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Abstract 

We explored approaches that offer full coverage path planning while 

simultaneously avoiding negative obstacles. These approaches are spe-

cific to unmanned ground vehicles (UGVs), which need to constantly 

interact with a traversable ground surface. We tested multiple poten-

tial solutions in simulation, and the results are presented herein. Full 

coverage path planner (FCPP) approaches were evaluated based on 

their ability to discretize their paths, use waypoints effectively, and be 

easily integrated with our current robot platform. For negative obsta-

cles, we explored approaches that will integrate with our current navi-

gation stack. The preferred solution will allow for teleoperation, 

waypoint navigation, and full autonomy while avoiding positive and 

negative obstacles. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 

Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 

be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

In September of 2021, we demonstrated our robotic platform in the Ma-

neuver Support, Sustainment, and Protection Integration Experiments 

(MSSPIX) 2022 hosted by the Army’s Maneuver Support and Sustainment 

Capability Development Integration Directorates. Three soldiers were 

trained to use the robotic platform over a three-day span. The Soldiers 

learned to use manual navigation, semi-autonomous waypoint navigation, 

and autonomous exploration to map tunnels and building interiors. The 

team successfully demonstrated a platform-agnostic unmanned ground 

vehicle (UGV) edge compute (millisecond low latency decisions with 

onboard hardware) and sensor payload for surveying and mapping inte-

rior structures (including subterranean environments). Specifically, the 

UGV was capable of three modes of operation without Soldiers entering a 

potentially hazardous environment: teleoperation, waypoint navigation, or 

autonomous mapping. Based on that experience and on Soldier feedback, 

the team identified two aspects of navigation that needed improvement. 

Initially, we assumed with limited battery capacity (i.e., approximately 

3 hours), the main objective for autonomy was to cover as much ground as 

possible in the shortest amount of time. Thus, we adopted an approach 

based on frontier exploration. A frontier, in this context, is defined as a 

boundary between an area that the robot has explored and an area that has 

yet to be explored. Priority was given to the mathematically largest fron-

tiers. In context, this would provide an overall floorplan of a building in 

relatively short order, but smaller rooms would not be explored thor-

oughly. Thus, if the concept of operation (CONOP) also involved identify-

ing an object of interest, this approach could potentially miss the object of 

interest, especially if it was located in one of the smaller rooms. As a result, 

the team investigated full coverage path planners (FCPPs) that can be used 

to explore rooms thoroughly. One aspect of this report addresses using full 

coverage planners. 

Another issue that arose during the MSSPIX 22 demo was negative obsta-

cles. While the robot was quite capable of identifying and avoiding positive 

obstacles, negative obstacles, such as descending stairs or a hole in the 
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floor, were beyond its initial capability. Because these negative obstacles 

were known before the demonstration, we were able to use virtual obsta-

cles to keep the robot from exploring these areas. However, an approach 

must be developed to deal with negative obstacles, especially if prior 

knowledge is unavailable. Thus, the second aspect of this report focuses on 

identifying negative obstacles. 

1.2 Objectives 

This report addresses the focus areas established in the Army Multi-Do-

main Intelligence: FY21-22 S&T Focus Areas (Office of the Deputy Chief 

of Staff 2020). Specifically, we feel this work addresses the statement, 

“Wars will be fought at hyper speed and scale, dominated by technologies 

such as robotics and autonomous systems (RAS), machine learning (ML), 

and AI [artificial intelligence] capabilities, which are widely available, 

packaged, and ready for use” (5). By incorporating full coverage planning 

and the ability to detect negative obstacles, we met the objective of creat-

ing a more efficient autonomous systems. 

1.3 Approach 

Our approach involved running full coverage planners and negative obsta-

cle detection methods in simulation. To test both scenarios, we used the 

Obstacle World from Clearpath Robotics (2021). The Obstacle World is a 

virtually defined indoor world that serves as a confined area for the full 

coverage planners, and the nonplanar floor allows for the simulated test-

ing of negative obstacle detection. Figure 1 shows the world as it appears in 

the simulation environment. The negative obstacles that appear through-

out the world are labeled. The full launch file for loading the virtual envi-

ronment and robot can be found in 0, Section Appendix A. Several 

parameters included in the launch file can be used to tweak the environ-

ment, including the starting position of the robot and the world scale. To 

launch the world, we used the following node: Here a node is defined as a 

process that performs computation. The node to launch the virtual envi-

ronment is as follows: 

<node name="agriculture_world_spawner" pkg="gazebo_ros" 

type="spawn_model" args="-urdf⎵-model⎵obstacle_geom 

⎵-param⎵obstacle_geom⎵-x⎵0⎵-y⎵0⎵-z⎵0⎵-Y⎵0" /> 

The node to spawn the robot is as follows: 
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<node name="spawn_urdf" pkg="gazebo_ros" type=" 

spawn_model" args="-urdf⎵-model⎵turtlebot3⎵-

x⎵$(arg⎵x) ⎵-y⎵$(arg⎵y) ⎵-z⎵$(arg z) ⎵-param⎵ro-
bot_description" 

/> 

Figure 1. Clearpath Robotics Obstacle World. 

