

NRL/5540/MR—2023/4

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Autonomous Cyber Security

MYONG KANG
ALEXANDER VELAZQUEZ

Center for High Assurance Computer Systems
Information Technology Division

September 12, 2023

i

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Autonomous Cyber Security

Myong Kang and Alexander Velazquez

	
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/5540/MR--2023/4

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

U U U
26

Myong Kang

(202) 767-0555

 We describe a set of decision-making algorithms (centralized, decentralized, and hybrid) for a multi agent system and present the Factored-
Value (FV) Monte Carlo Tree Search (MCTS) Hybrid Cost Max-Plus algorithm for Autonomous Cyber Security. Our proposed algorithm
consists of a two-step process. In the first step, each agent uses MCTS to find its best individual actions, taking\ into account cost. Each agent
presents its most promising actions to the team. In the second step, the Hybrid Cost Max-Plus algorithm is used for joint action selection. This
Hybrid Cost Max-Plus algorithm improves upon the known centralized and distributed Max-Plus algorithms without cost by including the cost
of actions in the interactions of agents. The Max-Plus algorithm uses the framework of Coordination Graphs, which exploit dependencies among
agents to decompose the global payoff function as the sum of local terms. Our proposed FV-MCTS-Hybrid-Cost-Max-Plus algorithm is online,
anytime, distributed, and scalable in terms of the number of agents and their interactions. Our contribution competes with state of art methods
and algorithms that use MCTS and Max-Plus to exploit the locality of agent interactions for planning and acting.

12-09-2023 NRL Memorandum Report

MCTS Multi agent system Real time decision making
Distributed coordination Planning algorithm

6C14

10/01/2020 – 09/30/2023

U

This page intentionally left blank.

ii

 iii

CONTENTS

Abstract .. 1
I. Introduction .. 1
II. Related Work .. 4

III. Mathematical Background .. 5
IV. Both Variants of no Cost Max-Plus Algoritms ... 7

A. Centralized Max-Plus Algorithm without Cost ... 7
B. Distributed Iterative Max-Plus Algorithm without Cost ... 9

V. Distributed Max-Plus Algorithm with Cost .. 14

VI. Hybrid Max-Plus Algorithm with Cost .. 15
VII. Factored-Value MCTS Hybrid Cost Max-Plus Method ... 18

VIII. Project Outcomes ... 21
IX. Conclusion and Future Work .. 23

This page intentionally left blank.

iv

 1

Autonomous Cyber Security

Final Report

Myong Kang, Alexander Velazquez
Center for High Assurance Computer Systems

U.S. Naval Research Laboratory
Washington, DC, USA

{myong.kang, alexander.velazquez}@nrl.navy.mil

Abstract—We describe a set of decision-making algorithms (centralized, decentralized, and hybrid)
for a multi agent system and present the Factored-Value (FV) Monte Carlo Tree Search (MCTS)
Hybrid Cost Max-Plus algorithm for Autonomous Cyber Security. Our proposed algorithm consists
of a two-step process. In the first step, each agent uses MCTS to find its best individual actions, taking
into account cost. Each agent presents its most promising actions to the team. In the second step, the
Hybrid Cost Max-Plus algorithm is used for joint action selection. This Hybrid Cost Max-Plus
algorithm improves upon the known centralized and distributed Max-Plus algorithms without cost
by including the cost of actions in the interactions of agents. The Max-Plus algorithm uses the
framework of Coordination Graphs, which exploit dependencies among agents to decompose the
global payoff function as the sum of local terms. Our proposed FV-MCTS-Hybrid-Cost-Max-Plus
algorithm is online, anytime, distributed, and scalable in terms of the number of agents and their
interactions. Our contribution competes with state of art methods and algorithms that use MCTS
and Max-Plus to exploit the locality of agent interactions for planning and acting.

Keywords— MCTS, Multi Agent System, Real Time Decision Making, Distributed Coordination, Planning Algorithm.

I. INTRODUCTION

Today’s military relies on complex computer systems to support diverse, dynamic, and agile
missions in contested and rapidly changing environments. The computer systems themselves
should be agile and resilient enough to guarantee the success of the missions they support.
Adversaries are able to launch cyberattacks that are dynamic, fast-paced, and high-volume, while
cyber responses are human-speed. In current cyber defense systems, most system adaptation and
recovery processes are ad-hoc, manual, and slow. Keeping pace with existing and emerging
cybersecurity threats is a challenging task, especially without the benefit of relying on the human
expertise of system administrators and cyber warriors. The objective of this project is to develop
enabling technologies for resilient computer systems that can autonomously protect themselves
and recover from cyberattacks and system failures. Specifically, we will develop a cyber security
machine learning framework that can be used to develop systems that can intelligently and
autonomously protect themselves and recover from cyberattacks and system failures while
ensuring mission continuity.

IT systems typically consist of multiple subsystems that work together. Seeking independent
solutions for each subsystem would yield suboptimal behavior. Autonomous Cyber Security
(ACS) seeks to develop algorithms to solve the real-time multi agent decision-making problem in
a collaborative setting. We specifically seek to develop anytime algorithms for real-time decision
making. Anytime algorithms return a result at any time and the longer the algorithm runs, the better
the result will be until the optimal result is reached. Not only the payoff but also the cost of an
action is an important factor (benefit to mission vs. disruption to mission by taking a particular
action) and this must be taken into account in the algorithms.

Manuscript approved September 12, 2023.

 2

We consider a cooperative multi agent decision-making problem where all agents share a
common goal [1-8]. Decision making for large action spaces in Multi Agent Systems (MAS) can
be computationally expensive and sometimes intractable. Fortunately, in many situations, an agent
only needs to coordinate its actions with a few agents and acts independently with respect to the
remaining agents. Factorizing the action space into that of a team of agents that coordinate their
decisions can make the problem tractable. Coordination is crucial for effective decision making in
Cooperative Multi Agent Systems (CMAS) with a shared objective. Each agent is making a local
decision and, at the same time, contributing to the globally optimal solution for the team.

A key aspect in implementing a policy for CMAS is to coordinate the decision making of the
agents. This coordination problem could be solved using a centralized coordinator that decides
what action each agent should take and then communicate the selected actions to the agents. This
solution is not robust due to the possibility of malfunction of the centralized coordinator or
potential communication problems among agents. Therefore, we will consider a hybrid solution
that combines centralized and decentralized (distributed) coordination1. In the absence of a central
unit (i.e., coordinator), the agents must coordinate their actions toward achieving the shared goal
by using a distributed algorithm. The algorithm we describe in this paper considers the cost of
actions as a constraint for decision making.

An additional requirement for the algorithm is that it must be an anytime algorithm. If the
algorithm stops due to the budget constraints (time, cost of actions, etc.), we would like the joint
action with the highest payoff to be reported.

A Multi agent Markov Decision Process (MMDP) generalizes the single Markov Decision
Process (MDP) model, using the framework of MAS, with the notion of multiple cooperative
agents that have their own action sets (as defined in Definition 1, p.962 [13]). Decision making in
a MMDP can be either centralized or decentralized. In centralized algorithms, a single decision
maker prescribes the actions for all agents to take, while in decentralized algorithms, there is a
decision maker for each agent. Our contribution belongs to the Constraint Multi agent Markov
Decision Process (CMMDP) domain focusing on online planning ([13] and references therein).
Obtaining a solution for CMMDP is more challenging than MMDP because there are resource
constraints. These resource constraints affect the decision making of the CMAS.

The solution of a MMDP is, in general, based on the framework of the Coordination Graphs
(CG) algorithm and the Variable Elimination (VE) algorithm that can be used in this regard [1-
7,12,13]. This VE algorithm operates by eliminating agents one by one by performing a local
maximization step and has exponential complexity with the induced tree width (the size of the
largest clique generated during node elimination). Unfortunately, the VE algorithm is not an
anytime algorithm. A solution of the anytime MMDP is the Max-Plus algorithm, provided in a
centralized and a decentralized version in [3-5]. The Max-Plus algorithm is a payoff propagation
algorithm where agents exchange appropriate payoff messages over the CG, and they can compute
their individual actions based on the convergence of this approach. Little is known about the hybrid
version of the Max-Plus algorithm with constraints, which is the focus of this paper.

The purpose of our work is to provide a hybrid solution for a constrained anytime scalable
decision-making algorithm (centralized and distributed coordination) in MAS. Online methods for

1 Decentralized and Distributed are often used interchangeably despite describing two distinct phenomena. Decentralized refers to the action
execution while distributed refers to location of the algorithm implementation for decision-making agents.

 3

decision making present an alternative strategy, where the agents must interleave the planning and
execution of their actions.

