0.001, 0.003, 0.55, 0.000001, 5, 10.0, 0.001
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
2, 3.59, 158333.3, 5.3, 0.0000519, 0.0, 0.0, 0.0
0.0, 0.0, 0.80, 3, 0.10, 2, 0.04, 0.26
1.0, 0.0, 1.0, 0.08, 0.003, -100.0, 180.0, 0.02
2300.0, 0.0, 5.0, 0.6, 0.001, 5.0, 0.25, 10000.0
0,0.000001, 10.0,38.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 293.0, 0.0,0.0,0.0,0.0, 0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
H,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0
*STEP
0.0000000001, 0.0002, 0.000005
C33, -2500.0

The final input data are for dynamic, initially elevated-temperature compression:
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*MATERIAL,NAME=tripstee
*DEPVAR
27
*USER MATERIAL,CONSTANTS=96
109615.0,73077.0,473.0, 1800.0,3,450.0,2200.0,20.0
0.6, 0.001, 0.003, 0.55, 0.000001, 5, 10.0, 0.001
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 5.0
2, 3.59, 158333.3, 5.3, 0.0000519, 0.0, 0.0, 0.0
0.0, 0.0, 0.80, 3, 0.10, 2, 0.04, 0.26
1.0, 0.0, 1.0, 0.08, 0.003, -100.0, 180.0, 0.02
2300.0, 0.0, 5.0, 0.6, 0.001, 5.0, 0.25, 10000.0
0,0.000001, 10.0,38.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 473.0, 0.0,0.0,0.0,0.0, 0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0
H,0.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0
*STEP
0.0000000001, 0.0002, 0.000005
C33, -2500.0
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Appendix B. MPS Source Code (mps.f)
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c-------------------------------------------------------------------
c
c  Material Point Simulator (MPS) for mechanics and magnetism
c  Uses: umat.f, magumat.f 
c  Input: sim.inp
c  Output: sim.txt, out.txt, terminal
c  FORTRAN source
c  Version 22 April 2023
c
c-------------------------------------------------------------------

      include 'umat.f'
      include 'magumat.f'

      implicit double precision (a-h,o-z)

c-------------------------------------------------------------------

      parameter( Max_isv = 20000,
     & Max_props = 100,
     & Tolerance = .00001,
     & Max_itr   = 10,
     & ntens     = 6,
     & ndi       = 3,
     & nshr      = 3,
     & noel      = 1,
     & Num_modes = 8)

      character(8)   cmname
      character(4)   strtoint
      character(132) text
      character(80)  loading_mode
      character(80)  mloading_mode
      character(80)  loading_key(2,Num_modes)
      character(80)  mloading_key(2,2)

      logical Out_of_time

c-------------------------------------------------------------------
c  Dimension arrays used only in this main program.
c-------------------------------------------------------------------

      dimension
     &  array1  (3,3),       ! Dummy Array
     &  array2  (3,3),       ! Dummy Array
     &  array3  (3,3),       ! Dummy Array
     &  D_dt    (3,3),       ! Rate of Def tensor * dtime
     &  W_dt    (3,3),       ! Spin tensor * dtime
     &  sig (3,3),           ! Stress Tensor
     &  statev_ref(Max_isv), ! Reference ISVs
     &  stress0(6),
     &  bdir(3)             ! B-H field direction

c-------------------------------------------------------------------
c  Dimension arrays passed into the UMAT sub
c-------------------------------------------------------------------

      dimension
     & coords(3), ! Coordinates of Gauss pt. being evaluated
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     & ddsdde(ntens,ntens),  ! Tangent Stiffness Matrix
     & ddsddt(ntens),    ! Change in stress per change in temperature
     & dfgrd0(3,3),      ! Deformation gradient at beginning of step
     & dfgrd1(3,3),      ! Deformation gradient at end of step
     & dpred(1),         ! Change in predefined state variables
     & drplde(ntens),    ! Change in heat generation per change in strain
     & drot(3,3),        ! Rotation matrix
     & dstrain(ntens),   ! Strain increment tensor stored in vector form
     & predef(1),        ! Predefined state vars dependent on field variables
     & props(Max_props), ! Material properties passed in
     & statev(Max_isv),  ! State Variables
     & strain(ntens),    ! Strain tensor stored in vector form
     & stress(ntens),    ! Cauchy stress tensor stored in vector form
     & time(2)           ! Step Time and Total Time

c-------------------------------------------------------------------
c  Initialize loading modes
c-------------------------------------------------------------------

      data
     &  loading_key(1,1),loading_key(2,1) / 'C', 'TensionComp' /
     &  loading_key(1,2),loading_key(2,2) / 'T', 'Torsion'     /
     &  loading_key(1,3),loading_key(2,3) / 'P', 'PlaneStrain' /
     &  loading_key(1,4),loading_key(2,4) / 'S', 'SimuComTors' /
     &  loading_key(1,5),loading_key(2,5) / 'B', 'BiaxialTens' /
     &  loading_key(1,6),loading_key(2,6) / 'U', 'UniaxStrain' /
     &  loading_key(1,7),loading_key(2,7) / 'V', 'Volumetric' /
     &  loading_key(1,8),loading_key(2,8) / 'Z', 'PressShear' /
     &  mloading_key(1,1),mloading_key(2,1) / 'H', 'HField' /
     &  mloading_key(1,2),mloading_key(2,2) / 'B', 'BField' /

c-------------------------------------------------------------------
c  Initialize Pi
c-------------------------------------------------------------------