 

Our goal was to use the full coverage planner to thoroughly explore each 

room while simultaneously using the negative obstacle detection node to 

keep the robot from getting stuck. The full coverage planner requires an 

occupancy grid to plan the route. Figure 2 shows the occupancy grid used 

for path planning. Because the occupancy grid is typically trinary in na-

ture, space is typically labeled as occupied (black), free (white), and un-

known (gray). As a result, negative obstacles are not identifiable, and the 

planned paths will traverse the nonplanar floor geometry. The negative ob-

stacles are approximately the same size as the wheel diameter, which 

means that if the robot falls in, it will be unlikely to escape; thus, it will be 

unable to complete its mission. 
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Figure 2. A 2D occupancy grid of the Obstacle World. 

 



ERDC TR-23-13 5 

 

2 Full Coverage Planning 

2.1 IPA Coverage Planning 

The first package we looked at for full coverage planning was called 

ipa_coverage_planning (Fraunhofer IPA 2016). The IPA coverage planner 

contains several full coverage algorithms, including boustrophedon, grid-

based traveling salesman problem (TSP), neural-network-based, grid-

Based local energy minimization, contour line, convex sensor placement, 

and Voronoi random field (Bormann et al. 2016). Each of these algorithms 

have different weights for path lengths and rotations, which result in vari-

ous patterns of coverage. Out of that list, we chose to investigate the bou-

strophedon, grid-based local energy minimization, and Voronoi random 

field algorithms based on open source availability. Each of these algo-

rithms was applied to the 2D occupancy grid shown in Figure 2. The bou-

strophedon algorithm is shown in Figure 3. While the boustrophedon 

algorithm fully explores the entire region, it treats the occupancy grid as a 

whole rather than as individual rooms. Specifically, paths planned along 

the horizon are favored, and multiple trips across the entire building are 

traversed before an individual room is explored. 

Figure 3. Full coverage boustrophedon algorithm. 

 

The full coverage grid-based local energy minimization algorithm is shown 

in Figure 4. Compared to the boustrophedon algorithm, the grid-based 
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local energy minimization algorithm appears to isolate patterns to individ-

ual rooms before exploring new areas. Even the large room is divided into 

two sections. However, each path is backtracked, which is redundant and 

unnecessary. In regard to the object detection scenario, however, this 

methodology for exploration is preferable to the boustrophedon algorithm 

because the rooms are isolated. Room isolation is favorable when using 

multiple robots for exploration.  

Figure 4. Full coverage grid-based local energy minimization algorithm. 

 

Figure 5 shows the planned path using the Voronoi random field algo-

rithm. Similar to the grid-based local energy minimization algorithm, this 

approach also seems to confine exploration to individual rooms before ex-

panding to new areas. Compared to the previous two algorithms, this ap-

proach also appears to have significantly fewer waypoints and does not 

backtrack along the same path. However, when transitioning between ar-

eas, paths are planned through walls more frequently than in the afore-

mentioned approaches. 

Of the three approaches we tested, the Voronoi random field algorithm ap-

peared to be the best, specifically in using waypoints and discretizing the 

map. However, all the approaches in this section seemed to disregard walls 

when transitioning to different areas. While outside the scope of this work, 

adding a feasibility check would mitigate this issue. While the availability 

of multiple full coverage algorithms is attractive, a fair amount of work is 



ERDC TR-23-13 7 

 

required to optimize search patterns to prevent transitions through walls. 

Also, it appears that this approach does not integrate with move_base. For 

ipa_coverage_planning to support move_base, the source code would have 

to be extensively modified, which is outside the scope of this work. The 

move_base package uses the navigation stack to move the robot to desired 

positions and is the preferred method of locomotion for our physical robot. 

Thus, we looked for alternative full-coverage approaches. 

Figure 5. Full coverage Voronoi random field algorithm. 

 

2.2 Full Coverage Path Planner (FCPP) 

The other full coverage approach that we investigated was FCPP (Brodskiy 

et al. 2004). This approach uses the backtracking spiral algorithm to plan 

its path (Gonzalez et al. 2005). The steps required to clone and compile 

FCPP are provided here: 

Cd catkin_workspace/src 

git clone https://github.com/nobleo/  

full_coverage_path_planner.git 

cd ../  

catkin_make 

FCPP integrates with move base flex (Magazino et al. 2018) as a global 

path planner plugin. The following code demonstrates how to set the 

global planner in move base flex to use the backtracking spiral 
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algorithm. We discussed move_base_flex at length in our previous reports 

(Glaspell et al. 2020; Christie et al. 2021a). 

planners: 

- name: ’SpiralSTC’ 

type: ’full_coverage_path_planner/SpiralSTC’ 

The default local planner for FCPP is tracking_pid, which can be set with 

the code that follows. The tracking pid local planner is designed to implic-

itly follow the path defined by the global path planner. As a result, it is in-

capable of detouring around negative obstacles, such as a hole in the floor. 

