

QUASAR: QUANTIFIABLE ASSURANCE CASES FOR TRUSTED
AUTONOMY

KBR WYLE LLC

SEPTEMBER 2023

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2023-162

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the Wright-Patterson AFB Public Affairs Office and is available to
the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2023-162 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /

WILLIAM E. MCKEEVER GREGORY J. HADYNSKI
Work Unit Manager Assistant Technical Advisor

Computing and Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

Page 1 of 2 PREVIOUS EDITION IS OBSOLETE.
STANDARD FORM 298 (REV. 5/2020)

Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE

SEPTEMBER 2023

2. REPORT TYPE

FINAL TECHNICAL REPORT

3. DATES COVERED

START DATE

APRIL 2018
END DATE

JANUARY 2023
4. TITLE AND SUBTITLE

QUASAR: QUANTIFIABLE ASSURANCE CASES FOR TRUSTED AUTONOMY

5a. CONTRACT NUMBER

FA8750-18-C-0094

5b. GRANT NUMBER

N/A

5c. PROGRAM ELEMENT NUMBER

62303E
5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

R2HG
6. AUTHOR(S)

Ewen Denney, Rebecca Lee, Ganesh J. Pai, and Irfan Šljivo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
KBR Wyle LLC (previously SGT, Inc.)
Building N269, Room 234, Mailstop 269-2, NASA Ames Research Center
Moffett Field CA 94035

8.PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DARPA I2O
675 North Randolph St
Arlington VA 22203-2114

10.SPONSOR/MONITOR'S
ACRONYM(S)

AFRL/RI

11.SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TR-2023-162
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# AFRL-2023-0749/AFRL-2023-3593.
Date Cleared: 31 August 2023

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of QUASAR was to develop techniques and tool support for the construction of dynamic assurance cases (DACs)
that address both static design-time concerns and dynamic operational concerns and, for the latter, to provide quantifiable
and executable measures of confidence in appropriate assurance properties of the target platforms. In particular, the project
focused on applying these techniques to learning-enabled components (LECs) that comprise key parts of autonomous
systems, and to that end, we used these techniques to construct platform-specific assurance cases in collaboration with our
TA4 partners, Boeing (air domain) and Northrop Grumman (undersea domain).

15. SUBJECT TERMS
Dynamic Assurance Case, Assured Autonomy, Assurance Case, Assuring Learning-enabled Components

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

SAR

18. NUMBER OF PAGES

a. REPORT
U

b. ABSTRACT
U

C. THIS PAGE
U

19a. NAME OF RESPONSIBLE PERSON
WILLIAM E. MCKEEVER

19b. PHONE NUMBER (Include area code)
N/A

107

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

Approved for Public Release; Distribution Unlimited.
i

TABLE OF CONTENTS

List of Figures .. iii
List of Tables ... vi
1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 3

3.0 METHODS, ASSUMPTIONS AND PROCEDURES .. 4

3.1 Dynamic Assurance.. 4
3.1.1 Assurance Measures.. 4
3.1.2 System Architecture .. 5

3.2 Methodology .. 6

3.3 Dynamic Assurance Cases ... 7
3.3.1 Assurance Policy Model ... 7
3.3.2 Assurance Architecture Model ... 8
3.3.3 Assurance Quantification Model .. 9
3.3.4 Evidence Model .. 9
3.3.5 Assurance Rationale.. 10

4.0 RESULTS AND DISCUSSION .. 11

4.1 Platform-specific Dynamic Assurance Cases .. 11
4.1.1 Air Domain Challenge Problem – Autonomous Visual Landing 11
4.1.2 Undersea Domain Challenge Problem – Obstacle Avoidance 30

4.2 Assurance Measures for Challenge Problems .. 30
4.2.1 Undersea Domain.. 30
4.2.2 Air Domain ... 37

4.3 Formal Methods Integration ... 39
4.3.1 VerifAI .. 39
4.3.2 Venus .. 62

4.4 AdvoCATE Extensions .. 76
4.4.1 AdvoCATE Metamodel .. 76
4.4.2 Validations .. 79
4.4.3 Views .. 80
4.4.4 Ontologies ... 85
4.4.5 Queries .. 87
4.4.6 Dynamic Arguments ... 89
4.4.7 Integrating Evidence and Tools .. 92

5.0 CONCLUSIONS.. 93

5.1 Platform-Specific Dynamic Assurance Cases .. 93

5.2 Tool Support ... 93
5.2.1 Tool Workflows .. 93

Approved for Public Release; Distribution Unlimited.
ii

5.2.2 Active Integration of Assurance Case and Verification Tools 94
5.2.3 Generation of Assurance Measures .. 94

5.3 Methodology .. 95

6.0 REFERENCES .. 96

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 97

Approved for Public Release; Distribution Unlimited.
iii

LIST OF FIGURES

Figure 1. Low-level Assurance Measure .. 5

Figure 2. A Proposed Architecture for Trusted Autonomy .. 5

Figure 3. Dynamic Assurance Methodology .. 6

Figure 4. Dynamic Assurance Case Concept .. 8

Figure 5. Typical Aircraft Landing Traffic Pattern .. 11

Figure 6. CP3.1 High-level Functional Architecture .. 12

Figure 7. Schematic of AVL Assurance Case Architecture ... 15

Figure 8. Hazard Identification (FHA) in AdvoCATE ... 17

Figure 9. Risk Assessment (FHA) in AdvoCATE .. 17

Figure 10. Excerpt of Requirements Log in AdvoCATE ... 18

Figure 11. Pose Estimation Subsystem Safety Analysis ... 19

Figure 12. Bow Tie Diagram for Errors in Keypoint Estimation ... 20

Figure 13. Excerpt of Safety Architecture for Pose Estimation .. 22

Figure 14. Modified Pose Estimation Functional Architecture for High Assurance 23

Figure 15. Phases View of the Safety Architecture for Pose Estimation 24

Figure 16. Architecture of the Safety Argument for Pose Estimation .. 25

Figure 17. Fragment of Top-level Safety Argument Structure ... 26

Figure 18. Fragment of Safety Argument Invoking Generalization Guarantees 27

Figure 19. Fragment of Safety Argument for Data used for LEC Development 28

Figure 20. Evidence Dependency Graph for Pose Estimation Assurance 29

Figure 21. Partial Safety Architecture with Related Mission Objectives 31

Figure 22. Graphical Model for Overall Assurance Measure for CP4 ... 32

Figure 23. Deep Evidential Regression .. 33

Figure 24. CP4 Scenario with Obstacle on Waypoint 1 ... 34

Figure 25. CP4 Scenario with Wall of Obstacles ... 35

Figure 26. Graphical Representation of Overall Assurance Measure for CP6 36

Figure 27. Graphical Model for Overall Assurance Measure for CP3.1 38

Figure 28: Structure and Operation of VerifAI [VAI2019] .. 40

Figure 29. Tools Integration Diagram for VerifAI Testing and Retraining 42

Figure 30. VerifAI-Scenic Tool Specification .. 44

Figure 31. VerifAI Test Generation Tool Specification ... 44

Approved for Public Release; Distribution Unlimited.
iv

Figure 32. VerifAI X-Plane Tool Specification .. 44

Figure 33. VerifAI MTL Monitor Tool Specification .. 45

Figure 34. VerifAI Counterexample Analysis Tool Specification ... 45

Figure 35. VerifAI Scenic Refinement Tool Specification .. 45

Figure 36. VerifAI Training Data Generation Tool Specification .. 46

Figure 37. Excerpt of Tool Use Specification for VerifAI Retraining Application 47

Figure 38. Excerpt of Evidence Log from VerifAI Retraining ... 48

Figure 39. Integration of Lower-Level Verification with Higher-Level Argument Claims 49

Figure 40. Argument Fragment for Centerline Tracking Mitigation Requirement 50

Figure 41. Argument Fragment for Constraints on Environment Models 51

Figure 42. Argument Fragment for Test Scene Generation .. 51

Figure 43. Argument Fragment for Temporal Logic Falsification ... 52

Figure 44. Argument Fragment for VerifAI Failure Detection Techniques 52

Figure 45. Argument Fragment on Results of VerifAI Retraining of LEC 53

Figure 46. Argument Fragment for Addressing Identified Failure Scenarios 53

Figure 47. VerifAI Runtime Monitor Learning Workflow ... 54

Figure 48. VerifAI Runtime Monitoring Tool Specification .. 56

Figure 49. Excerpt of Tool Uses from VerifAI Runtime Monitoring ... 57

Figure 50. Evidence Log Excerpt for Application of VerifAI Runtime Monitoring 58

Figure 51. Top-level Argument of VerifAI-RM ... 59

Figure 52. VerifAI Runtime Monitoring Quantitative Targets ... 59

Figure 53. VerifAI-RM Trustworthiness .. 60

Figure 54. VerifAI-RM Learning Data Generation Trustworthiness ... 61

Figure 55. VerifAI-RM Learning Data Sequencer Trustworthiness .. 61

Figure 56. VerifAI-RM Decision Tree Learning Trustworthiness ... 62

Figure 57. High Level Venus Overview ... 63

Figure 58. Venus Functional Decomposition ... 64

Figure 59. Internal Venus Hazard Analysis .. 65

Figure 60. Splitter and MILP Encoder Tool Specification ... 66

Figure 61. MILP Solver, Dependency Analyzer and Results Integrator Tools Specification 67

Figure 62. Reusable Argument Fragment for Mitigation of Internal Venus Risks 68

Figure 63. Argument Fragment for Incorrect Domain Splitting ... 68

Figure 64. Argument Fragment for Verification Problem Translation into MILP 69

Approved for Public Release; Distribution Unlimited.
v

Figure 65. Argument Fragment for MILP Solver Correctness ... 69

Figure 66. Argument Fragment for Final Result Integration .. 70

Figure 67. Tools Specification for Venus Application ... 71

Figure 68. Excerpt of the Venus Tool Use Table ... 73

Figure 69. Evidence Dependency Diagram For Results With Perturbation Radius 0.001 73

Figure 70. Excerpt from Evidence Log with Venus Artifacts .. 74

Figure 71. Top-Level Argument For Venus Verification Results .. 75

Figure 72. Argument Fragment For Image Selection in Venus .. 75

Figure 73. Argument Fragment Addressing Venus Verification Workflow 76

Figure 74. Argument Fragment for Final Calculation of a Robustness Level 76

Figure 75. Table View of Argument ... 83

Figure 76. Ontology-backed Assurance Case Concept... 86

Figure 77. Ontology Definition Language Features, Conceptual and Instance Ontology 87

Figure 78. Query Grammar ... 88

Figure 79. Example Queries ... 89

Figure 80. Example Queries from the AUV Assurance Case ... 89

Figure 81. Dynamic Properties Grammar (Excerpt) ... 90

Figure 82. Evidence Log with Conditional Evidence ... 90

Figure 83. Evidence Diagram with Conditional Evidence ... 91

Figure 84. Dynamic Argument View.. 91

Approved for Public Release; Distribution Unlimited.
vi

LIST OF TABLES

Table 1. Assurance Measure Results for CP4 (Obstacle Avoidance) ... 34

Table 2. Performance of Assurance Measure Models for CP6 ... 37

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY
This report describes work done by KBR as a Technical Area (TA) 3 performer of the QUASAR
(Quantifiable Assurance Cases for Trusted Autonomy) project in the Assured Autonomy Program.

The goal of QUASAR was to develop techniques and tool support for the construction of
dynamic assurance cases (DACs) that address both static design-time concerns and dynamic op-
erational concerns and, for the latter, to provide quantifiable and executable measures of confi-
dence in appropriate assurance properties of the target platforms. In particular, the project focused
on applying these techniques to learning-enabled components (LECs) that comprise key parts of
autonomous systems, and to that end, we used these techniques to construct platform-specific as-
surance cases in collaboration with our TA4 partners, Boeing (air domain) and Northrop Grumman
(undersea domain).

We give an overview of these DACs and describe how they address the challenge problems
provided by TA4. The static components of a DAC were constructed for the Autonomous Visual
Landing air domain challenge problem (Boeing, CP3.1) and, in part, for the collision avoidance
undersea domain challenge problem (Northrop Grumman, CP4). The former concerns assurance
of aircraft navigation state estimates produced by an LEC used for autonomous landing based on
optical sensing, whereas the latter concerns assurance of an LEC that filters the input of a forward-
looking sonar intended for detecting obstacles in the forward path of an autonomous underwater
vehicle (AUV). The main assurance artifacts that constitute the static DAC components include a
hazard log (documenting the identified hazards), a requirements log (capturing the related safety
requirements), a safety architecture (representing the system-level organization of the identified
safety mitigations), assurance rationale captured in the form of structured arguments, and an evi-
dence model describing the evidence necessary to substantiate the safety claims made.

The executable part of a DAC that provides real-time confidence is given as an assurance
measure. A high-level assurance measure serves as an assurance metric for the overall mission. To
formulate this, we first identify mission objectives, then link those objectives to events in the safety
architecture, using the structure of the safety architecture to form a probabilistic graphical model.
A mission objective is a quantifiable goal that is necessary for overall mission success. A low-
level assurance measure provides uncertainty quantification for individual system components,
such as LECs, or sensors that produce a real-time signal. We describe the techniques used to con-
struct the assurance measures for the undersea domain challenge problems (CP4 – collision avoid-
ance, CP6 – operating under degraded modes), and the air domain challenge problem (CP3.1 –
autonomous visual landing), respectively.

Claims in an assurance case are ultimately substantiated by evidence, which can take many
forms, but one important source of evidence is provided by formal verification of the target system.
We describe how we reason about such verification as part of the overall platform assurance cases,
by developing assurance models of formal verification techniques in the form of tool specifica-
tions. We show how we modeled the application of the tools developed by our TA1 collaborators
from UC Berkeley (VerifAI, applied to Boeing CP 1.1 and CP 2.1) and Imperial College (Venus,
applied to Boeing CP 2.2) to the corresponding challenge problems, and created assurance argu-
ments from this.

We describe the technology developed to create these assurance cases that was imple-
mented in the AdvoCATE assurance case tool. First, we describe the assurance case metamodel

Approved for Public Release; Distribution Unlimited.
2

that defines the structure of assurance cases supported by AdvoCATE. The metamodel enforces
the overall structure of the assurance case, but additional well-formedness and internal consistency
properties have been implemented as so-called validations, and we give an overview of several of
these. The core AdvoCATE assurance model can be extended by user-defined ontologies. These
enhance our model-based approach to assurance by allowing the formulation of domain-specific
extensions to the underlying models. We map the core DAC components into a derived ontology,
and allow domain-specific additions. We describe a query language that can be used to specify
and extract assurance artifacts within the assurance case that satisfy given properties. Queries can
use both the core metamodel and ontological extensions.

As assurance cases grow in size and complexity, it becomes increasingly challenging both
to manage their development, and to understand and assess them. Given the communicative role
of assurance cases, the latter problem is probably the more serious. In addition to user-definable
views (developed in earlier phases of the project), AdvoCATE now additionally provides several
built-in structuring mechanisms that allow assurance cases to be structured and abstracted into
meaningful fragments. We describe an argument architecture (splits) view, which allows large
arguments to be decomposed into meaningful fragments, the provenance view, which provides a
graphical representation of the assurance artifacts from which an argument is created, as well as
other associated assurance artifacts and their relation to the argument, and the phases view, which
shows the high-level hierarchical architecture of the assurance architecture.

In addition to these graphical views, we also describe tabular views. A table view specifi-
cation language allows the generation of tabular views that display designated assurance artifacts
from the assurance case in tabular form. A variation of such tables is the traceability matrix, which
allows users to depict relations between two sets of artifacts, such as hazards and requirements.
Besides static views, it is also possible to define dynamic views of arguments. These can be used
to update argument status in real-time, while maintaining argument structure. Status can be used
for different purposes, such as showing which part of an argument is currently “active” (that is,
which branches reason about the effectiveness of the safety measures currently being applied). It
can also be used to display confidence in argument claims.

To that end, we extended the argument view mechanism that was developed in earlier
phases of the project to be able to access real-time values provided to AdvoCATE via external
ports. The views are updated as data is received. By integrating this with the output of assurance
measures, we are able to use these dynamic argument views to visualize LEC confidence and its
bearing on an argument. Dynamic views are specified by associating formulas with selected argu-
ment nodes, and mapping these formulas to visualizable node properties, such as colors. Both table
view specifications and dynamic argument views leverage the query language.

Lastly, we conclude by discussing scope for further automation, in particular for stream-
lining the generation of assurance measures from the other assurance artifacts, and high-level mod-
eling of formal verification tools that could be used to re-generate assurance artifacts when the
context of the assurance case changes, as well as the potential for additional tool support to im-
prove the overall assurance lifecycle.

Approved for Public Release; Distribution Unlimited.
3

2.0 INTRODUCTION
The problem area addressed by this research project is the development of dynamic assurance
cases (DACs) for learning-enabled cyber-physical systems (LE-CPSs). To ensure safety and mis-
sion success when using LE-CPSs, assurance of their fitness for purpose is required, i.e., their
behavior is as intended, is predictable, and that their functions and services can be trusted. More-
over, assurance is required that upon deviating from the required envelope of behaviors and level
of fitness, appropriate countermeasures can feasibly intervene. These requirements pose unique
challenges from the standpoint of assurance technologies. Specifically, the state of the art in as-
surance case (AC) technology is insufficient in its current capabilities to address LE-CPS assur-
ance, owing to their:

 limited expressivity, i.e., critical assurance information not captured in the form of argu-
ments is obscured;

 limitations in scope, e.g., life-cycle/system safety concerns are not sufficiently treated,
while formal assurance cases largely concern only assurance of functional correctness;

 inherently static nature, due to which they are ill-suited for operational assurance, which
is inherently dynamic; and

 misplaced focus in assurance quantification, by not considering the quantification of sys-
tem properties. Moreover, the automated construction, manipulation, assessment, and
evolution of ACs consistent with system adaptation require a formal basis.

The overarching goal is to develop, implement, and demonstrate an integrated framework, along
with supporting infrastructure—i.e., languages, tools, and technologies—to produce DACs that
give (quantified) justification for confidence in the design and operation of LE-CPSs, both during
design-time and then continually during operations. The focus is on providing (and updating) as-
surance of safety and functional correctness whilst accounting for the evolution of both the system
and its environment.

Approved for Public Release; Distribution Unlimited.
4

3.0 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Dynamic Assurance
For the subsequent discussion, the ensuing terminology is relevant: assurance is the provision of
justified confidence that an item—i.e., a component, system, or service—possess the required as-
surance properties. An assurance property is a logical, possibly probabilistic characteristic asso-
ciated with assurance concerns (or assurance objectives), i.e., functional capabilities and depend-
ability attributes. An assurance claim results from applying one or more assurance properties to a
particular item. Practically, an assurance claim can be considered to be equivalent to an assurance
requirement that has been (or will eventually be) substantiated by concrete evidence.
First, we introduce a concept of assurance measure, which characterizes the extent of confidence
in an assurance property through a probabilistic quantification of uncertainty. It encodes a baseline
level of acceptable risk for a deployed LE-CPS, based on a suitably abstract, probabilistic model
of the same. Our concept of dynamic assurance integrates assurance measures into an LE-CPS, to
facilitate run-time confidence assessment of its assurance properties.

3.1.1 Assurance Measures
An assurance measure provides real-time feedback to autonomous systems on the uncertainty in
various systems components. The work completed in this program has been focused on assuring
LECs, but assurance measures can be developed for any system that provides real-time signal
output. During the program, we have developed a multi-level approach to assurance measures. The
high-level assurance measure is an assurance metric for the mission. For this we identify mission
objectives, link those objectives to events in the assurance architecture (see Section 3.3.2), and
use the relationships in the safety architecture to form a probabilistic graphical model. A mission
objective is a quantifiable goal that is necessary for overall mission success, such as the avoidance
of collisions. Probabilities for nodes in the graphical model may be computed from low-level as-
surance measures, and conditional probability tables will be computed from data. The high-level
assurance measure concept has been developed in Phase 3, and is illustrated in this report using
examples based on the challenge problems we addressed in Phase 3 (see Section 4.2 for more
details on the application of assurance measures to the challenge problems of this program).
 The low-level assurance measures provide uncertainty quantification for individual system
components. Such system components include LECs as well as any other sensors that produce a
real-time signal, such as sonar or cameras. For any assurance measure, there are two key elements
to monitor, which are addressed by anomaly detectors and an inference module (Figure 1).

The first is the input to the system (input anomaly detector). If the LE-CPS is operating in
an unknown environment, the system may not perform as expected. The second element is the
performance of the system in response to a given input (inference and inference anomaly detector).
Even if the LE-CPS is in an environment for which it was designed, it may underperform in certain
scenarios. For each assurance measure, we seek to quantify the uncertainty for each of these com-
ponents by providing out-of-distribution detection as well as epistemic uncertainty measurements
for system performance.

