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ABSTRACT
LEO satellite-based navigation has gained much attention recently. Our earlier simulation study indicated that for signals
transmitted from LEO satellites, ionospheric scintillation introduces deeper and more frequent fades and much higher phase
dynamics compared to signals transmitted from MEO satellites (Morton et al., 2022). However, there has not been a study on the
impact of ionospheric scintillation on the performance of ground-based receiver signal tracking. This paper applies simulated
ionospheric plasma irregularity effect on GNSS-like L-band signals transmitted from LEO satellites to assess ground-based
receiver signal tracking performance. A physics-based, data-consistent ionosphere scintillation simulator presented by Xu et al.
(2020) is used to produce a phase screen model designed to generate realistic strong scintillation effects. The input parameters
are extracted from real GPS signal received by a ground station in Hong Kong during a strong ionospheric scintillation event. In
this paper, we simulate GPS L1 C/A signals transmitted from LEO orbit, traveling through the phase screen, and received by a
stationary receiver on the ground. Multiple scenarios have been simulated assuming phase screens generating different levels of
scintillation, LEO satellite orbit parameters, and transmission signal parameters such as amplitude and carrier phase. A total of
9 different space-to-time scale factors associated with these satellite and ionosphere phase screen configurations are considered.
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A conventional receiver architecture is implemented to track the simulated signals. Signal amplitude, carrier phase, and tracking
loop performances are analyzed. Both case studies and statistical analysis are presented. The impact of ionospheric plasma
irregularities on the signal and its tracking process are analyzed and compared with the same signal traveling through the same
irregularity, but from a GPS satellite in MEO orbit. Results show that the same ionospheric structure leads to lower C/N0, less
stable tracking loop, more loss-of-lock cases, and more cycle slips for the same signals transmitted from LEO than from MEO.
And the negative impact is especially serious with LEO signals having higher phase dynamics, as expected. The statistical
analysis of the tracking results provides a quantitative understanding of the level of degradation associated with LEO signal
tracking during scintillation. The findings in this study will provide insights into signal design and receiver signal processing
strategies for future LEO satellite-based PNT systems.

I. INTRODUCTION
LEO satellite-based navigation has been gaining popularity (Reid et al., 2020; Kassas et al., 2021a). Some systems are focused
on using communication/network signals transmitted from LEO satellites as signals-of-opportunity for navigation applications
(Benzerrouk et al., 2019; Kassas et al., 2021b; Khalife et al., 2020; Orabi et al., 2021). Others utilize dedicated LEO-based
navigation signals for GNSS augmentation (Ge et al., 2022; Li et al., 2019; Reid et al., 2018; Yi et al., 2021). All these
signals must travel through the ionosphere before reaching receivers on the ground. The ionosphere introduces group delay
in range measurements and advance in the carrier phase under quiet conditions, which can be corrected using dual frequency
measurements. The more challenging aspect of the ionosphere effect is caused by plasma irregularities which lead to signal
amplitude and carrier phase fluctuations, collectively referred to as ionospheric scintillation. The ionospheric scintillation effects
on GNSS signals have been well studied (Morton et al., 2020). For signals transmitted from LEO satellites, our earlier study
showed that ionospheric scintillation introduces deeper and more frequent fades and much higher phase dynamics compared to
signals transmitted from MEO satellites (Morton et al., 2022). However, there has not been a study on the impact of ionospheric
scintillation on the performance of ground-based receiver signal tracking.

This paper utilizes simulated ionospheric plasma irregularity effect on GNSS-like L-band signals transmitted from LEO satellites
to assess ground-based receiver signal tracking performance. First, a physics-based, data-consistent ionosphere scintillation
simulator presented in Jiao et al. (2018); Xu et al. (2020); Rino et al. (2018) is used to produce a phase screen model that
is capable of generating strong scintillation. The model generates an abstract statistical representation of the ionospheric
irregularities based on real GPS scintillation data collected by a ground-based receiver. We then simulate GPS L1 C/A signals
transmitted from several different LEO orbits and traveled through the same phase screen. Code and carrier tracking algorithms
are implemented to process the simulated received scintillation signal.

