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Abstract

A long-standing challenge for simulation and experiment has been the accurate calculation of

activation energies and activation volumes via Arrhenius analyses which typically require rate con-

stants or dynamical timescales to be resolved over a wide-range of temperatures and pressures to

high accuracy. Unfortunately, in some systems timescales can be non-Arrhenius; in others, the

system can undergo fundamental changes with temperature (e.g. phase transitions, changing solu-

bility). In this thesis, an extension of fluctuation theory from statistical mechanics is developed that

allows for the direct calculation of derivatives of dynamical timescales with respect to temperature

and pressure, from simulations at a single temperature and pressure. This allows for the direct

calculation of activation energies and volumes without requiring the problematic temperature and

pressure ranges involved in the traditional Arrhenius approach. Furthermore, these approaches

allow for the decomposition of the activation energy into contributions from various molecular

interactions to gain deeper mechanistic insight that is otherwise unavailable. Applications to a

wide-range of dynamical timescales in liquid water (diffusion, reorientation, hydrogen bond ex-

changes, and spectral diffusion) are presented. We furthermore demonstrate the ability of these

techniques to study water under supercooling and water under pressure, demonstrating that these

derivatives can be used to predict the dependence of liquid structure and dynamical timescales

with respect to pressure and temperature. We furthermore demonstrate that this method can be

used to connect liquid structure and the observed dynamics in liquid water. Finally, we demon-

strate that these approaches can be applied to other systems to glean useful, otherwise unobtainable

information.
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Epigraphs

“And so, does the destination matter? Or is it the path we take? I declare that no accomplishment

has substance nearly as great as the road used to achieve it. We are not creatures of destinations.

It is the journey that shapes us. Our callused feet, our backs strong from carrying the weight of

our travels, our eyes open with the fresh delight of experiences lived.”

— Brandon Sanderson, The Way of Kings

“The steady state of disks is full."

— Ken Thompson
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Chapter 1

Introduction and Overview: Activation Energies and Beyond

The activation energy for a thermal reaction rate constant, k(T ), defined as

Ea =−
∂ lnk(T )

∂β
, (1.1)

where β = 1/kBT , is one of the most fundamental characteristics of the underlying chemical pro-

cess. It is most often interpreted in relation to the Arrhenius expression for the rate constant,14–17

k(T ) = Ae−Ea/kBT , (1.2)

where A is the Arrhenius prefactor, or frequency factor, which is assumed to be temperature in-

dependent. This empirical relationship between the rate constant and temperature gives rise to

the standard approach for determining the activation energy: one constructs an Arrhenius plot of

lnk(T ) versus 1/T and the slope is then −Ea/kB. The resulting Ea is frequently related to the

barrier for the reaction, which can be valuable for gaining insight into the reaction mechanism.

There are important limitations to obtaining the activation energy by an Arrhenius analysis.

The requirement that k be measured or calculated over a range of temperatures cannot be met in

some cases. For example, near a phase transition an increase or decrease in temperature can lead

to a change in k that is due to the phase change rather than the barrier in the state of interest.

Proteins and other biomolecules that undergo folding/unfolding transitions represent a special case

Adapted with the permission of Zeke A. Piskulich, Oluwaseun O. Mesele, and Ward H. Thompson and the Amer-
ican Chemical Society from J. Phys. Chem. A 123, 7185-7194 (2019).13
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of this problem in which only a limited temperature range is available for an Arrhenius analysis.

This constraint competes with the requirement that the temperature range must also be sufficiently

broad that changes in k are large enough to be resolved by the experimental or simulation approach.

Activation energies are relevant for many timescales other than chemical reaction rate con-

stants and the conflicts inherent in choosing an appropriate temperature range can be particularly

prominent in such cases. Diffusion coefficients, reorientation times, viscosity, and dielectric relax-

ation times are only a few examples of timescales that can be described by an Arrhenius equation

analogous to Eq. 1.2. Because the underlying processes do not involve changes in chemical bond-

ing, they typically have smaller activation energies and thus depend more weakly on temperature.

Moreover, the interpretation of the activation energy is more challenging in such cases, for which

a clear reaction coordinate and barrier are not readily identifiable.

In this Introduction, we briefly discuss the approaches developed within this thesis for avoid-

ing an Arrhenius analysis by direct calculation of the activation energy from simulations at a single

temperature. In general terms, these methods focus on calculation of the analytical derivative of

an arbitrary dynamical timescale with respect to temperature, in contrast to the numerical deriva-

tive obtained in an Arrhenius analysis. Conceptually, the approach is essentially the fluctuation

theory of statistical mechanics applied to dynamics. As such, it permits not only comptutational

advantages, but new physical insight that is otherwise inaccessible.

Nearly a century ago, Tolman developed, based on a statistical mechanical analysis, an alter-

native interpretation of the activation energy as the difference in the average energy of reacting

molecules minus the average energy of reactant molecules,18

Ea = 〈E〉reacting−〈E〉r, (1.3)

This idea was further developed by Truhlar19 in terms of the reactive cross sections of gas phase

collision theory which improved upon an approximation in Tolman’s approach. Note that the focus

of Tolman’s interpretation is on the energy the reacting species must have to overcome the barrier
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rather than the height of the barrier that must be overcome. This is a different perspective than

is often used in thinking about activation energies and it opens up new possibilities for physical

insight.20–22 In particular, it indicates that the activation energy can be decomposed into contribu-

tions due to the system interactions (vide infra). A given component is then the average energy of

the reacting species, relative to that of the reactants, associated with the specific interaction. The

contribution to the activation energy is then the measure of how effective additional energy in this

interaction is for speeding up the dynamics of interest.

The remainder of this Introduction is organized as follows. We first introduce the Tolman in-

terpretation of activation energy and the fluctuation theory for dynamics approach using simple

derivations; the implications for obtaining new mechanistic insight using this method are dis-

cussed. Several examples of applications of this fluctuation theory, many of which will be dis-

cussed in greater detail in later chapters, are presented to illustrate the generality and flexibility of

the method. Prospects for moving beyond the calculation of activation energies are then introduced

in terms of both non-Arrhenius behavior and derivatives of dynamical timescales with respect to

other thermodynamic variables.

1.1 Theory

1.1.1 Interpretations of the Activation Energy

The Tolman interpretation of the activation energy, discussed above and expressed in Eq. 1.3, is

most easily summarized by considering the thermal reaction rate constant written in terms of the

cumulative reaction probability, N(E); see, e.g., Ref. 20. In brief, quantum mechanically N(E) is

the sum over all state-to-state reaction probabilities at a fixed total energy,23

N(E) = ∑
nr,np

Pnr,np(E), (1.4)
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where nr and np represent the full set of reactant and product quantum numbers. The classical

N(E) can be analogously defined. The reaction rate constant is given by

k(T ) =
1

2π}Qr(T )

ˆ
∞

0
N(E)e−βE dE, (1.5)

where Qr(T ) is the reactant partition function. Then it is straightforward to see that the activation

energy is

Ea =

´
∞

0 N(E)E e−βE dE´
∞

0 N(E)e−βE dE
+

1
Qr

∂Qr

∂β
. (1.6)

The second term can easily be identified as the negative of the average reactant energy, −〈E〉r. If

we recognize

Preacting(E) =
N(E)e−βE´

∞

0 N(E)e−βE dE
, (1.7)

as the normalized distribution for the probability of reacting with a total energy E, then we can see

that the first term in Eq. 1.6 is the average energy of species that react:

〈E〉reacting =

ˆ
∞

0
E Preacting(E)dE, (1.8)

such that the activation energy is given by Eq. 1.3, as originally obtained by Tolman.18

It is useful to compare this to the activation energy one obtains from transition state theory24,25

(TST) in which the rate constant is approximated as

kT ST (T ) =
kBT

h
Q‡

Qr
e−βE‡

, (1.9)

where Q‡ and E‡ are the transition state internal partition function and electronic energy, respec-

tively. The activation energy is then given as

ET ST
a = E‡ + 〈E〉int,‡ + kBT −〈E〉r, (1.10)

where 〈E〉int,‡ = −∂ lnQ‡/∂β is the average internal (rotational and vibrational) energy of the
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transition state structure or “activated complex." Comparing this result with Eq. 1.3 indicates that

within TST the average energy of reacting species is 〈E〉T ST
reacting = E‡ + 〈E〉int,‡ + kBT . That is,

〈E〉T ST
reacting is the electronic barrier height plus the average thermal internal energy of the transition

state and kBT associated with kinetic energy along the reaction coordinate.

If we note that the exact rate constant can be written as

k(T ) = κ(T )kT ST (T ), (1.11)

where κ(T ) is the transmission coefficient, then it is straightforward to see that

Ea = ET ST
a +Ea,κ . (1.12)

Here, Ea,κ =−∂ lnκ/∂β is the contribution to the activation energy from the temperature depen-

dence of the transmission coefficient. Since κ(T ) corrects all sins of the TST approximation, it

can include, for example, contributions from both transition state recrossing and quantum mechan-

ical tunneling. Moreover, it is important to note that, like kT ST , κ(T ) depends on the choice of

the transition state dividing surface that separates the reactants and products. This is evident from

Eq. 1.11 because the exact (measurable) rate constant, k(T ), does not depend on any definition of a

transition state while kT ST (T ) naturally does. Consequently, both ET ST
a and Ea,κ are not obtainable

from measurements because they depend on the choice of the dividing surface separating reactants

and products, while Ea does not.

The above results lead to some of the commonly invoked intepretations of the activation energy

that differ from that of Tolman and must be applied with care. For example, the activation energy

is often loosely considered to represent the barrier height for the reaction. This is a reasonable

extension of Eq. 1.3 because the energy of reacting species above that of reactants is related to the

barrier height that must be surmounted to react. However, this equivalence should not be taken too

literally; for example, as we show below, the average energy of the reacting species, 〈E〉reacting,

and the reactants, 〈E〉r, can be decomposed into various energy components and thus so can the
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activation energy, in a way that does not make sense for the barrier height. That is, the activation

energy is a measure of the energy required to surmount the barrier and not just the electronic (or

even thermal) energy of the barrier.

1.1.2 Fluctuation Theory for Dynamics

1.1.2.1 Derivation

Fluctuation theory has been used to great effect in understanding equilibrium statistical thermody-

namics,26–28 but only recently has it been shown that the same ideas can be extended to understand

chemical dynamics. A prototypical example of fluctuation theory is the relation between the heat

capacity and energy fluctuations. Namely, the average energy of a system in the canonical ensem-

ble is given by

〈E〉=−∂ lnQ(N,V,T )
∂β

, (1.13)

where Q is the partition function. Then, the heat capacity, CV , is obtained by taking the temperature

derivative of 〈E〉 and can be shown to be related to the fluctuations in the energy,26

CV =

(
∂ 〈E〉
∂T

)
N,V

=
1

kBT 2 [〈E
2〉−〈E〉2] = 〈δE2〉

kBT
, (1.14)

where δE = E−〈E〉 is the fluctuation of the system energy from its equilibrium average.

This framework for connecting thermodynamic properties, particularly those that are related to

derivatives of averages with respect to thermodynamic variables, can be straightforwardly gener-

alized to dynamical properties. To see this, consider some property f (t) = f (p,q, t) that depends

on the system momenta (p) and coordinates (q). Here, we assume a classical system, though a

quantum mechanical version of the following result is obtainable in a completely analogous way.
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Figure 1.1: Schematic illustration of the fluctuation theory for dynamics. An MD simulation in
the canonical ensemble (left) exhibits a distribution of total energies with fluctuations, δH, about
the average value (center). Higher energies lead to faster dynamics, such as diffusion (right), while
smaller energies lead so slower dynamics. The change in the dynamical timescale, e.g., diffusion
coefficient, with the energy is measured by the activation energy.

The average of the property f in the canonical ensemble can then be written as

〈 f (t)〉 =
1

QhF

ˆ ˆ
dpdqe−βH(p,q) f (p,q, t),

=
1
Q

Tr[e−βH f (t)], (1.15)

where F is the number of degrees-of-freedom, Q is the canonical partition function, and the second

equality defines the trace, Tr, as an average over phase space. Then, because only Q and the

Boltzmann weight depend on temperature (note the similarity to Eq. 1.5),

∂ 〈 f (t)〉
∂β

= − 1
Q

∂Q
∂β
〈 f (t)〉− 1

Q
Tr[e−βH H(0) f (t)]

= − 1
Q

Tr[e−βH
δH(0) f (t)]

= −〈δH(0) f (t)〉, (1.16)

where δH(0) = H(0)−〈H〉. This result has a simple physical interpretation as discussed in the

following section and illustrated in Fig. 1.1. We can also note that if f (t) = δH(0) = δE(0) then

this result is the same as Eq. 1.14 for the heat capacity.

If f (t) is chosen to be a dynamical variable, the resulting derivative in Eq. 1.16 gives the
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temperature dependence of the corresponding transport coefficient or dynamical timescale. In one

general case, f (t) can represent a time-correlation function (TCF), C(t) = 〈A(0)B(t)〉, where A

and B are two functions of phase space coordinates. Typically, a dynamical constant of interest

can be obtained from the time decay or integral of the TCF; several examples are given below.

The result in Eq. 1.16 gives the temperature (or, equivalently, β ) derivative of the entire TCF as
∂C(t)

∂β
= −〈δH(0)A(0)B(t)〉. In this regard, the fluctuation theory applied to dynamics is quite

powerful as it provides more than just an activation energy for a single timescale.

1.1.2.2 Mechanistic Insight

One of the advantages of this fluctuation theory approach is that it can provide physical insight

that is not readily available from other methods. For example, the temperature (β ) derivative of

the average time-dependent property in Eq. 1.16 involves fluctuations in the full, system energy,

δH(0). The interpretation of this, illustrated in Fig. 1.1, is straightforward: the derivative is a

measure of how the dynamics characterized by 〈 f (t)〉 are accelerated or retarded when there is

more (δH > 0) or less (δH < 0) energy available than average.

The total system energy can also be decomposed into additive components in an almost endless

number of ways to provide mechanistic insight. That is, if H = ∑α Hα , then

∂ 〈 f (t)〉
∂β

=−∑
α

〈δHα(0) f (t)〉. (1.17)

Then each term has the interpretation of the contribution of the Hα energy to the change in 〈 f (t)〉

with β . Namely, it is a measure of how the dynamics of 〈 f (t)〉 are modified when there is more

(δHα > 0) or less (δHα < 0) of the Hα energy component available relative its average value.29

In the simplest case, one can write the total Hamiltonian in many classical simulations as

H = KE+VLJ +VCoul +Vintra, where KE, VLJ , VCoul , and Vintra are the kinetic energy and Lennard-

Jones, Coulombic, and intramolecular potential energy terms, respectively. Then, for example,

−〈δVCoul(0) f (t)〉 is the contribution to the β derivative of 〈 f (t)〉 that is associated with the
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Coulombic interactions. If 〈 f (t)〉 is related to a dynamical timescale (e.g., rate constant, reori-

entation time), this provides a way to determine the contributions of the different energetic terms

in the system to the activation energy associated with the timescale. In the context of Tolman’s

interpretation of the activation energy given in Eq. 1.3, this means one can determine, for example,

Ea,Coul = 〈E〉reacting,Coul−〈E〉r,Coul , which is the average Coulombic energy of reacting molecules

minus the average Coulombic energy of reactant molecules. Because there are a multitude of ways

to additively divide the contributions to the total Hamiltonian, the mechanistic information that can

be obtained by this approach is considerable.

1.1.2.3 Other Ensembles

Fluctuation theory can also be applied in ensembles beyond the canonical one. For example, the

activation energy for a dynamical process occurring at constant pressure, i.e., in the isothermal-

isobaric or NPT ensemble, can be obtained as well. In this case, the average of a dynamical

property, f , is given by

〈 f (t)〉p =
1
∆

Tr[e−β (H+pV ) f (t)], (1.18)

where ∆(N, p,T ) is the isotherm-isobaric ensemble partition function. Then, it is straightforward

to show that the derivative of the average f (t) at constant pressure is

∂ 〈 f (t)〉p
∂β

= − 1
∆

Tr[e−β (H+pV ) (δH(0)+ pδV (0)) f (t)],

= −〈δH(0) f (t)〉p− p〈δV (0) f (t)〉p. (1.19)

As will be shown below, the second term is related to the activation volume for the process while

the first term is analogous to Eq. 1.16 but evaluated at constant pressure instead of constant vol-

ume. The difference between the constant volume and constant pressure activation energy has not

received a great deal of attention, but both have been measured in some key cases, e.g., for the

diffusion coefficient of water.1,3,4,30
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1.2 Activation Energies

To illustrate the potential of this fluctuation theory for dynamics and detail the implementation,

we consider some specific examples. In particular, we discuss the theoretical framework for many

different dynamical timescales that are frequently of interest and present basic examples of appli-

cations to a number of properties.

We have implemented Eq. 1.16 in multiple ways, the key feature of which is that the averages

must be evaluated in in an ensemble with constant T where fluctuations in the system energy,

δH, are present. In principle, this means that a single MD simulation where the temperature

is maintained with a thermostat can be used to evaluate activation energies. While this can be

straightforwardly implemented,31 it is approximate because the thermostat affects the dynamics. In

many cases, this approach can be sufficient to determine a reasonable activation energy. However,

this issue can be avoided entirely by running a thermostatted trajectory at a temperature T to

generate initial conditions for subsequent short, constant energy, NV E, trajectories from which the

dynamics and activation energies are obtained. Each short trajectory has its own fixed energy and

hence fluctuation from the average of all the trajectories, δH. This approach has no effect from the

thermostat (as long as it provides the correct distribution of energies) and has the advantage that

the short trajectories are independent and can be run in an embarrassingly parallel fashion. Except

where otherwise noted, the data presented here were obtained using this approach.

1.2.1 Reaction Rate Constant

A common approach to calculating the rate constant for a chemical reaction is through reactive

flux TCFs,32–34 such as

k(T ) = lim
t→long

〈Fs(0)P(t)〉. (1.20)

Here, Fs = δ [s(0)−s‡]vs(0) is the flux through the transition state dividing surface defined in terms

of the reaction coordinate s with velocity vs. The δ -function dictates that trajectories start at time

t = 0 at the transition state defined by s = s‡ and P(t) is the characteristic function that is equal to
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1 for reactive trajectories, i.e., those that start as reactants in the past (−t) and end as products in the

future (t), and 0 for non-reactive trajectories. For example, P(t) = Θ[s(t)− s‡], where Θ(x) is the

Heaviside step function, is a common choice for evaluating the characteristic function. The exact

classical rate constant is obtained when the trajectories are propagated to a time t long enough that

all transition state recrossing has been completed.

The activation energy for the rate constant, Eq. 1.1, is then obtained using Eq. 1.16 as

Ea =

lim
t→long

〈δH(0)Fs(0)P(t)〉

lim
t ′→long

〈Fs(0)P(t ′)〉
. (1.21)

Such a result was first shown by Dellago and Bolhuis,35 and has been implemented via transition

path sampling simulations in a several cases.36–41

Mesele and Thompson demonstrated that if this result is compared with the Tolman expression

for the activation energy, Eq. 1.3, while noting that in this case of a chemical reaction δH =

H−〈E〉r, it leads to the result

〈E〉reacting =

lim
t→long

〈H(0)Fs(0)P(t)〉

lim
t ′→long

〈Fs(0)P(t ′)〉
, (1.22)

for the average energy of the reacting species, which is equivalent to Eq. 1.8.31

1.2.2 Diffusion Coefficient

The diffusion coefficient, D, is typically calculated from the mean-squared displacement, MSD(t)=

〈|~r(t)−~r(0)|2〉, which is a measure of the distance traveled by a molecules in time t. Specifically,

the diffusion coefficient is obtained as

D(T ) = lim
t→∞

MSD(t)
6t

, (1.23)
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for motion in three dimensions. Thus, in this case f (t) = |~r(t)−~r(0)|2 and Eq. 1.16 leads to

Ea,D = −∂ lnD
∂β

=
lim
t→∞
〈δH(0) |~r(t)−~r(0)|2〉

lim
t→∞
〈|~r(t)−~r(0)|2〉

=
lim
t→∞

MSDH(t)

lim
t→∞

MSD(t)
, (1.24)

where MSDH(t), defined by the last equality, is the mean-squared displacement weighted by the

energy fluctuations.
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Figure 1.2: Bottom: The TCFs MSD(t) (black line) and MSDH(t) (red line) are plotted versus
time for the SPC/E water model at 298 K obtained from 2,500 NV E trajectories. Top: The ratio
MSDH(t)/MSD(t) (red line) is plotted as a function of time. A fit of this ratio between t = 15−
20 ps to a constant value is also shown (blue dashed line). Note: MSD(t) is in units of Å2/ps,
MSDH(t) in kcal/mol × Å2/ps.

In practice, Eq. 1.24 is most accurately evaluated by separately fitting MSDH(t) and MSD(t)

each to a line at longer times and then taking the value of the ratio of the slopes. In many cases,
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however, the activation energy can be obtained from the ratio of the correlation functions directly

at long times. This is illustrated in Fig. 1.2 where the mean-squared displacements (weighted

and unweighted) and their ratio are shown for the SPC/E water model42 at 298.15 K. From the

data presented in Fig. 1.2, the activation energy for water diffusion is found to be Ea,D = 3.48±

0.16 kcal/mol, in excellent agreement with Ea,D = 3.49±0.20 kcal/mol derived from an Arrhenius

analysis.
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Figure 1.3: The contributions to the diffusion TCF MSDH(t) shown in Fig. 1.2 associated with the
kinetic energy (red line), Lennard-Jones potential energy (violet line), and Coulombic potential
energy (blue line) are plotted versus time along with the total (black line).

As mentioned in the above section the fluctuation theory for dynamics offers new opportunities

for insights into the mechanisms of diffusion by allowing for a decomposition of activation energies

into various energetic contributions. In Fig. 1.3 we present the decomposition of the activation

energy for the kinetic, Lennard-Jones, and electrostatic energy components with values of 1.1, -

0.8, and 3.2 kcal/mol, respectively. This indicates that electrostatic interactions are the dominant

contribution to the diffusion activation energy.
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These results are indicative of the central role of hydrogen-bond (H-bond) exchanges in water

diffusion, which are primarily governed by the electrostatic interactions. In the context of the Tol-

man interpretation of activation energies, this indicates that higher Coulombic interaction energy

accelerates water diffusion, presumably by destabilizing the water H-bonds. In contrast, increasing

the Lennard-Jones energy leads to slower diffusion. This competition between the Lennard-Jones

and Coulombic contributions to the activation energy will be explored further throughout the first

part of this thesis. Furthermore, keeping in mind the Tolman interpretation of activation energies,

this indicates that the water molecules with higher kinetic or electrostatic energies will diffuse

more quickly on average than those that have larger Lennard-Jones energies.

1.2.3 Reorientational Timescales

Reorientational dynamics, as measured by infrared pump-probe anisotropy and spin-echo NMR,

are characterized by the reorientation time correlation function, C2(t) = 〈P2[~e(0) ·~e(t)]〉. This TCF

acts as a measure of the change in the orientation of a particular molecular axis, described by

the unit vector ~e, in time t. Here, P2 denotes the second Legendre polynomial which weights

the dynamics in accord with the IR spectroscopy and NMR signals. In this case then, f (t) =

P2[~e(0) ·~e(t)] and thus from Eq. 1.16 we find that,

∂C2(t)
∂β

=−C2,H(t) =−〈δH(0)P2 [~e(t) ·~e(0)]〉 . (1.25)

For water reorientational dynamics we choose~e to be along each OH bond. The OH reorientation

dynamics exhibit three timescales: 1) an inertial one (25 fs) associated with water reorienting

before it feels any other interactions, 2) a librational one (0.5 ps) associated with water rotations

within a particular H-bond, and 3) one associated with H-bond exchange dynamics (∼3 ps). It is

the last of these which is accessible to IR pump-probe anisotropy measurements.

These timescales can be extracted from the C2 correlation function by fitting to a tri-exponential

14



0 2 4 6 8 10
Time (ps)

10-1

100

C
2(t)

0 0.05 0.1
Time (ps)

0.7

0.8

0.9

1.0

C
2(t)

a

0 5 10 15 20 25 30
Time (ps)

0.0

0.2

0.4

0.6

0.8

1.0

C
2(t)

0.0

0.5

1.0

1.5

2.0

2.5

〈τ
2〉 (

ps
)

b

Figure 1.4: OH reorientational correlation function, C2(t), (black) is shown as a function of time
along with a triexponential fit (red), Eq. (1.26). a: C2(t) is shown on a semi-log scale and the
short-time decay is shown in the inset. b: C2(t) is shown on a linear scale along with its integral
(blue, right axis) which equals the average reorientational time, 〈τ2〉, at long times. Results are
from 50,000 NV E trajectories with the TIP4P/2005 water model at 298.15 K and 1 bar.

function,

C2(t) = ∑
α

Aαe−t/τα = ∑
α

Aαe−kα t , (1.26)

where α = inertial, librational, or 2 (associated with H-bond rearrangements) and Aα represents

the amplitude (or importance) of the α reorientation timescale, τα = 1/kα . The reorientational

TCF, from simulations using the TIP4P/2005 water model,5 are shown in Fig. 1.4a along with the

fit which yields τiner = 13 fs, τlib = 0.455 ps, and τ2 = 3.2 ps. NMR spin-echo experiments cannot
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access the individual timescales but instead measure the average reorientation time,43

〈τ2〉=
ˆ

∞

0
C2(t)dt. (1.27)

For water, the integrated reorientation time is 2.2 ps for the TIP4P/2005 water model. Figure 1.4b

shows both C2(t) and its time integral used to calculate this value.

The activation energies and temperature dependence of the amplitudes can be obtained by

fitting the derivative TCF, C2,H(t), to the derivative of Eq. 1.26,

∂C2(t)
∂β

= ∑
α

[
∂Aα

∂β
−Aα

∂kα

∂β
t
]

e−kα t . (1.28)

using the amplitudes and timescales obtained from fitting C2(t) itself. Both the derivative TCF,

C2,H(t), and its fit using this equation are shown in Fig. 1.5. From this, the activation energy of

each reorientation timescale is calculated as,

Ea,τα
=− 1

kα

∂kα

∂β
, (1.29)

Note that the activation energies for τiner and τlib are merely effective ones that describe the tem-

perature dependence locally, as these timescales do not exhibit Arrhenius behavior.

The activation energy corresponding to the average reorientation time, 〈τ2〉, accessed by NMR

is given by

Ea,〈τ2〉 =
1
〈τ2〉

ˆ
∞

0

∂C2(t)
∂β

. (1.30)

We will show in Chapter 3 that there is a quantitative and qualitative difference between the pump-

prove activation energy, Ea,τ2 = 4.28± 0.10 kcal/mol, and the NMR activation energy, Ea,〈τ2〉 =

4.58±0.11 kcal/mol.44 This difference is associated with the change in the amplitude, A2, which

enters into the 〈τ2〉 activation energy.

As in the case of diffusion, the activation energies associated with OH reorientation in water

can be decomposed into specific contributions from various components of the total energy. An
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Figure 1.5: The weighted reorientation correlation function C2,H(t) (black) corresponding to
Fig. 1.4 is shown along with its contributions from the Lennard-Jones potential energy (indigo),
electrostatic potential energy (green), and kinetic energy (red). Fits for each correlation function
are included as blue dashed lines.

example is shown in Fig. 1.5, where the weighted correlation functions for the kinetic, Lennard-

Jones, and electrostatic energies are presented, corresponding to activation energy contributions of

1.14, -1.31, and 4.38 kcal/mol, respectively. As with diffusion, it is clear that the most important

contribution to the activation energy comes from Coulombic interactions. Indeed, the results of

this decomposition are in close accord with those from diffusion, reflecting the fact that H-bond

exchanges are the key event in both the rotational and translational dynamics of water.

1.2.4 Transport Coefficients

Many important physical quantities may be calculated from the class of time correlation functions

obtained as Green-Kubo relations. In a general context, a particular frequency-dependent transport
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coefficient can be expressed as a Fourier transform of the appropriate TCF,45

σ(ω) =

ˆ
∞

0
e−iωt 〈Ȧ(0) Ḃ(t)〉dt. (1.31)

Frequently, only the zero frequency (ω = 0) value is of interest and then σ is simply the integral

of the TCF. (Note the similarity to the average reorientation time, Eq. 1.27.) The generality of

the fluctuation theory approach as expressed in Eq. 1.16 means that it can be straightforwardly

extended to transport coefficients. Specifically, one obtains

Ea,σ (ω) = − 1
σ(ω)

∂σ(ω)

∂β

=

´
∞

0 e−iωt 〈δH(0) Ȧ(0) Ḃ(t)〉dt´
∞

0 e−iωt 〈Ȧ(0) Ḃ(t)〉dt
, (1.32)

for the frequency-dependent activation energy, which can be evaluated from simulations at a single

temperature.

This expression is sufficiently general that it can be applied to properties including viscosity,

conductivity, dielectric relaxation, and even spectroscopy. Indeed, Morita and co-workers have

developed similar approaches to calculating the dependence of different vibrational spectra on

temperature and other variables.46–49 In the case of a number of the transport coefficients, e.g.,

viscosity, which has been recently studied by our group,50 the key difference with the diffusion

and reorientational dynamics examples discussed above is that they involve quantities that are

global. That is, the quantities A and B in the TCF depend on the full system configuration and are

not obtained individually for each molecule. This means that the relevant TCF can require more

averaging to converge, though this is in no way prohibitive.

1.2.5 Quantum Dynamics

The fluctuation theory for dynamics approach described above is completely general in that it can

be applied to not only classical but also quantum mechanical, semiclassical, or mixed quantum-
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classical dynamics. Here we briefly consider the application to quantum dynamics. Consider a

general quantum mechanical time correlation function,

C(t) = 〈Â(0) B̂(t)〉= 1
Q

Tr[e−β Ĥ Â B̂(t)], (1.33)

where B̂(t) = eiĤt/}B̂e−iĤt/}, Q is the quantum mechanical partition function, and Tr is a quantum

mechanical trace. Then, just as in the classical case, it is straightforward to show that the derivative

with respect to β is given by

∂C(t)
∂β

=
1
Q

Tr[e−β Ĥ
δ Ĥ Â B̂(t)], (1.34)

where δ Ĥ = Ĥ−〈Ĥ〉.