Monte Carlo Tree Search (MCTS) is an anytime method, and it is a common approach for
online planning. Dealing with an enormous decision space in the context of MCTS is an open
problem that is the subject of ongoing research. The limitations of the MCTS algorithm are
scalability and the large branching factor (failing to scale suitably when the branching factor grows
past a certain threshold). To date, there are two noteworthy approaches, [1] and [2], for scalable
coordination of agents by combining three elements: a) online planning using MCTS, b) factored
representation with CG, and c) centralized Max-Plus method for joint action selection. In [1], the
cost of actions is ignored, and the Max-Plus algorithm is not distributed. In [2], the cost of actions
and anytime aspect are missing. The authors apply MCTS to solve Multi agent POMDP model,
which is centralized. The solution is a state-of-the-art algorithm to solve Multi agent POMDP.
However, it becomes intractable as the coupling degree of the agents increases. The proposed
methods are called Factored-Value MCTS with Max-Plus (FV-MCTS-Max-Plus) and FV-POMCP
in [1] and [2] respectively.

According to our knowledge, this is the first paper dealing with hybrid factored-value
representation using MCTS for planning. This is a new approach and here is the rationale for this
two-step decision-making process:
1) Depending on the situation (state), some actions may be more relevant than other actions.

Local-level decision making provides an ordering of the actions, from high probability to low
probability, in terms of their effectiveness based on the current situation. Thus, it is a very
useful step to increase the probability of the anytime algorithm finding the optimal solution
early.

2) Network segmentation is always possible in a dynamic environment because global-level
optimization in multi agent environment requires communication within the network.
Communication may not be possible in some situations (e.g., under cyberattacks or network
malfunction). In such situations, the algorithm may not achieve the global optimal solution;
thus, the local optimal solution obtained in the first step may be the best solution.
We are in favor of fully hybrid coordination for multi agent decision making for the following

reasons:
a) In centralized structures, the central coordinator takes joint observations from all agents and

makes joint decisions for all agents. Each agent takes an action based on the decision of the
central coordinator. Failure or malfunction of the central coordinator is equivalent to the
malfunction of the whole MAS.

b) The central coordinator needs to communicate with each agent to exchange information, which
dramatically increases the communication overhead at the single coordinator. This may
degrade the scalability as well as the robustness of MAS.

c) In a centralized setting (with a centralized coordinator), the agents are not allowed to exchange
information with each other related to the state transition or reward. A hybrid coordination
approach could allow local and correlated decisions for agents that can communicate.

Our contribution is three-fold:

 4

1) We consider a budget constraint approach where a cost is associated with each action. Different
actions consume different amounts of resources, which can be potentially correlated to the
global payoff for the team [19]. In such a setting, the aim of the local decision maker is to
optimize his decision at any time under a cost and budget constraint. Therefore, the global team
reward at each time step is obtained after subtracting the total cost incurred in examining the
cost of the local actions. In this way, we extend previous works [1-3] on centralized
coordination where only the time was the budget constraint.

2) We develop hybrid (i.e., centralized and distributed) coordination for the Max-Plus algorithm
[3,4], where an agent computes and sends updated messages after it receives new and different
messages from one of its neighbors2. The messages are sent in parallel, which offers some
computational advantages over the sequential execution of the previous centralized
coordination algorithms [1,2].

3) We develop a new FV-MCTS-Hybrid Cost-Max-Plus method with a two-step decision-making
process. Our contribution is the development of the theoretical framework for combining
Monte Carlo Tree Search (MCTS) with a Hybrid Cost Max-Plus algorithm for decision making
and execution. The proposed method is a suboptimal solution for Dec-POMDPs. The exact
solution of a Dec-POMDP is known to be intractable and Non-deterministic EXPonential
(NEXP) complete, even for only two agents [14].
The outline of the paper is as follows. In Section II, we present related work. The mathematical

background is introduced in Section III. Both variants of the Max-Plus algorithm without cost are
considered and revised in Section IV. In Section V, we present the new distributed Max-Plus
algorithms with cost. In Section VI, we consider the Max-Plus Hybrid algorithm with cost. The
proposed method FV-MCTS-Hybrid Cost-Max-Plus is presented in Section VII. In Section VIII
we present our conclusions and future work.

II. RELATED WORK
The problem of behavior coordination in multi agent decision making is a hot research topic

being addressed in different communities such as Game Theory, Reinforcement Learning,
Decision Theory, Cybersecurity, Constraint Programming, Control and Robotics to name a few
[16-24]. Of particular interest is the optimal solution for distributed agents sharing a Global
Reward [1,6,8,12,15]. A taxonomy of distributed and local optimization algorithms for multi agent
global behavior is given in Fig. 1.

In this paper, we focus on centralized and distributed decision-making coordination where the
agents interact with each other while making decisions. In such CMAS, the agents are constrained
in their decisions by the cost of actions. Little is known about how the cost of actions influence
these decisions and what distributed coordination algorithms can be used to solve real-time
scenarios for distributed planning when the agents share a common goal.

2 In the context of the Max-Plus algorithm the neighbor of agent 𝑖 is the agent 𝑗 connected on the edge (𝑖, 𝑗)

 5

Fig. 1. Distributed and local optimization algorithms.

The idea of using the MCTS algorithm to exploit the MAS structure was first presented in [2]
in the context of a multi agent POMDP model, which is centralized. The elegant algorithm
proposed in [2] uses an exact method of solving the Coordination Graph (CG), namely Variable
Elimination (VE) [3-5,12,13]. Unfortunately, the Factored-Value Partially Observable Monte
Carlo Planning (FV-POMCP) method proposed in [2] is not anytime. This aspect was reviewed in
[1], where MCTS was used in conjunction with a centralized implementation of the Max-Plus
algorithm for joint action selection. The same approach was used in [10].

Our solution for the distributed coordination of multi agent planning is different from [1], [2],
and [10], all of which use a centralized approach. In addition, those presented solutions do not
consider the cost of actions. In our solution, we use the MCTS algorithm with cost [19] only in the
first stage to select a small, ordered set of promising actions for each agent that will be presented
to the team in the next stage. In the next stage, our solution uses the Hybrid Cost Max-Plus
algorithm, which we also introduce in this paper.

The MCTS approach in [1] and [2] is used for two reasons:
1) To perform a global simulation from the current global state to move agents to the next global

state, where the structure of the CG does not change in time.
2) To modify the joint action selection for every agent only during the last step of the algorithm

(after reaching the convergence of the centralized Max-Plus algorithm).
In addition, our hybrid solution performs better than selecting actions according to a uniform

distribution, as proposed in [10]. Other notable works [3-5,12,13] propose to use the CG with no
MCTS extension. The Dec-MCTS approach used in [8] cannot overcome the exponentially large
action space induced by naïve application of MCTS. The algorithm proposed in [8] is convergent
in some conditions.

III. MATHEMATICAL BACKGROUND
We consider a cooperative multi agent planning3 problem with a system of 𝑁 agents, a finite

horizon 𝑇, and a discrete time approach. In each time step 𝑡, 1 ≤ 𝑡 ≤ 𝑇, every agent 𝑖, 1 ≤ 𝑖 ≤ 𝑁,
takes an individual action 𝑎! from its set of actions 𝒜!. The selected joint action for the team is

3 We use planning and decision making interchangeably.

 6

the vector of team actions 𝒂 = (𝑎", 𝑎#,…, 𝑎! ,…, 𝑎$) and the associated payoff function of the
team is given by 𝑄(𝒂), not including the cost of the joint action. The classical coordination
problem [6] is to find the global optimal joint action 𝒂∗ = (𝑎"∗ , 𝑎#∗ , … , 𝑎!∗, … , 𝑎$∗)	that maximizes
the global payoff function 𝑄(𝒂),	i.e.:

𝒂∗ = argmax
𝒂
𝑄(𝒂) (1)

A naïve approach would enumerate all possible joint actions of all agents and select the one
that maximizes the global payoff function 𝑄(𝒂). However, this is obviously impractical because
the global team action space 𝒜 =×𝒜! is a 𝑁 fold cartesian product which grows exponentially
as the number of agents 𝑁	increases. Since the payoff function 𝑄(𝒂)	 used in equation (1) does
not consider the cost of actions, it is difficult to apply this model to some real-world problems,
since the cost of actions is not negligeable in some application domains [19].

We further consider the discrete variable 𝒮!, the local state of agent 𝑖. The global state of the
system is denoted by 𝒮, which is factored across the agents 𝒮 = 𝒮" × 𝒮# ×⋅⋅⋅× 𝒮$. At time 𝑡, the
MAS is in global state 𝒔 ∈ 𝒮 and in the next time step 𝑡 + 1, the system will transition to new
global state 𝒔' . The transition probability to the next state 𝒔' is 𝑝(𝒔'|𝒔, 𝒂). We consider the
simplest settings for factorizing the action space (FAS), where the state of the system is completely
observed and available for deciding an action for each component in the action space factorization.
The above FAS can be modeled using a MMDP [26].