      Pi = 4. * atan(1.d0)

      xmu0 = Pi*4.0*1.0d-07

c-------------------------------------------------------------------
c  Initialize time & deformation gradients & temperature increment
c-------------------------------------------------------------------

      time(1) = 0.0
      time(2) = 0.0
      E_eff   = 0.0
      istep   = 0

      do i = 1,6
        strain(i)  = 0.0
        dstrain(i) = 0.0
      end do

      do i = 1,3
       do j = 1,3
         dfgrd0(i,j) = 0.0
         dfgrd1(i,j) = 0.0
         drot  (i,j) = 0.0
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       end do
       dfgrd0(i,i) = 1.0
       dfgrd1(i,i) = 1.0
       drot  (i,i) = 1.0
      end do

      dtemp = 0.0

c-------------------------------------------------------------------
c    Initialize mag field variables 
c-------------------------------------------------------------------

      bmag = 0.0
      hmag = 0.0
      efield = 0.0
      dtempdx = 0.0 
      d2tempdx2 = 0.0
      
c-------------------------------------------------------------------
c  Open ABAQUS files
c-------------------------------------------------------------------

      open(1,file='inp/sim.inp',status='old')
      open(8,file='out/sim.txt',status='unknown')
      open(9,file='out/out.txt',status='unknown')

c-------------------------------------------------------------------
c  Print header in sim.txt and out.txt files
c-------------------------------------------------------------------

      write(8,'(42a,38a)')' STEP     TIME     E_eff     SIG(1,1) ',
     & ' SIG(2,2)  SIG(3,3)  SIG(1,2)  SIG(1,3)  SIG(2,3) ',
     & ' F(1,1)    F(2,2)    F(3,3)    F(1,2)    F(2,3)    F(1,3)  ',
     & '  EPEFF    EPEFFD '

      write(9,'(42a,38a)')' STEP     TIME    STRAIN      DETF    ',
     & 'STRESS     SHEAR    TEMPER    DAMAGE     DFLAG     ',
     & 'DMDOT     MUEFF     VFRAC      VFDOT       VFQ      ',
     & '   B         M      DPHI'

c-------------------------------------------------------------------
c  Read in number of ISVs
c-------------------------------------------------------------------

  100 read(1,'(a132)') text
      n = index(text,'DEPVAR')
      if (n .eq. 0) go to 100

      read(1,*) nstatv
      if (nstatv .gt. Max_isv) then
        print*,'STOP!!!  The number of state variables in the input'
        print*,'         file exceeds the max value in the Max_isv'
        print*,'         variable in the program.'
        Print*,' '
        Print*,'Set Max_isv in program to at least: ',nstatv+1,'.'
        Print*,' '
        STOP
      end if
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c-------------------------------------------------------------------
c  Read in number of material properties
c-------------------------------------------------------------------

  200 read(1,'(a132)') text
      n = index(text,'CONSTANTS')
      if (n .eq. 0) go to 200

      read(text(n+10:n+20),*) nprops

      if (nprops .gt. Max_props) then
        print*,' '
        print*,'STOP!!!  The number of mat properties in the input'
        print*,'         file exceeds the max value in the Max_props'
        print*,'         variable in the program.'
        Print*,' '
        Print*,'Set Max_props in program to at least: ',nprops+1,'.'
        Print*,' '
        STOP
      end if

c-------------------------------------------------------------------
c  Read in material properties
c-------------------------------------------------------------------

      do i = 1,nprops/8
        read(1,'(a132)') text
        read(text,*)(props(8*(i-1)+j),j=1,8)
      end do

      itest = nprops - nprops / 8 * 8

      print*,'itest = ',itest

      if (itest .gt. 0) then
        read(1,'(a132)') text
        read(text,*)(props(j),j=(nprops/8)*8+1,nprops)
      end if

c-----Convert electric conductivity and magnetostriction to true SI-

      props(59) = props(59)*1.0d06
      props(61) = props(61)*1.0d-06
      props(62) = props(62)*1.0d-06

c===================================================================
c  Start new time step
c  Read in data
c===================================================================

c      read(1,'(a132)') text
c      n = index(text,'MBC')

      read(1,'(a132)') text
      do i = 1,2
        if (text(1:1) .eq. mloading_key(1,i)) then
          mloading_mode = mloading_key(2,i)
        end if
      end do
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      read(text(3:132),*)fmag,frate,bdir(1),bdir(2),bdir(3),
     & efield,dtempdx,d2tempdx2

      if (mloading_mode .eq. 'HField') then
       hmag = fmag/xmu0
       frate = frate/xmu0
       bmag = 0.0
       mload = 1
       print*,'HField load',hmag,frate,bdir(1),bdir(2),bdir(3)
      else if (mloading_mode .eq. 'BField') then
       hmag = 0.0
       bmag = fmag     
       mload = 2  
       print*,'BField load',bmag,frate,bdir(1),bdir(2),bdir(3)
      end if

  300 time(1) = 0.0
      Out_of_time = .false.

