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1 SUMMARY 

The objective of this project is to conduct fundamental research that will establish the 
communications-theoretic foundations for future Extremely High Frequency (EHF) satellite and 
terrestrial communications. Previous efforts in EHF band communications rely on existing 
communication theoretic approaches that were developed decades ago in the context of mobile 
wireless systems operating in lower frequencies in the Super High Frequency (SHF) spectrum, in 
particular, the so-called “sub-6 GHz” spectrum. This project plans to evaluate the validity and 
applicability of existing physical (PHY) and medium-access control (MAC) layer designs to EHF 
satellite and terrestrial communications systems and conduct fundamental research in identifying 
communications-theoretic foundations for future EHF band communications. 

This report investigates three emerging concepts in wireless communications, intelligent reflecting 
surfaces (IRS), three-dimensional (3D) beamforming, and machine learning (ML) for the EHF 
band systems. All these are viewed as promising techniques to make the milli-meter wave 
(mmWave) terrestrial communications a reality. This project develops these techniques in the 
context of space and airborne communications in which platform mobility is an essential aspect. 
As a result, satellite to ground communications and unmanned aerial vehicle (UAV) 
communications with trajectory planning are investigated as potential applications. 
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2 INTRODUCTION 

As the lower frequency bands in the Super High Frequency (SHF) spectrum (3 – 30 GHz) that are 
traditionally used for most terrestrial and satellite operations become ever more congested, there 
is a great incentive to migrate future protected tactical and strategic military satellite 
communications (MILSATCOM) systems to currently underutilized EHF spectrum (30 – 300 
GHz), also called the mmWave spectrum. However, the mmWave spectrum is also already  
being explored for civilian applications including 5G and beyond 5G (5G/B5G) cellular 
mobile communications, Wireless Gigabit (WiGig) systems, rapidly expanding drone 
communications and vehicular radar and communications making spectrum efficiency 
and coexistence of importance. Add to that the fundamental difference in high attenuation of 
mmWaves compared to their microwave counterparts, there is a need for optimal techniques 
for power and spectrum utilization. 

Not surprisingly, initial attempts in using mmWave band for wireless communications have relied 
on existing communication theoretic approaches that were developed decades ago in the context 
of mobile wireless systems operating in the very high frequency (VHF), ultra high frequency 
(UHF) and super high frequency (SHF) spectrum bands. For instance, the common multipath 
channel models of Rayleigh and Rician fading were primarily motivated through measurements in 
sub-6 GHz systems [1]. Similarly, most existing physical (PHY) and medium-access control 
(MAC) layer designs were motivated by the assumption of equally limited power and bandwidth 
constraints [2]. The mmWave spectrum, on the other hand, allows for potentially large bandwidth 
operation [3]. This raises the interesting question whether new techniques may allow better 
utilization of mmWave spectrum compared to legacy approaches. 

In the case of satellite communications, there is an inherent constraint on power consumption even 
if wideband operation is possible in mmWave frequencies [4-6]. For example, the spectrum 
allocated for satellite services in 81 – 86 GHz and 71 – 76 GHz in W and V bands, respectively, 
allows for potentially GHz-wide signals to support high-rate communications. However, limited 
transmit power combined with the high attenuation of mmWave signals raise the question whether 
reasonable link budgets can be achieved, especially in geosynchronous earth orbit (GEO) 
operation. Even if a system design based on existing PHY and MAC layer designs were to perform 
acceptably, there is the possibility that it may not be optimally utilizing the enormous bandwidth 
available and may not be optimally exploiting the asymmetric bandwidth-power tradeoff. 

Two of the promising new approaches that have gained significant attention in terrestrial wireless 
systems are the intelligent reflecting surfaces (IRS) and three-dimensional (3D), or full-dimension 
(FD), beamforming. The IRSs are passive reflecting arrays whose reflective properties can be 
controlled. Their placement in the channel between the transmitter and a receiver can help modify 
the wireless channel seen by the receiver. One way to make use of them is to control the IRS to 
result in passive beamforming. However, traditional beamforming is limited to a single plane (e.g., 
horizontal plane) and is called 2D beamforming. In contrast, 3D beamforming controls the signal 
beam in both azimuth and elevation. Such 3D beamforming combined with IRSs may be 

2
Approved for public release; distribution is unlimited.



particularly helpful in mmWave communications links due to the potential for focusing transmit 
energy more narrowly towards a desired receiver to counteract their high attenuation. 

The proliferation of drone/UAV systems in recent years has made reliable drone communications 
an important emerging topic of interest. Their applications span a wide range of contexts including 
surveillance, remote sensing, disaster relief and other advanced aerial mobility (AAM) systems. 
Although many of these rely on lower frequencies for the moment, in future they may also be 
benefitted by mmWave communications. Depending on the application, the requirements on drone 
communications systems may vary widely. 

Driven by the recent advances in computing hardware and software, artificial intelligence (AI) and 
machine learning (ML) based protocols have found increasing applications in optimizing the 
performance of many emerging and 5G mobile wireless systems. In this project, we explored 
AI/ML as a potential tool for developing efficient communications and networking protocols. In 
particular, such approaches are extremely appealing in the context of drone/UAV systems where 
autonomous trajectory learning and collaborative behavior can be highly desirable. However, 
online learning has the potential for exposing the system to malicious attacks. The many 
vulnerabilities of ML based communications and network optimization protocols have received 
relatively less attention. In this project, we investigate security and robustness of ML based 
protocols in mmWave communications systems by developing both spoofing techniques and 
possible counter-spoofing approaches. 

3 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 IRS-Aided mmWave Satellite Communications 

The concept of IRS for wireless communications has gained considerable attention in recent years 
due to its ability to fundamentally change the way a communications channel is looked at in 
classical communications theory [7, 8]. Indeed, until now the basic assumption in communications 
system design has been that the channel is beyond the control of the designer and is the 
fundamental constraint [7]. The use of an IRS, however, allows one to control the wireless channel 
to some extent in ways that is not possible otherwise. In particular, a carefully placed and 
controlled IRS can modify the multipath profile seen by a receiver thereby improving the link 
performance [7, 9]. 

It appears that the IRSs can be an ideal technique to enable mmWave satellite communications for 
several reasons [10, 11, 12]. A set of IRSs, appropriately placed near a receiver, can be used to 
improve the received signal power through advanced signal processing techniques [13, 14]. The 
shorter wavelengths of mmWave signals make it possible to deploy compact IRSs consisting of a 
large number of elements, thereby leading to high overall gain. Moreover, the resulting narrow 
signal beamwidths possible with mmWave frequencies can help focus signal energy toward the 
receiver more efficiently [15, 16]. These advantages of IRSs can be instrumental in overcoming 
link budget constraints imposed by limited transmit power on satellite platforms. 
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Figure 1 shows a system made of a satellite transmitter, a ground receiver and a number of IRSs 
(NIRS) located near the receiver. The orientation of an IRS at a particular location, defined by the 
normal vector to that IRS, is important to ensure reception of maximum power at the intended 
receiver. The orientation vectors given in Figure 1 (in black arrows) are defined with respect to 
the local tangent plane (LTP) in the ENU (East-North-Up) coordinate system where the origin is 
located at the middle of the IRS. Therefore, the ith IRS orientation vector is denoted by (1, , ). 
The position vectors given in Figure 1 (in blue symbols) are defined in the ENU coordinate system 
whose origin is considered at the receiver. Therefore, the ith IRS position vector is defined as ( , 

, ) where , , are the distance between the ith IRS and the receiver, the elevation 
angle of the ith IRS and the azimuth angle of the ith IRS, respectively. The transmitter position 
vector is defined as ( , , ) where , , are the distance between the transmitter and 
the receiver, the elevation angle of the transmitter and the azimuth angle of the transmitter, 
respectively.

Figure 1. IRS Installation Around a Ground Receiver

The total power received at the ground receiver Ptot can be written as: = + (1)

where Pd is the power received from the direct path between the transmitting satellite and the 
ground receiver, and is the reflected power received from the ith IRS [9]: 
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= , , ,/  /  , ,/ /  (2) 

where  is the atmospheric gain/loss due to gas and water vapour,  is the satellite antenna 
transmitter gain,  is the ground receiver antenna gain,  is the IRS element gain (assumed to be 
the same for all elements),  is the wavelength of the transmitted signal, = e  is the 
reflectance coefficient of the (n, m)-th element of the ith IRS with the magnitude  and phase 

,  and  are the number of elements of the ith IRS along each axis,  and  are the 
dimensions of an IRS element and ,  and ,  are the distance from the (n, m)-th element of 
the ith IRS to transmitter and receiver, respectively. Moreover, 

, = , , , , , , , , , ( , , , ) (3) 

where , , ,  and , , ,  are the normalized radiation patterns of the IRS and , , ,  and the ( , , , ) are the normalized radiation patterns of the 
transmitter and receiver respectively. As an example, normalized radiation function of each 
element of an IRS can be modeled as [9], ( , ) = cos0     0 (4) 

The IRSs are assumed to be placed closer to the ground receiver antenna. In general, the radiation 
pattern , , ,  can vary with the location of IRS. However, since the location of the 
IRS, satellite transmitter (GEO) and ground receiver are fixed and the distance  is large, , , ,  can be assumed to be constant for the optimization problem. 

