

E
R

D
C

 T
R

-2
3

-1
3

UGV-Localization in 3D and Path Planning (U-L3AP)

Unmanned Ground Vehicle (UGV)

Full Coverage Planning with

Negative Obstacles

E
n

g
in

e
e

r
R

e
s

e
a

rc
h

 a
n

d

D
e

v
e

lo
p

m
e

n
t

C
e

n
te

r

Jin-Kyu Lee, Amir Naser, Osama Ennasr, Ahmet

Soylemezoglu, and Garry Glaspell

August 2023

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

The US Army Engineer Research and Development Center (ERDC) solves the

nation’s toughest engineering and environmental challenges. ERDC develops

innovative solutions in civil and military engineering, geospatial sciences, water

resources, and environmental sciences for the Army, the Department of Defense,

civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library

at https://erdclibrary.on.worldcat.org/discovery.

http://www.erdc.usace.army.mil/
https://erdclibrary.on.worldcat.org/discovery

UGV-Localization in 3D and Path Planning

(U-L3AP)

ERDC TR-23-13

August 2023

Unmanned Ground Vehicle (UGV)

Full Coverage Planning with

Negative Obstacles

Jin-Kyu Lee, Amir Naser, Osama Ennasr, and Garry Glaspell

US Army Engineer Research and Development Center (ERDC)

Geospatial Research Laboratory (GRL)

7701 Telegraph Road

Alexandria, VA 22315-3864

Ahmet Soylemezoglu

US Army Engineer Research and Development Center (ERDC)

Construction Engineering Research Laboratory (CERL)

2902 Newmark Drive

Champaign, IL 61822

Final Technical Report (TR)

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

Prepared for US Army Engineer Research and Development Center (ERDC)

3909 Halls Ferry Road

Vicksburg, MS 39180-6199

 Under FLEX-4 funding

ERDC TR-23-13 ii

Abstract

We explored approaches that offer full coverage path planning while

simultaneously avoiding negative obstacles. These approaches are spe-

cific to unmanned ground vehicles (UGVs), which need to constantly

interact with a traversable ground surface. We tested multiple poten-

tial solutions in simulation, and the results are presented herein. Full

coverage path planner (FCPP) approaches were evaluated based on

their ability to discretize their paths, use waypoints effectively, and be

easily integrated with our current robot platform. For negative obsta-

cles, we explored approaches that will integrate with our current navi-

gation stack. The preferred solution will allow for teleoperation,

waypoint navigation, and full autonomy while avoiding positive and

negative obstacles.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.

Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to

be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC TR-23-13 iii

Contents

Abstract .. ii

Figures .. iv

Preface ... v

1 Introduction .. 1

1.1 Background ... 1

1.2 Objectives .. 2

1.3 Approach ... 2

2 Full Coverage Planning .. 5

2.1 IPA Coverage Planning.. 5

2.2 Full Coverage Path Planner (FCPP) .. 7

3 Negative Obstacles ... 11

3.1 Grid Map .. 11

3.1.1 Elevation Layer.. 11

3.1.2 Traversability Layer .. 14

3.2 Cliff Detector ... 18

4 Future Work .. 25

5 Summary ... 28

References ... 29

Appendix: Launch Files .. 31

A.1 Simulated World and Robot Launch File ... 31

A.2 eband_local_ planner.yaml .. 32

A.3 Scan_cliff_filter_tb3.yaml .. 32

A.4 cliff_detector_params_tb3.yaml .. 33

Abbreviations ... 35

Report Documentation Page (SF 298) ... 36

ERDC TR-23-13 iv

Figures

1. Clearpath Robotics Obstacle World. .. 3

2. A 2D occupancy grid of the Obstacle World. ... 4

3. Full coverage boustrophedon algorithm. .. 5

4. Full coverage grid-based local energy minimization algorithm. ... 6

5. Full coverage Voronoi random field algorithm. ... 7

6. Full coverage backtracking spiral algorithm. .. 9

7. Converting a 2D image to 2.5D grid map and occupancy grid using the elevation

layer. (Top left image reproduced, with permission, from Fankhauser 2017.) 12

8. Elevation 2.5D grid map and occupancy grid identifying negative obstacles................... 14

9. The 2.5D slope (A), roughness (B), edge detection (C), and traversability (D) grid

maps.. 15

10. Inverted 2.5D traversability and occupancy grid. ... 16

11. The 2.5D traversability and occupancy grid. ... 17

12. Traversability 2.5D grid map and occupancy grid identifying negative obstacles. 18

13. Velodyne laser scan node (top) and default laser filters node (bottom). 21

14. Modified laser filters node detecting (top) and marking (bottom) a negative obstacle. .. 22

15. Full coverage planning of the Obstacle World (top), and path planning around

negative obstacles (bottom). ... 24

16. Conversion of a 2D image to 2.5D grid map for an outdoor environment. 26

17. Conversion of a 2D image to 2.5D grip map for an indoor environment. 27

ERDC TR-23-13 v

Preface

This study was conducted for the US Army Engineer Research and De-

velopment Center (ERDC) of the US Army Corps of Engineers

(USACE). It was funded by ERDC under FLEX-4.

The work was performed by the Data Representation Branch, Topography

Imagery and Geospatial Research Division of the ERDC Geospatial Re-

search Laboratory (GRL). At the time of publication, Mr. Vineet Gupta was

branch chief, Mr. Jeff Murphy was division chief, and Dr. Austin Davis was

the technical director of GRL. The deputy director of ERDC-GRL was Ms.

Valerie L. Carney, and the director was Mr. David R. Hibner. Work was

also performed by the Warfighter Engineering Branch, Operational Sci-

ence and Engineering Division of the ERDC Construction Engineering Re-

search Laboratory (CERL). At the time of publication, Mr. Jeff Burkhalter

was branch chief, Dr. George Calfas was division chief, and Mr. Jim Allen

was the technical direction of CERL. The deputy director of ERDC-CERL

was Ms. Michelle Hanson, and the director was Dr. Andrew Nelson.

The authors would like to acknowledge the following individuals for

their contributions to this project: Dr. Anton Netchaev, Mr. Steven

Bunkley, and Mr. Charles Ellison.

The commander of ERDC was COL Christian Patterson, and the direc-

tor was Dr. David W. Pittman.

This page intentionally left blank.