      read(1,'(a132)',END=999) text
      n = index(text,'STEP')
      if (n .eq. 0) go to 300

      read(1,'(a132)') text
      n = index(text,'**')
      if (n.eq.1) go to 300

      istep = istep + 1 

      read(text,*)dtime,time_max,dtime_max

      print*,' '
      print*,' dtime    time_max    dtime_max'
      write(6,'(f7.4,f12.2,f11.2/)')dtime,time_max,dtime_max

c-------------------------------------------------------------------
c  Read in loading mode
c-------------------------------------------------------------------

  350 loading_mode = 'none'
      read(1,'(a132)') text
      do i = 1,Num_modes
        if (text(1:1) .eq. loading_key(1,i)) then
          loading_mode = loading_key(2,i)
        end if
      end do
      if (loading_mode .eq. 'none') go to 350

c-------------------------------------------------------------------
c  Read in loading direction
c-------------------------------------------------------------------

      read(text(2:2),*)i
      read(text(3:3),*)j

c-------------------------------------------------------------------
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c  Read in loading rate
c-------------------------------------------------------------------

      if (loading_mode .eq. 'SimuComTors') then
        read(text(5:132),*)velocity2,velocity
      else if (loading_mode .eq. 'BiaxialTens') then
        read(text(5:132),*)velocity,velocity2
      else if (loading_mode .eq. 'PressShear') then
        read(text(5:132),*)velocity,velocity2
      else
        read(text(5:132),*)velocity
      end if

c===================================================================
c  Set up loading directions
c===================================================================
c-------------------------------------------------------------------
c  Tension & Compression
c-------------------------------------------------------------------

      if (loading_mode .eq. 'TensionComp') then

        print*,'Tension/Compression in the ',j,' direction.'
        Print*,' '

        if (i .ne. j) then
          Print*,'WARNING!!! Loading direction not clear in'
          Print*,'           input file.'
          Print*,' '
        end if
        k = j
        i = mod(k  ,3)+1
        j = mod(k+1,3)+1

c-------------------------------------------------------------------
c  Torsion
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'Torsion') then

        print*,'Torsion in the ',i,' -',j,' plane.'
        Print*,' '
      
        if (i .eq. j) then
          Print*,'STOP!!! Loading plane must be two DIFFERENT'
          Print*,'        integers in input file.'
          Print*,' '
          STOP
        end if
        k = 6 - i - j

c-------------------------------------------------------------------
c  Plane Strain Compression
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'PlaneStrain') then

        print*,'Plane-strain in the ',i,' -',j,' plane.'
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        Print*,' '
      
        if (i .eq. j) then
          Print*,'STOP!!! Loading plane must be two DIFFERENT'
          Print*,'        integers in input file.'
          Print*,' '
          STOP
        end if
        k = 6 - i - j

c-------------------------------------------------------------------
c  Simultaneous Compression & Torsion
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'SimuComTors') then

        print*,'Both Comp & Torsion in the ',i,' -',j,' plane.'
        Print*,' '
 
        if (i .eq. j) then
          Print*,'STOP!!! Loading plane must be two DIFFERENT'
          Print*,'        integers in input file.'
          Print*,' '
          STOP
        end if
        k = j
        j = 6 - i - k

c-------------------------------------------------------------------
c  Biaxial Tension (and Compression)
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'BiaxialTens') then

        print*,'Biaxial tension in the ',i,' -',j,' plane.'
        Print*,' '
    
        if (i .eq. j) then
          Print*,'STOP!!! Loading plane must be two DIFFERENT'
          Print*,'        integers in input file.'
          Print*,' '
          STOP
        end if
        k = 6 - i - j

c-------------------------------------------------------------------
c  Uniaxial strain
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'UniaxStrain') then

        print*,'Uniaxial strain loading in the ',j,' direction.'
        Print*,' '

        if (i .ne. j) then
          Print*,'WARNING!!! Loading direction not clear in'
          Print*,'           input file.'
          Print*,' '
        end if
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        k = j
        i = mod(k  ,3)+1
        j = mod(k+1,3)+1

c-------------------------------------------------------------------
c  Volumetric strain
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'Volumetric') then

        print*,'Spherical loading in all 3 directions.'
        Print*,' '

        if (i .ne. j) then
          Print*,'WARNING!!! Loading direction not clear in'
          Print*,'           input file.'
          Print*,' '
        end if
        k = j
        i = mod(k  ,3)+1
        j = mod(k+1,3)+1

c-------------------------------------------------------------------
c  Pressure-shear
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'PressShear') then

        print*,'Pressure plus shear in the ',i,' -',j,' plane.'
        Print*,' '
      
        if (i .eq. j) then
          Print*,'STOP!!! Loading plane must be two DIFFERENT'
          Print*,'        integers in input file.'
          Print*,' '
          STOP
        end if
        k = 6 - i - j

      end if

c-------------------------------------------------------------------
c   Write out initial state with null magnetic effects 
c-------------------------------------------------------------------

      if (istep.eq.1) then
 
      write(6,'(42a,38a)')' STEP     TIME     E_eff     SIG(1,1) ',
     & ' SIG(2,2)  SIG(3,3)  SIG(1,2)  SIG(1,3)  SIG(2,3) ',
     & ' F(1,1)    F(2,2)    F(3,3)    F(1,2)    F(2,3)    F(1,3)   ',
     & ' EPEFF    EPEFFD '