The cost function 𝑐! of taking an individual action 𝑎! from its set of actions 𝒜! maps an action
𝑎!	to a real number. The cost of the global joint optimal action 𝒂	of the team 𝒞(𝒂) is also a real-
valued function. When two agents 𝑖 and 𝑗 interact with each other, the cost incurred due to their
interaction is denoted by 𝒞!,* , which maps a pair of actions B𝑎! , 𝑎*C to a real number. For the
distributed version, we assume that only interconnected agents on an edge coordinate their local
actions at a particular time 𝑡.

Following the approach from [1], the overall cost, 𝒞(𝒂), in CMAS is linear in 𝑁, the number
of agents, and in 𝒩, the number of pair interactions (𝑖, 𝑗):

𝒞(𝒂) = ∑ 𝑐! + ∑ 𝒞!,*𝒩
(!,*)

$
! (2)

We define global payoff (a.k.a. Global Reward) of the team as 𝑅(𝒂) = 𝑄(𝒂) − 𝒞(𝒂), where
𝑄(𝒂) is the benefit to mission accomplished by the team of agents, and 𝒞(𝒂) is the cost of the
global joint action.

The new coordination problem is to find the cost optimal joint action 𝒂∗ that maximizes the
Global Reward of the team with cost, i.e.:

𝒂∗ = argmax
𝒂
𝑅(𝒂) (3)

The reward (payoff) function with cost for an action of agent 𝑖 is defined as 𝑅!(𝑎!) = 𝑄!(𝑎!) −
𝑐! [3] and, for two agents that are connected on the edge (𝑖, 𝑗), the reward function is defined as
𝑅!,*B𝑎! , 𝑎*C = 𝑄!*B𝑎! , 𝑎*C −	𝒞!,*, where the joint payoff values are given by 𝑄!*B𝑎! , 𝑎*C and the
associated joint cost values are 	𝐶!,* .

In general, in the Max-Plus algorithm, each agent calculates the edge reward by dispatching
messages to its neighbors [6]. Including the cost 𝑐! for action 𝑎! (assuming the cost of the action
is not dependent on local state) and the cost for joint action 𝒞!,*, then a general message sent from

 7

agent 𝑖 to agent 𝑗 (which is taking action 𝑎*) is a scalar valued function of the action space of the
receiving agent 𝑗 as given below:

𝜇!*B𝑎*C = 𝑄!(𝑎!) − 𝑐! + ∑ 𝜇.!(𝑎!.∈0(!)*) + 𝑄!*B𝑎! , 𝑎*C − 𝒞!,* (4)

The only variable in the right part of (4) is the action 𝑎!. For convergence, the local agent 𝑖
will select his local action 𝑎! (from his set of local actions 𝒜!) to send the maximum payoff value
𝑄! given by (4) to its neighbor 𝑗, producing the message:

𝜇!*B𝑎*C = max
2!
J𝑄!(𝑎!) − 𝑐! +∑ 𝜇.!(𝑎!)	.∈0(!)* + 	𝑄!*B𝑎! , 𝑎*C − 𝒞!,*K (5)

The message 𝜇!*B𝑎*C can be regarded as a local payoff function of the agent 𝑖. Due to the cost,
the scalar value given by (5) could become negative. In this case, the contribution to the edge
payoff due to the other agents will be defined as L𝜇!*B𝑎*CM

3 = maxL0, 𝜇!*B𝑎*CM. Finally, each agent
individually computes its optimal action:

𝑎!∗ = arg	max
2!
J0, [𝑄!(𝑎!) − 𝑐(𝑎!) + ∑ 𝜇.!(𝑎!.∈0(!))]K (6)

If the edge payoff is 0, then the agent does not need to take any new action and keeps the old
action.

IV. BOTH VARIANTS OF NO COST MAX-PLUS ALGORITMS
The Max-Plus algorithm is a popular method for computing the maximum posteriori

configuration in an (unnormalized) undirected graph model. This algorithm is analogous to the
belief propagation (BP) or sum product algorithm in Bayesian Networks [5,7]. In this algorithm,
two agents 𝑖 and 𝑗 iteratively send information about their locally optimized payoff values.
Previous versions of this algorithm [1,2] did not include the cost of actions and the benefit to the
mission for a specific agent.
A. Centralized Max-Plus Algorithm without Cost

The centralized version of the Max-Plus algorithm operates using iterations in a sequential
manner. The central coordinator picks an agent i and starts the process. In every iteration, each
agent i computes and sends a message 𝜇!* to the neighbor j (connected on an edge) in a predefined
order. This process continues until all messages converge to a fixed point, or until a “deadline”
signal is received (either from an external source or from an internal timing signal). Then, the most
recent joint action is reported. For anytime extension, we update the joint action when it improves
upon the best value found so far.

A coordination graph (CG) is a graph 𝐺 = (𝑉, 𝐸) where each node 𝑉 represents an agent and
each edge 𝐸 defines the dependency between two agents:	𝑁 = |𝑉| and 𝒩 = |𝐸|. The Max-Plus
algorithm is scalable in terms of the number of agents 𝑁 and their number of local connections
𝒩	in the CG representation [3]. In general, for any CG, we can factor the global payoff function
value as:

𝑄(𝒂) = ∑ 𝑄!!45 (𝑎!) + ∑ 𝑄!*B𝑎! , 𝑎*C(!,*)46 (7)

where 𝑄!(𝑎!) denotes a local payoff for agent 𝑖 and it is only based on its individual action when
contributing to the system individually.

 8

Considering an edge (𝑖, 𝑗)	 for agents 𝑖 and 𝑗, a local joint payoff function 𝑄!* takes a pair of
actions B𝑎! , 𝑎*C as input and provides a real number as output. In the Max-Plus algorithm without
cost, in each time step 𝑡, each agent 𝑖 that is in its local state 𝒮! takes action 𝑎! by collecting the
payoffs from its neighbors as in Fig. 2a. This agent sends a local message 𝜇!* that maps an action
𝑎* of an agent 𝑗 to a real number as in Fig. 2b.

In Fig. 2b, the transmitted message 𝜇!*:𝒜* → ℝ from agent 𝑖 to agent 𝑗 in response to the
action 𝑎* taken by agent 𝑗 contains information about the payoff of agent 𝑖	 that is local payoff
𝑄!(𝑎!), joint payoff 𝑄!*B𝑎! , 𝑎*C4 and the cumulated payoff from all his neighbors Γ(𝑖)\𝑗 of node 𝑖
except node 𝑗 as given below:

𝜇!*B𝑎*C = 𝑄!(𝑎!) 	+ ∑ 𝜇.!(𝑎!.∈0(!)*) + 𝑄!*B𝑎! , 𝑎*C (8)

The first term in relation (8) is the local payoff of the agent 𝑖 when it takes the local action 𝑎!
that is independent of the action 𝑎* of its neighbor 𝑗. The second term of (8) shows agent 𝑖 is
collecting all the payoffs from its neighbors 𝜇.!(𝑎!) (except neighbor 𝑗) when all of its neighbors
are observing the action 𝑎! . Agent 𝑖 is sends its collected payoff only to its neighbor 𝑗. The joint
payoff 𝑄!*B𝑎! , 𝑎*C is shared for both agents. Each agent contributes half of the payoff:

1
2𝑄!*(𝑎! , 𝑎*) =

1
2𝑄*!(𝑎* , 𝑎!)

 (a) (b)

Fig. 2. Interaction on edge between two agents in centralized Max-Plus algorithm.
Fig. 2a: Agent 𝑖 receives all its neighbors’ payoffs. Fig. 2b: Agent 𝑖 sends the message 𝜇",$ to agent 𝑗.

Agent 𝑖 can send payoff messages for any action of agent 𝑗 as in Fig. 2b (dotted arrows). The
agents keep exchanging messages at each iteration until they converge. It is proven that for tree
structured graphs (no loops), the message updates converge to a fixed point after a finite number
of iterations [6].

As an example, a coordination graph with 6 agents is shown in Fig. 3. From the perspective of
agent 2, agents 1, 3, 4, 5, and 6 are leaves (children), while agents 1, 2, 3, and 4 are roots (parents).
The messages transmitted “up” to parents are different from messages sent “down” to their
children. Calculating relation (7) is different for different types of agents. If an agent is a leaf, it
can respond immediately. However, if an agent is a parent, it waits for its children to send their
payoffs.

4 We assume commutative joint payoff functions 𝑄",$%𝑎" , 𝑎$(= 𝑄$,"(𝑎$, 𝑎")

 9

Fig. 3. Coordination Graph with 6 agents. Agent 3 sends messages 𝜇%&(𝑎&),	𝜇%'(𝑎') to its neighbors, agents 2 and 4.