ERDC TR-23-13 1

1 Introduction

1.1 Background

In September of 2021, we demonstrated our robotic platform in the Ma-

neuver Support, Sustainment, and Protection Integration Experiments

(MSSPIX) 2022 hosted by the Army’s Maneuver Support and Sustainment

Capability Development Integration Directorates. Three soldiers were

trained to use the robotic platform over a three-day span. The Soldiers

learned to use manual navigation, semi-autonomous waypoint navigation,

and autonomous exploration to map tunnels and building interiors. The

team successfully demonstrated a platform-agnostic unmanned ground

vehicle (UGV) edge compute (millisecond low latency decisions with

onboard hardware) and sensor payload for surveying and mapping inte-

rior structures (including subterranean environments). Specifically, the

UGV was capable of three modes of operation without Soldiers entering a

potentially hazardous environment: teleoperation, waypoint navigation, or

autonomous mapping. Based on that experience and on Soldier feedback,

the team identified two aspects of navigation that needed improvement.

Initially, we assumed with limited battery capacity (i.e., approximately

3 hours), the main objective for autonomy was to cover as much ground as

possible in the shortest amount of time. Thus, we adopted an approach

based on frontier exploration. A frontier, in this context, is defined as a

boundary between an area that the robot has explored and an area that has

yet to be explored. Priority was given to the mathematically largest fron-

tiers. In context, this would provide an overall floorplan of a building in

relatively short order, but smaller rooms would not be explored thor-

oughly. Thus, if the concept of operation (CONOP) also involved identify-

ing an object of interest, this approach could potentially miss the object of

interest, especially if it was located in one of the smaller rooms. As a result,

the team investigated full coverage path planners (FCPPs) that can be used

to explore rooms thoroughly. One aspect of this report addresses using full

coverage planners.

Another issue that arose during the MSSPIX 22 demo was negative obsta-

cles. While the robot was quite capable of identifying and avoiding positive

obstacles, negative obstacles, such as descending stairs or a hole in the

ERDC TR-23-13 2

floor, were beyond its initial capability. Because these negative obstacles

were known before the demonstration, we were able to use virtual obsta-

cles to keep the robot from exploring these areas. However, an approach

must be developed to deal with negative obstacles, especially if prior

knowledge is unavailable. Thus, the second aspect of this report focuses on

identifying negative obstacles.

1.2 Objectives

This report addresses the focus areas established in the Army Multi-Do-

main Intelligence: FY21-22 S&T Focus Areas (Office of the Deputy Chief

of Staff 2020). Specifically, we feel this work addresses the statement,

“Wars will be fought at hyper speed and scale, dominated by technologies

such as robotics and autonomous systems (RAS), machine learning (ML),

and AI [artificial intelligence] capabilities, which are widely available,

packaged, and ready for use” (5). By incorporating full coverage planning

and the ability to detect negative obstacles, we met the objective of creat-

ing a more efficient autonomous systems.

1.3 Approach

Our approach involved running full coverage planners and negative obsta-

cle detection methods in simulation. To test both scenarios, we used the

Obstacle World from Clearpath Robotics (2021). The Obstacle World is a

virtually defined indoor world that serves as a confined area for the full

coverage planners, and the nonplanar floor allows for the simulated test-

ing of negative obstacle detection. Figure 1 shows the world as it appears in

the simulation environment. The negative obstacles that appear through-

out the world are labeled. The full launch file for loading the virtual envi-

ronment and robot can be found in 0, Section Appendix A. Several

parameters included in the launch file can be used to tweak the environ-

ment, including the starting position of the robot and the world scale. To

launch the world, we used the following node: Here a node is defined as a

process that performs computation. The node to launch the virtual envi-

ronment is as follows:

<node name="agriculture_world_spawner" pkg="gazebo_ros"

type="spawn_model" args="-urdf⎵-model⎵obstacle_geom

⎵-param⎵obstacle_geom⎵-x⎵0⎵-y⎵0⎵-z⎵0⎵-Y⎵0" />

The node to spawn the robot is as follows:

ERDC TR-23-13 3

<node name="spawn_urdf" pkg="gazebo_ros" type="

spawn_model" args="-urdf⎵-model⎵turtlebot3⎵-

x⎵$(arg⎵x) ⎵-y⎵$(arg⎵y) ⎵-z⎵$(arg z) ⎵-param⎵ro-
bot_description"

/>

Figure 1. Clearpath Robotics Obstacle World.

Our goal was to use the full coverage planner to thoroughly explore each

room while simultaneously using the negative obstacle detection node to

keep the robot from getting stuck. The full coverage planner requires an

occupancy grid to plan the route. Figure 2 shows the occupancy grid used

for path planning. Because the occupancy grid is typically trinary in na-

ture, space is typically labeled as occupied (black), free (white), and un-

known (gray). As a result, negative obstacles are not identifiable, and the

planned paths will traverse the nonplanar floor geometry. The negative ob-

stacles are approximately the same size as the wheel diameter, which

means that if the robot falls in, it will be unlikely to escape; thus, it will be

unable to complete its mission.

ERDC TR-23-13 4

Figure 2. A 2D occupancy grid of the Obstacle World.

ERDC TR-23-13 5

2 Full Coverage Planning

2.1 IPA Coverage Planning

The first package we looked at for full coverage planning was called

ipa_coverage_planning (Fraunhofer IPA 2016). The IPA coverage planner

contains several full coverage algorithms, including boustrophedon, grid-

based traveling salesman problem (TSP), neural-network-based, grid-

Based local energy minimization, contour line, convex sensor placement,

and Voronoi random field (Bormann et al. 2016). Each of these algorithms

have different weights for path lengths and rotations, which result in vari-

ous patterns of coverage. Out of that list, we chose to investigate the bou-

strophedon, grid-based local energy minimization, and Voronoi random

field algorithms based on open source availability. Each of these algo-

rithms was applied to the 2D occupancy grid shown in Figure 2. The bou-

strophedon algorithm is shown in Figure 3. While the boustrophedon

algorithm fully explores the entire region, it treats the occupancy grid as a

whole rather than as individual rooms. Specifically, paths planned along

the horizon are favored, and multiple trips across the entire building are

traversed before an individual room is explored.

Figure 3. Full coverage boustrophedon algorithm.

The full coverage grid-based local energy minimization algorithm is shown

in Figure 4. Compared to the boustrophedon algorithm, the grid-based

ERDC TR-23-13 6

local energy minimization algorithm appears to isolate patterns to individ-

ual rooms before exploring new areas. Even the large room is divided into

two sections. However, each path is backtracked, which is redundant and

unnecessary. In regard to the object detection scenario, however, this

methodology for exploration is preferable to the boustrophedon algorithm

because the rooms are isolated. Room isolation is favorable when using

multiple robots for exploration.

Figure 4. Full coverage grid-based local energy minimization algorithm.