      write(6,'(i4,f10.4,f10.5,6(f10.3),3(f10.3),3(f10.3),2(f10.5))')
     & istep, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,
     & 0.0,0.0,0.0,0.0,0.0

      write(8,'(i4,f10.4,f10.5,6(f10.3),3(f10.3),3(f10.3),2(f10.5))')
     & istep, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,
     & 0.0,0.0,0.0,0.0,0.0
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      e0 = props(67)*props(26)

      write(9,'(i4,f10.4,f10.5,f10.6,3(f10.3),f10.5,f10.1,e10.3,
     & f10.1,f10.5,e11.3,f10.3,f10.5,f10.5,f10.5)')
     & istep,0.0,0.0,1.0,0.0,0.0,props(67),0.0,0.0,0.0,props(2),
     & 0.0,0.0,0.0,0.0,0.0,0.0

       end if

c-------------------------------------------------------------------
c  Call magumat to update stress with mag terms
c-------------------------------------------------------------------

      call magumat (time,dtime,temp,dfgrd1,props,nprops,
     &              statev,nstatv,bmag,hmag,mload,bdir,
     &              efield,dtempdx,d2tempdx2)

c-------------------------------------------------------------------
c  Call umat in order to get tangent stiffness matrix
c-------------------------------------------------------------------

      call cumat(stress,  statev,  ddsdde,  sse,     spd,
     & scd,     rpl,     ddsddt,  drplde,  drpldt,
     & strain,  dstrain, time,    dtime,   temp,
     & dtemp,   predef,  dpred,   cmname,  ndi,
     & nshr,    ntens,   nstatv,  props,   nprops,
     & coords,  drot,    pnewdt,  celent,  dfgrd0,
     & dfgrd1,  noel,    npt,     layer,   kspt,
     & kstep,   kinc)

      do m = 1,nstatv
        statev_ref(m) = statev(m)
      end do
      
      do m = 1, 6
        stress0(m) = stress(m)
      end do
      
c-------------------------------------------------------------------
c  Write initial state again with mag field but no deformation
c-------------------------------------------------------------------

      if (istep.eq.1) then

      stressfac = props(58)
      xmfld = statev(19)*xmu0/stressfac
      xdelphi = statev(25)
      ttilde = 1.0

      pressure = -(1.0/3.0)*(stress(1)+stress(2)+stress(3))
      detF = determinant(dfgrd0)

      if (loading_mode .eq. 'TensionComp') then
        strn = dfgrd0(3,3)-1.0
c        strn = dlog(dfgrd0(3,3))
        strn = dabs(strn)
        strs = stress(3)
     &         + stressfac*bmag*bmag*bdir(3)*bdir(3)/xmu0
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     &         - bmag*statev(19)*bdir(3)*bdir(3)
     &         - 0.5*stressfac*bmag*bmag/xmu0 + bmag*statev(19)
        strs = dabs(strs)*detF/dfgrd0(3,3)
        shr = 0.5*strs
      else if (loading_mode .eq. 'UniaxStrain') then
        strn = 1.0-detF
        strs = stress(3)
        strs = -strs/1000.0
        shr  = 0.5*dabs(stress(3)-stress(1))
      else if (loading_mode .eq. 'Volumetric') then
        strn = 1.0-detF
        strs = pressure
        strs = strs/1000.0
        shr  = -0.5*(stress(3)-stress(1))
      else if (loading_mode .eq. 'Torsion') then
        strn = dfgrd0(1,2)
        strs = stress(4)
        shr  = strs
        strs = pressure
      else if (loading_mode .eq. 'PressShear') then
        strn = dfgrd0(1,2)
        strs = stress(4)
        shr  = strs
        strs = pressure
      else 
        strn = E_eff
        strs = pressure
        shr = 0.0
      end if

       if (abs(fmag).gt.1e-15) then

       write(9,'(i4,f10.4,f10.5,f10.6,3(f10.3),f10.5,f10.1,e10.3,
     & f10.1,f10.5,e11.3,f10.3,f10.5,f10.5,f10.5)')
     & istep,0.0,strn,detF,strs,shr,props(67),0.0,0.0,0.0,
     & props(2),0.0,0.0,0.0,bmag,xmfld,xdelphi

       end if

      end if

c===================================================================
c  Increments one time step
c===================================================================

  400 time(1) = time(1) + dtime
      time(2) = time(2) + dtime

c=================================================================
c     Update the H/B field
c=================================================================

      if (mload.eq.1) then
         hmag = hmag + frate * dtime
      else if (mload.eq.2) then
         bmag = bmag + frate * dtime
      end if

c-------------------------------------------------------------------
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c  Tension & Compression in the 'k' direction
c-------------------------------------------------------------------

      if (loading_mode .eq. 'TensionComp') then
      dfgrd1(k,k) = dfgrd0(k,k) + velocity * dtime
      delta_Dkk = (dfgrd1(k,k) - dfgrd0(k,k)) / dfgrd1(k,k)
      delta_Dii = -(stress(i)+stress(j) + (ddsdde(i,k)+ddsdde(j,k))
     & * delta_Dkk) / (ddsdde(i,i) + ddsdde(i,j) 
     & + ddsdde(j,i) + ddsdde(j,j))
      dfgrd1(i,i) = dfgrd0(i,i) / (1 - delta_Dii)
      dfgrd1(j,j) = dfgrd0(j,j) / (1 - delta_Dii)