Approved for Public Release; Distribution Unlimited.
5

Figure 1. Low-level Assurance Measure

3.1.2 System Architecture
Figure 2 shows a proposed architecture for trustworthy autonomy: a collection of run-time moni-
tors that assess system properties (which may include assurance properties), taking inputs from the
environment and system state [ADP2020]. The assurance measure quantifies the confidence/un-
certainty in the assurance properties using both the inputs and outputs of the monitors. This, in
turn, is one of the inputs for a decision mechanism that determines whether to proceed with the
nominal system operation or to invoke contingency management actions. For example, when there
is insufficient confidence, any expected system output that is otherwise assured may be masked.

Figure 2. A Proposed Architecture for Trusted Autonomy

The aim of run-time assurance, also known as run-time verification, is to provide updates

as to whether a system satisfies specified properties as it executes [ASTM2021]. Typically, this
uses run-time monitors, which evaluate the properties using values extracted from the system and

Approved for Public Release; Distribution Unlimited.
6

environment state. In a sense, therefore, the notion of assurance measure we have described here
is a kind of monitor. However, it is worth making the following distinctions:

• monitors typically relate directly to properties of the system, whereas an assurance measure
characterizes confidence in our knowledge of such properties; and

• an assurance measure seeks to aggregate a range of sources of information, including moni-
tors. Thus it can be seen as a form of data fusion.

The architecture in Figure 2 is also closely related to the simplex architecture and its vari-
ants [ASTM2021], though there are some differences: since the assurance measure models the AS,
which may itself be implemented as a simplex architecture, assurance measure outputs can be
viewed as providing an additional level of analytic redundancy that is wider in scope than the
safety controllers that simplex traditionally employs. We believe this can be advantageous in a
run-time tradeoff between performance and safety. Also, the simplex decision making takes envi-
ronment state as one of the inputs, while here they are reflected in the uncertainty forecast from
assurance measures.

3.2 Methodology
We now clarify the relationship of assurance measures to the DAC concept and its core com-
ponents (described in detail in the next section). Figure 3 shows a high-level methodology of the
lifecycle of developing a DAC for an AS (broadly considered as the physical and logical system
descriptions and its concept of operations). First we establish a baseline level for sufficient assur-
ance, largely, by developing a static AC focused on the system requiring assurance (see Figure 3).
This comprises various artifacts as shown (in the box labeled “system focus”), e.g., hazards, miti-
gation requirements, risk scenarios, and risk reduction justification in the form of structured argu-
ments linked to evidence items such as simulation results, formal verification, etc. At this stage,
pre-deployment assurance quantification is also a key component.

Figure 3. Dynamic Assurance Methodology

Approved for Public Release; Distribution Unlimited.
7

Besides quantifying the assurance baseline, together with the hazard analysis it enables us
to identify and discriminate between properties for which we construct assurance measures, and
those that require monitoring. Trivially, these include properties whose violation is expected to
impede continued safe operation or prevent mission completion. However, for instance, monitor-
ing may suffice for certain component-level properties verified in design under assumptions of
system and environment states, while assurance measures may be better suited to system- level
properties potentially affected by emergent behavior. In general, we assume that there exist run-
time monitors, some of which are part of the system requiring assurance, while others are tied to
the validity of the evidence items used.

We compile the corresponding quantification models into optimized executables—assur-
ance measures—that we then integrate into the system architecture as described earlier (Figure 2).
Via a dashboard, the assurance measure can also passively provide a real-time assessment of the
confidence in assurance properties to end users. In either case there is a need to provide additional
justified confidence in the efficacy of the assurance measure itself, and in the integration, i.e., that
hazardous interactions of the assurance measure, decision mechanism, and control system have
been managed.

For this we develop additional static assurance artifacts (see Figure 3, in the box labeled
“quantification and integration focus”) for objectives such as timeliness of the assurance measure
in the context of recovery actions; assurance measure performance in terms of the sensitivity and
specificity of its forecasts; and mitigating of hazardous interactions from integrating the assurance
measure, e.g., propagation of uncertainty computation errors.

3.3 Dynamic Assurance Cases
Our concept of DAC is the combination of the system, quantification and integration focused static
assurance artifacts, and the assurance measure, which provides dynamic assurance. Practically,
through-life assurance has a broad scope, and a comprehensive DAC must address a plurality of
core and supplementary assurance concerns [CDP2017] through one or more of its main, interre-
lated components (Figure 4). We consider these components to be part of an assurance toolkit,
where the particular assurance concern being addressed informs which components are required,
and impacts their size and complexity.

For instance, LE-CPS safety is a core concern—itself covering a broad gamut of assurance
objectives including but not limited to design safety, and operational safety—that requires all DAC
components. In contrast, reliable compilation of an ML model into a platform-specific executable
has a narrower, tool-qualification focus. It represents a supplementary assurance concern that re-
quires fewer DAC components We now describe each DAC component, their role in (dynamic)
assurance, and their interrelations.

3.3.1 Assurance Policy Model
An assurance policy is a specification of the conditions that impact assurance properties, the re-
sulting effects, and the corresponding mitigations for (the risk associated with) those effects. The
assurance policy model (APM) is a model-based representation of assurance policies providing a
basis against which sufficiency of assurance can be established. As such, it is both related to and
kept consistent with other core DAC components. as we will clarify when describing the latter.

Approved for Public Release; Distribution Unlimited.
8

The APM concretely expresses what LE-CPS assurance means in terms of: i) the conditions
under which assurance is impacted, in particular where there is a higher risk of undesired effects,
and ii) the requirements for mitigating the risk associated with those impacts. As previously men-
tioned, these requirements are, in fact assurance claims that are yet to be substantiated by evidence
and therefore record assurance properties and their allocation to the relevant items. More generally,
the APM captures the (functional and non-functional) guarantees to be provided together with the
assumptions made, mappings to the LE-CPS physical and logical components, bounds on accepta-
ble behaviors, system states, etc. This, in turn, facilitates reasoning about assurance gaps due to
the various assumptions made, and due to scoping.

To formulate assurance policies in the APM, we can leverage traditional hazard analysis
techniques, such as a Functional Hazard Analysis (FHA), or newer ones such as System Theoretic
Process Analysis (STPA), along with requirements decomposition and refinement techniques.

Figure 4. Dynamic Assurance Case Concept

3.3.2 Assurance Architecture Model
An assurance architecture models a system from an assurance viewpoint as a collection of scenar-
ios that show how risk is modified. The assurance architecture model (AAM) is a model-based
representation of the assurance architecture. We have adopted barrier models, extending an earlier
notion of safety architecture [DPW2019], to represent the AAM. This choice has been motivated
by the observation that a collection of scenarios can conveniently describe an assurance concern
and, in turn, the related assurance properties. This tightly couples the AAM to the physical and

Approved for Public Release; Distribution Unlimited.
9

functional items constituting the architecture, whilst highlighting the roles that the items and their
capabilities play in risk modification, e.g., prevention, recovery, tolerance, masking, etc.
Conceptually, the AAM composes distinct but related operational scenarios, each of which models
the impact on assurance in terms of: i) the progression of events that migrate the system to higher
risk states; and ii) the mechanisms of the system architecture employed to manage risk. We use
Bow Tie Diagrams (BTDs) to specify these scenarios in a graphical way [DPW2019].

Shared BTD elements capture relations between scenarios at appropriate abstraction levels.
Thus, for system-level assurance concerns, we model system-level operational risk situations, each
of which we can further refine into lower-level risk scenarios that themselves require design-time
or operational mitigations. The AAM can be seen as an implementation of the APM, although each
model is closely related to, and synchronized with the other, recording different information. For
example, we can model the assurance architecture of the risk reduction mechanisms themselves as
additional BTDs reflecting, for example, scenarios showing failure modes and their local effects.
Simultaneously, the APM captures the corresponding assurance requirements though those are not
reflected in the AAM.

3.3.3 Assurance Quantification Model
The main purpose of assurance quantification is to provide an assessment of the confidence that
can be justifiably placed in an LE-CPS item based on data associated with measurable assurance
properties. Consequently, with a suitable assurance quantification model (AQM), we can establish
both a baseline level of assurance (to support the decision to release a system into service), and
evaluate whether that level of assurance continues to be maintained at run-time (supporting a run-
time risk assessment and mitigation).

Many LE-CPSs used in safety-critical applications are stochastic dynamical systems. As
such, at the system-level, the AQM is a probabilistic, model-based representation of a stochastic
process whose underlying random variables (RVs) describe the AS state space at a suitable level
of abstraction. Specific realizations of these RVs correspond to the assurance properties of interest
(in particular, those that can be reasonably quantified), while the associated probability distribu-
tions reflect the corresponding uncertainty in those properties. That is, we express confidence in
assurance properties in terms of the uncertainty in the related assurance measures, with lower un-
certainty corresponding to higher confidence that the related assurance property holds. Effectively,
this is a probabilistic query on the AQM, leveraging a range of techniques for uncertainty quanti-
fication (UQ) and propagation that account for various types of uncertainty, such as model and
parameter uncertainty. Component-focused assurance quantification of ML components is also
feasible [ADP2019] and the corresponding AQM takes into account component-level usage de-
tails.

3.3.4 Evidence Model
Evidence underpins assurance and is crucial for trusting LE-CPSs. The evidence model as a core
DAC component relates heterogenous evidence items, records their provenance, captures the as-
sertions that can be made, along with their usage context, whilst facilitating their tracing to other
core DAC components. In particular, we link evidence items to assurance rationale (described
next) for both justifying specific AS assurance claims, and to justify why the evidence items should
themselves be trusted. In the latter case, note that the assurance claims are about the evidence
items, whereas in the former case, they are about the LE-CPS.

Approved for Public Release; Distribution Unlimited.
10

Abstractly, we can think of verification tools as being mappings from collections of evi-
dence items (i.e., tool inputs such as a model, specification, or property) to other evidence items
(i.e., tool outputs such as a proof, results of static analysis, or model checking), together with i)
the relations that specify those mappings, and ii) any assumptions that must hold on the inputs,
including dependencies between the inputs. In this case, the role of the evidence model is to record
these various mappings, relations, and assumptions, and how they are invoked and referenced in a
DAC for a specific LE-CPS. More generally, the evidence model is an interface to reference con-
crete external evidence items in the application-specific DAC components. For instance, when a
structured argument references, say, a piece of formal verification, it refers to the corresponding
entry in the evidence model.

3.3.5 Assurance Rationale
We use structured arguments to capture various kinds of assurance rationale, in much the same
way as a traditional, static AC. They primarily serve to capture the reasoning why specific assur-
ance claims should be accepted based on the evidence supplied. We also use structured arguments
for the assurance of the remaining DAC components themselves, addressing such (meta) assurance
as: sufficiency of the stated assurance policies; appropriateness of the assumptions made in the
AAM and the AQM, e.g., independence of risk mitigations in an assurance architecture; the rele-
vance and completeness of the scenarios specified in the AAM; and, as mentioned earlier, the
suitability and relevance of the evidence used.

We can communicate this kind of rationale in a number of ways, e.g., as a narrative, in a
tabular or a graphical form, or as a combination of the three. Here, we use the Goal Structuring
Notation (GSN) [GSN2021]: a standardized graphical language to describe key components of an
assurance argument. For methodological details on developing assurance arguments, see
[DP2018].

Approved for Public Release; Distribution Unlimited.
11

4.0 RESULTS AND DISCUSSION
Here we summarize the platform-specific assurance cases created for the air domain and undersea
domain challenge problems. We also describe the results of formal methods integration and the
enhancements made to our DAC tool, AdvoCATE.

4.1 Platform-specific Dynamic Assurance Cases

4.1.1 Air Domain Challenge Problem – Autonomous Visual Landing

4.1.1.1 Challenge Problem Summary
This challenge problem (CP 3.1) is focused on assurance of LECs used for perception and decision
making within the context of an air domain application, in particular autonomous visual landing
(AVL). Landing procedures require that the aircraft enter a so-called traffic pattern (Figure 5)
which comprises specific phases at which specific decisions must be made (by the pilot in com-
mand) to land safely. For this challenge problem, the LECs are invoked when the aircraft is on the
final phase.

Figure 5. Typical Aircraft Landing Traffic Pattern

In this phase, the aircraft must be aligned with the runway (i.e., parallel to the horizon and
heading in the same direction as the runway centerline) and descend at a steady rate whilst staying
aligned. Typically, the descent follows a trajectory (so-called glide path) that has a fixed angle
(between 3 – 5 degrees) to the horizontal plane (of the runway). The decision either to continue to
land or to go-around, i.e., abort the landing, can be made at any point in the aircraft descent tra-
jectory, depending on the (perceived) state of the runway, i.e., whether or not there are any colli-
sion hazards, and the stability of the aircraft as it descends. In instrument-based approach proce-
dures using the prevailing Autoland and Instrument Landing Systems (ILS), such as those found
in transport-category aircraft, a so-called decision height (DH) is the distance above the runway at
which the pilot in command (first) decides whether or not to continue landing or to execute a
missed approach (or a go-around).
 The Concept of Operations (CONOPS) makes the following assumptions:

• Single runway operations under visual flight rules (VFR) and visual meteorological condi-
tions (VMC)

• No crosswind operations
• No terrain obstructions on the glidepath (e.g., treetops, built-up structures, etc.)

Approved for Public Release; Distribution Unlimited.
12

• Non-towered airport environment (i.e., uncontrolled airspace, class G, without air traffic
control services) with non-cooperative air traffic (i.e., aircraft operating without transpond-
ers)

The landing function is aided by two LECs:
• Runway Clear (RWYCLR), the function responsible for perception, detection and tracking of

potential collision hazards, and estimation of the future position of the detected hazards
relative to the aircraft after it lands;

• Pose Estimation (POSESTM), the function responsible for determining the pose of the aircraft
relative to the runway, i.e., its 3-D orientation in space, and translational position relative
to the touchdown location on the runway. Effectively this LEC localizes the aircraft.

Functional Architecture
Figure 6 shows the high-level functional architecture for this challenge problem (italicized text in
the figure indicates the data inputs and outputs).

Figure 6. CP3.1 High-level Functional Architecture

 Both LECs receive as input, a stream of full high definition (19201080 pixel) color im-
ages at a 10Hz rate (from wing-mounted cameras in the flying platform, and alternatively from a
simulated 50mm and 12mm optic, in the hardware-in-the-loop, iron-bird, test platform). Both im-
age streams are synchronized. POSESTM additionally receives external map data as input. In response
to these inputs: (1) RWYCLR produces as its output, the location of the centroid of a detected object
in x, y coordinates relative to the landing location, together with an estimate of the velocity vector,
and the diameter of the detected object; and (2) POSESTM produces as its output, the six degree of

Approved for Public Release; Distribution Unlimited.
13

freedom (6-DOF) aircraft pose estimate aircraft, along with the pixel locations of the keypoints of
the runways1, i.e., specific points of interest in an image or scene.

Both sets of LEC outputs are used by a Landing Decision (LNDDESC) function whose re-
sponse is a Boolean decision: (continue to) land, or go-around. The pose estimate and the response
of landing decision are used by other aircraft functions, including those involved in controlling the
aircraft during its descent.

Physical Architecture
We give a list of the subsystems (and constituent items) to contextualize the allocation of the func-
tions and requirements described subsequently in Section 4.1.1.4.

• Perception Subsystem
 Perception sensors

• Ownship State Estimation Subsystem

 Global Positioning System (GPS) and Inertial Reference System (IRS)

• Vehicle Manager Subsystem

• Autonomous Executive Subsystem

• Contingency Manager Subsystem

• Navigation and Aircraft Database

• Runway Clear Subsystem

• Pose Estimation Subsystem

• Land Decision Subsystem

• Actuation Subsystem

4.1.1.2 Assurance Objectives
For this report, the focus is mainly on the assurance of the POSESTM LEC, in particular, its contri-
bution to overall landing safety.

As such, the main safety assurance objectives are to provide sufficient confidence that under
all specified2 operating conditions: (i) neither the intended behavior of the POSESTM function nor its
failure conditions lead to an unacceptable outcome, and (ii) the POSESTM function does not exhibit
any unintended behavior that could lead to an unacceptable outcome, more frequently than the rate
corresponding to an acceptable risk level—or equivalently, a target level of safety, (TLOS)—for
those outcomes.

Here, the unacceptable outcomes to be avoided are:
• Collision with the terrain (e.g., a tail strike)

1 For this challenge problem, 16 runway keypoints are relevant: 4 end-points of the runway, 4 end-points of the runway
threshold, and 4 end-points of each of the left and right aiming pads on either side of the runway centerline.
2 We assume the CONOPS is validated to have specified all foreseeable operating conditions.

Approved for Public Release; Distribution Unlimited.
14

• Controlled Flight Into Terrain (CFIT)
• Landing in an area other than the intended runway
• Runway excursion, i.e., rolling off the runway tarmac.

 These outcomes are causally preceded by landing safety hazards, i.e., a combination of
uncontrolled system states (SSs) and specific environmental conditions (ECs) that emerge during
landing. For the operational context relevant to POSESTM, the relevant landing safety hazard is, pri-
marily, an unstable approach—i.e., when the aircraft does not maintain its essential flight param-
eters (such as its attitude, landing configuration, speed, descent rate, and power settings) within
the limits established for an airworthy aircraft type design. An assumption here is that RWYCLR has
established that there is no collision hazard in the landing trajectory. Thus, from a system safety
standpoint, an additional unacceptable outcome to be avoided during landing (to which RWYCLR
contributes) is:

• Collision with a ground vehicle on the runway or taxiway, or with another aircraft.
 Referring to the functional architecture in Figure 6, the LNDDESC function uses the pose es-
timate and the track of the detected object to decide whether or not to land. Effectively, this in-
volves predicting whether the track of the detected object is such that a runway incursion3 is likely,
or whether the approach is unstable at and after DH. Either of these conditions should result in a
go-around decision.

4.1.1.3 Assurance Case Architecture
The assurance case architecture gives a high-level overview of (the structure of) the rationale used
to substantiate that the specified assurance objectives have been met. Figure 7 shows a graphical
schematic of the AVL assurance case architecture (Note: this concept has not been formalized in
this project; however it is introduced here since it useful to present the “big-picture” of the DAC).
 The graph on the right of Figure 7 (whose root node is labeled “AVL System Description,
functional and physical organization”) represents the structure of the overall system-level assur-
ance case. Each node itself abstracts a fragment of the underlying assurance argument. The en-
closing rounded rectangles (e.g., the box labeled “AVL safety claims”) indicates the assurance as-
pect being addressed by the corresponding argument. For instance, the root node and its immediate
child nodes abstract a fragment of the assurance case that concerns safety claims about the AVL
system, given in terms of the system hazards and functional failures. Likewise, lower levels of
architecture—e.g., those enclosed by the box labeled “Safety Requirements Decomposition and
Allocation”, concern arguments that invoke a requirements decomposition and allocation infer-
ence strategy for the system elements listed (Navigation, Sensing, Nav. State Estimation, etc.).

The interpretation of this graph is as follows: assurance of AVL system safety involves system-
level safety claims, which are then decomposed into claims about the various system functions,
shown here as claims about the Navigation function and Other functions. Since the focus of this
DAC is on POSESTM, a function that in essence supports aircraft navigation, only this branch of the
assurance case architecture has been shown, while other parts of the assurance case architecture,

3 An occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected
area of a surface designated for the landing and takeoff of aircraft.

Approved for Public Release; Distribution Unlimited.
15

e.g., for Sensing, are not in scope. In particular, the Navigation function includes lower-level func-
tions for Sensing, Navigation (Nav.) State Estimation, and for Contingency Management. This
fragment of the assurance case architecture thus indicates that assurance of higher-level system
safety claims relies, in part, upon assurance of those lower-level functions.

Figure 7. Schematic of AVL Assurance Case Architecture

 Nav. State Estimation, in turn, leverages the pose estimates produced by POSESTM, which
itself relies upon the LEC-based keypoint estimates—shown here as Keypoint Estimation (ML)—
a so-called Perspective n-Point (PnP) solver, and Pose Fusion. The PnP solver implements an
algorithm that estimates the 6-DOF pose based on three-dimensional points in space and their
corresponding two-dimensional image projections (i.e., the keypoints).
 Assurance of Keypoint Estimation involves providing confidence that the implemented ML
model used for estimating keypoints fulfils the allocated assurance objectives. This assurance may

Approved for Public Release; Distribution Unlimited.
16

also rely upon evidence of appropriate ML model training, validation and testing, and can be fur-
ther supported through performance metrics that characterize its behavior on known as well as
unseen data.

4.1.1.4 Assurance Case Elements

Functional Decomposition and Allocation
The AVL function is decomposed into the following sub-functions that are allocated to the physi-
cal system architecture as below:

• Guidance and Control sub-functions, each allocated to the Vehicle Manager, Autonomous
Executive, and Land Decision subsystems;

• Navigation function allocated to the Pose Estimation, Ownship State Estimation, and Per-
ception subsystems;

• Ground traffic awareness function, allocated to the Runway Clear and Perception subsys-
tems.