In testing, when the pid tracking local planner encountered a negative ob-

stacle, it just stopped in front of the obstacle. 

controllers: 

- name: ’tracking_pid’ 

type: ’tracking_pid/TrackingPidLocalPlanner’ 

The detection of negative obstacles is discussed at length in Section 3. 

However, we require a local planner that can plan routes around both pos-

itive and negative obstacles. Two common path planners are elastic band 

(Building-Wide Intelligence Project 2012) and timed elastic band (TU 

Dortmund 2016). We have discussed both of these planners in previous re-

ports (Christie et al. 2021a; Glaspell et al. 2020). Typically, we use elastic 

band in simulation and timed elastic band on the physical robot. This is 

due, in part, to timed elastic band’s ability to avoid both static and dy-

namic obstacles that the physical robot would encounter in the real world. 

Dynamic obstacles are less of an issue in simulation because most virtual 

environments are static in nature. The code for setting the elastic band lo-

cal planner follows. The complete YAML file that sets the elastic band pa-

rameters is provided in 0, Section A.2. 

controllers: 

- name: ’EBandPlannerROS’ 

type: ’eband_local_planner/EBandPlannerROS’ 

To load the 2D occupancy grid from Figure 2, we used the node from the 

grid server. The node to launch the grid server follows. We used the arg 

declaration map to pass the location of the 2D occupancy grid to the grid 

server node. 

<arg name="map" default="/home/garry/Downloads/ tb3_obsta-

cle_map.yaml"/> 
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<node name="grid_server" pkg="map_server" 

type=" map_server" args="$(arg map)"> 

<param name="frame_id" value="map"/> 

</node> 

ROS uses messages to pass information between nodes. The FCPP package 

subscribes to tf and tf_Static and publishes coverage_grid and  

coverage_progress. It also uses the parameter tool_radius to discretize 

the provided occupancy grid for full coverage planning. Figure 6 (top) 

shows an example of the default tool_radius value of 0.3 m, and as a re-

sult, many paths are planned per room. For our testing, we set the value of 

tool_radius to 0.65 m. The results of modifying the tool_radius parame-

ter are shown in the bottom of Figure 6. This new value provided a mini-

mum of two paths through each negative obstacle. While this value was 

appropriate for testing the efficacy of our negative obstacle detection ap-

proaches, in a real-world scenario (to conserve battery), a value of 1.0 m or 

higher is probably sufficient when looking for objects of interest. 

Figure 6. Full coverage backtracking spiral algorithm. 
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All subsequent tests in this report used the FCPP global planner and elas-

tic band local planner. Specifically, when compared to the IPA coverage 

planner, none of the FCPP transitions between rooms bisected any walls. 

At some point, it may be of interest to integrate the various coverage plan-

ners provided in the IPA coverage planner in the FCPP framework, but 

that is outside the scope of this report. In short, the FCPP planner 

achieved our goal of full coverage exploration. As a result, the sections that 

follow focus on identifying and avoiding negative obstacles. 
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3 Negative Obstacles 

We programmed our robots to use three methods of navigation: teleopera-

tion, waypoints, or full autonomy. For teleoperation, we require an effi-

cient method to visualize negative obstacles so the operator can avoid 

them. For waypoint and full autonomy, the robot needs its own method to 

identify and path plan around the negative obstacles. Negative obstacles 

are defined here as holes or cliffs that exist below the ground plane. 

3.1 Grid Map 

The first package we looked at to identify negative obstacles was grid_map 

(ANYbotics 2016). The grid_map package was developed to create 2.5D 

grid maps (Fankhauser and Hutter 2016). The grid_map package depends 

on eigen. Eigen can be installed with the command sudo apt-get install 

libeigen3-dev. The grid_map package can be installed from a repository 

using the command sudo apt-get install ros-noetic-grid-map or can 

be compiled from the source with the following commands: 

cd catkin_ws/src 

git clone https://github.com/anybotics/grid_map.git  

cd ../ 

catkin_make 

The grid_map package uses a layered approach to generate the 2.5D grid 

maps. We initially considered using the elevation layer to identify negative 

obstacles. To accomplish this, we leveraged grid map’s image_to_gridmap 

node as a proof of concept. This node converts a 2D image to a 2.5D occu-

pancy grid. The image used is shown in the top left of Figure 7. This image 

was loaded in the image_to_gridmap node using the image_publisher.py 

script provided here: 

<node pkg="grid_map_demos" type="image_publisher.py" 

name="image_publisher" output="screen"> 

<param name="image_path" value="$(terrian.png" /> 

<param name="topic" value="˜image" /> 

</node> 

3.1.1 Elevation Layer 

With the image loaded, we used the following node to generate the 2.5D el-

evation grid map shown in the top-right portion of Figure 7. Note the  

image_to_gridmap node interprets lighter colors to be higher in elevation 

https://github.com/anybotics/grid_map.git
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and darker colors to be lower in elevation. The elevation layer does well in 

interpreting various features, such as ramps and stairs. Thus, it should be 

possible to use the 2.5D elevation map as a way for an operator to quickly 

identify negative obstacles as well. 