3.2 IRS Orientation Optimization Problem for a Single Link 

Consider a communication system with a transmitter having   number of transmit antenna 
elements where     and a receiver having   number of receiver antenna elements 
where    . Let us denote by   the number of elements in the deployed IRS where =  . The numbers of elements in the transmitter antenna's horizontal and vertical
directions are assumed to be  and , respectively. Similarly, ,   and ,  are
defined for the receiver antenna elements and IRS elements, respectively. Receiver antenna 
elements are indexed with the ,  for 0 <  < 1 and 0 <  < 1. Let  =[0 1] and = [0 1] denote the vectors that define the indices of the 
receiver antenna elements in each directions. The received complex baseband signal   ×  can be expressed as: =  + +    (5) 

where   ×   is the received complex baseband signal from the line of sight (LOS) path,   ×  is the received complex baseband signal from the Tx-IRS-Rx path and   ×  is 

Approved for public release; distribution is unlimited.
5



the additive noise. Transmitter and IRS elements are indexed with the ( , ) and ( , ) respectively as in Figure 2, for 0 <  < 1 , 0 <  < 1, 0 <  <1 and 0 <  < 1. Let = [0 1] and =0 1 denote the vectors of indices of the transmitter antenna elements in each 
direction. Similarly, let, = [0 1] and =  0 1 denote the
vectors of indices of the IRS elements in each direction as in Figure 2. 

Figure 2. IRS Angle and Distance Definitions

We may write: =  (6)

and =  ( ) (7)where × is the transmit signal vector, × is the IRS reflecting coefficient vector, × is the LOS channel coefficients matrix from the transmitter to the receiver, is
the transmit symbol power, × is the channel coefficients matrix from the transmitter 
to the IRS and × is the channel coefficients matrix from the IRS to the receiver.

The IRS orientation is important specifically if the locations of the transmitter and the receiver of 
the communication system are not varying with the time (e.g., GEO satellite communication [17]). 
When there is a direct line-of-sight (LOS) link between the receiver and transmitter, received 
power can be further improved by installing an IRS. However, when a direct LOS link between 
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the receiver and transmitter is not available, the effectiveness of the communication system can be 
much higher with the installation of the IRS, since it provides a link between the receiver and 
transmitter (e.g., mobile communication [13]). For both scenarios, improving received signal 
power from the IRS can improve the performance of the communication system. Therefore, the 
LOS direct link between the receiver and transmitter is ignored in the rest of this discussion. 

Let channel coefficient matrix be expressed as: =  (8)

where × is the LOS path gain from the transmitter antenna to the IRS, × is 
the array response vector at the transmitter antenna based on the IRS location, and × is 
the array response vector at the IRS based on receive signal from the transmitter. 

The LOS path gain can be expressed as: 

=  , ,
(9)

where is the transmitter antenna element gain, and are the zenith and azimuth angles of 
the IRS measured from the transmitter as in Figure 2,  and are the zenith and azimuth 
angles of the transmitter measured from the ( , )-th IRS as in Figure 3, ( , ) is the 
normalized beam pattern of the transmitter antenna element, is the distance between the IRS 
and transmitter antenna, , is the normalized beam pattern of the ( , )-th IRS 
element, and , are the IRS element sizes in each directions, respectively.

Figure 3. IRS Angle and Distance Definitions from the ( , )-th IRS

The array response vectors  and can be expressed as: =  ( , , , , , ) (10) 

Approved for public release; distribution is unlimited.
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and =  ( , , , , , ) (11) 

where  and   are the transmitter element spaces in each direction, respectively, and we have 
defined the function e(.) as: ( , , , , , ) =   (12) 

where = 1, ( )( ) / , … , ( )( ) /  (13) 

 and  are the zenith and azimuth angles, respectively, = 1, ( )( ) / , … , ( )( ) /   (14) 

 and  are the number of elements in the vertical and horizontal directions of the 
IRS/transmitter/receiver, respectively, and  and  are the element spacing along the vertical 
and horizontal directions of the IRS/transmitter/receiver, respectively. 

Similarly, let channel coefficient matrix  be expressed as: =   (15) 

where    is the LOS path gain from the receiver antenna to the IRS,   ×   is the array 
response vector at the receiver antenna based on receive signal from the IRS, and  ×  is 
the array response vector at the IRS based on the receiver location. 

The LOS path gain   can be expressed as: 

=  , ,  
(16) 

where G is the IRS element gain,  is the receiver antenna element gain,  and  are the 
zenith and azimuth angle of the IRS measured from the receiver as in Figure 2,  and  
are the zenith and azimuth angles of the receiver measured from the ( , )-th IRS element as 
in Figure 3, ( , ) is the normalized beam pattern of the receiver antenna element,  is 
the distance between the IRS and receiver antenna, ,  is the normalized beam 
patterns of the ( , )-th IRS element, and ,  are the IRS element sizes in each directions,
respectively. 

As before, the array response vector and  can be expressed as: =  ( , , , , , ) (17) 

and =  ( , , , , , ) (18) 
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where  and   are the receive antenna element spacing in each direction, respectively. 

When the transmitter, receiver and IRS are placed adequately far away, the spherical wave emitted 
from the antenna/IRS can be approximated as a plane wave. Hence, the angles defined in Figure 3 
for ( , )-th IRS element can assumed to be the same for each element in IRS. The reflection 
coefficient of the ( , )-th IRS element can be expressed as: =   (19) 

where  is the magnitude of the ( , )-th IRS element and  is the reflection phase 
shift of the ( , )-th element of the IRS. This enables IRS to steer the reflected beam towards 
the receiver antenna. To direct the reflected beam towards the receiver antenna, the reflection phase 
shift of the ( , )-th IRS element need to be set as [9]: = ( ( 1) + ( 1) ) (20) 

where = sin cos  sin cos   (21) 

and = sin sin  sin sin  . (22) 

As seen, the angles used to calculate the  and  depend on the orientation of the IRS. However, 
the optimal phase shifts above result in canceling out each IRS element reflection coefficient with 
the array response of the IRS. Hence, when optimal reflection coefficients are used, the optimal 
IRS orientation does not depend on neither the IRS array response nor the IRS element reflection 
coefficient. 

The beam pattern of an IRS element depends on the material, size, and structure [9, 18]. The 
normalized beam pattern of the IRS element can be represented as ( , ) in the spherical 
coordinate system where  and  are the zenith and azimuth angles from the IRS element to a 
particular transmitting/receiving direction. While there are several possible approximations that 
have been considered for the IRS beam pattern ( , ) one of the most commonly used is the 
following [19]: ( , )  =  10 . ( , ) (23) 

where 

( , ) =  ++         >  (24) 

for 0  <  and 0  < 2 . Note that,  and  are the vertical and horizontal 3 dB 
beamwidths,  and  angles are measured from the IRS to the transmitter/receiver with respect to 
a coordinate system whose origin is at the IRS. The normalized IRS beam pattern is maximized 
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when =  and = . The gain of the IRS element is the amount of power 
transmitted/received from in the direction of peak radiation relative to that of an isotropic radiator. 

Far-field approximation of the angles shown in the Figure 1 are measured with respect to the local 
tangent plane (LTP) east-north-up (ENU) coordinate system where the origin is at the middle of 
the IRS. Figure 3 illustrates the angle definitions of the ( , )-th IRS element. The angles of 
the beam patterns, ,   and ,  are measured with respect to the 
coordinate system whose Z-axis is normal to the IRS surface. As a result, the angles in Figure 2 
depend on the orientation vector of the IRS. Therefore, an optimization problem can be formulated 
to find the optimal orientation of the IRS to maximize the total received power at the receiver. 

The beamformed received signal at the receiver can be written as:  y =   (25) 

where ×   is the receiver beamforming vector. The objective is to maximize the received 
power at the receiver by optimizing the IRS orientation vector, (1, , ) where  is the zenith 
angle of the IRS orientation and  is the azimuth angle of the IRS orientation. However, the 
orientation of the IRS does not influence the received signal from the transmitter-receiver direct 
path. Therefore, maximizing the received signal from the transmitter-IRS-receiver path eventually 
maximizes the total received signal power. Hence, the IRS orientation optimization problem can 
be expressed as:  max , | |  (26) max , p a a diag( ) a a X (27) 

The above optimization function can be simplified and expressed in terms of the angle of arrival 
(AOA) of the impinging signal on IRS elements and angle of departure (AOD) of the reflecting 
signals from the IRS elements. By using maximal ratio combining (MRC) at the receiver and 3D 
beamforming at the IRS and the transmitter, the above maximization of the received power at the 
receiver over orientation angles can be reduced to the following maximization: max,  

(28) 

where ( , , ) =  
(29) 

can be identified as the maximum received power at a location for a given IRS orientation. 

For a specific transmitter and receiver location, it can be shown that there exists a closed-form 
solution for the IRS orientation angle based on the transmitter and receiver locations with respect 
to the IRS. Indeed, the exact solution for the IRS orientation optimization problem (i.e., optimal 
IRS orientation angle) can be derived to be: 
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=   (30) 

and =      . (31) 

Since in the high signal to noise ratio (SNR) region the achievable data rate at a location  can 
be expressed as: ( , , ) = log (1 + ( , , )) log ( ( , , )) (32) 

where ( , , ) = ( , , )/ , (33) 

the above power maximizing solution is also equivalent to maximizing the achievable rate. 