Hazards and Requirements
As previously mentioned, the main landing hazard to which the POSESTM function can contribute
is: Unstable Approach4.

The (safety) requirement corresponding to avoiding this hazard is stated as follows: The
aircraft shall have a stable final approach lined up with the designated runway descending on a
constant angle glidepath (between 3 and 5 degrees glideslope) towards the aiming point.

This requirement can be refined into lower-level requirements that specify what constitutes
a stable final approach, in terms of the aircraft system state parameters, e.g., airspeed, attitude,
position of the landing gear and control surfaces, power/thrust settings, descent or sink rate, alti-
tude/height above touchdown, etc. The safety requirement that mitigates (more specifically, re-
covers from) the unstable approach landing hazard is stated as follows: The aircraft shall reject
the landing and execute a go-around if the approach is unstable at the decision height (DH) ap-
propriate for the aircraft type and landing procedure.

A precursor event to the unstable approach landing hazard is navigation state error. The
pose estimate produced by the POSESTM function, which characterizes the 6-DOF orientation of the
aircraft, is a component of the navigation state of the aircraft. As such, errors in pose estimation
contribute to the navigation state error and thereby to the unstable approach landing hazard.

Figure 8 shows a screenshot of the AdvoCATE tool used to record the DAC for this air-
domain CP. Specifically, what is shown is an excerpt of the hazard log produced from the formal
hazard identification process, conducted as part of a functional hazard assessment (FHA), on the
AVL function. As shown, the system state (SS) being considered for analysis is when the aircraft
is on final approach (i.e., it is airborne), under the applicable environmental conditions (ECs) spec-
ified in the CONOPS (i.e., VMC with no crosswinds).

4 Also called as an Unstabilized Approach. In this report, both terms are used interchangeably.

Approved for Public Release; Distribution Unlimited.
17

The allocation for the identified hazards (more specifically functional failure conditions)
indicates the function (or the allocated subsystem) where the failure condition manifests. The con-
dition specifies the particular loss of control situation characterizing the functional failure. The
plausible causes and effects of the hazards also have been specified. For instance, the hazard E13-
2: Errors in runway keypoint estimates corresponds to a functional failure of POSESTM, whose po-
tential causes include E26-1: Adversarial image inputs, and E27-1: Errors in the sequence of input
images, leads to the effect E29-1: Pose estimation and localization errors.

Figure 8. Hazard Identification (FHA) in AdvoCATE

Figure 9. Risk Assessment (FHA) in AdvoCATE

Approved for Public Release; Distribution Unlimited.
18

Figure 9 shows a subsequent step in the FHA, presenting a suite of candidate mitigations
for each of the identified hazards, along with the expected level of risk reduction upon proper
implementation and invocation of the mitigations. For example, mitigations for the aircraft-level
hazard E11-1: Unstabilized final approach on transition to flare: misaligned landing attitude and
location include B5: Runtime assurance, B2: Primary localization based on machine learning,
B3: secondary localization based on inertial sensors, and B4: contingency management mecha-
nisms.

Figure 10. Excerpt of Requirements Log in AdvoCATE

Figure 10 shows an excerpt of the requirements log as recorded using AdvoCATE, con-
taining the safety / mitigation requirements that emerge as a consequence of the FHA. In addition
to the statement of the requirements, the requirements log records other relevant information, such
as: the type of requirements, their allocation (to an element of the physical architecture, or a func-
tion in the functional architecture), proposed verification methods, the location of the verification
results (verification allocation), as well as relations between requirements that help to support ad-
ditional assurance activities such as ensuring internal consistency.

For example, the requirement PE-SF211-R0003: the runway localization function shall
segment and mask the active landing runways from input images has been allocated to the sub-
function SF2.1.1: Runway Localization, one of the lower-level functions of POSESTM along with
Keypoint Estimation and PnP Solver State Estimation. Two verification methods have been iden-
tified: VM3: ML item verification on test data set, and VM4: ML item verification on simulated
data, along with their respective verification allocations. This requirement is itself derived from
the choice of using ML—in particular a Deep Neural Network (DNN), U-Net [RFB2015]—to
detect and localize the runway using a segmentation-based approach.

In addition to the excerpt of requirements shown in Figure 10, the main requirement on
POSESTM is stated as follows: The pose estimate of aircraft attitude, location, and velocity shall be
consistent with the true aircraft pose. This is both a functional and a safety requirement, since an
incorrect pose estimate can lead to an unstable approach due to the control system compensating

Approved for Public Release; Distribution Unlimited.
19

when not required. This requirement includes aspects of timing safety (i.e., on the worst-case exe-
cution time and real-time deadlines that apply during pose estimation), and the required navigation
performance (i.e., the accuracy and precision bounds on the pose estimates produced). Although
these concerns are within the scope of the DAC, they require specific implementation choices that
were not in the scope of this effort; hence we do not consider them further.

Subsystem Safety Analysis
Subsequent to the FHA, the safety analysis of the Pose Estimation subsystem (or equivalently the
POSESTM function) additionally involves characterizing the impact of various kinds of inputs (in-
cluding propagated failure conditions from upstream subsystems/items) in terms of the effects
produced both within the boundary of the function/subsystem, and at its boundary to the wider,
containing system.

For instance, inputs to the Pose Estimation Subsystem are images from the Perception sub-
system, in particular an image stream from the perception sensors (cameras), and map data from
the Navigation and Aircraft Database (see Figure 6 and the accompanying narrative). Sensor fail-
ure conditions can manifest as so-called out-of-distribution (OOD) inputs and/or adversarial inputs
that can lead to failure conditions of the Runway Localization and Keypoint Estimation sub-func-
tions. If those failure conditions are, in turn, not detected and corrected/mitigated they will propa-
gate to the PnP solver, leading to navigation state estimation failure conditions.

Figure 11. Pose Estimation Subsystem Safety Analysis

 Figure 11 shows an internal schematic of the POSESTM function, showing how image inputs
are used to produce keypoint estimates and runway segment masks (not indicated) using U-Net,
following which the PnP solver produces 6-DOF pose estimates. A candidate list of failure condi-
tions at the input to each function, and their effect is also given. For example, OOD or adversarial
inputs can produce any one or more of the following erroneous responses from U-Net, such as no
keypoints, wrong keypoints, spurious keypoints, keypoints produced out of sequence, no segment
mask, wrong segment masks, or inaccurate segment masks. Those erroneous inputs, in turn, can
lead to a variety of state estimate errors, or malfunctions in pose/state estimation.

Approved for Public Release; Distribution Unlimited.
20

Safety Architecture
The safety architecture represents a composition of mitigated risk scenarios.

We can model the system/functional hazards, their precursors, and the contributing failure
conditions identified through the FHA and the subsystem safety analysis (see preceding discus-
sion) and their inter-relations in terms of a risk scenario, i.e., a causal event chain showing how
initiating events lead to loss of control events (hazards) that eventually manifest as the undesired
effects that are to be avoided. Figure 12 gives an example of one such risk scenario modeled as a
BTD (see Section 3.3.2), showing initiating events (e.g., Adversarial image input) leading to the
hazard (also known as a top event in BTD terminology) Errors in runway keypoint estimates, that
eventually leads to the effect Pose estimation and localization errors. In fact, this risk scenario
(partially) represents the propagation of sensor errors via the U-Net ML model (that implements
the Runway Localization and Keypoint Estimation sub-functions of POSESTM) across the function
interface in the form of a function failure condition.

Figure 12. Bow Tie Diagram for Errors in Keypoint Estimation

Also shown in BTD in Figure 12 are a suite of mitigations (barriers and controls, in BTD
terminology), that are meant to reduce risk and either prevent, or recover from, respectively, the
identified hazard. For example, Run time Assurance is a barrier function that serves to mitigate the
risk posed by the errors in a sequence of input images. More specifically, this barrier function
invokes a monitoring capability to observe sequences of input images to detect errors, and OOD
inputs—a control. Likewise, when errors in keypoint estimation inevitably occur, additional miti-
gations are to be invoked, including:

• Safety post-processing: This involves two controls, namely: (i) shifting keypoints by a
safety factor such that they are within a predetermined error bound of the ground-truth
keypoint; and (ii) estimating new, corrected, keypoints from the runway instance that is
enclosed by a safe segmentation mask; and

Approved for Public Release; Distribution Unlimited.
21

• Run time Assurance: This involves monitoring and detecting keypoint errors that may
persist despite safety post-processing, by using the map data input from the Navigation
and Aircraft Database (see Figure 11).

By constructing several such risk scenarios modeling the different causal chains of events and the
associated mitigations, and composing them, a new model—the safety architecture—can be
formed that specifies: (i) the mitigations used to manage hazards and their causes and effects; (ii)
the circumstances (scenarios) under which the mitigations are invoked. For more details on the
specifics of safety architecture development, refer to [DPW2019].

Figure 13 gives a fragment, highlighting some barriers, as shown by the shaded, dotted
ovals. These represent the modifications to the original functional architecture (Figure 11) that
have been introduced to mitigate the contribution of the failure conditions—identified in the POS-
ESTM subsystem safety analysis—to the unstable approach landing hazard, thereby providing higher
assurance that POSESTM will meet its requirement (of producing pose estimates that are consistent
with the true aircraft pose). Figure 14 shows the modified functional architecture.

Approved for Public Release; Distribution Unlimited.
22

Figure 13. Excerpt of Safety Architecture for Pose Estimation

Approved for Public Release; Distribution Unlimited.
23

Figure 14. Modified Pose Estimation Functional Architecture for High Assurance

The following correspondence between the mitigation functions of the modified functional

architecture (Figure 14), and the risk scenario / BTD view of the safety architecture (Figure 12)
can be observed:

• The block labeled Out of Distribution Detection (Figure 14) implements the risk mitigation
control for errors in sequences of images input to POSESTM as specified in the Run time
Assurance prevention barrier (i.e., the first barrier on the left in Figure 12).

• The Safety post processing barrier (Figure 12) contains two recovery controls, the first of
which is implemented by the functions associated with the blocks labeled Keypoint safety
post processing and Segmentation safety post processing, respectively (Figure 14). The
second control is implemented by the block labeled Runway Geometry-based Keypoint Es-
timation (Figure 14).

• Lastly, the Run time Assurance recovery barrier/control (i.e., the fourth barrier in Figure
12) maps to the blocks labeled Map-based Keypoint References, and Comparison and Vot-
ing (Figure 14).

• Additionally, the responses of the OOD Detection function and the Comparison and Voting
function can be used to produce a fault flag that indicate pose estimation faults. That, in
turn, can be used to invoke a contingency mechanism implemented by the Contingency
Manager subsystem.
Note that the modified functional architecture in Figure 14 serves to provide assurance of

keypoint estimation fidelity. However, the approach to POSESTM assurance additionally requires
assurance of the PnP solver, since pose estimates are in fact produced by applying the PnP algo-
rithm to the keypoints it receives as input from the Keypoint Estimation function. Although we do

Approved for Public Release; Distribution Unlimited.
24

not consider assurance of the PnP solver in this report, we indicate its role in the assurance rationale
component of the DAC discussed subsequently.

Recall (Figure 5) that during aircraft landing, a traffic pattern is entered which involves
multiple phases. We can abstract the safety architecture to reflect this phased view of risk scenar-
ios. The idea is that in each phase, there are different risk scenarios, some of which can be common
across phases, and others that are related across phases.

Figure 15. Phases View of the Safety Architecture for Pose Estimation

Figure 15 shows a phases view of the safety architecture (also see Section 4.4.3.2) for
POSESTM, showing the phases of descent: approach, and landing, each of which themselves comprise
sub-phases: Base, Final (Approach), and Flare, and Landing Roll (Landing) respectively. The fig-
ure shows nodes that abstract the phase-specific safety architecture for each sub-phase, and the
links indicate that events in one sub-phase impact events in the subsequent sub-phases.

Assurance Rationale
The assurance rationale for POSESTM embeds the following argument (described in a narrative form,
interspersed with fragments of the graphical argument structures, as captured in AdvoCATE)

The main safety claim is formulated as follows: POSESTM is acceptably safe for use. Here, “ac-
ceptably safe” is defined in terms of the unacceptable outcomes to which POSESTM contributes (see
Section 4.1.1.2) not occurring more frequently than the rate corresponding to the TLOS considered
acceptable5 for those outcomes. This safety claim can be decomposed based on the safety objec-
tives stated earlier (Section 4.1.1.2): that is, under all specified operating conditions (i) neither the
intended behavior of the POSESTM function nor its failure conditions lead to an unacceptable out-
come, and (ii) the POSESTM function does not exhibit any unintended behavior that could lead to an
unacceptable outcome.

These objectives can be reflected as the following claims: POSESTM satisfies its allocated system
(safety) requirements; all identified failure conditions of POSESTM are sufficiently mitigated; all
identified hazardous interactions of POSESTM are sufficiently mitigated. The first relates to intended

5 As defined by a regulator, for example.

Approved for Public Release; Distribution Unlimited.
25

behavior not leading to an unacceptable outcome, i.e., satisfying its functional safety requirements.
The third relates to POSESTM not exhibiting unintended behavior.

Figure 16 shows a high-level structure—an argument architecture—of the safety argument,
reflecting the decomposition of the main safety into three sub-claims and associated supporting
sub-arguments (to be elaborated subsequently in this section).

Figure 16. Architecture of the Safety Argument for Pose Estimation

Figure 17 shows the concrete structure of the assurance argument, depicted graphically
using the Goal Structuring Notation (GSN), as well as its relation to the argument architecture. As
shown in the figure, the top-level of the argument architecture highlighted by the dotted oval region
abstracts the claim decomposition and clarifying contextual information.
For this report, we focus on the claim associated with satisfying the allocated requirements. As
indicated earlier, the main claim for which assurance is required is the functional safety require-
ment for POSESTM: The pose estimate of aircraft attitude, location, and velocity shall be consistent
with the true aircraft pose. This can be shown to hold with high confidence6, when the POSESTM

6 We have not specified what constitutes “high confidence” in this report. One approach could be to consider “high-
confidence” as the 95% or 99% binomial proportion confidence interval for the probability of producing an accurate

Approved for Public Release; Distribution Unlimited.
26

outputs, i.e., the estimates of the 6-DOF parameter values (i.e., the rotational parameters roll, pitch,
yaw, and the translational parameters surge, heave, sway) are consistent with the true aircraft ori-
entation and location in the appropriate reference frame.

In other words, it must be shown with high confidence that POSESTM produces accurate es-
timates of the 6-DOF parameters. The acceptable uncertainty bounds (or equivalently, the margin
of error) in the parameter estimates considered accurate is a part of the contextual information that
must be made explicit in the assurance argument (however, we have not defined those bounds in
this report).
 The outputs of POSESTM are in fact the outputs of the PnP solver. Thus, for the 6-DOF pa-
rameter estimates to be accurate, the PnP solver must produce the correct outputs for the given
keypoint inputs. More specifically, the PnP solver must correctly transform the keypoints supplied
to it, and the keypoints themselves must be both valid (within the set of admissible values) and
accurate. Correct PnP transformation requires that no errors are introduced in processing keypoints
and producing 6-DOF parameter estimates. That is, the specification of the PnP algorithm is valid,
and its implementation is correct with respect to its specification.

Figure 17. Fragment of Top-level Safety Argument Structure

 Accuracy of keypoint inputs, informally, implies a 1-1 correspondence between the points
identified in a 2D projection on an image of a 3D scene, and the ground truth. Since the keypoint

(i.e., correct/consistent with true pose, and precise) pose, Pr(Accurate Pose Estimate), where the corresponding prob-
ability of failure (to produce an accurate pose estimate) —given as Pr(Pose Estimate Failure) = 1 – Pr(Accurate Pose
Estimate)—is not greater than the acceptable TLOS for the unstable approach landing hazard.

Approved for Public Release; Distribution Unlimited.
27

inputs to the PnP solver are the outputs of an LEC (i.e., an implementation of the U-Net DNN
model that realizes the Runway Localization and Keypoint Estimation function), keypoint inputs
to the PnP solver are accurate when i) the LEC produces accurate keypoint estimates as output in
response to a stream of image inputs from the perception sensors; and ii) any errors in LEC-based
keypoint estimation are detected and corrected before they are propagated to the PnP solver (note
that this corresponds to the safety post processing and runtime assurance recovery barriers captured
in the safety architecture shown in Figure 12 and Figure 13).

To show that the U-Net LEC produces accurate keypoint estimates, it has to be shown that:
First, the LEC produces accurate keypoint estimates on unseen in-sample data, i.e., on image
streams collected for validating that LEC behavior is as required, prior to its deployment into op-
eration. The evidence for this includes, for example, the results of verification that for all usage
situations specified in the CONOPS, over the entire duration of the intended use, for all images in
a sequence of a predetermined length, the LEC produces as output:

• keypoints that always lie within a region that includes the ground-truth keypoints, and the
dimensions of that region are within the acceptable margin of error;

• runway instance segment masks that always contain the ground-truth runway instances.

Figure 18. Fragment of Safety Argument Invoking Generalization Guarantees

Additional evidence can include quantitative metrics that characterize LEC accuracy per-

formance: for instance, keypoint estimation error rates (which are shown to be no worse than the
acceptable error rate) and object keypoint similarity (OKS) based mean average precision (MAP).

Secondly, the LEC behavior exhibited on unseen in-sample data will generalize to unseen,
out-of-sample data. This constitutes a so-called generalization guarantee, for which supporting

Approved for Public Release; Distribution Unlimited.
28

evidence can include verification of generalization behavior in different verification environments,
e.g., in simulation, or a real and constrained environment, or incrementally in a real and uncon-
strained environment. For this report, we have not defined what precisely constitutes a generaliza-
tion guarantee, although one possible formulation involves claiming and showing that the OKS-
based MAP is no worse in deployment than the values obtained during LEC development. Figure
18 shows a graphical depiction of this argument structure using GSN. This argument also supports,
in part, the objective of showing that POSESTM does not exhibit unintended behavior.

Lastly, the LEC receives inputs consistent with its operational design domain (ODD)—the
specification of the full space of inputs that the LEC is expected to encounter in use in which it
must properly function—and any inputs not consistent with its ODD are detected and filtered (note
that this corresponds to the runtime assurance prevention barrier captured in the safety architecture
shown in Figure 12 and Figure 13). Due to the first and the third items above, we must additionally
show that the data sampled for training and validation (during LEC development) is appropriate.
Figure 19 shows a fragment of the corresponding argument.

Figure 19. Fragment of Safety Argument for Data used for LEC Development

Here, the claim of appropriate data being used to develop the LEC is decomposed and
refined by

Approved for Public Release; Distribution Unlimited.
29

• Appealing to the concrete data conforming to the specified data requirements for U-Net
ML model development, and

• Reasoning over each type of data (i.e., training, validation, and testing) used. For this sub-
argument, the following properties of the data are considered: the data are complete, bal-
anced, relevant, and accurate. Accuracy of data in particular can be decomposed into at
least the following claims:

- the data is representative of the ODD for POSESTM;

- the ground truth runway instance segment mask always strictly contains a runway;
- the ground truth keypoint labels always strictly correspond to the true runway key-

points in the data; and
- the frame rate of the data used in LEC development corresponds to the frame rate

of the input images in operation.

Evidence
The following are examples of the type of evidence artifacts that can be used to support the assur-
ance argument presented in the preceding discussion:

• Safety architecture design including architectural mechanisms such as runtime monitoring,
and function output correction;

Figure 20. Evidence Dependency Graph for Pose Estimation Assurance

Approved for Public Release; Distribution Unlimited.
30

• Specifications of the ODD, operational envelope, and concept of operations;

• Results of verification of properties applicable to the ML model and its implementation
(i.e., ML item) such as those involving pixel-level keypoint estimation accuracy, segmen-
tation mask accuracy, keypoint to segmentation mask relations, and robustness;

• Subsystem architecture verification results including properties concerning the accuracy in
correcting errors in keypoint estimation and segmentation masks, worst case execution
time (WCET), and navigation state accuracy;

• Testing-based statistics on ML model and item performance metrics on properties such as
inference accuracy;

• Evidence of data accuracy, representativeness, coverage, completeness, and relevance; and

• Verification results of ML model to implementation transformation fidelity.
Note that the above are not a comprehensive list. Figure 20 shows an evidence dependency

graph, as constructed within AdvoCATE, that indicates some of the concrete evidence items and
their interrelations. For more details on the specifics of the graph and how evidence is captured
and represented in the tool, see Section 4.4.7.

4.1.2 Undersea Domain Challenge Problem – Obstacle Avoidance
NG CP 4
 Challenge problem summary
 Assurance Objectives
 Assurance Case Architecture
 Assurance Case Elements

4.2 Assurance Measures for Challenge Problems
For Phase 3, we developed models for assuring the collision avoidance and degradation detection
LECs for the undersea domain platform and the object detection and pose estimation LECs for the
air domain platform.