A brief summary of the scintillation simulator and simulation scenarios are presented in Section II. Section III describes the
scintillation signal generation and receiver tracking algorithms used in this study. A comparative assessment of the receiver
tracking results, including C/N0 distributions, cycle slips, and loss of lock for the LEO and MEO transmitted signals are
provided in Section IV. Section V summarizes the finding.

II. SCINTILLATION SIMULATOR AND SIMULATION SCENARIOS
Figure 1 illustrates the simplified scintillation signal generation and tracking process (detailed diagram and description are
given in Section III). Input parameters δA, δφ are scintillation-induced amplitude and carrier phase fluctuation generated by the
scintillation simulator (flow chart shown in Figure 2, model parameters defined in Morton et al. (2022)) based on the published
model presented in Xu et al. (2020). The simulator establishes the phase screen model based on ground-observed scintillation
indicators extracted from real GNSS scintillation signals, and propagation geometry defined by receiver platform dynamics. A
plane wave is then propagated through this phase screen realization to obtain the scintillation signal wave fields at the receiver,
i.e., δA, δφ. These fluctuation time series are modulated onto the GPS L1 C/A signals, which are simulated to be transmitted
from satellites on GPS/custom-defined LEO orbits. Note that the phase screen realization can be placed at desired altitudes hPS ,
resulting in different fluctuation time series. Therefore, together with LEO altitudes hTX , we are able to simulate scenarios
with different phase dynamics.

Figure 1: Diagram of scintillation signal generation and tracking process

.
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Figure 2: Flow chart of the ionosphere scintillation simulator presented in Xu et al. (2020)

The baseline simulation scenarios (Scenario 1∼4) are the combination of those two sets of parameters: Phase screen altitude at
hPS = 300/500 km and LEO satellite altitude at hTX = 550/800 km. Scenario 0 is a reproduction of the real GPS scintillation
signal used in the scintillation simulator in Figure 2. The scheme is illustrated in Figure 3 and was described in detail in Morton
et al. (2022). To describe and compare the phase dynamics in each scenario, we compute the decorrelation time τ0 and list it in
Table 1. It indicates how fast the signal fluctuates and smaller values mean higher phase dynamics. We selected 9 representative
τ0 values. For each value, we generate a 500-second scintillation signal carrier phase and amplitude fluctuation time series.
The highest and lowest τ0 values are marked in red and the corresponding sub-scenario are highlighted (highest/lowest is for
0 ∼ 300s instead of 500s to align with the LEO max and min scenarios in Morton et al. (2022)). Since LEO satellites move
across much of the sky, the change in both elevation angle and phase dynamics is more significant than the GPS satellite. The
variation of elevation and decorrelation time is presented in Figure 4. Places where the τ0 of each sub-scenario are selected are
tagged in each scenario.

Figure 3: (a) Scintillation simulation configuration. (b) Sky plot of GPS satellite and LEO satellites at 550 and 800km altitude during the 
500-second interval

III. SIGNAL GENERATION AND RECEIVER TRACKING ALGORITHM
Figure 5 presents the scintillation signal generation and tracking process in detail. The simulator first generates correlation 
values directly based on scintillation-induced amplitude and carrier phase fluctuation time series δA, δφ, GPS/LEO satellite 
orbits, baseline C/N0 (30 ∼ 70 dB-Hz), and coherent integration time T . This method (shown on the right side of Figure 
5) follows the same principle as IF signal simulation but has a much lower computation and storage burden (which makes 
large-scale repeating simulations possible).

The rest of the tracking process basically follows a conventional GNSS receiver architecture. The code and carrier tracking 
loops are realized by a 2nd-order delay lock loop (DLL) and a 2nd/3rd-order phase lock loop (PLL) (for GPS/LEO scenario), 
respectively. The carrier tracking is initialized by a 1st/2nd-order frequency lock loop (FLL) (for GPS/LEO scenario). In each 
lock loop, correlation values are fed into a discriminator, which determines the current tracking error and refines local estimates. 
Both code and carrier tracking are implemented with a Kalman filter (KF) for noise suppression.

For the analysis of tracking results, we first calculate lock detectors (results in Subsection IV.1), which indicates the status 
of each tracking loop, and estimate C/N0 (Subsection IV.2) based on correlation values. Cycle slips (Subsection IV.3) and 
loss-of-lock occurrences (Subsection IV.4) are then detected using the carrier phase estimate, lock detectors, and C/N0 estimate.