c-------------------------------------------------------------------
c  Torsion in the i-j plane
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'Torsion') then

      m = i + j + 1
      dfgrd1(i,j) = dfgrd0(i,j) + velocity * dtime
      delta_Dij = velocity * dtime / 2 / dfgrd1(i,i)
      delta_Djj = -(stress(j)+ddsdde(j,m)*delta_Dij) / ddsdde(j,j)
      dfgrd1(j,j) = dfgrd0(j,j) / (1 - delta_Djj)

c-------------------------------------------------------------------
c  Plane Strain Tension/Compression in the i-j plane
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'PlaneStrain') then

      dfgrd1(j,j) = dfgrd0(j,j) + velocity * dtime
      delta_Djj = (dfgrd1(j,j) - dfgrd0(j,j)) / dfgrd1(j,j)
      delta_Dii = -(stress(i)+ddsdde(i,j)*delta_Djj) / ddsdde(i,i)
      dfgrd1(i,i) = dfgrd0(i,i) / (1 - delta_Dii)

c-------------------------------------------------------------------
c  Simultaneous Compress & Torsion
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'SimuComTors') then

      m = i + k + 1
      dfgrd1(k,k) = dfgrd0(k,k) + velocity * dtime
      dfgrd1(i,k) = dfgrd0(i,k) + velocity2* dtime
      delta_Dkk = (dfgrd1(k,k) - dfgrd0(k,k)) / dfgrd1(k,k)
      delta_Dik = velocity2 * dtime / 2 / dfgrd1(i,i)

      det = ddsdde(i,i) * ddsdde(j,j) - ddsdde(i,j) * ddsdde(j,i)
      b1 = -stress(i) - ddsdde(i,k) * delta_Dkk
     & - ddsdde(i,m) * delta_Dik
      b2 = -stress(j) - ddsdde(j,k) * delta_Dkk
     & - ddsdde(j,m) * delta_Dik
      delta_Dii = (b1 * ddsdde(j,j) - b2 * ddsdde(i,j)) / det
      delta_Djj = (ddsdde(i,i) * b2 - ddsdde(j,i) * b1) / det
      dfgrd1(i,i) = dfgrd0(i,i) / (1 - delta_Dii)
      dfgrd1(j,j) = dfgrd0(j,j) / (1 - delta_Djj)

c-------------------------------------------------------------------
c  Biaxial Tension in the i - j plane !updated, 6/9/14
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c-------------------------------------------------------------------

      else if (loading_mode .eq. 'BiaxialTens') then

      dfgrd1(i,i) = dfgrd0(i,i) + velocity * dtime
      dfgrd1(j,j) = dfgrd0(j,j) + velocity2* dtime
      delta_Dii = (dfgrd1(i,i) - dfgrd0(i,i)) / dfgrd1(i,i)
      delta_Djj = (dfgrd1(j,j) - dfgrd0(j,j)) / dfgrd1(j,j)
      delta_Dkk = (stress(k) - ddsdde(k,i) * delta_Dii
     & - ddsdde(k,j) * delta_Djj)
     & / ddsdde(k,k)

      dfgrd1(k,k) = dfgrd0(k,k) / (1 - delta_Dkk)

c-------------------------------------------------------------------
c  Uniaxial straining in the 'k' direction
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'UniaxStrain') then
      dfgrd1(k,k) = dfgrd0(k,k) + velocity * dtime
      dfgrd1(i,i) = dfgrd0(i,i) 
      dfgrd1(j,j) = dfgrd0(j,j) 

c-------------------------------------------------------------------
c  Spherical expansion or compression
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'Volumetric') then
      dfgrd1(k,k) = dfgrd0(k,k) + velocity * dtime/3.0
      dfgrd1(i,i) = dfgrd0(i,i) + velocity * dtime/3.0
      dfgrd1(j,j) = dfgrd0(j,j) + velocity * dtime/3.0

c-------------------------------------------------------------------
c  Pressure plus shear in the i-j plane
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'PressShear') then

      dfgrd1(i,j) = dfgrd0(i,j) + velocity * dtime
      dfgrd1(k,k) = dfgrd0(k,k) + velocity2 * dtime/3.0
      dfgrd1(i,i) = dfgrd0(i,i) + velocity2 * dtime/3.0
      dfgrd1(j,j) = dfgrd0(j,j) + velocity2 * dtime/3.0

      end if

c===================================================================
c  Start new convergence iteration.  Restart with time-step
c  cut in half if necessary. Note that for the re-compute only the 
c  strain in the non-specified direction is changed. 
c===================================================================
c      print*, 'dtime: ', dtime
      Kinc = 0
  500 if (Kinc .ge. Max_itr) then
        time(1) = time(1) - dtime
        time(2) = time(2) - dtime
        dtime = dtime / 2
        
        if (abs(dtime).le.1d-15) then !updated, 6/9/14
          print*, 'ERROR: DTIME IS LESS THAN 1D-15, EXITING'
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          go to 999
        end if
        