4.2.1 Undersea Domain
For Phase 3, we have focused on two challenge problems (CPs): CP4 (obstacle avoidance), and
CP6 (operating under degraded modes)

4.2.1.1 CP4 – Obstacle Avoidance
CP4 involves a search-and-rescue scenario in which an autonomous underwater vehicle (AUV)
must perform a ladder search while avoiding obstacles. The framework for the high-level assur-
ance measure for this problem is shown below along with the details of the assurance measure we
developed for the collision avoidance LEC.

Approved for Public Release; Distribution Unlimited.
31

High-level Assurance Measure
The mission objectives for CP4 are as follows:

• In-distribution input signal from Forward Looking Sonar (FLS)
• Successful obstacle avoidance
• Grid search completion (>95% of waypoints reached)
• Loiter completion (>1/3 of search time for loiter)
• Return to surface safely.

Figure 21. Partial Safety Architecture with Related Mission Objectives

Each of these mission objectives was linked to various events in the safety architecture. A
small portion of the safety architecture with associated mission objectives is shown in Figure 21.
For example, mission objective A (obstacle avoidance) would be negatively impacted in the event
that an inaccurate object range was computed by the FLS filtering LEC. In this instance, the AUV
may not have time to be rerouted around the obstacle. The links between events in the safety ar-
chitecture yield a graphical representation of the dependencies of the mission objectives as shown
in Figure 22. The overall assurance measure is the joint probability of all mission objectives and
may be computed from the graph.

 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐴𝐴,𝐵𝐵)𝑃𝑃(𝐷𝐷|𝐴𝐴,𝐶𝐶) (1)

𝑃𝑃(𝐴𝐴) is computed via the low-level assurance measure described in the next section. The condi-
tional probabilities are computed from data generated from the simulator.

Low-level Assurance Measure
The low-level assurance measure was designed based on an assurance property, a quantifiable
measure for success or failure, for collision avoidance. The assurance property for this problem is

 𝑃𝑃((𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡 = 𝑇𝑇:𝑇𝑇 + 𝑛𝑛) ≤ CPA | 𝐼𝐼(𝑡𝑡 = 0:𝑇𝑇)) ≥ 𝐶𝐶 (2)

 where 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) is the range to obstacle at time 𝑡𝑡, CPA is the closest point of approach (10m),
𝐶𝐶 is the confidence threshold (0.05), and 𝐼𝐼(𝑡𝑡 = 0:𝑇𝑇) is the sequence of observations until time 𝑇𝑇
of inputs to the control LEC: closest point of approach, obstacle range from the FLS, estimated
object size.

Approved for Public Release; Distribution Unlimited.
32

The collision avoidance LEC is a reinforcement learning model that determines the appro-
priate heading-speed-depth (HSD) command based on the current state data, as follows:

• Current range to obstacle
• Current closest point of approach to obstacle given the current heading and depth
• Estimated object size.

For assurance measure development, we analyze the inputs to and outputs of the LEC for 5 time
steps. Analyzing the inputs allows us to determine whether the AUV is in a familiar environment.
In previous phases, we have accomplished this task using autoencoders and inductive conformal
prediction. For this phase, we have utilized evidential regression models, which allow for quanti-
fication of aleatoric (data or input) uncertainty as well as epistemic (inference) uncertainty simul-
taneously. Additionally, the evidential model replaced the ensemble of Bayesian neural networks
used in the previous phase for inference.

Figure 22. Graphical Model for Overall Assurance Measure for CP4

 Evidential models place priors over the likelihood function instead of network weights as
shown in Figure 4. The model is trained to predict the parameters of an evidential distribution,
such that the total loss includes model fit in terms of negative log likelihood plus the regularization
of evidence scaled by the error of the prediction [ASSR2020]. This allows for quantification of
both aleatoric (input distribution) and epistemic (LEC performance) uncertainty. The architecture
for the model for the assurance measure is as follows:

• Dense layer, size 128, rectified linear unit (ReLU) activation function
• Dense layer, size 64, ReLU activation function
• Dense layer, size 32, ReLU activation function
• Dense layer, size 16, ReLU activation function
• Dense normal gamma layer (evidential layer)

The model was trained on a data set of 72,835 cases at a learning rate of 10−4 for 100 epochs and
was tested on a data set of 87,898 cases.

Approved for Public Release; Distribution Unlimited.
33

As the LEC provides a heading, speed, and depth (HSD) command in lieu of a prediction
of collision, the assurance measure was designed to predict a future collision and to provide an
alert in the event that a collision was deemed imminent. Therefore, the output of the assurance
measure was the probability of a collision occurring at 𝑡𝑡 + 5, where 𝑡𝑡 is the current time step. To
obtain data for training and testing, we ran the AUV simulator provided by NG in a mission con-
figuration that led the AUV in a ladder formation while providing randomly generated obstacles
to avoid.
 Table 1 shows the performance of the assurance measure with the model type (ensemble
of Bayesian neural networks) used in Phase 2 along with an evidential neural network and an
evidential long short-term memory (LSTM) network. The results show that the evidential neural
network achieved higher sensitivity and specificity while performing inference faster than the en-
semble of BNNs.

Figure 23. Deep Evidential Regression

Two specific scenarios were provided for which the assurance technologies were to be

tested. The first scenario, seen in Figure 24, involved an obstacle being too close to a way point.
For this scenario, we allow the collision avoidance LEC a certain amount of time to reach the
waypoint while trying to avoid the obstacle, but if too much time passes without achieving this
goal, we signal the system to move on to the next waypoint. This scenario has been tested on the
Iver AUV in water, and the assurance technology was successful in directing the Iver AUV to
avoid the obstacle.

Approved for Public Release; Distribution Unlimited.
34

Table 1. Assurance Measure Results for CP4 (Obstacle Avoidance)

Assurance Measure
Model AUC Sensitivity Specificity False Negative

Rate
Inference

Time

Ensemble of BNNs 0.9787 0.9898 0.9692 0.0102 6.677ms

Evidential NN 0.9980 0.9968 0.9977 0.0032 1.572ms

Evidential LSTM 0.9889 0.9973 0.9889 0.0027 4.816ms

 Figure 25 shows the second scenario with a wall of obstacles between the AUV and a
waypoint. The ideal outcome here is that the assurance technology would tell the AUV to return
home in lieu of potentially getting lost in the debris field. The decision component of the assurance
technology for this scenario instructed the AUV to move on to the next waypoint as before, and if
the AUV is still too close to obstacles after a certain amount of time, the assurance technology
instructs the AUV to return home. This scenario was tested in simulation only during which the
AUV attempted a ladder search in the presence of obstacles in nominal and degraded modes.

Figure 24. CP4 Scenario with Obstacle on Waypoint 1

 The scenario in Figure 24 induces a collision when no assurance technology is being used
as the AUV turns back to the waypoint and obstacle after initially avoiding the obstacle and is too
close to redirect.

Approved for Public Release; Distribution Unlimited.
35

Figure 25. CP4 Scenario with Wall of Obstacles

 The scenario in Figure 25 induces a collision as the AUV focuses on a single obstacle at a
time and in avoiding one obstacle becomes too close to the others.

4.2.1.2 CP6 – Operating Under Degraded Modes
CP6 introduced fin degradation to the AUV. In this problem, a new LEC that determined the
amount of disturbance was provided.

High-level Assurance Measure
For CP6, we add an additional node to the graph for the high-level assurance measure for CP4,
including the mission objective of successful disturbance detection. Figure 7 shows this addition
as mission objective E. The LEC behind mission objective E determines whether the collision
avoidance LEC is utilizing the appropriate model weights for the given environment and, thus,
directly affects mission objective A as shown. The updated overall assurance measure is then com-
puted.

 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸) = 𝑃𝑃(𝐸𝐸)𝑃𝑃(𝐸𝐸)𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐴𝐴,𝐵𝐵)𝑃𝑃(𝐷𝐷|𝐴𝐴,𝐶𝐶) (3)

Given a successful mission objective E, 𝑃𝑃(𝐴𝐴) continues to be computed via the assurance measure
for CP4. Otherwise, 𝑃𝑃(𝐴𝐴) is the expectation of a uniform distribution, 0.5.

Low-level Assurance Measure
The disturbance detection LEC analyzed fin outputs and state data to determine the amount of
degradation and to instruct the collision avoidance LEC which weights to use. A set of weights
were trained with the AUV in a degraded mode to compensate for the disturbance.

Approved for Public Release; Distribution Unlimited.
36

 The assurance measure for this problem was developed in two steps. First, a model for
determining degraded versus nominal mode was trained using state data. Then, a model for deter-
mining whether the appropriate weights were being applied was trained using fin inputs as well.
Data for training (128,790 cases) and testing (77,373 cases) of both models was obtained using the
provided simulator. The models used were evidential regression models, and performance metrics
are shown in Table 2.

Figure 26. Graphical Representation of Overall Assurance Measure for CP6

The architecture for the model determining nominal versus degrade mode was as follows:

• Long-term short-term memory (LSTM) layer of size 128
• Dense layer of size 64, ReLU activation function
• Dense normal gamma layer

The model was trained at a learning rate of 10−4 for 300 epochs with a batch size of 100.
The architecture for the model determining correct weights was as follows:

• Dense layer of size 256, ReLU activation function
• Dense layer of size 128, ReLU activation function
• Dense layer of size 32, ReLU activation function
• Dense normal gamma layer

The model was trained at a learning rate of 7 × 10−5 for 500 epochs with a batch size of 1,000.

Approved for Public Release; Distribution Unlimited.
37

Table 2. Performance of Assurance Measure Models for CP6

Assurance Measure Model AUC Sensitivity Specificity

Model for Mode 0.96 0.98 0.92

Model for Weights 0.99 1.0 0.99

4.2.2 Air Domain
For the air domain, CP 3.1 involved safe landing using two LECs for perception (see Section 4.1.1
for more details). The first LEC (CP 3.1.1) detects vehicles on the runway for tracking and obstacle
avoidance. The second LEC (CP 3.1.2) performs pose estimation by identifying key points on the
runway.

4.2.2.1 High-level Assurance Measure
Mission objectives for this challenge problem include:

• Good input signal from camera
• Successful object tracking
• Successful pose estimation
• Correct landing decision

 As for the previous CPs, we linked each mission objective to events in the safety architec-
ture and generated a probabilistic graphical model as shown in Figure 27 and resulting in the fol-
lowing formula for computing the high-level assurance measure:

 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐷𝐷|𝐵𝐵,𝐶𝐶) (4)

If mission objective A is successful, 𝑃𝑃(𝐵𝐵) and 𝑃𝑃(𝐶𝐶) are computed via the assurance measures for
B and C, respectively. Otherwise, they are the expectation of a uniform distribution, 0.5.

Approved for Public Release; Distribution Unlimited.
38

Figure 27. Graphical Model for Overall Assurance Measure for CP3.1

4.2.2.2 Low-level Assurance Measure for CP 3.1.1
The assurance measure for CP3.1.1 was designed to monitor the performance of the object detec-
tion LEC. The initial model design was for a semantic segmentation model that would output
uncertainty per pixel. This model, however, was not providing desired results. Therefore, we al-
tered the model and used a more general approach. The assurance measure model was designed to
determine the presence or absence of a vehicle in a given sub-image.
 Data for this model was taken using the bounding boxes of ground truth annotations +30
pixels on each side. The cropped images were then resized to 1281283. Negative examples
were taken at random outside of the bounding box areas. The model architecture is as follows:

• Dense layer of size 256, ReLU activation function
• Dense layer of size 128, ReLU activation function
• Dense layer of size 64, ReLU activation function
• Dense layer of size 32, ReLU activation function
• Dense normal gamma layer

 The model was trained on 2,000 cropped images and was tested on 1,000. The model was
trained for 10,000 epochs at a learning rate of 5 × 10−6. The model achieved a sensitivity of 0.95,
a specificity of 0.93, and an AUC of 0.98.

4.2.2.3 Low-level Assurance Measure for CP 3.1.2
The assurance measure for CP3.1.2 was designed to monitor the performance of the key point
detection LEC for pose estimation. The planned model architecture was a deep evidential model
incorporating convolutional layers, pooling and dense layers. Due to time constraints, this model
was not trained or tested.

Approved for Public Release; Distribution Unlimited.
39

4.3 Formal Methods Integration
Tools for verifying neural networks are often complex and their usage subject to many constraints,
contextual dependencies, and assumptions. This can make both performing the verification and
the subsequent integration of the results into an assurance case challenging, especially for non-
expert users. To ensure this, we need to demonstrate that the verification tool is itself trustworthy
and that it has been correctly used for the specific application.

We describe an approach to incorporating results from verification tools in an assurance
case by capturing the verification method information in a formally defined assurance case. In
particular, we specify the verification steps for using the tool and capture their usage constraints.
We capture the input evidence type needed by the tool and output evidence type provided by the
tool. Then we specify the usage constraints over these evidence types in the form of parametrized
assumptions and guarantees. These tool specifications are application independent. Whenever a
tool is used, we capture each individual tool usage by instantiating the parameters in its tool spec-
ification regarding input and output evidence types. This allows us to also instantiate and possibly
evaluate the assumption and guarantee statements. To incorporate the usage results in an assurance
argument, we defined a common tool assurance pattern, which can be customized for each tool.
Each tool pattern can be instantiated for specific tool usages. The tool input and output evidence
types act as parameters of the argument pattern, and they get instantiated by the values from spe-
cific tool usages. This allows for semi-automated creation of an assurance argument fragment for
each usage. In the case of a chain of tools, the instantiation can be recursive so that it automatically
instantiates and connects patterns of all the tools in the chain, allowing for generation of a more
comprehensive argument. The generated argument fragment presents the obtained results and the
usage constraints underpinning its validity.

In the remainder of the section, we present the integrations of verification performed with
VerifAI in Challenge Problems 1.1 and 2.1, and Venus in Challenge Problem 2.2 For each tool,
we first present a tool overview, then we present the corresponding tool specification with the
usage constraints capturing the assurance challenges for that tool. Finally, we present a fragment
of the challenge problem specific assurance case addressing the application of the tool to that chal-
lenge problem.

4.3.1 VerifAI

4.3.1.1 Tool Overview
The VerifAI toolkit implements a methodology for reliable design of systems that include ML
components. In particular, the toolkit supports modelling of the system, its requirements and en-
vironment, as well as analysis, debugging and improving the system design that includes the ML
component.

The top-level architecture of VerifAI is shown in Figure 28. The VerifAI approach is com-
posed of four main modules and an external simulator:

1. Abstract feature space and Scenic modelling language: The environment of the ML com-
ponent is modelled in the Scenic probabilistic environment modelling language. This en-
vironment of an ML component consists of the system environment and the system con-
figurations of interest. The parameter ranges can be either explicitly stated or using prob-
abilities in Scenic.

Approved for Public Release; Distribution Unlimited.
40

Figure 28: Structure and Operation of VerifAI [VAI2019]

2. Searching/sampling the feature/environment space: VerifAI uses the environment model

specified in Scenic to generate test vectors, i.e., concrete scenes where each parameter
has an assigned value based on the corresponding distributions assigned in Scenic pro-
gram. VerifAI supports different ways of searching/sampling the environment space from
the Scenic program.

3. External simulator: VerifAI can be coupled with different simulators. The selected simu-
lator is used to simulate the system for each test vector. The simulator should include a
model of the system, with the controller and the ML component, as well as the environ-
mental model as specified in the corresponding Scenic program.

4. Property monitor: A monitor is used to check if each simulation satisfies or violates the
system-level specification.

5. Error table analysis: The violations of the system-level specification are recorded in an
error table for automated analysis.

Scenic Modeling Language
A scenic program can be used to describe environments of autonomous systems in terms of fea-
tures, where each feature can have different values. The probabilistic nature of Scenic allows the
assignment of distributions to the features describing an environment so that it is possible to say
that a particular feature is more likely to have one value over another. Furthermore, on top of the
feature distributions, a Scenic program can also contain constraints over features. An environment
obtained by selecting a value for each feature is called a scene. Generating scenes from a Scenic
program requires sampling from the distributions defined in the program, while respecting the
stated constraints. If a feature doesn’t have an explicit distribution assigned to it, then uniform
distribution is assumed. Scenes are also referred to as test vectors or feature vectors. Feature can
be weather, time, car model, car color, car heading, or car position, where their values can be, for
example, neutral, clear, smog, clouds for weather, or 00:00 to 24:00 for time.

Approved for Public Release; Distribution Unlimited.
41

When used for verification of a perception ML component, the scenes from the Scenic
program are used to generate realistic images by a simulator. Those images are used to test the
perception component. The test result returns a correct or incorrect label based on the performance
of the object detector component on the generated image. The correct/incorrect result for an image
is then associated with the corresponding scene. The data set of scenes and their evaluations can
be used in different ways to ultimately improve the performance of the perception component.

Sampling the Environment Space

The environment space can be sampled using static or active sampling techniques. The static sam-
pling techniques rely on defining fixed distributions in the Scenic program. In contrast, active
sampling techniques change how scenes are generated over time in response to feedback from
earlier tests. To enable active sampling techniques to be applied on a Scenic program, Scenic is
extended with parameters that are assigned by an external sampler. This allows Scenic to be used
together with external sampling techniques, be it optimization or other algorithms to search the
corresponding parameter space.

Monitoring

VerifAI supports monitoring MTL properties using the py-metric-temporal-logic python package.
The user can also specify a custom monitor as a python function. The monitor evaluates the sim-
ulation with respect to the MTL property. The monitor takes a trace from the simulator and eval-
uates the MTL property over the trace. The MTL monitor does not just establish if the trace satis-
fies the formula or not, but it evaluates the robustness of the formula.

The robustness level is taken to be the greatest deviation from the formula achieved over
the whole simulation. That is, if the robustness level is ≥ 0, the formula is satisfied, and if it is
negative, the formula is not satisfied for the given trace. A greater robustness level means that a
small disturbance in the simulation is not likely to invalidate the formula. If the robustness level is
close to 0, it means that a small disturbance to the execution that resulted in the given trace may
cause the property not to be satisfied. Negative robustness means that the formula is not satisfied,
and lower number represents greater deviation from satisfying the formula.

The results of the monitor can be used to output the falsifying traces where the property is
violated. The results could also be used to direct the search/sampling of the environment/feature
space towards identifying scenes that will most likely result in a satisfying or violating the moni-
tored property.

Refining Scenic Programs
Here we discuss refining Scenic programs to support training, debugging, and testing perception
components based on monitoring results. The aim of the approach in [VAI2020] is to find rules
for refining the Scenic program in order to maximize the probability of generating scenes that will
have the same label. For example, one rule may maximize the chances of generating scenes where
the perception component performs well, and another rule where the perception component per-
forms poorly. These rules are used to refine the original Scenic program by adding the rules as
program constraints. Such refined Scenic programs can that be used to generate scenes to further
train, debug and test the perception component.

Approved for Public Release; Distribution Unlimited.
42

Error table analysis

The detected violations of the monitored properties (the counterexamples) are stored in a data
structure called the error table. The rows of the table are counterexamples, and the columns are the
Scenic abstract features. Each row presents a test vector that led to a violation of the monitored
property. Such error table can be used offline for debugging or online to drive the search/sampling
algorithms towards specific areas of the environment/feature space. VerifAI supports different
techniques for the analysis of the error tables, depending on what is the end use (e.g., counterex-
ample analysis or data set augmentation).

4.3.1.2 Tool application in Challenge Problems

VerifAI Re-training for Centerline Tracking using TaxiNet (CP 1.1)
TaxiNet is an experimental autonomous aircraft taxiing system developed by Boeing. The system
uses a neural network to estimate the aircraft’s position from a camera image. A controller then
steers the plane to track the centerline. The main TaxiNet centerline tracking requirement is that
“TaxiNet shall keep the aircraft within 1.5m of the runway centerline during taxiing”. To establish
the quantitative target for this requirement, we consider human pilot performance with the same
aircraft. For a Cessna Caravan, the aircraft will remain within 6 feet of the centerline 95% of the
time. Hence, the probability at which the system meets the requirement should not be less than
95%.

Figure 29. Tools Integration Diagram for VerifAI Testing and Retraining

Approved for Public Release; Distribution Unlimited.
43

The following represents the VerifAI workflow for verifying the centerline property within

CP 1.1 (captured in the Tools Integration Diagram in Figure 29)

• Create an abstract feature model (the initial Scenic program) based on the model of the
environment and the system model (the simulated one).

• Use that Scenic program to generate test cases.

• For each test case, run a 30 second simulation using the X-Plane simulator, which is set up
using the environmental model and the system model.

• From each simulation run, dump full trace of execution of the simulation and run the falsi-
fication tool to check if the specified MTL property is satisfied by the trace or not.