Figure 5 shows the planned path using the Voronoi random field algo-

rithm. Similar to the grid-based local energy minimization algorithm, this

approach also seems to confine exploration to individual rooms before ex-

panding to new areas. Compared to the previous two algorithms, this ap-

proach also appears to have significantly fewer waypoints and does not

backtrack along the same path. However, when transitioning between ar-

eas, paths are planned through walls more frequently than in the afore-

mentioned approaches.

Of the three approaches we tested, the Voronoi random field algorithm ap-

peared to be the best, specifically in using waypoints and discretizing the

map. However, all the approaches in this section seemed to disregard walls

when transitioning to different areas. While outside the scope of this work,

adding a feasibility check would mitigate this issue. While the availability

of multiple full coverage algorithms is attractive, a fair amount of work is

ERDC TR-23-13 7

required to optimize search patterns to prevent transitions through walls.

Also, it appears that this approach does not integrate with move_base. For

ipa_coverage_planning to support move_base, the source code would have

to be extensively modified, which is outside the scope of this work. The

move_base package uses the navigation stack to move the robot to desired

positions and is the preferred method of locomotion for our physical robot.

Thus, we looked for alternative full-coverage approaches.

Figure 5. Full coverage Voronoi random field algorithm.

2.2 Full Coverage Path Planner (FCPP)

The other full coverage approach that we investigated was FCPP (Brodskiy

et al. 2004). This approach uses the backtracking spiral algorithm to plan

its path (Gonzalez et al. 2005). The steps required to clone and compile

FCPP are provided here:

Cd catkin_workspace/src

git clone https://github.com/nobleo/

full_coverage_path_planner.git

cd ../

catkin_make

FCPP integrates with move base flex (Magazino et al. 2018) as a global

path planner plugin. The following code demonstrates how to set the

global planner in move base flex to use the backtracking spiral

ERDC TR-23-13 8

algorithm. We discussed move_base_flex at length in our previous reports

(Glaspell et al. 2020; Christie et al. 2021a).

planners:

- name: ’SpiralSTC’

type: ’full_coverage_path_planner/SpiralSTC’

The default local planner for FCPP is tracking_pid, which can be set with

the code that follows. The tracking pid local planner is designed to implic-

itly follow the path defined by the global path planner. As a result, it is in-

capable of detouring around negative obstacles, such as a hole in the floor.

In testing, when the pid tracking local planner encountered a negative ob-

stacle, it just stopped in front of the obstacle.

controllers:

- name: ’tracking_pid’

type: ’tracking_pid/TrackingPidLocalPlanner’

The detection of negative obstacles is discussed at length in Section 3.

However, we require a local planner that can plan routes around both pos-

itive and negative obstacles. Two common path planners are elastic band

(Building-Wide Intelligence Project 2012) and timed elastic band (TU

Dortmund 2016). We have discussed both of these planners in previous re-

ports (Christie et al. 2021a; Glaspell et al. 2020). Typically, we use elastic

band in simulation and timed elastic band on the physical robot. This is

due, in part, to timed elastic band’s ability to avoid both static and dy-

namic obstacles that the physical robot would encounter in the real world.

Dynamic obstacles are less of an issue in simulation because most virtual

environments are static in nature. The code for setting the elastic band lo-

cal planner follows. The complete YAML file that sets the elastic band pa-

rameters is provided in 0, Section A.2.

controllers:

- name: ’EBandPlannerROS’

type: ’eband_local_planner/EBandPlannerROS’

To load the 2D occupancy grid from Figure 2, we used the node from the

grid server. The node to launch the grid server follows. We used the arg

declaration map to pass the location of the 2D occupancy grid to the grid

server node.

<arg name="map" default="/home/garry/Downloads/ tb3_obsta-

cle_map.yaml"/>

ERDC TR-23-13 9

<node name="grid_server" pkg="map_server"

type=" map_server" args="$(arg map)">

<param name="frame_id" value="map"/>

</node>

ROS uses messages to pass information between nodes. The FCPP package

subscribes to tf and tf_Static and publishes coverage_grid and

coverage_progress. It also uses the parameter tool_radius to discretize

the provided occupancy grid for full coverage planning. Figure 6 (top)

shows an example of the default tool_radius value of 0.3 m, and as a re-

sult, many paths are planned per room. For our testing, we set the value of

tool_radius to 0.65 m. The results of modifying the tool_radius parame-

ter are shown in the bottom of Figure 6. This new value provided a mini-

mum of two paths through each negative obstacle. While this value was

appropriate for testing the efficacy of our negative obstacle detection ap-

proaches, in a real-world scenario (to conserve battery), a value of 1.0 m or

higher is probably sufficient when looking for objects of interest.

Figure 6. Full coverage backtracking spiral algorithm.

ERDC TR-23-13 10

All subsequent tests in this report used the FCPP global planner and elas-

tic band local planner. Specifically, when compared to the IPA coverage

planner, none of the FCPP transitions between rooms bisected any walls.

At some point, it may be of interest to integrate the various coverage plan-

ners provided in the IPA coverage planner in the FCPP framework, but

that is outside the scope of this report. In short, the FCPP planner

achieved our goal of full coverage exploration. As a result, the sections that

follow focus on identifying and avoiding negative obstacles.

ERDC TR-23-13 11

3 Negative Obstacles

We programmed our robots to use three methods of navigation: teleopera-

tion, waypoints, or full autonomy. For teleoperation, we require an effi-

cient method to visualize negative obstacles so the operator can avoid

them. For waypoint and full autonomy, the robot needs its own method to

identify and path plan around the negative obstacles. Negative obstacles

are defined here as holes or cliffs that exist below the ground plane.

3.1 Grid Map

The first package we looked at to identify negative obstacles was grid_map

(ANYbotics 2016). The grid_map package was developed to create 2.5D

grid maps (Fankhauser and Hutter 2016). The grid_map package depends

on eigen. Eigen can be installed with the command sudo apt-get install

libeigen3-dev. The grid_map package can be installed from a repository

using the command sudo apt-get install ros-noetic-grid-map or can

be compiled from the source with the following commands:

cd catkin_ws/src

git clone https://github.com/anybotics/grid_map.git

cd ../

catkin_make

The grid_map package uses a layered approach to generate the 2.5D grid

maps. We initially considered using the elevation layer to identify negative

obstacles. To accomplish this, we leveraged grid map’s image_to_gridmap

node as a proof of concept. This node converts a 2D image to a 2.5D occu-

pancy grid. The image used is shown in the top left of Figure 7. This image

was loaded in the image_to_gridmap node using the image_publisher.py

script provided here:

<node pkg="grid_map_demos" type="image_publisher.py"

name="image_publisher" output="screen">

<param name="image_path" value="$(terrian.png" />

<param name="topic" value="˜image" />

</node>

3.1.1 Elevation Layer

With the image loaded, we used the following node to generate the 2.5D el-

evation grid map shown in the top-right portion of Figure 7. Note the

image_to_gridmap node interprets lighter colors to be higher in elevation

https://github.com/anybotics/grid_map.git

ERDC TR-23-13 12

and darker colors to be lower in elevation. The elevation layer does well in

interpreting various features, such as ramps and stairs. Thus, it should be

possible to use the 2.5D elevation map as a way for an operator to quickly

identify negative obstacles as well.