<node pkg="grid_map_demos" type="  

image_to_gridmap_demo" name="image_to_gridmap_demo"  

output="screen" /> 

Figure 7. Converting a 2D image to 2.5D grid map and occupancy grid using the 

elevation layer. (Top left image reproduced, with permission, from Fankhauser 2017.) 

 

Robots typically use an occupancy grid to identify and avoid obstacles. Ro-

bots also use occupancy grids for path planning. Therefore, we used the 

grid_map_visualization node to convert our 2.5D grip map to an occu-

pancy grid. The resulting 2.5D occupancy grid is shown at the bottom of 

Figure 7. The general assumption made when using the elevation layer to 

generate 2.5D occupancy grids is that lower elevation is less costly for the 

robot to traverse. Higher elevation incurs more cost and is avoided. 
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<node pkg="grid_map_visualization" type="  

grid_map_visualization" name="grid_map_visualization "  

output="screen"> 

<rosparam command="load" file="/home/garry/  

Downloads/tb3/elevation_mapping/costmap_2.yaml" />" 

⎵⎵</node 

⎵ 

For completeness, the referenced costmap_2.yaml file follows. 

grid_map_topic: /grid_map_filter_demo/filtered_map  

grid_map_visualizations: 

– name: elevation_grid  

type: occupancy_grid  

params: 

layer: elevation  

data_min: -0.6 

data_max: 0.6 

– name: traversability_grid  

type: occupancy_grid  

params: 

layer: traversability 

data_min: 0.6 #original value -0.6 

data_max: -0.6 #original value 0.6 

Armed with the ability to generate 2.5D grid maps and occupancy grids, 

we were ready to test this approach on the virtual world shown in Figure 1. 

For testing, we installed the package elevation_mapping (ANYbotics 

2019). Elevation mapping, built around the grid_map package, was de-

signed to use depth sensors to generate 2.5D grid maps (Fankhauser et al. 

2014; Fankhauser et al. 2018). In our use case, we used a 3D lidar as the 

input source. The elevation grid map generated in the Obstacle World is 

shown in the left image of Figure 8. The elevation grid map does a good 

job of identifying negative obstacles (pink squares), and an operator could 

easily avoid them when teleoperating the robot. However, issues arise 

when converting the 2.5D grid map to an occupancy grid, as shown in the 

right image of Figure 8. With an elevation-based approach, lower elevation 

is assigned less cost. As a result, the negative obstacle is lighter gray (i.e., 

lower cost), and the ground is darker gray (i.e., higher cost). If the negative 

obstacle was significantly lower in elevation, the cost attributed to the 

ground would be too high for the robot to even move. While effective for 

teleoperation, this approach prevented us from using the waypoint or full 

autonomy modes of operation. As a result, we returned to the grid_map 

package and investigated some of the other negative obstacle layers. 
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Figure 8. Elevation 2.5D grid map and occupancy grid identifying negative obstacles. 

 

3.1.2 Traversability Layer 

In addition to the elevation layer, grid maps also include slope, roughness, 

and edge detection layers. We applied each of these layers to the terrain 

image shown in Figure 7. 

The slope layer was generated from the code that follows. When applied to 

the terrain image, the slope grid map can be seen in Figure 9A. 

– name: slope 

type: gridMapFilters/MathExpressionFilter  

params: 

output_layer: slope 

expression: acos(normal_vectors_z) 

The roughness layer was generated from the code that follows, and the 

roughness grid map is shown in Figure 9B. 

– name: roughness 

type: gridMapFilters/MathExpressionFilter 

params: 

output_layer: roughness 

expression: abs(elevation_inpainted - elevation_smooth 



ERDC TR-23-13 15 

 

Figure 9. The 2.5D slope (A), roughness (B), edge detection (C), and traversability (D) 

grid maps. 

 

The edge detection layer was generated from the code that follows, and 

the edge detection grid map is shown in Figure 9C. 

- name: edge_detection  

type: gridMapFilters/ 

SlidingWindowMathExpressionFilter  

params: 

input_layer: elevation_inpainted  

output_layer: edges 

expression: ’sumOfFinites 

([0,-1,0;-1,5,-1;0,-1,0].*elevation_inpainted)’  

compute_empty_cells: false 

edge_handling: mean  

window_size: 3 

We set the traversability layer to be the average of the slope, roughness, 

and edge detection layers. The traversability layer was generated from the 

code that follows, and the traversability grid map is shown in Figure 9D. 

- name: traversability 

type: gridMapFilters/MathExpressionFilter  

params: 

output_layer: traversability 

expression: ((slope + roughness + edges) / 3) 

If we use the default values of −0.6 for data_min and 0.6 for data_max in 

the aforementioned costmap_2.yaml file, all the traversability grid map 
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features are negative, as shown in the top image of Figure 10. Because all 

the features are negative, the resulting 2.5D cost map labels the ground as 

an obstacle, and the robot is unable to move. This is shown in the bottom 

image of Figure 10. 