From both numerical simulations and above analytical expression, it is seen that the optimal IRS 
orientation vector always lies between the location vectors of the transmitter and the receiver. 
Hence, the optimal azimuth and elevation angles of the IRS are always in between the 
corresponding angles of the location vectors of the transmitter and the receiver (modulo 2 ). For 
example, let us denote by  the set of azimuth and elevation angles in between the corresponding 
angles of the location vectors of the transmitter and the receiver. Then, the expected received 
power {  } when the IRS is oriented in a random direction between the transmitter and receiver 
location vectors, can be calculated as:  {  } =   (34) 

This can be simplified as: {  } =  ,  ,   (35) 

where   = ,  ,  . (36) 

3.3 IRS Orientation Optimization Problem for Multiple Receiver Locations 

In many practical situations, it might be of interest that the IRS provide improved signal quality to 
users distributed in a desired geographical area. Consider an IRS placed in a particular location to 
improve the receive signal power of users located inside a weak signal strength area,  (due to 
obstacles, for example). We may divide the area  into a total of  number of small areas where 
each small area is approximately equal to the  as shown in Figure 4. 
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Figure 4. An IRS Deployed to Improve Reception Within an Area with Weak Signal 
Strength

Consider a set of receiver locations where is defined as , , , for =1, . . , . Let  , ,  and be defined with similar definition as , and , respectively, 
except the receiver location is now defined as the ith receiver location. The received power at the 
ith receiver location (from the transmitter-IRS-receiver path) can be expressed in terms of the 
parameters , , , ,  and , as: , , = , , , , ( ) , , , (37) 

where , , , , , , , , , and , coefficients correspond to , , , , and
coefficients, respectively, except the receiver location is defined as ith receiver location.

The above equation calculates the received power at the ith receiver location, , , when 
the IRS orientation is (1, , ). The optimization problem to maximize the received power at 
each location can be expressed as: max, , , (38) 

where is the weight factor for the ith receiver based on the user population density and the direct 
link received signal power of the ith receiver location.

Let be the normalized weight vector and × be the achievable rate vector whose 
elements correspond to the  and , , , respectively. Then the IRS orientation 
optimization problem for multiple receiver locations can be written as: max, (39) 

Similar to the single receiver location problem earlier, we may also consider the expected received 
power at receiver locations if the IRS were to be oriented in a random direction in between the 
transmitter location and any point inside the weak signal strength area. Let =  { } be 
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defined as the expected received power corresponds to the i-th receiver location when the IRS is 
oriented in a random direction in between the transmitter location and any point inside the weak 
signal strength area. Therefore, the IRS orientation optimization problem can be formulated to 
maximize the average achievable rate at locations inside the desired area, : ( , ) arg max,  ( ) ( , , )d  (40) 

where ( ) is the weight distribution over the receiver locations based on, for example, the user 
population density and the strength of the direct link. 

We assume that within  users are uniformly distributed over the three-dimensional space defined 
in a cylindrical coordinate system with   ,     and   are 
the cylindrical coordinates of receiver locations with respect to the IRS,  and   are the 
minimum and maximum coverage radius of the   area,  and  are the range of   and  
and  are the minimum and maximum of the   area height with respect to the IRS. For 
simplicity, let us assume that transmitter and receiver locations satisfy < , which 
can easily be generalized (at the expense of notational complexity). If we were to assume that the 
number of users with distance  is proportional to  and but independent of  and , the user 
distribution probability density function (PDF) can be derived to be: ( , , ) = ( )( )( ). (41) 

Since the second derivative of optimal solution equation is negative, the optimal IRS orientation 
can be obtained as the solution to: 

, , {log ( ( , , , , ))} = 0 (42) 

and 

, , {log ( ( , , , , ))} = 0 . (43) 

It can be shown that the solution to above equations are: =  , , { }  (44) 

and =   (45) 

where 

, , { } = + ln ln ( )( ) +
3 tan 3 tan 3 tan + 3 tan  
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tan tan  + tan tan /(3( )( ))
(46) 

We may also consider the expected achievable rate at an arbitrary receiver location within if 
the IRS were to be oriented in a random direction in between the transmitter location and any point 
inside , which can be defined as = {  { }}  where ( , ) is the set of IRS 
orientation angles considered for averaging: = ( , , ) ( , , )    (47) 

This can be simplified as: { } = , ,  (48) 

where = , , . (49) 

3.4 3D Beamforming for mmWave UAV Communications 

Figure 5 shows a communications link between two Unmanned Aerial Vehicles (UAVs). The 
UAV transmitter is equipped with number of transmit antenna elements where 

and the UAV receiver is equipped with number of receiver antenna elements where 
. 

Figure 5. A Communications Link Between a UAV Transmitter and a UAV Receiver
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The numbers of elements in the transmitter UAV antenna's horizontal and vertical directions are 
assumed to be  and , respectively. Similarly,  and  are the numbers of elements in 
the receiver UAVs array in each direction. These receiver antenna elements are indexed as ( , ) 
for 0 <  < 1 and 0 <  < 1. Let  = [0 1] and =[0 1] denote the vectors of indices of the receiver antenna elements in each direction. 
The received complex baseband signal   ×  can be expressed as: =  +  (50) where   ×   is the UAV transmit signal vector,   ×   is the LOS channel 
coefficients matrix from the transmitter to the receiver,   ×   is the receiver noise vector, 
and  is the transmit symbol power. 

The channel coefficient matrix  can be expressed as: =   (51) 

where   ×   is the LOS path gain from the UAV transmitter antenna to the UAV receiver,   ×   is the array response vector at the UAV transmitter antenna based on the UAV 
receiver location, and  ×  is the array response vector at the UAV receiver based on 
received signal from the UAV transmitter. 

The beamformed received signal at the UAV receiver can be expressed as:  y =   (52) 

where ×   is the receiver beamforming vector. Substituting for the channel coefficient 
matrix gives: y =  + (53) 

where LOS path loss  can be represented as: =  , ,  . (54) 

We define the normalized receiver beamforming gain G ,  as:  G , = ( , ) (55) 

3.4.1 3D Beamforming Weight Vector Update Timing 

By supporting a large number of elements in a smaller aperture, mmWave antennas can produce 
highly directional narrow beams. However, even a slight misalignment in such narrow beams 
could result in significant signal loss at the receiving UAV. As a result, due to the mobility of both 
receiving and transmitting UAVs, it is important to maintain the alignment of both beams in order 
to ensure a reliable connection. To accomplish this, beamforming weights have to be updated 
sufficiently fast in accordance with relative movement of the two UAVs. 
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Without loss of generality, let us consider the relative motion of a UAV transmitter with respect 
to the UAV receiver as illustrated in Figure 5 (if both are indeed mobile, one takes the relative 
orientation and the velocity). Let ( ), ( ), ( ) and ( ) be the zenith and azimuth 
angles of the transmitter from the receiver and the zenith and azimuth angles of the receiver from 
the transmitter at time t, respectively, based on coordinate systems placed normal to the receiver 
or transmitter UAV planner antenna array. Similarly, let ( + ),  ( + ), ( +) and ( + ) be the corresponding angles of the transmitter and receiver locations at time + . When the receiver beamforming is performed based on the transmitter location at time t, 

 can be expressed as:  = ( ( ), ( ), , , , ) (56) 

However, the instantaneous  at +  depends on the time + :  = ( ( + ), ( + ), , , , ) (57) 

so that G , = ( , ) ( ), ( ), , , , ( + ), ( +), , , , . (58) 

Suppose that the minimum receiver beamforming gain required at the receiver is , , . Then, 
the maximum tolerable update period  can be obtained based on the receiver gain as: max.  , , ,  . (59) 

Similarly, we define the normalized transmitter beamforming gain G ,  as: G , = ( , ) (60) 

When the transmitter beamforming is performed based on the receiver location at time t,  can 
be expressed as:  = ( ( ), ( ), , , , ) (61) 

As before, the instantaneous   at +  depends on the time + : = ( ( + ), ( + ), , , , ) (62) 

so that 

G , = ( + ), ( + )   ( ), ( ), , , ,( + ), ( + ), , , , . 

(63) 

Suppose that the minimum beamforming gain required at the transmitter is , , . Then, the 
maximum tolerable update period  can be obtained based on the transmitter gain as: 
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max.  , , ,   . (64) 

The transmitter beamforming gain can be simplified as: 

G , = ( + ), ( + )  (65) 

where =  sin ( ) + ( ) cos ( ) + ( ) sin ( ) cos ( )  

(66) =  sin ( ) + ( ) sin ( ) + ( ) sin ( ) sin ( )  

(67) ( ) = ( )  (68) 

and ( ) = ( ) . (69) 

Based on the relative angular velocities ( ) and ( ) of receive UAV with respect to the 
transmit UAV, the optimal  denoted as  to maintain a minimum required beamforming gain, , ,  can be determined. However, due to the form of G , , in general the solution for  can 
not be expressed in closed-form but can only be determined numerically. Moreover, calculation of 

requires the knowledge of the receive UAV trajectory from time  to + , requiring the 
complete knowledge of the relative flight paths of the UAVs. 

As a special case, let us assume that the receiver UAV is moving only in the elevation plane (i.e., ( ) = 0). In addition, we will assume that ( ) = 0 and constant relative angular velocity 
of receive UAV with respect to transmit UAV is . Let  be the corresponds to this 
scenario. In this case, the  to maintain a required minimum transmit beamforming gain of , ,  can be expressed in closed-form as: 

 =   , , ( ( )) ( )
 (70) 

In general, however, the relative UAV movement may not be confined to only the elevation plane 
in a real UAV to UAV (U2U) communication system. When that is the case, even if the complete 
relative flight path of the receive UAV is available, calculating  numerically can still be 
computationally demanding. 
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In some situations, receivers are required to maintain a minimum received signal power to operate. 
Assume that the required minimum received power is  and the transmit UAV power is  . 
The free space path loss can be expressed as: = ,  .  (71) 

For a 2-D antenna array,  = 4 , /   where ,  is the effective aperture of transmit antenna, 
so that = , ,  (72) 

and 

, = ,  . (73) 

From this the threshold value of ,  can be determined based on the UAV receiver location. 
Then, the maximum allowable  can be determined to maintain a required minimum received 
power at the UAV receiver. 