        go to 400
      end if
      Kinc = Kinc + 1

c-------------------------------------------------------------------
c  Calculate F_dot * dtime
c-------------------------------------------------------------------

      do m = 1,3
        do n = 1,3
           array1(m,n) = dfgrd1(m,n) - dfgrd0(m,n)
           array3(m,n) =(dfgrd1(m,n) + dfgrd0(m,n))/2
        end do
      end do

c-------------------------------------------------------------------
c  multiply F_dot * F_inverse * dtime
c-------------------------------------------------------------------

      call Xinverse_3x3(array3,array2)
      call Xaa_dot_bb(3,array1,array2,array3)

c-------------------------------------------------------------------
c  Get D_dt and W_dt
c-------------------------------------------------------------------

      do m = 1,3
        do n = 1,3
          D_dt(m,n) = (array3(m,n) + array3(n,m)) / 2
          W_dt(m,n) = (array3(m,n) - array3(n,m)) / 2
        end do
      end do

c-------------------------------------------------------------------
c  Store D_dt in dstrain
c-------------------------------------------------------------------

      dstrain(1) = D_dt(1,1)
      dstrain(2) = D_dt(2,2)
      dstrain(3) = D_dt(3,3)
      dstrain(4) = D_dt(1,2) * 2
      dstrain(5) = D_dt(1,3) * 2
      dstrain(6) = D_dt(2,3) * 2

c-------------------------------------------------------------------
c  Convert spin to drot(i,j) array for the UMAT
c-------------------------------------------------------------------

c      call Xspin_to_matrix(W_dt,drot)

       do m = 1,3
        do n = 1,3
          drot(m,n) = W_dt(m,n)     ! JDC change
        end do
       end do 
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c-------------------------------------------------------------------
c  Call magumat to update stress with mag terms
c-------------------------------------------------------------------

      call magumat (time,dtime,temp,dfgrd1,props,nprops,
     &              statev,nstatv,bmag,hmag,mload,bdir,
     &              efield,dtempdx,d2tempdx2)

c-------------------------------------------------------------------
c  Call umat in order to get stress
c-------------------------------------------------------------------

      call cumat(stress,  statev,  ddsdde,  sse,     spd,
     & scd,     rpl,     ddsddt,  drplde,  drpldt,
     & strain,  dstrain, time,    dtime,   temp,
     & dtemp,   predef,  dpred,   cmname,  ndi,
     & nshr,    ntens,   nstatv,  props,   nprops,
     & coords,  drot,    pnewdt,  celent,  dfgrd0,
     & dfgrd1,  noel,    npt,     layer,   kspt,
     & kstep,   kinc)

c-------------------------------------------------------------------
c  Check to see if need to iterate 
c  Tension & Compression are immediately below
c-------------------------------------------------------------------

      if (loading_mode .eq. 'TensionComp') then

        test = abs(stress(i)+stress(j))/abs(stress(k))

      if (test .gt. tolerance) then
        delta_Dii = -(stress(i)+stress(j))/(ddsdde(i,i)+ddsdde(i,j) 
     &   + ddsdde(j,i) + ddsdde(j,j))
        dfgrd1(i,i) = dfgrd1(i,i) / (1 - delta_Dii)
        dfgrd1(j,j) = dfgrd1(j,j) / (1 - delta_Dii)
        do m = 1,nstatv
          statev(m) = statev_ref(m)
        end do
        do m = 1,6
          stress(m) = stress0(m) !updated, 6/9/14
        end do
        go to 500
      end if

c-------------------------------------------------------------------
c  Torsion
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'Torsion') then

      m = i + j + 1
      test = abs(stress(j)/stress(m))

      if (test .gt. tolerance) then
        delta_Djj = -stress(j) / ddsdde(j,j)
        dfgrd1(j,j) = dfgrd1(j,j) / (1 - delta_Djj)
        do m = 1,nstatv
          statev(m) = statev_ref(m)
        end do
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        do m = 1,6
          stress(m) = stress0(m) !updated, 6/9/14
        end do
        go to 500
      end if

c-------------------------------------------------------------------
c  Plane Strain Compresssion
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'PlaneStrain') then

      test = abs(stress(i)/stress(j))

      if (test .gt. tolerance) then
        delta_Dii = -stress(i) / ddsdde(i,i)
        dfgrd1(i,i) = dfgrd1(i,i) / (1 - delta_Dii)
        do m = 1,nstatv
          statev(m) = statev_ref(m)
        end do
        do m = 1,6
          stress(m) = stress0(m) !updated, 6/9/14
        end do
        go to 500
      end if

c-------------------------------------------------------------------
c  Simultaneous Compress & Torsion
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'SimuComTors') then

      m = i + k + 1
      test = (abs(stress(i)) + abs(stress(j))) /
     & (abs(stress(k)) + abs(stress(m)))