Figure 10. Inverted 2.5D traversability and occupancy grid. 

 

The simple fix is to swap the data_min and data_max values as reflected in 

the aforementioned costmap_2.yaml. Swapping these values results in the 

2.5D traversability grid map shown in the top image of Figure 11. With 

positive traversability map features, the resulting 2.5D occupancy grid 

does not label the floor as an obstacle, and the robot is able to move freely. 
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Figure 11. The 2.5D traversability and occupancy grid. 

 

The primary differences between the 2.5D occupancy grid created from the 

traversability layer (Figure 11) and the 2.5D occupancy grid created from 

the elevation layer (Figure 7) are that a majority of the traversability occu-

pancy grid can be explored by the robot (light gray) and that the features 

that could cause issues are outlined and marked with higher cost (dark 

gray). The next step was to test the traversability layer on the virtual world 

shown in Figure 1. The results can be seen in Figure 12. The left image in 

Figure 12 is the 2.5D traversability grid map. It is important to note that 

the negative obstacles are outlined (with a blue square), and an operator 

could use the traversability grid map to avoid them while teleoperating the 

robot. Moreover, the 2.5D traversability occupancy grid is shown in the 
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right image of Figure 12. In contrast to the 2.5D occupancy grid created 

from the elevation grid map, the 2.5D occupancy grid created from the tra-

versability layer does not inflate the cost of the ground, and the robot is 

free to explore the map. As a result, we could use the traversability 2.5D 

occupancy grid for both waypoint and fully autonomous navigation. Over-

all, the traversability approach effectively identified negative obstacles and 

was compatible with the various navigation methods we typically use. Fu-

ture tests will involve implementing this approach on a physical robot. 

Figure 12. Traversability 2.5D grid map and occupancy grid identifying negative obstacles. 

 

3.2 Cliff Detector 

Another potential negative obstacle that we could encounter is a cliff. The 

term cliff is used rather loosely in this context and, in an urban environ-

ment, could take the form of a loading dock or a downward set of stairs. In 

regard to the robot, a cliff is a negative obstacle that is difficult to identify 

with ray tracing. The cliff detector approach we investigated can be found 

on GitHub (JohnTGZ 2022a). This approach assumes a downward facing 

2D lidar. Based on the lidar_height and lidar_pitch parameters, the 
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assumed distance to the ground is calculated. The parameter 

cliff_threshold_constant can be used to add a buffer to the calculated 

ground distance, and this summed value (i.e., ground plus buffer) is added 

to a lookup table. The lookup table contains values the sensor would com-

pare against. The readings from the lidar are compared to the look up ta-

ble, and if the range is longer than the value in the lookup table or returns 

an infinite value, an obstacle is added to the cost map. However, with our 

current robot payload, we used a horizontal 3D lidar, and not a downward 

facing 2D lidar. Thus, we had to modify the cliff detector package to meet 

our needs. The first step was to use the velodyne_laserscan_node to select 

a single ring of our multibeam 3D lidar and to output that ring as a laser 

scan topic (velodyne_scan). The node to select a single ring follows. In this 

example, we specifically selected the first ring to identify potential cliffs. 

<arg name="ring" default="0" /> 

<arg name="resolution" default="0.007" /> 

<node name="velodyne_laserscan_node" pkg=" velodyne_laserscan" 

type="velodyne_laserscan_node"> 

<param name="ring" value="$(arg⎵ring)"/> 

<param name="resolution" value="$(arg⎵resolution)"/> 
<remap from="velodyne_points" to="/velodyne_points"/> 

<remap from="scan" to="/velodyne_scan" /> 

</node> 

The results of using this node are shown in the top image of Figure 13. The 

white points are the full lidar point cloud, and the red ring is the laser scan 

topic (velodyne_scan) from the velodyne_laserscan_node. The next step 

was to pass the velodyne_scan topic from the velodyne_laserscan_node to 

the laser_filters node. The node is shown here and serves two purposes. 

First, it acts as an angular filter, and second, it labels lidar values as infi-

nite when they exceed an upper threshold. The referenced YAML file is 

provided in 0, Section A.3. 

<arg name="cliff_scan_topic_raw" default="/ velodyne_scan"/> 

<arg name="cliff_scan_topic_filtered" default=" scan_cliff_fil-

tered"/> 

<arg name="cliff_scan_topic_output" default=" scan_cliff"/> 

<arg name="cliff_frame_id" default="cliff_lidar"/> 

<node pkg="laser_filters" type="  

scan_to_scan_filter_chain" name="scan_cliff_filter"  

output="screen" > 

<remap from="scan" to="$(arg⎵cliff_scan_topic_raw)"/> 

<remap from="scan_filtered" to="$(arg⎵ 
cliff_scan_topic_filtered)" /> 

<rosparam command="load" file="/home/garry/ 
Downloads/tb3/neg_obs/config/scan_cliff_filter_tb3. yaml" /> 

</node> 
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The output of the laser_filters node is the topic scan_cliff_filtered. 