<node pkg="grid_map_demos" type="

image_to_gridmap_demo" name="image_to_gridmap_demo"

output="screen" />

Figure 7. Converting a 2D image to 2.5D grid map and occupancy grid using the

elevation layer. (Top left image reproduced, with permission, from Fankhauser 2017.)

Robots typically use an occupancy grid to identify and avoid obstacles. Ro-

bots also use occupancy grids for path planning. Therefore, we used the

grid_map_visualization node to convert our 2.5D grip map to an occu-

pancy grid. The resulting 2.5D occupancy grid is shown at the bottom of

Figure 7. The general assumption made when using the elevation layer to

generate 2.5D occupancy grids is that lower elevation is less costly for the

robot to traverse. Higher elevation incurs more cost and is avoided.

ERDC TR-23-13 13

<node pkg="grid_map_visualization" type="

grid_map_visualization" name="grid_map_visualization "

output="screen">

<rosparam command="load" file="/home/garry/

Downloads/tb3/elevation_mapping/costmap_2.yaml" />"

⎵⎵</node

⎵

For completeness, the referenced costmap_2.yaml file follows.

grid_map_topic: /grid_map_filter_demo/filtered_map

grid_map_visualizations:

– name: elevation_grid

type: occupancy_grid

params:

layer: elevation

data_min: -0.6

data_max: 0.6

– name: traversability_grid

type: occupancy_grid

params:

layer: traversability

data_min: 0.6 #original value -0.6

data_max: -0.6 #original value 0.6

Armed with the ability to generate 2.5D grid maps and occupancy grids,

we were ready to test this approach on the virtual world shown in Figure 1.

For testing, we installed the package elevation_mapping (ANYbotics

2019). Elevation mapping, built around the grid_map package, was de-

signed to use depth sensors to generate 2.5D grid maps (Fankhauser et al.

2014; Fankhauser et al. 2018). In our use case, we used a 3D lidar as the

input source. The elevation grid map generated in the Obstacle World is

shown in the left image of Figure 8. The elevation grid map does a good

job of identifying negative obstacles (pink squares), and an operator could

easily avoid them when teleoperating the robot. However, issues arise

when converting the 2.5D grid map to an occupancy grid, as shown in the

right image of Figure 8. With an elevation-based approach, lower elevation

is assigned less cost. As a result, the negative obstacle is lighter gray (i.e.,

lower cost), and the ground is darker gray (i.e., higher cost). If the negative

obstacle was significantly lower in elevation, the cost attributed to the

ground would be too high for the robot to even move. While effective for

teleoperation, this approach prevented us from using the waypoint or full

autonomy modes of operation. As a result, we returned to the grid_map

package and investigated some of the other negative obstacle layers.

ERDC TR-23-13 14

Figure 8. Elevation 2.5D grid map and occupancy grid identifying negative obstacles.

3.1.2 Traversability Layer

In addition to the elevation layer, grid maps also include slope, roughness,

and edge detection layers. We applied each of these layers to the terrain

image shown in Figure 7.

The slope layer was generated from the code that follows. When applied to

the terrain image, the slope grid map can be seen in Figure 9A.

– name: slope

type: gridMapFilters/MathExpressionFilter

params:

output_layer: slope

expression: acos(normal_vectors_z)

The roughness layer was generated from the code that follows, and the

roughness grid map is shown in Figure 9B.

– name: roughness

type: gridMapFilters/MathExpressionFilter

params:

output_layer: roughness

expression: abs(elevation_inpainted - elevation_smooth

ERDC TR-23-13 15

Figure 9. The 2.5D slope (A), roughness (B), edge detection (C), and traversability (D)

grid maps.

The edge detection layer was generated from the code that follows, and

the edge detection grid map is shown in Figure 9C.

- name: edge_detection

type: gridMapFilters/

SlidingWindowMathExpressionFilter

params:

input_layer: elevation_inpainted

output_layer: edges

expression: ’sumOfFinites

([0,-1,0;-1,5,-1;0,-1,0].*elevation_inpainted)’

compute_empty_cells: false

edge_handling: mean

window_size: 3

We set the traversability layer to be the average of the slope, roughness,

and edge detection layers. The traversability layer was generated from the

code that follows, and the traversability grid map is shown in Figure 9D.

- name: traversability

type: gridMapFilters/MathExpressionFilter

params:

output_layer: traversability

expression: ((slope + roughness + edges) / 3)

If we use the default values of −0.6 for data_min and 0.6 for data_max in

the aforementioned costmap_2.yaml file, all the traversability grid map

ERDC TR-23-13 16

features are negative, as shown in the top image of Figure 10. Because all

the features are negative, the resulting 2.5D cost map labels the ground as

an obstacle, and the robot is unable to move. This is shown in the bottom

image of Figure 10.

Figure 10. Inverted 2.5D traversability and occupancy grid.

The simple fix is to swap the data_min and data_max values as reflected in

the aforementioned costmap_2.yaml. Swapping these values results in the

2.5D traversability grid map shown in the top image of Figure 11. With

positive traversability map features, the resulting 2.5D occupancy grid

does not label the floor as an obstacle, and the robot is able to move freely.

ERDC TR-23-13 17

Figure 11. The 2.5D traversability and occupancy grid.

The primary differences between the 2.5D occupancy grid created from the

traversability layer (Figure 11) and the 2.5D occupancy grid created from

the elevation layer (Figure 7) are that a majority of the traversability occu-

pancy grid can be explored by the robot (light gray) and that the features

that could cause issues are outlined and marked with higher cost (dark

gray). The next step was to test the traversability layer on the virtual world

shown in Figure 1. The results can be seen in Figure 12. The left image in

Figure 12 is the 2.5D traversability grid map. It is important to note that

the negative obstacles are outlined (with a blue square), and an operator

could use the traversability grid map to avoid them while teleoperating the

robot. Moreover, the 2.5D traversability occupancy grid is shown in the

ERDC TR-23-13 18

right image of Figure 12. In contrast to the 2.5D occupancy grid created

from the elevation grid map, the 2.5D occupancy grid created from the tra-

versability layer does not inflate the cost of the ground, and the robot is

free to explore the map. As a result, we could use the traversability 2.5D

occupancy grid for both waypoint and fully autonomous navigation. Over-

all, the traversability approach effectively identified negative obstacles and

was compatible with the various navigation methods we typically use. Fu-

ture tests will involve implementing this approach on a physical robot.