The thermal rate constant for a chemical reaction can be considered as a special example us-

ing the results of Miller, Schwartz, and Tromp.23 They derived several equivalent forms for the

formally exact quantum mechanical rate constant, including in terms of the flux-flux TCF,

kQM(T ) =
ˆ

∞

0
C f f (t)dt =

ˆ
∞

0
〈F̂s(0) F̂s(t)〉dt, (1.35)

where F̂s = i[Ĥ,θ(ŝ−s‡)]/} is the symmetrized flux operator at the transition state dividing surface

located at s‡. Then, using Eq. 1.34 the activation energy is given by

Ea,QM =

´
∞

0 〈δ Ĥ(0) F̂s(0) F̂s(t)〉dt´
∞

0 〈F̂s(0) F̂s(t)〉dt
. (1.36)

Note that Ea,QM can be evaluated from the calculation of kQM itself by one additional multiplica-

tion of the Hamiltonian. Our group has demonstrated the implementation (and accuracy) of this

direct calculation of the activation energy for the simple one-dimensional Eckart barrier.31 Similar

activation energy expressions31 can be obtained for each of the various TCFs that can be used to

obtain the rate constant.23
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1.2.6 Advanced Decompositions

Simple decompositions of energy into contributions from different molecular interactions as has

been described above are not the limit of this fluctuation theory approach. Indeed, in liquids that

are made up of a heterogeneous mixture of components, more interesting decompositions can be

undertaken. One example of such a system where more interesting decompositions is possible

are carbon dioxide (CO2) expanded electrolytes (CXEs) (for which the standard decomposition of

energies will be discussed in detail in Chapter 14 of this thesis). In this system, the liquid phase is a

mixture of CO2, acetonitrile (MeCN), lithium (Li+), and perchlorate (ClO4
– ). In this system, each

of the components of the activation energy that have been described thus far can be subdivided

further, either by species for the kinetic contribution, or by interacting pair for the Lennard-Jones

and Coulombic interactions.

Figure 1.6: A deeper decomposition of the activation energies for CO2 diffusion in CXEs. Contri-
butions from solvent interactions are included in orange, contributions from electrolyte interactions
are included in green. The sum of these contributions are the total potential energy contribution
the activation energy (purple). The sum of the potential and kinetic (red) energy equal the total
(black).

In Figure 1.6 we have presented an example of a deeper decomposition of the activation ener-
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gies for CO2 diffusion in the above described CXE at a pressure of 50 bar. In particular, we have

subdivided the activation energy by overall potential energy contributions from specific interac-

tions. Our results demonstrate a dichotomy in the potential energy contributions to the activation

energy where MeCN electrolyte interactions lead to a raised activation energy, but electrolyte elec-

trolyte interactions lead to a lowered activation energy. In Chapter 15 we will demonstrate that

the CO2 activation energy does not change with electrolyte concentration, and will provide an

entropic argument based on preferential solvation. It is very likely that these more deeply de-

composed activation energy contributions could provide additional information about how these

individual components shift while the total activation energy is maintained. Unfortunately, such

deeper decompositions require significantly more computational power and averaging the specific

fluctuations being examined are correlated with smaller subsections of the system.

1.3 Beyond Activation Energies

1.3.1 Non-Arrhenius Behavior

Thus far our discussion has focused on the temperature dependence of different dynamical quan-

tities in the context of the activation energy. Another key focus of this thesis is to consider the

situation where the activation energy is not sufficient to describe the the change in dynamics with

temperature, i.e., when it is itself temperature dependent. Indeed, a number of dynamical pro-

cesses display strong non-Arrhenius behavior, e.g., dynamics governed by low barriers in liquids

or reaction rate constants that have a significant contribution from quantum mechanical tunnel-

ing. For example, liquid water displays significantly non-Arrhenius behavior in both reorientation

dynamics51,52 and diffusion,1,3,53–56 from the deeply supercooled regime up to the boiling point.

The fluctuation theory for dynamics straightforwardly addresses non-Arrhenius behavior be-

cause it determines the analytical temperature derivatives completely locally at a single temper-

ature, e.g., at 298.15 K. In other words, it does not depend on any numerical derivative approx-

imation such as that implicit in an Arrhenius analysis, which can be sensitive to the choice of
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Figure 1.7: The second-derivative reorientational TCF, C2,δH2(t), is shown (red line) for SPC/E
water at 298 K from 30,000 NV E trajectories along with a fit based on Eq. 1.26 (dashed blue line);
C2(t) is shown for comparison (black line).

temperatures. Moreover, the approach is not limited to the first derivative and higher derivatives

can also be calculated. For example, for reorientational dynamics it can be shown that taking the

derivative of Eq. 1.25 gives

∂ 2C2(t)
∂β 2 = 〈[δH(0)2−〈δH2〉]P2 [~e(t) ·~e(0)]〉 (1.37)

≡ C2,δH2(t),

which is the first measure of non-Arrhenius behavior. This is analogous to an expression for the

temperature derivative of the activation energy developed by Truhlar and Kohen in the context of

non-Arrhenius enzyme kinetics.57

An example of this non-Arrhenius TCF is shown in Fig. 1.7, where C2,δH2(t) is plotted as a

function of time for OH reorientation in water at 298 K. These results were obtained using the

same approach described in Ref. 58 with 30,000 short NV E trajectories. The expected behavior
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of C2,δH2(t) is obtained by taking the second derivative with respect to β of the fitting function

for C2(t) itself, Eq. 1.26. This fit is also presented in Fig. 1.7 and provides an excellent repre-

sentation of the calculated TCF. The integral of C2,δH2(t) is directly related to the non-Arrhenius

behavior of the integrated reorientation time, Eq. 1.27, namely ∂Ea,〈τ2〉/∂β . The SPC/E model

gives ∂Ea,〈τ2〉/∂β = 4.81 (kcal/mol)2 at room temperature, compared to 7.66 (kcal/mol)2 obtained

by fitting the measured 〈τ2〉 values of Ludwig et al.51 This is reasonable agreement, but the dif-

ference is indicative of the shortcomings of the SPC/E model in terms of describing the water

reorientational dynamics over a broader range of temperatures.5

1.3.2 Activation Volumes

Furthermore, this thesis will demonstrate that the fluctuation theory for dynamics can be extended

to derivatives with respect to other thermodynamic variables.37,59 For example, in the iosthermal-

isobaric ensemble the average of the dynamical quantity f (t), given in Eq. 1.18, can be differenti-

ated with respect to pressure to give

∂ 〈 f (t)〉
∂ p

=−β 〈δV (0) f (t)〉N pT (1.38)

where δV (0) =V (0)−〈V 〉N pT . Such derivatives are related to the activation volume, which for a

rate constant k is given by

∆V ‡ =−RT
∂ lnk
∂ p

. (1.39)

This measure of the pressure dependence of the rate constant is important in many practical situa-

tions of high-pressure chemistry but also interesting from a mechanistic viewpoint.60,61 The typical

interpretation of ∆V ‡ is as a measure of relative size of the transition state and reactant structures.

However, Ladanyi and Hynes showed that this perspective is only complete in condensed phases

if it includes the surrounding solvent molecules and their arrangement (or packing) around the

transition state and reactants.62

The fluctuation theory for dynamics offers an improved method for calculating activation vol-
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umes from MD simulations. The typical approach involves calculation of k over a large pressure

range (often spanning thousands of bar) to resolve the comparatively modest differences with pres-

sure, which are then used in an Arrhenius analysis to calculate a single activation volume.61–64 This

assumes that ∆V ‡ is p-independent, which is not true in some key cases, such as water diffusion.

Alternatively, one can use simulations to estimate the volumes directly,65 or calculate k at many

pressures and fit the global pressure dependence, which can then be used to determine ∆V ‡.

As an example of the fluctuation theory approach, consider the pressure dependence of the

diffusion coefficient. From Eq. 1.38 it can be seen that the pressure derivative of the mean-squared

displacement can be written as

∆V ‡
D = −∂ lnD

∂ p
=

lim
t→∞
〈δV (0) |~r(t)−~r(0)|2〉

lim
t→∞
〈|~r(t)−~r(0)|2〉

=
lim
t→∞

MSDV (t)

lim
t→∞

MSD(t)
, (1.40)

where MSDV (t) ≡ 〈δV (0) |~r(t)−~r(0)|2〉N pT in analogy to MSDH(t) obtained in deriving the ac-

tivation energy. Indeed, this result is reminiscent of Eq. 1.24 and the interpretation is analogous.

Namely, the activation volume is a measure of how the diffusion speeds up (or slows down) when

the system volume is larger (∆V > 0) or smaller (∆V < 0) than its average value at the pressure of

interest.

The diffusion coefficient of water is a key example of a property that does not exhibit an

Arrhenius-like pressure dependence. As the pressure is increased, it is observed that D first in-

creases (∆V ‡
D < 0) and then decreases (∆V ‡

D > 0).1,3,4,30 The former behavior is attributed to disrup-

tion of the H-bonding network, while the latter is ascribed to significant distortion of the network

at higher pressures such that the transition state for H-bond exchange requires a larger volume. For

a fixed pressure, the activation volume increases with temperature, which is illustrated in Fig. 1.8,

where the ratio MSDV (t)/MSD(t) and the corresponding ∆V ‡
D values are plotted versus time at

100 bar for three temperatures. The activation volumes obtained are within ∼ 25% of the values
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Figure 1.8: The ratio MSDV (t)/MSD(t), which at long times is equal to the diffusion activation
volume, ∆V ‡

D, for 100 bar and T = 283 (black), 383 (red), and 473 K (blue) for TIP4P/2005 water
from 5,000 NV E trajectories. Dashed lines of the same color indicate the derived ∆V ‡

D from fitting
to t ≥ 15 ps.

obtained experimentally by Krynicki et al.3

1.4 Purpose of the Current Study

In this Introductory chapter, approaches for direct calculation of the activation energy for nearly

any dynamical timescale of a chemical system from simulations at a single temperature have been

presented. These methods directly calculate the analytical derivative with respect to temperature,

in contrast to the standard Arrhenius analysis in which the derivative is determined numerically.

They are fundamentally an application of fluctuation theory in statistical mechanics applied to

dynamical properties and are the basis for the remainder of this thesis.

The fluctuation theory approach enables new mechanistic insight. The activation energy can
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be rigorously decomposed into contributions associated with different terms in the Hamiltonian,

i.e., interactions present in the system. These are readily understood in the context of Tolman’s

interpretation of the activation energy as the difference between the average energy of reacting

species relative to the average energy of the reactants.18 Then each contribution is the average

energy of a particular interaction (or kinetic energy) for the reacting species relative to that of the

reactants. In other words, we can obtain the measure of how effective it is, in terms of accel-

erating the dynamics of interest, to deposit energy into specific interactions and motions of the

molecular system. Throughout this thesis, these decompositions will be important for developing

a mechanistic understanding of the studied timescales.

The method is not limited to activation energies. Non-Arrhenius behavior can be probed by

calculation of higher derivatives of a timescale with respect to temperature. Moreover, the change

in dynamics with respect to nearly any thermodynamic variable can be determined by carrying out

simulations in the appropriate ensemble.

A number of advantages associated with this approach have yet to be fully explored. A key

example is that it permits access to activation energies even for systems that are at the point of a

thermally-induced transformation, because simulations at only one temperature are required. Thus,

an activation energy can be calculated for a liquid close to its boiling point or a protein near its

melting temperature; for these systems an Arrhenius analysis is challenging because an increase in

temperature generates a phase or structural change. In addition, we have only shown here some of

the simplest possible decompositions of the activation energy into broad categories of interactions

and the kinetic energy. Significantly more detailed mechanistic insight is available by considering

the contributions to the energy of particular atomic or molecular interactions and motions.

In the remainder of this thesis, the concepts developed within this Introduction will be ex-

tended and developed in more detail over four parts. The first part, Activation Energies of Dynam-

ical Timescales, focuses on the basic development and application of fluctuation theory at ambient

conditions to better understand activation energies (and their decompositions) for a wide-variety of

timescales. The second part, Water Under Extreme Conditions, develops the above discussed ap-
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proaches for calculating activation volumes and higher derivatives with respect to pressure in order

to better understand water dynamics away from ambient conditions. The third part, Toward a Uni-

fied Picture of Water Dynamics, focuses on the connection between water structure and dynamics

through the lens of fluctuation theory. The final part, Complex Systems, describes two non-water

systems that have been studied in the course of this thesis for which dynamical timescales can

provide valuable information.
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Part I

Activation Energies of Dynamical

Timescales
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In Part 1, methods for applying fluctuation theory to better understand activation energies for

a wide range of dynamic timescales are presented, including diffusion (Chapter 2), reorientation

(Chapters 2-5), hydrogen-bond exchange dynamics (Chapters 5-6), and spectral diffusion (Chapter

6). Chapter 2 presents the first calculations of diffusion and reorientation activation energies in

liquid water using the fluctuation theory approach, as well as the ability to decompose activation

energies. In Chapter 3, we found for the first time that reorientation activation energies measured

using two commonly used experimental techniques are different. In Chapter 4, we showed that

the Extended-Jump Model, which connects water reorientation and hydrogen bond exchanges, is

consistent on both the timescale level and the activation energy level. In Chapter 5, we demonstrate

that hydrogen bond exchanges are present within the spectral diffusion of liquid water as a fourth

timescale distinct from the commonly measured spectral diffusion time.

29



Chapter 2

Removing the Barrier to the Calculation of Activation Energies

2.1 Introduction

Molecular dynamics (MD) simulations are a ubiquitous tool for understanding the dynamics of

chemical systems. In particular, they can be directly connected with experimental measurements

by, for example, using time correlation functions (TCFs) to obtain observables ranging from kinetic

rate constants to vibrational spectra. Inevitably, the data generated in a MD simulation dwarf

the information produced by such analyses. It is thus important to seek methods by which the

trajectory data can be examined to take advantage of the significant information content that is

generally discarded.

Reaction rate constants, transport coefficients, and other important dynamical timescales for

molecular systems are frequently obtained through the calculation of TCFs.66–68 For example, the

rate constant for a chemical reaction can be determined from the flux-side TCF, C f s(t), as23,32,34,69

k = lim
t→long

C f s(t) = lim
t→long

〈Fs(0)θ [s(t)− s‡]〉, (2.1)

where s defines a dividing surface between reactants (s < s‡) and products (s > s‡), θ(x) is the

Heaviside step function, and Fs(0) = δ [s(0)− s‡]vs(0) is the flux through the dividing surface with

Adapted with the permission of Zeke A. Piskulich, Oluwaseun O. Mesele, and Ward H. Thompson and AIP
Publishing from J. Chem. Phys. 2017, 147, 134103.58
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vs the velocity along s. The activation energy of the reaction,

Ea =−
d lnk(T )

dβ
, (2.2)

where β = 1/kBT , is a quantity that is of significant interest due to the insight it provides into

the effective barrier for the reaction. It is typically calculated by constructing an Arrhenius plot

of lnk(T ) versus 1/T based on measurements (or calculations) at multiple temperatures. In the

context of Eq. (2.1), however, Ea is related to the temperature-dependence of a TCF such as C f s(t).

Indeed, it has been shown by Dellago and Bolhuis35 that this perspective can be used to calcu-

late Ea directly from transition path sampling simulations at a single temperature,36,37,70 and a

related approach has been demonstrated by Morita and co-workers for vibrational spectra.46,48,49

We have recently generalized this beyond transition path sampling and to other TCFs from which

rate constants can be obtained, including those based on a quantum description.31

The measurement and calculation of activation energies by an Arrhenius analysis can raise sig-

nificant issues due to the need to consider multiple temperatures. For example, many systems have

a structure that is highly dependent on temperature, e.g., folded proteins, bilayer membranes or

vesicles, and self-assembled structures. This can make construction of an Arrhenius plot problem-

atic by restricting the range of temperatures that can be considered. A similar issue arises even for

bulk systems if one is interested in an activation energy at conditions that are near a phase transi-

tion. Yet it can be of significant interest to examine the activation energies of dynamical processes

in the vicinity of these points of transformation.

It is also important to consider cases where quantities other than a rate constant are of interest,

but for which an activation energy can still be measured and calculated. In this Chapter, we do

just that by first showing a general expression for the temperature derivative of a TCF and then

applying this result to two commonly considered dynamical properties: diffusion coefficients and

reorientational timescales. The method is demonstrated by application to the relevant time correla-

tion functions for these attributes in bulk liquid water. In addition, it is shown how deeper physical
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insight into these processes can be obtained than is possible from Arrhenius calculations.

2.2 Time Correlation Functions (TCFs) and Activation Energies

2.2.1 General Expressions

A general time correlation function between two dynamical variables A and B in the canonical

ensemble, CAB(t) = 〈A(0)B(t)〉, can be written more explicitly as,

CAB(t) =
1
Q

Tr
[
e−βH A(0)B(t)

]
, (2.3)

where Q is the partition function, H is the Hamiltonian, and Tr indicates an integration over phase

space. In this correlation function expression, only Q and e−βH depend on the temperature. Thus,

the derivative of CAB(t) with respect to β can be straighforwardly evaluated as

∂CAB(t)
∂β

= − 1
Q2

dQ
dβ

Tr
[
e−βH A(0)B(t)

]
− 1

Q
Tr
[
e−βH H(0)A(0)B(t)

]
. (2.4)

Noting the definition of the average energy, 〈H〉=−d lnQ/dβ , this gives

∂CAB(t)
∂β

=−〈δH(0)A(0)B(t)〉 , (2.5)

where δH(0) = H(0)−〈H〉 is the fluctuation in energy from its average value.

This shows that the temperature dependence of the TCF, and thus any associated timescales,

can be determined by evaluating this simple time correlation function that is closely related to

CAB(t) itself. Note that the interpretation of this result is intuitive as it relates the derivative to the

(continuous) differences between CAB(t) when the system energy is initially greater than average

(δH(0) > 0) and when it is initially less than average (δH(0) < 0). In this sense, Eq. (2.5) is an

analytical derivative instead of the numerical derivative that is obtained from an Arrhenius analysis.
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As noted above, an analogous result has already been obtained in the context of reactive flux

and other TCFs that can be directly related to rate constants.31,35 However, there are many contexts

in which timescale or transport coefficients are calculated from a TCF and possess an activation

energy, or even simply a dependence on temperature, that is of physical interest. In the following

we show how the general result in Eq. (2.5) can be used to evaluate such activation energies for the

examples of self-diffusion and OH reorientation in liquid water.

2.2.2 Diffusion Coefficients

We consider, as a first example, the application of this formulation to the activation energy of

diffusion. The diffusion coefficient, D, can be calculated from the mean-squared-displacement

(MSD) as

MSD(t) = 〈|~r(t)−~r(0)|2〉, (2.6)

which becomes linear at long times such that

D = lim
t→long

MSD(t)
6t

, (2.7)

for motion in three dimensions. The activation energy associated with the diffusion coefficient is

defined as

Ea =−
∂ lnD

∂β
. (2.8)

Then, taking the derivative of Eq. (2.7) with respect to β and dividing by D yields

Ea =− lim
t→long

1
6Dt

∂MSD(t)
∂β

. (2.9)
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Using Eqs. (2.5)-(2.7) this can be written as,

Ea = lim
t→long

〈δH(0) |~r(t)−~r(0)|2〉
〈|~r(t)−~r(0)|2〉

≡ lim
t→long

MSDH(t)
MSD(t)

, (2.10)

where MSDH(t), defined by the relation above, is the MSD weighted by the energy fluctuation.

Note that the limit of the ratio of the functions equals the ratio of the limits as long as both are well

defined and the limit of the denominator is not zero; each condition is met here. Thus, this ratio

of TCFs should approach a constant value at longer times that is equal to the diffusion coefficient

activation energy.

2.2.3 Reorientation Times

The same approach can also be applied to reorientation dynamics. Reorientation times, denoted

τ`, are typically calculated from the time decay of the `th-order reorientation correlation function,

C`(t) = 〈P̀ [~e(0) ·~e(t)]〉 . (2.11)

Here P̀ is the `th-order Legendre polynomial and~e is a unit vector pointing along some molecular

axis, e.g., the OH bond in a water molecule. The ` = 2 TCF, C2(t), is of particular interest as it

can be directly measured by IR pump-probe anisotropy experiments71–73 and an average rotational

time defined as its integral can be obtained from NMR.72–76

In water and other hydrogen bonding (H-bonding) liquids it has been shown that the C2(t) TCF

is well described by a tri-exponential decay that distinguishes the timescales associated with reori-

entation due to inertial (τiner), librational (τlib), and H-bond making and breaking (τ2) dynamics.77

Taking this form for the general, `th-order, case, the TCF can be written as78

C`(t) = ∑
α

Aα e−t/τα , (2.12)
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where α = iner, lib, and ` (corresponding to the three timescales), and the Aα represent the ampli-

tudes of the contributions of the three components to the overall reorientation dynamics. Applying

the result in Eq. (2.5) to C`(t) gives

− ∂C`(t)
∂β

=C`,H(t) = 〈δH(0)P̀ [~e(0) ·~e(t)]〉 , (2.13)

where C`,H(t) is the reorientational TCF weighted by the energy fluctuation. If the same derivative

with respect to β is taken on Eq. (2.12) an additional expression for C`,H(t) results:

C`,H(t) =−∑
α

[
∂Aα

∂β
− ∂ (1/τα)

∂β
tAα

]
e−t/τα . (2.14)

Then, Eq. (2.13) can be used to calculate C`,H(t) from MD simulations while Eq. (2.14) gives

the form to which it can be fit (constrained by the Aα and τα obtained by fitting C`(t) itself) to

determine the temperature dependence of the amplitudes and timescales and, in some cases, the

activation energy of the latter. In particular, an activation energy of one of the timescales can be

obtained as

Ea,α =−τα

∂ (1/τα)

∂β
. (2.15)

This again provides a simple method for calculating an activation energy from a single-temperature

MD simulation.

2.3 Computational Methods

NVT Trajectory

tim
e

NVE Trajectories

time
𝛿𝐻(0)

Figure 2.1: A schematic diagram of the nonequilibrium MD simulation approach in which NV E
trajectories with different energies are initiated from a single NV T trajectory.
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In principle, the energy fluctuation TCFs, MSDH(t) and C`,H(t), and the associated activation

energies can be calculated from a single NV T MD simulation, as we have previously illustrated

for H-bond exchange TCFs.31 However, there is naturally some effect due to the thermostat used

to maintain the temperature that needs to be minimized. Here we adopt a different, nonequilib-

rium MD, approach to illustrate the method that avoids any effect of the thermostat. Specifically,

we sample initial conditions for short constant energy (NV E) trajectories from a long NV T MD

simulation as illustrated in Fig. 2.1. Each NV E trajectory has an initial energy, sampled from the

canonical ensemble, that defines δH(0) that weights the TCF giving MSD(t) or C2(t).

For the results presented here, 2000 NV E trajectories of 20 ps each were propagated starting

from configurations and momenta sampled every 1 ps from a 2 ns NV T trajectory following a 0.1 ns

equilibration. For each trajectory MSD(t) and the reorientational TCF, C2(t), were calculated

along with their energy fluctuation versions, MSDH(t) and C2,H(t). Uncertainties in the results

are reported as 95% confidence intervals according to the Student’s t-distribution based on block

averaging with 8 blocks of 250 trajectories each.

A fully-periodic cubic simulation cell with a side length of 21.725311 Å was filled with 343

water molecules to give a density of 0.997 g/mol. The H2O molecules were modeled using the

SPC/E force field.42 This model is a completely rigid, three-site model that treats intermolecular

interactions as a combination of Lennard-Jones (LJ) and Coulombic interactions. In this model,

point charges are placed on each atom while only oxygen atoms are treated as LJ sites. The

Lorentz-Berthelot mixing rules are used to calculate intermolecular interactions between unlike

atom types.79,80

The MD simulations were performed using the Large-Scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS).81 A simulation timestep of 1.0 fs was used, with configurations in

the NV E trajectories saved every 50 fs for calculation of the correlation functions. The SHAKE

algorithm was used to hold the OH bonds and H-O-H angles rigid,82 with a tolerance of 0.0001

that specifies the relative error in the iterative solution. Intermolecular interactions were treated

with a spherical cutoff of 10.5 Å and long-range electrostatics were described with an Ewald sum-
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mation with an accuracy parameter of 0.0001 (that specifies the root-mean-squared error of the

per-atom forces relative to a reference system). Canonical (NV T ) simulations were performed

using a Nosé-Hoover thermostat,83,84 with a thermostat damping parameter of 100 fs.

For comparison, activation energies were also calculated in the usual way using the Arrhenius

equation from NV T trajectories at T = 285, 298.15, 315, and 330 K. Each trajectory was propa-

gated for 4.5 ns with the first 0.5 ns used for equilibration. The trajectories were split into ten 0.4 ns

blocks for block averaging to obtain 95% confidence intervals from the Student’s t-distribution.

The results from the Arrhenius calculations are presented in Fig. 2.2. From linear fits of the

Arrhenius plots activation energies of 3.5±0.2 and 3.5±0.1 kcal/mol are calculated for D and τ2,

respectively, in good agreement with previously reported values.85,86 These results will be used as

a comparison for calculations using the energy fluctuation method described in Sec. 2.2.

2.4 Results

In this Section, we apply the approaches described above to directly calculate the full temperature-

dependence of TCFs and determine the activation energies associated with relevant timescales. We

consider two examples involving bulk liquid water: self-diffusion and OH-bond reorientation.

2.4.1 Diffusion coefficient activation energy

Using the nonequilibrium MD simulations described in Sec. 2.3 we have calculated the mean-

squared displacement, MSD(t), and the corresponding energy fluctuation TCF, MSDH(t) for the

oxygen atom of water at 298.15 K. The results are presented in Fig. 2.3. A linear fit to MSD(t)

at longer times (between 2-20 ps) gives the diffusion coefficient as D = 2.5× 10−5 cm2/s, in

excellent agreement with reported values in the literature for the SPC/E water model.42,87 The

time-dependence of MSDH(t) is generally similar to the MSD(t) itself in that, following a short

initial period, it is linear with time (with a slope of 5.3 kcal/mol × Å2/ps).

As shown in Eq. (2.10), the activation energy for the diffusion coefficient can be calculated
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Figure 2.2: Arrhenius plots for (a) D and (b) τ2 are presented. Results from the MD simulations
(filled black circles) are shown along with linear fits (dashed lines) based on the Arrhenius equa-
tion.

from the ratio MSDH(t)/MSD(t) at long times. This ratio is also shown in Fig. 2.3 as a function

of time and does indeed reach a constant value for times longer than ∼ 12 ps. The value of the
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Figure 2.3: Bottom: The TCFs MSD(t) (black line) and MSDH(t) (red line) are plotted versus
time. Top: The ratio MSDH(t)/MSD(t) (red line) is plotted as a function of time. A fit of this ratio
between t = 15− 20 ps to a constant value is also shown (blue dashed line). Note: MSD(t) is in
units of Å2/ps, MSDH(t) in kcal/mol × Å2/ps.

activation energy was obtained by fitting the ratio to a constant value for t = 15−20 ps, yielding,

Ea,D = 3.48±0.16 kcal/mol. This result is in excellent agreement with the value of 3.5±0.2 kcal/-

mol obtained from the Arrhenius plot in Fig. 2.2. Note that an alternative method for calculating

Ea,D would be to use the ratio of the slopes obtained from the linear fits to the respective correlation

functions; this yields 3.52 kcal/mol when fit over the time range 15-20 ps.

The calculation of diffusion activation energies in this manner provides an effective alternative

to the usual Arrhenius method. Trajectories are required at only a single temperature and thus no

choice needs to be made of the conditions for the simulations at other temperatures, e.g., whether

to keep the same density (as we have done in our Arrhenius calculations) or modify the density to

correspond to the experimental or simulation model result for each value of T . Additionally, as

this approach calculates the temperature dependence of the diffusion coefficient it may be used for

systems and conditions where where the behavior is non-Arrhenius.
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2.4.2 Reorientation time activation energy
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Figure 2.4: The reorientational TCF C2(t) (solid black line) is shown as a function of time along
with a tri-exponential fit (dashed black line) to Eq. (2.12). The TCF including the energy fluctua-
tion, C2,H(t), is also shown (solid red line) along with the fit (dashed blue line) to Eq. (2.14).

The same nonequilibrium MD trajectories used to evaluate the diffusion coefficient were ana-

lyzed to calculate the reorientational correlation function, C2(t), and its temperature dependence

via the energy fluctuation TCF, C2,H(t). These two TCFs are plotted as a function of time in Fig. 2.4

along with the tri-exponential fit to C2(t), Eq. (2.12), and the related fit to C2,H(t), Eq. (2.14). The

former gives the three timescales for the reorientational dynamics as 25 fs, 0.49 ps, and 2.6 ps,

corresponding to inertial, librational, and H-bonding breaking and making dynamics, respectively.

These parameters are also used in the fit to C2,H(t) so that the fitting parameters are the derivatives

with respect to β of each of the amplitudes and timescales. Note that the fits to both C2(t) and

C2,H(t) are in excellent agreement with the calculated TCFs.

A key focus of the analysis of the temperature dependence of the timescales is on the activation

energy associated with the reorientational time τ2. The fit to C2,H(t) gives this as Ea,2 = 3.67±

0.24 kcal/mol. This agrees with the result of 3.5± 0.1 kcal/mol obtained from the Arrhenius
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plot, Fig. 2.2b, as well as prior calculations that also yielded 3.5 kcal/mol.85,86 It is notable that

the activation energy for OH reorientation is similar to that obtained for self-diffusion. This is

indicative of the common molecular origin of the two in the breaking and making of H-bonds.

Namely, the exchange (or “jump”) between two different H-bond acceptors that is required for an

OH to reorient is also the key molecular event for diffusion of a water molecule.

It is important to note that, because the derivatives with respect to β are obtained from a sim-

ulation at a single temperature, they may or may not correspond to an activation energy. That is,

it is not possible to determine from the derivative alone whether or not ln(1/τα) depends linearly

on 1/T . Often one has some prior knowledge, such as in the case of D or τ2, that the property

is activated. However, this is not true for the inertial and librational timescales, τiner and τlib. An

indication that they may not obey Arrhenius behavior is that our results give uncertainties that

encompass zero activaton energy: Ea,iner = 1.6±1.7 kcal/mol and Ea,lib = 1.0±1.2 kcal/mol. In-

deed, plots of 1/τiner and 1/τlib versus 1/T show that these timescales do not exhibit Arrhenius

behavior.

Additional information is available in the form of the amplitude derivatives. The fit to C2,H(t)

gives dAiner/dβ = −0.11± 0.09, dAlib/dβ = −0.18± 0.09, and dA2/dβ = 0.29± 0.10. These

indicate that as temperature increases (β decreases) the amplitudes of the inertial and librational

components increase and that of the H-bond making and breaking component decreases. This is

consistent with linear fits to the amplitudes obtained from the simulations at different tempera-

tures, which give -0.08, -0.12, and 0.20 for Ainer, Alib, and A2, respectively for T = 285−315 K.