As mentioned before, the Max-Plus centralized coordination problem without cost is to find
the optimal joint action 𝒂∗ that maximizes 𝑄(𝒂),	defined in (9) as:

𝒂∗ = argmax
𝒂
𝑄(𝒂) (9)

Please note that cumulated payoff of the agent 𝑖 from all its neighbors in (8) is already included
in the local payoff of agent j in (7). The exact solution of (9) is the Variable Elimination (VE)
algorithm, which unfortunately is not an anytime algorithm.
B. Distributed Iterative Max-Plus Algorithm without Cost

The distributed version of the Max-Plus algorithm without cost is much more complex in terms
of implementation and requires an increased number of iterations because, without the central
coordinator, the agents do not have access to the factored global payoff function given by (7). The
Global Reward should be evaluated within the MAS and communicated to all agents. Therefore,
the agents participating in the distributed algorithm will have enhanced capabilities compared to
the agents in the centralized algorithm. We need to distinguish among evaluated Global Reward 𝐺
in distributed MAS. Instantaneous Global reward at iteration 𝑚, 𝐺7, and initial desired Global
Reward, 𝐺8, is presented to all agents at initial time step of the horizon, 𝑡 = 0. We will assume a
distributed synchronous coordination.

The global payoff function 𝑄(𝒂∗) after calculating with (7) of every synchronous time step 𝑡
must be calculated and stored. A trivial approach would be to centralize the value 𝑄(𝒂∗) to a single
agent in every time step. This agent would then inform the other agents each time an improved
solution is obtained. However, this method has two drawbacks: (1) the increased of number of
messages, and (2) violation of agents’ privacy caused by the need to inform a single agent (not
necessarily a neighbor) about the joint payoff function 𝑄!*B𝑎! , 𝑎*C, which represents the payoff of
coordinated action of two other agents	𝑖 and 𝑗.

An elegant solution to overcome these drawbacks is to use a Spanning Tree (ST), 	𝐺9 =
(𝑉, 𝐸9), where at each time step 𝑡, the number of agents is fixed (𝑉), while the number of
connections (𝐸9) depends on the MAS configuration at that time. We still consider the case where
all agents are connected (the domain is connected). An example of a ST associated with the CG

 10

given in Fig. 3 is represented in Fig. 4. In general, a ST associated with a CG is not unique and
should be known by all the agents at every time step 𝑡. If the ST is fixed (as we assume for
simplicity in this paper) then it will be initialized at the beginning of the Distributed Max-Plus
algorithm.

Fig. 4. Example of Spanning Tree graph associated with CG from Fig. 3.

In a ST, each agent receives information from its children, calculates the resulting payoff
including its own contribution, and passes it to its parents. For example, in Fig. 4, agent 2 is the
root, which makes the final calculation based on the payoff received from its children, agents 1
and 3, respectively. Agent 3 is also a parent (rooted) and will consider the payoff from child agent
4 in its calculations. Agents 1, 5, and 6 are leaves, which report to their parents.

After calculating the global payoff value 𝑄(𝒂∗) in this ST, agent 2 will communicate this
value to other agents 1, 3, 4, 5, and 6 by propagating down in the ST. By this mechanism, all the
agents in the distributed MAS will be aware of the global payoff value at every time step 𝑡.

Another important issue is knowing the status of every agent and when they will start their
local algorithm. Every agent is in waiting mode and will initiate the process of calculating the
Global Reward in MAS when it believes that it will have a significant contribution to it. This
happens when an agent has an increased change in its local payoff or/and the edge payoff with its
neighbor 𝑗.

In the distributed Max-Plus algorithm without cost, agent 𝑖 at any iteration 𝑚 may receive four
types of messages 𝓂: , 1 ≤ 𝑙 ≤ 4, sent by agent 𝑗, and therefore his response to agent 𝑗 should be
matched to the incoming messages. Any agent can initiate the exchange of messages at any time.
In addition, we need to distinguish whether agent 𝑖 is a leaf or root as in Fig. 5a and Fig. 5b.

Fig. 5a: leaf (terminal) Fig. 5b: root (parent)

 11

The main difference between the leaf (terminal node) and the root (parent) is the computational
time. If agent 𝑖 is a leaf, then it can respond immediately in the next iteration 𝑚 + 1 with its
optimal action 𝑎!

, . Otherwise, agent 𝑎! must wait for payoff calculation from its children denoted
by Γ(𝑖)\𝑗 as in Fig. 5b. Please note the difference between the actions and reported payoff as
explained below.

The four types of incoming messages received from agent 𝑗 are explained next.

1) Message 𝓂" = 𝜇*!(𝑎!) (green line in Fig. 5a) is a typical Max-Plus message received from
agent 𝑗 when agent 𝑖 is taking action 𝑎! 	. Agent 𝑖 will respond with message 𝑚"

' = 𝜇!*B𝑎*C and
will start exchanging messages until local convergence is achieved: 𝑚" ≈ 𝑚"

' (no improvement of
the local reward or no significant difference of the messages exchanged). The final action of agent
𝑖 is the action 𝑎!' as in (9). Agent 𝑗 initiated the process when it observed a significant change in
the reported payoff from agent 𝑖, 𝑚" ≠	𝑚"

' . The same process can also be started by agent 𝑖, which
observed a significant change in the reported payoff of agent 𝑗. When local convergence is reached,
the action presented by agent 𝑖	to its neighbors is 𝑎!'	 (which is not necessary the optimal one 𝑎!∗).
Since the local information of agent 𝑖 is modified and possibly improved at convergence, agent 𝑖
also believes the team Global Reward has been improved. In this case, after local convergence,
agent 𝑖 will ask for a payoff evaluation in the distributed MAS system and agent 𝑗	will respond by
sending the message 𝓂#. Before asking for this payoff evaluation, the action of agent 𝑖 is 𝑎!'	 and
its reward is:

𝑟! = 𝑄!(𝑎!') +
"
#
𝑄!,*B𝑎!', 𝑎*'C (10)

since agent 𝑖 must share the edge reward with agent 𝑗, which also contributed to 𝑟! through its
action 𝑎*'. In (7), each agent on the edge contributes half of the payoff function 𝑄!*B𝑎! , 𝑎*C.

The Distributed Max-Plus Algorithm runs more iterations compared to the Centralized Max-
Plus Algorithm. The centralized version run at most 𝑀 iterations in order to converge to the fixed
point. Usually, this number is small (𝑀 ≤ 10) and depends on the particular application. If it does
not converge within 𝑀 iterations, the Centralized Max-Plus algorithm will stop. For the
Distributed Max-Plus version, there are additional hops ℎ as illustrated in Fig. 4. To send the
evaluated Global Reward in the particular case illustrated in Fig. 4, which has three hops, there
are 6 additional steps necessary (3	upward and 3	downward) to propagate the evaluated Global
Reward up to agent 2 from agents 1, 3, 4, 5, and 6. There are another three hops to send the
evaluated Global Reward from agent 2 down to agents 1, 3, 4, 5, and 6. For 𝑁	agents, the worst
case scenario is 2(𝑁 − 1) steps, so the distributed Max-Plus algorithm will run at most 1 ≤ 𝑚 ≤
𝑀 + 2(𝑁 − 1) iterations.

Let us assume that the anytime Global Reward value in the distributed coordination Max-Plus
algorithm at iteration 	𝑚 ∈ {1,2, … ,𝑀 + 2(𝑁 − 1)} is 𝐺7. Since we assume a distributed
synchronous coordination, each agent 𝑖 is synchronized at iteration 𝑚. Each agent will proceed to
iteration 𝑚 + 1 without a coordinator. There is no possibility that any other agent 𝑗 will start
iteration 𝑚 + 1.	The rest of the messages (𝑚#, 𝑚;, 𝑚<)	described below are necessary to
calculate the anytime Global Reward 𝐺7 and the evaluated Global Reward in MAS system
denoted by 𝐺. These two payoff values 𝐺7	and 𝐺	are compared against the desired Global Reward
denoted by 𝐺8	presented to all agents at the initial time step of the horizon time step 𝑡 = 0.

 12

The Evaluated Global Reward (anytime 𝐺7	or at the end of the horizon time 𝑇) will be
calculated in three successive phases: a) request message for payoff calculation sent to agent 𝑖, b)
request message for payoff accumulation in the system and c) request message to calculate the
Global Reward of the team that will be shared by all neighbors.

2) Message 𝓂# = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒	(𝑗) (blue line in Fig. 5a) is a request for payoff evaluation sent to
agent 𝑖 from agent 𝑗. Agent 𝑖 will respond with message 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒	(𝑖).	This process is illustrated
in Fig. 5c and Fig. 5d depending on whether the agent 𝑖 is a leaf or root. When agent 𝑖 receives
this request and is a leaf (Fig. 5c), it will lock the best action 𝑎!' found so far and will respond with
it. In its response to agent 𝑗, agent 𝑖 communicates the best action found so far:

𝑎!' = arg	max
2!
J𝑄!(𝑎!) + 𝜇*!(𝑎!)K			and his local payoff 𝑟! = 𝑄!(𝑎!) +

"
#
𝑄!,*B𝑎! , 𝑎*C (11)

No further action is required from agent 𝑖.
If agent 𝑖 is a root (Fig. 5d), it will not lock its action 𝑎!'. It will send the message 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒	(𝑖)

to all of its children. As a root, agent 𝑖 is asking all of its children to report their payoffs and will
then initiate the calculation of the payoff accumulation (which will be explained next). Agent 𝑖
will lock its individual action after the evaluation.