Figure 12. Traversability 2.5D grid map and occupancy grid identifying negative obstacles.

3.2 Cliff Detector

Another potential negative obstacle that we could encounter is a cliff. The

term cliff is used rather loosely in this context and, in an urban environ-

ment, could take the form of a loading dock or a downward set of stairs. In

regard to the robot, a cliff is a negative obstacle that is difficult to identify

with ray tracing. The cliff detector approach we investigated can be found

on GitHub (JohnTGZ 2022a). This approach assumes a downward facing

2D lidar. Based on the lidar_height and lidar_pitch parameters, the

ERDC TR-23-13 19

assumed distance to the ground is calculated. The parameter

cliff_threshold_constant can be used to add a buffer to the calculated

ground distance, and this summed value (i.e., ground plus buffer) is added

to a lookup table. The lookup table contains values the sensor would com-

pare against. The readings from the lidar are compared to the look up ta-

ble, and if the range is longer than the value in the lookup table or returns

an infinite value, an obstacle is added to the cost map. However, with our

current robot payload, we used a horizontal 3D lidar, and not a downward

facing 2D lidar. Thus, we had to modify the cliff detector package to meet

our needs. The first step was to use the velodyne_laserscan_node to select

a single ring of our multibeam 3D lidar and to output that ring as a laser

scan topic (velodyne_scan). The node to select a single ring follows. In this

example, we specifically selected the first ring to identify potential cliffs.

<arg name="ring" default="0" />

<arg name="resolution" default="0.007" />

<node name="velodyne_laserscan_node" pkg=" velodyne_laserscan"

type="velodyne_laserscan_node">

<param name="ring" value="$(arg⎵ring)"/>

<param name="resolution" value="$(arg⎵resolution)"/>
<remap from="velodyne_points" to="/velodyne_points"/>

<remap from="scan" to="/velodyne_scan" />

</node>

The results of using this node are shown in the top image of Figure 13. The

white points are the full lidar point cloud, and the red ring is the laser scan

topic (velodyne_scan) from the velodyne_laserscan_node. The next step

was to pass the velodyne_scan topic from the velodyne_laserscan_node to

the laser_filters node. The node is shown here and serves two purposes.

First, it acts as an angular filter, and second, it labels lidar values as infi-

nite when they exceed an upper threshold. The referenced YAML file is

provided in 0, Section A.3.

<arg name="cliff_scan_topic_raw" default="/ velodyne_scan"/>

<arg name="cliff_scan_topic_filtered" default=" scan_cliff_fil-

tered"/>

<arg name="cliff_scan_topic_output" default=" scan_cliff"/>

<arg name="cliff_frame_id" default="cliff_lidar"/>

<node pkg="laser_filters" type="

scan_to_scan_filter_chain" name="scan_cliff_filter"

output="screen" >

<remap from="scan" to="$(arg⎵cliff_scan_topic_raw)"/>

<remap from="scan_filtered" to="$(arg⎵
cliff_scan_topic_filtered)" />

<rosparam command="load" file="/home/garry/
Downloads/tb3/neg_obs/config/scan_cliff_filter_tb3. yaml" />

</node>

ERDC TR-23-13 20

The output of the laser_filters node is the topic scan_cliff_filtered.

However, the pattern for scan_cliff_filtered is hard coded into the

cliff_detector.cpp file found on GitHub (JohnTGZ 2022b). The result-

ing pattern is shown in the bottom image of Figure 13. Again the red V-

shaped pattern is based off a downward pointing 2D lidar. However, for

our use case, we need it to be a circle. Thus, we modified the aforemen-

tioned line with the following code.

thresh_laser_scan.push_back(middle_laser_length/ cos((i *

lidar_resolution_) * DEG2RAD)*cos((i * lidar_resolution_) *

DEG2RAD) + cliff_thresh_constant_);

The results of modifying the code are shown in the top image of Figure 14.

Specifically, instead of a V pattern, we now have a circle, shown in green,

to compare our lidar values against, shown in orange. Specifically, the

green circle is the topic scan_cliff_filtered, and the orange circle is the

laser scan topic velodyne_scan. The red line, which denotes an obstacle, is

where the live lidar values (orange) exceed the value from the lookup table

(green) and is derived from the cliff_detector_node. The code for the

cliff_detector_node is provided here, and the referenced YAML file is

provided in 0, Section A.4.

<node pkg="cliff_detector" type="cliff_detector_node"

name="cliff_detector" output="screen" >

<remap from="scan" to="$(arg⎵cliff_scan_topic_filtered)" />
<remap from="scan_out" to="$(arg cliff_scan_topic_output)" />

<rosparam command="load" file="/home/garry/ Down-

loads/tb3/neg_obs/config/ cliff_detector_params_tb3.yaml" />

</node>

ERDC TR-23-13 21

Figure 13. Velodyne laser scan node (top) and default laser filters node (bottom).

ERDC TR-23-13 22

Figure 14. Modified laser filters node detecting (top) and marking (bottom) a

negative obstacle.

The output of the cliff_detector_node is the laser topic scan_cliff, and

we can pass this topic to move_base_flex 12. We discussed move_base_flex

at length in our previous reports (Glaspell et al. 2020; Christie et al.