However, the pattern for scan_cliff_filtered is hard coded into the 

cliff_detector.cpp file found on GitHub (JohnTGZ 2022b). The result-

ing pattern is shown in the bottom image of Figure 13. Again the red V-

shaped pattern is based off a downward pointing 2D lidar. However, for 

our use case, we need it to be a circle. Thus, we modified the aforemen-

tioned line with the following code. 

thresh_laser_scan.push_back(middle_laser_length/ cos( ( i *  

lidar_resolution_) * DEG2RAD)*cos( (i * lidar_resolution_) * 

DEG2RAD) + cliff_thresh_constant_); 

The results of modifying the code are shown in the top image of Figure 14. 

Specifically, instead of a V pattern, we now have a circle, shown in green, 

to compare our lidar values against, shown in orange. Specifically, the 

green circle is the topic scan_cliff_filtered, and the orange circle is the 

laser scan topic velodyne_scan. The red line, which denotes an obstacle, is 

where the live lidar values (orange) exceed the value from the lookup table 

(green) and is derived from the cliff_detector_node. The code for the 

cliff_detector_node is provided here, and the referenced YAML file is 

provided in 0, Section A.4. 

<node pkg="cliff_detector" type="cliff_detector_node" 

name="cliff_detector" output="screen" > 

<remap from="scan" to="$(arg⎵cliff_scan_topic_filtered)" /> 
<remap from="scan_out" to="$(arg cliff_scan_topic_output)" /> 

<rosparam command="load" file="/home/garry/ Down-

loads/tb3/neg_obs/config/ cliff_detector_params_tb3.yaml" /> 

</node> 
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Figure 13. Velodyne laser scan node (top) and default laser filters node (bottom).  
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Figure 14. Modified laser filters node detecting (top) and marking (bottom) a 

negative obstacle. 

 

The output of the cliff_detector_node is the laser topic scan_cliff, and 

we can pass this topic to move_base_flex 12. We discussed move_base_flex 

at length in our previous reports (Glaspell et al. 2020; Christie et al. 
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2021a). In short, to include the scan_cliff topic into move_base_flex, we 

add the following plugins to the local_costmap.yaml file. 

plugins: 

– {name: obstacle_layer, type: "costmap_2d:: ObstacleLayer"} 

– {name: neg_obstacle_layer, type: "costmap_2d:: Obsta-

cleLayer"} 

– {name: inflation_layer, type: "costmap_2d:: InflationLayer"} 

We define the plugins with the following code in the file called 

common_costmap.yaml. 

obstacle_layer:  

track_unknown_space: true  

inf_is_valid: true  

obstacle_range: 7.5 

raytrace_range: 8.0  

observation_sources: point_cloud_lidar 

point_cloud_lidar: {data_type: PointCloud2, 

expected_update_rate: 0.5, topic: /segmenter/ 

points_nonground, marking: true, clearing: true, 

max_obstacle_height: 1.0, min_obstacle_height: 0.0} 

neg_obstacle_layer:  

track_unknown_space: true  

inf_is_valid: true  

obstacle_range: 4.0 

raytrace_range: 4.5  

observation_sources: cliff_scan  

cliff_scan: {data_type: LaserScan,expected_update_rate: 0.5, 

topic: /scan_cliff, marking: true, clearing: false, 

max_obstacle_height:9999, min_obstacle_height: -9999} 

inflation_layer:  

cost_scaling_factor: 10.0 

inflation_radius: 3.0 

While it is possible to have more than one observation source in an obsta-

cle plugin, this is not recommended with the cliff detection node. If com-

bined, the cliff detection node would mark the negative obstacle, and that 

obstacle would be subsequently cleared by the point cloud source. This is 

because both plugins are projected onto the same 2D plane, and the clear-

ing mechanism of the point cloud topic ray-traces through that negative 

obstacle and removes it. By separating the obstacle nodes, we can mark 

the negative obstacles with the cliff detection node so they will not be 

cleared by the point cloud obstacle detection plugin. This is shown in the 

bottom image of Figure 14. Specifically, the pink square represents the 

negative obstacle being marked, but not cleared, on the cost map. The next 

step was to test the code in the Obstacle World with FCPP. 
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Figure 15 shows the result of integrating cliff detection with FCPP. The top 

image shows the elastic band local planner (green circles) following the 

global path generated by the backtracking spiral algorithm (green lines). 

The robot traverses the global path until it reaches a negative obstacle. The 

bottom image shows the negative obstacle being marked with the cliff de-

tector node, and the red lines indicate potential paths the local planner is 

calculating, before converging on a solution, to avoid the negative obstacle. 