      if (test .gt. tolerance) then
        det = ddsdde(i,i) * ddsdde(j,j) - ddsdde(i,j) * ddsdde(j,i)
        b1 = -stress(i)
        b2 = -stress(j)
        delta_Dii = (b1 * ddsdde(j,j) - b2 * ddsdde(i,j)) / det
        delta_Djj = (ddsdde(i,i) * b2 - ddsdde(j,i) * b1) / det
        dfgrd1(i,i) = dfgrd1(i,i) / (1 - delta_Dii)
        dfgrd1(j,j) = dfgrd1(j,j) / (1 - delta_Djj)
        do m = 1,nstatv
          statev(m) = statev_ref(m)
        end do
        do m = 1,6
          stress(m) = stress0(m) !updated, 6/9/14
        end do
        go to 500
      end if

c-------------------------------------------------------------------
c  Biaxial Tension
c-------------------------------------------------------------------

      else if (loading_mode .eq. 'BiaxialTens') then

84



      test = 2.d0 * abs(stress(k)) / (abs(stress(i)) + abs(stress(j)))

      if (test .gt. tolerance) then
        delta_Dkk = -stress(k) / ddsdde(k,k)
        dfgrd1(k,k) = dfgrd1(k,k) / (1.d0 - delta_Dkk)
        do m = 1,nstatv
          statev(m) = statev_ref(m)
        end do
        do m = 1,6
          stress(m) = stress0(m) !updated, 6/9/14
        end do
        go to 500
      end if

      end if

c===================================================================
c  Finished increment!
c  Calc effective delta strain and add it to E_eff
c===================================================================

      sum = 0
      do m = 1,3
        do n = 1,3
          sum = sum + D_dt(m,n) * D_dt(m,n)
        end do
      end do
      dE_eff = sqrt(2. * sum / 3.)
      E_eff = E_eff + dE_eff

c-------------------------------------------------------------------
c  Update strain gradient
c-------------------------------------------------------------------

      do m = 1,6
        strain(m) = strain(m) + dstrain(m)
      end do

c-------------------------------------------------------------------
c  Update stress
c-------------------------------------------------------------------

      do m = 1,6
        stress0(m) = stress(m)
      end do

c-------------------------------------------------------------------
c  Update deformation gradient
c-------------------------------------------------------------------

      do m = 1,3
        do n = 1,3
          dfgrd0(m,n) = dfgrd1(m,n)
        end do
      end do

c-------------------------------------------------------------------
c  Update statev_ref
c-------------------------------------------------------------------
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      do m = 1,nstatv
        statev_ref(m) = statev(m)
      end do

c-------------------------------------------------------------------
c  Write out results 
c-------------------------------------------------------------------

      write(6,'(i4,f10.4,f10.5,6(f10.2),3(f10.5),3(f10.5),2(e10.3))')
     & istep, time(2),E_eff,(stress(m),m=1,6), (dfgrd1(n,n),n=1,3),
     & dfgrd1(1,2), dfgrd1(2,3), dfgrd1(1,3), statev(1), statev(2)

      write(8,'(i4,f10.4,f10.5,6(f10.2),3(f10.5),3(f10.5),2(e10.3))')
     & istep, time(2),E_eff,(stress(m),m=1,6), (dfgrd1(n,n),n=1,3),
     & dfgrd1(1,2), dfgrd1(2,3), dfgrd1(1,3), statev(1), statev(2)

      pressure = -(1.0/3.0)*(stress(1)+stress(2)+stress(3))
      detF = determinant(dfgrd0)

      if (loading_mode .eq. 'TensionComp') then
        strn = dfgrd1(3,3)-1.0
c        strn = dlog(dfgrd1(3,3))
        strn = dabs(strn)
        strs = stress(3)
     &         + stressfac*bmag*bmag*bdir(3)*bdir(3)/xmu0
     &         - bmag*statev(19)*bdir(3)*bdir(3)
     &         - 0.5*stressfac*bmag*bmag/xmu0 + bmag*statev(19)
c        strs = dabs(strs)
        strs = dabs(strs)*detF/dfgrd1(3,3)
        shr = 0.5*strs
      else if (loading_mode .eq. 'UniaxStrain') then
        strn = 1.0-detF
        strs = stress(3)
        strs = -strs/1000.0
        shr  = 0.5*dabs(stress(3)-stress(1))
      else if (loading_mode .eq. 'Volumetric') then
        strn = 1.0-detF
        strs = pressure
        strs = strs/1000.0
        shr  = -0.5*(stress(3)-stress(1))
      else if (loading_mode .eq. 'Torsion') then
        strn = dfgrd1(1,2)
        strs = stress(4)
        shr  = strs
        strs = pressure
      else if (loading_mode .eq. 'PressShear') then
        strn = dfgrd1(1,2)
        strs = stress(4)
        shr  = strs
        strs = pressure
      else 
        strn = E_eff
        strs = pressure
        shr = 0.0
      end if

      stressfac = props(58)
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      xmfld = statev(19)*xmu0/stressfac
      xdelphi = statev(25)

      write(9,'(i4,f10.4,f10.5,f10.6,f10.3,2(f10.3),f10.5,f10.1,
     & e10.3,f10.1,f10.5,e11.3,f10.3,f10.5,f10.5,f10.5)')
     & istep,time(2),strn,detF,strs,shr,(statev(m),m=4,11),
     & bmag,xmfld,xdelphi

c-------------------------------------------------------------------
c  If not out of time, then loop back up
c-------------------------------------------------------------------

      if (.not.Out_of_time) then
        if (time(1).ne.dtime) dtime = dtime * 1.5
        if (dtime .gt. dtime_max) dtime = dtime_max
        if (time_max-time(1).lt.dtime) then
          dtime = time_max - time(1)
          Out_of_time = .true.
        end if
        go to 400
      end if

c-------------------------------------------------------------------
c  Loop back up and check for another STEP
c-------------------------------------------------------------------

      go to 300

c-------------------------------------------------------------------
c  THE END!!!
c-------------------------------------------------------------------