ERDC TR-23-13 23

2021a). In short, to include the scan_cliff topic into move_base_flex, we

add the following plugins to the local_costmap.yaml file.

plugins:

– {name: obstacle_layer, type: "costmap_2d:: ObstacleLayer"}

– {name: neg_obstacle_layer, type: "costmap_2d:: Obsta-

cleLayer"}

– {name: inflation_layer, type: "costmap_2d:: InflationLayer"}

We define the plugins with the following code in the file called

common_costmap.yaml.

obstacle_layer:

track_unknown_space: true

inf_is_valid: true

obstacle_range: 7.5

raytrace_range: 8.0

observation_sources: point_cloud_lidar

point_cloud_lidar: {data_type: PointCloud2,

expected_update_rate: 0.5, topic: /segmenter/

points_nonground, marking: true, clearing: true,

max_obstacle_height: 1.0, min_obstacle_height: 0.0}

neg_obstacle_layer:

track_unknown_space: true

inf_is_valid: true

obstacle_range: 4.0

raytrace_range: 4.5

observation_sources: cliff_scan

cliff_scan: {data_type: LaserScan,expected_update_rate: 0.5,

topic: /scan_cliff, marking: true, clearing: false,

max_obstacle_height:9999, min_obstacle_height: -9999}

inflation_layer:

cost_scaling_factor: 10.0

inflation_radius: 3.0

While it is possible to have more than one observation source in an obsta-

cle plugin, this is not recommended with the cliff detection node. If com-

bined, the cliff detection node would mark the negative obstacle, and that

obstacle would be subsequently cleared by the point cloud source. This is

because both plugins are projected onto the same 2D plane, and the clear-

ing mechanism of the point cloud topic ray-traces through that negative

obstacle and removes it. By separating the obstacle nodes, we can mark

the negative obstacles with the cliff detection node so they will not be

cleared by the point cloud obstacle detection plugin. This is shown in the

bottom image of Figure 14. Specifically, the pink square represents the

negative obstacle being marked, but not cleared, on the cost map. The next

step was to test the code in the Obstacle World with FCPP.

ERDC TR-23-13 24

Figure 15 shows the result of integrating cliff detection with FCPP. The top

image shows the elastic band local planner (green circles) following the

global path generated by the backtracking spiral algorithm (green lines).

The robot traverses the global path until it reaches a negative obstacle. The

bottom image shows the negative obstacle being marked with the cliff de-

tector node, and the red lines indicate potential paths the local planner is

calculating, before converging on a solution, to avoid the negative obstacle.

This pattern of following the global path and avoiding negative obstacles

repeated until the robot finished exploring the entire area. We set a way-

point to bring the robot back to its starting location, but we really need to

add a return-to-home function when it is completed. The FCPP package

has a topic called coverage_progress that monitors coverage. Specifically,

the values range from 0 (none) to 1 (full). Thus, we could have the robot

return home when the coverage_progress was greater than 0.95.

Figure 15. Full coverage planning of the Obstacle World (top), and path planning around

negative obstacles (bottom).

ERDC TR-23-13 25

4 Future Work

In the future, we plan to continue investigating the image to grid map

node, specifically for muti-robot teaming applications. Point clouds can be

quite large, ranging from a few hundred megabytes to multiple terabytes.

Transferring these large files between robots can be inefficient and time-

consuming, especially in bandwidth-limited environments. However, 2D

grayscale images are typically only a few hundred kilobytes in size. Once

the robot receives the 2D image, image to grid map can generate the 2.5D

grid map. We can then use the 2.5D grid map to generate 2.5D traversabil-

ity occupancy grids for navigation. Figure 16 is an example of converting a

2D image to a 2.5D grid map.

To generate the 2D image, a point cloud was loaded into CloudCompare

(2009). We selected “Set top view” for a top-down perspective. Next, we

selected Edit → “colors” → “Height Ramp” (direction z) to generate the 2D

image that is false colored along the z-axis. Finally, we selected Display →

“Render to file” to generate the top image in Figure 16. To generate the

bottom image of Figure 16, we first used the same image_to_gridmap node

that was presented in Section 3.1.

While Figure 16 shows the conversion from 2D to 2.5D for an outdoor

scene, Figure 17 demonstrates the conversion process for the interior of a

building. The aforementioned steps were used to create the 2D grayscale

image shown at the top of Figure 17, and the resulting 2.5D grid map is

shown at the bottom.

Our next step will focus on streamlining the process to generate the top-

down grayscale images. While initial steps will focus on converting data

collected from UGVs or UAVs, we also plan to explore using digital eleva-

tion models as potential input sources. Finally, we plan to investigate

various methods for transferring the images to the UGV in degraded

communication scenarios.

ERDC TR-23-13 26

Figure 16. Conversion of a 2D image to 2.5D grid map for an outdoor environment.

ERDC TR-23-13 27

Figure 17. Conversion of a 2D image to 2.5D grip map for an indoor environment.

ERDC TR-23-13 28

5 Summary

We explored various ways to thoroughly explore rooms while simultane-

ously avoiding negative obstacles. We evaluated these methods in simu-

lated environments using an indoor virtual world with nonplanar floor

geometry. Of the approaches we evaluated, the FCPP package was the pre-

ferred solution. The FCPP discretized individual rooms, used waypoints ef-

ficiently, integrated with move base flex, and did not path plan through

walls. For detecting negative obstacles, using the traversability layer of

grid maps in conjunction with the cliff detector works with teleoperation,

waypoint navigation, and full autonomy. Subsequent reports will focus on

testing these approaches on a physical robot. We also plan to combine

these approaches with our low-visibility object identification approach

(Christie et al. 2021b) to test their efficacy in detecting objects of interest.

ERDC TR-23-13 29

References

ANYbotics. 2016. “Grid Map.” GitHub. https://github.com/ANYbotics/grid_map.

ANYbotics. 2019. “Elevation Mapping.” GitHub. http://github.com/ANYbotics

/elevation_mapping.

Bormann, R., F. Jordan, W. Li, J. Hampp, and M. Hägele. 2016. “Room Segmentation:
Survey, Implementation, and Analysis.” In 2016 IEEE International Conference
on Robotics and Automation (ICRA), May, 1019–1026.
https://doi.org/10.1109/ICRA.2016.7487234.

Brodskiy, Y., F. Schoenmakers, T. Clephas, J. Unkel, L. van Beek, and C. Lopez. 2004.
“Full Coverage Path Planner.” GitHub. https://github.com/nobleo

/full_coverage_path_planner.

Building-Wide Intelligence Project. 2012. “EBand Local Planner.” GitHub.

https://github.com/utexas-bwi/eband_local_planner.

Christie, B. A., O. Ennasr, and G. P. Glaspell. 2021a. Autonomous Navigation and
Mapping in a Simulated Environment. ERDC/GRL TR-21-5. Alexandria, VA: US
Army Engineer Research and Development Center, Geospatial Research
Laboratory. https://doi.org/10.21079/11681/42006.

Christie, B. A., O. Ennasr, and G. P. Glaspell. 2021b. ROS Integrated Object Detection for
SLAM in Unknown, Low-Visibility Environments. ERDC/GRL TR-21-6.
Alexandria, VA: US Army Engineer Research and Development Center,
Geospatial Research Laboratory. http://dx.doi.org/10.21079/11681/42385.

Clearpath Robotics. 2021. “CPR Obstacle Gazebo.” GitHub. https://github.com

/clearpathrobotics/cpr_gazebo.