• Take all the traces that have not satisfied the property and perform counterexample analysis
on them to identify reasons why each of those counterexamples happened. A few reasons,
called failure scenarios, are identified and usually they account for most of the counterex-
amples.

• Consider the identified failure scenarios and try to refine the initial Scenic program to gen-
erate a new test case set that will focus more on those failure scenarios. This is a way to
generate a training set for the LEC to better handle these failure scenarios.

• Run the simulations again for each new test case and perform falsification of each trace.

• Create a training data set that focuses more on the failure scenarios from the new test cases,
simulation data, and falsification results. Retrain the LEC with this data set and then do
another testing cycle of the latest LEC.

VerifAI Tool Specification (CP 1.1)
We captured the tool usage constraints in the form of assumptions and guarantees in the tool spec-
ification DSL. For creating the Scenic program using the VerifAI-Scenic tool (Figure 30), which
in this case represents an activity, it’s important that the environment model correctly represents
the operational environment of the system considered in this application. The activity should guar-
antee that the resulting Scenic program is consistent with the system model and that the resulting
Scenic program itself correctly represents the operational environment. Similar tool specification
for other tools from Figure 29 are shown in Figure 31 – Figure 36.

Approved for Public Release; Distribution Unlimited.
44

Figure 30. VerifAI-Scenic Tool Specification

Figure 31. VerifAI Test Generation Tool Specification

Figure 32. VerifAI X-Plane Tool Specification

tool "VerifAI-Scenic" {
 description "Abstract feature space modelling"

inputs [sysModel : uasDacEvidence.EvidenceType.system_model , envModel :
uasDacEvidence.EvidenceType.model]

 assumptions [
{ sysModel } + " is correct" ,

 { envModel } + " correctly represents the operational environment"]
 outputs [scenicProgram : uasDacEvidence.EvidenceType.abstract_feature_model]
 guarantees [

{ scenicProgram } + " is consistent with the system model" ,
 { scenicProgram } + " correctly represents the operational environment"
]
 toolset TS1
}

tool "VerifAI-TestGenerator" {
 description "Test case generation"
 inputs [scenicProgram : uasDacEvidence.EvidenceType.abstract_feature_model]
 assumptions[

{scenicProgram}+ " is consistent with the system model",
 { scenicProgram } + " correctly represents the operational environment"
]
 outputs [testSet : uasDacEvidence.EvidenceType.test_cases_specification]
 guarantees [

"Distribution of test cases in " + { testSet } + " is consistent with the
feature distribution in "+{scenicProgram},
{testSet}+" size conforms to the required test size for the given
application",

 "Each test case from " +{testSet}+ " is consistent with the system model",
 {testSet}+ " correctly represents operational environment"]
 toolset TS1
}

tool "VerifAI-X-PLANE" {
 description "X-Plane simulator"

inputs [testSet : uasDacEvidence.EvidenceType.test_cases_specification ,
sysModel : uasDacEvidence.EvidenceType.system_model , envModel :
uasDacEvidence.EvidenceType.model]

 assumptions[
"Each test case from " +{testSet}+ " is consistent with "+{sysModel},
{envModel}+" correctly represents the operational environment",
"Internal system model is consistent with "+{sysModel}+" and "+ {envModel}]

 outputs [simResults : uasDacEvidence.EvidenceType.simulation_results]
 guarantees[

"A simulation is run for each test case from "+{testSet},
"Each simulation run is correctly represented by a simulation trace in "
+{simResults}]

 toolset TS1
}

Approved for Public Release; Distribution Unlimited.
45

Figure 33. VerifAI MTL Monitor Tool Specification

Figure 34. VerifAI Counterexample Analysis Tool Specification

Figure 35. VerifAI Scenic Refinement Tool Specification

tool "VerifAI-MTLMonitor" {
 description "Temporal logic falsification"

inputs [simResults : uasDacEvidence.EvidenceType.simulation_results ,
formalSpec : uasDacEvidence.EvidenceType.formal_specification]

 assumptions [
{formalSpec} +" variables are present in "+{simResults}]
outputs [falsRes: uasDacEvidence.EvidenceType.
temporal_logic_falsification_results]

 guarantees [
"Each trace from "+{simResults}+" is evaluated against "+{formalSpec}+" in "
+{falsRes}]

 toolset TS1
}

tool "VerifAI-CA" {
 description "Counterexample analysis"

inputs [falsRes : uasDacEvidence.EvidenceType.
temporal_logic_falsification_results]

 assumptions [{falsRes}+" contains only traces violating the formal property"]
 outputs [caRes : uasDacEvidence.EvidenceType.counterexample_analysis_results]
 guarantees [

{caRes}+" identified a failure scenario for each counterexample from "
+{falsRes}]

 toolset TS1
}

tool "VerifAI-ScenicRefinement" {
 description "Abstract feature space refinement"

inputs [inputScenic : uasDacEvidence.EvidenceType.abstract_feature_model ,
caResults : uasDacEvidence.EvidenceType.counterexample_analysis_results]

 assumptions[
{inputScenic}+" correctly represents the environment model",

 {inputScenic}+" correctly represents system model"
]
 outputs [outputScenic : uasDacEvidence.EvidenceType.abstract_feature_model]
 guarantees[

{outputScenic}+" correctly represents the environment model",
 {outputScenic}+" correctly represents system model"
]
 toolset TS1
}

Approved for Public Release; Distribution Unlimited.
46

Figure 36. VerifAI Training Data Generation Tool Specification

VerifAI Tool Use Specification (CP 1.1)
We capture three iterations of VerifAI falsification for the sake of LEC testing and retraining. The
first iteration deals with testing the input LEC. It starts by making the Scenic program, generating
the test cases, performing simulation and falsification of its results, then performing counterexam-
ple analysis of the falsification results. We then capture the refinement of the Scenic program based
on the counterexample analysis results with the purpose to create specialized Scenic programs that
will be used for generating new training data in order to improve the performance of the LEC in
the areas where it does not perform well. The captured tool uses of the first iteration are shown in
Figure 37. Similar tool uses are captured for the other iterations, where the training data is gener-
ated and LEC retrained, and finally where this retrained LEC is tested in another iteration.

tool "VerifAI-TrainingDataGen" {
 description "LEC training data set generator"

inputs [simResult : uasDacEvidence.EvidenceType.simulation_results , falsfRes:
uasDacEvidence.EvidenceType.temporal_logic_falsification_results , testSet :
uasDacEvidence.EvidenceType.test_cases_specification]
assumptions [
"Each simulation trace in "+{simResult}+" corresponds to one test case in "

+{testSet}+"and one simulation trace in "+{falsfRes},
 {testSet}+" correctly represents the operational environment",

"The size of the input sets "+{simResult}+{testSet}+{falsfRes}+" meets the
quantitative targets for the training set size"]

 outputs [trainingSet : uasDacEvidence.EvidenceType.training_data_set]
 guarantees [

"Each image in "+{trainingSet}+" is representative of the simulation run from
which it is extracted",

 {trainingSet}+" correctly represents the operational environment"]
 toolset TS1
}

Approved for Public Release; Distribution Unlimited.
47

Figure 37. Excerpt of Tool Use Specification for VerifAI Retraining Application

VerifAI Evidence Log (CP1.1)
The input and output evidence captured in the Tool uses are recorded in the Evidence log in more
detail. An excerpt from the Evidence log is shown in Figure 38. The Evidence definitions not only
include information about the evidence item, itself, but can also include relations to other Evidence
items. In that way we capture some of the required properties based on the usage constraints di-
rectly in the Evidence Log. For example, we can indicate that the SCENICFALSIF program is con-
sistent with the XPlane-model, which means that we will be able to use scenes generated from that
program in XPlane.

Approved for Public Release; Distribution Unlimited.
48

Figure 38. Excerpt of Evidence Log from VerifAI Retraining

VerifAI CP1.1 Specific Argument
We connect the verification of the TaxiNet centerline tracking to the steering malfunctions hazard,
as depicted in Figure 39. In particular, we focus on presenting the results of the verification of the

artifact scenicFalsif {
 description "The initial Scenic specification"

purpose "The initial Scenic specification of the environment for TaxiNET falsification.
Specifies generic scenarios of TaxiNET environment in terms of abstract features to
guide TaxiNET falsification"

 type abstract_feature_model
 provenance ""
 status obtained_and_to_be_verified
 generatedBy VerifAI-Scenic from environmentModel and XPlane-model
 correctlyRepresents environmentModel
 isConsistentWith XPlane-model
}
artifact scenicFailure {
 description "The refined Scenic specification focused on failure scenarios"

purpose "The refined Scenic specification focused on the failure scenarios used for
runtime monitor training."

 type abstract_feature_model
 requires retrainedFailureConstraints

generatedBy VerifAI-ScenicRefinement from retrainedCounterexampleAnalysisResults and
scenicRetrainOR

 isConsistentWith XPlane-model
}
artifact TaxiNET-steeringControllerModel {
 description "Model of the TaxiNET steering controller"

purpose "Steering controller that issues the steering command based on the input from
TaxiNET-LEC"

 type system_model
 status obtained_and_to_be_verified
}
artifact TaxiNET-LEC-Model {
 description "TaxiNET learning-enabled component model"

purpose "Model of the TaxiNET neural network that estimates the heading error and
cross-track error of the plane based on the camera input"

 type system_model
 status obtained_and_to_be_verified
}
artifact TaxiNET-LEC-Model-Retrained {
 description "The retrained TaxiNET learning-enabled component model"

purpose "The improved model of the TaxiNET neural network that estimates the heading
error and cross-track error of the plane based on the camera input"

 type system_model
 isLearnedFrom trainingDataSet, trainingDataSetWOverrepresentation
}
artifact XPlane-model {
 description "X-Plane simulator model"
 purpose "Models the environment of the plane and its dynamics"
 type system_model
 correctlyRepresents environmentModel
}
artifact environmentModel {
 description "Environment model"
 purpose "Model of the TaxiNET environment"
 type model
 correctlyRepresents TaxiNET-OperationalEnvironment
}

Approved for Public Release; Distribution Unlimited.
49

centerline tracking requirement using VerifAI (Figure 40). We then decompose the VerifAI appli-
cation based on the different VerifAI functions, focusing on Scenic modelling (Figure 41), test
scene generation (Figure 42), temporal logic falsification (Figure 43), and failure detection tech-
niques (Figure 44). We further populate each of these based on the tool specification argument
pattern instances, which we further enrich and decompose manually.

Figure 39. Integration of Lower-Level Verification with Higher-Level Argument Claims

Approved for Public Release; Distribution Unlimited.
50

Figure 40. Argument Fragment for Centerline Tracking Mitigation Requirement

Approved for Public Release; Distribution Unlimited.
51

Figure 41. Argument Fragment for Constraints on Environment Models

Figure 42. Argument Fragment for Test Scene Generation

Approved for Public Release; Distribution Unlimited.
52

Figure 43. Argument Fragment for Temporal Logic Falsification

Figure 44. Argument Fragment for VerifAI Failure Detection Techniques

Approved for Public Release; Distribution Unlimited.
53

Figure 45. Argument Fragment on Results of VerifAI Retraining of LEC

Figure 46. Argument Fragment for Addressing Identified Failure Scenarios

Approved for Public Release; Distribution Unlimited.
54

VerifAI Application for Runtime Assurance on TaxiNet (CP 2.1)
The main requirement to be addressed is “Dynamic runtime monitoring shall detect the scenes for
which the TaxiNet LEC could not be trained”. This relates to the training performed with VerifAI
in CP1.1. The quantitative target in this case is the rate at which a monitoring component returns
false negative results, i.e., when the component indicates there is no problem when there in fact is
a problem. This should not be happening.

The VerifAI Runtime Monitoring workflow [VAI2021] in this case builds upon the workflow
from CP1.1 and uses the information from there as inputs (Figure 47):

• The traces from falsification results are fragmented into 10 step windows such that there is
an input window, the response time window, and the decision window. The technique
works by taking the input window variable trace and looking for x steps into the future (the
response time window length) to see if in that future window (the decision window) the
property is met or not. One string of learning data is the variable trace from the input win-
dow and the yes/no property verification from the decision window.

• A decision tree is learned from such data to say whether you will be safe or unsafe in x
steps in the future for a particular input window. However, for the same trace of variables
in the input window, sometimes you can have a safe situation in the decision window and
sometimes you can have unsafe situation. In such cases, the algorithm simply takes the
majority. For example, for trace x there are two safe and one unsafe, the decision tree syn-
thesizer will consider that this trace will yield a safe outcome. That is encoded in the deci-
sion tree. This assumption is captured in the argument.

• From such a learned decision tree, we generate a runtime monitor module that tells if you
will be in a safe or unsafe situation given the current status of the variables.

Figure 47. VerifAI Runtime Monitor Learning Workflow

Approved for Public Release; Distribution Unlimited.
55

VerifAI Tool Specification in CP2.1
The tool specification for each tool from Figure 47 is shown in Figure 48. Besides the tool inputs
and outputs, we also defined the tool assumptions and guarantees. Given that the Runtime Monitor
aims at catching all the failure scenarios for which the LEC does not perform adequately, we as-
sume that the input data, which will be used for the runtime monitor learning, covers all the failure
scenarios. The DATASEQUENCER activity needs to guarantee certain properties about the values that
are used for sequencing the input data.

In particular, that the input window length is adequately determined, and that the response
window accounts for the safe controller response time analysis. When generating the learning data
from the raw input data, we need to make sure that the labelling condition correctly represents the
CTE-violation property (the one for which the LEC was trained for). An important guarantee of
the learning data generation activity is that the variables that are selected to be included in the
learning data are monitorable in real time. Otherwise, the generated runtime monitor will not be
feasible.

When learning the decision tree from the labelled data, we emphasize that special attention
needs to be given to the decision tree learning condition and that it needs to be aligned with the
risk targets associated with the potential consequences of wrong decision by the runtime monitor.
For example, the learning data can contain multiple input windows with different labels. The same
variable values that we are monitoring can sometimes lead to the property violations and some-
times not. Just having the decision condition that takes the majority may not always be acceptable
from the risk perspective. Finally, we capture that the resulting monitor should guarantee that it
complements the LEC and that it can detect all failure scenarios for which the LEC could not be
trained.

VerifAI Tool Use Specification in CP2.1
An excerpt from the captured Tool Use of VerifAI Runtime Monitor learning is shown in Figure
49. The runtime monitoring was performed using the falsification results from different testing
iterations of the LEC.

Approved for Public Release; Distribution Unlimited.
56

Figure 48. VerifAI Runtime Monitoring Tool Specification

tool "VerifAI-RMLearningDataSequencer" {
 description "Runtime monitoring learning data sequencer"

inputs [rawData :
uasDacEvidence.EvidenceType.temporal_logic_falsification_results]

 assumptions [
{ rawData } + " covers all failure scenarios" ,

 {rawData}+" correctly represents the operational environment"]
outputs [resWin : uasDacEvidence.EvidenceType.response_window , inWin :
uasDacEvidence.EvidenceType.input_window , lCond :
uasDacEvidence.EvidenceType.labelling_condition]

 guarantees [
{ resWin } + " accounts for the actual time the safe controller needs to
adequately respond to a possible failure." ,

 "The input window length of "+{inWin}+" has been adequately determined"]
 toolset TS2
}

tool "VerifAI-RMLearnDT" {
 description "Learning the decision tree for runtime monitor synthesis"
 inputs [in1 : uasDacEvidence.EvidenceType.rm_learning_data]
 outputs [dTree : uasDacEvidence.EvidenceType.decision_tree]
 guarantees [

"The decision tree synthesizer condition used to build" +{dTree} +"meets the
risk targets associated with the potential consequence of the resulting
failure scenario"]

 toolset TS2
}

tool "VerifAI-DMSynthesis" {
 description "Decision module synthesis"
 inputs [dTree : uasDacEvidence.EvidenceType.decision_tree]
 assumptions [

{dTree}+" covers all failure scenarios",
 {dTree}+" never marks an unsafe input window as safe"
]
 outputs [monitor : uasDacEvidence.EvidenceType.model]
 guarantees [

"The synthesized runtime monitor"+{monitor}+" detects all scenarios for which
the LEC could not be trained"]

 toolset TS2
}

tool "VerifAI-RMLearningDataGenerator" {
 description "Runtime monitor learning data generation"

inputs [resWin : uasDacEvidence.EvidenceType.response_window , inWin :
uasDacEvidence.EvidenceType.input_window , lCond :
uasDacEvidence.EvidenceType.labelling_condition , falsRes :
uasDacEvidence.EvidenceType.temporal_logic_falsification_results]

 assumptions [
"The labeling condition "+{lCond}+" correctly represents the CTE-Violation
property"]

 outputs [lData : uasDacEvidence.EvidenceType.rm_learning_data]
 guarantees [

"The selected input variables for decision tree learning in "+{lData} + "can
be obtained with sufficient correctness in the operation time"]

Approved for Public Release; Distribution Unlimited.
57

Figure 49. Excerpt of Tool Uses from VerifAI Runtime Monitoring

Approved for Public Release; Distribution Unlimited.
58

VerifAI Evidence Log in CP2.1

Figure 50. Evidence Log Excerpt for Application of VerifAI Runtime Monitoring

VerifAI CP2.1 Specific Argument
To assure the requirement that the runtime monitor returns no false negative results, we decompose
the claim over the VerifAI-RM application (Figure 51). Besides presenting the achieved quantita-
tive targets, we also address the trustworthiness in the VerifAI-RM application. The argument in

artifact decisionModule {
 description "Runtime monitoring decision module"

purpose "Runtime monitoring decision module for determining whether a setting
is trusted or not"

 type model
 generatedBy VerifAI-DMSynthesis from decisionTree
}

artifact decisionTree {
 description "Runtime monitoring decision tree"
 purpose "Decision tree for learning the runtime monitoring decision module"
 type decision_tree
 generatedBy VerifAI-RMLearnDT from EA7
}

artifact EA7 {
 description "The labeled data for runtime monitor decision tree learning"
 type rm_learning_data

generatedBy VerifAI-RMLearningDataGenerator with RM-responseWindowSize and RM-
inputWindowSize and RM-labellingCondition and retrainedFalsificationResults
and retrainingFalsificationResults and initialFalsificationResults and EA5 and
EA6

}

artifact RM-inputWindowSize {

description "The input window size for sequencing the simulation trace for
runtime monitor decision tree synthesis"

 type input_window
generatedBy VerifAI-RMLearningDataSequencer from
retrainingFalsificationResults and retrainedFalsificationResults and EA5 and
initialFalsificationResults and EA6

}

artifact RM-responseWindowSize {

description "The response window size for determining how far ahead is the
runtime monitor looking"

 type response_window
generatedBy VerifAI-RMLearningDataSequencer from
retrainingFalsificationResults and retrainedFalsificationResults and EA5 and
initialFalsificationResults and EA6

}

artifact RM-labellingCondition {

description "The condition for evaluating whether an input window sequence is
safe or unsafe with respect to the monitored property"

 type labelling_condition
 isConsistentWith MTLProperty

generatedBy VerifAI-RMLearningDataSequencer from
retrainingFalsificationResults and retrainedFalsificationResults and EA5 and
initialFalsificationResults and EA6

}

Approved for Public Release; Distribution Unlimited.
59

Figure 52 indicates that the quantitative target set forth by the requirement is not met by the final
results, since there were still 10% false negatives. Considering that this is an interim safety case,
we present in the argument the latest result. It indicates that either further learning of the runtime
monitor is needed, or that an alternative needs to be found to justify the final false negative rate.

Figure 51. Top-level Argument of VerifAI-RM

Figure 52. VerifAI Runtime Monitoring Quantitative Targets

Approved for Public Release; Distribution Unlimited.
60

We decompose the goal on VerifAI-RM trustworthiness by looking at whether all the usage

constraints of the different parts of the workflow are met (Figure 53). Each of the VerifAI-RM
tool-specific argument fragments (Figure 55, Figure 56, and Figure 54) are generated by instanti-
ating a tool-specific pattern from the tool use information. Then, we have manually extended the
result, and left the goals undeveloped to indicate that each of the usage constraints needs to be
separately assured.

Figure 53. VerifAI-RM Trustworthiness

Approved for Public Release; Distribution Unlimited.
61

Figure 54. VerifAI-RM Learning Data Generation Trustworthiness

Figure 55. VerifAI-RM Learning Data Sequencer Trustworthiness

Approved for Public Release; Distribution Unlimited.
62

Figure 56. VerifAI-RM Decision Tree Learning Trustworthiness

4.3.2 Venus

4.3.2.1 Tool Overview
Venus [VEN2020] is a verification toolkit for ReLU-based feed-forward neural networks. Given
a feed-forward NN, Venus answers a verification problem with YES or NO as to whether the NN
for every input within a linearly definable set of inputs is contained within a linearly definable set
of outputs. To optimize the verification, the Venus Splitter (Figure 57) decomposes the verification
problem into smaller, more manageable chunks so that they can be executed in parallel. Each sub-
problem is encoded as a Mixed Integer Linear Program (MILP) by the MILP encoder component.