This is not the full temperature range we have simulated, however the estimated derivatives change

significantly (to 0.04, -0.12, and 0.08) when T = 330 K is included in the fittting. This is a fur-

ther indication that in the energy fluctuation TCFs we are obtaining local derivatives that can have

distinct quantitative and qualitative differences from that obtained from multiple-temperature sim-

ulations that can depend on the temperature range considered.
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2.4.3 Energetic decomposition

A key advantage of the method proposed in this work is the ability to decompose an activation

energy or, more generally, a derivative with respect to temperature, into individual contributions

due to each component of the energy. Specifically, we can note that the fluctuation in the energy

that appears in MSDH(t) and C2,H(t) can be written as

δH(0) = δKE(0)+δV (0), (2.16)

= δKE(0)+δVLJ(0)+δVCoul(0). (2.17)

Here, δKE(0) and δV (0) are the fluctuations in the kinetic and potential energy, respectively.

The second equality notes that the potential energy fluctuation can be further decomposed into

the various types of interactions including this simplest example of the Lennard-Jones, δVLJ , and

Coulombic, δVCoul , contributions to the water energy. Then, the activation energy can be likewise

divided into such contributions as

Ea = EKE
a +ELJ

a +ECoul
a , (2.18)

where EKE
a , ELJ

a , and ECoul
a are the components of the activation energy associated with fluctu-

ations in the kinetic energy, LJ potential energy, and Coulombic potential energy, respectively.

This approach builds on the pioneering work of Tolman18 and Truhlar19 to elucidate the physical

interpretation of an activation energy.

In the case of diffusion, the component of the activation energy associated with the Coulombic

interactions is, for example, then given by,

ECoul
a,D =

〈δVCoul(0) |~r(t)−~r(0)|2〉
〈|~r(t)−~r(0)|2〉

, (2.19)

and similarly for EKE
a,D and ELJ

a,D. Note that this is only one way to obtain insight into the origins of

the activation energy, and a particularly simple choice. In general, the energy fluctuation, δH(0),
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can be divided up in any number of ways to gain insight into the nature of the activated process.
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Figure 2.5: The contributions to the diffusion TCF MSDH(t) associated with the kinetic energy
(red line), Lennard-Jones potential energy (violet line), and Coulombic potential energy (blue line)
are plotted versus time along with the total (black line).

The resulting TCF for the Coulombic contribution to MSDH(t) given in Eq. (2.19) is presented

as a function of time in Fig. 2.5 along with the LJ and kinetic energy results and the total MSDH(t).

Each contribution to the activation energy can be obtained by fitting the constant value reached at

longer times (t = 15−20 ps); this gives 1.1, -0.8, and 3.2 kcal/mol for the kinetic, Lennard-Jones,

and Coulombic energy, respectively. Thus, it is clear from the data that the dominant contribution

to the activation energy of diffusion is the Coulombic interactions between water molecules. This is

expected given the central role of H-bonding in the mechanism of water diffusion. What is perhaps

less obvious is the negative contribution from the Lennard-Jones interactions that are slightly more

than cancelled by the kinetic energy component. These results point to the new insight that may

be obtained by the present approach.

The same decomposition approach can be applied to the reorientational correlation function,
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Figure 2.6: The contributions to the reorientational TCF C2,H(t) associated with the kinetic energy
(red line), Lennard-Jones potential energy (violet line), and the Coulombic potential energy (blue
line) are plotted versus time along with the total (black line).

C2(t). For example, C2,H(t) given in Eq. (2.13), can be written as the sum of

C2,Coul(t) = 〈δVCoul(0) P̀ [~e(0) ·~e(t)]〉, (2.20)

and the analogous contributions C2,KE(t), and C2,LJ(t). These three components are shown as a

function of time, along with the total C2,H(t), in Fig. 2.6. As with the diffusion constant, the dom-

inant contribution to the activation energy are Coulombic interactions. In fact, there is essentially

complete cancellation of the kinetic energy and LJ contributions such that the Coulombic com-

ponent is nearly equal to the total C2,H(t) for all times. This is again an indication of the central

role of H-bond exchanges in OH reorientation in water, which has been extensively explored in the

extended jump model of Laage and Hynes.85,88
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2.5 Conclusion

This work demonstrates a general approach for evaluating the temperature-dependence of time

correlation functions that can also yield the activation energy for transport coefficients or dynami-

cal timescales. A key feature is that the activation energy is obtained from simulations at a single

temperature. The method has been demonstrated for the self-diffusion and OH reorientation in

bulk liquid water and gives activation energies in agreement with those obtained from standard

Arrhenius calculations. The framework, however, is not limited to these examples and can be

straightforwardly extended to other transport coefficients, dynamical timescales, or TCFs. Indeed,

this approach gives the temperature derivative of a dynamical timescale at a given temperature and

it does not require an assumption of Arrhenius behavior.

This approach also provides additional insight into the origins of the activation energy. In par-

ticular, we have shown how the activation energy can be decomposed into components associated

with the various contributions to the system energy, e.g., kinetic, Lennard-Jones, and Coulom-

bic energies. For both diffusion and reorientation in bulk water, nearly the entire contribution to

the activation energy arise from the Coulombic interactions, which is associated with the central

role of hydrogen-bond dynamics in both processes. This kind of analysis should lead to a better

understanding of the molecular-level interactions that influence the activation energy.

Because the activation energy calculations do not require simulations at multiple temperatures,

the present method may be particularly useful in cases where changing the temperature is problem-

atic. For example, biological or self-assembled systems, such as lipid bilayers or reverse micelles,

can often display dramatic changes in structure, e.g., protein unfolding, with relatively small tem-

perature changes. Similarly, for systems near a phase transition the range of temperatures for

which an Arrhenius analysis can be used is strongly constrained. However, the approach presented

here permits the calculation of activation energies or, more generally, the derivative of full time

correlation functions with respect to temperature even in such cases.
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Chapter 3

The activation energy for water reorientation differs between

IR pump-probe and NMR measurements

3.1 Introduction

The reorientational dynamics of water play a central role in many chemical processes. As the sol-

vent in biological systems, water shapes the structure, dynamics, and, ultimately, the function of

proteins and DNA.89 More generally, water reorientational dynamics, which manifest the underly-

ing structure and rearrangements of the water hydrogen-bonded (H-bonded) network, govern the

solvation response of the liquid. Thus, they have been found to be a key element of the mechanisms

of, for example, proton transfer,90,91 SN2,92 and ion-pairing93,94 reactions.

Experimentally, reorientational dynamics have been studied in detail by ultrafast infrared pump-

probe anisotropy (IR-PP) and NMR spin-echo. These methods have been used particularly to mea-

sure the timescales associated with reorientation of particular bond vectors in water over a range of

temperatures and pressures.51,72,95–98 In isotopically dilute water, e.g., HOD in H2O, IR-PP mea-

surements provide a femtosecond-resolved view of the reorientational dynamics of the OD bond

vector associated with a vibrational transition by measuring the anisotropy decay, r(t), of vibra-

tionally excited water molecules.71,99–102 The anisotropy decay is in most cases directly equivalent

Adapted with the permission of Zeke A. Piskulich, and Ward H. Thompson and AIP Publishing from J. Chem.
Phys. 149, 164504 (2018).44
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to the second-order reorientational time correlation function (TCF),71

C2(t) = 〈P2 [~e(0) ·~e(t)]〉 , (3.1)

as r(t) = 0.4C2(t). Here,~e represents a unit vector along the relevant bond, OD in the case of HOD

in H2O, P2 is the second-order Legendre polynomial, and 〈· · · 〉 represents a thermal average. IR-

PP measurements and simulations have lead to a detailed understanding of the anisotropy decay

in water which occurs on three timescales, as discussed in greater detail below. The longest of

these, denoted τ2, is associated with the exchange of hydrogen-bond (H-bond) partners and has

been measured as 2.5−2.7 ps in water at room temperature.7,8,71,72,101,103–105

The NMR spin-echo method takes advantage of the relationship between the longitudinal spin

relaxation time, T1, and the integral of the orientation correlation function to measure an averaged

reorientation time,43

〈τ2〉=
ˆ

∞

0
C2(t)dt. (3.2)

This averaged, or integrated, time has contributions from all of the timescales on which C2(t)

decays, not just that associated with H-bond breaking and making.51,106–108 As a consequence,

the measured times for OH reorientation in H2O from NMR are shorter than that for τ2, with 〈τ2〉

observed to be in the range 1.7−2.0 ps.51,97,109,110 It is important to note that NMR experiments

are unable to measure OH bond reorientation directly, but only that of the OD bond in D2O, the

out-of-plane vector from 17O NMR, and the H-H vector in H2O from proton NMR. However, the

OH integrated reorientation time can be estimated using some basic assumptions.51,52,107,109

The reorientational correlation function, C2(t), in Eq. (3.1) can be straightforwardly calcu-

lated from molecular dynamics (MD) simulations. The direct connection between the observables

probed in these IR-PP and NMR measurements and C2(t) thus provides a special opportunity for

synergy between experimental and theoretical studies to understand reorientation dynamics. In-

deed, significant insight has been obtained in the H-bond dynamics in this way. In particular, the

extended jump model (EJM) of Laage and Hynes,85,88 has elucidated the underlying mechanis-
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tic connection between the τ2 reorientation time and the timescale for an OH group to exchange

H-bond acceptors, the “jump" time. In the EJM model, water reorientation is described as a com-

bination of large amplitude angular jumps111 that occur when H-bond acceptors are exchanged

and diffusive112 “frame" reorientation of the intact H-bonded pair. In water, the former represents

the dominant contribution to the OH reorientation and thus there is a clear connection between the

reorientational and H-bond dynamics.

An important characteristic of an activated dynamical process is the temperature dependence

of the relevant timescale(s). This is typically expressed as the activation energy, Ea, which for a

rate constant k is expressed as

Ea =−
∂ lnk
∂β

, (3.3)

where β = 1/kBT . While Ea is most precisely described as an expression of the temperature de-

pendence of k, in many cases it can be interpreted in terms of an effective barrier for the process of

interest.18,19 While there has been ample consideration of the differences between τ2 and 〈τ2〉, lit-

tle attention has been paid to comparing the activation energies for the two timescales. Because τ2

is one of the components contributing to 〈τ2〉, independent measurements of Ea for each timescale

could yield additional insight into the reorientational dynamics.

In this Chapter, we use precise MD simulation calculations of the timescales obtained from

IR-PP and NMR experiments as well as their corresponding activation energies. A recently de-

veloped method for calculating activation energies from simulations at a single temperature31,58,59

is used to remove any numerical approximations associated with an Arrhenius analysis (and these

approximations are also quantified). The calculations are analyzed to provide a framework for

understanding the differences between the τ2 and 〈τ2〉 activation energies. In particular, the sim-

ulations predict that the two timescales should have different activation energies and estimate the

experimental precision that will be required to distinguish them. Moreover, the analysis shows

what additional information about the reorientational dynamics could be extracted from a quanti-

tative comparison of the τ2 and 〈τ2〉 activation energies.
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3.2 Theory

The reorientational TCF defined in Eq. (3.1) has been extensively studied for OH reorientation

in water both experimentally and by simulation. For concreteness, C2(t) is plotted versus time

in Fig. 3.1 for OH reorientation in water at 298.15 K and 1 bar, calculated with the simulation

approach described below in Sec. 3.3. The decay of C2(t) occurs on three timescales and the TCF

is typically fit by a triexponential

C2(t) = ∑
α

Aα e−t/τα , (3.4)

where α indexes the three timescales, τα , with amplitudes Aα . The fastest timescale, τiner, observ-

able in the inset of Fig. 3.1a, is associated with inertial motion, i.e., the free, or ballistic, reorienta-

tion of the OH that occurs at times short enough that intermolecular interactions are unimportant.

The intermediate timescale, τlib, is characteristic of the librational motion of the OH reorienting

within the restrictions of the intact H-bond. Finally, the longest timescale, τ2, is associated with the

complete OH reorientation accomplished by a combination of rotation of the intact H-bonded pair

and large angle “jumps" associated with the exchange of H-bond acceptor.85,88 In water at room

temperature, the latter mechanism is the dominant contribution to the reorientation. The values ob-

tained from fitting C2(t) by Eq. (3.4) up to t = 10 ps are given in Table 3.1; the time range is chosen

to match that typically available in IR-PP measurements, which are limited by the short lifetime of

the OH or OD vibrationally excited state in isotopically dilute water (T1 = 0.7− 0.74 ps72,113,114

for HOD in D2O and T1 = 1.7−1.8 ps for HOD in H2O72,103,115).

The fitting by Eq. (3.4) assumes that the inertial and librational times decay exponentially,

which is not the case as evident from Fig. 3.1. The inertial decay is rigorously Gaussian while

in water the librational dynamics exhibit a coherent oscillation. These two details are frequently

ignored, as we do here. As a check, we have also fit the data with a Gaussian decay for the inertial

component and found that it does not change the timescales or the relevant activation energies.

The average, or integrated, reorientational time defined by 〈τ2〉 in Eq. (3.2) is shown in Fig. 3.1b.
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Figure 3.1: The OH reorientational correlation function, C2(t), for TIP4P/2005 water at 298.15 K
and 1 bar (black) is shown as a function of time along with a triexponential fit (red), Eq. (3.4). a:
C2(t) is shown on a semi-log scale and the short-time decay is shown in the inset. b: C2(t) is shown
on a linear scale along with its integral (blue, right axis) which equals the average reorientational
time, 〈τ2〉, at long times.

In the context of the triexponential fit to C2(t) the average time is given by

〈τ2〉= ∑
α

Aατα , (3.5)

which indicates its dependence on all three timescales and amplitudes; this relation will be exam-
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ined in greater detail in Sec. 3.4.1. It is important to note that 〈τ2〉 is calculated here, except when

otherwise noted, by direct integration of C2(t) and thus the value is independent of any assumed

form for the reorientation TCF.

If the inverse of a timescale, τ−1
α , is assumed to correspond to a rate constant, the activation

energy associated with each can be written from Eq. (3.3) as

Ea,τα
=−τα

∂ (1/τα)

∂β
. (3.6)

Note that this activation energy is well-defined even in the case that the timescale does not corre-

spond to a rate constant or does not exhibit Arrhenius behavior. In such a case Ea,τα
may be viewed

as an “effective" activation energy that describes the temperature dependence of the timescale, but

for which the physical interpretation must otherwise be carefully considered. An activation energy

can similarly be defined for the average reorientational time as

Ea,〈τ2〉 =−〈τ2〉
∂ (1/〈τ2〉)

∂β
. (3.7)

This, in principle, has contributions from all of the timescales present in C2(t), as is evident from

consideration of Eq. (3.5).

We have previously shown that the derivative of temperature derivative of C2(t) can be directly

determined from simulations at a single temperature.58 The reorientational TCF given in Eq. (3.1)

can be written more explicitly as

C2(t) =
1
Q

Tr
[
e−βH P2 [~e(0) ·~e(t)]

]
,

=
1

Qh f

ˆ
dp
ˆ

dq e−βH P2 [~e(0) ·~e(t)] , (3.8)

where, as indicated by the second equality, Tr represents an integration over all of the coordinates

and momenta, Q is the partition function, and f is the number of degrees-of-freedom. Since only

51



Q and the Boltzmann factor, e−βH , depend on the temperature, it is straightforward to show that

− ∂C2(t)
∂β

=C2,H(t) = 〈δH(0)P2 [~e(0) ·~e(t)]〉 , (3.9)

where δH(0) = H(0)−〈H〉 is the fluctuation in the total system energy at time t = 0. Thus, the

temperature dependence of C2(t) is given by C2,H(t), which is the reorientational TCF weighted

by the fluctuation in the initial energy.58 In this way, the temperature derivative ∂C2(t)/∂β can be

calculated from the same simulations that give C2(t), i.e., from consideration of a single tempera-

ture without the necessity or approximation of constructing an Arrhenius plot. The implementation

of these simulations is described in Sec. 3.3.

The C2,H(t) TCF can be analyzed in a manner consistent with that of C2(t) by taking the

derivative of the fitting function in Eq. (3.4) with respect to β , which gives

C2,H(t) =−∑
α

[
∂Aα

∂β
− ∂ (1/τα)

∂β
tAα

]
e−t/τα . (3.10)

Here Aα and τα are the parameters calculated from the fit of C2(t) using Eq. (3.4), while ∂ (1/τα)/∂β

and ∂Aα/∂β are new fitting parameters representative of the temperature dependence of the am-

plitudes and timescales for the reorientational dynamics. The former can then be used to calculate

the activation energies for each timescale from Eq. (3.6). These represent the activation energies

that can be obtained from IR-PP measurements at different temperatures.

By integrating the derivative correlation function C2,H(t) the activation energy associated with

the average reorientation time, Eq. (3.7), can be directly calculated as

Ea,〈τ2〉 =
1
〈τ2〉

ˆ
∞

0

∂C2(t)
∂β

=− 1
〈τ2〉

ˆ
∞

0
C2,H(t). (3.11)

In the context of the fitting of C2(t) and C2,H(t), the activation energy for 〈τ2〉 can be derived using
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Eqs. (3.10) and (3.11) to give

E( f it)
a,〈τ2〉 = ∑

α

[
∂Aα

∂β

τα

〈τ2〉
+Aα

τα

〈τ2〉
Ea,τα

]
. (3.12)

From this relationship, it is apparent that E( f it)
a,〈τ2〉 need not be equal to Ea,τ2 . The two can only be

identical if the amplitudes, timescales, and their temperature derivatives exhibit particular relation-

ships, i.e., it is not generally true. Note that if the assumptions made in the fitting of C2(t) are

correct, then Ea,〈τ2〉 = E( f it)
a,〈τ2〉, which provides a check on the accuracy of Eq. (3.4).

3.3 Computational Methods

The direct fluctuation method derived previously31,58,59 and described briefly above is used to cal-

culate the activation energies of the reorientation times for the OH bond in water. The simulations

are implemented as follows. A long trajectory in the isobaric-isothermal (NPT ) ensemble is used

to generate initial configurations for a large number of constant energy and volume (NV E) trajec-

tories, from which the correlation functions C2(t) and C2,H(t) are calculated. In this way, the NV E

trajectories sample over the variations of the system energy, i.e., δH(0), in the NPT simulation

that are representative of the desired temperature (and related to the heat capacity5,116,117), but

there is no effect of the thermostat in the NV E dynamics from which the TCFs are obtained. We

also consider, for comparison, simulations in which the initial configurations are sampled from a

canonical ensemble (NV T ) trajectory.

The MD simulations were performed using the Large-Scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS).81 A simulation cell of 343 water molecules initialized within a fully-

periodic box of length 21.725311 Å was initialized to give a density of 0.997 g/mol. The TIP4P/20055

water force field was used in all the simulations. This is a rigid model that has a charge on each

atom and a fourth point charge that improves the description of the electrostatic interactions rel-

ative to three-site models; it is parameterized to describe the properties of water over a range of

temperatures and pressures.5 The water molecules were kept rigid using of the SHAKE algorithm

53



Table 3.1: Reorientation times, τα , in ps, amplitudes, Aα , amplitude derivatives, ∂Aα/∂β , in
kcal/mol, and activation energies, Eα , in kcal/mol for the TIP4P/2005 model calculated from the
NPT ensemble at 298.15 K and 1 bar. Subscripts indicate uncertainties in the final digit(s).

Value τiner τlib τ2 〈τ2〉
τα 0.0131 0.4554 3.2258 2.2185
Aα 0.1561 0.1931 0.6512
∂Aα/∂β −0.0728 −0.16436 0.23741
Ea 0.6412 1.8628 4.2810 4.5811

with a tolerance of 1.0 x 10−4.118 Electrostatic interactions from all four sites on the TIP4P/2005

model were included through the use of a standard Coulomb interaction and an Ewald sum calcu-

lated using the Particle Particle Particle Mesh (PPPM),119–121 with the Ewald accuracy parameter

taken as 1.0× 10−4. The cuttoff for the LJ interactions was 10.5 Å, while that for electrostatic

interactions was 8.5 Å.

For each simulation a 50 ns NPT (or NV T ) trajectory was propagated with the temperature

maintained by a Nosé-Hoover chain of length three and a thermostat damping parameter of 100 fs;

the NPT barostat damping parameter was 1 ps.83,84 Initial coordinates and momenta for the NV E

trajectories were saved every 1 ps, giving a total of 50,000 trajectories, each of length 50 ps.

All simulations used a timestep of 1 fs and configurations were saved every 10 fs from the NV E

trajectories. Simulations were divided into ten blocks of 5,000 trajectories each for block averaging

to obtain 95% confidence intervals according to the Student’s t-distribution,122 which are the errors

reported on the data.

To compare with the traditional means of calculating activation energies via the Arrhenius

equation, we have additionally calculated reorientation times using the same simulation approach

in the NPT ensemble at 1 bar at 288.15, 293.15, 303.15, and 308.15 K.

3.4 Results
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3.4.1 Reorientation Times and Activation Energies

The simulation approach just described was used to calculate reorientation times and activation en-

ergies for the TIP4P/2005 water model at 298.15 K and 1 bar in the NPT ensemble. The calculated

C2(t) correlation function, Eq. (3.1), is shown in Fig. 3.1 along with the triexponential fit, Eq. (3.4),

and the resulting times and amplitudes are given in Table 3.1. The fitting of C2(t) is restricted to

t ≤ 10 ps as this is corresponds to the time range generally accessible in IR-PP measurements due

to the OH excited-state vibrational lifetime. The NPT ensemble is used because it most closely

corresponds to the typical conditions of IR-PP and NMR experiments. The inertial timescale is

found to be τiner = 13 fs; this timescale is typically not accessible in pump-probe measurements

because it is shorter than the IR pulse width. The librational timescale of 455 fs obtained from the

fit is longer than the ∼ 200 fs timescale typically attributed to librational dynamics.8,72

The longest decay time, associated with H-bond exchanges, is calculated as 3.225 ps, which

is longer than that reported in measurements, which fall in the range 2.5-2.7 ps for OD rotation

of HOD in H2O.7,8,71,72,101,103–105 Likewise, the average reorientation time obtained is 〈τ2〉 =

2.218 ps (see Fig. 3.1b), which is slightly longer than the values of 1.7-2.0 ps51,97,109,110 obtained

in NMR measurements. We note that the TIP4P/2005 water model also underestimates the water

diffusion coefficient,5 suggesting that it generally exhibits hydrogen-bonding dynamics that are

slightly too slow compared to experiment. It is noteworthy that 〈τ2〉 is determined almost com-

pletely by τ2, i.e., if the contributions of each timescale are considered as expressed in Eq. (3.5),

one finds 0.002, 0.09, and 2.10 ps for τiner, τlib, and τ2, respectively.

The present result is also slightly longer than the values of τ2 = 3.1 ps and 〈τ2〉 = 2.04 ps

reported by Stirnemann and Laage for the TIP4P/2005 water model from an equilibrium NV E

simulation.108 The differences appear to be due to the choice of ensemble. Simulations in the

NV T ensemble using the present approach yield τ2 = 3.070 ps and 〈τ2〉 = 2.122 ps, in excellent

agreement with the results of Stirnemann and Laage. This indicates that there are differences in

the water reorientational timescales under constant pressure and constant volume conditions, but

they are relatively small.
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Figure 3.2: The reorientational TCF C2(t) (black) and the energy fluctuation weighted TCF C2,H(t)
(red) are plotted versus time for TIP4P/2005 water at 298.15 K and 1 bar. Fits of each according
to Eqs. (3.4) and (3.10) are also shown (blue dashed).

The derivative with respect to β of the reorientational TCF was calculated via Eq. (3.9) to de-

termine the activation energies for reorientation. The C2(t) and the energy fluctuation-weighted

TCF, C2,H(t), are presented in Fig. 3.2 for the TIP4P/2005 NPT simulation. The derivative corre-

lation function was fit over the 50 ps range using Eq. (3.10) and used to extract activation energies

associated with each reorientation timescale, which are given in Table 3.1.

The activation energy for the τ2 reorientation time associated with H-bond exchanges is found

to be 4.28 kcal/mol. This is in very good agreement with the value of 4.1±0.5 kcal/mol measured

by Petersen et al. in IR-PP experiments,7 which also yielded τ2 = 2.5 ps, shorter than that found in

the present simulations. The present Ea is larger than the 3.7 kcal/mol obtained by Nicodemus et al.
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from 2D-IR measurements of the anisotropy;105 they found τ2 = 2.9 ps at 295 K which would pre-

dict a value of 2.7 ps at 298.15 K, again smaller than the present simulation result. Both experimen-

tal studies measured OD reorientation for HOD in H2O. The activation energy for the TIP4P/2005

water model is larger than those reported for the SPC/E (3.5 and 3.67±0.24 kcal/mol),58,85,86 and

E3B (3.82 kcal/mol),123 models as well as TTM3-F evaluated with centroid molecular dynamics

(4.1 kcal/mol).124

The activation energy associated with 〈τ2〉 was also calculated using Eq. (3.11) and is pre-

sented in Table 3.1. The present result of Ea,〈τ2〉 = 4.58 kcal/mol is in excellent accord with values

obtained from NMR experiments, which are in the range of 4.4-4.6 kcal/mol51,52,96,125 with uncer-

tainties on the order of±0.5 kcal/mol. The same NMR measurements do, however, predict shorter

average reorientation times than the simulations, finding 〈τ2〉= 1.67 and 1.95 ps for H2O,51,52 and

2.21 and 2.37 ps in D2O.52,96

It is interesting to examine how the amplitudes for the different timescales for decay of C2(t)

change with temperature; these data are also included in Table 3.1. Note that the sum of all of

the derivatives should add to zero (since the TCF is normalized) and this is obtained in the fitting

without imposing it as a constraint. An important observation is that the amplitude associated

with H-bond dynamics, A2, is found to increase with temperature (decrease with β ) while those

corresponding to the inertial and librational timescales decrease.

A key result of this analysis is that the activation energies for τ2 and 〈τ2〉 are not the same

and can be resolved within the present simulations. This observation appears to be consistent with

the reported activation energies measured by IR-PP for τ2 and by NMR for 〈τ2〉, but the reported

uncertainties are too large to make any comparison definitive at present. In Sec. 3.5 below, we

examine the origins and implications of the differences in these activation energies.

3.4.2 Traditional Arrhenius Analysis

The direct fluctuation method calculates the derivative of C2(t), and hence of the underlying

timescales, with respect to β in an analytical way. That is, there is no numerical finite differ-
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Table 3.2: Simulated reorientation times at different temperatures for TIP4P/2005 water at 1 bar.

T(K) τiner (ps) τlib (ps) τ2 (ps) 〈τ2〉 (ps)
288.15 0.0141 0.5234 4.18614 2.94311
293.15 0.0131 0.4836 3.65312 2.54111
298.15 0.0131 0.4554 3.2258 2.2185
303.15 0.0131 0.4215 2.8676 1.9624
308.15 0.0121 0.3974 2.5654 1.7434

Table 3.3: Activation energies (kcal/mol) calculated from an Arrhenius analysis of the temperature
dependence through fitting different sets of points. The column labeled “All" is a fit of all tem-
peratures 288.15-308.15K, “Middle" is a fit over all temperatures 293.15-303.15K, “Low" is a fit
over all temperatures 288.15-298.15K, “High" is a fit over all temperatures 298.15-308.15K, and
“Separated" is a fit of 288.15 K, 298.15 K, and 308.15 K.

Timescale All Middle Low High Separated
τiner 1.3112 1.2026 1.5618 1.0923 1.3312
τlib 2.4318 2.4237 2.3827 2.4945 2.4214
τ2 4.316 4.287 4.4513 4.1810 4.3222
〈τ2〉 4.617 4.5711 4.8313 4.4011 4.6321

ence approximation to the derivative as is implicit in the use of an Arrhenius analysis. This is,

however, not the way in which measured activation energies are obtained from IR-PP and NMR

experiments. Thus, to gain insight into any differences between the calculated activation energies

in Table 3.1 and those determined by a traditional Arrhenius analysis, we have carried out the latter.

Namely, the reorientational TCF was calculated at four additional temperatures at 1 bar to give the

reorientation timescales over temperatures from 288.15 to 308.15 K in 5 K increments. The results

are given in Table 3.2 and presented as Arrhenius plots for each timescale in Fig. 3.3.

All of the reorientation timescales show the expected trend of faster dynamics with increas-

ing temperature and hence positive activation energies. However, even over this relatively narrow

temperature range, there is noticeable curvature in the Arrhenius plot for τiner, in Fig. 3.3a, indi-

cating that the corresponding activation energy should not be interpreted in terms of an Arrhenius

equation.

The data in Table 3.2 were used to obtain activation energies by selecting different sets of

temperatures to use in the Arrhenius analysis. The corresponding fits are shown in Fig. 3.3 and the
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Figure 3.3: Reorientation time Arrhenius plot calculated from the TIP4P/2005 NPT simulations.
Arrhenius fits are included as a black line for the fit of all temperatures, as blue line for the fit of
the lowest three temperatures, and as a red line for the fit over the highest three temperatures. A)
τlib and τiner are shown as diamonds and triangles, respectively. B) A similar analysis is included
for τ2 and 〈τ2〉 which are represented by circles and squares, respectively.

results are given in Table 3.3. The activation energies for τ2 and 〈τ2〉 obtained using the narrowest

range of temperatures around 298.15 K (the “Middle" fit in Table 3.3) give values in excellent
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agreement with the results from the direct calculation of Ea,τ2 and Ea,〈τ2〉 in Table 3.1. This result is

expected given that this approach minimizes the numerical approximation in the Arrhenius-derived

activation energy. Interestingly, there are distinct deviations between the direct and Arrhenius

activation energies for τiner and, for some of the temperatures ranges, τlib, presumably due to non-

Arrhenius behavior.

The Arrhenius analysis gives activation energies for τ2 that agree with the directly calculated

value (Table 3.1) within statistical errors independent of the temperature range used in the calcula-

tion (though only barely so for some choices). The non-Arrhenius nature of τ2 is, however, evident

as the activation energy calculated between 288.15–298.15 K is larger, 4.45±0.13 kcal/mol, than

that obtained from 298.15–308.15 K, 4.18± 0.10 kcal/mol. A similar result is obtained for the

integrated time, 〈τ2〉, activation energy.

The difference between the low- and high-temperature fits of the reorientation times are in-

dicative of non-Arrhenius behavior. Indeed, Stirnemann and Laage noted that Ea,〈τ2〉 changes by

8 kcal/mol between 235 K and 350 K.108 All linear Arrhenius fits within this work are over a sig-

nificantly smaller temperature range than typically used in experimental works, yet the choice of

the temperature range is clearly important. Alternatively, experimental works make assumptions

about the functional form of the temperature dependence to evaluate the derivative locally.52 A key

suggestion from these calculations is that it is important to minimize the temperature range used

in the Arrhenius analysis as much as possible to avoid effects due to the temperature-dependence

of the activation energies for the water reorientational timescales.