CloudCompare. 2009. 3D Point Cloud and Mesh Processing V.2. [Software].
CloudCompare. https://www.cloudcompare.org/.

Fankhauser, P. 2017. “Updated Terrain for Filters Demo.” GitHub. https://github.com

/ANYbotics/grid_map/blob/master/grid_map_demos/data/terrain.png.

Fankhauser, P., M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart. 2014. “Robot-Centric

Elevation Mapping with Uncertainty Estimates.” Mobile Service Robotics 2014:
433–440. https://doi.org/10.1142/9789814623353_0051.

Fankhauser, P., M. Bloesch, and M. Hutter. 2018. “Probabilistic Terrain Mapping for
Mobile Robots with Uncertain Localization.” IEEE Robotics and Automation
Letters (RA-L) 3 (4): 3019–3026. https://doi.org/10.1109/LRA.2018.2849506.

http://github.com/ANYbotics
https://github.com/nobleo
https://github.com/utexas-bwi/eband_local_planner
https://github.com/
https://github.com/

ERDC TR-23-13 30

Fankhauser, P., and M. Hutter. 2016. “A Universal Grid Map Library: Implementation
and Use Case for Rough Terrain Navigation.” In Robot Operating System (ROS)–
The Complete Reference (Volume 1), edited by Anis Koubaa, Section 5.
https://doi.org/10.1007/978-3-319-26054-9 5. http://www.springer.com/de

/ book/9783319260525.

Fraunhofer IPA. 2016. “IPA Coverage Planning.” GitHub. https://github.com/ipa320

/ipa_coverage_planning.

Glaspell, G. P., S. R. Lessard, B. A. Christie, K. Jannak-Huang, N. C. Wilde, W. He, O.

Ennasr, et al. 2020. Optimized Low Size, Weight, Power and Cost (SWaP-C)
Payload for Mapping Interiors and Subterranean on an Unmanned Ground
Vehicle. ERDC/GRL TR-20-6. Alexandria, VA: US Army Engineer Research and
Development Center, Geospatial Research Laboratory. https://doi.org/10.21079

/11681/35878.

Gonzalez, E., O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara. 2005. “BSA: A Complete
Coverage Algorithm.” In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, 18–22 April, Barcelona, Spain, 2040–2044.
https://doi.org/10.1109/ROBOT.2005.1570413.

JohnTGZ. 2022a. “Negative-Obstacle Detection.” GitHub. https://github.com/JohnTGZ

/negative-obstacle-detection.

JohnTGZ. 2022b. “Negative-Obstacle-Detection Cliff Detector.” GitHub. https://github.com

/JohnTGZ/negative-obstacle-detection/blob/90959add8f3cc160af983f86dcd76643197ebeb1

/src/cliff_detector.cpp#L13.

Magazino, S. Pütz, and J. Santos Simón. 2018. “Move Base Flex.” GitHub.
https://github.com/magazino/move_base_flex.

Office of the Deputy Chief of Staff. 2020. Army Multi-Domain Intelligence: FY21-22 S
and T Focus Areas. AD1114490. Washington, DC: Department of the Army.
https://apps.dtic.mil/sti/pdfs/AD1114489.pdf.

TU Dortmund. 2016. “TEB Local Planner.” GitHub. https://github.com/rst-tu-dortmund

/teb_local_planner.

http://www.springer.com/de/
http://www.springer.com/de/
https://github.com/ipa320
https://doi.org/10.21079
https://doi.org/10.1109/ROBOT.2005.1570413
https://github.com/JohnTGZ
https://github.com/
https://apps.dtic.mil/sti/pdfs/AD1114489.pdf
https://github.com/rst-tu-dortmund

ERDC TR-23-13 31

Appendix: Launch Files

A.1 Simulated World and Robot Launch File

<launch>

<arg name="world_scale" default="3.0" />

<arg name="walls" default="true" />

<param name="obstacle_geom" command="$(find⎵xacro)/

xacro⎵’$(find⎵cpr_obstacle_gazebo)/urdf/

obstacle_geometry.urdf.xacro’⎵world_scale:=$(arg⎵wor

ld_scale) ⎵walls:=$(arg⎵walls)" />
<arg name="x" default="1.0"/>

<arg name="y" default="1.0"/>

<arg name="z" default="1.0"/>

<arg name="yaw" default="0.0" />

<arg name="use_sim_time" default="true" />

<arg name="gui" default="true" />

<arg name="headless" default="false" />

<arg name="world_name" default="$(find⎵
cpr_obstacle_gazebo)/worlds/actually_empty_world.

world" />

<include file="$(find⎵gazebo_ros)/launch/
empty_world.launch">

<arg name="debug" value="0" />

<arg name="gui" value="$(arg⎵gui)" />

<arg name="use_sim_time" value="$(arg⎵use_sim_time)" />

<arg name="headless" value="$(arg⎵headless)" />

<arg name="world_name" value="$(arg⎵world_name)"
/>

</include>

<node name="obstacle_world_spawner" pkg="gazebo_ros "

type="spawn_model" args="-urdf⎵-model⎵

obstacle_geom⎵-param⎵obstacle_geom⎵-x⎵0⎵-y⎵0⎵-z⎵0⎵-Y

⎵0" />
<!-- Load robot_description param for tf, rviz and ga-

zebo spawn. -->

<param name="robot_description" command="$(find⎵

xacro)/xacro⎵$(find⎵turtlebot3_description)/urdf/
turtlebot3_waffle_3d.urdf.xacro" />

<!-- Spawn turtlebot into gazebo based on

robot_description. -->

<node name="spawn_urdf" pkg="gazebo_ros" type="

spawn_model" args="-urdf⎵-model⎵turtlebot3⎵-x⎵$(arg⎵x)

⎵-y⎵$(arg⎵y) ⎵-z⎵$(arg⎵z) ⎵-param⎵robot_description"
/>

<!-- Publish turtlebot3 tf’s. ⎵-->

⎵⎵⎵⎵<node⎵pkg="robot_state_publisher"⎵type="

robot_state_publisher"⎵name="waffle_state_publisher"