An external MILP solver is called to solve each sub-problem independently. Due to the
high dimensionality of inputs that the MILP solver would have to handle, Venus implements a
Dependency analyzer as a callback function supplied to the MILP solver, to reduce the dimension-
ality of inputs that need to be verified. The Dependency Analyzer component excludes neurons
that have no effect on the result of verification of the particular sub-problem, and in that way
speeds up the MILP Solver. The MILP Solver returns a YES/NO answer as to whether the NN re-
turns the same answer for all the inputs. Finally, the Results integrator takes the results from all
the sub-problems and comes up with the final result for the initial verification problem. If there
were any results with NO, the final result will be a NO, and it would show the input for which the
result was NO. And if all are YES, the result is YES.

Approved for Public Release; Distribution Unlimited.
63

Figure 57. High Level Venus Overview

4.3.2.2 Venus Trustworthiness Assurance Case
To assure the trustworthiness of Venus, we developed a simple assurance case to capture Venus
internal structure, risks, and how these risks are mitigated. We define the internal structure in terms
of functional decomposition, then we perform hazard analysis and allocate the different hazards to
the defined functions. We then give a collection of tool specifications and define assume/guarantee
contracts such that each low-level hazard is addressed by at least one tool guarantee. We then use
the tool specification to semi-automatically create an argument assuring the tool trustworthiness
based on the hazard analysis and the tool contracts. We first automatically generate the argument
based on the Hazard Log and Tool Specification information, and then customize it with additional
information.

Venus Functional Decomposition
The functional decomposition in Figure 58 specifies the different functions of Venus, as high-
lighted in Figure 57. We define Venus with a splitter, MILP encoder, MILP solver and integrator
functions. We further decompose the MILP solver function with a GUROBI solver and depend-
ency analyzer functions. We add specific deviations to each function that are used to guide the
hazard analysis.

Approved for Public Release; Distribution Unlimited.
64

Figure 58. Venus Functional Decomposition

Venus Hazard Log
In the hazard analysis we identified six low level hazards, covering each Venus function. The
Splitter function could split the domain wrongly to reduce the initial input domain or it could add
parts beyond the initial input. Each sub-problem could be wrongly translated as MILP, which
would render the subsequent analysis useless. In the case of MILP solving, Venus exploits the
special bonds between neurons and reduces the configuration space that needs to be considered by
the GUROBI solver. The two hazards there relate to incorrect dependency analysis and MILP
solving.

deviation malfunction "Malfunction (Function available, but output incorrect)" {
 deviation improper_value "Improper Value" {
 deviation values_added "Output was provided with additional values"
 deviation values_ommitted "Output was provided with fewer values"
 deviation value_inverted "Output was provided inverted"

 }
}
function VENUS "Venus verification engine" system {
 deviations [value_inverted]
 function splitter "Input domain splitter" system
 {deviations [improper_value,values_added,values_ommitted]}
 function MILP_encoder "MILP Encoder using big-M method" system
 {deviations [improper_value]}
 function MILP_solver "Venus MILP solver" system{
 deviations [value_inverted]
 function GUROBI "GUROBI MILP solver" system
 {deviations [value_inverted]}
 function dependency_analyzer "Dependency Analyzer" system
 {deviations [values_added,values_ommitted]}
 }
 function integrator "Results integrator" system
 {deviations [values_ommitted]}
}

Approved for Public Release; Distribution Unlimited.
65

Figure 59. Internal Venus Hazard Analysis

Venus Tool Specification
Given that many verification methods are implemented by a collection of individual tools, rather
than a single tool, we introduce the concept of a Toolset in our Tool Specification. A set of inter-
connected tools can be grouped into toolsets. We consider Venus as a toolset and define each
function as a separate tool with its own tool specification. In the tool specification, we define tool
inputs and outputs in terms of evidence types, and we additionally indicate different assumptions
and guarantees over each tool’s inputs and outputs. For example, an assumption on the NN input
to the toolset for the Splitter component (Figure 60) is that it is a feed-forward ReLU neural net-
work, since Venus supports that kind of network. Furthermore, the input for which the robustness
should be checked needs to match the input structure of the network. The guarantees of the Splitter
function ensure that the generated sub-problems are all part of the original verification problem,
and that by composing all the sub-problems we get the initial verification problem. The tools spec-
ification for all the Venus tools are shown in Figure 60 and Figure 61.

Reusable Venus Argument
Each low-level hazard is addressed by at least one guarantee of the function to which the hazard
is allocated. We argue that the risk of incorrect results with Venus is managed by addressing each
identified hazard. Then we use the supporting guarantees from tool specification for each hazard
to instantiate a supporting argument for each hazard using the tool specification.

Approved for Public Release; Distribution Unlimited.
66

Figure 60. Splitter and MILP Encoder Tool Specification

tool T1 {
 description "Splitter"
 inputs [NN : myevidence.EvidenceType.NN_model ,
 input_image : myevidence.EvidenceType.venus_input_image,
 perturbation_radius:real]
 assumptions [

"The input LEC "+{NN}+" is a feed-forward ReLU neural network",
"The input image "+{input_image }+" representation matches the LEC input
structure"]

 outputs [sub_problem : myevidence.EvidenceType.venus_sub_problems]
guarantees ["Every "+{sub_problem}+" derived by the tool Splitter is a part of
the verification problem defined by the input image "+{input_image} + "and the
indicated perturbation radius" +{perturbation_radius},
"For every part of the verification problem defined by the input image
"+{input_image} + "and the perturbation radius " +{perturbation_radius}+
"there is a sub-problem "+{sub_problem}+" generated by the tool Splitter",

 {sub_problem}+" matches the "+{NN}+" input structure"]
}

tool T2 {

description "MILP Encoder"
inputs [sub_problem : myevidence.EvidenceType.venus_subproblem , NN :
myevidence.EvidenceType.NN_model]
assumptions [
"The input sub-problem "+{sub_problem}+" matches the LEC "+{NN}+" input
structure"]

 outputs [econded_MILP : myevidence.EvidenceType.MILP]
guarantees ["The resulting encoded MILP "+{econded_MILP}+" correctly
represents the sub-problem "+{sub_problem}+" and the input LEC "+{NN}]

}

Approved for Public Release; Distribution Unlimited.
67

Figure 61. MILP Solver, Dependency Analyzer and Results Integrator Tools Specification

tool T3 {
 description "MILP Solver: Gurobi"

inputs [encoded_MILP : myevidence.EvidenceType.MILP , optimized_MILP :
myevidence.EvidenceType.optimized_MILP]

 assumptions [
"Optimized MILP "+{optimized_MILP}+"is equivalent to the input encoded MILP
"+{encoded_MILP}]

 outputs [sub_problem_result : myevidence.EvidenceType.venus_result]
 guarantees [

"Gurobi solver outputs the correct solution "+{sub_problem_result}+ " for the
optimized MILP" +{optimized_MILP}]

}

tool T4 {
 description "Dependency Analyzer"
 inputs [encoded_MILP : myevidence.EvidenceType.MILP]
 outputs [optimized_MILP : myevidence.EvidenceType.optimized_MILP]
 guarantees [

"Optimized MILP "+{optimized_MILP}+"is equivalent to the input encoded MILP
"+{encoded_MILP}]

}

tool T5 {
 description "Results Integrator"
 inputs [all_sub_problem_results : myevidence.EvidenceType.venus_result_set,
 all_sub_problems: myevidence.EvidenceType.venus_sub_problems,
 input_image : myevidence.EvidenceType.venus_input_image,
 perturbation_radius:real]
 assumptions[

"The set of all results "+{all_sub_problem_results}+ " includes results from
every sub-problem "+{all_sub_problems}+" generated by Splitter for the given
verification problem",
"Composition of all the sub-problems "+{all_sub_problems}+" is equivalent to
the initial verification problem"]

 outputs [final_result : myevidence.EvidenceType.venus_result]
 guarantees [

"The final result "+{final_result}+" equals NOT Satisfied if there is at least
one sub-problem derived by the Splitter "+{all_sub_problem_results}+" for
which the result of verification equals Not Satisfied"]

}

Approved for Public Release; Distribution Unlimited.
68

Figure 62. Reusable Argument Fragment for Mitigation of Internal Venus Risks

Figure 63. Argument Fragment for Incorrect Domain Splitting

Approved for Public Release; Distribution Unlimited.
69

Figure 64. Argument Fragment for Verification Problem Translation into MILP

Figure 65. Argument Fragment for MILP Solver Correctness

Approved for Public Release; Distribution Unlimited.
70

Figure 66. Argument Fragment for Final Result Integration

4.3.2.3 Venus Application for Object Detection with Open Categories (CP 2.2)
Boeing provided the CNN and a single data set with three classes of objects: ground vehicle, per-
son, and airplane. The NN classifier will encounter novel objects in practice, such as novel types
of ground vehicles and static objects. The CNN was trained using vehicles and persons, while the
third class was used to test the performance of the trained network. Imperial specified the verifi-
cation problem as a local robustness problem of the Boeing-provided CNN. For a correctly classi-
fied image, the verification problem checks that the CNN returns the same result for all the images
within a specified perturbation radius. Venus was run for a set of correctly classified images from
the dataset. Each image was verified for different perturbation radii, to determine how robust is
the CNN for different perturbation radii. For each of the images and perturbation radii, the CNN
and the verification problem are encoded as MILP, and the MILP solving based on splitting and
dependency optimization is performed. The results showed that for a small perturbation radius, the
CNN was robust for all the images. As the radius was increasing, the robustness was decreasing,
and more misclassifications were detected.

Venus Tool Specification in CP2.2
The application specific tool specification captures the user perspective of using Venus in CP 2.2.
To apply Venus, we consider as the main input the image data set provided by Boeing. Before
applying the tool Venus, the first activity is to select a set of images for verification from the
provided image data set. We capture this in the tool, A1. The assumptions emphasize that we
expect the image data set provided by Boeing to be representative of the operational context, that

Approved for Public Release; Distribution Unlimited.
71

the images are correctly classified, and that the number of images selected for verification is
enough compared to the size of the Boeing image data set.

Figure 67. Tools Specification for Venus Application

tool T1 {
 description "VENUS"

inputs [image_input : ev.EvidenceType.image_pickle_format , perturbation_radius : real ,
input_CNN : ev.EvidenceType.mnist_NN]

 outputs [robust : boolean]
 toolset TS1
}

tool A1 {
 description "Image Selection for Verification"
 inputs [image_dataset : ev.EvidenceType.ImageDataSet , selection_count : int]
 assumptions[

{image_dataset}+" is representative of the operational context",
 "Images in "+{image_dataset}+" are correctly classified",

{selection_count}+" images selected for verification is enough compared to the size of the
"+{image_dataset}]

 outputs [selected_image_dataset : ev.EvidenceType.ImageDataSet]
guarantees[{selected_image_dataset}+" is a representative sample from "+{image_dataset},

 "The size of " +{selected_image_dataset} + " is "+{selection_count},
Each image in pickle format in "+{selected_image_dataset}+" is the correct representation of the
corresponding image in "+{image_dataset}

]
 toolset TS1
}

tool A2 {
 description "DataSetVerification"

inputs [input_CNN : ev.EvidenceType.mnist_NN , perturbation_radius : real ,
verification_image_dataset : ev.EvidenceType.ImageDataSet]
assumptions[{verification_image_dataset}+" is a representative of the operational context ",

 {input_CNN}+" is a feed-forward ReLU neural network",
"Image perturbations within the defined radius"+{perturbation_radius}+" represent the likely
perturbations for the given operational context"]
outputs [results_dataset : ev.EvidenceType.venus_dataset_results , number_of_robust : int]

 guarantees[
{number_of_robust}+" images from "+{verification_image_dataset}+" is robust",
{results_dataset}+" has one result for each image from " + {verification_image_dataset}]

 toolset TS1
}

tool A3 {
 description "CalculateRobustnessLevel"

inputs [venus_results : ev.EvidenceType.venus_dataset_results , perturbation_radius :
real,input_CNN : ev.EvidenceType.mnist_NN , verified_images_set : ev.EvidenceType.ImageDataSet]

 assumptions[
{venus_results}+" has one result for each image from "+{verified_images_set},
"Each result in "+{venus_results}+" was obtained for the same perturbation radius level
"+{perturbation_radius}]

 outputs [robustness_level : real]
 guarantees [

{input_CNN}+" is " + { robustness_level } + "% robust with respect to the perturbation radius " +
{ perturbation_radius } + " in the operational context defined by " + { verified_images_set }]

 toolset TS1
}

Approved for Public Release; Distribution Unlimited.
72

Each of these assumptions will be instantiated for the specific tool usage and will need to
be further assured in the corresponding argument. Furthermore, the A1 activity guarantees that the
data set of selected images is representative of the original Boeing data set, that the size of the
selected images data set is correct, and that the selected images transformed to the pickle format,
which is needed for verification, correctly represent the original images.

The next activity, A2, deals with the verification of the entire data set of selected images.
It guarantees that all images in the dataset are verified using the same perturbation radius and that
there is a single result for each image. A2 assumes that the image perturbations within the defined
radius are likely for the given operational context. The tool T1 captures the Venus executable that
takes in the NN in MNIST (Modified National Institute of Standards and Technology) format, an
image in pickle format and a real value for the perturbation radius. It returns a yes/no value whether
the NN is robust for the given image and the given perturbation radius. We run this tool for each
image in the selected images data set. Once we have all the results, we perform the A3 activity to
calculate the robustness level for the selected images data set.

Venus Tool Use Specification in CP2.2
We record each usage of the specified tools with concrete values as inputs and outputs in the Tool
Uses table. That table is currently manually populated, but we have prepared everything for the
tools such as Venus to be called directly from AdvoCATE and their results automatically recorded
in the Tool Uses table.
In the tables in Figure 68, we show an excerpt of the recorded uses of the specified tools and
activities. The verification is performed so that the first 20 images are selected from the Boeing
image data set. Then three different data set verification activities are performed for the given NN
and the selected images data set. One for each perturbation radius value 0.0001, 0.001, and 0.01.

The results indicate the number of robust images in the selected data set for the correspond-
ing perturbation radius. To obtain these results, we captured each Venus invocation for each se-
lected image, NN and perturbation radius. Finally, the calculated robustness level activity simply
returns a percentage of robust images in the selected images data set for each perturbation radius.

Approved for Public Release; Distribution Unlimited.
73

Figure 68. Excerpt of the Venus Tool Use Table

Evidence Log
All the inputs and outputs from the different Tool Uses are captured in the Evidence Log. The
definition of each Evidence artifact includes the description, type, and status of the Evidence. Ad-
ditionally, information like evidence relations, location of the evidence, version, etc. can also be
specified. Figure 69 represents an Evidence dependency graph for the venus_results_1.0-3 Evi-
dence item. An excerpt of the Evidence log is shown in Figure 70.

Figure 69. Evidence Dependency Diagram For Results With Perturbation Radius 0.001

Approved for Public Release; Distribution Unlimited.
74

Figure 70. Excerpt from Evidence Log with Venus Artifacts

Challenge Problem-Specific Argument
The argument in Figure 71 through Figure 74 presents the instance of the Tool Uses for perturba-
tion radius 0.001. The top-level claim states the obtained robustness level and can be used to sup-
port different parts of the higher-level assurance claims that deal with robustness of the CNN. The
argument is broken down based on the Venus verification workflow activities, and then Venus tool
usage. All the tool assumptions and guarantees are instantiated from the Tool Use information and
are further enriched with contextual information. Each resulting claim needs to be further devel-
oped for the top-level claim to hold. The Venus trustworthiness argument developed separately is
pointed to in the goal G23.

artifact Boeing_Image_dataset {
 description "Boeing image dataset"
 type ImageDataSet
 status obtained_and_verified
}

artifact verification_image_dataset {
 description "Verification dataset"
 type ImageDataSet
 status obtained_and_verified
 generatedBy A1 with Boeing_Image_dataset
 isPartOf Boeing_Image_dataset
}

artifact Boeing_CNN {
 description "Boeing cnn"
 type mnist_NN
 status obtained_and_verified
}

artifact venus_results-4 {
 description "venus_results_1.0-4"
 type venus_dataset_results
 status obtained_and_verified
 generatedBy A2 with verification_image_dataset and Boeing_CNN
}

artifact venus_results-3 {
 description "venus_results_1.0-3"
 type venus_dataset_results
 status obtained_and_verified
 generatedBy A2 with Boeing_CNN and verification_image_dataset
}

artifact venus_results-2 {
 description "venus_results_1.0-2"
 type venus_dataset_results
 status obtained_and_verified
 generatedBy A2 with Boeing_CNN and verification_image_dataset
}

Approved for Public Release; Distribution Unlimited.
75

Figure 71. Top-Level Argument For Venus Verification Results

Figure 72. Argument Fragment For Image Selection in Venus

Approved for Public Release; Distribution Unlimited.
76

Figure 73. Argument Fragment Addressing Venus Verification Workflow

Figure 74. Argument Fragment for Final Calculation of a Robustness Level

4.4 AdvoCATE Extensions
Here we give an overview of some of the extensions we made to our DAC tool, AdvoCATE, in
Phase 3.

4.4.1 AdvoCATE Metamodel
In the course of the QUASAR project, we made numerous extensions to the underlying assurance
metamodel implemented in AdvoCATE. An assurance case consists of

• a collection of arguments
• a hazard log

Approved for Public Release; Distribution Unlimited.
77

• an assurance architecture, modeling risk scenarios
• a requirements log
• an evidence log, consisting of evidence artifacts and their dependencies
• a tools log, modeling external tools used to create evidence.

Here we describe the assurance artifacts which constitute an assurance case, as well as constraints
and relationships between them.

4.4.1.1 Events, Controls, and Barriers
An event is a description of a situation or change of situation. Events are defined at the safety
architecture level and so are not tied to a specific hazardous activity (HA). Each hazardous activity
has multiple scenarios associated with it, each of which is characterized by a given system state
(SS) and environmental condition (EC). Hazardous activities, system states, and environmental
conditions are independent of each other, and all defined at the safety architecture level. An event
can occur in different scenarios, at most once per scenario, and each such occurrence of an event
is called an event instance.
 Event instances correspond to hazards; more specifically, a hazard is an event instance that
is visible in the hazard log, meaning that it appears in its own row. Causes and effects of hazards
are also event instances, and if deemed visible, will also appear as hazards in their own right.
 Similarly to the relation between events and event instances, barriers and controls are de-
fined at the safety architecture level and can be applied in different scenarios to give distinct bar-
rier instances and control instances, respectively. However, the uniqueness criteria are different:
whereas an event can have at most one instance per (HA, SS, EC) scenario (i.e., CES; note, how-
ever, that event instance naming is only unique to the HA), barriers and controls can be used mul-
tiple times (each use being represented by a distinct barrier or control instance), but at most once
per path segment (between event instances).
 A barrier can be used with multiple controls in a segment, each of which is a distinct control
instance (as well as a distinct control). However, each control instance is associated with the same
barrier instance. Moreover, every instance of a control (throughout the safety architecture) must
be associated with instances of the same barrier (but different barrier instances). Mitigations of
hazards correspond to barrier instances.
 Hazard tables record mitigations of hazards, specifically mitigations of the hazard causes
(corresponding to so-called prevention barriers). Hazard consequences can also be mitigated (via
recovery barriers), but these are only shown in the table if the consequence is, itself, a hazard.

4.4.1.2 Requirements
Requirements describe implementation constraints for barrier instances and control instances. The
requirement is specific to the instance, rather than being at the barrier or control level, since each
such application of the barrier/control represents a different scenario with potentially different im-
plementation concerns. Requirements are also implicitly associated with hazards, by being as-
signed to the hazard's mitigations. In this role, they are called mitigation requirements.

Approved for Public Release; Distribution Unlimited.
78

4.4.1.3 Traceability
There are three kinds of tracing links:

• automatically generated trace links (either between different representations of the same
underlying model element; e.g., hazard ⟷ event instance, mitigation ⟷ barrier, or as a
consequence of how an element is created, e.g., evidence ⟶ tool, or an internal source)

• allocations (user-designated, and having specific semantics; e.g., hazard ⟶ item)
• rationale (to arguments/evidence) and contextual/substantiation (from arguments/evi-

dence).

Sources
• Requirement source: internally, this can be a barrier or control instance. It can also be an

external string, recorded in the sources table.
• Hazard source: As for requirements, we can have internal (in this case, a barrier) and ex-

ternal sources (a string). The hazard source is given at the event level.