This pattern of following the global path and avoiding negative obstacles 

repeated until the robot finished exploring the entire area. We set a way-

point to bring the robot back to its starting location, but we really need to 

add a return-to-home function when it is completed. The FCPP package 

has a topic called coverage_progress that monitors coverage. Specifically, 

the values range from 0 (none) to 1 (full). Thus, we could have the robot 

return home when the coverage_progress was greater than 0.95. 

Figure 15. Full coverage planning of the Obstacle World (top), and path planning around 

negative obstacles (bottom). 
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4 Future Work 

In the future, we plan to continue investigating the image to grid map 

node, specifically for muti-robot teaming applications. Point clouds can be 

quite large, ranging from a few hundred megabytes to multiple terabytes. 

Transferring these large files between robots can be inefficient and time-

consuming, especially in bandwidth-limited environments. However, 2D 

grayscale images are typically only a few hundred kilobytes in size. Once 

the robot receives the 2D image, image to grid map can generate the 2.5D 

grid map. We can then use the 2.5D grid map to generate 2.5D traversabil-

ity occupancy grids for navigation. Figure 16 is an example of converting a 

2D image to a 2.5D grid map. 

To generate the 2D image, a point cloud was loaded into CloudCompare 

(2009). We selected “Set top view” for a top-down perspective. Next, we 

selected Edit → “colors” → “Height Ramp” (direction z) to generate the 2D 

image that is false colored along the z-axis. Finally, we selected Display → 

“Render to file” to generate the top image in Figure 16. To generate the 

bottom image of Figure 16, we first used the same image_to_gridmap node 

that was presented in Section 3.1. 

While Figure 16 shows the conversion from 2D to 2.5D for an outdoor 

scene, Figure 17 demonstrates the conversion process for the interior of a 

building. The aforementioned steps were used to create the 2D grayscale 

image shown at the top of Figure 17, and the resulting 2.5D grid map is 

shown at the bottom. 

Our next step will focus on streamlining the process to generate the top-

down grayscale images. While initial steps will focus on converting data 

collected from UGVs or UAVs, we also plan to explore using digital eleva-

tion models as potential input sources. Finally, we plan to investigate  

various methods for transferring the images to the UGV in degraded  

communication scenarios. 
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Figure 16. Conversion of a 2D image to 2.5D grid map for an outdoor environment. 
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Figure 17. Conversion of a 2D image to 2.5D grip map for an indoor environment.  
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5 Summary 

We explored various ways to thoroughly explore rooms while simultane-

ously avoiding negative obstacles. We evaluated these methods in simu-

lated environments using an indoor virtual world with nonplanar floor 

geometry. Of the approaches we evaluated, the FCPP package was the pre-

ferred solution. The FCPP discretized individual rooms, used waypoints ef-

ficiently, integrated with move base flex, and did not path plan through 

walls. For detecting negative obstacles, using the traversability layer of 

grid maps in conjunction with the cliff detector works with teleoperation, 

waypoint navigation, and full autonomy. Subsequent reports will focus on 

testing these approaches on a physical robot. We also plan to combine 

these approaches with our low-visibility object identification approach 

(Christie et al. 2021b) to test their efficacy in detecting objects of interest. 
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Appendix: Launch Files 

A.1 Simulated World and Robot Launch File 

<launch> 

<arg name="world_scale" default="3.0" /> 

<arg name="walls" default="true" /> 

<param name="obstacle_geom" command="$(find⎵xacro)/ 

xacro⎵’$(find⎵cpr_obstacle_gazebo)/urdf/ 

obstacle_geometry.urdf.xacro’⎵world_scale:=$(arg⎵wor

ld_scale) ⎵walls:=$(arg⎵walls)" /> 
<arg name="x" default="1.0"/> 

<arg name="y" default="1.0"/> 

<arg name="z" default="1.0"/> 

<arg name="yaw" default="0.0" /> 

<arg name="use_sim_time" default="true" /> 

<arg name="gui" default="true" /> 

<arg name="headless" default="false" /> 

<arg name="world_name" default="$(find⎵ 
cpr_obstacle_gazebo)/worlds/actually_empty_world. 

world" /> 

<include file="$(find⎵gazebo_ros)/launch/ 
empty_world.launch"> 

<arg name="debug" value="0" /> 

<arg name="gui" value="$(arg⎵gui)" /> 

<arg name="use_sim_time" value="$(arg⎵use_sim_time)" /> 

<arg name="headless" value="$(arg⎵headless)" /> 

<arg name="world_name" value="$(arg⎵world_name)" 
/> 

</include> 

<node name="obstacle_world_spawner" pkg="gazebo_ros " 

type="spawn_model" args="-urdf⎵-model⎵ 

obstacle_geom⎵-param⎵obstacle_geom⎵-x⎵0⎵-y⎵0⎵-z⎵0⎵-Y 

⎵0" /> 
<!-- Load robot_description param for tf, rviz and ga-

zebo spawn. --> 

<param name="robot_description" command="$(find⎵ 

xacro)/xacro⎵$(find⎵turtlebot3_description)/urdf/ 
turtlebot3_waffle_3d.urdf.xacro" /> 