3.5 Discussion

The key result from the simulations presented in Sec. 3.4 is that there is a distinguishable difference

in the activation energies associated with τ2, Ea,τ2 = 4.28± 0.10 kcal/mol, and 〈τ2〉, Ea,〈τ2〉 =

4.58± 0.11 kcal/mol. This indicates that IR-PP and NMR experiments are measuring slightly

different aspects of the OH reorientation, which we now examine. Moreover, our calculations

suggest that experiments need to be able to resolve the τ2 and the 〈τ2〉 activation energies within
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Table 3.4: Contributions to the activation energy, E( f it)
a,〈τ2〉, in kcal/mol, as given in Eq. (3.12). Results

are for TIP4P/2005 water at 298.15 K and 1 bar. Last row shows the total associated with each
timescale.

Component τiner τlib τ2

∂Aα

∂β

τα

〈τ2〉 −0.00041 −0.0348 0.34461

Aα
τα

〈τ2〉Ea,τα
0.00062 0.07411 4.05195

Total 0.00022 0.04022 4.395161

∼ 0.15 kcal/mol to observe this difference in activation energies.

Before analyzing the differences in the τ2 and 〈τ2〉 activation energies, it is useful to con-

sider some aspects of the experimental techniques that can affect the measured values. First, in

IR-PP measurements, the anisotropic decay is that of a vibrationally excited OH bond, while in

NMR experiments the dynamics probed are that of the vibrational ground state. The effect of

vibrational excitation on the reorientational dynamics has not been examined in the literature,126

but the slightly longer bond distance of the vibrationally excited OH suggests it might lead to a

small relative increase in Ea,τ2 compared to Ea,〈τ2〉. Further, the IR-PP measurements most directly

comparable to the present simulations are in isotopically dilute solutions, specifically, OD reorien-

tation of HOD in H2O to avoid dynamics associated with resonant vibrational energy transfer. It

is noteworthy that, as noted above, experiments find longer reorientational times for HOD in D2O

compared to HOD in H2O.72 Similarly, NMR measurements find longer 〈τ2〉 times for D2O than

H2O as noted in Sec. 3.4.1.51,52,96 An examination of nuclear quantum effects on water reorienta-

tional dynamics found no change in the mechanisms and only minor quantitative changes relative

to classical simulations.127 This demonstrates that the reorientation is influenced more strongly by

the isotopic effect of the full solvent than the reorienting bond.
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3.5.1 Contributions to the 〈τ2〉 Activation Energy

To better understand the integrated reorientation time activation energy and its relationship to Ea,τ2 ,

we note that it can be expressed in terms of contributions due to each of the timescales assuming

C2(t) is well described by the tri-exponential fit, Eq. (3.12). The component of Ea,〈τ2〉 due to each

timescale can be further decomposed into two components, the first associated with the temperature

dependence of the amplitude, ∂Aα/∂β , and the second with the timescale activation energy, Ea,τα
.

Each of these contributions is given in Table 3.4. The total integrated time activation energy based

on this triexponential fit is E( f it)
a,〈τ2〉 = 4.44± 0.09 kcal/mol, which is in reasonable agreement with

the result obtained from direct integration of C2,H(t), Ea,〈τ2〉 = 4.58±0.11 kcal/mol.

The results in Table 3.4 show that the contribution of the inertial dynamics to the integrated time

activation energy is negligible. This is due largely to the τα/〈τ2〉 factor that appears in each term.

The librational contribution, 0.040 kcal/mol, is significantly larger, but still an order-of-magnitude

smaller than that due to τ2. It is notable that for both τiner and τlib, the term associated with the

change in the amplitude with temperature is negative, while that associated with the activation

energy is positive so the result for each timescale is reduced by the partial cancellation of these

two terms.

The dominant contribution, as expected, is that associated with the τ2 reorientation time,

namely H-bond breaking and making. The largest component of this arises from the term as-

sociated with the τ2 activation energy, but that arising from the temperature dependence of the

A2 amplitude is also significant. This is a clear indication that the activation energy of the inte-

grated reorientation time is not determined solely by that of τ2. In particular, the contribution of

Ea,τ2 appears in Ea,〈τ2〉 scaled by A2 τ2/〈τ2〉= 0.947, but this reduction is more than compensated

by the increase in A2 with temperature. It is predominantly this effect that makes Ea,〈τ2〉 greater

than Ea,τ2 . In other words, the integrated time activation energy includes a significant contribution

due to the change with temperature in the amplitude of the H-bond exchange component of the

reorientational TCF. Because the inertial and librational contributions are nearly negligible, accu-

rate measurement of the τ2 and 〈τ2〉 activation energies would provide an experimental estimate
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of the temperature dependence of the amplitude, i.e., ∂A2/∂β . Alternatively, this derivative can,

in principle, be obtained from temperature-dependent IR-PP measurements and be used to predict

Ea,〈τ2〉.

It is also interesting to consider the perspective wherein A2(= 1−Ainer−Alib) is considered

to be determined from the magnitude of the incomplete reorientation completed through inertial

and librational motions. Then ∂A2/∂β = −∂Ainer/∂β − ∂Alib/∂β and the results in Table 3.1

indicate that the librational contribution to the amplitude change is roughly twice that due to inertial

motion. Thus, in this viewpoint the difference between Ea,τ2 and Ea,〈τ2〉 is associated primarily with

the increasing amplitude of librational reorientation as temperature increases along with a smaller

contribution from an analogous change in the inertial amplitude.

3.5.2 Contributions to the C2(t) Temperature Dependence

A different, but related, approach is to evaluate the temperature dependence of the C2(t) reorienta-

tional TCF at a particular time, with the aim to separate the contributions of librational and H-bond

breaking and making dynamics by choosing shorter or longer times, respectively.8,128 The direct

calculation of ∂C2(t)/∂β =−C2,H(t) along with the decomposition into terms associated with the

three timescales given in Eq. (3.10) permits a direct analysis of the TCF derivative. The contribu-

tions thus separated into inertial, librational, and H-bond exchange (τ2) motions are compared to

the total C2,H(t) in Fig. 3.4.

It is clear from Fig. 3.4 that the inertial dynamics have a small, short-lived contribution to the

temperature dependence of C2(t). Indeed, the τiner term is essentially zero for times longer than

∼ 50 fs. The librational contribution extends to longer times – it is negligible after ∼ 2.5 ps –

beyond which the τ2 term is the only contributor to ∂C2(t)/∂β . As can be seen in the inset of

Fig. 3.4, the τlib and τ2 terms have opposite signs for times less than 0.2 ps. Thus ∂C2(t)/∂β

evaluated at times shorter than this involves cancellation between contributions due to the two

motions, while longer times up to ∼ 2.5 ps involve the addition of τlib and τ2 components, and

beyond this the derivative is determined only by H-bond exchange dynamics.
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Figure 3.4: The derivative TCF, C2,H(t), (red solid) is compared to its fit, Eq. (3.10), (blue dashed)
and the contributions to the fit from the inertial (cyan dashed), librational (violet dashed), and
H-bond breaking and making (magenta dashed). The inset shows an expanded view of the the
short-time behavior.

It is interesting then to consider what determines the TCF derivative at a short time, e.g.,

t∗ = 100 fs. Moilanen et al. previously measured C2(t∗) using IR-PP as a function of the pump

frequency and temperature for HOD in H2O.8 They found that C2(t∗) decreased linearly with the

ω01 OD vibrational frequency at all temperatures but with different slopes such that at lower fre-

quencies (stronger H-bonds) C2(t∗) increased with T and at higher frequencies (weaker H-bonds)

it decreased with T . The present results, which do not resolve different vibrational frequencies,

find ∂C2(t)/∂β > 0 such that ∂C2(t)/∂T is negative, consistent with the higher frequency results

of Moilanen et al. Moreover, we can see from Fig. 3.2 that the sign of C2,H(t) is the same for all

64



times and thus the qualitative temperature dependence, i.e., sign of ∂C2(t)/∂T , is the independent

of the time at which it is evaluated.

The decomposition of ∂C2(t)/∂β |t∗ for t∗ = 100 fs can be seen directly from the inset of

Fig. 3.4. As noted, the inertial dynamics make a negligible contribution to the total deriva-

tive C2,H(t∗) = −0.245 kcal/mol. The dominant term is that associated with H-bond exchanges,

−0.31 kcal/mol, which is only partially cancelled by the librational component of 0.07 kcal/mol.

This result is somewhat surprising because the short-time dynamics of C2(t) are dominated by the

inertial and librational dynamics. However, the larger amplitude and stronger temperature depen-

dence of τ2 (see Table 3.1) lead to this result via Eq. (3.10). Indeed, the results in Fig. 3.4 show

that the H-bond exchange contribution is the dominant one at all times, even at t = 0. Given the

results of Moilanen et al.,8 it will be interesting to revisit this analysis as a function of the OH (or

OD) vibrational frequency.

3.5.3 Activation Energy Decomposition

Additional insight can be obtained by examination of the different energetic contributions to the

activation energies. We previously showed that the weighted reorientational TCF, Eq. (3.9), and

thus the activation energy, can be rigorously decomposed into contributions due to different kinetic

energy and interaction terms.58 Namely, the fluctuation in the energy can be written as

δH(0) = δKE(0)+δVLJ(0)+δVCoul(0), (3.13)

where KE is the kinetic energy, VLJ the Lennard-Jones potential, and VCoul the Coulombic interac-

tions. Then,

C2,H(t) =C2,KE(t)+C2,LJ(t)+C2,Coul(t), (3.14)

where, e.g., C2,LJ(t) = 〈δVLJ(0)P2 [~e(0) ·~e(t)]〉. In this way, the total activation energy for each

timescale and 〈τ2〉 can be written in terms of the contribution from each component of the Hamil-

tonian.
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It is useful to consider the meaning of these contributions. From Eq. (3.9) it can be seen

that ∂C2(t)/∂β is given by the correlation of the energy fluctuation at t = 0 with P2[~e(0) ·~e(t)],

i.e., how the reorientational dynamics changes when the system has an energy that is greater than

(δH > 0) or less than (δH < 0) the average value. This same interpretation can be applied to the

additive contributions to the total energy. Thus, C2,LJ(t) is a measure of how the reorientational

dynamics changes when the system has a total Lennard-Jones interaction energy that is greater

than (δVLJ > 0) or less than (δVLJ < 0) its average value.

This is consistent with the interpretation of the activation energy by Tolman18 nearly a century

ago, which was subsequently expanded upon by Truhlar.19 In the context of classical trajectories

it can be briefly stated as the activation energy is the average energy of all reactive trajectories

minus the average energy of the reactants. For the process of OH reorientation considered here,

the “reactant" energy is just the average equilibrium energy. Then, for example, the contribution

to Ea from the kinetic energy, Ea,KE is the difference in the average kinetic energy of all reactive

trajectories minus the average kinetic energy of the reactants. It is important to note that this is not

an indication that the kinetic energy contributes to the barrier, but rather that Ea,KE > 0 means that

increasing the kinetic energy speeds up the process, i.e., assists in surmounting the barrier.

Another way of understanding this decomposition is to generalize the Boltzmann factor in the

phase space average (trace) and partition function in Eq. (3.8) as exp{−βKEKE−βLJVLJ−βCoulVCoul},

such that the distribution of each energy term is governed by a separate temperature. In this con-

text then, for example, C2,LJ(t) =−∂C2(t)/∂βLJ which thus gives the contribution to the activation

energy due to changing the Lennard-Jones “temperature" independent of that associated with the

other terms in the Hamiltonian.

This analysis gives otherwise unavailable mechanistic insight into the origins of the activation

energy; the component TCFs defined in Eq. (3.14) are plotted in Fig. 3.5. In our previous work

we did not observe a difference between the TCF weighted by the total energy, C2,H(t) and the

contribution due to the electrostatic interactions, C2,Coul(t) outside the statistical uncertainty. The

improved sampling in the present work does resolve a difference between these these two weighted
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correlation functions and shows a deeper minimum in C2,Coul(t) compared to the total derivative

TCF. The results are otherwise essentially the same as previously observed.58 Namely, the electro-

static interactions are the dominant contribution to the activation energy, which is anticipated by

the extended-jump model for OH reorientation.85,88 The kinetic energy and Lennard-Jones contri-

butions largely cancel each other, with the former giving a positive contribution to the activation

energies and the latter a negative. In other words, larger instantaneous Lennard-Jones interac-

tion energies lead to slower reorientational dynamics, in contrast to the Coulombic interaction and

kinetic energies. The reason for this is not yet clear, but it deserves further study.
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Figure 3.5: The reorientation correlation function C2(t) weighted by the total energy (black),
Lennard-Jones potential energy (indigo), electrostatic potential energy (green), and kinetic energy
(red). Fits for each correlation function are included as blue dashed lines.

The contribution of each energetic contribution to the activation energies, of each τα and 〈τ2〉, is
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Table 3.5: Activation energy decomposition, in kcal/mol, calculated from the NPT ensemble at
298.15 K.

Value τiner τlib τ2 〈τ2〉
Ea,Tot 0.6412 1.8628 4.2810 4.5811
Ea,LJ 0.0516 −0.3722 −1.316 −1.547
Ea,Coul 0.2128 1.5440. 4.3813 4.9814
Ea,KE 0.3710 0.7010 1.214 1.144

obtained by fitting each weighted TCF using Eq. (3.10). The results of this analysis are presented

in Table 3.5 and the fits are shown with the calculated TCFs in Fig. 3.5. As expected from the

above discussion, the Coulombic interactions give the largest contribution to the activation energy

of the τlib and τ2 individual timescales in C2(t) as well as 〈τ2〉. In contrast, the inertial timescale is

dominated by the kinetic energy and also does not exhibit any cancellation between the Lennard-

Jones and kinetic energy terms.

The decomposition can be used to examine the origin of the difference between Ea,τ2 and

Ea,〈τ2〉. It is notable that each energetic term shows a statistically significant difference between the

contribution to the τ2 and 〈τ2〉 activation energies. In particular, the Coulombic term is 0.6 kcal/mol

larger for Ea,〈τ2〉 than Ea,τ2 . This effect is partially cancelled by the -0.07 and -0.23 kcal/mol dif-

ferences due to the kinetic energy and Lennard-Jones interactions, respectively. The breakdown of

the Coulombic contribution to C2,H(t) into the terms associated with the temperature-dependence

of the amplitude and the individual timescale activation energies (not shown) are consistent with

those of the total given in Table 3.4. Namely, there are minimal effects due to the inertial and

librational contributions and Ea,〈τ2〉 is larger than Ea,τ2,Coul due to the contribution of ∂A2,Coul/∂β .

3.6 Conclusions

The results of the present simulations show a difference between the activation energy for OH re-

orientational dynamics in water measured by pump-probe anisotropy and that obtained in NMR

spin-echo experiments. The IR-PP experiments obtain the longest timescale decay, τ2, associated

with H-bond making and breaking, and its corresponding activation energy. However, NMR mea-
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surements give the average time, 〈τ2〉. While the 〈τ2〉 activation energy is dominated by that of τ2,

it also has a significant contribution due to the change in the τ2 amplitude with temperature (at the

expense of the inertial and librational dynamics amplitudes).

The difference between Ea,τ2 and Ea,〈τ2〉 is calculated as 0.3 kcal/mol for the TIP4P/2005 water

model at 298.15 K and 1 bar. This indicates that experimental measurements will need to resolve

the τ2 and 〈τ2〉 activation energies to uncertainties of ∼ 0.15 kcal/mol in order to distinguish the

two. The current simulations use the fluctuation method to directly calculate the activation energies

from simulations at a single temperature31,58,59 with extensive sampling to obtain precise values. A

traditional Arrhenius analysis, which gives consistent results, shows that this direct approach yields

the activation energy at the particular temperature of interest without invoking a finite difference

numerical approximation for the temperature derivative. The non-Arrhenius behavior of the water

reorientational dynamics108 means that the activation energy from an Arrhenius analysis is more

accurately determined from a small temperature range.

It remains to be seen if experiments can achieve the precision required to distinguish the τ2

and 〈τ2〉 activation energies. Such a result would be an important benchmark for water models,

particularly those that aim to describe the water dynamics over a range of temperatures. Moreover,

the analysis presented here indicates that an accurate difference in Ea,τ2 and Ea,〈τ2〉 can be used to

quantitatively determine how the τ2 timescale amplitude in C2(t) changes with temperature.

The present approach can be straightforwardly extended to examine activation energies for re-

orientation, or other dynamical timescales, in more complex environments. Both IR-PP and NMR

measurements have been (or can be) applied to characterize water reorientational dynamics in sys-

tems from concentrated ionic solutions73,129–132 to reverse micelles.128,133,134,134,135 In many such

cases, additional timescales appear in the reorientational TCF due to the presence of an interface

and the temperature dependence of these new decay times as well as that of their amplitudes should

provide new molecular-level insight into the dynamics.
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Chapter 4

Activation Energies and the Extended Jump Model: How

Temperature Affects Reorientation and Hydrogen-Bond

Exchange Dynamics in Water

4.1 Introduction

In liquid water at ambient conditions, a broad range of dynamical processes have been found

to exhibit similar temperature dependences. These include, for example, molecular reorientation

measured by NMR52,137 and femtosecond infrared spectroscopies,7,105,138 vibrational frequency

dephasing,105,138,139 dielectric relaxation,140 viscosity,3,4,141,142 and structural dynamics probed

by quasi-elastic neutron scattering.143,144 The comparable activation energies measured for these

processes imply that the associated energy barriers have similar heights and could thus suggest

that they share a common rate-determining elementary step. Hydrogen-bond (H-bond) exchanges

are likely this common underlying mechanism, as they have already been shown to be the major

reorientation pathway.88

However, an important limitation in establishing activation energies in water arises from the

markedly non-Arrhenius behavior at ambient conditions.6,141,145,146 The traditional determination

from a series of measurements at different temperatures is thus ambiguous and sensitively depends

on the chosen temperature interval. This issue was recently addressed by a fluctuation theory

Adapted with the permission of Zeke A. Piskulich, Damien Laage, and Ward H. Thompson and AIP Publishing
from J. Chem. Phys. 153, 174110 (2020).136
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approach for dynamics,13,31,44,50,58,59,147 which permits the calculation of activation energies from

molecular dynamics simulations at a single temperature. This method further provides important

insight in the activation energy components, and has been successfully applied to a broad range of

dynamical processes in water.

Here, we use the fluctuation theory method to identify the molecular origin of the reorienta-

tion activation energy and its connection to hydrogen-bond exchange dynamics. In contrast to

the long-held Debye diffusion picture, water reorientation was shown88 to be mostly caused by

sudden, large-amplitude angular jumps during hydrogen-bond exchanges, along with the slower

tumbling of intact hydrogen-bonds, and the extended jump model (EJM) was proposed to connect

this mechanism to the water reorientation time. However, while hydrogen-bond jumps have been

characterized over a broad temperature range,108 the EJM has so far mostly been used at ambient

temperature. Our present goal is therefore two-fold: 1) we will first assess the EJM’s ability to

describe the reorientation time temperature dependence and activation energy, and 2) we will use

this model to gain a molecular insight in the activation energy’s origin as well as its connection

with H-bond exchanges.

The remainder of the Chapter is organized as follows. The details of OH reorientation and its

description within the extended jump model are presented in Sec. 6.2 with particular attention on

the associated activation energies. The details of the molecular dynamics simulations that are used

to determine the timescales and activation energies are given in Sec. 4.3. The OH reorientation

timescales and their activation energies are presented in Sec. 4.4.1. These are compared quantita-

tively with the corresponding results for the H-bond jump time, the distribution of jump angles, and

the frame reorientation time in the remainder of Sec. 4.4 and the fidelity of the EJM is discussed

quantitatively. Finally, conclusions are offered in Sec. 4.5.

4.2 Theory
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4.2.1 Water OH Group Reorientation

Water reorientational dynamics are frequently described in terms of the time correlation function

(TCF),

Cn(t) = 〈Pn [~eOH(0) ·~eOH(t)]〉 , (4.1)

where Pn is the nth-order Legendre polynomial and ~eOH(t) is the unit vector along the OH bond

undergoing reorientation (Figure 4.1). The second-order TCF C2(t) is accessible experimentally

via polarization-resolved infrared pump-probe measurements, which under most conditions probe

the anisotropy decay r(t) = 0.4 C2(t).71,72 As we have shown previously, this reorientation has a

different temperature dependence than that of the integrated reorientation time, 〈τ2〉=
´

∞

0 Cn(t)dt,

which is typically measured in nuclear magnetic resonance experiments.44

It is useful, in examining the mechanism(s) underlying the reorientational dynamics, to com-

pare the behavior for different orders, n, of the TCFs and to determine the associated reorientation

times. For example, a characteristic feature of systems obeying Debye rotational diffusion is that

reorientation times are governed by the rotational diffusion coefficient DR,

τ
Debye
n =

1
n(n+1)DR

, (4.2)

which leads to direct relationships between the reorientational timescales obtained for different

orders. That is, τ
Debye
1 /τ

Debye
2 = 3 and τ

Debye
1 /τ

Debye
3 = 6.

The OH reorientational dynamics in water captured in Cn(t) exhibit three timescales. The

fastest of these (tens of fs) is associated with inertial, or ballistic, motion and is followed by slower

dynamics (hundreds of fs) due to librational motion of the OH group within the intact H-bond. The

longest timescale is 2.5-2.6 ps,8,104,114 and is determined by H-bond dynamics. Because of this

behavior, Cn(t) can be fit using a sum of three exponentials,

Cn(t) = ∑
α

Aα,ne−kα,nt , (4.3)
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Figure 4.1: Water OH group reorientational TCFs, Eq. (4.1), at 298.15 K for n = 1 (black), 2
(blue), and 3 (orange); tri-exponential fits using Eq. (4.3) are shown as dashed lines of the same
color. Inset shows the results on a semi-log plot.

where α = inertial, librational, and Hbond. The last is associated with H-bond breaking and

making; it is this reorientational dynamics that the EJM describes and which will thus be the focus

of the remainder of this Chapter. For simplicity, we will henceforth omit the “Hbond" and refer

to this rate constant as kn = 1/τn, where τn is the corresponding timescale. The Aα,n are the

amplitudes associated with the three timescales, which for the longest timescale will be referred to

as An.

4.2.2 Extended Jump Model for Water Reorientation

It is now well-established that water reorientation is not a rotationally diffusive process, but modi-

fications to the overall picture of the mechanism came in steps. Starting from the Debye diffusion

picture, which assumes that reorientation proceeds through a succession of infinitesimally small

amplitude angular jumps, Ivanov extended this model to describe reorientation through (uncorre-
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Figure 4.2: Schematic illustration of the two components of the extended jump model for OH
reorientation: Large-amplitude angular jumps associated with the exchange of H-bond acceptors
(left) and the frame reorientation of the intact H-bond pair between jumps (right).

lated) finite amplitude angular jumps,111 but did not apply the resulting theory to any molecular

system. The Ivanov model further assumed that the reorientation axis remained fixed and under-

went no reorientation between the angular jumps. More recently, Laage and Hynes demonstrated,

by analysis of molecular dynamics trajectories, that OH bonds in liquid water do reorient through

finite amplitude jumps associated with the exchange of H-bond acceptors. The average angle

spanned in such jumps is around 70◦ and this represents the dominant contribution to OH reori-

entation, but it is not the sole one. They proposed the extended jump model73,85,88 (EJM) that

included both the H-bond jumps and an additional contribution associated with the reorientation

of the intact H-bond in between H-bond exchanges, which is referred to as “frame" reorientation.

The EJM has been used to describe how OH reorientation in water is affected by ions73,129,148,149

as well as hydrophobic150 and amphiphilic151 solutes. In addition, the EJM has been used to gain

insight into water reorientational dynamics at interfaces that range from extended aqueous sur-

faces152,153 to biomolecular hydration shells89 and confining frameworks including zeolites,154

reverse micelles,135 and mesoporous silica.154,155 The EJM has also been extended to describe

OH reorientation in alcohols.31,86
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The EJM describes the longest OH reorientation timescale as a combination of large-amplitude

angular jumps associated with exchange of H-bond acceptor and the frame reorientation of the

individual intact H-bond pair, as illustrated in Fig. 4.2. Mathematically, this gives the nth-order

reorientational time, τn, as
1
τn

=
1

τ
jump

n
+

1

τ
f rame

n
, (4.4)

where τ
jump

n and τ
f rame

n are the jump and frame contributions, defined in greater detail below.

Equivalently, this can be written in terms of effective rate constants associated with each timescale,

kn = k jump
n + k f rame

n , (4.5)

where kX
n = 1/τX

n for each timescale in Eq. (4.4).

4.2.3 Activation Energies and the Fluctuation Theory for Dynamics

The water OH reorientation activation energy is

Ea,n =−
∂ ln(1/τn)

∂β
, (4.6)

where β = 1/kBT . Within the EJM, Ea,n is related to the jump and frame reorientation activation

energies via Eq. (4.5) as

Ea,n =
k jump

n

kn
E jump

a,n +
k f rame

n

kn
E f rame

a,n

=
τn

τ
jump

n
E jump

a,n +
τn

τ
f rame

n
E f rame

a,n (4.7)

This contrasts with the activation energies expected within the Debye model Eq. (4.2),

EDebye
a,n =−∂ lnDR

∂β
, (4.8)

which are explicitly independent of the order of the TCF.
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While the ratios of the reorientation timescales have frequently been used to examine the mech-

anism of reorientation in liquids,85,86,88,114,156–158 the behavior of Ea,n on the order n of the TCF

has not previously been explored, nor have the relative contributions of the jump and frame reori-

entations. The following sections lay out a simple technique for calculating each term in Eq. (4.7)

using fluctuation theory for dynamics and address these issues.

Fluctuation theory for dynamics yields the analytical derivative of a rate constant or timescale

with respect to β rather than the numerical derivative obtained from an Arrhenius analysis. It is

thus particularly advantageous when applied to systems that deviate from the Arrhenius relation, as

do many dynamical properties of liquid water. Within this framework, we have previously shown

that the derivative of Eq. (4.1) with respect to β can be expressed as a new TCF,

∂Cn(t)
∂β

=−〈δH(0)Pn [~eOH(0) ·~eOH(t)]〉 ≡ −Cn,H(t), (4.9)

where δH(0) = H(0)−〈H〉 is the fluctuation in energy. This TCF, like Cn(t) itself, can be eval-

uated from simulations at a single temperature, avoiding the necessity for an Arrhenius analysis.

In other words, Eq. (4.9) gives the analytical derivative of the TCF with respect to temperature in

contrast to the numerical derivative obtained from an Arrhenius plot.

The derivative TCF given in Eq. (4.9) can be fit by taking the derivative of Eq. (4.3) with respect

to β ,
∂Cn(t)

∂β
= ∑

α

[
∂Aα,n

∂β
−

∂kα,n

∂β
Aα,nt

]
e−kα,nt , (4.10)

where Aα,n and kα,n are now constants calculated from the fit of Eq. (4.3) and ∂Aα,n/∂β and

∂kα,n/∂β are fitting parameters. The latter can be used to determine the activation energy associ-

ated with each timescale as Ea,n =−k−1
α,n (∂kα,n/∂β ), which is equivalent to Eq. (4.6).159

A key advantage of the fluctuation theory approach is the additional mechanistic insight it pro-

vides. Specifically, the total system energy fluctuation can be decomposed into physically mean-

ingful components, which can be used to determine the contributions to the activation energy for

each.13,44,50,58,147,160 For example, in the case of the fixed-charge classical MD simulations used
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in the present work, it is natural to divide the energy fluctuation as

δH(0) = δKE(0)+δVLJ(0)+δVCoul(0), (4.11)

where KE is the total kinetic energy and VLJ and VCoul are the total Lennard-Jones and Coulombic

potential energies. Using this in Eq. (4.9) gives a rigorous decomposition of ∂Cn(t)/∂β into

contributions from these components of the energy. By fitting each of these derivative contributions

with a function of the form of Eq. (4.10), we can obtain the activation energy components

Ea,n = EKE
a,n +ELJ

a,n +ECoul
a,n . (4.12)

Here, for example, ECoul
a,n comes from fitting the TCF in Eq. (4.9) with δH(0) replaced by δVCoul(0).

The interpretation of this result is best understood in the context of Tolman’s analysis of the

activation energy.13,18–20 Tolman showed that the activation energy for a chemical reaction is

the average energy of reacting species minus the average energy of reactants, Ea = 〈E〉reacting−

〈E〉reactant . In this context, one can view, for example, the kinetic energy component of the acti-

vation energy as the average kinetic energy of reacting species minus the average kinetic energy

of reactants. In other words, the activation energy components are measures of how energy in

different motions or interactions helps (or hinders) passage over the barrier for the process. This

is how Eq. (4.12) can be understood to provide mechanistic information, information which is not

available by other methods. This activation energy decomposition gives an even more detailed test

of the EJM as will be discussed below.

4.2.4 Jump Reorientation

The contribution to OH reorientation due to H-bond exchanges involves two factors. The first is

the jump time, τ0 = 1/k0, which is the inverse rate constant for the “reaction" in which an OH

switches from one H-bond acceptor to another. This timescale, unlike the others discussed in this

study, is independent of the order n. The second is the effect of the “jump angle," ∆θ , which is
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defined as the effective angle traversed (in a lab-fixed frame) by the OH vector in the process of

the exchange of H-bond acceptors.85,88 This angle is large, ∼ 70◦ on average. The overall effect

of the jumps on the reorientational TCF depends on n and is given by

k jump
n = k0 wn. (4.13)

Here, wn is the average value of the weighting function for the jump angle, which was derived by

Ivanov,111

wn(∆θ) = 1− sin[(2n+1)∆θ/2]
(2n+1)sin[∆θ/2]

. (4.14)

The average value is obtained by averaging over the distribution of jump angles, P(∆θ),

wn =

ˆ
π

0
wn(∆θ)P(∆θ)d∆θ . (4.15)

Mathematically, the jump angle can be taken as the Oa · · ·Od · · ·Ob angle at the jump transition

state where a and b indicate the original and new H-bond acceptors, respectively, and d the H-

bond donor. In practice it is sufficient to calculate this angle at the first timestep at which a new

(Od−Hd · · ·Ob) H-bond is formed. Though wn(∆θ) does not depend on temperature, its average

value, wn, does because it involves the jump angle distribution, P(∆θ).

The jump time τ0, and associated rate constant k0, can be calculated using the stable-states

picture33 for the H-bond exchange process. Specifically, the “side-side" time correlation function,

Cab(t) = 〈na(0)nb(t)〉, (4.16)

is calculated, where na (nb) is equal to 1 if the OH of interest is H-bonded to molecule a (b), and

zero otherwise. Absorbing boundary conditions are used such that once an exchange occurs, no

further exchanges are considered. The function, 1−Cab(t) then decays at longer times with the

timescale τ0; in practice, it is fit to a double exponential to account for transient dynamics at early

times.161 In this work, we have defined H-bonds by strict geometric criteria: ROd−Oa ≤ 3.1 Å,

78



rHd−Oa ≤ 2.0 Å, and αHd−Od−Oa ≤ 20◦.