3) Message 𝓂; (purple line in Fig. 5e and Fig. 5f) is a request from agent 𝑗 to calculate the
accumulated payoff in the MAS system. Agent 𝑗 will sent its local reward 𝑟* accumulated so far to
agent 𝑖 as illustrated in Fig. 5e (leaf) and Fig. 5f (root), respectively. If agent 𝑖 is a leaf, then it will
modify its accumulated local reward to 𝑟! = 𝑟! + 𝑟* and will stay in this state until it receives the
last message for calculating the Global Reward for the team as in Fig. 5g. If the agent is a root
(parent) it will send a request message to calculate the global payoff to all of its children (purple
arrows) by sending value 𝑟! + 𝑟* as in Fig. 5f. As a parent, it will receive the payoff for all of its
children (red line) and send the accumulated payoff to its parent agent 𝑗	(red line) in Fig. 5f. In
other words, after receiving the message calculate the accumulated payoff, agent 𝑖 will send the
information regarding its local payoff either back to neighbor 𝑗 or to all of its children.

Fig. 5c: leaf Fig. 5d: root Fig. 5e: leaf Fig. 5f: root

Note that when agent 𝑖 receives the accumulated rewards from all of its children, it might
choose a different action 𝑎!' found so far in MAS. Since this action is fixed in iteration 𝑚, the agent

 13

must unlock this action for calculating the global payoff of the MAS for the next iteration 𝑚 + 1
of the Distributed Max-Plus algorithm.

4) The last message 𝓂< (red line in Fig. 5a and Fig. 5g) is the message sent by agent 𝑗 to agent
𝑖,	and it contains the information about the evaluated Global Reward 𝐺 of the team the has been
calculated so far. Agent 𝑖 was not aware of this value when it noticed an increase in its local payoff
and it believed that it could make a significant contribution to the MAS evaluated Global Reward.
Agent 𝑖 will check whether it must continue its local process of finding new optimal actions or
not. To do so, it must compare the evaluated Global Reward 𝐺 against instantaneous Global
Reward 𝐺7	and finally to compare it against the imposed Global Reward 𝐺8. This mechanism is
illustrated Fig. 5g. and it is called “anytime”.

After receiving message 𝓂<, agent 𝑖 will lock the action and will calculate its contribution to
the team by calculating instantaneous Global Reward 𝐺7	 . If its contribution to the team’s
instantaneous Global Reward 𝐺7		does not cause it to increase (NO in Fig. 5g), i.e., the best action
found so far 𝑎!'	does not increase the team Global Reward 𝐺7	, it will ask for help from its children.
Agent 𝑖 will unlock 𝑎!' and will repeat the optimization process. If its contribution increases the
team Global Reward 𝐺7	 (YES in Fig. 5g) at iteration 𝑚 , then its selected action 𝑎!' will be
reported optimal 𝑎!∗		and the evaluated Global Reward 𝐺 will become 𝐺7	.	This instantaneous
value will be communicated to its neighbors. In this case, its belief that it could contribute to the
instantaneous Global Reward 𝐺7	 was true. Now, agent 𝑖 needs to know if the team should
continue or stop. The anytime algorithm will STOP if the resources of agent 𝑖 are exceeded, or if
a deadline message arrived, or if the desired Global Reward is met. Checking for these exit criteria
is a very important step. As mentioned before, it will allow the algorithm to escape from local
maxima and the team will move forward to achieve the desired Global Reward assignment
𝐺8	presented to all agents at initial time step of the horizon 𝑡 = 0.

Fig. 5g: Evaluated Global Reward and the instantaneous Global Reward by the root agent of ST.

If the instantaneous Global Reward 𝐺7 and the evaluated Global Reward 𝐺 are both greater
than the desired Global Reward 𝐺8 (YES option) then agent 2 (see Fig. 4) will stop its work and
communicate its decision to the rest of the team. The actions could be executed if it is required. If
not (NO option) then the agent will continue its optimization process. Therefore, the team will
work together in distributed coordination until time 𝑇. This is a major difference in contrast with
the centralized coordination version of Max-Plus. In the distributed implementation, in addition to
the anytime aspect, each member of the team must check if the desired Global Reward 𝐺8	 is

 14

achieved. Therefore, in the distributed version, the agents require additional capabilities compared
to the centralized version.

V. DISTRIBUTED MAX-PLUS ALGORITHM WITH COST
The iterative Max-Plus algorithm with limited budget and coordination graphs is a scalable

and anytime algorithm, which will provide the best action 𝑎!∗ for any agent and the best global
joint action 𝒂∗, which will maximize the factored Global Reward value at a given global state 𝒔
described below:

𝑅(𝒂) = ∑ 𝑅!45 (𝑎!) + ∑ 𝑅B𝑎! , 𝑎*C(!,*)46 (12)

The Cost Distributed Max-Plus algorithm runs individually for every agent 𝑖 and works with
Spanning Tree (ST) coordination graphs. This feature is a major advantage over CG as used in
previous works [1], [2], because some local interactions could become disconnected due to
unreliable communication channels. The only requirement for our algorithm is for the domain to
be “connected” regardless of the number of edges. At the onset of the algorithm, we will provide
the following information to every agent 𝑖:

• The spanning tree coordination graph 𝐺9 = (𝑉, 𝐸9), where each node 𝑉 represents an agent, the
number of agents is 𝑁, and each edge 𝐸9 defines the dependency between two agents at time step
𝑡. The number of all edges is 𝒩.

• The costs of actions 𝑐! for agent 𝑖 and the costs 𝒞!,* 	for any a pair of actions B𝑎! , 𝑎*C.
• Number of iterations of the Max-Plus algorithm 1 ≤ 𝑚 ≤ 𝑀 + 2(𝑁 − 1), horizon time limit 𝑇,
1 ≤ 𝑡 ≤ 𝑇.

• Actions for each agent 𝑖, 𝐴! , 𝑎!𝜖𝐴! .
• We set the Global Reward in the Cost Distributed Max-Plus algorithm to the minimum value:
𝐺7 = −∞.

• In the system for any agent: 𝜇!* = 𝜇*! = 0, for any (𝑖, 𝑗) ∈ 𝐸, 𝑎! ∈ 𝐴!, 𝑎* ∈ 𝐴* and for any agent
𝑖 , 𝑟! = 0	and 	𝑅(𝒂) = 𝐺7 = −∞.

The algorithm is described below. First, we would like to reach the convergence or the fixed
point of the algorithm by calculating 𝜇!*, which are required for Global Reward. After that, the
local payoff is calculated.

1. WHILE the fixed point is not reached, number of Max-Plus iterations 𝑀, horizon time 𝑇,
and cost budget are not reached for any agent // Root agent is evaluating this condition.

2. Wait for an incoming message 𝑚:
3. IF 𝑚"
4. FOR any iteration 𝑚, 1 ≤ 𝑚 ≤ 𝑀 + 2(𝑁 − 1)
5. FOR all neighbors 𝑗 ∈ Γ(𝑖)
6. a. compute with (4) and (5)
7. 𝜇!*B𝑎*C = 𝑄!(𝑎!) − 𝑐! +	∑ 𝜇.!(𝑎!.∈0(!)*) +	𝑄!*B𝑎! , 𝑎*C − 𝒞!,*
8. b. normalize the message 𝜇!*B𝑎*C for

 convergence
9. c. send the message 𝓂" = 𝜇!*B𝑎*C to the
10. agent 𝑗 if different from previous
11. d. check if 𝜇!*B𝑎*C is closed the previous

 message value

 15

12. END FOR all neighbors.
13. Calculate the optimal individual action

												𝑎!
, = arg	max

2!
J0, [𝑄!(𝑎!) − 𝑐! + ∑ 𝜇.!(𝑎!.∈0(!))]K

14. Determine 𝒂' the optimal global action so far including all previous 𝑎!
,

15. END FOR any iteration
16. END IF 𝑚"
17. IF 𝑚#

 Lock 𝑎!', set 𝑟! = 0 send the evaluation request to all children.
18. IF agent 𝑖 is a leaf, then initiate the accumulation payoff
19. END IF
20. END IF 𝑚#
21. IF 𝑚;
22. 𝑟! = 𝑟! + 𝑟* // add payoff of child 𝑟*
23. IF the agent 𝑖 is a root send the global payoff to all children.
24. ELSE send the global payoff to parent.
25. END IF 𝑚;
26. IF 𝑚<
27. Calculate the evaluated global reward
28. Use anytime:
29. IF 𝑅 ≥ 𝑟
30. THEN 𝑎!∗ = 𝑎!' ; 𝑟 = 𝑅(𝑎!