  999 continue

      close(1)
      close(7)
      close(8) 
      close(9)
      stop
      end

c====================================================================
c====================================================================
c
c  Calculate the dot product of two 2nd rank tensors.
c  Result is stored in cc(i,j)
c
c--------------------------------------------------------------------

      subroutine Xaa_dot_bb(n,a,b,c)

      implicit double precision (a-h,o-z)

      dimension a(n,n), b(n,n), c(n,n)

      do i = 1,n
         do j = 1,n
            c(i,j) = 0
            do k = 1,n
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               c(i,j) = c(i,j) + a(i,k) * b(k,j)
            end do
         end do
      end do

      return
      end

c====================================================================
c====================================================================
c
c  Calculate the inverse of a 3 x 3 matrix.
c
c--------------------------------------------------------------------

      subroutine Xinverse_3x3(a,b)

      implicit double precision (a-h,o-z)

      dimension a(3,3), b(3,3)

      b(1,1) = a(2,2) * a(3,3) - a(3,2) * a(2,3)
      b(1,2) = a(3,2) * a(1,3) - a(1,2) * a(3,3)
      b(1,3) = a(1,2) * a(2,3) - a(2,2) * a(1,3)
      b(2,1) = a(3,1) * a(2,3) - a(2,1) * a(3,3)
      b(2,2) = a(1,1) * a(3,3) - a(3,1) * a(1,3)
      b(2,3) = a(2,1) * a(1,3) - a(1,1) * a(2,3)
      b(3,1) = a(2,1) * a(3,2) - a(3,1) * a(2,2)
      b(3,2) = a(3,1) * a(1,2) - a(1,1) * a(3,2)
      b(3,3) = a(1,1) * a(2,2) - a(2,1) * a(1,2)

      det = a(1,1) * b(1,1) + a(1,2) * b(2,1) + a(1,3) * b(3,1)

      do i = 1,3
         do j = 1,3
            b(i,j) = b(i,j) / det
         end do
      end do

      return
      end

c====================================================================
c====================================================================
c
c  Convert a spin tensor to a rotation matrix 
c
c--------------------------------------------------------------------

      subroutine Xspin_to_matrix(a,b)

      implicit double precision (a-h,o-z)

      dimension a(3,3), b(3,3)

      Pi = 4*atan(1D0)

c--------------------------------------------------------------------
c  Store spin tensor, a(i,j), as a rotation vector
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c--------------------------------------------------------------------

      p1 = a(3,2)
      p2 = a(1,3)
      p3 = a(2,1)
      ang = sqrt(p1*p1+p2*p2+p3*p3)

      s = sin(ang)
      c = cos(ang)

c--------------------------------------------------------------------
c  Normalize vector
c--------------------------------------------------------------------

      if (ang .le. 1.D-300) then
        p1 = 0
        p2 = 0
        p3 = 1
      else
        p1 = p1 / ang
        p2 = p2 / ang
        p3 = p3 / ang
      end if

c--------------------------------------------------------------------
c  Calculate rotation matrix
c--------------------------------------------------------------------

      b(1,1) = c + (1 - c) * p1 * p1
      b(1,2) = (1 - c) * p1 * p2 - s * p3
      b(1,3) = (1 - c) * p1 * p3 + s * p2
      b(2,1) = (1 - c) * p2 * p1 + s * p3
      b(2,2) = c + (1 - c) * p2 * p2
      b(2,3) = (1 - c) * p2 * p3 - s * p1
      b(3,1) = (1 - c) * p3 * p1 - s * p2
      b(3,2) = (1 - c) * p3 * p2 + s * p1
      b(3,3) = c + (1 - c) * p3 * p3

      return
      end
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List of Symbols, Abbreviations, and Acronyms

TERMS:

ARL Army Research Laboratory

BCC body centered cubic

BCT body centered tetragonal

CMF constitutive model framework

DAC diamond anvil cell

DEVCOM US Army Combat Capabilities Development Command

EBSD electron backscatter diffraction

EOS equation of state

FCC face centered cubic

Fe iron

FE finite element

HCP hexagonal close packed

CMF constitutive model framework

Mn manganese

MAGUMAT magnetic user material subroutine

MPS material point simulator

SFE stacking fault energy

SLIP slip dominated plasticity

TRIP transformation induced plasticity

TWIP twinning induced plasticity

UMAT user material subroutine

MATHEMATICAL SYMBOLS:

B magnetic flux density
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F deformation gradient

G Gibbs free energy

H magnetic field

M magnetization per unit spatial volume

p Cauchy pressure

t time

U internal energy

x spatial coordinates

X reference coordinates

ρ mass density

σσσ symmetrized Cauchy stress tensor

υυυ particle velocity

ξ transformed phase volume fraction

θ temperature

ψ Helmholtz free energy
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