We have previously shown that the derivative of 1−Cab(t) with respect to β is given by31

∂ [1−Cab(t)]
∂β

= 〈δH(0)na(0)nb(t)〉 ≡Cab,H(t). (4.17)

In that work, we demonstrated that the derivative correlation function peaks at a time of τ0 and

at a height of Ea,0/e (where Ea,0 is the jump time activation energy and e is Euler’s number) if

the decay is assumed to be single exponential. Here, we adopt the more accurate approach of a

double exponential fit for the decay and hence for the derivative TCF in Eq. (4.17), analogous to

Eq. (4.10), which is then used to determine ∂k0/∂β .

Because both k0 and wn depend on temperature, the derivative of k jump
n with respect to β is

∂k jump
n

∂β
=

∂k0

∂β
wn + k0

∂wn

∂β
. (4.18)

The jump contribution activation energy can then be calculated by dividing both sides by k jump
n =

k0wn and changing the sign, yielding

E jump
a,n = − 1

k0

∂k0

∂β
− 1

wn

∂wn

∂β

≡ Ea,0 +E∆θ
a,n . (4.19)

Thus, it is the sum of the jump time activation energy, Ea,0, (which is not to be confused with the

jump reorientation contribution activation energy, E jump
a,n , which includes the jump angle tempera-

ture dependence) and the activation energy associated with the jump angle weighting, E∆θ
a,n . Note

that only the latter depends on the order n of the TCF.

The derivative of the average jump angle weighting, Eq. (4.15), can be taken with respect to β

to get
∂wn

∂β
=

ˆ
π

0
wn(∆θ)

∂P(∆θ)

∂β
d∆θ , (4.20)
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where

∂P(∆θ)/∂β =−〈δH(τ∗)δ [∆θ −∆θ̃(Q]〉=−PH(∆θ), (4.21)

is the derivative of the jump angle distribution. Here the energy fluctuation is evaluated at the time

of each individual jump (τ∗). For a given NV E trajectory, δH(τ∗) = δH(0), but the same is not

true for the energetic components, e.g., δKE(τ∗) 6= δKE(0).

4.2.5 Frame Reorientation

The frame reorientation time is determined by calculating the reorientational TCF for the Od · · ·Oa

vector, which provides the local frame reorientation between successive jumps,

C f rame
n (t) = 〈Pn [~eOO(0) ·~eOO(t)]〉Hbond, (4.22)

where the Hbond subscript on the average indicates that only molecules that have not switched

H-bond partners between times 0 and t are included in the average. This leads to a time-dependent

normalization for the TCF that is equal to the H-bond survival probability; this limits the times

over which the TCF can be accurately calculated. The decay of C f rame
n (t) is well described by a

bi-exponential function with the longer timescale equal to the frame time, τ
f rame

n .

The derivative of C f rame
n (t) is completely analogous to that for OH reorientation given in

Eq. (4.9) and can be fit through an expression of the form given in Eq. (4.10) with a sum over

only two exponentials. In this approach, the frame activation energy,

E f rame
a,n =−∂ ln(1/τ

f rame
n )

∂β
(4.23)

can then be extracted directly from the fitting of C f rame
n (t) and its derivative TCF.
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4.3 Methods

The MD simulations were carried out using the Large-scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS).81 A fully-periodic simulation cell of side length 21.725311 Å was

filled with 343 SPC/E water molecules,42 corresponding to the 298.15 K experimental density of

0.997 g/cm3. All simulations used a timestep of 1 fs, and the electrostatics from all simulations

used the Particle-Particle-Particle Mesh Ewald summation method119,120 with a tolerance param-

eter of 1× 10−4. The SHAKE algorithm was used to hold the water bonds and angle rigid, the

tolerance parameter was 1× 10−4. One 50 ns NVT trajectory was propagated with positions and

momenta saved every 1 ps, yielding 50,000 configurations. The temperature of the simulation was

298.15 K, with initial velocities selected from the Maxwell-Boltzmann distribution and the initial

configuration generated by PACKMOL.162 The Nosé-Hoover thermostat damping parameter was

100 fs.83,84

From each saved configuration, a 50 ps NVE simulation was run, from which the dynamical

properties were evaluated. Configurations were saved every 10 fs, leading to 5000 total configu-

rations per NVE trajectory; this is more than sufficient to resolve both the initial decay dynamics

and the jump angle distribution. As has been noted in our prior works, each NVE trajectory has a

different fluctuation in energy, δH(0), from the average energy of the long trajectory. From each of

these trajectories the OH reorientation, jump, and frame TCFs are calculated along with the jump

angle distribution and each is also weighted by the energy fluctuations to obtain the contribution to

their derivative with respect to β as described in Sec. 4.2. These individual correlation functions

are then averaged across all the NVE trajectories. All reported uncertainties correspond to a 95%

confidence interval according to the Student’s t-distribution122 over an average of 10 blocks (each

block representing 5,000 NVE trajectories).
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Order τ0 wn τ
jump

n τ
f rame

n τn τEJM
n

n = 1 3.1412 0.45122 6.9614 16.9113 5.293 4.932
n = 2 3.1412 0.88191 3.5622 5.973 2.6187 2.2315
n = 3 3.1412 1.07581 2.9202 3.192 1.7674 1.5234

Table 4.1: Timescales (in ps) calculated from the jump dynamics, jump contribution, frame contri-
bution, total reorientation, and EJM prediction are included along with the jump angle contribution,
wn; see the text for definitions. Subscripts represent the uncertainty in the final digit(s).

Component Ea,0 E∆θ
a,n E jump

a,n E f rame
a,n

n = 1
Total 3.315 0.30210 3.625 3.6224
KE 0.963 0.0697 1.033 1.1113
LJ -0.914 -0.13610 -1.054 -0.9216

Coul 3.275 0.36914 3.645 3.4428

n = 2
Total 3.315 0.1296 3.445 3.6611
KE 0.963 0.0214 0.983 1.128
LJ -0.914 -0.0825 -1.004 -1.0215

Coul 3.275 0.1908 3.465 3.5724

n = 3
Total 3.315 0.0032 3.315 3.688
KE 0.963 -0.0122 0.953 1.097
LJ -0.914 -0.0323 -0.953 -1.0512

Coul 3.275 0.0474 3.315 3.6518

Table 4.2: Activation energies and their kinetic energy (KE), Lennard-Jones (LJ), and Coulombic
(Coul) contributions (all in kcal/mol) for the components of the extended jump model for different
order n reorientational TCFs. Subscripts indicate the uncertainties in the final digit(s).
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4.4 Results and Discussion

The timescales and activation energies for the OH reorientational dynamics were computed using

the simulation approach described above along with those for the jump time, jump angle, and

frame time components of the extended jump model. In the remainder of this Chapter, we present

and discuss these results with the aim of both testing the ability of the EJM to accurately describe

reorientation activation energies, and identifying the molecular origin of these activation energies.

4.4.1 OH Reorientation

We have calculated the OH reorientation TCF using Eq. (4.1) for n = 1−3. The three time correla-

tion functions are shown in Fig. 4.1 along with tri-exponential fits, Eq. (4.3). The τn timescales are

provided in Table 4.1. We note that the n = 2 timescales (and activation energies) are in agreement

with, but better converged than, our previous results.58,85,86,88
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Figure 4.3: Derivatives of the OH reorientational TCFs with respect to β , Eq. (4.9), for H2O at
298.15 K for n = 1 (black), 2 (blue), and 3 (orange); fits to Eq. (4.10) are shown as dashed lines of
the same color.
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The activation energies of the reorientational timescales are obtained from the corresponding

TCFs weighted by the energy fluctuations, δH(0), as given by Eq. (4.9). These derivative TCFs

are shown in Fig. 4.3 for n = 1− 3 along with their fits to the form in Eq. (4.10) based on a tri-

exponential decay of Cn(t). The fits provide an excellent description of the derivative TCFs and are

used to obtain the OH reorientational activation energy for each order, Ea,n, from Eq. (4.6). The

resulting values are provided in the two leftmost columns of Table 4.3.

We first use these results to examine the validity of the Debye model. In agreement with prior

calculations,85,88,156,157 the τn reorientation time ratios deviate from the values predicted by the

Debye rotational diffusion model: τ1/τ2 = 2.02 and τ1/τ3 = 2.99 are significantly smaller than the

ratios of 3 and 6, respectively, given by the diffusive model. The activation energies exhibit more

modest differences and are not distinguishable outside the errors. This shows that the reorientation

time ratios are expected to be approximately independent of temperature and thus that there is no

temperature where these ratios would reach the ideal Debye diffusion values. While activation en-

ergies are not as instructive as a test of the Debye model compared to the reorientation timescales,

they show that the deviation with respect to the Debye model is present over a broad temperature

range in liquid water. In addition, a recent comparison of the activation energies of water reori-

entation, diffusion, and viscosity found deviations from the Debye-Stokes-Einstein description,

which argues against this picture for water reorientation.50 Finally, the kinetic, Lennard-Jones,

and Coulombic energy contributions to the reorientation activation energy, also reported in Ta-

ble 4.3, show that these different components are approximately independent of the order n. Their

interpretation will be provided below.

We now proceed to test the ability of the extended jump model to describe the reorientation ac-

tivation energy, and analyze its jump and frame components to provide a molecular understanding

of reorientational activation energies.
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4.4.2 Jump Contribution to Reorientation

As noted in Sec. 4.2.4, the jump contribution to the reorientational timescale has two components:

the jump time and the distribution of jump angles. We consider each in turn.

4.4.2.1 H-bond Jump Times
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Figure 4.4: a) Jump TCF, 1-Cab(t), (black) and its derivative, Cab,H(t), (red). b) The total energy
(black), kinetic energy (red), Lennard-Jones (purple), and Coulombic (green) contributions to the
derivative TCF. Calculated TCFs are shown as solid lines and fits as dashed lines of the same color.

The stable states TCF introduced in Sec. 4.2.4 was used to calculate the H-bond jump time and

its activation energy for water from the same simulations used to obtain the OH reorientational

dynamics. The calculated Cab(t), Eq. (4.16), and its bi-exponential fit are shown in Fig. 4.4a. The

longer timescale is the jump time, τ0, and is found to be 3.142 ± 0.002 ps, which is in excellent

agreement with previously reported results.31,85,86 Note that τ0 is the inverse of the rate constant

k0 for an OH to exchange one H-bond acceptor for another and hence is independent of the order

n for the reorientational TCF.

The activation energy of the jump time is calculated from the Cab,H(t) correlation function

given in Eq. (4.17), which is also plotted in Fig. 4.4a. By fitting this derivative TCF to a bi-

exponential form analogous to Eq. (4.10), we obtain ∂k0/∂β from which we find an activation

energy of Ea,0 = 3.31 ± 0.05 kcal/mol. This is in good agreement with our previously reported

values of 2.9 kcal/mol31,85 from an Arrhenius analysis and 3.2 kcal/mol from a direct fluctuation
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theory calculation.31 We note that the non-Arrhenius temperature dependence of water dynamics

around ambient conditions makes the results of Arrhenius analyses sensitive to the chosen tem-

perature range.44 This jump time activation energy is lower than that for the OH reorientation

timescale (independent of the order). This indicates that the latter, which is more easily measured,

cannot be used alone to determine the former.

As discussed in Sec. 4.2.1, the fluctuation theory approach provides a rigorous decomposi-

tion of the activation energy. We applied this approach to the jump time TCF using the energy

components given in Eq. (4.11) and the results are shown in Fig. 4.4b. These are also fit to a bi-

exponential form of Eq. (4.10) to extract activation energies associated with each contribution to

Ea,0 as in Eq. (4.12). The activation energies extracted in this way are reported in Table 4.2.

The results in Fig. 4.4b and Table 4.2 are consistent with our previous analyses of water diffu-

sion coefficients,13,58,160 reorientational dynamics,13,44,58,160 and viscosity.50 Namely, the electro-

static contribution dominates with ECoul
a,0 = 3.27±0.05 kcal/mol, nearly equal to the total activation

energy. The kinetic energy contribution is also positive, but smaller (0.96±0.03 kcal/mol) and the

Lennard-Jones potential energy contributes a negative activation energy on the same order as the

kinetic contribution (−0.91±0.004 kcal/mol). However, this near cancellation of EKE
a,0 and ELJ

a,0 is

actually fortuitous and it can be seen that it is actually the Coulombic and Lennard-Jones contri-

butions that are in competition.160

The physical explanation for this competition between the Coulombic and Lennard-Jones in-

teractions can be understood by considering the chemical “reaction" involved in the H-bond jump.

This is illustrated schematically in Fig. 4.5. In a typical H-bond the two water molecules sit high up

on the repulsive wall of their mutual Lennard-Jones potential, held there by the attractive Coulom-

bic interactions. To exchange H-bond partners, the water molecules must increase their intermolec-

ular distance, moving to the hydrogen bond exchange transition state (a bifurcated hydrogen-bond

arrangement; as discussed in Ref. 32, it is unstable in ambient liquid water, in contrast to sug-

gestions of stable overcoordinated water molecules in structures quenched from supercooled tra-

jectories).163 This necessarily involves moving lower on the repulsive wall of the Lennard-Jones
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Figure 4.5: Schematic illustration of the potential energy contributions to the jump activation en-
ergy. The “reactant" and transition state structures are shown (middle panel) in the context of the
radial distribution function and free energy profile. The corresponding changes in the Lennard-
Jones (top panel) and Coulombic (bottom panel) interactions are depicted.

potential while simultaneous rising higher on the intermolecular electrostatic potential. This rise

in the Coulombic energy and fall in the Lennard-Jones potential associated with the process of an

H-bond exchange leads to the positive and negative activation energy components, respectively.

However, the electrostatic interactions are dominant and are thus quantitatively larger. The pre-

dominance of Coulombic interactions in the water jump and reorientation activation energies is

consistent with the marked activation energy increase for water reorientation hydrogen-bonded to

anions with increasing charge density,164 which has been explained by a transition-state H-bond

strength effect in the jump mechanism.148
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4.4.2.2 H-bond Jump Angle Distribution

To fully calculate the activation energy for the jump reorientation component, it is also necessary

to calculate the temperature-induced changes in the distribution of jump angles as described in

Sec. 4.2.4.

We start by calculating the jump angle distribution. From each short NV E trajectory, P(∆θ)

was calculated using the first H-bond exchange of every initially H-bonded OH group and then

results were averaged across all of the trajectories. The distribution is shown in Fig. 4.6a and gives

the average angular jump amplitude to be 〈∆θ〉= 70.31◦ ± 0.02◦. This is in excellent agreement

with the previously reported results by Laage and Hynes,85 which gave the average amplitude as

68◦. With this jump angle distribution wn can be calculated using Eq. (4.15) for each order of the

Legendre polynomial n = 1, 2, or 3; the resulting values are given in Table 4.1.

The calculated jump angle distribution has two prominent features. The central feature peaks

around 52.5◦ and corresponds to H-bond exchanges in which the new H-bond acceptor is itself

H-bonded (either as a donor or acceptor) to the original H-bond acceptor for the OH of interest.165

The peak at larger jump angles is associated with new acceptors that have no H-bond connection

with the current acceptor.

A qualitative connection between the jump angle distribution and the water OO radial distri-

bution function can be suggested. At the jump transition state, a ∆θ angle between Oa, Od and

Ob implies that the OaOb distance is 2OO‡ sin(∆θ/2) where OO‡ is the OdOa,b transition state

distance. If one adopts the strong approximations that i) the OaOb transition-state distribution is

similar to the equilibrium OO radial distribution function and ii) that the jump angle probability is

only determined by the probability of the presence of the new acceptor Ob, thus ignoring the in-

crease in jump barrier energy with ∆θ , the jump angle probability is approximately proportional to

gOO
(
2OO‡ sin(∆θ/2)

)
sin(∆θ). This simplified geometric picture can explain the general shape

of the jump angle distribution and suggests that the first peak in the jump angle distribution corre-

sponds to the first peak in the OO radial distribution function.

We have further calculated the derivative of the jump angle distribution with respect to β ,
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Figure 4.6: a) The jump angle distribution, b) the derivative of the jump angle distribution, and c)
the total (black), kinetic energy (red), Lennard-Jones (purple) and Coulombic (green) contributions
to the jump angle distribution derivative are presented.

−PH(∆θ). This derivative distribution is obtained by the same process as that used to calculate

P(∆θ), but the contribution of each jump angle is weighted by the energy fluctuation at the time

of the jump, δH(τ∗). The derivative of the probability distribution is presented in Fig. 4.6b. To

calculate the activation energy associated with changes in the jump angle distribution with tem-

89



perature, E∆θ
a,n in Eq. (4.19), we use Eqs. (4.15) and (4.20). These activation energies, given in

Table 4.2, are found to be 0.302 ± 0.010, 0.129± 0.006, and 0.003± 0.002 kcal/mol for n = 1,

2, and 3, respectively. Thus, they are at least an order of magnitude smaller than the jump time

activation energy, Ea,0, and represent only a small part of the overall jump contribution to the OH

reorientational activation energy E jump
a,n .

We have also calculated the decomposition of the jump angle distribution derivative with β ,

denoted as −PX(∆θ) where X = KE, LJ, or Coul. These derivative distributions are plotted in

Fig. 4.6c and the contributions to the jump angle distribution activation energy are given in Ta-

ble 4.2. While the scale of the activation energy contributions decrease with increasing orders

of the Legendre polynomial, the trends for the components are similar to that of the jump time.

Namely, electrostatics represent the largest contribution, partially canceled by the smaller, negative

Lennard-Jones component. Coulombic interactions disfavor large amplitude jumps when the tem-

perature decreases, probably because in the transition state configurations for large-angle jumps

the OH group that reorients loses its favorable electrostatic interactions with both the initial and

final acceptors. The LJ potential disfavors small-angle jumps, presumably because they require

small OaOb distances that involve significant repulsive LJ interactions.

Interestingly, in contrast to the case of the radial distribution function and other static quantities

that depend only on coordinates (not momenta),147 the kinetic energy contribution to jump angle

distribution derivative is non-zero. This is a clear indication that the jump angle distribution is a

dynamical quantity. Namely, P(∆θ) effectively depends on the coordinates before and after an

H-bond exchange, which leads to a correlation between the system kinetic energy and the jump

angle. The KE contribution is effectively zero for large-angle jumps but positive for small-angle

ones, suggesting that these dynamical effects depend on the nature of the new acceptor.

Using the calculated activation energies of the jump angle distribution, E∆θ
a,n , and the charac-

teristic jump timescale, Ea,0, the total jump contribution to the OH reorientation activation energy,

E jump
a,n , can be calculated from Eq. (4.19). These are found to be 3.62± 0.05, 3.44± 0.05, and

3.31±0.05 kcal/mol, respectively, for n = 1, 2, and 3. The full decomposition of these activation
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energies are provided in Table 4.2. Note that the change in E jump
a,n with the order of the reorienta-

tional TCF is associated only with the jump angle distribution (which itself does not depend on n)

reflecting different weighting of the large-amplitude angular jumps.

4.4.3 Frame Contribution to Reorientation

The final component of the EJM is the frame reorientation. We have calculated the frame reorien-

tation TCF as described in Sec. 4.2.5 and the results are shown in Fig. 4.7a. Because Cn, f rame(t)

can only be obtained from OH groups that have not exchanged their H-bond acceptor, the TCF

can only be calculated for limited times (up to delays on the order of the H-bond jump time). In

practice, we find that the time range over which data can be reliably obtained is approximately

four times the characteristic jump time τ0, or 12.5 ps. At this time, fewer than 2% of the originally

H-bonded OH moieties have not switched partners and are thus still contributing to Cn, f rame(t).
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Figure 4.7: a) Frame reorientational TCF, Cn, f rame(t) for n = 1 (black), 2 (blue), and 3 (orange),
and b) Corresponding derivative TCFs, Cn, f rame,H(t). Fits are shown as dashed lines in the same
color.

The calculated Cn, f rame(t) are well described by a bi-exponential fit, also shown in Fig. 4.7a, in

which the longer time is the frame reorientation time. We find τ
f rame

n = 16.91±0.13, 5.97±0.03,

and 3.19±0.02 ps for n= 1, 2, and 3, respectively.166 The n= 1 and 2 values are in good agreement

with the τ
f rame

1 = 15.5 ps and τ
f rame

2 = 5.6 ps previously obtained by Laage and Hynes.85
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The derivatives of the frame reorientation TCFs,

∂C f rame
n (t)
∂β

= −〈δH(0)Pn [~eOO(0) ·~eOO(t)]〉Hbond

≡ Cn, f rame,H(t), (4.24)

were also calculated and are presented in Fig. 4.7b. We find that the frame activation energies are

3.62±0.24, 3.66±0.11, and 3.68±0.08 kcal/mol for n = 1, 2, and 3, respectively.

It has been suggested that, while the mechanism for OH reorientation is not diffusive, the

frame reorientation is much closer to the ideal diffusive behavior.85 This rotation likely involves,

as elementary steps, H-bond exchanges between the central H-bonded partners and the surround-

ing waters in their first solvation shell (while maintaining the central H-bond). We can examine

whether collectively these jumps lead to Debye rotational diffusion for the frame reorientation

using the two essential predictions of the timescales and activation energies made by the Debye

model in Eq. (4.2). Namely, in terms of the frame reorientation timescales calculated here, we find

τ
f rame

1 /τ
f rame

2 = 2.83, τ
f rame

1 /τ
f rame

3 = 5.30, and τ
f rame

2 /τ
f rame

3 = 1.87, which are in reasonable

accord with the Debye predictions of 3, 6, and 2, respectively. These timescale ratios thus suggest

that the contributions from multiple H-bond exchanges with the solvating water molecules leads to

primarily diffusive rotational dynamics for the frame.

The activation energies obtained for frame reorientation, Table 4.2, are the same within statis-

tical error, which is also consistent with the Debye model. However, the example of OH reorienta-

tion discussed in Sec. 4.4.1, suggests the activation energies may not be instructive for testing the

rotational diffusion model.

The derivative TCF for frame reorientation, Cn, f rame,H(t) can also be decomposed in terms of

contributions from the kinetic, Lennard-Jones, and Coulombic energies. These results are shown

in Fig. 4.8 and the derived activation energies are given in Table 4.2. The magnitudes and signs

of the different components of the frame activation energy follow the same trends observed for the

jump time. In addition, as is true for the total E f rame
a,n , each contribution is nearly independent of

92



the order n of the reorientational TCF.
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Figure 4.8: Decomposition of the derivative frame reorientation TCF, Cn, f rame,H(t), for a) n = 1,
b) n = 2, and c) n = 3. Contributions from kinetic (red), Lennard-Jones (purple), and Coulombic
(green) energies are compared to the total (black). Fits are shown as dashed lines of the same color.
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Component Ea,n = Weighted Jump + Weighted Frame = EEJM
a,n

Calculated Contribution Contribution Predicted

n = 1
Total 3.7011 = 2.564 + 1.067 = 3.628
KE 1.069 = 0.732 + 0.324 = 1.054
LJ -1.019 = -0.743 + -0.274 = -1.016

Coul 3.658 = 2.584 + 1.009 = 3.589

n = 2
Total 3.697 = 2.153 + 1.375 = 3.525
KE 1.085 = 0.622 + 0.423 = 1.034
LJ -1.017 = -0.631 + -0.385 = -1.006

Coul 3.6110 = 2.173 + 1.339 = 3.5010

n = 3
Total 3.567 = 1.733 + 1.764 = 3.495
KE 1.035 = 0.502 + 0.523 = 1.014
LJ -0.987 = -0.492 + -0.505 = -1.006

Coul 3.5111 = 1.733 + 1.749 = 3.479

Table 4.3: The additivity of the activation energies (all in kcal/mol) within the EJM is presented.
The directly calculated OH reorientation activation energy (Ea,n) and its different energetic contri-
butions are compared for each n to the EJM prediction (EEJM

a,n ) and its weighted jump and frame
reorientation components in Eq. (4.7).
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4.4.4 Tests of the Extended Jump Model

In this Section, we address two important features of the extended jump model: 1) its ability

to quantitatively predict OH reorientation activation energies, and their components associated

with different interactions and motions, and 2) the relative contributions of the jump and frame

contributions to temperature dependence of the OH reorientation time. The latter will provide a

novel insight in the molecular origins of the reorientation activation energy.

4.4.4.1 Prediction of OH Reorientation Times

The extended-jump model has been demonstrated to describe the timescales and mechanisms of

water reorientation in neat water85,88 and the jumps have been characterized via two-dimensional

infrared spectroscopy experiments in aqueous salt solutions.134,167 In particular, Laage and Hynes

showed that the overall reorientation rate constant is the sum of the jump and frame reorientation

rate constants, Eq. (4.4). In Table 4.1 we have included these contributions, τ
jump

n and τ
f rame

n , as

well as the predicted OH reorientation timescale, τEJM
n . It can be seen that the EJM reasonably

predicts the OH reorientational timescales for all three orders of the TCF and the results are in

good agreement with those previously reported.85,88 We note, however, that the EJM prediction is

not exact, and the simple consideration of the reorientation times cannot decide whether the small

residual discrepancy is caused by some of the EJM approximations (e.g., the assumptions of an

isotropic jump axis distribution and of a decoupling between the jumps of the two OH groups in

the same water molecule) or by some more fundamental issue with the jump mechanism.

4.4.4.2 Prediction of OH Reorientation Activation Energies

Here, we have presented a different approach for examining the extended jump model by examin-

ing its predictions for the temperature dependence of the OH reorientational timescales. Specifi-

cally, we have used our calculated results for the activation energies of the jump angle distribution,

the jump time, and the frame reorientation time to calculate the OH reorientation activation energy

predicted by the EJM in Eq. (4.7). We now compare these predictions to the directly computed
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Figure 4.9: Contributions to the OH reorientation activation energy for n = 1, 2, and 3 (gray
spheres) are compared to the EJM predictions (bars) divided into the jump (red bars) and frame
(blue bars) weighted components in Eq. (4.7).

OH reorientation activation energies. The fluctuation theory approach avoids potential numerical

inaccuracies associated with choosing a range of temperatures for an Arrhenius analysis as well as

any effects of intrinsic non-Arrhenius behavior. This issue is particularly critical in liquid water,

where these non-Arrhenius effects are especially pronounced for dynamical properties.6,141,145,146

In Table 4.3 and Fig. 4.9, we compare the calculated activation energy for each reorientational

timescale τn to the EJM prediction, which is further broken down into the contributions from H-

bond jumps and frame reorientation. Note that the jump and frame contributions to the activation

energies include the reweighting by the ratio of the timescales as seen in Eq. (4.7). The results

clearly show that the EJM accurately predicts the activation energies of water OH reorientation for

all three orders of the TCF. As activation energies are a commonly used measure of the temperature

dependence of timescales, this indicates that the EJM not only accurately predicts the OH reorien-

tation time itself, but also the temperature dependence of the reorientation time. This is true for all

orders of the reorientational TCF, but most importantly, it is accurate for the n = 2 order which is
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experimentally accessible via both NMR and pump-probe infrared anisotropy experiments.

4.4.4.3 Jump and Frame Contributions to Ea,n

It is interesting to examine the relative contributions of the jump and frame mechanisms to the OH

reorientation activation energy. The jump and frame contributions to the nth-order reorientational

time activation energies are given in Table 4.2. As noted above, the frame reorientation activation

energy is E f rame
a,n ' 3.65 kcal/mol independent of the order. This is similar in magnitude to the

jump contribution, which includes the temperature dependence of both the jump time and the jump

angle distribution. For n = 1, the overall jump activation energy, Eq. (4.19), is effectively the same

as that for frame reorientation (E jump
a,n = 3.62±0.05 kcal/mol). How these two combine to predict

the OH reorientation activation energy depends on the relative jump and frame timescales as given

in Eq. (4.7). Because the jump contribution to the reorientation time is faster than the frame time,

τ
jump

n < τ
f rame

n (see Table 4.1), the OH reorientation time has a larger contribution from the jumps.

This is illustrated in Table 4.3 and Fig. 4.9 where the weighted jump and frame contributions to τn

given in Eq. (4.7) are shown. For the n = 1 reorientational TCF, the weighted jump contribution is

∼ 2.5 times larger than the weighted frame contribution.

As the order increases, the jump and frame contributions to τn both decrease but also get closer,

as shown in Table 4.1. At the same time, the frame activation energy is independent of n while the

jump contribution activation energy decreases modestly with n; see Table 4.2. The effect of these

two trends is that the weighted frame contribution to the OH reorientation activation energy grows

as the weighted jump contribution shrinks. As given in Table 4.3 and shown in Fig. 4.9, for n = 2,

the weighted jump contribution is only 1.5 times the weighted frame contribution and, for n = 3,

the two are equal. Thus, the relative importance of frame reorientation and H-bond jumps to the

OH reorientational activation energy Ea,n depends on the order n. And it does so primarily because

of the difference in how τ
f rame

n decreases more quickly with n than does τ
jump

n .

The close quantitative similarity of the activation energies for the jump and frame contributions

to OH reorientation, E jump
a,n and E f rame

a,n , indicates that their relative importance in determining Ea,n
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will not be strongly temperature dependent. In other words, the effect of H-bond jumps should be

the dominant contribution to both τn and Ea,n for n= 1 or 2 over a significant range of temperatures

(at least outside the deeply supercooled regime where non-Arrhenius effects are important.)

While it is important that the EJM description of water reorientation accurately predicts the

activation energy, it is even more critical that it does so for the right reasons. We have tested

this using the decomposition of the calculated Ea,n into kinetic, Lennard-Jones, and Coulombic

energy contributions in direct comparison to the EJM predictions. These results are also included

in Table 4.3 and Fig. 4.9. As with the total activation energy, each component also correctly

predicts the reorientation activation energy contribution from that component. Thus, the EJM not

only accurately describes the activation energy but also the physical interpretation of its origins.

4.5 Conclusion

This work demonstrates an application of the fluctuation theory for dynamics to the extended jump

model of water reorientation. We have calculated the activation energies of the jump reorientation

time, the distribution of jump angles, and the frame reorientation time and used them to predict the

OH reorientation time in liquid water for multiple orders of the reorientation correlation function.

Importantly, the activation energies extracted from both the actual and predicted OH reorientation

agree, but they are also in good agreement with experimental results from pump-probe infrared

anisotropy experiments,7,105,138 supporting the EJM as the physical model underlying water re-

orientation. Furthermore, the activation energy decomposition indicates that the EJM correctly

determines the activation energies for the right reasons as the predicted and the actual decomposi-

tion of the OH reorientation activation energy are also in excellent agreement.