Allocations
• Requirement to item (function or component) – the requirement allocation: the item imple-

ments the requirement
• Function to component: the component implements the function
• Requirement to evidence artifact: the verification allocation - the item provides evidence

that the requirement is met
• Hazard to item – the hazard allocation: the item is the origin of the hazard (i.e., the hazard-

ous item, which must be unique, that is to blame for the hazard). Together with the hazard
condition, it characterizes the hazard

 Event to item: the hazard allocation is actually an allocation from event to item,
applicable to all instances of that event; by allocating to one instance in a hazard
table, it assigns to the event and thus to all its instances

 Event instance to barrier: this models whether a hazard (i.e., a visible event in-
stance) has been identified in a BHA.

• Barrier instance / control instance to requirement: the requirement describes the intended
functionality of the barrier or control instance

• Barrier/control to item: the item implements the barrier or control.
 Various consistency relations are enforced between allocations.

Rationale
Various artifacts within an assurance case can be provided with rationale, in the form of an asso-
ciation to an argument or evidence artifact. The rationale can have potentially different interpreta-
tions, depending on the artifact and user intent. For example, an argument for a barrier could justify
the fitness for purpose of the barrier, similarly for a control. Rationale for the elements of the risk
analysis could justify the severity of terminating consequences, likelihood of initiating threats,
non-derived integrity of controls and barriers, etc.
 Going in the other direction, individual nodes of an argument can be associated with other
elements of the assurance case, to explicate, substantiate, or otherwise provide additional context
to that node of the argument. In particular:

Approved for Public Release; Distribution Unlimited.
79

• an evidence artifact substantiates a solution node (or relates to a contextual node)
• a requirement corresponds to a claim or context (or another node)
• an event instance, control instance, or barrier is referred to by an argument node
• a pattern node used to generate an argument node
• a data tree node is used to generate an argument node.

 An argument, itself, will be associated with the data tree and pattern whose nodes are used
to generate the argument’s nodes.

4.4.2 Validations
The AdvoCATE metamodel (implemented using the Eclipse Modeling Framework) enforces var-
ious structural constraints, as described above, by construction, but we enforce additional con-
straints - called validations in Eclipse terminology. These are implemented using the Xtext frame-
work, which allows richer constraints to be implemented, is more efficient than implementing
directly in the model, and also allows some user control over whether these constraints are man-
datory or optional, and in the former case whether these should give rise to errors or warnings. An
additional reason for separating validations from core model well-formedness is that it is conven-
ient to allow users to temporarily construct invalid assurance cases, while providing warnings
about issues that should ultimately be addressed, but which do not currently impede progress. An
error, on the other hand, indicates a state which could only arise through an incorrect action on the
part of the user, will prevent certain actions from being applied, and should be addressed promptly.
 Moreover, although the GUI prevents users from creating many invalid states, it is always
possible to directly edit the DSL, and so we need to validate appropriately. Some validations are
implemented with a corresponding quick-fix – an action that allows users to correct the error.
 We have implemented over a hundred validations, of which we now give a selection.

4.4.2.1 Arguments
Multiple parents, multiple roots, non-goal root, goal-to-goal, solution has contextual, cycles, solu-
tion has evidence

4.4.2.2 Assurance Architecture
• Check Repeated Controls: Checks if a Control is repeated on a non-escalation path.
• Check Event Directly Connected To Event: Checks if two connected Events have a Control

between them.
• Check Event Causality Hierarchy: Checks if an Event and its consequence have allocations

with a common ancestor, and the consequence allocation is neither a parent or a sibling to
the event allocation.

• Check Intermediate Event Has Allocation: Checks if an unallocated event has instances
with both a consequence and a cause that are allocated

• Check Escalation Control Duplicates: Checks if the control is used as both an escalation
factor control, and a regular control, on the same path

• Check Circular Consequences: Checks if the safety architecture contains any cyclical
chains of event instances, considered over all CESs. Such a cycle would indicate a failure
of the causal consistency between CESs.

Approved for Public Release; Distribution Unlimited.
80

• Check Short Circuits: Checks if there is both a direct link between two nodes, as well as a
longer path containing a control instance

• Check Multiple Barrier Instances Between Events: Checks if a barrier has multiple in-
stances between two event instances

• Check Barrier Requirement Allocation: Checks if a Barrier is missing an allocated function
or component that is allocated to the requirements of its Barrier Instances

• There are other similar checks: Barrier Function Allocation, etc.
• Check Escalates And Mitigated By: Checks if an event instance has paths that both escalate

and are mitigated by a control
• Check Sub-Hazards Are Valid: Checks if an event has an instance which does not lead to

any of its parent's event instances
• Check Controls With Same Component Are Not on Common Path: Checks if two control

instances are on a common path, then their controls are not allocated to any shared compo-
nents

4.4.2.3 Functional Architecture
• Check Allocation Same Group: Checks if a function has multiple allocations belonging to

the same group (i.e., component and sub-component as allocation)
• Check Function Deviation Has Event: Check if some function has a deviation, but there is

no event to which this function and deviation are allocated
• Check Deviation Hierarchy: Checks if a function's children have deviations of a higher

order than itself (if they are within the same deviation tree)
• Check Allocation Hierarchy: Checks if a function's children have allocations of a higher

order than itself (if they are within the same component tree)

4.4.3 Views
As assurance cases grow in size and complexity, it becomes increasingly challenging both to man-
age their development, and to understand and assess them. Given the communicative role of as-
surance cases, the latter problem is probably the more serious. In addition to user-definable views
(developed in earlier phases of the project, and not described here), AdvoCATE now additionally
provides several built-in structuring mechanisms that allow assurance cases to be structured and
abstracted into meaningful fragments.

4.4.3.1 Argument Views

Splits View
Arguments can be manually modularized by being decomposed into meaningful fragments by ap-
plying a splitting action on a selected argument node.
 The first time an argument is split the original argument diagram is left unchanged, so that
the user can always refer to the full argument, and a new diagram is created that copies the split
region, consisting of the node at which the split was done (the “split node”), plus all nodes above
or below that node.
 Split nodes in the split diagrams will be annotated with a “continued elsewhere” decoration
on the node in the upper argument, and a “developed from” annotation in the corresponding node

Approved for Public Release; Distribution Unlimited.
81

in the lower argument. Navigation to specific split regions is available in the right-click menu, and
double-clicking on the “developed from / continued elsewhere” annotation will navigate directly
to the corresponding region. If this region was not named yet (as would be the case when navi-
gating from the very first split region for an argument), a dialog will appear where its name must
be provided to proceed. Hence, to create the other half split of the original argument, the user just
needs to navigate back from the initial split and give the subsequent split region a name.
 Split regions may be split further, and subsequent regions may be left unnamed, in effect
hiding those parts of the argument. Unnamed regions can be navigated to only via the “continued
elsewhere” decoration double-click action, which will then require them to be given a name.
 For an example of the splits view—which can also be considered as an argument architec-
ture—see Section 4.1.1.4, Figure 16.

Provenance View
The provenance view of an argument provides a graphical representation of the assurance artifacts
from which an argument is created, as well as other associated assurance artifacts and their relation
to the argument. In particular, it consists of a tree whose nodes represent

• the argument, itself, which gives the root
• patterns from which all or part of the argument are generated (if the argument consists of

composed instance arguments, there can be multiple such patterns), including built-in pat-
terns for the hazard and requirement logs

• data trees used to instantiate the patterns, including the data trees generated from the hazard
and requirement logs

• any assurance artifacts linked as contextual elements (individual CES's or the requirements
log)

• evidence artifacts linked to argument nodes,
 and whose links represent the various assurance and association dependencies, such as in-
ContextOf and isGeneratedBy. Some limitations of the provenance view currently are that it does
not include external data (XML used to generate pattern data trees), nor evidence dependencies
and tools.

4.4.3.2 Assurance Architecture Views

Phases View
A Phase represents a meaningful period within the lifetime of the system under assurance. While
a CES is defined with respect to a particular scenario represented by a Hazardous Activity, System
State, and Environmental Condition, phases are at a level above that, in which multiple CESs can
be grouped. Phases can be organized hierarchically, so that multiple Sub-Phases are grouped
within a single parent Phase.
Phases and their Sub-Phases are declared in the Safety Architecture DSL. A CES can then option-
ally be associated with a Phase, also in the DSL. In Example 1, we show a DSL fragment with two
top-level phases each of which has two sub-phases:

Approved for Public Release; Distribution Unlimited.
82

phase P1 "Approach" subphases [
 phase SP1 "Base",
 phase SP2 "Final"]

phase P2 "Landing" subphases [
 phase SP1 "Flare",
 phase SP2 "Landing roll"]

Example 1. Example DSL Fragment with Two Top-level Phases

The subphases cannot be an empty list - if there are no subphases it should just be omitted. The
names of phases (like other top-level model elements) must be unique, but subphases in distinct
phases are allowed to have the same name.
 A CES can then optionally be associated with a phase - the phase name must be fully qual-
ified (i.e., the full path of hierarchical phases) and needs to be quoted. For example:

 CES CES1 {
 system state SS2 environmental condition EC1 phase "P2.SP1"
 ... }

Example 2. Fully Qualified Phase Name

 Note that two CESs can be in the same phase, but each CES can be in at most one phase.
Inter-CES links are used to show connections between CESs. The (generated) Phase View shows
CESs inside their respective subphases and phases, along with the inter-CES links, labeled by
connecting event instances. From the specification of phases, subphases, and their relation to the
CESs we generate the phases view. See Figure 15 for an example.

4.4.3.3 Table Views
Table views enable the extraction of data from the assurance case and its representation in tabular
form. The use of table spanning (alignment of multiple sub-rows with a single parent row) allows
dependencies between data to be represented in the table. For example, a table that displays goals,
strategies, context and solution nodes, and associated evidence artifacts can be specified as fol-
lows.
 The rows keyword is used to extract the initial set of data from the assurance case that is
used to construct the rows of the table, in which case, a simple query to give all goals of the argu-
ment. Next, each column of the table is specified, in turn. The first column can be optionally des-
ignated a header column, so that it is highlighted and used to label the rows. The initial row of
each column (i.e., the titles) is a header row by default. If a header column is not specified, then
one is generated that uses row numbers.
 Each column consists of a label (giving the title of the column), a value expression, and a
display expression. The value expression computes a value from corresponding cells in parent
columns of the current column, and the display expression computes a string from that value
(which could simply be the value, itself, if it is displayable). This allows dependencies between

Approved for Public Release; Distribution Unlimited.
83

cells of the table to be represented. The special value expression, row, designates the value of the
current (top-level) row.

table AllArgTable
rows ArgumentGoal

header column G {
 label "Goal"
 value row
 display name + ": " + description }
column C {
 label "Contextual"
 value G.inContextOf
 display name + ": " + description }
column S {
 label "Strategy"
 value G.isSupportedBy such that type = Strategy
 display name + ": " + description }
column SG {
 label "Subgoals"
 // for now we'll assume we don't have Goal -> Goal
 value S.isSupportedBy such that type = Goal
 display name + ": " + description }
column E {
 label "Solution"
 value G.isSupportedBy such that type = Solution
 display name + ": " + description }
column EA {
 label "Evidence"
 value E.evidenceArtifacts
 display name + ": " + description }

Example 3. Table View Specification for Argument Nodes

 In Example 3, for each goal of the argument, we compute all of its strategies by querying
all nodes that are related to it by the isSupportedBy link and have node type Strategy. We then
display the strategy nodes using a string constructed from the identifier (called name in the model)
and description fields of the node.

Figure 75. Table View of Argument

Approved for Public Release; Distribution Unlimited.
84

table argHazReq-t-matrix // generate a row for every argument node
rows ArgumentNode
header column N {

 // if no column is specified as a header column,
 // there will be a default header column with no label
 // that shows the name (row numbers is default for non-t)

 label “Nodes”

 // may be omitted to have a blank label
 // the value for the column is implicitly “row”.
 // Syntax should also allow it to be explicitly
 // specified as {value row display name} or {display row.name}
 display name }

column Hazard H such that isHazard {
 // for every one of these things, we have a column label name
 // since N is the same as row, substituting row.associatedNodes
 // or associatedNodes will result in the same table
 display if N.associatedNodes contains H then “X” else “” }

column Requirement R {
 // for every one of these things, we have a column label name
 display if N.associatedRequirements contains R then “X” else “” }

Example 4. Traceability Matrix Specification Linking Argument Nodes to
Hazards and Requirements

Traceability matrices are used to depict relations between two sets of artifacts, such as

hazards and requirements. More generally, heterogeneous traceability matrices specify relations
between multiple sets of artifacts and can be thought of as a combination of simple matrices. In
contrast to the types of tables described above, which have fixed columns, traceability matrices
use queries to generate the columns (so do not have a fixed width), and use a special header column
to give the labels of the rows. For example, to specify an ArgumentNode x (Hazard | Requirement)
matrix, which shows correspondences between argument nodes and hazards and requirements, we
can use the following syntax.

Example 4 has heterogenous columns, but we can also specify heterogeneous rows, to give
a matrix with type (ArgumentNode | EvidenceArtifact) x (EvidenceArtifact | Requirement)
where the (row/column) cell semantics is argument/evidence = “links to”, evidence/evidence =
“depends on”, argument/requirement = “links to”, and evidence/req = “N/A”. The syntax is:

table complex-t-matrix
rows ArgumentNode

header column H {
 label “Arg/Ev”
 display “Node “ + name }

column EvidenceArtifact CE {
 label “Evidence “ + name

Approved for Public Release; Distribution Unlimited.
85

 display if row = ArgumentNode such that evidenceArtifacts contains CE
 then “links to” else “” }

column Requirement R {
 label "Requirement" + name

 // starts a second section of rows, followed by redefinitions
 // of all the columns to work with the type of the section:
 display if row = ArgumentNode such that associatedRequirements
 contains R then “links to” else “” }

rows EvidenceArtifact

header column H {
 label “Arg/Ev”
 // optional; must be the same as defined in the previous
 // section if present
 display “Evidence “ + name }

column EvidenceArtifact CE {
 label “Evidence “ + name
 display if row = EvidenceArtifact such that dependencies.to contains CE
 then “depends on” else “” }

column Requirement R {
 label "Requirement" + name
 display “n/a” }

Example 5. Traceability Matrix Specification Linking Argument Nodes and Evidence to
Evidence and Requirements

4.4.4 Ontologies
The core AdvoCATE assurance model can be extended by user-defined ontologies. This enhances
our model-based approach to assurance by 1) formulating domain-specific extensions to the un-
derlying models, and 2) querying the resulting extended models. Our goal in integrating ontologies
into model-based assurance is to provide the benefits of formalism while retaining the key com-
municative purpose of DACs, without sacrificing their comprehensibility. By mapping DAC com-
ponents to a domain-specific ontology we facilitate DAC validation, and by applying domain- and
stakeholder-specific queries to core DAC components that have been semantically enriched using
ontologies, we provide additional stakeholder insights.
 General purpose query languages for assurance arguments and associated models have
been investigated, as have languages more targeted at assurance arguments, though neither has
exploited integrations with ontologies. Ontologies have been widely used in requirements devel-
opment, though less so for ACs. As such, so far as we are aware, ontology-integrated model-based
DACs represent a novel extension to the state of the art and prevailing practice of DAC develop-
ment.
 Each of the DAC components has a model-based representation, which the tool user inter-
face displays using a variety of formats—each component has a domain specific language (DSL),

Approved for Public Release; Distribution Unlimited.
86

and some also have tabular or graphical representations. DSLs are built with Xtext, tables with
NatTable, and graphical diagrams using Sirius. We refer to the collection of interrelated models as
the integrated assurance case model, or simply AC model. We employ model transformations to
generate artifacts from the AC model, in particular, assurance arguments.
 Though formal approaches have been taken to the construction of ACs, either incorporating
formal reasoning or integrating with external models with formal semantics, this introduces a ten-
sion with one of the fundamental purposes of ACs: to communicate and convince. We believe
ontology-backed ACs can provide the advantages of both informal and formal approaches.

Figure 76. Ontology-backed Assurance Case Concept

 Figure 76 illustrates how this works - the AC model is embedded in a user-extensible on-
tology that contains information from the assurance case, which can then be extended with domain-
specific concepts. The ontology can be validated by subject matter experts (SMEs) and serves as
a semi-formal specification of the domain that can, optionally, be mapped to a formal semantics
for verification. Elements can, in turn, be used to construct parts of the assurance case through the
use of an ontology-backed structured language.
The ontology provides a vocabulary for, for example, claims of the assurance arguments. Well-
formedness of claims and soundness of some forms of reasoning can be determined by the ontol-
ogy. It also provides a vocabulary for domain-specific queries that are also used in patterns to
generate arguments. We will focus on the queries and patterns here.
 We map elements of the AC model to concepts, relations, and their instances in a derived
ontology that is user-extensible. This ontology, itself, then forms part of an extended model. Since
the ontologies are, in effect, also part of our model, we will sometimes use core model to refer to
the non-ontological part. For example, AdvoCATE includes a simple notion of physical architec-
ture, consisting of a hierarchy of components. In the ontology, we represent this by a concept
Component, whose instances are the actual components of a given system. A relation subComponent
represents the containment relation of the architecture. The user can then define new concepts and
relations to enrich the model, such as concepts for component input and output, and relations for
connections.
 Figure 77 illustrates some features of our ontology definition language, which has an ob-
ject-oriented flavor and is reasonably verbose. We distinguish conceptual and instance ontologies,
where the former defines concepts and their relations, and the latter instantiates them. Concept

Approved for Public Release; Distribution Unlimited.
87

declarations optionally give super-concepts, attributes, and relations to other concepts. Attributes
have types (primitive, enumerated, list, record, and any combination).

In the AUV conceptual ontology example (Figure 77, left) the concept Actuator is a sub-
concept of AUVComponent, with the boolean attribute isActuated and the relations actuates and
sending, to the concepts PhysicalComponent and ActuationSignal, respectively. We can also de-
fine concepts from other concepts using union, intersection, negation, and quantification along
relations. We can lift attributes from the target concept of a relation to the relation, itself. Here, a
DetachedFin is defined to be a Fin such that every DegradedFin it degradesTo has no (zero) lift-
DragEfficiency despite being actuatedBy every FinActuator that isActuated.

4.4.5 Queries
Figure 78 shows the grammar used to construct queries over the assurance model. We have defined
our own languages for queries and ontologies, rather than use existing languages such as the Web
Ontology Language (OWL) and SPARQL because it enables a tighter integration with our core
model and a similar style of DSL.

Figure 77. Ontology Definition Language Features, Conceptual and Instance Ontology

Figure 79 shows three example queries over the integrated AC model. These show a range

of examples querying arguments, requirements, and functions, based on properties of associated
data, such as description, evidence, mitigation, and allocation. Quantifiers can be used (e.g., to
express that all or some elements have some property) and nested, as well as metrics (e.g., to
express that the number of associated artifacts with some property is bounded). We can query both
the model and the embedding of the model in the ontology. To do the latter, we use the keyword
concept.

Approved for Public Release; Distribution Unlimited.
88

Figure 80 shows a query for goal nodes of arguments in the AC, that contain claims refer-
ring to the reinforcement learning controller, and that are eventually supported (i.e., followed) by
at least one solution node that is related to verification evidence. Here, eventually is used to form
the reflexive transitive closure of a relation. The second query, in Figure 80, looks for requirements
allocated to the autonomous planner (autonomousPlanner), and that represent the requirements to
implement the mitigations of hazards that are, in turn, allocated to the AUV fins (Fin) and whose
hazard condition involves either a stuck open starboard fin (stuckOpenStbdFin) or detached port
fin (detachedPrtFin). These items correspond to the concepts and instances defined in the corre-
sponding ontologies (Figure 77).

Note, here, that we use “allocation” in two distinct ways: in the first part of the query, it
refers to a requirements allocation, which is a responsibility assignment of the requirement to, say,
a component in the physical decomposition model, also reflected as an instance in the instance
ontology. In the second part of the query, it refers to a hazard allocation, that is, the location of the
hazard.

Figure 78. Query Grammar

Approved for Public Release; Distribution Unlimited.
89

Figure 79. Example Queries

Figure 80. Example Queries from the AUV Assurance Case

4.4.6 Dynamic Arguments
Although we have investigated the notion of dynamically updating arguments in earlier work
[DHP2015], we now believe that it is more useful to update argument status in real-time, while
maintaining argument structure. Status can be used for different purposes, such as showing which
part of an argument is currently “active” (that is, which branches reason about the effectiveness of
the safety measures currently being applied). It can also be used to display confidence in argument
claims.
 To that end, we extended the argument view mechanism that was developed in earlier
phases of the project to be able to access real-time values provided to AdvoCATE via external
ports. The views are updated as data is received. By integrating this with the output of assurance
measures, we are able to use these dynamic argument views to visualize LEC confidence and its
bearing on an argument.
 Dynamic views are specified by associating formulas with selected argument nodes, and
mapping these formulas to visualizable node properties, such as colors. Node status can be defined
in terms of the values of any model artifacts that can be queried, so in particular, we can use all
those argument nodes which are linked to the node by an inSupportedBy link. In other words, we
can define the status of a node as a function of the status of its subclaims. This gives us, in effect,
an inference rule for propagating confidence through an assurance argument. Rather than being
hard-coded in the logic, the property language flexibly allows for different propagation rules. Fig-
ure 81 shows an excerpt of the dynamic property syntax, which extends the query language.