3.4.2 Simplified Solution for 2D and 3D Beamforming Weights Update Period 

The formulation in the preceding section requires the knowledge of the relative trajectories of the 
transmitter and receiver from time t to +  to determine the  at time t, which may not be 
realistic in some scenarios. However, since the AOA of signals can be determined with high 
accuracy, in the following we derive an approximation for beamforming weight vector update 
period that can be calculated based on the present estimates of the receiving UAV’s location and 
speed [20]. 

Let us assume that the transmit UAV antenna is directed at the receiver UAV in bore-sight 
direction as shown in Figure 6. We assume that the transmit beamforming weight vector needs to 
be changed before the receiving UAV moves outside of half-power beamwidth (HPBW) region of 
the transmit antenna array. Figure 7 shows the transmitter beam pattern when the antenna is pointed 
in ( ) = 0 direction.  
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Figure 6. The UAV Transmitter Antenna Beam Pattern and the HPBW

Figure 7. Comparison of  When the Beam is Directed to ( , )
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For a square planner array, in this case the boundary of the half-power beamwidth in 3D signal 
beam will be a circle around the beam-axis (which coincides with the z-axis), as shown in Figure 
7(a). The distance  to move beyond the HPBW line in this case can be expressed as: = . . (74) 

Thus, an approximate update period can be derived as: = .  (75) 

where  is the relative receive UAV velocity component in tangential direction at time . It can 

be seen that: 

=  .  ( )  + ( ) sin ( ). (76) 

When signal beam is directed to a desired ( , ) direction by using 3D beamforming, the shape of 
the boundary line of the HPBW is altered as shown in Figure 7(b). If we were to neglect this effect, 
we may assume that the distance  required to move beyond the HPBW line is approximately 
equal in both scenarios so that . = .  ( )  + sin ( ) ( ) . (77) 

The update period of 3D beamforming weights, , can thus be simplified to: =    ( )  ( ) ( ) (78) 

or =  . ( )  ( ) ( ) (79) 

where ( ) and ( )  are the linear velocities corresponding to ( ) and ( ), respectively. 

3.5 Drone Trajectory Planning with Deep Reinforcement Learning and AI 

With the deployment of 5G cellular systems that use millimeter waves and consequently have 
smaller cell sizes, UAV mounted base stations are a viable alternative to fixed base stations. 
However, owing to their limited radius of coverage and battery constraints, it is not realistic for 
UAVs to hover at a single location and cover all users. Ideally, the UAV must traverse a trajectory 
covering as many users as possible. For a general application scenario, it may not be able to find 
such a trajectory that satisfies a specified optimality criterion. We therefore propose two AI based 
approaches: (1) Deep Reinforcement Learning (DRL) implemented with a Deep Q-Network 
(DQN), and (2) a reward-based “greedy” algorithm. 

Approved for public release; distribution is unlimited.
20



As in [21], a square geographical area of length is divided into number of square cells, each 
of identical size, as shown in Figure 8. An arbitrary, and unknown, number of users are assumed 
to be distributed across this area. The UAV coverage radius is represented by the green circle. The 
blue dots indicate the users. The 41 red crosses represent the possible hovering points. We assume 
that the UAV maintains a fixed altitude precluding the actions of moving up or down. In many 
situations, this may make sense to provide uniform coverage while simplifying interference 
management among multiple UAVs and subscribers. For simplicity, we restrict the UAV to hover 
only in the center and corners of the cells, so that there are 2 + 1 + 1 possible hovering 
points. If we assume that the coverage radius of the UAV base station is /2, where is the side-
length of a square cell, then the UAV base station will be able to provide coverage to any user 
from one of the possible hovering points. 

Figure 8. Illustration of UAV Hovering Geography with Assumed Location at (500, 500) 

We use three approaches to model how users are spread out in the area of interest. First, we assume 
that the users are distributed uniformly and remain static throughout. Second, we assume that the 
users are clustered around certain fixed hotspots. Third, we assume that the users are clustered and 
the cluster means are time-varying. Note that Figure 8 is an example case with 100 users that are 
distributed uniformly over a square area of 2000-m  2000-m. However, the latter models would 
make sense, since users are more likely to be around places like residential areas, offices and 
universities. We model these clusters using the Gaussian Mixture Model (GMM). Each cluster in 
the mixture is parameterized by a cluster weight , cluster mean and variance . The cluster 
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weights represent the probability of users being in each cluster and satisfy the following 
normalization condition: = 1 (80) 

where is the number of clusters. The cluster means = , represent the mean X and Y 
coordinates of each cluster while variances = , represent the spread along X and 
coordinates. Figure 9 shows an example in which the users are distributed according to a GMM 
with four clusters with an equal variance of 100 along each coordinate. 

Figure 9. A GMM User Distribution with Four Clusters

There could also be scenarios in which users are densely clustered around hotspots. We may 
capture this situation by using GMM with clusters having smaller variances. Figure 10 shows the 
distribution of users around eight hotspots. 
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Figure 10. A GMM User Distribution with Eight Clusters and High User Density

However, the GMM with fixed clusters become unsuitable when ground users correspond to 
people commuting to work or school from their homes or troops on the move. To capture mobility 
of users in such scenarios, in our third approach we allow the clusters to move in predetermined 
directions at predetermined speeds. This model can later be generalized to capture more complex 
mobility patterns.

3.5.1 Proposed Methods 1: Deep Reinforcement Learning using DQN

A reinforcement learning algorithm consists of an agent in an environment that takes an action 
at each time step depending on the state of the environment at that time instance represented by 

. The state  is the input to the agent and it describes the environment. Based on the action, for 
each time step, the agent receives a scalar reward . A favorable action yields a higher reward. 
The objective of the agent is to take actions that maximizes the sum of discounted future rewards. 

One way to find such good actions is to use machine learning. According to Q-learning, for 
example, such an action strategy can be learnt by using a look up table called the Q-Table. The 
rows of the Q-Table represent the states and the columns represent the actions. The number of 
columns is equal to the number of actions. However, when the possible space of state-action pairs 
is large, the Q-Table will be too large requiring a larger memory footprint. To mitigate this, neural 
networks (NNs) can be used to approximate the Q-table. However, until recently this approach has 
had only limited success due to convergence issues. A breakthrough was achieved by DeepMind 
in which a deep Q-network (DQN) was used as the function estimator [22]. By utilizing an 
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experience replay memory and a target network, the DQN approach has been shown  
to successfully learn a Q-function approximation in many reinforcement learning applications 
[23, 24].

Since the state is the input to an NN, the state must be chosen carefully to encapsulate the 
information about the environment. We propose two candidates: The first state, shown in Figure 
11, consists of a matrix whose elements consist of number of users covered at each hovering point 
along with the location of the UAV and the energy remaining in the UAV. The second candidate 
for state, shown in Figure 12, has the UAV’s location, number of users covered at that time instance 
and the energy remaining along with the same information from nine previous time steps. The 
former was used as the state when the user distribution was random and static whereas the latter 
was used when the user distribution was modelled as a Gaussian mixture. 

Figure 11. A State That Consists of the UAV’s Location, the Remaining Energy and the 
Number of Users Covered at Each Hovering Point 
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Figure 12. A State That Consists of the UAV’s Location, the Energy Remaining in the 
UAV, the Number of Users Covered for Time Instance ‘t’ Along with Same Information for 

Nine Previous Time Steps

We propose two candidates for the reward function. The first reward function, which was used for 
the case with uniform user distribution, is given below [25]:= + × ( ),    if 1× ,                     otherwise (81) 

where {0,1} for {1, … . } and  is the Jain’s fairness index [26] given by: = ( )( ( ) ) (82) 

and is a penalty that is added to discourage the agent from taking an action that results in the 
UAV flying out of the square area. 

The second reward function that was developed during this project is used when the user 
distribution was modelled as a GMM: = + (| | | |) + +  (83) 

where denotes the set of indices of the users that have been covered up to time t so that (| || |) is the number of new users covered during the -th time step, {0,1} denotes whether 
the hovering point at ( , ) was visited previously or not and is a scaling factor. The 
reinforcement learning algorithm for updating the neural network used to approximate the Q-
function is shown in Figure 13 [22].
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Figure 13. The DQN Algorithm

3.5.2 Proposed Method 2: Reward Based Greedy Algorithm

The second approach for action selection uses a reward-based greedy algorithm: at each time step, 
the UAV takes an action that yields the maximum instantaneous reward. This greedy action 
selection does not consider whether the selected action can have negative consequences on the 
long run. However, compared to DQN based ML approach, the greedy algorithm maybe 
implemented with much lower computational complexity. Future research will focus on further 
development and implementation of the greedy algorithm.

3.6 Security and Robustness of Machine Learning Based Trajectory Planning Systems

Although reinforcement learning is an attractive approach for solving optimization problems such 
as resource allocation and trajectory planning for which analytical solutions are hard to obtain, 
these systems can be vulnerable to adversarial attacks. In particular, when the inputs to these 
algorithms are modified either by accident or with a malicious intent, the performance could be 
degraded significantly. It is of interest to investigate such vulnerabilities and develop mitigation 
methods to counteract them. 
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In this section, we assess the robustness of reinforcement learning (RL) based resource allocation 
algorithms to a particular class of adversarial attack known as the Sybil attack. Sybil attack aims 
to undermine the fairness of a system by creating large pseudonymous identities to gain a 
disproportionate advantage. We consider a similar setup as in the previous section with addition 
of data requirements for ground users in addition to just coverage. We also impose stricter 
conditions on the number of users the UAV Base Station (UAV-BS) can simultaneously cover and 
introduce path-loss models to account for losses introduced in the wireless medium.