,)
31. ELSE 𝑎!∗ = 𝑎!'
32. END IF 𝑚<
33. END WHILE
34. Return the global reward	𝐺 = 𝑅(𝒂).

VI. HYBRID MAX-PLUS ALGORITHM WITH COST
In the Cost Hybrid Max-Plus algorithm, every agent 𝑖 may receive a vector segmentation status

message 𝒔 = [1,0]. Message 𝒔 is a segmentation message (represented with a dotted red arrow
Fig. 6) indicating the communication status to the centralized coordinator for all agents in the
system. If 𝒔 = 1	for all agents at time step 𝑡, then no segmentation has occurred in the system for
all 𝑁 agents. All agents will continue in their centralized setting by using CG. However, if 𝒔 = 0
for some 𝑁# < 𝑁 agents at time step 𝑡, then a segmentation process has occurred. The group of 𝑁
agents will split into two groups 𝑁" + 𝑁# = 𝑁. The 𝑁"	agents will continue under the supervision
of centralized coordinator and 𝑁# agents will execute the distributed Max-Plus algorithm. Later
on, the above two groups may regroup again under centralized supervision.

 16

Fig. 6. Illustration of the segmentation process setting for Hybrid Factored-Value Cost Max-Plus method.

For 𝑁 = 6 agents from our example in Fig. 3, the system will split into two groups by
removing the connection between agents 𝑄; , 𝑄< and 𝑄" , 𝑄<, respectively, when the segmentation
message 𝒔 = 0 occurs. The group 𝑁# is formed by the agents 	𝑄", 𝑄#, 𝑄;		selected to be in a
Spanning Tree configuration (decentralized) [4]. The group 𝑁" is formed by agents 𝑄<, 𝑄= ,𝑄>
selected to be in the centralized CG setting [3]. We have split them into equal groups for illustrative
and numerical experimentation purposes. The group 𝑁" that is still able to communicate with the
centralized coordinator will continue in their centralized setting (CG) (left green arrow in Fig. 6).
The other group 𝑁# that lost communication with the coordinator will continue in a distributed
Max-Plus algorithm (right red arrow in Fig. 6) in a Spanning Tree (ST) setting [4]. Later, at time
step 𝑡 = 𝑡 + 1, if 𝐬 = 1	for all agents, then all agents will regroup again.

Another message received only by agents in group 𝑁# that lost connection with the central
coordinator is	𝒔 = 0. Message 𝒔 = 0 is used by distributed Max-Plus algorithm and it tells each
agent what part of the distributed Max-Plus algorithm should be executed. For example, it could
be 𝓂" = 𝜇*!(𝑎!), which is a typical Max-Plus message (line 23 in the algorithm below). When
the message is a request to calculate the accumulated payoff from agent 𝑗 (line 30 in algorithm
below), then the agent 𝑖	will calculate the accumulated payoff in the MAS. The last form of
incoming message (line 39) is the message sent by agent 𝑗 to agent 𝑖,	 and it contains the
information about the evaluated Global Reward of the team calculated so far.

We present pseudocode of the proposed (hybrid with cost) algorithm below. As inputs of our
proposed algorithm, we provide the number of agents 𝑁, CG configuration, and the following
information about every agent 𝑖:
• Actions for each agent 𝑖, 𝐴! , 𝑎!𝜖𝐴! .
• Initialization by centralized coordinator for each agent: 𝜇!* = 𝜇*! = 0, for any (𝑖, 𝑗) ∈ 𝐸, 𝑎! ∈
𝐴!, 𝑎* ∈ 𝐴* and for each agent 𝑖, 𝑟! = 0	and 	𝑅(𝒂).

• The costs of actions 𝑐! for each agent 𝑖 and the costs 𝒞!,* 	for any pair of actions B𝑎! , 𝑎*C.

 17

1. Wait for segmentation message 𝒔 as in Fig. 6.
2. IF an agent receives the segmentation message 𝒔 = 1	 Go to the Cost Centralized Max-Plus

algorithm given below: // All agents that receive s = 1
3. WHILE the fixed point is not reached, time and cost budget are not reached // the centralized

coordinator is evaluating this condition
4. DO for any iteration 𝑚
5. FOR any agent 𝑖
6. FOR all neighbors 𝑗 ∈ Γ(𝑖)
7. a. compute 𝜇!*B𝑎*C = 𝑄!(𝑎!) − 𝑐! +	∑ 𝜇.!(𝑎!.∈0(!)*) + 𝑄!*B𝑎! , 𝑎*C − 𝒞!,* 		
8. b. normalize the message 𝜇!*B𝑎*C
9. c. send the message 𝜇!*B𝑎*C to the agent 𝑗
10. d. check if 𝜇!*B𝑎*C is closed to the previous message (equivalent to reaching the

 convergence)
11. END FOR all neighbors
12. Calculate by centralized coordinator

 𝑎!∗ = arg	max
2!
J0, [𝑄!(𝑎!) − 𝑐(𝑎!) + ∑ 𝜇.!(𝑎!.∈0(!))]K

13. Determine 𝒂∗, the optimal global action so far including all previous 𝑎!
,

14. // Use anytime:
15. IF 𝑅(𝒂) ≥ 𝑟 THEN 𝑎!∗ = 𝑎!' ; 𝑟 = 𝑅(𝑎!

,)
16. ELSE 𝑎!∗ = 𝑎!'
17. END IF
18. END FOR every agent 𝑖
19. END DO for any iteration 𝑚
20. END WHILE
21. Return the global reward	𝑅(𝒂)	
21. ELSE IF // All agents that receive s = 0
22. Provide the Spanning Tree with algorithm in [18] and Go To the decentralized Max-Plus

 WHILE the fixed point is not reached, horizon time 𝑇, and cost budget are not reached
 // Root agent is evaluating this condition

23. IF 𝑚1 = (regular Max Plus typical message given by (4))
24. FOR any iteration 𝑙, 1 ≤ 𝑙 ≤ 𝑀 + 2(𝑁 − 1)
25. FOR all neighbors 𝑗 ∈ Γ(𝑖)

 a. compute 𝜇𝑖𝑗!𝑎𝑗"	
 			𝜇𝑖𝑗!𝑎𝑗" = 𝑄𝑖(𝑎𝑖)− 𝑐𝑖 +	∑ 𝜇𝑘𝑖(𝑎𝑖𝑘∈Γ(𝑖)\𝑗) + 		𝑄𝑖𝑗!𝑎𝑖, 𝑎𝑗"− 𝒞𝑖,𝑗

 b. normalize the message 𝜇𝑖𝑗!𝑎𝑗" for convergence
 c. send the message 𝓂1 = 𝜇𝑖𝑗!𝑎𝑗" to the agent 𝑗 if different from previous
 d. check if 𝜇𝑖𝑗!𝑎𝑗" is closed the previous message value
26. END FOR // for all neighbors.
27. Calculate 𝑎𝑖

, 	with (6) the optimal individual action
 𝑎𝑖

, = arg	max
𝑎𝑖

&0, [𝑄𝑖(𝑎𝑖)− 𝑐(𝑎𝑖) + ∑ 𝜇𝑘𝑖(𝑎𝑖𝑘∈Γ(𝑖))]'						
28. Determine 𝒂′ the optimal global action so far including all previous 𝑎𝑖

,
29. END FOR // all iterations
30. ELSE IF 𝑚2 = (a request for payoff evaluation)
31. Lock 𝑎𝑖′ , set 𝑟𝑖 = 0, send the evaluation request to all children.

 18

32. IF agent 𝑖 is a leaf initiate the accumulation payoff
33. END IF
34. ELSE IF 𝑚3 = (request to calculate the accumulated payoff denoted by 𝑟𝑖 for agent 𝑖)
35. 𝑟𝑖 = 𝑟𝑖 + 𝑟𝑗 // add payoff of child 𝑟𝑗
36. IF the agent 𝑖 is a root send the global payoff to all children
37. ELSE send the global payoff to parent
38. END IF
39. ELSE IF 𝑚4 = (evaluate Global Reward)
40. Calculate the evaluated global reward
41. Use anytime:
42. IF 𝑅 ≥ 𝑟
43. 𝑎𝑖∗ = 𝑎𝑖′ and 𝑟 = 𝑅(𝑎!

,)
44. ELSE
45. 𝑎𝑖∗ = 𝑎𝑖′
46. END IF
47. END IF // (message 𝑠 = 0)
48. END WHILE
49. Return the best joint actions 𝒂∗ and the global reward	𝑅(𝒂) accumulated so far
50. END IF // (segmentation message 𝒔 = 1	or	0)

In the distributed Max-Plus algorithm, the anytime extension is more sophisticated. Hence,
evaluation of the distributed joint action is only triggered by an agent when it is assumed to be
worthwhile in this setup. Messages are sent in parallel, a factor that results in a computational
advantage over sequential execution in centralized Max-Plus algorithms. However, a distributed
Max-Plus algorithm is more complicated than a centralized Max-Plus algorithm because each
agent must individually determine whether the system converges or whether to report its action.