Approved for Public Release; Distribution Unlimited.
90

Figure 81. Dynamic Properties Grammar (Excerpt)

 The for syntax is used to state that a property must hold for a certain number of the most
recent (discrete) time steps. For example, to state that a monitored signal x has been received for
the last three time steps, we would use %x% != null for 3. Here, the %x% syntax is used to designate
external variables. To state that the AUV control LEC inputs for the current time step are out of
distribution (defined in terms of the state of a random variable in the anomaly detection component
of assurance measure being less than some threshold), we simply use %non_conf% < 20.

We can also associate dynamic formulas with evidence artifacts. This allows us to specify
conditional evidence, where the formula characterizes the validity of the evidence. Figure 82
shows a fragment of an evidence log DSL, with conditional evidence. Figure 83 shows a view of
the evidence model, including conditions. (For another example, see Figure 20).

Figure 82. Evidence Log with Conditional Evidence

Approved for Public Release; Distribution Unlimited.
91

Figure 83. Evidence Diagram with Conditional Evidence

Figure 84. Dynamic Argument View

 Figure 84 shows a bird's eye view of an argument whose status is shown by coloring the
nodes. In particular, nodes that are green in color are those for which all associated conditions—
specified using the dynamic properties grammar (Figure 81)—evaluate to TRUE. Likewise, nodes

Approved for Public Release; Distribution Unlimited.
92

that are red in color have all their associated conditions evaluate to FALSE. Nodes that are orange
in color have two or more of their conditions evaluate to FALSE. In the example in Figure 84, the
variables invoked in the applicable conditions receive their values through a simulation (shown in
the window to the right of the argument structure).
 Effectively, the dynamic argument view shows which prong of the argument is being ex-
ercised by the simulation, and its status as a function of the attached conditions and the associated
variables.

4.4.7 Integrating Evidence and Tools

Evidence Model
Evidence is used in various places in the assurance case, principally to substantiate solution nodes
in arguments and to justify data in the risk analysis. Here we use “evidence” in a general sense to
encompass all external artifacts which are linked to the assurance case in a justifying or contextual
role; for example, verification artifacts such as test data and simulation results; manufacturer data
sheets, formal specifications, and models; documentation such as user guides, test plans, concepts
of operations, etc.

The evidence log records all the evidence used in the assurance case, as well as any evi-
dence that it is planned to use in future. Evidence can be designated as pending, to indicate that it
is anticipated that it will be received, while the assurance case is still being developed.

Focusing on evidence lends itself to a bottom-up style of argument creation, where we first
identify the key evidence, which assurance claims the evidence directly supports (evidence asser-
tions), and then work back to determine how the evidence was created, and which assumptions it
relies on. If an evidence artifact is self-contained, then it will have no dependencies on other evi-
dence. But often evidence is created from other evidence artifacts using some tool – for example,
simulation results are created using a simulator from a model and an initial configuration.

Tools Log
The tools log is used to record external tools which are used to create evidence artifacts, in

this case the simulator. The tools and evidence logs are interrelated and capture the chain of de-
pendencies through which evidence is constructed, along with the supporting assumptions. Tools
are characterized in terms of their inputs and outputs, each of which is either an evidence artifact
or a primitive type.

A tool specification gives assumptions on the inputs and guarantees on the outputs. This is
especially useful if a tool is used more than once. A tool use represents an application of the tool
to concrete evidence artifacts. Next, create a pattern for the tool. Then, by applying the pattern to
a tool use, we can create an argument fragment which reasons about the properties of the tool
outputs (the tool guarantees providing the corresponding evidence assertions). Just as tools can be
recursively chained together, their patterns can be similarly composed to construct an argument
that reasons over the construction of the evidence that is ultimately constructed.

Approved for Public Release; Distribution Unlimited.
93

5.0 CONCLUSIONS
We have described work carried out in the QUASAR project, giving an account of the platform-
specific DACs created for challenge problems in the air domain and undersea domain platforms.
We also described the assurance measures and how they were applied to the challenge problem
demonstrations. Lastly, we described advances in assurance case technology that were imple-
mented as AdvoCATE tool extensions.
We now outline several areas where we believe further work would be useful to build upon the
advances made in the QUASAR project.

5.1 Platform-Specific Dynamic Assurance Cases
The DACs comprised core assurance components including: i) hazard analyses and mitigation
requirements captured via hazard and requirements logs respectively; ii) safety architecture models
describing the organization of the safety risk mitigations in terms of scenarios that clarify the event
sequences in which mitigations are to be invoked; iii) assurance rationale captured in the form of
structured arguments; and iv) an evidence model that records a variety of forms of evidence nec-
essary to support the assurance claims made.
 The focus of the DACs was on LECs, more specifically the underlying NN models. Some
of the key avenues to advance the maturity of the DACs include:

• Definition and assurance of the properties of the data used to develop (train, validate, and
test) the LECs. This includes characterization of the ODDs, defining how data is to be
sampled from the ODDs so that LEC assurance properties and system safety objectives are
met.

• Refining safety and assurance objectives allocated from a system-level to the LEC, and
translating those into quantitative performance metrics applicable to the LEC and the un-
derlying models.

• Translating LEC assurance objectives into criteria concerning coverage of the ODD by the
LEC and its implementation.

• Providing a rigorous basis for the assurance case architecture and the underlying argument
architecture (both of which have been considered here, albeit informally).

• Addressing assurance case update during design time in conjunction with LEC model up-
dates so that the assurance case is consistent with model development iterations. The idea
is to have assurance concerns be an additional parameter considered during LEC develop-
ment, in particular model training and learning performance assessment.

5.2 Tool Support

5.2.1 Tool Workflows
We have described our approach for incorporating results from formal verification tools in assur-
ance cases. To that end, we have developed an approach for capturing the verification method
workflow in terms of tool specifications that describe how the different tools fit together and what
are the different assurance constraints on the tool usage for their results to be deemed valid. We

Approved for Public Release; Distribution Unlimited.
94

use assumption and guarantee statements for each tool to capture the different assurance con-
straints over the tool’s inputs and outputs which are, in turn, modeled as evidence artifacts.

We distinguish between tool specifications, which represent the reusable information about
a tool, and tool use specifications, which capture the information specific to each tool use. While
the tool specifications are parametrized, tool use specifications represent instances of those para-
metrized specifications. To integrate the tool information into assurance arguments, we have de-
veloped a default argument pattern that can be semi-automatically instantiated from the tool use
information. We also allow for customization of the pattern, so that each tool can have its own
tailored argument pattern. In the case of tool chains, pattern instantiation can be applied recur-
sively, which enables automatic generation of an end-to-end tool integration argument.

While we initially focused the tool specification to be strictly about tools, we discovered
that some crucial steps in verification method workflows are not performed by tools, but are actu-
ally carried out manually. Although we have used the current syntax to capture both kinds of ver-
ification steps, extensions are needed to explicitly capture this distinction. Moreover, by examining
the different verification method workflows used in the project, we identified numerous iterative
methods, which require greater support for different kinds of loops. However, it is not just that we
need to represent loops between tools, but we need to make usage constraints over those loops,
e.g., to maintain consistency of the verification method application.

5.2.2 Active Integration of Assurance Case and Verification Tools
We examined the different formal tools used in the project for verification of neural networks and
explored the assurance challenges associated with those tools. We have reported here some of our
results with Venus and VerifAI, but we have also examined application of the Verisig verification
tool. In each tool application we examined, we identified some gaps in their application that could
affect their integration in an assurance case. The assurance challenges were mainly related to
whether or not the tool is appropriate for the given verification problem, the inputs to the verifica-
tion are adequate, and what the results could be used to support.

To try and address some of these challenges, we used our workflow approach to capture
all those different assurance constraints to guide the user to properly apply the tool and to appro-
priately use the results in an assurance case. However, tool usage and tool use specifications re-
quire manual effort. Towards facilitating automation, we have set the foundations with the work-
flows approach for tool use specification by extending AdvoCATE with active integrations for
different tools. To that end, we have explored active integrations with Venus and Verisig, such
that they can be invoked directly from within AdvoCATE, and their results automatically captured
in the form of tool uses and evidence. This automation could also help us to automatically check
validity of the different tool constraints to make sure that the results obtained from these tool ap-
plications can be safely used in an assurance case.

5.2.3 Generation of Assurance Measures

Implementing the assurance measures required the creation of several scripts and models, inte-
grated with the structure of the overall assurance cases, and the training of those models. The
architectural design of the measures required a significant amount of domain expertise, and exper-
imentation to determine the most effective design for each challenge problem. Thus, this remains
a time-consuming, labor- and expertise-intensive part of the overall assurance process.

Approved for Public Release; Distribution Unlimited.
95

 In order to alleviate these issues, we have been working towards the creation of a high-
level DSL for specifying the structure of the assurance measure, extracting the relevant infor-
mation from other parts of the assurance case, and generating the corresponding low-level scripts,
in effect, allowing compilation for a range of target platforms, while allowing end-users to choose
between different (pre-coded) design options. The key elements of the DSL include:

1. Mission objectives
2. System measurements, and their relationship to the safety architecture
3. Model structure for high and low-level assurance measures, and their architecture
4. Thresholds for various system measurements.

The mission objectives identify specific outcomes required for mission success, such as avoiding
collisions. Each mission objective is linked to a system measurement that is used to determine the
success or failure of the system in accomplishing the mission objective. In general, system meas-
urements are any signals that we can monitor from the system, including outputs of various system
components, such as FLS pings and HSD commands as well as outputs of LEC models. System
measurements and mission objectives are both linked to events from the safety architecture. This
allows us to determine dependencies for the overall assurance measure structure. System measure-
ments linked to events indicate that the event can be measured by some manipulation/computation
using the related system measurements. This gives us the options for inputs to our low-level as-
surance measures. The combination of mission objective, its related system measurement, and its
related events provide the information needed for the assurance measures.
 For the high-level assurance measure, we can create a Bayesian network based on the de-
pendencies of events from each mission objective. The low-level assurance measures compute
confidence in the success of the system meeting a mission objective. We then use a threshold for
the confidence to determine success or failure. Inputs for the low-level measures can include any
system measure related to any event linked to the mission objective. The output is defined by the
mission objective’s identified system measurement.

5.3 Methodology
We have developed a generic methodology for constructing assurance cases that starts with hazard
and risk analysis, is followed by design of the safety system and requirements formulation, then
creation of rationale with assurance arguments, and integrates substantiating evidence. Although
we have applied and refined this methodology in the context of the challenge problems working
with our TA4 partners, it remains to create an assurance case methodology that is customized to
LECs. As part of this, we would also systematize the approach to creating (dynamic) assurance
measures that are aligned with the (static) assurance case [ADP2020].

When sending assurance cases to our TA4 partners, we have found that a significant amount
of effort is expended (on the TA3 side) in explaining the structure of the assurance case, (internally
for TA3, but presumably also on the TA4 side) in formulating review comments and, in turn (TA3)
in addressing those comments, iterating on the assurance case, and tying the changes in the new
assurance case back to the review comments and the previous iteration of the assurance case. This
currently manual process could be supported by developing and integrating a review and assess-
ment workflow into the assurance case methodology and tool framework.

Approved for Public Release; Distribution Unlimited.
96

6.0 REFERENCES
[ADP2019] Asaadi, E., Denney, E., and Pai, G., “Towards Quantification of Assurance for Learn-

ing-enabled Components”, Proceedings of the 2019 European Dependable Computing Con-
ference, Sep. 2019, pp. 55-62.

[ADP2020] Asaadi, E., Denney, E., Henderson, R., Menzies, J., Pai, G., and Petroff, D.,“Dynamic
Assurance Cases: A Pathway to Trusted Autonomy”, 53(12), Dec. 2020, pp. 35-46.

[ASSR2020] Amini, A., Schwarting, W., Soleimany, A., and Rus, D., “Deep evidential regres-
sion”, Advances in Neural Information Processing Systems, 33, 2020, pp. 14927-14937.

[ASTM2021] Subcommittee F38.01 on Airworthiness, “Standard Practice for Methods to Safely
Bound Flight Behavior of Unmanned Aircraft Systems Containing Complex Functions”,
ASTM-F3269-21, ASTM International, West Conshohocken, PA, 2017.

[CDP2017] Clothier, R., Denney, E., and Pai, G., “Making a Risk Informed Safety Case for Small
Unmanned Aircraft System Operations,” 17th AIAA Aviation Technology, Integration, and
Operations Conference (ATIO 2017), AIAA Aviation Forum, June 2017.

[DHP2015] Denney, E., Habli, I., and Pai. G., “Dynamic Safety Cases for Through-Life Safety
Assurance”, 37th International Conference on Software Engineering (ICSE 2015) – New
Ideas and Emerging Results, May 2015.

[DP2018] Denney, E., and Pai, G., “Tool Support for Assurance Case Development,” Automated
Software Engineering Journal, 25(3), Sep. 2018, pp. 435-499.

[DPW2019] Denney, E., Pai, G., and Whiteside, I., “The Role of Safety Architectures in Aviation
Safety Cases,” Reliability Engineering and System Safety Journal, 191, 2019.

[GSN2021] Assurance Case Working Group, “Goal Structuring Notation Community Standard
Version 3,” SCSC-141C, Safety Critical Systems Club, May 2021.

[RFB2015] Ronneberger, O., Fischer, P., Brox, T. “U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation” Proceedings of the 18th International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, Oct. 2015.

[VAI2019] Dreossi, T., Fremont, D., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-Chanlatte,
M., and Seshia, S., “VerifAI: A Toolkit for the Formal Design and Analysis of Artificial In-
telligence-Based Systems”, 31st International Conference on Computer Aided Verification
(CAV), July 2019.

[VAI2020] Kim, E., Gopinath, D., Pasareanu, C., and Seshia, S. A, “A Programmatic and Semantic
Approach to Explaining and Debugging Neural Network Based Object Detectors”, Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.
11128-11137.

[VAI2021] Torfah, H., Junges, S., Fremont, D., and Seshia, S., “Formal Analysis of AI-based
Autonomy: From Modeling to Runtime Assurance”, Proceedings of 21st International Con-
ference on Runtime Verification (RV 2021), Oct. 2021, pp. 311–330.

[VEN2020] Botoeva, E., Panagiotis K., Kronqvist, J., Lomuscio, A, and Misener, R., “Efficient
verification of relu-based neural networks via dependency analysis”, Proceedings of the AAAI
Conference on Artificial Intelligence, 34(4), 2020, pp. 3291-3299.

Approved for Public Release; Distribution Unlimited.
97

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AAM Assurance Architecture Model
AC Assurance Case
APM Assurance Policy Model
AQM Assurance Quantification Model
AUC Area Under the Curve
AUV Autonomous Underwater Vehicle
AVL Autonomous Visual Landing
BHA Barrier Hazard Analysis
BNN Bayesian Neural Network
BTD Bow Tie Diagram
CES Controlled Event Structure
CFIT Controlled Flight Into Terrain
CNN Convolutional Neural Network
CONOPS Concept of Operations
CP Challenge Problem
CPA Closest Point of Approach
CPS Cyber Physical System
CTE Cross-track Error
DAC Dynamic Assurance Case
DH Decision Height
DNN Deep Neural Network
DOF Degrees of Freedom
DSL Domain Specific Language
EC Environmental Condition
FLS Forward Looking Sonar
GSN Goal Structuring Notation
GUI Graphical User Interface
HA Hazardous Activity
HAT Height Above Touchdown
HSD Heading, Speed and Depth
ILS Instrument Landing System

Approved for Public Release; Distribution Unlimited.
98

LEC Learning Enabled Component
LE-CPS Learning Enabled Cyber Physical System
LSTM Long Short-Term Memory
MAP Mean Average Precision
MILP Mixed Integer Linear Programming
ML Machine Learning
MNIST Modified National Institute of Standards and Technology
MTL Metric Temporal Logic
NG Northrop Grumman
NN Neural Network
OKS Object Keypoint Similarity
ODD Operational Design Domain
OOD Out-of-Distribution
OWL Web Ontology Language
ReLU Rectified Linear Unit
RV Random Variable
SME Subject Matter Expert
SPARQL SPARQL Protocol And RDF Query Language
SS
TA

System State
Technical Area

TLOS Target Level of Safety
UQ Uncertainty Quantification
VFR Visual Flight Rules
VMC Visual Meteorological Conditions
WCET Worst Case Execution Time
XML Extensible Markup Language

	Table of Contents
	List of Figures
	List of Tables
	1.0 SUMMARY
	2.0 INTRODUCTION
	3.0 METHODS, ASSUMPTIONS AND PROCEDURES
	3.1 Dynamic Assurance
	3.1.1 Assurance Measures
	3.1.2 System Architecture

	3.2 Methodology
	3.3 Dynamic Assurance Cases
	3.3.1 Assurance Policy Model
	3.3.2 Assurance Architecture Model
	3.3.3 Assurance Quantification Model
	3.3.4 Evidence Model
	3.3.5 Assurance Rationale

	4.0 RESULTS AND DISCUSSION
	4.1 Platform-specific Dynamic Assurance Cases
	4.1.1 Air Domain Challenge Problem – Autonomous Visual Landing
	4.1.1.1 Challenge Problem Summary
	Functional Architecture
	Physical Architecture

	4.1.1.2 Assurance Objectives
	4.1.1.3 Assurance Case Architecture
	4.1.1.4 Assurance Case Elements
	Functional Decomposition and Allocation
	Hazards and Requirements
	Subsystem Safety Analysis
	Safety Architecture
	Assurance Rationale
	Evidence

	4.1.2 Undersea Domain Challenge Problem – Obstacle Avoidance

	4.2 Assurance Measures for Challenge Problems
	4.2.1 Undersea Domain
	4.2.1.1 CP4 – Obstacle Avoidance
	High-level Assurance Measure
	Low-level Assurance Measure

	4.2.1.2 CP6 – Operating Under Degraded Modes
	High-level Assurance Measure
	Low-level Assurance Measure

	4.2.2 Air Domain
	4.2.2.1 High-level Assurance Measure
	4.2.2.2 Low-level Assurance Measure for CP 3.1.1
	4.2.2.3 Low-level Assurance Measure for CP 3.1.2

	4.3 Formal Methods Integration
	4.3.1 VerifAI
	4.3.1.1 Tool Overview
	Scenic Modeling Language
	Sampling the Environment Space
	Monitoring
	Refining Scenic Programs
	Error table analysis

	4.3.1.2 Tool application in Challenge Problems
	VerifAI Re-training for Centerline Tracking using TaxiNet (CP 1.1)
	VerifAI Tool Specification (CP 1.1)
	VerifAI Tool Use Specification (CP 1.1)
	VerifAI Evidence Log (CP1.1)
	VerifAI CP1.1 Specific Argument
	VerifAI Application for Runtime Assurance on TaxiNet (CP 2.1)
	VerifAI Tool Specification in CP2.1
	VerifAI Tool Use Specification in CP2.1
	VerifAI Evidence Log in CP2.1
	VerifAI CP2.1 Specific Argument

	4.3.2 Venus
	4.3.2.1 Tool Overview
	4.3.2.2 Venus Trustworthiness Assurance Case
	Venus Functional Decomposition
	Venus Hazard Log
	Venus Tool Specification
	Reusable Venus Argument

	4.3.2.3 Venus Application for Object Detection with Open Categories (CP 2.2)
	Venus Tool Specification in CP2.2
	Venus Tool Use Specification in CP2.2
	Evidence Log
	Challenge Problem-Specific Argument

	4.4 AdvoCATE Extensions
	4.4.1 AdvoCATE Metamodel
	4.4.1.1 Events, Controls, and Barriers
	4.4.1.2 Requirements
	4.4.1.3 Traceability
	Sources
	Allocations
	Rationale

	4.4.2 Validations
	4.4.2.1 Arguments
	4.4.2.2 Assurance Architecture
	4.4.2.3 Functional Architecture

	4.4.3 Views
	4.4.3.1 Argument Views
	Splits View
	Provenance View

	4.4.3.2 Assurance Architecture Views
	Phases View

	4.4.3.3 Table Views

	4.4.4 Ontologies
	4.4.5 Queries
	4.4.6 Dynamic Arguments
	4.4.7 Integrating Evidence and Tools
	Evidence Model
	Tools Log

	5.0 CONCLUSIONS
	5.1 Platform-Specific Dynamic Assurance Cases
	5.2 Tool Support
	5.2.1 Tool Workflows
	5.2.2 Active Integration of Assurance Case and Verification Tools
	5.2.3 Generation of Assurance Measures

	5.3 Methodology

	6.0 REFERENCES
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