3
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Table 1: Simulation scenarios

Scenario hPS (km) hTX (km) ρF /veff range (s) τ0 range (s) Sub-scenario Elevation (deg) τ0

0 350 MEO [1.17, 1.19] [0.79, 0.81] 0.b 44 0.8

1 300 800 [0.24, 0.47] [0.16, 0.32]

1.a 44 0.16

1.b 70 0.19

1.c 31 0.32

2 300 550 [0.16, 0.43] [0.11, 0.3]

2.a 44 0.12

2.b 70 0.14

2.c 18 0.3

3 500 800 [0.2, 0.3] [0.14, 0.21]
3.b 70 0.14

3.c 31 0.21

4 500 550 [0.07, 0.14] [0.05, 0.1] 4.b 70 0.05

Figure 4: Satellite elevation (top), and decorrelation time τ0 (bottom) of 5 scenarios duration the 500-second interval

The simulation for each scintillation scenario is repeated 120 times for statistical analysis, and different correlation noise values
are generated for each simulation run.

Figure 5: Detailed diagram of scintillation signal generation and tracking process

.
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IV. RESULTS AND ANALYSIS
1. Scintillation Signal Tracking Lock Indicator
Three lock detectors are implemented to indicate the tracking condition of DLL, PLL, and FLL based on correlation values
(Mongrédien et al., 2006). The use of the PLL or FLL is dependent on the carrier frequency tracking status as indicated by the
FLL lock detector. Measurements from the three lock detectors are averaged over the 500-second interval and the 120 repeating
simulations to obtain each loop’s state for each scenario and under different C/N0 conditions. The results are presented in
Figure 6. Note that a higher detector value indicates a healthier tracking state. All three subplots show that the tracking loops
(especially the PLL and FLL) are in a less healthy state under weaker signal conditions (∼ 30 dB-Hz). The tracking quality
improves as C/N0 increases from 30 to 40 dB-Hz. The best performance comes from signals transmitted by a GPS satellite in
MEO (0.b). The worst case is associated with LEO signals having maximum signal dynamics (4.b).

Figure 6: Average DLL, PLL, and FLL lock detector values for each simulation scenario and C/N0 values

2. C/N0 Distribution
C/N0 is an indicator of receiver tracking performance. For each simulation scenario, the signal transmitted from the LEO
satellite is set to reach the receiver with a baseline C/N0 value at 30∼70 dB-Hz. The C/N0 is estimated by the receiver at a
1-second interval using the variance summing method (VSM) (Sharawi et al., 2007). The estimated C/N0 deviates from the
baseline C/N0 due to amplitude scintillation, loss-of-lock, tracking error, and C/N0 estimate error.

The distributions of the estimated C/N0 for each scenario as a function of its corresponding baseline C/N0 are presented in
Figure 7. For all scenarios, there are bimodal distributions at 30 dB-Hz and unimodal for C/N0 at 40∼70 dB-Hz, indicating
that loss-of-lock is prevalent at 30 dB-Hz. The statistical analysis of loss-of-lock at different C/N0 conditions will be given in
subsection IV.4. The shift of distribution peaks towards the left in the LEO scenarios shows that LEO signal tracking is less
robust compared to GPS signal when the signal is weak.

3. Cycle Slips
Cycle slip detection is performed on the carrier tracking results, and the cycle slip probability at different times and C/N0 is
calculated from repeat simulations. The time series of carrier phase tracking error in sub-scenario 0.b (GPS), 1.c (LEO min),
and 4.b (LEO max) at C/N0 of 36 and 54 dB-Hz is first presented in Figure 8, where cycle slip is highlighted. Results show
that higher phase dynamics and lower C/N0 lead to more frequent cycle slips. While shorter coherent integration time can
theoretically reduce the scintillation effect on carrier tracking loops, it causes more frequent and large cycle slips due to tracking
loop instability. Statistical cycle slip results in all 9 scenarios are attached in the Appendix.