The frame reorientation times and activation energies were examined probe the nature of this

reorientation. The ratio of timescales of different orders of the reorientational TCF strongly in-

dicate that the frame reorientation is reasonably described by Debye rotational diffusion. This

rotational diffusion is likely caused by Brownian orientational motions induced in the frame of the

unbroken hydrogen bonds by exchanges within the first solvation shells of the H-bond partners.
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It was found that not only the total activation energy, but also the decomposition of the activation

energy, was unchanging with the order of the Legendre polynomial; while this result is predicted

by the Debye model of rotational diffusion, this behavior of the activation energies does not appear

to be significantly different from the predictions of the EJM.

In all, the work presented here provides strong evidence for the EJM description of OH reori-

entation. Furthermore, for the first time, the contributions to water reorientation from each compo-

nent of the activation energy has been explained in terms of jump and frame component activation

energies. The methods presented here are general and could be easily extended to reorientation of

water molecules around a solute or in the first hydration layer of a biomolecule.
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Chapter 5

On the role of hydrogen bond exchanges in the spectral

diffusion of water

5.1 Introduction

The development of two-dimensional infrared photon-echo (2D-IR) spectroscopy has driven con-

siderable interest in spectral dynamics in liquids and other condensed phase environments.72,169–171

This technique provides a method to monitor the fluctuations of a particular vibrational frequency,

the spectral diffusion, to gain new insight into the liquid dynamics. This spectral diffusion is

described by the frequency-frequency correlation function (FFCF) that represents a quantitative

measure of the timescale(s) with which a vibrational mode loses memory of its frequency.

While 2D-IR spectroscopy has been applied across a diverse set of systems, liquid water is

perhaps the best studied case. The water OH stretch vibration is of particular interest, because

its frequency sensitively depends on the hydrogen-bond (H-bond) strength. The FFCF obtained

by 2D-IR spectroscopy thus provides a unique probe of the H-bond fluctuation dynamics in the

liquid. Several theoretical and simulation studies172–175,175–177 have investigated the molecular

origin of the OH frequency dephasing in liquid water, and led to a consensus about the role of

H-bond rearrangements. However, different suggestions were made regarding the exact nature of

these rearrangements and their short-ranged or collective character.

Adapted with the permission of Zeke A. Piskulich, Damien Laage, and Ward H. Thompson and AIP Publishing
from J. Chem. Phys. 154, 064501 (2021).168
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After these pioneering studies of frequency dephasing in water, it was shown85,88 that a ma-

jor contribution to H-bond rearrangements originates from H-bond exchanges, where a water OH

group switches H-bond acceptors via a sudden angular “jump" of the OH bond. The extended

jump model85,88 (EJM) combines this jump mechanism with the slower tumbling of the intact

H-bond between these jumps and is able to accurately predict not only the timescales of water

OH reorientation,85,88 but also the associated activation energies.136 Additionally, direct evidence

of these large-angle jumps in salt solutions was provided by polarization-sensitive 2D-IR spec-

troscopy measurements.167

These large-angle jumps occurring with H-bond exchanges represent the main underlying

molecular step for much of the dynamics of water, including reorientation,85,88 diffusion,58,136,178,179

and shear viscosity.50,178 Prior studies175,175,180 have suggested that H-bond exchanges are also the

cause of spectral diffusion, but others have proposed alternative interpretations.155,176,177,181–183

In this Chapter, we carry out a detailed analysis of the FFCF for isotopically dilute liquid water

(HOD in D2O) with the aim of elucidating the dynamics to which it is sensitive. The particular fo-

cus is on how H-bond exchange dynamics appears in the spectral diffusion. In addition to the FFCF

itself, we investigate its temperature derivative and hence the activation energies associated with

the spectral diffusion timescales. This is accomplished by application of the recently developed

fluctuation theory for dynamics.13,31,44,50,58,59,136,147,160,184

Before proceeding, we first note that the FFCF exhibits short-time (< 0.5 ps) dynamics, which

appears to now be uniformly recognized as associated with underdamped, librational dynamics

within the intact H-bond.8,172–174,176,177 The focus of the present work, however, is the longer-time

(picosecond) spectral diffusion that has been the subject of many studies and for which several in-

terpretations have been proposed. While all studies concur that this timescale reports on water

H-bond rearrangement dynamics, it is important to note that the language used to describe the phe-

nomena underlying spectral diffusion dynamics is not unambiguous. Namely, “H-bond dynamics"

can encompass multiple physically distinct processes with increasing timescales: 1) the rearrange-

ment of the H-bond geometry without breaking the H-bond itself, 2) transient breaking of H-bonds
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that occurs before another H-bond partner is found in an exchange event or that occurs without

any exchange at all when an OH returns to its original H-bond acceptor, and 3) H-bond jumps in

which the OH group switches from one acceptor to another. All three types of dynamics surely

play some role in spectral diffusion and in the following we will attempt to carefully distinguish

between them in our discussion.

We first provide a brief overview of the prior studies of water frequency dephasing and their

interpretations. In explaining some of the earliest measurements of spectral diffusion, the rela-

tionship between the H-bond, O· · ·O, distance and the OH frequency was often invoked, and OH

frequency dephasing was attributed to the overdamped O· · ·O bond relaxation caused by the large

surrounding solvent friction.181–183,185,186

However, four subsequent parallel studies all found that spectral diffusion in water is not asso-

ciated with modulation of the H-bond distance but rather with H-bond rearrangement dynamics.

First, Rey, Møller, and Hynes172,174 showed that the O· · ·O vibration is underdamped and

that the relationship between the OH frequency and this H-bond distance involves considerable

dispersion, notably due to the librational motion. By contrasting the frequency dynamics of all

water OH groups and that of OH groups engaged in intact H-bonds, they concluded that “...the

one-to-one frequency-H-bond length assumption is not valid and that the observed experimental

time scale should be interpreted in terms of H-bond-breaking and -making dynamics."172 This

picture sat in contrast to the previous descriptions centered on the H-bond distance alone and

stressed the importance of H-bond rearrangement dynamics.

In concurrent work, Lawrence and Skinner187,188 simulated both the spectral diffusion and H-

bond dynamics and also concluded that “at longer times the decay of the spectral diffusion TCF is

due to hydrogen bond breaking and making dynamics."187 More specifically, they proposed that

the spectral diffusion time, τω , is equal to the total rate constant for achieving equilibrium via both

forward and backward H-bond exchanges. Using the intermittent H-bond lifetime, τHB, as a proxy

for the H-bond exchange time, τ0, they argued then the spectral diffusion time is given by τω =

τHB/2. There are, however, at least two unresolved puzzles associated with this viewpoint. First,
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subsequent characterization of H-bond exchanges via the jump mechanism85,88 led to an improved

determination of the H-bond exchange time from simulations as τ0 ' 3.1− 3.7 ps.85,127,136 This

value is thus significantly longer than the H-bond dynamics considered in Ref. 187, and more

than twice slower than the spectral diffusion time of isotopically dilute HOD in D2O determined in

both simulations and measurements to be τω ' 1−1.5 ps.72,114,176,189 H-bond exchanges are thus

too slow to explain the fast frequency dephasing. Second, this would require spectral diffusion to

be mostly caused by specific H-bond rearrangements that are only accomplished by an exchange

of H-bond partners, even though both initial and final partners are water molecules with identical

average properties. The nature of these rearrangements would need to be characterized.

A third contribution by Fecko et al.176 stressed the collective character of the H-bond rear-

rangements causing the spectral dephasing. They compared the FFCF to the time correlation func-

tions of different contributions to the OH frequency (within a perturbation theory description) and

some of the geometric parameters (O· · ·O distance and tetrahedrality parameter, q) and found they

all have similar long-time decays. Thus, they concluded that the spectral diffusion “...reflects a va-

riety of relaxation mechanisms, including collective rearrangement of the hydrogen-bond network,

as well as density and polarization fields, on length scales greater than a molecular diameter." They

further argue that these longer time dynamics, which do include the “...breaking and forming of

hydrogen bonds, involve the concerted motions of many molecules."

Finally, a different interpretation was later proposed by Garrett-Roe and Hamm177 who ex-

amined the spectral diffusion dynamics based on MD simulations using the SPC model within a

perturbation theory approach. Their analysis was based on the calculation of three-time FFCFs

rather than the usual (two-time) measure of spectral dynamics and they found that their results

“...show that hydrogen bond rearrangements occur largely perpendicular to the OH stretch fre-

quency axis..." However, the motions causing the OH frequency dephasing were not discussed.

In the remainder of this Chapter, we examine the spectral diffusion and H-bond exchange

dynamics for HOD in D2O to gain greater insight into their connection. These analyses indicate

that the spectral diffusion timescale, as it is typically extracted from the long-time decay of the
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FFCF, is not consistent with that of an H-bond exchange. Rather, we offer evidence that the H-

bond jump timescale is present in the FFCF decay, but only as an additional, small-amplitude

timescale.

5.2 Theory

Spectral diffusion is most clearly quantified in terms of the normalized frequency-frequency time

correlation function (FFCF) given by

Cω(t) =
〈δω01(0)δω01(t)〉

〈δω2
01〉

, (5.1)

where δω01(t) = ω01(t)−〈ω01〉 is the fluctuation in the transition frequency at time t and 〈· · · 〉

represents a thermal average. The spectral diffusion time, which we will refer to as τω is typically

extracted as either the longest timescale of a tri-exponential fit72,114,190 of Eq. (5.1) or the timescale

from a single exponential fit to Cω(t) for long times, e.g., t > 1.5 ps.123 Note that the FFCF, under

reasonable assumptions (at least for the neat liquid),191 can be extracted from the center-line-slope

of a 2D-IR spectrum and is thus experimentally accessible.

In the present analysis, we use a multi-exponential fit,

Cω(t) = ∑
α

Aαe−kα t , (5.2)

to describe the FFCF. We consider fits with both three and four exponentials and in all cases

the shortest three timescales, τα = 1/kα , are assigned as the inertial (τiner), librational (τlib), and

spectral diffusion (τω ) times, respectively. When fitting to three and four exponentials we will

denote the spectral diffusion time as τ
(3)
ω and τ

(4)
ω , respectively. When four exponentials are used,

the longest timescale will be the separately calculated jump time, τ0. Note that the inertial and

librational decays are not qualitatively exponential, but Eq. (5.2) provides an adequate description

of the associated timescales without adversely affecting the longer timescales that are the focus of
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the present investigation.

The jump time characterizing H-bond exchanges can be obtained from the stable-states time

correlation function,

Cab(t) = 〈na(0)nb(t)〉, (5.3)

where here na (nb) equals 1 for a given OH if it is H-bonded to acceptor a (b) and is 0 otherwise.

Thus, for a given OH initially H-bonded to an acceptor we can denote as a, the contribution to

Cab at t = 0 is zero and it only changes to 1 when the OH has switched to a new acceptor (b).

Thus, Cab(t) rises on a timescale equal to the rate constant for H-bond exchanges. Or, equivalently,

1−Cab(t) decays as an exponential with a timescale equal to the jump time. In practice, some

short-time non-exponential dynamics is observed in Cab(t) and we fit it to a bi-exponential where

the longer timescale is the jump time τ0.

We calculate the activation energy for the spectral diffusion timescales based on the fluctuation

theory for dynamics.13 This approach directly evaluates the temperature derivative of a time cor-

relation function from simulations at a single temperature. A detailed derivation can be found in

Ref. 13. Briefly, for the FFCF in Eq. (5.1), the derivative with respect to β = 1/kbT is given by

∂Cω(t)
∂β

= −〈δH(0)δω01(0)δ ω01(t)〉
〈δω2

01〉

+
〈δH(0)δω2

01〉〈δω01(0)δ ω01(t)〉
〈δω2

01〉2

= −Cω,H(t), (5.4)

where δH(0) =H(0)−〈H〉 is the fluctuation in the total system energy. We have noted that T only

appears in the Boltzmann weighting and normalizing canonical partition functions implicit in the

thermal averages in Cω(t). Note that the time-correlation functions in Eq. (5.4) can be evaluated

at a single temperature using the same simulations from which Cω(t) is obtained (see Sec. 5.3.1).

They give the analytical derivative of the FFCF in contrast the numerical derivative obtained an

Arrhenius analysis. The second term in Eq. (5.4) represents the temperature dependence of the
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FFCF normalization factor while the first correlates the spectral dynamics with δH(0), the total

energy in the system relative to its average value, e.g., faster (slower) spectral diffusion when more

(less) energy is available corresponds to a positive spectral diffusion activation energy.

The derivatives of the timescales are then obtained by fitting Eq. (5.4) to the derivative of the

fitting function in Eq. (5.2),

∂Cω(t)
∂β

= ∑
α

[
∂Aα

∂β
−Aαt

∂kα

∂β

]
e−kα t . (5.5)

In fitting ∂Cω(t)/∂β the timescales and amplitudes obtained from the fit of Cω(t) are used such

that the fitting parameters are only ∂Aα/∂β and ∂kα/∂β . The activation energy associated with

the α timescale is then given by

Ea,α =− 1
kα

∂kα

∂β
. (5.6)

Note that in this approach the activation energy is evaluated from simulations at a single tempera-

ture (no Arrhenius analysis is involved).

In an analogous fashion, the derivative of the jump TCF, Eq. (5.3), can be obtained as31,136

∂ [1−Cab(t)]
∂β

= 〈δH(0)na(0)nb(t)〉. (5.7)

This derivative is also fit to the form in Eq. (5.5), but with only two timescales. The jump time

activation energy, Ea,0, is then given by Eq. (5.6) for the longer, jump, timescale τ0.

5.3 Computational Methods

5.3.1 Simulation Details

The simulations were carried out using the Large-scale Atomic/Molecular Massively Parallel Sim-

ulator (LAMMPS).81 A cubic, fully periodic, simulation cell with side lengths of 21.725311 Å was

filled with 343 water molecules described by the SPC/E model,42 giving a density of 1.00 g/cm3.
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A simulation timestep of 1 fs was used. The Particle-Particle-Particle Mesh Ewald summation

method was used to calculate electrostatic interactions, with a tolerance parameter of 1×10−4.119,120

Water bonds and angles were held rigid using the SHAKE algorithm with a tolerance parameter of

1 ×10−4.82

One 200 ns NV T trajectory was propagated at 298.15 K, with positions and momenta saved

every 1 ps, yielding 200,000 configurations. Initial velocities were selected from a Maxwell-

Boltzmann distribution. The initial configuration was generated using PACKMOL. The Nosé-

Hoover thermostat damping parameter was 100 fs.83,84

From each saved configuration, a 20 ps NVE simulation was run from which time correlation

functions were calculated. Configurations from each simulation were saved every 10 fs, giving

2000 total configurations per NVE trajectory. Reported TCFs are calculated as the average across

the set of NVE trajectories and derivatives are calculated by weighting by the energy fluctuation

of each trajectory according to Eqs. (5.4) and (5.7). All fits of TCFs were calculated using the

Levenberg-Marquardt algorithm.192,193 All uncertainties are reported as a 95% confidence interval

according to the Student’s t-distribution over an average of ten blocks (each block representing

20,000 configurations).122

We have repeated the above analysis at room temperature for two other water models developed

by Skinner and co-workers, the E3B2 and the E3B3 water models.194,195 These models explicitly

add 3-body effects on top of existing force fields (TIP4P for E3B2 and TIP4P/2005 for E3B3). In

general, the simulation details remain the same as above; however, for the E3B2 and E3B3 models

the side lengths were 21.7710 and 21.7799 Å, respectively.

5.3.2 Vibrational Frequencies

The OH vibrational transition frequencies are related to the electric field imposed on the H atom by

the water molecules surrounding them, as described by the empirical mapping approach developed

by Corcelli, Skinner, and co-workers.196–199 In this work, we use maps that have been previously

developed for the SPC/E, TIP4P, and TIP4P/2005 force fields.198,199 In previous work, Skinner
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and co-workers have used the TIP4P map in calculations of the FFCF using the E3B2 and E3B3

models. Each of these maps takes the electric field experienced by each hydrogen atom from waters

within 7.831 Å of the H atom, which can be written as

Ei(t) =~eOH,i(t) · ~E (~rH,i, t), (5.8)

and correlates it to the transition frequency obtained from density functional theory calculations.

In the above expression, the electric field is calculated in atomic units,~rH,i is the position of the ith

H atom, and~eOH,i is a unit vector pointing along the OH bond.

For SPC/E, the transition frequency ω i
01(t), in cm−1, of the ith OH at time t can be written as

ω
i
01(t) = 3761.6−5060.4Ei(t)−86225Ei(t)2. (5.9)

Similarly, the TIP4P map (used for both E3B2 and E3B3) is,

ω
i
01(t) = 3760.2−3541.7Ei(t)−152677Ei(t)2. (5.10)

The density functional theory calculations used to obtain these “maps" are obtained from quantum-

mechanical/point charge cluster calculations using configurations selected from MD simulations.

The one-dimensional OH potential is calculated and the corresponding vibrational Schrödinger

equation is solved to obtain the frequency.198,199

5.4 Results and Discussion

5.4.1 Spectral Diffusion Timescales

We begin by considering the spectral diffusion dynamics as described by the FFCF. We have cal-

culated the FFCF for three different water models and the timescales and amplitudes for all the

simulations are given in Table 5.1. We first discuss the results for SPC/E water at 298.15 K, which

108



0 2 4 6 8 10 12
Time (ps)

0

0.2

0.4

0.6

0.8

1

C
ω
(t)

0 2 4 6 8 10 1210-4

10-3

10-2

10-1

100

Figure 5.1: The room temperature frequency-frequency correlation function (black solid line) for
SPC/E water is shown along with fits using three (blue dashed line) and four (red dashed line)
exponentials. Inset: Semi-log plot.

are shown in Fig. 5.1. The fit to a tri-exponential function, Eq. (5.2), is also shown, which gives

inertial and librational timescales of 33 and 374 fs, respectively, and a spectral diffusion time of

τ
(3)
ω = 1.30±0.03 ps. This last value is consistent with previous simulation studies72,190,196,200,201

for SPC/E water that found 0.9,196 0.98,190 and 1.2 ps.201 Similarly, photon-echo and 2D-IR mea-

surements have found this timescale to be 0.9, 1.2, or 1.4 ps for HOD/D2O and 1.7–1.8 ps for

HOD/H2O.72,114,130,176,190

However, it is evident from examination of the FFCF shown on a semi-log scale in the inset of

Fig. 5.1 that this tri-exponential description is not accurate at times longer than 4 ps. Rather, the

data indicate that an additional timescale is present in the dynamics. Based on the hypothesis that

these slower dynamics were in fact those associated with the exchange of H-bond acceptors, we

also fit the FFCF with Eq. (5.2) using four exponentials with the longest timescale constrained to
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3-Exponential Parameters
Model T (K) τiner τlib τ

(3)
ω Ainer Alib A(3)

ω

SPC/E 298.15 0.0331 0.3749 1.303 0.5402 0.3165 0.1457

E3B2 298.15 0.0331 0.4827 2.144 0.5472 0.3243 0.1294

E3B3 298.15 0.0301 0.4893 2.272 0.5881 0.3081 0.1041

4-Exponential Parameters
Model T (K) τiner τlib τ

(4)
ω τ0 Ainer Alib A(4)

ω Aτ0

SPC/E 298.15 0.0331 0.3204 0.982 3.161 0.5322 0.2664 0.1904 0.0131

E3B2 298.15 0.0311 0.3305 1.202 4.591 0.5242 0.2413 0.2093 0.0261

E3B3 298.15 0.0291 0.3573 1.192 4.301 0.5721 0.2333 0.1683 0.0271

Table 5.1: Timescales (in ps) and amplitudes of the FFCF calculated from three- (top) and four-
(bottom) exponential fits. Subscripts represent uncertainty in the trailing digit(s).

the jump time. The jump time was separately calculated as described in Sec. 5.2 from the same

simulations and found to be τ0 = 3.16± 0.01 ps. (We use a strict geometric definition of the H-

bond as ROd ···Oa ≤ 3.1 Å, rH···Oa ≤ 2.0 Å, and θH−Od ···Oa ≤ 20◦, where “d" indicates donor and

“a" acceptor.) This four-exponential fit is shown in Fig. 5.1 and provides an excellent description

of the full decay of the FFCF (out to 12 ps where the FFCF is less than 0.001). This indicates that

H-bond exchanges, i.e., jumps, are indeed present in the FFCF, but only as a long time component

described by the jump time and with an amplitude we find to be 1.3% for the SPC/E model. In

contrast, the third timescale, τ
(4)
ω , has an amplitude of 19.0%.

The tri-exponential fit yields a longest timescale, τ
(3)
ω , that represents a mixture of the more

rapid spectral diffusion dynamics in between exchanges of H-bond acceptors and that directly

associated with H-bond exchanges as described by τ0. The mixture is not an even one and the

dominant component is that which does not involve H-bond jumps. Because the jump time enters

with only a small amplitude, the spectral diffusion timescale is only modestly different in the two

descriptions with τ
(4)
ω = 0.98±0.01 ps. Notably, these results indicate that if one only calculates,

measures, or fits the FFCF to times less than ∼ 4−5 ps, the resulting timescale is not significantly

related to H-bond exchanges. An f -test, with a 95% confidence interval, confirms that the 4-

exponential fitting function provides a statistically significant improvement in the description of

the FFCF over the 3-exponential function.202
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Figure 5.2: Same as Fig. 5.1, but for the (a) E3B2 and (b) E3B3 water models.

It is important to evaluate the generality of this result by considering other water models. To

this end, we have carried out the same calculation of the FFCF for the E3B2194 and E3B3195

water models, which add three-body interactions to fixed charge models as noted in Sec. 5.3.1.

The former has been previously used to investigate water spectral diffusion and its temperature

dependence.123 The FFCFs obtained with these models are shown in Fig. 5.2 and the parameters

obtained from fitting them are provided in Table 5.1.

The spectral diffusion dynamics for these E3B force fields are qualitatively the same as that

observed for SPC/E water in Fig. 5.1. Namely, a tri-exponential fit is consistent with the calculated

FFCF only for shorter times, here less than 6 ps. At times longer than this the FFCF decays more

111



slowly than represented by the spectral diffusion time obtained in the fit, τ
(3)
ω = 2.1− 2.3 ps; see

Table 5.1. These times are consistent with the ∼ 2 ps previously reported by Ni and Skinner for

the E3B2 model.123 This is quantitatively slower than that obtained for the SPC/E model, which

represents the primary difference between the descriptions. Because of this behavior, we are able

to resolve the FFCF for the E3B models out to longer times than that for SPC/E water.

As with the SPC/E description, these τ
(3)
ω spectral diffusion times are considerably shorter

than the calculated jump times, which are also given in Table 5.1. The jump times of τ0 = 4.59 and

4.30 ps for E3B2 and E3B3, respectively, are significantly larger than the SPC/E value. Using these

values as the timescale for an added fourth exponential in fitting Cω(t) gives excellent agreement

over the full time range. However, this jump time contribution to the FFCF is still small, with an

amplitude of 2.6−2.7% compared to the faster spectral diffusion time amplitude of 21−17%. We

also note that the addition of this jump time component dramatically reduces the spectral diffusion

time obtained to 1.2 ps for both E3B models.

Thus, for all three water models we find the same features in the FFCF that indicate a small

role, < 3% of the total response, for H-bond exchanges that occurs on timescales longer than

the dominant component of 1− 1.2 ps. The latter occurs more rapidly than H-bond exchanges,

indicating it has a different physical origin.

5.4.2 Activation Energies

To further explore the role of H-bond exchanges in the spectral diffusion dynamics, we now turn to

an examination of the activation energies of the timescales involved. These activation energies can

shed light on the mechanistic origins of the decay times present in the FFCF. Most importantly,

if the spectral diffusion time is associated with H-bond exchanges, it should exhibit the same

activation energy as the jump time.203 Deviations from this prediction are indicative of a different

mechanistic origin (or origins) of the spectral diffusion timescale.

We evaluate this directly by calculating the temperature-, or more precisely, the β -derivative of

the full FFCF as described in Sec. 5.2 and expressed in Eq. (5.4). The results are shown in Fig. 5.3
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for all three water models along with the fits to the form given in Eq. (5.5). As with the FFCF

itself, it is clear that ∂Cω(t)/∂β is not adequately described at long times by the three-exponential

fit, but the agreement is excellent when a small additional component with a timescale equal to the

jump time, τ0, is included.
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Figure 5.3: The β derivative of the FFCF, ∂Cω(t)/∂β , versus time (black solid line) is shown for
the (a) SPC/E, (b) E3B2, and (c) E3B3 water models with three- (blue dashed line) and four- (red
dashed line) exponential fits, Eq. (5.5). In the latter, the longest timescale is fixed as the jump time,
τ0.

As noted in Sec. 5.2, the activation energy of each timescale can be obtained from fitting the

derivative FFCF, Cω,H(t). The results of this analysis are given in Table 5.2. (Note that the four-

exponential fits shown in Fig. 5.3 use the jump time τ0 and its derivative ∂τ0/∂β , both of which

are obtained from a separate analysis of the trajectories.) The calculated activation energies for

the spectral diffusion time are not the same as that for the jump time, independent of whether

the three- or four-exponential fit is considered. Specifically, the jump time has a significantly
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SPC/E Water Model
Timescale Ea KE LJ Coul

τ0 3.303 0.951 -0.884 3.236

τ
(3)
ω 2.2451 0.5120 -0.6050 2.3398

τ
(4)
ω 1.6898 0.4134 -0.9469 2.201.48

E3B2 Water Model
Timescale Ea KE LJ Coul
τ0 4.432 1.102 -1.162 4.492

τ
(3)
ω 3.3615 0.8316 -0.9115 3.4536

τ
(4)
ω 2.4920 0.5114 -0.7820 2.7642

E3B3 Water Model
Timescale Ea KE LJ Coul
τ0 4.143 1.061 -1.373 4.454

τ
(3)
ω 2.8135 0.769 -0.9417 2.9836

τ
(4)
ω 2.5530 0.5310 -1.1330 3.1540

Table 5.2: Activation energies and kinetic (KE), Lennard-Jones (LJ), and Coulombic (Coul) en-
ergy components for the jump time τ0 and the spectral diffusion times obtained from three-, τ

(3)
ω ,

and four-, τ
(4)
ω , exponential fits of the derivative FFCF, Cω,H(t). All energies are in kcal/mol; sub-

scripts represent uncertainty in the trailing digit(s).

higher Ea compared to the spectral diffusion time. This difference is increased when the long-time

behavior is more accurately described by inclusion of the fourth exponential with timescale τ0.

This indicates that the spectral diffusion times are determined by a process with a lower effective

barrier than that for H-bond exchanges. Consistent with our analysis of the FFCF, this suggests

that the spectral diffusion time cannot be solely, or even primarily, associated with H-bond jumps.

Furthermore, as was the case for the FFCF, an f -test with 95% confidence intervals confirms that

the derivative 4-exponential fitting function provides a statistically significant improvement over

the 3-exponential derivative function.202 Importantly, this demonstrates that the explicit inclusion

of the jump activation energy in this fit improves the quality of the fit of the long-time behavior of

the FFCF.

Ni and Skinner previously reported a spectral diffusion activation energy of 3.85 kcal/mol for

the E3B2 water model from an Arrhenius analysis.123 This is most directly comparable to Ea

114



for τ
(3)
ω in the present calculations, for which we obtain 3.36± 0.15 kcal/mol. It is not clear if

the two results are statistically different, however, as in Ref. 123 they obtain the timescale from

fitting the FFCF for times longer than 1.5 ps to a single exponential and use a wide temperature

range (283−363 K) for the Arrhenius analysis.204 It is important to note that while these values are

similar to activation energies reported for the spectral diffusion time from measurements – values of

3.4±0.5 kcal/mol105,138 and 3.5±0.2 kcal/mol139 have been reported (though Perakis and Hamm

argue that 6.2±0.2 kcal/mol, taken under different polarization conditions, is a better estimate139)

– they are not in agreement with the jump time activation energy obtained from the same water

model, Ea,0 = 4.43± 0.02 kcal/mol. Thus our present results indicate that the spectral diffusion

activation energy is not the same as the jump activation energy, and thus it is not associated with

H-bond exchanges.

5.4.3 Mechanistic Insight

The fluctuation theory approach provides a rigorous way to decompose the activation energy

into contributions from different components of the total energy by recognizing that δH(0) =

δKE(0)+δULJ(0)+δUCoul(0), where δKE(0), δULJ(0), and δUCoul(0) are the kinetic, Lennard-

Jones, and Coulombic energy fluctuations, respectively. This sum can be used to replace δH(0) in

Eqs. (5.4) and (5.7) to yield three separate derivative time correlation functions, each of which can

then be fit with Eq. (5.5) to extract the activation energy contributions associated with each term.

These contributions can be interpreted based on Tolman’s perspective.18 Tolman showed that for a

chemical reaction, the activation energy can be rigorously written as Ea = 〈H〉reacting−〈H〉reactants,

i.e., the average energy of the species that react minus the average energy of reactants. In this con-

text, the Lennard-Jones contribution to the activation energy is Ea,LJ = 〈ULJ〉reacting−〈ULJ〉reactants

or the average Lennard-Jones energy of reacting species minus the average Lennard-Jones energy

of reactants. Thus, such decompositions provide otherwise unavailable mechanistic insight into

how different kinds of energy in the system promote or inhibit the process of interest.

The decomposition of the FFCF derivative, ∂Cω(t)/∂β , into its kinetic, Lennard-Jones, and
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Figure 5.4: The β derivative of the FFCF, ∂Cω(t)/∂β , versus time (black solid line) and its kinetic
(red solid line), Lennard-Jones (violet solid line), and Coulombic (blue solid line) energy contri-
butions for the SPC/E water model. Four-exponential fits, Eq. (5.5), are also shown (dashed lines
of the same color; not easily visible because of the high quality of the fit.)

Coulombic contributions is shown in Fig. 5.4 for SPC/E water. The activation energy components

obtained from the fitting are given in Table 5.2, where E3B2 and E3B3 results are also listed. Con-

sistent with what we have previously found for the activation energies for OH reorientation,44,58

diffusion,58,160 viscosity,50 and H-bond jumps of water,136 the Coulombic interactions represent

the dominant contribution, though they are in competition with the smaller Lennard-Jones com-

ponent. Indeed, Ea,Coul is nearly equal to the total activation energy for the spectral diffusion

timescale if a three-exponential fit is used and larger than it in the four-exponential fitting. On the

other hand, Ea,LJ is negative, reflecting the natural tension between the Coulombic and Lennard-

Jones interactions in an H-bond. However, the Lennard-Jones contribution is significantly smaller

than Ea,Coul , as is the positive kinetic energy component.