Each agent in a distributed Max-Plus algorithm starts the propagation of an evaluation message
over a spanning tree to compute its local contributions to global payoff, and then sends it to the
parent node. In turn, a parent node accumulates all payoffs of its children and after adding its own
contribution, sends the result to its own parent nodes before summing these payoffs together for
all nodes.

VII. FACTORED-VALUE MCTS HYBRID COST MAX-PLUS METHOD

Our main contribution is a new method for planning and acting called Factored-Value MCTS
Hybrid Cost Max-Plus, which is depicted in Fig. 7. The method is a two-phase decision-making
process:
I) In Phase I (Fig. 7, green box), the MCTS algorithm is run independently (MCTS depth steps are
denoted by 𝑑)		by each agent, producing a small, ordered set of its best potential actions. (We do
not present the MCTS results [19] here. We focus only on the Cost Max-Plus algorithm.) For every
agent in the state 𝑠, at time step 𝑡	,	the initial set of actions 𝒜! is now reduced to the new set 𝒜!

. =
J𝑎!", … , 𝑎!.K	where 𝑘 < |𝒜!|, as in Fig. 7, where an example is illustrated for three actions: 	𝑘 = 3.
At the end of Phase I, every agent will present this ordered selected set to the team. After Phase I,
the segmentation message may occur and Phase I can restart later at any time 𝑡 ≤ 𝑇 when the
agents are regrouped in state 𝑠' as in Fig. 6 and Fig. 7. This segmentation process is represented
by a red feedback connection in Fig. 7.

 19

Fig. 7. Factored-Value MCTS Hybrid Cost Max-Plus method.

By reducing the branching factor |𝒜!| for every agent, the number of actions per state 𝒜! will
be substantially reduced, since the possible action space for every agent has a cardinality that is
exponential in the time horizon. Our approach in reducing the branching factor |𝒜!| for every
agent is better than contracting the sample space at random as in [8] or choosing the actions using
the uniform probability distribution as in [12], since the most promising actions will be allocated
the highest probability for planning and execution.

II) In Phase II, when the segmentation message 𝒔 occurs, the initial group of agents will be split
into two subgroups. If 𝒔 = 1 (line 2 of the algorithm in Section V), then a small group of agents
will continue the decision-making process as in Fig. 2 by using the Cost Centralized Max-Plus
algorithm. In the same period of time, the other subgroup, which lost their connection to the
centralized coordinator (𝒔 = 0), will use the Cost Distributed Max-Plus algorithm described by
lines 21 through 49 in the pseudocode. Please note that the number of iterations of running the cost
Max-Plus algorithm in a centralized and decentralized setting could be different, as shown in our
experiments. In any case, the results will be collected at time step 𝑡 + 1.

At time step 𝑡, the MAS is in global state 𝒔 ∈ 𝒮 and in the next time step 𝑡 + 1 the system will
transition to the new global state 𝒔'. The transition probability to the next state 𝒔' is 𝑝(𝒔'|𝒔, 𝒂) =
1 (i.e., it is certain) if the desired Global Reward 𝑅(𝒂)	is not met by the team as in Fig. 7 (NO
option). If 𝑝(𝒔'|𝒔, 𝒂) = 0, the MAS will stay in the same state 𝒔 or 𝒔' with 𝑝(𝒔'|𝒔, 𝒂) = 0 if the
desired Global Reward is met (YES option). In the latter case, MAS agents execute the best joint
action 𝒂∗ = (𝑎"∗ , 𝑎#∗ , … , 𝑎!∗, … , 𝑎$∗)	 found so far if it is required by the team, and the algorithm will
stop.

Our approach improves upon the centralized MCTS solution proposed in [1] where, by
simulation of the global state 𝒔, the final coordinated actions of the team are found and therefore
there is no guarantee that the team will move to the next global state.

In this paper, we only present the numerical results of the Payoff Value and Convergence of
reaching the fixed point to understand the performance characteristics of the hybrid algorithm.
Convergence is a major concern for any online approach and reaching the imposed payoff value

 20

is related to the efficiency of the proposed algorithm. Our results are given below in the form of
graphical plots in Fig. 8 (Cost Distributed Max-Plus algorithm) and Fig. 9 (Cost Centralized Max-
Plus algorithm), respectively. The combination of reached Payoff value and the convergence of
the algorithms produce the four main scenarios of decentralized deterministic, decentralized
randomized, centralized deterministic, and centralized randomized.

In the plots, the red lines represent deterministic payoff (i.e., taking actions in deterministic
order) while the blue lines correspond to randomized actions. The reason for considering
randomized actions (uniform distribution) is to compare with sequential decision-making systems.
The payoff value range is represented on each plot by the red scale on the left vertical axis, while
the convergence scale is represented by the green scale on the right vertical axis. In a three node
MAS described as above configured in both distributed and centralized algorithms, the splitting
segmentation process depends on real case at time 𝑡.

We consider the CG setting similar to Fig. 3 with 6 agents. When a segmentation message 𝒔
occurs between agents 𝑄; and 𝑄<	(red arrow) the group of 6 agents will be split in two groups
where there is no connection between the agents 𝑄; and 𝑄<. The first group of agents, 	𝑄", 𝑄#, 𝑄;,
will be configured in a Spanning Tree configuration (distributed or decentralized) where the results
are plotted in Fig. 8. The second group with the agents 𝑄<, 𝑄=,𝑄> (centralized in CG settings) will
have the payoff value and the convergency performance plotted, respectively, as in Fig. 9. We kept
the same cost of actions.

Fig. 8. Performance of Cost Distributed Max-Plus algorithm.

Each plot contains four graphical structures along with a convergence threshold. For a
convergence threshold of 0.001, the centralized algorithm achieves the maximum payoff at about
374 iterations while the decentralized algorithm achieves the maximum payoff at about 1023
iterations. However, the distributed algorithm achieves convergence at about 215 iterations while
the centralized algorithm achieves the convergence at about 344 iterations. Also note the different
maximum payoff values. The maximum payoff value for the decentralized case is about 67, while
the maximum payoff value for the centralized scenario is about 74.

 21

Fig. 9. Performance of Cost Centralized Max-Plus algorithm.

The reason why the payoff value is higher in the centralized scenario is that the centralized
coordinator knows and can control the Global Reward (GR) or the payoff with a “global view” of
all agents in the MAS. In the distributed case, local agents have only a “partial view” of the local
environment. We noticed that the convergence of the distributed algorithm for the same number
of agents is faster than the centralized one, however it takes more time to reach GR.

In a centralized setting (central coordinator), the agents are not allowed to exchange
information with each other. A fully distributed coordination approach for MAS could allow local
and correlated decisions for agents that can communicate. With only local rewards, the
decentralized approach achieves less than the maximum network-wide reward that can be achieved
by the centralized case.

In conclusion: (a) we have noticed that the convergence in both settings depends on number of
total actions of agents in the system, (b) the distributed algorithm converges faster than the
centralized algorithm, (c) the centralized algorithm arrives at a maximum payoff before the
distributed algorithm, and (d) the centralized algorithm achieves higher maximum payoff than the
distributed algorithm.

VIII. PROJECT OUTCOMES
This project resulted in a number of publications, which are listed here:

• P. Cotae, M. Kang and A. Velazquez, "A Scalable Real-Time Multiagent Decision Making
Algorithm with Cost," 2021 IEEE Symposium on Computers and Communications (ISCC),
Athens, Greece, September 2021.

o We presented an algorithm for centralized coordination of a multiagent system in which
the team makes a collaborative decision to maximize the global payoff. Our algorithm
can be applied to real-time multiagent decision making problems in a collaborative
setting and includes a cost factor for the planning and execution of actions.

• P. Cotae, M. Kang and A. Velazquez, "A Scalable Real-Time Distributed Multiagent Decision
Making Algorithm with Cost," 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, USA, January 2022.

o We presented a distributed algorithm for a multiagent system in a collaborative setting.
We revised the distributed Max-Plus algorithm by presenting a new Cost Distributed

 22

Max-Plus (CD Max-Plus) algorithm that includes the cost of actions in the interactions
of agents, named Factored Value-MCTS-CD Max-Plus.

• A. Velazquez, B. Montrose, M. Li, J. Luo, M. H. Kang, S. Patra and D. S. Nau, "ACRS4SDN:
An Autonomous Cyber Response System for Software-defined Networks," Defense Technical
Information Center (DTIC), April 2022.

o We introduced ACRS4SDN, a system to monitor for, and quickly respond to attacks
and failures that may occur in a software-defined network (SDN) using automated
acting and planning. We validated the performance of the system through
experimentation on a real SDN across a series of cyberattack scenarios.