We counted the total number of cycle slips in all simulation scenarios. The probability of cycle slip occurrence is shown
in Figure 9. Figure 9 (a) and (c) present the probability of cycle slip at different C/N0 and phase rate disturbance Δφ/Δt,
respectively, while Figure 9 (b) is a heat map that captures the cycle slip dependence on both parameters. Figure 9 (a) shows that
cycle slip is more frequent as C/N0 decreases and peak occurrence is at ∼32 dB-Hz. Below 32 dB-Hz, cycle slip becomes less
frequent when loss-of-lock dominates (explained in the next subsection) and the PLL becomes unstable (see Figure 6). Figure
9 (b) shows the number of cycle slips increases as the phase rate disturbance strengthens.

.
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Figure 7: Distributions of receiver estimated C/N0 dependence on set C/N0

Figure 8: Carrier phase tracking error in sub-scenario 0.b (GPS), 1.c (LEO min), and 4.b (LEO max) at C/N0 of 36 and 54 dB-Hz

4. Loss-of-lock
The average number of loss-of-lock during the 500-second interval is calculated for all scenarios. The results are displayed in
Figure 10. Clearly, the GPS satellite signal (0.b) is much less likely to lose lock than the LEO satellite transmitted signals (1.a
∼ 4.b). Among the LEO scenarios, the loss-of-lock probability decreases rapidly as C/N0 increases from 30 to 40 dB-Hz, and
approaches zero once C/N0 is greater than 40 dB-Hz. Between 35 and 40 dB-Hz, the scenarios (such as 4.b) with higher phase
dynamics have a higher loss-of-lock probability.

We also count the total number of loss-of-lock from all 9 LEO scenarios and present the results in Figure 11. Figure 11 (a) and
(c) present the probability of loss-of-lock at different C/N0 and phase rate disturbance Δφ/Δt, respectively, while Figure 11 (b)

.
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Figure 9: Cycle slip probability at different phase rate disturbance and C/N0 values

Figure 10: Average number of loss-of-lock during the 500-s interval as function of C/N0 for each simulation scenario

is the heat map that combines the loss-of-lock dependence on both C/N0 and phase rate disturbance. Note that the loss-of-lock 
probability in (c) is calculated from C/N0 < 40 dB-Hz since loss-of-lock seldom occurred for C/N0 > 40 dB-Hz. Figure 11 
(c) does not show a strong correlation between the loss-of-lock probability and phase rate disturbance.

Figure 11: Loss-of-lock probability at different phase rate disturbance and C/N0

.
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V. CONCLUSIONS
This paper is based on the study of ionospheric scintillation effects on the signal transmitted from LEO satellites by Morton et al.
(2022) and focuses on the receiver tracking process of such signals. Multiple scenarios are simulated where the GPS L1 signal
propagates from an LEO satellite, traverses a phase screen, and reaches a ground receiver. Two LEO satellite orbits and two
phase screen altitudes are simulated for strong but not severe scintillation scenarios defined by a real GNSS scintillation signal.
A total of 9 different phase dynamics associated with these satellite and ionosphere phase screen configurations are considered.
A conventional DLL/PLL/FLL receiver architecture is implemented to track the simulated signals. The impact of ionospheric
plasma irregularities on the signal and its tracking process are analyzed statistically and compared with the same signal traveling
through the same irregularity, but from a GPS satellite in the MEO orbit. Results show that scintillation effect on the received
signal includes amplitude degradation (as shown in Figure 7) and phase disturbance (Figure 8), which impact receiver tracking
algorithms in slightly different ways. Cycle slips are strongly correlated with both C/N0 and phase rate disturbance (Figure 9),
whereas Loss of lock is strongly correlated with C/N0 but exhibits little or no dependence on phase rate disturbance (Figure
11).
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A. CYCLE SLIP PROBABILITY IN ALL SCENARIOS
The cycle slip probability in all 9 scenarios is shown in Figure 12 using heat maps, together with corresponding phase rate
disturbance. In the bottom plot, all epochs with over 40% probability of cycle slip are highlighted to reveal their correlation
with phase rate disturbance. In each highlighted area, an impulse of phase rate disturbance can be spotted, which indicates that
the cycle slip is likely triggered by extreme phase rate disturbance.

Figure 12: Cycle slip probability at different times and C/N0 (top) calculated from repeat simulations and corresponding phase rate 
disturbance (bottom)
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