Consider a finite ground area with an unknown but fixed number of distributed users. A UAV-BS 
is assumed to fly at a fixed altitude and can take nine possible actions (i.e., moving in directions 
S, N, E, W, NE, NW, SE, SW or remain stationary). Once a direction is selected, the distance the 
UAV travels in that direction is assumed to be fixed at each time step. The objective of the UAV-
BS is to discover as many ground users as possible and relay their data. The maximum number of 
users the UAV-BS can handle simultaneously is assumed to be fixed. The maximum number of 
users it can simultaneously handle is assumed to be fixed. At any given location, if the number of 
users exceeds this limit, the user requests are held in a first-in-first-out (FIFO) queue. To discover 
the presence of subscribers, the UAV-BS transmits a beacon signal requesting users in the vicinity 
to announce their presence with a response signal which consists of a user ID, and optionally the 
type of service they are requesting (i.e., data and voice). At any location the UAV will spend a 
maximum of time units until hearing a response from at least one ground user. If at least one 
ground user does respond within time limit, the UAV stays at that location for a maximum of 

time units, where , providing coverage to users within its footprint on the ground. This 
handshake mechanism between the UAV-BS and user is illustrated in Figure 14. 

Figure 14. Detection of Ground Users by the UAV-BS
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To ensure fairness, even if the first ground user responds at time 1, the UAV will stay at that 
location only for + 1 time units. We model the response time of ground users as an 
exponential distribution with mean . Note that the exponential distribution has been shown to be 
a good probabilistic model to estimate packet arrival times [27]. 

The high throughput, directivity and low latency properties of the mmWave frequency band makes 
it an excellent choice for communications between the UAV-BS and the ground users. For 
example, a 5G link at 28 GHz has been shown to achieve a data rate of 1 Gbps and sub-millisecond 
(ms) latency [28]. Moreover, the mmWave spectrum may be better suited for UAV 
communications due to the ability to support LOS links with narrow signal beams. We assume a 
simplified path loss model for communication between the UAV-BS and the ground users which 
has been used for mmWave frequency bands at 28 GHz and 73 GHz: = (84) 

where  and  are received and transmit power by the UAV and user equipment, respectively,  
is a unitless constant that depends on the antenna characteristics and the average channel 
attenuation,  is a reference distance for antenna far field, and  is the path loss exponent [29]. 

The required SNR for the user equipment to operate is modelled by assuming noise to be Gaussian 
with unit variance so that the SNR can be written as:  [ ] = 10 log  (85) 

For simplicity, all ground users are assumed to use similar equipment for transmitting and 
receiving data, so that transmit powers of all devices can be assumed to be the same. With this and 
the free space path loss model given by the equation above, the UAV is able to calculate the 
approximate distance between itself and the ground user. We assume that the total system 
bandwidth is divided into a set of frequency channels so that each user gets a fixed bandwidth. 
This imposes a limit on the maximum number of users who can be serviced simultaneously by the 
UAV-BS. The users are serviced based on their response times so that users who responded first 
to the beacon signal are given priority. There is a maximum limit on the amount of data each user 
can transmit to prevent misuse and cause unintentional denial of service (DoS) attacks similar to 
how Internet Service Providers (ISPs) throttle bandwidth after exceeding a threshold [30]. Users 
whose responses were late, users who still have data to transmit and users who have exhausted 
their maximum bandwidth are all placed in a queue. Requests from users who have exhausted the 
bandwidth, are entertained only if the UAV-BS is operating below its maximum capacity. The 
battery decay of the UAV-BS is assumed to be proportional to the flying time since more power 
is required to keep the UAV in the air [31]. The amount of data each user generates may be 
modelled as a gamma distribution or as a Generalized Extreme Value (GEV) distribution whose 
PDF is [32]: ( ; , , ) = ( ) ( ) (86) 

where ( ) is given by 
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( ) = (1 + ) ,    if 0( ), if = 0 (87) 

The UAV-BS utilizes the user density learned based on the amount of received responses and the 
bandwidth demand at locations to determine a trajectory that maximizes distinct user coverage 
using a DQN-implemented reinforcement learning algorithm. The objective of the adversaries in 
this system is to disrupt and degrade the coverage provided by the UAV-BS. To accomplish this, 
the adversaries create groups of fake users and high bandwidth demands from these nonexistent 
users to trick the learning algorithm into wasting the UAV-BS’s energy on these counterfeits. The 
attackers are assumed to be capable of transmitting data at a range of power levels while the UAV-
BS assumes ground users transmit signals at a fixed power. This allows the adversaries to spoof 
their locations by simply altering their transmit power. During the training phase of determining 
an optimal trajectory, the UAV-BS is unaware of the locations of the ground users. The adversaries 
exploit this by placing fake users at strategic locations. At the beginning of each training epoch, 
adversaries place fake users and observe the flight path of the UAV-BS and then use this 
information in turn to place fake users at locations that are more likely to be visited by the UAV 
in future, rendering the learnt trajectories by the UAV-BS ineffective. It should be noted that each 
adversary decides the position of fake users (which it generates) independently of others. 

The UAV uses a DQN-implemented RL to determine an optimal strategy that discovers as many 
ground users as possible while simultaneously maximizing the total amount of data relayed. The 
state input to the DQN at time instant is made of the coordinates of the UAV locations ( , ), 
the number of users detected at each location ( ), the battery life of the UAV ( ), a value that 
indicates whether that location was visited previously ( ) and the number of users waiting in 
queue at that location ( ) along with the same information for a fixed number of previous time 
instances as shown in Figure 15. 

Figure 15. The State of the UAV-BS at t-th Time Step

At any given instance , the UAV-BS can choose one of the nine possible actions in the action 
space. The actions available to the UAV-BS correspond to staying at the same location and the 
fixed directions in which the UAV can move: {N, S, E, W, N E, N W, SE, SW, be stationary}. 
The reward function for time step for the UAV which quantifies the quality of the selected action 
is proposed to be:
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= (| | | | + 1) ,     if 0+       otherwise (88) 

where | | is the set of users covered until the t-th time instant. Thus | |  | | is the number 
of new users who had not been previously covered,  is the amount of data handled at the t-th 
instant for all users,  is the maximum allocated bandwidth limit for each user,  is a scaling 
factor, {0,1} denotes whether the location was visited previously, and  is a penalty for 
moving out of the coverage area of interest. 

The objective of the adversaries is to reduce the number of genuine users discovered and serviced 
by the UAV-BS. To accomplish this, each adversary creates  number of fake users with 
spoofed locations which in turn is achieved by changing the transmit power appropriately. The 
spawning radius of an adversary is defined to be the maximum distance within which fake users 
can be placed. To define the action set of an adversary, the circular area determined by the 
spawning radius is divided into square grids as shown in Figure 16. At each time instant, the 
adversary’s decision problem is to determine the grid cell in which to place the fake users. Once 
the grid cell is selected, the fake users within it are to be distributed uniformly. Thus, the 
action space for the adversary is the possible locations where the fake users can be placed and is 
equal  to the number of grid cells within its spawning radius. Note that, the actions are scalars 
meaning that each value denotes a corresponding grid cell. In Figure 16, the blue dots indicate 
genuine users, the four black hexagons represent the four adversaries, the four orange circles, 
each of radius 250 units, correspond to the spawning radius of each adversary, the green squares 
denote the grid cells and the red stars represent the created fake users. In this case, each 
adversary can choose one of the 25 possible grid cells in which to place fake users as its action. 
It is assumed that the position of an adversary is fixed and that it always spawns  
number of fake users. Note that, an adversary may estimate the coordinates of the UAV by 
combining the a priori information of its altitude with an estimate of signal angle-of-arrival 
(AOA). When an adversary is too far from the UAV-BS, we assume that it may receive this 
information from other adversaries via information sharing. 

30
Approved for public release; distribution is unlimited.



Figure 16. A Square Area with Genuine and Fake Users

Figure 17 shows the proposed state of an adversary at epoch for the -th adversary. It consists 
of information about the UAV-BS trajectory and the location of fake users during epoch 1. 
The first column contains the location centered around which the fake users were placed( , ) and the corresponding grid cell index . In the example scenario of Figure 16, {0, … ,24}. Columns 2 to + 2 consists of the locations visited by the UAV-BS ( , )
and the time spent at each of those locations ( ) where {0, … , } if the epoch ended after 
time steps. Note that, since energy consumed by the UAV-BS is assumed to be proportional to the 
flying time and the UAV-BS may spend anywhere between  and time units at any given 
location, the number of time steps in an epoch is not fixed. However, since the UAV-BS spends at 
least  time units at any given location, the maximum number of time steps in an epoch is fixed. 

Figure 17. The State Matrix of the k-th Adversary at Epoch e

Each adversary is controlled by an independent DQN and the decision of each adversary is 
independent of the other. The state input to the DQN of adversary at epoch consists of the 
location and the corresponding grid ( , , ) where fake users were placed and the 
trajectory of the UAV-BS ( , , )   ( , , ) along with the time spent at each location 
during epoch 1 as shown in Figure 17. 
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The reward function of the adversaries is made to be proportional to the number of fake users 
covered. Hence, the reward at epoch of -th adversary is proposed to be: = (89)

where {0,1} denotes whether or not the -th fake user generated by the -th adversary was 
serviced by the UAV-BS or not. 