The decomposition of the activation energies for the SPC/E model are suggestive of differences
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between the results for the H-bond jump and spectral diffusion times. However, the comparatively

large statistical uncertainties do not allow them to be distinguished except for the total activation

energy and the kinetic energy component; these are both higher for the jump time than the spectral

diffusion result. For the E3B models, the errors are smaller (particularly for the τ
(4)
ω timescale

due to its larger amplitude) and it is then clear that the differences observed in the total jump and

spectral diffusion activation energies are also present in the kinetic, Lennard-Jones, and Coulombic

components. In all cases, the jump time has components that are larger in absolute value compared

to the spectral diffusion results (independent of the fitting method). This is suggestive of weaker

energetic barriers for spectral diffusion compared to H-bond exchanges.

5.5 Conclusions

We have examined the connection between spectral diffusion and H-bond exchange dynamics

in three water models by calculating and analyzing the frequency-frequency correlation function

for the OH vibration of an HOD in D2O. We find that the long-time decay of this FFCF is not

adequately described by a single spectral diffusion timescale. However, inclusion of an additional

decay component with a timescale equal to the H-bond exchange time, τ0, yields an excellent fit

of the calculated FFCF. This exchange time component has a small amplitude (< 3%) and is thus

a minor component of the spectral diffusion dynamics. The remaining spectral diffusion timescale

is found to be ∼ 1− 1.2 ps, consistent with experimental measurements,114,176 but significantly

faster than the H-bond exchange time.

We have also used dynamical fluctuation theory to calculate and compare the spectral diffu-

sion and H-bond jump activation energies from the temperature (or β ) derivative of the FFCF.

This derivative time correlation function is also only well described when a small-amplitude de-

cay based on the H-bond jump time is included. Moreover, the resulting activation energies are

different for the spectral diffusion time and the H-bond jump time. The same is true for the com-

ponents of the two activation energies (available within the fluctuation theory) associated with
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kinetic, Coulombic, and Lennard-Jones energies in the system.

The results show that the spectral diffusion time is shorter than that for H-bond exchanges and

it has a smaller activation energy. Thus, it clearly corresponds to processes that happen in between

H-bond exchanges and require less energy than that necessary to fully break one H-bond and form

another. This implicates rearrangements of the H-bond structure within the intact H-bond and

transient breaking of H-bonds (in which the OH returns to its original H-bond acceptor) as the

motions associated with the spectral diffusion time. While H-bond exchanges also contribute to

the spectral diffusion, they do so at longer times and with a comparatively small amplitude.

This minor contribution of H-bond jumps to the spectral diffusion is consistent with a picture

in which only jumps between acceptors that yield different H-bonding structures are expected to

lead to a difference in the equilibrium OH frequency. While this is the case in aqueous solutions

containing different types of H-bond acceptors,134,205 in neat liquid water most of the frequency

dephasing can be accomplished by rearrangements of the H-bonding arrangement either without

breaking the original H-bond (through motions of the surrounding waters) or by transiently break-

ing and reforming the H-bond with the original acceptor. These motions occur on a picosecond

timescale, more than three times faster than that for H-bond exchanges.
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Part II

Water Under Extreme Conditions
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In Part 2, we apply fluctuation theory to study water under extreme conditions (i.e. away

from 298 K and 1 bar), again studying diffusion (Chapters 6-7), reorientation (Chapter 7), Liquid

Structure (Chapters 8 and 10), and the infrared HOD/D2O spectrum (Chapter 9). Chapter 6 is the

first direct calculation of activation volumes (and pressure derivatives) using a fluctuation theory

approach, Chapter 7 develops a technique for calculating high-order temperature derivatives at

room temperature and using them to predict the diffusion coefficient and reorientation time down

into the supercooled regime of water (circa 125 K). Chapter 8 applies fluctuation theory to the

radial distribution function which describes water liquid structure and uses it to predict the radial

distribution function down to 235 K from simulations at room temperature. This chapter also

develops a technique for using these derivatives to directly calculate the internal energy and entropy

along the OO coordinate in liquid water. Chapter 9 examines the origins of isosbestic points in the

infrared spectra and illustrates that these spectra can also be predicted from room temperature.

Chapter 10 demonstrates the application of pressure derivatives to liquid structure and how they

can be used to make predictions of its pressure dependence.
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Chapter 6

Expanding the Calculation of Activation Volumes:

Self-Diffusion in Liquid Water

6.1 Introduction

Theoretical chemical dynamics is now a mature and thriving field that serves as a critical comple-

ment to experimental studies of properties ranging from transport coefficients to nonlinear spectro-

scopic signals. Simulations can provide mechanistic insight as well as predictions of measurable

properties that can guide future experiments. The centerpiece of these approaches are the theories

that relate equilibrium dynamics at the molecular level to the desired observable, typically through

a time correlation function (TCF) or other statistical mechanical average of a time-dependent quan-

tity.68

Key examples include, but are by no means limited to, the Green-Kubo formulas206 that re-

late macroscopic transport coefficients to integrals, or Fourier transforms, of TCFs and reactive

flux correlation functions32–34,69 that provide reaction rate constants from TCFs involving the flux

through a transition state dividing surface. In this Chapter, we will consider the diffusion coef-

ficient, which can be obtained from the long-time behavior of the mean-squared displacement,

MSD(t) =
〈
|r(t)− r(0)|2

〉
, as

D = lim
t→long

MSD(t)
6t

, (6.1)

This work adapted with the permission of Zeke A. Piskulich, Oluwaseun O. Mesele, and Ward H. Thompson and
AIP Publishing from J. Chem. Phys. 148, 134105 (2018).59
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for motion in three dimensions, where D is the diffusion coefficient, and t is the time.

An issue that is frequently of central importance in the exploration of chemical dynamics is

how does the quantity of interest, e.g., the diffusion coefficient, depend on the macroscopic ther-

modynamic conditions such as temperature, pressure, and chemical potential. Indeed, activation

energies derived from the temperature dependence of a relevant timescale are a staple of dynam-

ics studies and provide critical mechanistic insight through their relationship to the rate-limiting

barrier height. As an example, the activation energy of diffusion, Ea,D, is defined by the expression

Ea,D =−d lnD
dβ

, (6.2)

where β = 1/kbT . The activation energy is typically obtained from the slope of an Arrhenius plot

of lnD versus 1/T based on measurements or simulations at multiple temperatures. However, this

approach can be complicated by temperature-induced changes in the system properties, e.g., the

density or composition, that must be considered. In some cases, the problem is acute such as when

near a phase transition or for solutes like folded proteins or non-covalent assemblies.

Dellago and Bolhuis addressed this issue by demonstrating how the activation energy for a

reaction rate constant can be obtained from transition path sampling simulations at a single tem-

perature.35 Similarly, Morita and co-workers have examined direct approaches for determing the

temperature dependence of vibrational spectra.46,46,48,49 More recently, we have shown how an ac-

tivation energy can be obtained from single-temperature simulations for essentially any dynamical

timescale, classical or quantum mechanical.31,58 Further, we developed rigorous expressions for

the contributions to the activation energy from the various components of the total system energy,

which provides detailed mechanistic information that is not available by other methods (simulation

or experiment).58

In the remainder of this Chapter, we further generalize such an approach beyond tempera-

ture dependence. Specifically, we show how derivatives of dynamical timescales with respect to

macroscopic, thermodynamic variables can be straightforwardly determined through MD simu-
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lations. We illustrate the method by applying it to the calculation of the activation volume for

self-diffusion in liquid water.

The activation volume for a rate constant, k, or other dynamical timescale is given by its pres-

sure dependence,207

∆V ‡ =−RT
∂ lnk
∂ p

, (6.3)

and is a key quantity of interest in a variety of chemistries.61,208 In addition to providing a quantita-

tive measure of the effect of pressure, ∆V ‡ can be useful in understanding chemical mechanisms.61

It is typically interpreted as the relative size of the transition state and reactant structures. However,

Ladanyi and Hynes have pointed out that this geometric interpretation is not always supported by a

detailed analysis in liquid systems and is inconsistent with any pressure dependence of the activa-

tion volume.62 Instead, they noted that ∆V ‡ can reflect the rearrangement of the solvent (packing)

around the transition state.

Activation volumes have attracted particular attention for ion pairing and hydration shell dy-

namics with a significant number of experiments61,209–212 and simulations63,64,64,213–218,218–220 of

activation volumes. Most of the experiments have focused on solvent exchange around transition

metal ions while the simulations have primarily examined water exchange around alkali or alka-

line earth metals and sometimes halides. Activation volumes can provide important insight into

the mechanism of solvent exchange by identifying the dissociative or associative nature of the ex-

change.61 In the former case, a solvent molecule departs the solvation shell before a new molecule

enters, while the order of these events are reversed in the latter instance; the two mechanisms thus

lead to opposite signs in ∆V ‡.

Activation volumes can be challenging to measure accurately, but they are particularly difficult

to calculate. Typically, they are obtained from calculations of the rate constant at a range of pres-

sures, the results of which are used to generate an Arrhenius-like plot of lnk versus p, the slope

of which gives ∆V ‡ via Eq. 6.3. Because k depends weakly on p, the range of pressures used is

substantial – often spanning a thousand bar or more – to adequately observe the small changes in k.

However, for some systems lnk varies nonlinearly with the pressure, which can lead to significant
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errors using this approach. One key example is the self-diffusion of liquid water,1–4,221–223 which

is considered in this work. This provides a significant impetus to develop methods for calculating

∆V ‡ and related quantities directly to avoid such issues. In the case of the activation volume, this

means calculating it from simulations carried out at a single pressure.

6.2 Theory

We can write the average of a variable of interest, f , at some time t in a general ensemble as

〈 f (t)〉= 1
Θ

Tr
[
e−β (H+b·X) f (t)

]
. (6.4)

Here, H is the system Hamiltonian and Θ = Tr[e−β (H+b·X)] is the partition function. The vectors

b and X contain as elements the intensive and extensive thermodynamic variables that define the

particular ensemble beyond the temperature (β ) and Hamiltonian. For example, b = (p) and X =

(V ) for the isothermal-isobaric ensemble and b=(µ1,µ2) and X=(N1,N2) for the grand canonical

ensemble with two components. It is easy to see, however, that only Θ and the exponential factor

depend on the intensive variables, b and thus, the derivative of the the average value of f (t) with

one of these, b j, is

∂ 〈 f (t)〉
∂b j

= β 〈X j〉〈 f (t)〉−β
1
Θ

Tr
[
e−β (H+b·X)X j(0) f (t)

]
= −β 〈δX j(0) f (t)〉. (6.5)

Here, δX j(0) = X j(0)−〈X j〉 and we have used the result that

∂Θ−1

∂b j
= β

1
Θ2 Tr[e−β (H+b·X)X j] = β

1
Θ
〈X j〉. (6.6)

Such fluctuation equations are far from new, apparently first introduced by Greene and Callen.28

For example, if f (t) = V (0) in the isothermal-isobaric ensemble, Eq. 6.5 can be used to relate

the isothermal compressibility to the volume fluctuations.27 However, these relationships have
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been generally neglected in understanding how dynamical timescales change with the underlying

thermodynamic conditions.

Dynamical timescales are frequently obtained from MD simulations through computation of

time correlation functions of the general form CAB(t) = 〈A(0)B(t)〉Θ, where A and B are functions

of the phase space variables and the subscript Θ indicates that the average is taken in a particular

ensemble. Applying Eq. 6.5 to the TCF gives

∂CAB(t)
∂b j

=−β 〈δX j(0)A(0)B(t)〉Θ. (6.7)

Thus, the derivative of the TCF with respect to the intensive variable is given by the TCF weighted

by the fluctuation in the corresponding extensive variable. This weighted TCF can be calculated

within the same simulation from which CAB(t) itself is obtained, as we have previously demon-

strated for the activation energy (b j = β ).31,58

As one key example of Eq. 6.5, consider the isothermal-isobaric ensemble and pressure as the

intensive variable. Then, the pressure dependence of 〈 f (t)〉 is simply

∂ 〈 f (t)〉
∂ p

=−β 〈δV (0) f (t)〉N pT . (6.8)

As we will illustrate below for the example of diffusion in water, this relation provides a way to

calculate the the derivative of the diffusion coefficient, D, with respect to pressure from simulations

at a single p and within the same framework that gives D itself. Borrero and Dellago have previ-

ously implemented an analogous approach for a reaction rate constant in a model system within the

context of a transition path sampling approach.37 However, the simple derivation above indicates

the general nature of this result.

Another interesting special case of Eq. 6.5 is in the grand canonical ensemble for a binary

mixture, taking the intensive variable to be one of the species’ chemical potential. Then, it is

straightforward to see that
∂ 〈 f (t)〉

∂ µ j
=−β 〈δN j(0) f (t)〉µ1µ2V T . (6.9)
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This indicates that the changes in the dynamics described by 〈 f (t)〉 due to shifts in the phase

equilibria can be determined from a single thermodynamic phase point. The implementation of

such an approach is ongoing work in our group.

As an illustration of the general concepts just outlined, we consider the specific case of the

activation volume of the self-diffusion coefficient, D, of liquid water. As noted in Eq. 6.1, the

diffusion coefficient can be calculated from the mean-squared displacement. The activation volume

for D can then be obtained from Eq. 6.3 as

∆V ‡
D = −RT lim

t→long

1
6Dt

∂MSD(t)
∂ p

= lim
t→long

〈δV (0) |~r(t)−~r(0)|2〉N pT

6Dt
, (6.10)

using Eq. 6.5. Defining MSDV (t) ≡ 〈δV (0) |~r(t)−~r(0)|2〉N pT , this yields the simple expression

for the activation volume224

∆V ‡
D = lim

t→long

MSDV (t)
MSD(t)

. (6.11)

That is, it can be obtained from the long-time limit of the ratio of the MSD weighted by the

volume fluctuations to the unweighted MSD. This provides a convenient means by which activation

volumes can be extracted from molecular simulation.

6.3 Computational Methods

Figure 6.1: A diagram depicting the production of NVE trajectories sampled along a single NPT
trajectory.

A practical implementation of the calculation of the activation volume via Eq. (6.11) is illus-
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trated schematically in Fig. 6.1. Specifically, an N pT trajectory (using a thermostat and a barostat)

is used to generate initial conditions for short, constant energy and volume (NV E) trajectories

from which MSD(t) and MSDV (t) are both calculated. In this way, the dynamics are not influ-

enced by the thermostat or barostat algorithm or parameters as long as they give the correct energy

and volume distributions.225 The N pT trajectory gives configurations that vary in the volume such

that each NV E trajectory has a particular fluctuation in the system volume, δV (0), relative to the

average volume for all the trajectories. (We note that this approach also leads to fluctuations in

the initial energies, δH(0), as well that can be related to the activation energy.58) The distribution

of volume fluctuations obtained from the present simulations is shown in Fig. 6.2; as expected

the distribution is Gaussian with a width that is related to the isothermal compressibility of the

liquid.206

The MD simulations were performed using the Large-Scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS).81 Simulations used 256 water molecules using the TIP4P/2005 model5

and volume fluctuations were captured from a 5 ns in the N pT ensemble using a Nosé-Hoover

thermostat, with a damping parameter of 100 fs, and a Nosé-Hoover barostat, with a damping pa-

rameter of 1 ps.83,84,226,227 Every 1 ps, the coordinates and momenta were extracted to serve as the

initial conditions for a separate 20 ps constant energy (NV E) trajectory from which the dynamics

were obtained from configurations saved every 50 fs; 5000 total NV E trajectories were propagated.

In all simulations, the integration timestep was 1 fs timestep, the SHAKE algorithm was used in

order to enforce the rigid bonds present within the TIP4P/2005 model,5 and electrostatic interac-

tions were calculated using the particle-particle-particle mesh Ewald summation with an accuracy

parameter of 10−5.119,120

6.4 Results and Discussion

Using this MD simulation procedure, we have calculated the activation volume of water diffusion

at a variety of temperatures and pressures for which experimental data have been reported.1–4

Examples of the results are shown in Fig. 6.3 for p = 100 bar and three different temperatures,
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Figure 6.2: A plot of the probability distribution function of the fluctuations in volume of the indi-
vidual NVE trajectories away from the average volume of the overall NPT trajectory. A gaussian
fit has been included as a dashed red line.

283.2, 383.2, and 473.2 K. Specifically, the calculated MSD(t) and MSDV (t) are shown for each

temperature as a function of time. As expected, the volume fluctuation-weighted mean-squared-

displacement, MSDV (t), depends linearly on time, with a slope that equals 6∂D/∂ p. This leads to

a constant value at longer times for the ratio MSDV (t)/MSD(t) from which the activation volume

can be obtained directly. This ratio, and the corresponding activation volume derived from its

limit, is shown for p = 100 bar at each of the temperatures in Fig. 6.4. In each case the ratio

reaches a constant value at longer times that permits the direct determination of ∆V ‡
D. The present

calculations give ∆V ‡
D =−2.43±0.79, 2.15±0.25, and 6.13±0.33 cm3/mol for 283.2, 383.2, and

473.2 K, respectively. These values are in very good agreement with the experimental results of
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Figure 6.3: The volume-weighted mean-squared displacement MSDV (t) (red) and the unweighted
mean-squared displacement MSD(t) (black) for p = 100 bar and 473, 383, and 283 K (top to
bottom).

-2.7, 1.7, and 5.5 cm3/mol reported by Krynicki et al.3 for the same three temperatures. At the

lowest temperature, we note that Woolf also reported a ∆V ‡
D =−2.8 cm3/mol at 277 K.4 In addition,

we have extracted similar values of -1.9 and -2.9 cm3/mol from the D(p,T ) measurements in Refs.
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1 (283 K) and 2 (278 K), respectively.228
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Figure 6.4: The ratio MSDV (t)/MSD(t), which at long times is equal to the diffusion activation
volume, ∆V ‡

D, for 100 bar and T = 283 (black), 383 (red), and 473 K (blue). Dashed lines of the
same color indicate the derived ∆V ‡

D from fitting to t ≥ 15 ps.

As noted above, a key feature of the water diffusion coefficient is that the pressure dependence

of lnD is not linear, i.e., the activation volume changes with pressure.1–4,221–223 In particular, at

lower temperatures (less than ∼ 325 K),3 the diffusion coefficient passes through a maximum as

the pressure is increased; the value of p at the maximum decreases with temperature such that at

higher T the diffusion coefficient decreases monotonically with p. Thus, at lower temperatures,

the sign of ∆V ‡
d changes from negative at lower pressures to positive at higher p, while it is uni-

formly positive at higher T . This behavior is generally attributed to the effect of pressure on the

hydrogen-bonding (H-bonding) structure.4 Namely, at lower temperatures and pressures, the tran-

sition state (including the surrounding “solvent" waters62) associated with an exchange of H-bond

acceptors,85 involves a reduction in volume and hence ∆V ‡
D < 0. However, as p increases the re-

sulting distortion of the H-bonds reduces this effect and eventually leads to a positive activation
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volume.4,73 We have explored the variations in ∆V ‡
d by calculating it at several temperatures and

pressures. The results are presented in Fig. 6.5 and Table 6.1 along with experimental data reported

in the literature3 and values extracted from measurements of D(p,T ).1,2,4,228

Table 6.1: Calculated and measured activation volumes, ∆V ‡
d , (in cm3/mol) for water self-diffusion

Measurements
T (K) p (bar) Present Simul. Ref. 3 Ref. 4 Ref. 1 Ref. 2
283.2 100 −2.43±0.79 -2.6 -3.0 -1.9 -2.1a

283.2 650 −1.56±0.48 0.0 -0.9 -0.8 -1.0a

283.2 1700 −0.33±0.21 2.7 0.5 0.5 0.4a

298.2 1 −1.40±0.15 -1.6 -1.3 -1.3
298.2 650 −0.60±0.26 -0.4 -0.1 -0.2
298.2 1700 0.23±0.23 0.4 0.9 0.9
383.2 100 2.15±0.25 1.7
383.2 1700 1.90±0.22 2.8
473.2 100 6.13±0.33 5.5
473.2 1700 3.69±0.36 11.1

aValues listed under T = 283.2 K are for 278.2 K.

The results presented in Fig. 6.5 and Table 6.1 show mixed agreement with experiment for the

TIP4P/2005 water model. At low temperatures, 283.2 and 298.2 K, highlighted in Fig. 6.5b, the

calculated values are in quite reasonable agreement with measurements. Both show an increas-

ing activation volume with pressure, though the simulations generally rise more slowly and thus

underestimate ∆V ‡
d at high p. To our knowledge, only Krynicki et al. have measured data above

350 K. As noted above, the simulations are in very good agreement for these higher temperatures

with their reported values at 100 bar. However, Krynicki et al. find that ∆V ‡
d still increases with p

at these temperatures while the simulations predict that it becomes smaller. Thus, the two disagree

significantly at 1700 bar. We note that at lower temperatures such as 283 and 298 K where multiple

other measured values are available (Table 6.1), the ∆V ‡
d of Krynicki et al. are significantly higher

than those from other experiments at 650 and 1700 bar. At the same time, the present simulations

with the TIP4P/2005 model yield activation volumes that are lower than the measurements at these

higher pressures. This suggests accurate ∆V ‡
d at 1700 bar and higher temperatures may lie between

the predictions and Krynicki et al. measurements. Resolving this issue, however, may require new
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Figure 6.5: (a) Activation volume, ∆V ‡
D, as a function of p and T . The present simulation results

(filled symbols) for 283.2 (blue), 298.2 (black), 383.2 (red), and 473.2 K (violet) are compared to
experimental data from Ref. 1 (solid lines), Ref. 2 (dashed lines), Ref. 3 (open symbols), and Ref.
4 (dot-dot-dashed lines); see text. Data represented by blue dashed line is for 278.2 K.2 (b) An
expanded view of the low temperature results.

measurements and simulations with other water models.

It is useful to consider the computational effort required to calculate the activation volumes
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presented here. For each p and T , the total simulation time was 105 ns (a 5 ns NpT simulation

followed by 5,000 embarrassingly parallel 20 ps NVE simulations). The potential alternative for

determining ∆V ‡
d from simulations is to calculate the diffusion constant at several pressures for

each temperature; based on experimental studies,1–4,221 values at ∼ 8−10 pressures are required.

The D(p;T ) data can then be fit to a functional form from which the activation volume as a function

of pressure at that T can be determined. We are not aware of any applications of this kind of direct

simulation approach except for cases where lnk is linear in p,216 but it has been used in studies

where rate constants are obtained from, e.g., transition state theory calculations.62

The diffusion coefficient converges more rapidly than ∆V ‡
d in the present simulations, with a

reasonable value for D obtained using only 500 NV E trajectories. However, because D varies

weakly with pressure (e.g., increasing p by 200 bar typically leads to changes in D of less than

1%,1–4,221) a more precise value would almost certainly be required to accurately determine the

activation volume. With 5000 NV E trajectories we find uncertainties in D that are less than 0̃.1%,

which is probably more than sufficient but would need to be repeated for several pressures to

determine one activation volume. On the other hand, calculation of the activation volume from the

first 500 NV E trajectories gives values for ∆V ‡
d that are within 0.7 cm3/mol of the converged results

presented in Table 6.1. Thus, the direct approach presented here should be at least competitive

with and likely more efficient than the traditional brute force methods (and additionally requires

no assumption about the functional form of the diffusion coefficient with respect to pressure).

6.5 Summary

We have presented a generalized method by which derivatives of TCFs may be taken with respect

to a variety of macroscopic variables. We have illustrated this approach by applying it to the cal-

culation of the activation volumes of water self-diffusion and obtained generally good agreement

with previous spin-echo NMR measurement results. A key advantage is that this method allows the

activation volume to be obtained from simulations at a single pressure. This is particularly impor-

tant for water diffusion, which exhibits a nonlinear dependence of lnD on the pressure. However,
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the approach is general, both in terms of the dynamical quantity and the macroscopic variable of

interest, and is easily implemented within nearly any simulation scheme. It should thus be widely

applicable.
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Chapter 7

The Dynamics of Supercooled Water Can Be Predicted from

Room Temperature Simulations

7.1 Introduction

Significant effort over the past thirty years has been aimed at understanding the complex behavior

of liquids in supercooled or glassy states.145,229,230 Cooled below its melting point at ambient

pressure, water is a metastable liquid that exhibits several anomalous properties. These include

a maximum in the isothermal compressibility, an apparent divergence in dynamical timescales

such as the diffusion coefficient, and a breakdown of the Stokes-Einstein relation. The origin

of these features has attracted significant attention, complicated by the lack of experimental data

in the so-called “No Man’s Land" of water’s phase diagram below ∼ 230 K where spontaneous

crystallization inhibits measurements.

The peculiar trends of structural and dynamical properties in supercooled water145 have fre-

quently been attributed to either significant changes in the hydrogen bond (H-bond) network231–237

or increasing dynamical heterogeneity108,234 upon cooling. A particular focus in recent years is

the connection to a phase transition between a high-density liquid (HDL) and a low-density liq-

uid (LDL) that occurs at higher pressures (& 1 kbar).238–240 The HDL-LDL coexistence curve

terminates at a liquid-liquid critical point (LLCP), the precise location of which is still a matter

Adapted with the permission of Zeke A. Piskulich, and Ward H. Thompson and AIP Publishing from J. Chem.
Phys. 152, 074505 (2020).160
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of debate.146 The extension of this coexistence curve beyond the critical point to lower pressures

represents the Widom line, which approximately divides the region in pressure and temperature

where the behavior is more HDL-like from that where it is more LDL-like. Thus, the temperature-

dependent behavior of supercooled water at ambient pressure can, in this viewpoint, be explained

by changes related to crossing the Widom line.

In support of this “two liquids,"145 HDL-LDL, description of supercooled water are sugges-

tions in experimental and simulation data of a smooth variation in dynamical timescales upon su-

percooling including viscosity,141,223,241,242 diffusion,6,146,236,242,243 and reorientation.108 These

results are in sharp contrast to the apparent divergence of timescales56,221,244,245 at a temperature

Ts ' 228 K that represents the limit of stability for supercooled water,246 beyond which water

dynamics are arrested and not accessible either by experiment or simulation. This perspective has

been shown to be incompatible with the known thermodynamic properties of supercooled water,230

but nevertheless provides a useful mathematical description of water dynamics in the weakly su-

percooled regime.

In this Chapter, we examine the dynamics of supercooled water, focusing on the diffusion coef-

ficient and reorientational timescales, as a function of temperature. These are among the dynamical

properties most frequently used to characterize supercooled water as both can be characterized by

experiments and simulations even as they change by orders-of-magnitude. The anomalies of su-

percooled water dynamics and thermodynamics are often viewed as determining the behavior of

water under ambient conditions. If the two are indeed related, this relationship must be reciprocal,

i.e., the properties of ambient liquid water can inform us about supercooled water behavior. Here,

we demonstrate that this is the case. We apply fluctuation theory for dynamics13 to calculate each

timescale and its first two derivatives with respect to inverse temperature from simulations at room

temperature. This information is then used to parameterize physically-motivated functional forms

for the temperature dependence of the timescale that are accurate to low temperatures; expressions

based on both the stability limit conjecture and the two-liquids description are considered. These

results have implications for both calculating and interpreting dynamics of supercooled water and
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other liquids.

7.2 Methods

7.2.1 Derivatives of D

The diffusion coefficient is obtained from the slope of the mean-squared displacement (MSD)

evaluated at long times,

D = lim
t→∞

〈|~r(t)−~r(0)|2〉
6t

. (7.1)

Here, t is time, ~r(t) is the time-dependent position, and 〈· · · 〉 indicates an ensemble average at

constant pressure and temperature.

In the present simulations, D is calculated from the water oxygen atom mean-squared displace-

ment; for simplicity system size corrections247 are neglected. We have previously shown that the

derivatives with respect to β = 1/kBT are given by13,58

∂MSD(t)
∂β

=−〈δH(0)|~r(t)−~r(0)|2〉, (7.2)

and
∂ 2MSD(t)

∂β 2 = 〈[δH(0)2−〈δH2〉]|~r(t)−~r(0)|2〉, (7.3)

where H is the total energy and δH(0) = H(0)−〈H〉 is the fluctuation in energy. The two time

correlation functions (TCFs) described in Eqs. (7.2)-(7.3) can be obtained in the same, single

temperature, simulations as the MSD itself. Effectively, this involves reweighting the mean-

squared displacements that are being averaged by the fluctuations in the total system energy at

t = 0. Derivatives of the diffusion coefficient are then calculated using the slope of each derivative

correlation function at long time. Similarly, the activation energy is obtained as

Ea,D =−∂ lnD
∂β

=
lim
t→∞
〈δH(0)|~r(t)−~r(0)|2〉

lim
t→∞
〈|~r(t)−~r(0)|2〉

. (7.4)
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7.2.2 Derivatives of 〈τ2〉 and τ2

The water reorientational dynamics are typically described by the TCF

C2(t) = 〈P2[~eOH(0) ·~eOH(t)]〉, (7.5)

where P2 is the second Legendre polynomial, and ~eOH is a unit vector pointing along a particular

OH bond. C2(t) decays on multiple timescales, the longest of which, typically labeled τ2, is that

associated with reorientation due to H-bond making and breaking. Experimentally, τ2 can be mea-

sured via infrared pump-probe anisotropy spectroscopy.71 However, slow reorientation times are

challenging to determine because the method is limited by the excited vibrational state relaxation

time, which is 0.7-1.8 ps depending on the isotopic combination used.72 Additionally, the qualita-

tive behavior of the C2(t) decay changes in the supercooled regime, as discussed in greater detail

below. The integrated, or average, reorientation time measured by spin-echo NMR experiments is

also obtained from this TCF as43

〈τ2〉=
ˆ

∞

0
C2(t)dt. (7.6)

We have previously shown that the first- and second-derivatives of the reorientational TCF can

be expressed as13,44,58

∂C2(t)
∂β

=−〈δH(0)P2[~eOH(0) ·~eOH(t)]〉, (7.7)

and
∂ 2C2(t)

∂β 2 = 〈[δH(0)2−〈δH2〉]P2[~eOH(0) ·~eOH(t)]〉. (7.8)

Because the integrated reorientation time is the time integral of C2(t), the first- and second-

derivatives of 〈τ2〉 are the time integrals of Eqs. (7.7) and (7.8), respectively.