<!-- Spawn turtlebot into gazebo based on 

robot_description. --> 

<node name="spawn_urdf" pkg="gazebo_ros" type=" 

spawn_model" args="-urdf⎵-model⎵turtlebot3⎵-x⎵$(arg⎵x) 

⎵-y⎵$(arg⎵y) ⎵-z⎵$(arg⎵z) ⎵-param⎵robot_description" 
/> 

<!-- Publish turtlebot3 tf’s. ⎵--> 

⎵⎵⎵⎵<node⎵pkg="robot_state_publisher"⎵type=" 

robot_state_publisher"⎵name="waffle_state_publisher" 

⎵/> 
</launch> 
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A.2 eband_local_planner.yaml 

EBandPlannerROS: 

odom_topic: /odom  

map_frame: map 

# Robot Configuration Parameters  

max_vel_x: 0.26 

min_vel_x: -0.26 

max_vel_y: 0.0 

min_vel_y: 0.0 

# The velocity when robot is moving in a straight line 

max_vel_trans: 0.26 

min_vel_trans: -0.26 

max_vel_theta: 1.82 

min_vel_theta: -1.82 

acc_lim_x: 2.5 

acc_lim_y: 0.0 

acc_lim_theta: 1.1 

# Common Parameters 

xy_goal_tolerance: 0.01 # Distance tolerance for 

reaching the goal pose 
yaw_goal_tolerance: 0.01 # Orientation tolerance for 

reaching the desired goal pose 

rot_stopped_vel: 0.05 # Angular velocity lower bound that 

determines if the robot should stop to avoid 

limit-cycles or locks 

trans_stopped_vel: 0.05 # Linear velocity lower bound 

that determines if the robot should stop to avoid limit-

cycles or locks 

# Visualization Parameters  

marker_lifetime: 1.0 # Lifetime of eband  

visualization markers 

# Trajectory Controller Parameters 

k_prop: 4.0 # Proportional gain of the PID controller 

k_damp: 3.5 # Damping gain of the PID controller  

k_int: 0.001 # I gain of the PID controller  

Ctrl_Rate: 10 # Control rate 

differential_drive: true # Denotes whether to use 

the differential drive mode 

# rotation_correction_threshold: 2.0 

# 

bubble_velocity_multiplier: 

2.0 disallow_hysteresis: 

true 

A.3 Scan_cliff_filter_tb3.yaml 

scan_filter_chain: 

#removes points outside of the specified bounds 

- name: angular_bounds 

type: laser_filters/LaserScanAngularBoundsFilter 

params: 

lower_angle: -3.124139361 #40(0.785398163), 
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45(0.785398163), 50 (0.872664626), 55(0.9599311) 

70(1.221730476), 75 (1.308996939), 80 (1.3962) 

upper_angle: 3.124139361 

- name: range_filter 

type: laser_filters/LaserScanRangeFilter 

params: 

use_message_range_limits: false # if not specified de-

faults to false 

lower_threshold: 0.05 # if not specified de-

faults to 0.0 

upper_threshold: 12.0 # if not specified de-

faults to 100000.0 

lower_replacement_value: -.inf # if not specified de-

faults to NaN 

upper_replacement_value: .inf # if not specified de-

faults to NaN 

A.4 cliff_detector_params_tb3.yaml 

#################### 

#Physical parameters  

#################### 

#[meters] Height from base_link  

lidar_height: 0.45 #1.0 

#[degrees] Lidar pitch (about y axis of base link)  

lidar_pitch: 15.0 #30.0 

#[degrees] Lidar resolution (about y axis of base link)  

lidar_resolution: 1.0 

################ 

#Failsafe params  

################ 

#[bool] whether to turn on failsafe. This will issue a 

/cmd_vel command that stops the robot 

# should more than a user-specified percentage of 

the lidar be obstructed. 

failsafe: false 

#[meters] ranges less than this distance is consid-

ered as an obstructed ray 

failsafe_threshold_dist: 0.2 

#[percentage] if the percentage of ranges with 

value less than 

#"failsafe_threshold_dist" is exceeded, then lidar 

is obstructed. 

failsafe_threshold_percentage: 0.4 

#[seconds] Time out from when the lidar is obstructed  

# before failsafe is activated 

failsafe_timeout: 2.0 

###################### 

#Cliff detector params 

###################### 

#[meters] Distance along the ray below the ground 

plane to detect as a cliff area 
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cliff_threshold_constant: 0.05 

############## 

#Segmentation  

############## 

# Minimum points required to comprise a segment 

of cliff points 

min_cliff_pts_in_seg: 3 
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Abbreviations 

AI Artificial intelligence 

CONOP Concept of operation 

FCPP Full coverage path planner 

ML Machine learning 

MSSPIX Maneuver Support, Sustainment, and Protection Inte-

gration Experiments 

RAS Robotics and autonomous systems 

TSP Traveling salesman problem 

UGV Unmanned ground vehicle 
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