4 RESULTS AND DISCUSSION

4.1 IRS-Aided 3D Beamforming for mmWave Communications 

In this section, we provide numerical results that shows the importance of optimizing the IRS 
orientation. To highlight the variation in the received power with respect to the IRS orientation, 
IRS beamforming and transmitter/receiver beamforming are performed at the respective ends for 
all case studies.

First, consider a simple case study with an IRS placed near the receiver. The IRS consists of a total 
number of elements 250 × 250 whose element size in each direction is (i.e, =  and =

). The IRS is placed at a position of  100-m, = 60°, = 140° and the transmitter is 
placed at a distance of 800-m from the receiver. Moreover, = 120° , = 325°  and =20°, = 70° are the position angles to the receiver and transmitter from the IRS, respectively.
By using the derived analytical solution, the optimal IRS orientation angles were computed to be = 62° and = 348°. On the other hand, Figure 18 shows the variation of the received power 
from the Tx-IRS-Rx path with the IRS orientation angles as computed through numerical 
calculations. Figure 18 shows that indeed the received signal power is maximum when the IRS 
orientation matches the optimal IRS orientation angles obtained by the analytical solution. 

Figure 18. Variation of the Received Power in Watts from Tx-ITS-Rx Path with and 
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Figure 19 shows the received power variation as a function of the distance between the receiver 
and the IRS when the IRS is oriented (a) optimally, (b) randomly, and (c) randomly in between 
the transmitter and receiver location vectors (i.e., { }). Figure 19 shows that the difference 
between the expected received power when the IRS orientation is completely random and when it 
is optimal is significantly large. For the given example, it is seen to be about 21.79 dB. Moreover, 
as can be seen from Figure 19, the expected received power difference between the optimal IRS 
orientation and { } can also be significant. For the given example, it is about 13.82 dB. 

Figure 19. Variation of the Received Power from Tx-ITS-Rx Path for a Specific Location 
Tx and Rx With Respect to the 

In the next example, we consider an IRS placed near the ground receiver of a GEO downlink 
operating on frequency of 74 GHz. The IRS is placed at a position of -m, = 60 , =145 whereas the GEO satellite is at an altitude of 36000-km. Moreover, { = 120 , =325 }  and { = 20 , = 70 } are the position angles to the ground receiver and satellite 
transmitter from the IRS, respectively.

As before, we assume an IRS with a total number of elements of 250 250 with each element size 
of =  and = . Figure 20 shows the variation of power received from the IRS as a function 
of the orientation of the IRS. As can be seen from Figure 20, the ground receiver received 
maximum power through the IRS when the orientation of the IRS is { = 62 , = 348 ). We 
note that this is exactly the same as the analytical solution.
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Figure 20. Variation of the Received Power as a Function of Orientation Angles, ,
Figure 21 shows the optimal orientation angles of the IRS for the above example. It is seen that 
indeed the optimal orientation angles of the IRS lie between the corresponding angles of the 
locations of the ground receiver and the satellite transmitter.

Figure 21. The Optimal IRS Orientation Angles
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4.2 Coverage area Optimization

To highlight the variation in the achievable rate with respect to the IRS orientation, IRS 
beamforming and transmitter/receiver beamforming are performed at the respective ends. The BS 
location with respect to the IRS location is assumed to be -m, = 30°, = 50°. For 
this case study, the low signal strength area is assumed to be defined by 25-m  50-m, 110° 130°, and -30-m  -50-m (with respect to an ENU coordinate system at 
the IRS).

Figure 22 shows the average received power from the transmitter-IRS-receiver path for receivers 
located in the low signal strength area with respect to the IRS orientation angles. As can be seen 
from Figure 22, the maximum power is delivered to the selected low signal strength area when the 
IRS orientation angle is ( °, =95°) which matches the analytical solution given in the 
previous section.

Figure 22. Average Received Power in Selected Area from Tx-ITS-Rx Path for a Specific 
Tx Location 

Figure 23 shows the received power variation as a function of the average distance between the 
receiver and the IRS when the IRS is oriented (a) optimally, (b) randomly, and (c) randomly in 
between the transmitter and receiver location vectors (i.e., ).
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Figure 23. Average Received Power in Selected Area from Tx-ITS-Rx Path for a Specific 
Tx Location with Respect to the Average Distance 

As shown in Figure 22 and Figure 23, there is a 10.9 bps/Hz achievable data rate improvement 
with the optimally oriented IRS compared to the randomly oriented IRS. As before, the optimal 
IRS orientation angle is always obtained in between the low signal strength area and the BS 
transmitter. If we denote the set of IRS orientation angles that lie between the low signal strength 
area and the BS transmitter by , it is seen that there is 8.1 bps/Hz achievable rate improvement 
when the optimal IRS orientation is used as opposed to when the IRS orientation is set to be along 
an arbitrary direction in set . 

Figure 23 also shows the average achievable rate with the average distance { ( )} to the 
weak signal area  from the IRS. According to Figure 23, the maximum average achievable rate 
in is achieved when { ( )} is approximately 110-m for the above considered case study. 
Hence, when the position of the IRS is fixed, there exists an { ( )} that maximizes the 
average maximum achievable rate. As a result, the IRS position can also be optimized to maximize 
the average achievable rate at locations within .
4.3 Beamformer Weights Update Period Simulation

First, to investigate the accuracy of the derived using only the information available at 
time t, consider a UAV transmitter and a receiver where the receiving UAV is initially located at ( ) = 0 and is traveling in a tangential direction to the normal vector to the transmit antenna 
array. Based on the receiver location and velocity, the beamforming weight vector update timing 
can be calculated using . On the other hand, the time it takes for it to cross the HPBW
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range of the transmitter UAV is the  computed by taking into account the actual trajectory of 
the receive UAV. We may define the error due to the approximation as . 
Figure 24 shows the variation of  with respect to HPBW of the transmit antenna at different 
relative speeds of the receive UAV. As can be seen in Figure 24, the error due to  increases 
as the HPBW of the transmit antenna increases. This can be attributed to the fact that the tangential 
velocity at time t only holds for time  to +  if the arc length is small in Figure 6. However, 
note that Figure 24 is based on the assumption that the RX UAV travels in a fixed direction during 
time t to + . In practice, this may not be true and the choice of tangential direction may impact 
the performance obtained using  as we will show in later results. 

 

 
Figure 24. Variation of Error Between Exact and Approximate  with Respect to the 

HPBW of an Antenna 

 

Next, we investigate the behavior of with respect to the operating frequency and determine an 
effective method to calculate  in a given scenario. Recall that wt needs to be updated 
within  time to maintain the normalize beamforming gain G , > , , . We assumed that 

the antenna aperture is fixed at 100-cm2, , ,  0.5,   = 0.5 ,   = 0.5, r  30-m, and the 
relative speed of the receiving UAV in a tangential direction with respect to the transmitter is v 
10 ms-1 [33] This corresponds to a relative angular velocity of the receiver with respect to the 
transmitter = 0.33 rad/s. 
Note that the maximum aperture of the transmit antenna can be approximated by the physical area 
of the antenna, , = ,  where ,  denotes the physical area of the transmitter antenna [16]. 
Since ,  of the antenna can be expressed as , = (M 1) M 1 , for a fixed 
aperture antenna, the number of antenna elements increases as the frequency increases. Hence, for 
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a fixed aperture antenna, the radiation pattern beamwidth becomes narrower when operating 
frequency increases. Therefore  decreases with increasing frequency as shown in Figure 25. 

Figure 25. Beamforming Update Time Period Variation with Frequency for Different 
Receiver Locations with Fixed Transmitter Aperture 100-cm2,  = 0.33 rad/s, and r = 30-m 

Figure 25 also shows the variation of  with the operating frequency when different initial 
elevation positions are assumed for the receive UAV. Recall from Figure 7b that the shape of the 
boundary line of the HPBW changes with the change in transmit beam direction. Therefore,  
varies depending on the position of the receive UAV at time t according to the expression for . 
Figure 25 illustrates that is smaller  when the transmitter orientation is aligned with receive 
UAV so that ( ) =0, than when they are not (i.e., ( ) 0). 

Smaller  requires frequent transmission of overhead training bits. Let us consider the same 
scenario as that in Figure 25. Figure 26 shows the dependence of the ratio of the overhead bit rate 
to the bit rate on the operating frequency. Clearly, the relative overhead is lower at higher 
frequencies even with frequent weight updates. 
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Figure 26. Ratio of Overhead Bit Rate and Available Bit Rate 

4.3.1 2D UAV Network Simulation 

To investigate above findings in an actual UAV communications system, next we consider two 
UAVs flying over a square area of side-length 1-km divided into 50  50 identical square cells 
[34]. Without loss of generality, we may assume that the UAV transmitter is fixed at the center of 
the square area, while the UAV receiver moves around it. At each step, it moves from one cell 
center to the nearest cell center. With this model, the movement of the receiver UAV is restricted 
to eight directions namely: North, North-East, East, South-East, South, South-West, West and 
North-West. Let  denote the -th possible movement direction, for 1 8, and = { , 18} denote the set of possible directions a UAV is allowed to move. It is assumed that the UAV 
receiver travels between the cells at the constant speed of = 10 , the antenna aperture is , = 100-cm2 and the operating frequency is 60 GHz. 