• A. Velazquez, J. T. Mathews, R. R. F. Lopes, T. Braun and F. Free-Nelson, "Toward
autonomous cyber defense for protected core networking," 2023 International Conference on
Military Communication and Information Systems (ICMCIS), Skopje, North Macedonia, May
2023.

o We discussed the motivation for adding autonomous cyber defense capabilities to a
type of coalition military network, called Protected Core Networking (PCN), and we
outlined a path toward implementing these capabilities using existing reference
architectures, frameworks, and enabling technologies, in order to adapt autonomous
cyber defense concepts to the PCN context.

• P. Cotae, N. E. A. Reindorf, M. Kang and A. Velazquez, " A Hybrid Collaborative Multi Agent
Decision Making Algorithm With Factored-Value Max-Plus," 2023 IEEE International Black
Sea Conference on Communications and Networking (BlackSeaCom), Istanbul, Turkey, July
2023.

o We presented a real-time multiagent decision-making algorithm that combines a
centralized algorithm and a distributed algorithm, which is especially useful in dynamic
environments where network segmentation is unavoidable. Our algorithm has online,
anytime, and scalable properties.

Additionally, a number of invited talks were given throughout the course of this project:

• M. Kang, "Autonomous Intelligent Resilient Security," presented at the 2nd Annual Technical
Exchange on Autonomous Cyber Defense for Tactical Systems, virtual, February 2022.

• A. Velazquez, "Autonomous Cyber Response for Protected Core Networking," presented to
the NATO Science & Technology Organization (STO) Information Systems Technology (IST)
162 Research Task Group (RTG) on Cyber Monitoring & Detection for Military Systems,
virtual, January 2023.

• A. Velazquez, "Autonomous Cyber Response for Software-defined Tactical Networks,"
presented at the 3rd Annual Technical Exchange on Autonomous Cyber Defense for Tactical
Systems, virtual, February 2023.

• A. Velazquez, " Toward autonomous cyber defense for protected core networking," presented
at the 2023 International Conference on Military Communication and Information Systems
(ICMCIS), Skopje, North Macedonia, May 2023.

 23

IX. CONCLUSION AND FUTURE WORK
We focused on the real-time multi agent decision-making problem with cost factor by using

the Coordination Graphs and Spanning Tree settings. We introduced the Hybrid Cost Max-Plus
algorithm for the first time. Our proposed method, Factored-Value MCTS Hybrid Cost Max-Plus,
is online, anytime, distributed, and scalable in the number of agents and local interactions, which
makes it particularly suitable for real world applications such as cybersecurity [19].

There are many future directions to improve the Global Reward with cost of MAS based on
the locality of agent interactions. One future direction is using the recent advances in Deep
Reinforcement Learning that have demonstrated the great potential of neural networks for function
approximation in handling a large state space.

Another direction is inspired by Game Theory using “regret minimization techniques”. When
the team decides a global optimal action, one or more agents may have “regret” in choosing their
previous actions. Minimizing the counterfactual regret is equivalent to maximizing the Global
Reward. The key idea is that information state qualitatively represents the data changing at a given
node. Yet another direction is the information statistical approach for maximizing the information
from a given state of MAS.

REFERENCES
[1] Choudhury, Shushman, Jayesh K. Gupta, Peter Morales, and Mykel J. Kochenderfer. "Scalable

Anytime Planning for Multi-Agent MDPs." arXiv preprint arXiv:2101.04788 (2021).
[2] Amato, Christopher, and Frans Oliehoek. "Scalable planning and learning for multi agent POMDPs."

In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1. 2015.
[3] P. Cotae, M. Kang and A. Velazquez, "A Scalable Real-Time Multiagent Decision Making Algorithm

with Cost," 2021 IEEE Symposium on Computers and Communications (ISCC), 2021, pp. 1-6, doi:
10.1109/ISCC53001.2021.9631510.

[4] P. Cotae, M. Kang and A. Velazquez, "A Scalable Real-Time Distributed Multiagent Decision Making
Algorithm with Cost," IEEE 19th Annual Consumer Communications & Networking Conference
(CCNC) 2022, pp. 745-746, doi: 10.1109/CCNC49033.2022.9700566.

[5] Kok, Jelle R., and Nikos Vlassis. "Collaborative multi agent reinforcement learning by payoff
propagation." Journal of Machine Learning Research 7 (2006): 1789-1828

[6] Kok, Jelle R., and Nikos Vlassis. "Using the max-plus algorithm for multi agent decision making in
coordination graphs." In Robot Soccer World Cup, pp. 1-12. Springer, Berlin, Heidelberg, 2005.

[7] Vlassis, Nikos, Rainout Elhorst, and Jelle R. Kok. "Anytime algorithms for multi agent decision making
using coordination graphs." In 2004 IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No. 04CH37583), vol. 1, pp. 953-957. IEEE, 2004.

[8] Best, G., Cliff, OLM., Patten, T., Mett, R.R. and Fitch, R., 2019. Dec-MCTS: Decentralized planning
for multi-robot active perception. The International Journal of Robotics Research, 38(2-3), pp. 316-
337.

[9] Wainwright, Martin, Tommi Jaakkola, and Alan Willsky. "Tree consistency and bounds on the
performance of the max-product algorithm and its generalizations." Statistics and computing 14, no. 2
(2004): 143-166.

[10] Landgren, Peter, Vaibhav Srivastava, and Naomi Enrich Leonard. "Distributed cooperative decision
making in multi-agent multi-armed bandits." Automatica 125 (2020): 109445.

 24

[11] Böhmer, Wendelin, Vitaly Kurin, and Shimon Whiteson. "Deep coordination graphs." In International
Conference on Machine Learning, pp. 980-991. PMLR, 2020.

[12] Gupta, Jayesh Kumar. Modularity and Coordination for Planning and Reinforcement Learning. PhD
thesis Stanford University, 2020.

[13] de Nijs, Frits, Erwin Walraven, Mathijs De Weerdt, and Matthijs Spaan. "Constrained multi agent
Markov decision processes: A taxonomy of problems and algorithms." Journal of Artificial Intelligence
Research 70 (2021): 955-1001.

[14] Guestrin, Carlos, Daphne Koller, and Ronald Parr. "Multi agent Planning with Factored MDPs."
In NIPS, vol. 1, pp. 1523-1530. 2001.

[15] Guestrin, Carlos, Michail Lagoudakis, and Ronald Parr. "Coordinated reinforcement learning."
In ICML, vol. 2, pp. 227-234. 2002.

[16] Bernstein, Daniel S., Robert Givan, Neil Immerman, and Shlomo Zilberstein. "The complexity of
decentralized control of Markov decision processes." Mathematics of operations research 27, no. 4
(2002): 819-840.

[17] Revach, Guy, Nir Greshler, and Nahum Shimkin. "Planning for Cooperative Multiple Agents with
Sparse Interaction Constraints." (2020).

[18] Pettie, Seth, and Vijaya Ramachandran. "An optimal minimum spanning tree algorithm." Journal of
the ACM (JACM) 49, no. 1 (2002): 16-34.

[19] Patra, Sunandita, A. Velazquez, Myong Kang, and Dana Nau. "Using online planning and acting to
recover from cyberattacks on software-defined networks." In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 17, pp. 15377-15384. 2021.

[20] Czech, Johannes. "Distributed Methods for Reinforcement Learning Survey." In Reinforcement
Learning Algorithms: Analysis and Applications, pp. 151-161. Springer, Cham, 2021.

[21] Li, Ruoxi, Sunandita Patra, and Dana S. Nau. "Decentralized Refinement Planning and Acting."
In Proceedings of the International Conference on Automated Planning and Scheduling, vol. 31, pp.
225-233. 2021.

[22] Hayes, Conor F., Mathieu Reymond, Diederik M. Roijers, Enda Howley, and Patrick Mannion. "Risk
Aware and Multi-Objective Decision Making with Distributional Monte Carlo Tree Search." arXiv
preprint arXiv:2102.00966 (2021).

[23] Rossi, Federico, Saptarshi Bandyopadhyay, Michael T. Wolf, and Marco Pavone. "Multi-Agent
Algorithms for Collective Behavior: A structural and application-focused atlas." arXiv preprint
arXiv:2103.11067 (2021).

[24] Grover, Divya, and Christos Dimitrakakis. "Adaptive Belief Discretization for POMDP
Planning." arXiv:2104.07276 (2021).

[25] Fioretto, Ferdinando, Enrico Pontelli, and William Yeoh. "Distributed constraint optimization problems
and applications: A survey." Journal of Artificial Intelligence Research 61 (2018): 623-698.

[26] Mahajan, Anuj, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg, Jean Kossaifi,
Shimon Whiteson, Yuke Zhu, and Animashree Anandkumar. "Reinforcement Learning in Factored
Action Spaces using Tensor Decompositions." arXiv preprint arXiv:2110.14