⎵/>
</launch>

ERDC TR-23-13 32

A.2 eband_local_planner.yaml

EBandPlannerROS:

odom_topic: /odom

map_frame: map

Robot Configuration Parameters

max_vel_x: 0.26

min_vel_x: -0.26

max_vel_y: 0.0

min_vel_y: 0.0

The velocity when robot is moving in a straight line

max_vel_trans: 0.26

min_vel_trans: -0.26

max_vel_theta: 1.82

min_vel_theta: -1.82

acc_lim_x: 2.5

acc_lim_y: 0.0

acc_lim_theta: 1.1

Common Parameters

xy_goal_tolerance: 0.01 # Distance tolerance for

reaching the goal pose
yaw_goal_tolerance: 0.01 # Orientation tolerance for

reaching the desired goal pose

rot_stopped_vel: 0.05 # Angular velocity lower bound that

determines if the robot should stop to avoid

limit-cycles or locks

trans_stopped_vel: 0.05 # Linear velocity lower bound

that determines if the robot should stop to avoid limit-

cycles or locks

Visualization Parameters

marker_lifetime: 1.0 # Lifetime of eband

visualization markers

Trajectory Controller Parameters

k_prop: 4.0 # Proportional gain of the PID controller

k_damp: 3.5 # Damping gain of the PID controller

k_int: 0.001 # I gain of the PID controller

Ctrl_Rate: 10 # Control rate

differential_drive: true # Denotes whether to use

the differential drive mode

rotation_correction_threshold: 2.0

bubble_velocity_multiplier:

2.0 disallow_hysteresis:

true

A.3 Scan_cliff_filter_tb3.yaml

scan_filter_chain:

#removes points outside of the specified bounds

- name: angular_bounds

type: laser_filters/LaserScanAngularBoundsFilter

params:

lower_angle: -3.124139361 #40(0.785398163),

ERDC TR-23-13 33

45(0.785398163), 50 (0.872664626), 55(0.9599311)

70(1.221730476), 75 (1.308996939), 80 (1.3962)

upper_angle: 3.124139361

- name: range_filter

type: laser_filters/LaserScanRangeFilter

params:

use_message_range_limits: false # if not specified de-

faults to false

lower_threshold: 0.05 # if not specified de-

faults to 0.0

upper_threshold: 12.0 # if not specified de-

faults to 100000.0

lower_replacement_value: -.inf # if not specified de-

faults to NaN

upper_replacement_value: .inf # if not specified de-

faults to NaN

A.4 cliff_detector_params_tb3.yaml

####################

#Physical parameters

####################

#[meters] Height from base_link

lidar_height: 0.45 #1.0

#[degrees] Lidar pitch (about y axis of base link)

lidar_pitch: 15.0 #30.0

#[degrees] Lidar resolution (about y axis of base link)

lidar_resolution: 1.0

################

#Failsafe params

################

#[bool] whether to turn on failsafe. This will issue a

/cmd_vel command that stops the robot

should more than a user-specified percentage of

the lidar be obstructed.

failsafe: false

#[meters] ranges less than this distance is consid-

ered as an obstructed ray

failsafe_threshold_dist: 0.2

#[percentage] if the percentage of ranges with

value less than

#"failsafe_threshold_dist" is exceeded, then lidar

is obstructed.

failsafe_threshold_percentage: 0.4

#[seconds] Time out from when the lidar is obstructed

before failsafe is activated

failsafe_timeout: 2.0

######################

#Cliff detector params

######################

#[meters] Distance along the ray below the ground

plane to detect as a cliff area

ERDC TR-23-13 34

cliff_threshold_constant: 0.05

##############

#Segmentation

##############

Minimum points required to comprise a segment

of cliff points

min_cliff_pts_in_seg: 3

ERDC TR-23-13 35

Abbreviations

AI Artificial intelligence

CONOP Concept of operation

FCPP Full coverage path planner

ML Machine learning

MSSPIX Maneuver Support, Sustainment, and Protection Inte-

gration Experiments

RAS Robotics and autonomous systems

TSP Traveling salesman problem

UGV Unmanned ground vehicle

REPORT DOCUMENTATION PAGE
1. REPORT DATE

August 2023

2. REPORT TYPE

Final Technical Report (TR)

3. DATES COVERED

START DATE

FY21

END DATE

FY23

4. TITLE AND SUBTITLE

Unmanned Ground Vehicle (UGV) Full Coverage Planning with Negative Obstacles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Jin-Kyu Lee, Amir Naser, Osama Ennasr, Ahmet Soylemezoglu, and Garry Glaspell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Engineer Research and Development Center (ERDC)

Geospatial Research Laboratory (GRL)

7701 Telegraph Road

Alexandria, VA 22315-3864

See reverse

8. PERFORMING ORGANIZATION
REPORT NUMBER

ERDC TR-23-13

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Engineer Research and Development Center (ERDC)

3909 Halls Ferry Road

Vicksburg, MS 39180-6199

10. SPONSOR/MONITOR'S
ACRONYM(S)

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

13. SUPPLEMENTARY NOTES

Funding provided by FLEX-4 funds.

14. ABSTRACT

We explored approaches that offer full coverage path planning while simultaneously avoiding negative obstacles. These approaches

are specific to unmanned ground vehicles (UGVs), which need to constantly interact with a traversable ground surface. We tested

multiple potential solutions in simulation, and the results are presented herein. Full coverage path planner (FCPP) approaches were

evaluated based on their ability to discretize their paths, use waypoints effectively, and be easily integrated with our current robot

platform. For negative obstacles, we explored approaches that will integrate with our current navigation stack. The preferred solu-

tion will allow for teleoperation, waypoint navigation, and full autonomy while avoiding positive and negative obstacles.

15. SUBJECT TERMS

Autonomous robots--Control systems; Autonomous robots--Navigation; Military robots--Control systems; Military robots--Navigation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

SAR

18. NUMBER OF PAGES

45 a. REPORT

Unclassified

b. ABSTRACT

Unclassified

C. THIS PAGE

Unclassified

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Report Documentation Page (SF 298) STANDARD FORM 298 (REV. 5/2020)
PREVIOUS EDITION IS OBSOLETE. Prescribed by ANSI Std. Z39.18

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) (concluded)

US Army Engineer Research and Development Center (ERDC)

Construction Engineering Research Laboratory (CERL)

2902 Newmark Drive

Champaign, IL 61822

	Abstract
	Contents
	Figures
	Preface
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Approach

	2 Full Coverage Planning
	2.1 IPA Coverage Planning
	2.2 Full Coverage Path Planner (FCPP)

	3 Negative Obstacles
	3.1 Grid Map
	3.1.1 Elevation Layer
	3.1.2 Traversability Layer

	3.2 Cliff Detector

	4 Future Work
	5 Summary
	References
	Appendix: Launch Files
	Appendix A
	A.1 Simulated World and Robot Launch File
	A.2 eband_local_planner.yaml
	A.3 Scan_cliff_filter_tb3.yaml
	A.4 cliff_detector_params_tb3.yaml

	Abbreviations