Figure 27 shows the variation of the beamforming gain, , , with respect to time as the receiver 
moves around. As shown in Figure 27, the  results in beamforming weights getting 
updated about 1532 times within 240 seconds of simulation time. In those 1532 instances, the 
beamforming gain drops 10 times below the half power required according to , ,  0.5. On 
the other hand, according to the , the beamforming weights only needed to be updated 153 
times and it completely avoids beamforming gain dropping below half power level, as can be seen 
from Figure 27. 
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Figure 27. Variation of the Normalized Beamforming Gain with Time when Using and 

In our UAV system simulation, we assume that at each location the receiver selects a travel 
direction on its own. Hence, the transmit UAV only knows the current location of the UAV 
receiver but not which direction it may travel next. Clearly, the required depends on the travel 
direction (Action) selected by the UAV receiver. Since the transmit UAV knows that the UAV 
receiver’s movements are restricted to the possible 8 directions in the action space, a possible 
solution is to use the average  averaged over all possible 8 directions as the update time period. 

Figure 28 shows the beamforming gain , over time when = { ( )} where {}
denotes the expectation assuming all directions are equally likely. Using this method, the 
beamformer weights are updated 379. As can be seen from Figure 28, the beamforming gain drops 
below 0.5 for 148 seconds during the total 700 seconds of simulation time (i.e., 22% from the total 
simulation time).
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Figure 28. Variation of the Normalize Beamforming Gain with Time When Using 
Approximate Equation in the Simulation Model when = { ( )}

An alternative is to use = { ( )} where minimum is over all possible 8 directions. 
Figure 29 shows the beamforming gain , over time when = { ( )} is used. 
During the total simulation time, the beamformer is now updated 974 times. However, as Figure 
29 shows, the beamforming gain drops below 0.5 only for 0.02 seconds (i.e., 0.002% from the total 
simulation time), a significant improvement over average criterion.

Figure 29. Variation of the Normalize Beamforming Gain with Time When Using 
Approximate Equation in the Simulation Model when = { ( )}
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Figure 30 examines the distribution of the time durations during which beamforming gain drops 
below the required threshold of , > 0.5 when = { ( )}. As can be seen from Figure 
30, the time duration of beamforming gain dropping below the required threshold has a mean of 
about 208 seconds (over the total simulation time of 700 seconds). 

Figure 30. Histogram of Total Time Duration Where ,  Drops Below 0.5 When =( )
Figure 31 and Figure 32 show the comparison of histograms of the number of times beamformer 
gets updated during simulations for each of the calculation methods. When ={ ( )}, the beamformer weights are updated more frequently than when ={ ( )}. However, it reduces the time duration where , < 0.5 to almost zero during the 
simulation time.
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Figure 31. Histogram of Number of Beamformer Weights Update Times When ={ ( )}

Figure 32. Histogram of Number of Beamformer Weights Update Times When ={ ( )}
4.3.2 3D UAV Network Simulation

To further investigate the implications of above findings in a U2U communication system, let us 
consider a 3D geographical area of 1-km  1-km  100-m divided into 50  50  10 cuboids of 
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equal size. Assume that the transmit UAV is located at the center of the cuboidal geographical area 
and the receiving UAV is moving from the center of a cuboid cell to that of its nearest cell. This 
model restricts the movement of the receive UAV to a maximum of 26 directions in 3D space. Let 

 denote the -th possible movement direction, for 1 26, and = { , 1 26} denote 
the set of possible directions a UAV is allowed to move. In simulations, we assume that the receive 
UAV travels at a constant speed of 10 ms-1 transmit UAV antenna has an aperture of ,  
100-cm2 and the operating frequency of 60 GHz. Since 2D network scenario considered previously
shows that the number of times where the beamforming gain drops below , < 0.5 is minimized
by updating  according to = { ( )}, in the following we limit ourselves to this choice.

Figure 33 shows the variation of ,  with time when using  and  for updating . 
Note that,  is calculated using information on full trajectory of the receiving UAV. Hence, to 
obtain a fair comparison  is also calculated using the information on present location and 
velocity of the receiving UAV. In Figure 33, the use of   results in updating  
approximately 532 times within the 240 seconds long simulation time. In those 532 instances, ,  
drops below the minimum threshold 9 times. With the use of optimal , on the other hand,  is 
updated only 53 times during the simulation time and, as expected, never results in ,  dropping 
below the minimum threshold. This confirms that having the knowledge of the entire flight path 
of the receive UAV reduces the frequency of  updates. However, from now on we will use 

 to update  due to unavailability of receive UAV flight path in a realistic U2U 
communications network. 

Figure 33. Variation of ,  with Time When Using Approximation  and Optimal 
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At any given time t, the receive UAV may choose to stay at the current location itself or move in 
one of the possible 26 directions. Clearly, the required update time will depend on this 
selection, but it is unknown a prior to the transmit UAV. In this case, we consider receive UAV 
travels 350 steps which is approximately 950 seconds in each simulation. Figure 34 shows the 
variation of ,  during the simulation time when = { ( )} where ( )
is the computed assuming that the receive UAV selects direction . During the 
simulation time, is updated 1023 times with this approach for computing t but ,  drops 
below  , , only for 0.005 seconds which is 0.0005% in total simulation time. Alternatively, 
if = { ( )} is used, where {} denotes the expectation assuming all directions 
are equally likely, it increases to 5.2% of the total simulation time as shown in Figure 35 but 
reduces the number of update times.

Figure 34. Variation of the Normalize Beamforming Gain ,  With Time When Using = { ( )} in 3D Simulation Model
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Figure 35. Variation of the Normalize Beamforming Gain ,  With Time When Using = { ( )} in 3D Simulation Model

For histograms in Figure 36, Figure 37, and Figure 38, we used 200 simulations for each 
calculation method. Figure 36 shows the histogram of time duration when , < , ,  in 
simulations with = { ( )}. The average time duration of , < , , in 
simulations is 254.8 seconds when = { ( )}. It was also observed that the average 
time duration of , < , , is negligible (close to zero) if we were to use ={ ( )}. However, this requires faster beamforming weighs which leads to increase 
of overhead bitrate. 

Approved for public release; distribution is unlimited.
46



Figure 36. Histogram of Total Time Duration Where ,  Drops Below 0.5 When ={ ( )}

Figure 37. Histogram of Number of Beamformer Weights Update Times When ={ ( )}
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Figure 38. Histogram of Number of Beamformer Weights Update Times When  =  {  ( )}

To examine the increment of the overhead bitrate, Figure 37 and Figure 38 illustrate the frequency 
distribution of  update in simulations. It clearly shows that the average of  update increase 
72.6% if we were to use  = { ( )}. Hence, overhead bitrate increases 72.6% in 
comparison to using  = { ( )}. 

Comparing Figure 37 and Figure 38, we note that the number of times beamforming weights are 
updated is comparatively lower when  = { ( )} is used. However, this results   
in beamforming gain dropping below the required threshold for a significant amount of time. 
In contrast, when  = { ( )} is used, the number of updates can be much higher, but 
it improves the overall performance by avoiding violation of the minimum beamforming 
gain requirement.

In summary, when  = { ( )}, ,  drops below the minimum threshold more 
frequently. However, the frequency of  updates is comparatively lower. In contrast, when  = { ( )} the frequency of  updates is comparatively higher but ,  rarely drops 
below the minimum threshold resulting a stable connection. 

4.4 Optimal UAV Trajectory Planning

Figure 39 shows the performance of the two proposed methods compared to the random action 
selection strategy when the users are static and uniformly distributed over the area of interest. For 
comparison, a Q-table based reinforcement learning approach used in [24] is also shown in Figure 
39. The number of distinct ground users covered was used as the metric to assess the performance 
of the proposed methods. From Figure 39, it can be seen that the proposed methods using DQN
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and the reward-based greedy algorithm are able to cover significantly more numbers of users in 
contrast to random action strategy as well as the previous state of the art approach. Specifically, 
the proposed methods seen to cover roughly about twice as many users as the previous approach 
of [24].

Figure 39. Number of Users Covered for Varying Number of Total Ground Users 
Uniformly Distributed Over the Area of Interest

Figure 40(a) shows the average number of distinct users covered by the proposed DQN method
(using a convolutional neural network, i.e., DQN-CNN), proposed reward based greedy method, 
and random action method -- when the distribution of users was modelled as a Gaussian mixture 
with four and eight clusters. It should be noted that in both the cases the total number of ground 
users was 100. Figure 40(b) shows the variance in number of users covered by the methods. 

(a) (b)

Figure 40. Average and the Variance of Number of Users Covered Using Proposed 
Methods When Users are Distributed According to Gaussian Mixtures
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Figure 41(a) shows the probability of covering more than a given number of users by the UAV 
when users are distributed according to Gaussian mixtures. In other words, if denotes the number 
of users covered, Figure 41(b) shows the Complimentary Cumulative Distribution Function 
(CCDF) of defined as  ( > ) (here, P denotes “probability”). 

(a) (b)

Figure 41. CCDF of Number of Users Covered When Users are Distributed According to 
Gaussian Mixtures

Figure 42 shows the corresponding results when the distribution of users was modelled as a 
Gaussian mixture with four and eight clusters but with more densely located users. As before, the 
total number of ground users was 100. 

(a) (b)

Figure 42. Number of Users Covered and the Variance in Number of Users Covered with 
Densely Packed Users Distributed According to Gaussian Mixtures
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Figure 43 shows that both the proposed DQN and the reward-based greedy methods are capable 
of covering more than 40 users with very high probability. Moreover, both proposed methods 
significantly outperforms the random action selection approach. 

(a) (b)

Figure 43. CCDF of Number of Users Covered When Users are Densely Packed and 
Distributed According to Gaussian Mixtures

Next, we considered the case in which users are modeled as being mobile. In this case, the cluster 
means of the GMM were allowed to be time varying. Since the position of users at a given time 
instant is correlated with their previous locations, a Recurrent Neural Network (RNN) was used as 
the DQN. Figure 44 and Figure 45 show the average numbers of users covered and the CCDF of 
the numbers of users covered. 

Figure 44. Number of Users Covered When Users are Mobile and Distributed According to 
Gaussian Mixtures
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(a) (b)

Figure 45. CCDF of Number of Users Covered When Users are Mobile and Distributed 
According to Gaussian Mixtures

Figure 45 shows that the proposed DQN and rewards-based greedy methods are still able to cover 
more than 40 users with very high probability. Moreover, from Figure 45 we may see that  
the proposed DQN based method which uses RNN seems to outperform the DQN with a 
convolutional neural network (CNN) in terms of covering more ground users when the number 
of clusters is large.

4.5 Security and Robustness of Machine Learning Based Trajectory Planning Systems

We considered a square geographical area with 100 users spread across in four clusters according 
to a GMM model. Each cluster had equal number of users. In the fixed user position scenario, the 
locations of users remained the same throughout the epoch. In time varying position scenario, the 
locations of all ground users changed by a fixed magnitude and direction during the epoch. The 
performance of the UAV-BS in terms of the number of distinct users covered and the amount of 
user data relayed in the absence of adversaries was first investigated to provide a baseline to 
measure the impact of adversarial attacks. We considered four adversaries with spawning radius 
large enough to almost cover the square area (see Figure 16). The positions of the adversaries were 
assumed to be fixed regardless of whether the ground users were fixed or mobile and so were the 
number of fake users generated by each adversary.

Figure 46 shows the path taken by the trained UAV-BS in the absence and presence of adversaries 
during the learning phase of the DQN. It was observed that the DQN takes about 250 training 
epochs to learn an optimal flight path. The green circles denote the coverage area of the UAV-BS 
at each location of its trajectory. It can be observed by comparing Figure 46(a) and Figure 46(b) 
that the adversaries indeed have the potential to alter the trajectory of the UAV-BS drastically 
leaving large fractions of users without coverage. 
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(a) (b)

Figure 46. Trajectory of the UAV-BS in the (a) Absence and (b) Presence of Adversary

The UAV-BS trajectory itself does not provide the full details of the impact of adversaries. Figure 
47(a) shows the time spent by the UAV-BS at the selected locations at each time step in the absence 
of spoofed users. On the other hand, when there are adversaries, the time the UAV-BS spent 
servicing fake users is illustrated in Figure 47(b). The pink circles indicate the minimum amount 
of time the UAV-BS spends at any location which is the waiting time, . The yellow and red 
circles correspond to longer durations. From Figure 47(b) it is clear that under the Sybil attack, the 
UAV-BS wastes much of its time in serving counterfeit users leaving genuine users stranded. 

(a) (b)

Figure 47. Time Spent at Each Location in Presence and Absence of Adversaries
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Table 1 and Table 2 show the performance of UAV-BS in the two scenarios mentioned above. It 
can be seen that there is a definitive degradation in system performance due to the presence of 
adversaries. Indeed, the presence of adversaries could result in up to 20% reduction in number of 
distinct users serviced and up to 24% reduction in the data relayed in the case of stationary user 
distribution. Similarly, in the case of mobile users, up to 22% reduction in number of distinct users 
serviced and up to 10% reduction in data relayed is possible. 

Table 1. Performance of the UAV-BS With Stationary Ground Users in the Presence and 
Absence of Adversaries 

Experiment  
No. 

Without 
Distinct Users 

Adversaries 
Data relayed 

(GB) 

With 
Distinct Users 

Adversaries 
Data Relayed 

1 59 9.46 53 8.16 

2 51 8.24 41 6.23 

3 38 6.13 33 4.76 

4 61 9.72 58 8.13 

5 57 9.26 46 6.45 

Average 53.2 8.56 46.2 6.75 

Table 2. Performance of the UAV-BS With Non-stationary Ground Users in the Presence 
and Absence of Adversaries 

Experiment 
No. 

Without 
Distinct Users 

Adversaries 
Data relayed 

(GB) 

With 
Distinct Users 

Adversaries 
Data relayed 

(GB) 

1 44 5.92 35 4.31 

2 48 6.39 43 5.83 

3 54 7.47 47 6.52 

4 55 7.45 43 6.61 

5 55 7.39 45 6.64 

Average 51.2 6.92 42.6 5.98 
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5 CONCLUSIONS 

The mmWave spectrum is currently being investigated as the possible solution to meeting the 
increasing demand for wireless services both in military as well as civilian applications. The large 
bandwidths possible with mmWave operation, however, come at the price of high attenuation seen 
by smaller wavelengths. It is not immediately clear, whether the communications theoretic 
foundations that have been developed up to now for microwave frequency bands, in particular sub-
6 GHz spectrum, are still optimal and always relevant in taking advantage of these enormous 
bandwidths. In the specific case of satellite communications, in particular, it is of interest to 
investigate whether the imbalance in power and bandwidth constraints can better be exploited by 
developing new techniques. This project has started the investigation of two of the promising new 
concepts in wireless communications, namely the Intelligent Reflecting Surfaces (IRS) and 3D 
beamforming, in the context of mmWave satellite communications. 

An analytical solution was obtained for the optimal IRS orientation to maximize the signal strength 
at a receiver location for a given fixed transmitter location. In addition, an optimization problem 
was formulated to maximize the average received rate at receiver locations distributed across a 
low signal strength area. Results from case studies showed that there can be a significant 
improvement in received signal strength when the IRS is orientated optimally. As a result, by 
manipulating the mechanical zenith and azimuth angle of the IRS, the coverage efficiency of the 
network can be significantly improved. 

The investigation of 3D beamforming for mobile platforms showed that beamforming weights 
may need to be updated much more frequently when higher frequencies are used. To reduce 
computational complexity, simplified expressions were also derived for computing beamformer 
weight update periods. When using higher frequencies, however, it is possible to achieve much 
higher bit rates since the available bandwidths can be much larger. As a result, the overhead bit 
rate can still decrease relative to the overall bitrate of the system even with much more frequent 
weight updates. This shows that the mmwave frequencies may provide overall better efficiencies 
with 3D beamforming. 

Application scenarios of 2D and 3D unmanned aerial vehicle (UAV) networks were considered to 
examine how to determine the transmit beamformer weight vector update timing ( ) for 
maintaining a link between two UAVs. The optimal  required the knowledge of receive UAV 
flight path at the transmit UAV. As an alternative, an approximate solution for  that requires 
only the present estimate of receiver location was also proposed. It was shown that the proposed 
approximation for  has about 98% accuracy compared to the optimal . It was observed that 
the overhead bit rate penalty decreases as operating frequency increases showing that even with 
more frequent weight updates, mm-wave frequencies can provide better performance in terms of 
data rate. Proposed method for update timing computation was simulated in a U2U communication 
system and results showed that beamforming gain rarely drops below the desired minimum 
threshold resulting in a stable connection. 

Two algorithms, a reward based greedy algorithm and a deep reinforcement learning (DRL) 
algorithm implemented with a Deep Q-Network (DQN), were proposed for determining an optimal 
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trajectory for a UAV base station to maximize the coverage of distinct ground users. The 
performance of the two algorithms on static and non -stationary user distributions showed that the 
proposed methods are able to provide coverage to significantly more ground users with very high 
probability compared to the state-of-the-art alternatives as well as random action selection strategy. 

The performance of a DRL based approach for learning the UAV Base Station (UAV-BS) 
coverage trajectory that maximizes the distinct ground users and the total data throughput was 
investigated for stationary and mobile user distributions in the presence of adversarial Sybil 
attacks. The attacks were assumed to be in the form of spawned fake users whose locations were 
also learnt through deep learning. It was observed that such attacks are capable of altering the 
trajectory of the UAV-BS drastically resulting in performance degradation. Furthermore, the 
UAV-BS expended significant resources in covering fake users when under a Sybil attack. The 
work investigated the impact of Sybil attacks during the training stage of DQN-implemented 
reinforcement learning (RL) algorithm. 
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3D Three Dimensional 

5G Fifth Generation 

AAM Advanced Aerial Mobility 

AOA Angle of Arrival 

AOD Angle of Departure 
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CCDF Complimentary Cumulative Distribution Function 
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DQN Deep Q-Network 

DQN-CNN DQN Convolutional Neural Network 

DQN-RNN DQN Recurrent Neural Network 

DRL Deep Reinforcement Learning 
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ENU East North Up 

FD Full Dimensional 
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GEO Geosynchronous Earth Orbit 

GEV Generalized Extreme Value 

GHz Giga Hertz (109 Hz) 

GMM Gaussian Mixture Model 

HPBW Half Power Beam Width 

IRS Intelligent Reflecting Surfaces 

ISP Internet Service Provider 

LOS Line of Sight 

LTP Local Tangent Plane 

MAC Medium Access Control 
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mmWave Millimeter Wave 

MRC Maximal Ratio Combining 

NIRS Number of Intelligent Reflecting Surfaces 
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RL Reinforcement Learning 

RNN Recurrent Neural Network 

Rx Receive 
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SNR Signal to Noise Ratio 

Tx Transmit 

U2U UAV to UAV 

UAV Unmanned Aerial Vehicle 

UAV-BS UAV Base Station 
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