The water OH reorientational TCF C2(t) decays on multiple timescales that are associated with

rapid (< 50 fs) inertial dynamics, sub-picosecond librational dynamics within an intact H-bond,
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and longer-time reorientation associated with H-bond exchanges. Thus, the TCF can be fit as

C2(t) = ∑
α

Aαe−t/τα , (7.9)

where α=inertial, librational, and 2. The last timescale, τ2, is the one of interest here. The

derivatives of C2(t) can then be described by the derivatives of this tri-exponential fitting function,

which yields for the first derivative

∂C2(t)
∂β

= ∑
α

[
∂Aα

∂β
+

∂ (1/τα)

∂β
tAα

]
e−t/τα . (7.10)

The Aα and τα are those obtained from fitting C2(t) itself and ∂ (1/τα)/∂β and ∂Aα/∂β are then

generated by fitting ∂C2(t)/∂β .44 Similarly, the second derivative can be fit by

∂ 2C2(t)
∂β 2 =

3

∑
α

[
∂ 2Aα

∂β 2

− t
{

Aα

∂ 2(1/τα)

∂β 2 +2
∂Aα

∂β

∂ (1/τα)

∂β

}
+ t2Aα

(
∂ (1/τα)

∂β

)2
]

e−t/τα , (7.11)

from which ∂ 2(1/τα)/∂β 2 and ∂ 2Aα/∂β 2 are obtained.

For the calculation of Ea,〈τ2〉 at temperatures below 250 K, we fit the long-time decay of the

∂C2(t)/∂β TCF to a single exponential to obtain the contribution for times greater than 300 ps.

7.2.3 Simulation Details

Predictions of transport properties were made using our previously published methods for calcu-

lating the first- and second-derivatives of the time correlation functions.44,50,58,59 Twenty separate

50 ns NPT trajectories at 1 bar and 298.15 K were propagated to generate a total of 1,000,000

initial configurations from which 50 ps NVE trajectories were propagated. A three-chain Nose-

Hoover thermostat was utilized in the NPT trajectories to hold the temperature constant. The
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thermostat and barostat damping parameters were 100 fs, and 1 ps, respectively.83,84 A simulation

timestep of 1 fs was used. The TIP4P/2005 water model was used for all simulations, and was

held rigid by the SHAKE algorithm.5,82 The simulation cell was made up of 343 water molecules.

The Particle Particle Particle Mesh (PPPM) method was used to calculate long-range electrostatic

interactions.119,120 The tolerance of both the SHAKE algorithm and the PPPM method was set to

1.0×10−4. The Lennard-Jones interaction cutoff was set to 10.5 Å. All uncertainties are calculated

over 5 blocks and represent a 95% confidence interval as taken from the Student’s t-Distribution.122

The same method was used to calculate the dynamical timescales at 235, 240, 250, 280, 320,

340, and 360 K (all at 1 bar) to provide accurate temperature-dependent results with the same force

field and simulation protocol used for the predictions. However, for these calculations only 50,000

short NVE trajectories were used. Due to the longer timescales for dynamics in the supercooled

region, the NVE trajectories at 235 K, 240 K, and 250 K were propagated for 300, 300, and 150

ps, respectively. We note that these simulations extend only to the weakly supercooled regime,

∼ 20 K below the TIP4P/2005 model melting temperature, to test the predictions in this range;

lower temperatures have been simulated by others but require significant additional computational

effort.146,236

7.3 Results

We have used MD simulations of TIP4P/2005 water5 at ambient conditions (298.15 K and 1 bar)

to calculate the diffusion coefficient and OH reorientation times along with their first- and second-

derivatives with respect to β as described in Sec. 7.2. The reorientational TCF, C2(t), obtained from

these simulations is shown in Fig. 7.1a along with a fit to the tri-exponential function Eq. (7.9) with

τ2 = 3.271 ps (see Table 7.1). The running integral, Eq. (7.6), obtained from the simulated C2(t)

at room temperature is shown in Fig. 7.1a and the resulting 〈τ2〉 from the long-time limit is given

in Table 7.1.

The first- and second-derivative of C2(t) with respect to β are calculated according to Eqs. (7.7)

and (7.8) from the simulations described in Sec. 7.2.3. The results are shown in panels b and c of
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Figure 7.1: (a) Calculated C2(t) (black solid line) and its tri-exponential fit (red dashed line) with
the integral of C2(t) (blue solid line) which equals 〈τ2〉 at long times. (b) Calculated ∂C2(t)/∂β

(black solid line) and its fit (red dashed line) to Eq. (7.10) with the integral (blue solid line) that
equals ∂ 〈τ2〉/∂β at long times. (c) Calculated ∂ 2C2(t)/∂β 2 (black solid line) and its fit (red dashed
line) to Eq. (7.11) with the integral (blue solid line) that equals ∂ 2〈τ2〉/∂β 2 at long times.
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Fig. 7.1 along with the integral of each derivative TCF which gives, at long times, the first- and

second-derivatives of 〈τ2〉 with respect to β . Note that the derivatives of τ2 are obtained by fitting

∂C2(t)/∂β and ∂ 2C2(t)/∂β 2 by Eqs. (7.10) and (7.11). These fits are shown in Fig. 7.1 and

represent the derivative TCFs to a good approximation.

The values of the calculated water diffusion coefficient and reorientational timescales obtained

from explicit simulations at different temperatures (hereafter referred to as “T-dependent simula-

tions") are plotted as a function of T and 1000/T in Fig. 7.2 and the values at 298.15 K are given in

Table 7.1. The expected temperature dependence based on Arrhenius behavior, obtained from the

directly calculated derivative at 298.15 K, is also shown for comparison. The Arrhenius approxi-

mation deviates from the T -dependent simulation results for all three timescales at both higher and

lower temperatures. We have previously observed that this non-Arrhenius behavior is even evident

for reorientational timescales within small temperature ranges of 20 K around room temperature.44

It is thus interesting to consider to what extent information about the non-Arrhenius behavior of

supercooled water is available in the liquid at ambient conditions.

7.3.1 Predictions of Dynamical Timescales

We now show how room temperature simulations alone can be used to predict the dynamics

of supercooled water. The approach is the previously developed fluctuation theory for dynam-

ics13,31,44,50,58 that enables the calculation of the activation energy of a timescale from simulations

at a single temperature; these represent the analytical derivatives with respect to inverse tempera-

ture and thereby avoid the implicit numerical derivative of an Arrhenius analysis. We have used

this method to calculate the first- and second-derivative with respect to β of the diffusion coeffi-

cient and reorientation timescales for water from simulations at room temperature as described in

Sec. 7.2. The resulting values are provided in Table 7.1 along with the activation energy for each

timescale.

Our approach is to use each timescale and its first two derivatives to parametrize a physically-

motivated formula for the temperature dependence. The non-Arrhenius behavior of water dynam-
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Figure 7.2: (a-c) Calculated 〈τ2〉, τ2, and D (black circle) at different temperatures are compared to
the predictions from room temperature simulations (blue solid line). (d-f) Arrhenius plots of 〈τ2〉,
τ2, and D calculated from T -dependent simulations (black circle) compared to predictions from
room temperature simulations (blue solid line) and the Arrhenius result (red dashed line) from the
activation energy at 298.15 K. The melting point of TIP4P/2005 water is also indicated (purple
dashed line).5

Timescale τ 1/τ ∂τ/∂β ∂ 2τ/∂β 2 Ea

〈τ2〉 2.2151 0.451550 10.003 58.12.3 4.51412
τ2 3.2712 0.30572 13.574 71.02.3 4.1499

1/D 0.49733 2.0111 2.1225 11.14 4.2679
a 〈τ2〉 and τ2 are in units of ps, D in units of 10−5 cm2/s, β and Ea in units of kcal/mol.

Table 7.1: Values, derivatives, and activation energies of 〈τ2〉, τ2, and 1/D.a at 298.15 K
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Integrated Reorientation Time, 〈τ2〉
Source Range (K) Ts (K) γ τs

Prediction 298.15 226.96.3 1.8216 3.7311
Fit 235.00 – 360.00 221.1 2.00 3.74

Reorientation Time, τ2
Source Range (K) Ts (K) γ τs

Prediction 298.15 220.37.0 1.8317 2.0513
Fit 250.00 - 360.00 224.37 1.96 2.63

Inverse Diffusion Coefficient, 1/D
Source Range (K) Ts (K) γ τs

Prediction 298.15 216.47.0 1.9717 0.0735
Fit 235.00 – 360.00 218.4 1.91 0.073

†Calculated from Eqs. (7.13)-(7.15); τs has units of ps for reorientation and 105 s/cm2 for diffusion.
‡Subscripts represent the uncertainties in the trailing digits.

Table 7.2: Comparison of stability limit conjecture parameters† with fits to T -dependent data.‡

ics has been frequently noted and several models have been proposed to describe the temperature-

dependence in the supercooled regime.146,223,241,246,248–252 We focus primarily on two such de-

scriptions, one obtained from the stability limit conjecture246 that predicts a divergence in the

timescale upon supercooling, and another that assumes a transition from HDL to LDL water so

that the timescale changes smoothly.146,223,241 The present calculations are not aimed at establish-

ing the accuracy of either description, rather we demonstrate that, given a physical description, one

can predict the dynamical properties of water well below its melting point from room temperature

simulations.

7.3.2 A Stability Limit Conjecture Description

A prediction for the temperature dependence of a timescale was proposed by Speedy based on

the assumption of a stability limit at a temperature Ts;246 an analogous result has been obtained

from mode-coupling theory.248 This predicts a power-law dependence of a timescale τ on the

temperature:

τ(T ) = τs

(
T
Ts
−1
)−γ

(7.12)
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where Ts, τs, and γ are are the divergence/stability limit temperature, reference timescale, and

power-law exponent, respectively. In this work we consider τ = 〈τ2〉, τ2, or 1/D; while 1/D is not

explicitly a timescale it behaves as one in its temperature dependence (vide infra). This stability

limit description has been used extensively in the literature to describe the temperature dependence

of water in its supercooled state above Ts,52,56,145,221,236,244,253–256 though it is better viewed as a

mathematical model than a physically accurate one.6,145,230

The stability limit prediction for a given timescale, Eq. (7.12), can be fully determined by the

timescale and its first two derivatives. For a dynamical timescale, τ , we define the first and second

derivatives of its natural logarithm as (lnτ)′ = ∂ lnτ/∂β and (lnτ)′′ = ∂ 2 lnτ/∂β 2, respectively.

Along with τ , these derivatives can be used to solve for the parameters in Eq. (7.12) as

Ts =
(lnτ)′+β (lnτ)′′

2(lnτ)′kbβ + kbβ 2(lnτ)′′
, (7.13)

γ = β (1− kbTsβ )(lnτ)′, (7.14)

and

τs = τ

(
T
Ts
−1
)γ

. (7.15)

Furthermore, because the activation energy of the effective rate constant, k = 1/τ is just (lnτ)′, it

can be obtained in terms of the stability limit parameters directly from Eq. (7.14) as

Ea,τ =
γ

β (1− kbTsβ )
. (7.16)

The parameters obtained in this way are listed in Table 7.2. These parameterizations provide ex-

trapolative predictions of the temperature dependence of the reorientation and diffusion timescales

(along with their activation energies) over a range of temperatures from 360 K down to ∼ 220 K.

These predictions are compared to the timescales calculated from the T-dependent simulations

in Fig. 7.2. The predictions provide a highly accurate picture of the temperature dependence of

these timescales, which exhibit clearly non-Arrhenius behavior. The timescales themselves display
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moderate lengthening as the temperature is reduced before a sharp increase occurs as T → Ts (top

panels of Fig. 7.2). In the case of the integrated reorientation time, this leads to an increase in

〈τ2〉 by a factor of nearly 30 from 298.15 to 235 K. The prediction of 〈τ2〉 at 235 K from the

room temperature simulations overestimates this slowdown due to uncertainty in the value of Ts,

which shifts the location of the divergence. In the case of τ2, both the T -dependent simulations

and the predictions from room temperature simulations using Eq. (7.12) cannot be extended below

250 K because the reorientational correlation function exhibits a significant stretched-exponential

character at lower temperatures. That is, the functional form of C2(t) changes in the supercooled

regime so that τ2 is not well-defined. In the case of the diffusion coefficient, the agreement between

the T -dependent simulations and the predictions from room temperature simulations is excellent

(Fig. 7.2c, f). Both find an increase in 1/D by a factor of 18.5 as the temperature is reduced from

298.15 to 235 K.

From our predictions, it is clear that significant, even complete, information about dynamics

in the weakly supercooled regime is accessible from room temperature simulations. This is not

consistent with the viewpoint that there are inherent structural differences present within the su-

percooled liquid that are not present in the room temperature liquid. Rather, as is discussed in

detail below, it indicates that there is not a significant change in mechanism of reorientation and

diffusion between the room temperature and supercooled liquids. Regardless of the specific ori-

gin of the peculiar temperature dependence of liquid water, these predictions clearly indicate that

information about this origin must be present within the ambient liquid.

The parameters for the stability limit equation calculated from our room temperature simula-

tions are in good agreement with values obtained by fitting the results of our T-dependent simula-

tions (see Table 7.2) as well as experimental and simulation results in the literature.3,51,53,54,244,256–261

For example, the divergence temperature, Ts, is predicted from the room temperature simulations

to be between 216.4 K and 226.9 K, depending on the timescale considered. The average of pre-

dicted values of Ts for the diffusion coefficient from the literature3,53,54,244,257–260 is 217.9 K which

is only 1.5 K higher than our predicted value for this property. Similarly, the values of γ lie be-
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Inverse Integrated Reorientation Time, 1/〈τ2〉
Source Range (K) 1/τ2,0,H (ps−1) Ea,H (kcal/mol) 1/τ2,0,L (ps−1) Ea,L (kcal/mol)

Prediction 298.15 38054 3.889 17.94.0 7.37

Diffusion Coefficient, D
Source Range (K) D0,H (cm2/s) Ea,H (kcal/mol) D0,L (cm2/s) Ea,L (kcal/mol)

Prediction 298.15 0.01562 3.847 4.87 10.46
Ref.146∗ 125.00 – 273.15 0.0111 3.61 6.152 10.49

†Subscripts represent the uncertainties in the trailing digits.
‡Fit of Eq. (7.17) and its first two derivatives; see Sec. 7.2.
∗Fit to the measured data of Ref. 6.

Table 7.3: Parameters† for the “two-liquids" picture.‡

tween 1.82 and 1.97 and are within overlapping uncertainty of one another for all three dynamical

timescales, which is also in excellent agreement with the range of values found in the literature.

This agreement indicates that the information contained in the ambient liquid is sufficient to quan-

titatively describe the dynamical behavior upon supercooling. Additionally, all three dynamical

timescales have similar values of Ts and γ indicating that they are likely governed by the same

process upon cooling, i.e., H-bond exchanges.85,108

7.3.3 A “Two Liquids" Description

The anomalous, non-Arrhenius dynamics of supercooled water has frequently been explained as

a coexistence of the HDL and LDL phases. A number of groups have proposed a description of

water properties, including viscosity and diffusion coefficient, down to low temperatures based on

HDL and LDL dynamics weighted by a switching function.146,223,241,242,262–264 This represents

an alternative to the timescale divergence of the stability limit description and is consistent with

the experiments of Xu et al.6 The latter were able to measure the diffusion coefficient of water

down to 126 K and observed a continuous change with no divergence. Within this two liquids

description, the apparent divergence in 1/D is associated with a transition from primarily HDL

above the Widom line (which occurs around 229 K at 1 bar) to primarily LDL at temperatures well

below it. Because HDL and LDL water have different diffusion activation energies, the transition

region between the two gives rise to behavior that has the appearance of a divergence, i.e., an
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apparent activation energy in the transition region that is substantially higher than that for either

HDL or LDL water. Recently, Hestand and Skinner showed that lnD(T ) data obtained by Xu et

al. can be fit by assuming a two liquids behavior,146

lnD(T ) = s(T ) lnDL(T ) + [1− s(T )] lnDH(T ), (7.17)

where s(T ) = [1+e4.394(T−T0)/∆T ]−1 is a smooth function that switches D(T ) from HDL Arrhenius

behavior above the Widom line, DH(T ) = D0,H e−βEa,H to LDL Arrhenius behavior, DL(T ) =

D0,L e−βEa,L below it.

We have used the inverse timescales 1/〈τ2〉 and D along with their first- and second-derivatives

calculated at room temperature to fit the two liquids description given in Eq. (7.17). Unlike the

stability limit result, the physical model for the two liquids picture as described in Eq. (7.17)

depends on six parameters which are typically fit to experimental measurements or simulations of

temperature-dependent data. With only two derivatives and the original timescale, an analytical

solution cannot be extracted as in the case of the stability limit conjecture. Instead, Eq. (7.17) and

its first two analytical derivatives were fit to these three pieces of information. Fitting of all six

parameters gives reasonable estimates of the parameters, but with values that do depend somewhat

on the choice of initial values; details for D are given in the supplementary material. An average of

the values obtained with different initial parameters and ignoring unphysical results gives D0,H =

0.0154 cm2/s, Ea,H = 3.83 kcal/mol, D0,L = 4.96 cm2/s, Ea,L = 11.6 kcal/mol, T0 = 207 K, and

∆T = 82.3 K. Additional details are provided in the supplementary material.

Consistent, but more precise, values of the LDL characteristics are obtained with the switch-

ing function chosen to have the same parameters found by Hestand and Skinner in their work

(T0 = 213 K and ∆T = 75 K), reducing the fit to four unknown parameters,146 those describing

the HDL and LDL behavior (D0,H , Ea,H , D0,L, Ea,L).146 Parameters were fit from our calculated

values at room temperature using a “Nelder-Mead" minimization. Reported results for the diffu-

sion coefficient were generated from initial values taken from Hestand and Skinner;146 different
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Figure 7.3: Predictions of the temperature dependence of (a) 〈τ2〉 and (b) D using the two liquids
description as given in Eq. (7.17) and described in the text are shown (blue solid line). The results
from T -dependent simulations (black circle) are shown along with the measured D (red circle)
from Xu et al.6 The melting point of water (magenta dashed line) and TIP4P/2005 water (purple
dashed line) water are also indicated.

physically reasonable initial guesses gave very similar, but not identical, fitted parameters (results

for the diffusion coefficient case are presented in the supplementary material). For the integrated

reorientation time, initial guesses were 1/τ2,0,H = 1000 ps−1 and 1/τ2,0,L = 10 ps−1 and the diffu-

sion activation energies from Ref. 146. The results are shown in Fig. 7.3 for 1/〈τ2〉 and D and the

parameters are given in Table 7.3; we have not attempted to fit τ2 to such an expression because,

as noted above, it is ill-defined below 250 K.

The predictions obtained by fitting the timescale and its derivatives to Eq. (7.17) are in good

agreement with both the T -dependent simulation results and the measured diffusion coefficients.6

It is important to note that because the T0 and ∆T values are obtained by fitting the experimen-

tal data,146 these do not represent predictions solely based on the room temperature simulations.

Nevertheless, they show how ambient water dynamics can provide insight into deeply supercooled

water by determination of the LDL Arrhenius parameters. Specifically, the fit for the diffusion

coefficient gives Ea,L = 10.4± 0.6 kcal/mol and D0,L = 4.8± 0.7 cm2/s (Table 7.3), which are
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in excellent agreement with the values of 10.5 kcal/mol and 6.152 cm2/s, respectively, obtained

by fitting the data of Xu et al. directly.146 Similarly, the HDL behavior is also well reproduced

with the fit yielding Ea,H = 3.84±0.07 kcal/mol and D0,H = 0.0156±0.002 cm2/s, compared to

3.61 kcal/mol and 0.0111 cm2/s, respectively, from the direct fitting.146

The integrated reorientation time exhibits similar behavior to the diffusion coefficient, with the

two liquids prediction in good agreement with the T -dependent simulation data. The fitting gives

the 1/〈τ2〉 activation energy for LDL water as 7.3± 0.7 kcal/mol, significantly larger than the

3.88±0.09 kcal/mol obtained for HDL water. We are unaware of measurements of the integrated

reorientation time below ∼ 220 K that would provide a test of the behavior predicted in Fig. 7.3a.

It is interesting to compare the LDL activation energies for diffusion and reorientation. Qvist

et al. found through both NMR measurements and simulations that reorientational dynamics slow

more quickly than translational diffusion as the temperature is lowered.52 This is consistent with

the larger divergence temperature (Ts given in Table 7.2) we find for 〈τ2〉 compared to that for

D. Similarly, the activation energies as a function of temperature presented below in Sec. 7.3.4

also indicate that the HDL-LDL transition temperature, T0, may be higher for reorientation than

diffusion. However, it is important to note that this does not have any clear implication for the LDL

activation energy. In the two liquids description, the lengthening of the timescale and associated

rise in activation energy as T0 is approached is due to the HDL-LDL transition as represented by

the switching function, s(T ), in Eq. (7.17). Indeed, the activation energy is larger in this switching

region than in either the LDL or HDL regimes precisely due to s(T ). Thus, it is not possible to

infer Ea,L from this behavior; if T0 is larger for reorientation than diffusion this does not clearly

indicate that the LDL activation energy for reorientation should be higher than that for diffusion.

It is possible to fully determine the two liquids description by, e.g., calculating higher deriva-

tives at room temperature or including the timescale and first two derivatives at another temperature

(above the melting point). The latter is likely more practical. However, a common aspect of both

the stability limit and and HDL-LDL phase transition descriptions is that they treat the temperature

dependence of the room temperature liquid and the supercooled liquid within a single framework.
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Figure 7.4: Temperature-dependent activation energy decompositions are reported for for (a) 〈τ2〉,
(b) τ2, and (c) D. The total activation energy (black circle) as well as the the kinetic (red square),
Lennard-Jones (purple diamond), and electrostatic contributions (cyan triangle) to the activation
energy are presented. The prediction of the total activation energy based on Eqs. (7.12) (blue solid
line) and (7.17) (blue dashed line) are also shown.

This implicitly assumes that these quantities vary smoothly with temperature until, in some cases,

a divergence at Ts is observed.265–267 The notion that supercooled water has distinct structures

that are not present in room temperature water appears to be at odds with these models. This is

particularly true for the description of supercooled water in terms of an HDL-LDL transition, in

which the temperature dependence down to ∼ 125 K can be determined from simulations at room

temperature.

7.3.4 Activation Energy Predictions and Decompositions

Additional insight into the underlying barrier, and hence the mechanism, associated with a given

timescale, τ , can be obtained from the corresponding activation energy,

Ea,τ =−
∂ ln(1/τ)

∂β
=

1
τ

∂τ

∂β
, (7.18)

which measures the rate of change with temperature. To further explore the behavior of super-

cooled water, we have calculated the activation energies directly from each of our T-dependent
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simulations. In addition, because Eqs. (7.12) and (7.17) give the temperature dependence of the

timescale, we have also used the room temperature simulations to predict how the activation ener-

gies for water reorientational dynamics and diffusion change upon cooling.

The activation energies for 〈τ2〉, τ2, and 1/D calculated in these three ways are presented in

Fig. 7.4. As is evident from the apparent divergence of the timescales, illustrated in Fig. 7.2, there

is a significant increase in these activation energies upon cooling down to 235 K. Similar to the pre-

diction of the timescales above, the predicted and calculated activation energies are in quite good

agreement. The predicted 〈τ2〉 activation energy is in excellent agreement with the T-dependent

simulation results for T ≥ 280 K, but overestimates the values at lower temperatures. For τ2 and

1/D the predicted activation energies based on the stability limit conjecture are in good accord

with the explicit calculations, slightly overestimating Ea,τ2 at higher T . The two liquids descrip-

tion somewhat overestimates the activation energy of both timescales at lower temperature, which

may be due to the assumption of the transition temperature value. The accuracy of the predicted

activation energies further supports the notion that the water dynamics in the supercooled regime

is governed by mechanisms and structural features that are also present at room temperature.

We have previously shown that the direct calculation of the activation energy using the fluc-

tuation theory for dynamics can be used to rigorously decompose it into components.13,31,44,50,58

Specifically, the fluctuation in the total energy can be written as δH(0) = δKE(0)+ δULJ(0)+

δUelec(0), where the three terms are the fluctuations in the kinetic, Lennard-Jones, and electro-

static energies, respectively. Then, the activation energies obtained from Eqs. (7.2) and (7.7), can

be written as a sum of contributions associated with each of these components of the total en-

ergy, e.g., Ea,D = EKE
a,D +ELJ

a,D +Eelec
a,D . These three contributions, obtained from the T-dependent

simulations, are shown for each timescale along with the total activation energy in Fig. 7.4.

These components can be interpreted in terms of Tolman’s picture of the activation energy.13,18,19

Tolman showed that the activation energy can be written as the difference between the average en-

ergy of reactive trajectories and the average reactant energy, i.e., Ea = 〈E〉reacting−〈E〉reactant . In

this context, for example, EKE
a = 〈KE〉reacting−〈KE〉reactant , which is the average kinetic energy
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of species crossing the barrier minus the average kinetic energy of reactants. These contributions

thus indicate the excess energy needed in a particular type of kinetic or interaction energy to sur-

mount the barrier to the process. In this perspective, positive activation energy contributions (e.g.,

Eelec
a ) indicate that higher energies in those energy components lead to faster dynamics, while for

negative activation energy contributions (e.g., ELJ
a ) it leads to slower dynamics.

The decompositions of the activation energies presented in Fig. 7.4 show that electrostatics are

the dominant contribution to the total activation energy for both water reorientation and diffusion.

Moreover, the electrostatic component increases upon cooling, driving the rise in the total activa-

tion energy for each timescale; for example, Ea,〈τ2〉 and Ea,D increase by 13.8 and 9.6 kcal/mol,

respectively, upon cooling from room temperature to 235 K. The kinetic energy contribution is sig-

nificantly smaller and is relatively independent of temperature, changing by ∼ 1 kcal/mol over the

entire temperature range. The Lennard-Jones contribution is negative, indicating that the dynamics

are accelerated when this component of the energy is smaller.

It is notable that the activation energies for the three dynamical timescales are in general qual-

itative and quantitative accord. We have previously found that the reorientation and diffusion

activation energies and their components are very similar to each other at room temperature,44,50

indicative of a common underlying barrier associated with H-bond exchanges.85,88

As the temperature is reduced, the Lennard-Jones component becomes more negative while

the electrostatic contribution increases. This indicates a cancellation between these two that can

be understood based on the liquid structure. The first solvation shell of a water molecule is suffi-

ciently close (the OO radial distribution function peaks around 2.75 Å) that these H-bonded waters

are on the repulsive wall of the Lennard-Jones potential (σT IP4P/2005 = 3.1589 Å). Thus, to ex-

change H-bond partners two waters must first increase the OO distance,85 thereby decreasing the

Lennard-Jones energy and leading to a negative ELJ
a . The water structure is determined by the

tension between these repulsive Lennard-Jones interactions and attractive electrostatic forces. In

the process of exchanging H-bond partners, the expansion of the OO distance is associated with an

increase in the water-water electrostatic interaction energy, giving a positive Eelec
a . Upon cooling
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the liquid is increasingly ordered leading to lower (more favorable) electrostatic energy and more

repulsive Lennard-Jones interactions, which is reflected in the activation energy components.

In accord with the physical pictures discussed in the preceding sections, the ability to predict

reasonable activation energies using both the stability limit and two liquids formalisms indicates

that the room temperature liquid contains information about the underlying barriers associated with

these dynamical timescales. Additionally, it is clear that these barriers are heavily reweighted upon

cooling into the supercooled regime from room temperature; however, this reweighting is a contin-

uation of a trend already present in the ambient liquid. Specifically, the increase in the activation

energy witnessed in the weakly supercooled regime is due to a rise in the electrostatic contribution

that occurs more rapidly than the simultaneous decrease in the Lennard-Jones contribution, which

are both associated with changes in the liquid structure. In the case of the stability limit description

the activation energy reported is related to the physical barrier for water diffusion, whereas in the

two-liquids picture it represents a weighted average of the HDL and LDL activation energies plus a

term associated with the transition between HDL and LDL structures (as described by the switch-

ing function). In either case, this indicates that there is significant, even complete, information

about the supercooled dynamics that can be obtained from the room temperature liquid.

7.4 Discussion

The predictions in Figs. 7.2-7.4 indicate that the key structural motifs that lead to retarded dynamics

in supercooled water are also present in the room temperature liquid. Such structures then appear

with increasing probability as the liquid is cooled. This interpretation is consistent with recent

vibrational spectroscopic measurements by Taschin and co-workers which indicate that there is a

reweighting of structures present in the room temperature liquid upon supercooling.233

Similarly, Stirnemann and Laage report an increase in dynamical heterogeneity in water reori-

entation dynamics upon supercooling.108 In particular, they analyzed the H-bond exchanges that

are directly related to the reorientation timescales,85,88 and showed that the non-Arrhenius behav-

ior could be understood in terms of the asphericity of the water structure in the first solvation shell.
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For a given asphericity, the activation energy was observed to be constant and the non-Arrhenius

temperature dependence was associated with the changes in the distribution of asphericities upon

cooling (favoring more tetrahedral environments) and the structural fluctuations within that distri-

bution. While their results are not consistent with a divergence in the reorientational timescales, the

data also did not provide evidence for an HDL-LDL phase transition by indication of two distinct

local structures.

Saito et al. carried out MD simulations for TIP4P/2005 water down to 130 K, including cal-

culations of the diffusion coefficient.236 They observed a dynamical transition, based on the self-

intermediate scattering function, around the expected location of the Widom line at ambient pres-

sure, ∼ 220 K. They identified the fragmentation and isolation of structural defects, particularly

three-coordinated waters, in the increasingly tetrahedral H-bond network as associated with this

transition as the temperature is lowered.

Other models for the temperature dependence have been proposed, such as the Vogel-Fulcher-

Tammen (VFT) equation,236,250–252 which has an exponential temperature dependence DV FT (T )=

Doe−B/(T−To), similar to the Arrhenius result but with a divergence in the timescale as the temper-

ature is reduced. We have found that it provides a poorer description of the slowdown in diffusion

and reorientation timescales than the stability limit results shown in Fig. 7.2. It has also been

noted by some that the diffusion coefficient and reorientation time temperature dependence can

be described adequately by a fourth- (or higher-) order polynomial;249 this Taylor series descrip-

tion, because it is not physically motivated, requires more information to parameterize for a given

temperature range. However, the present approach is general in that a timescale and its deriva-

tives with respect to inverse temperature can be used to parameterize, directly or through fitting,

physical models that describe its behavior over a broad range of temperatures.

Finally, we note that the approach presented here can, in principle, be used to directly ad-

dress the accuracy of the two liquids description (within a given simulation model). Specifically,

this picture predicts a change in the sign of the second derivative of the timescale with respect to

inverse temperature below the transition temperature, T0. This could be directly tested from simu-
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lations at ∼ 200 K; MD simulations at these conditions, which themselves support the two liquids

description, have previously been reported.146,236,268

7.5 Conclusions

We have shown how the the temperature dependence of the reorientation time, integrated reori-

entation time, and diffusion coefficient of water can be predicted over a large temperature range

that extends into the supercooled regime from simulations at room temperature. Our predictions

match with both experimental and simulation trends, and are in excellent quantitative agreement

with results calculated from T-dependent simulations with the same water model. Similarly, we

have quantitatively predicted the temperature dependence of the activation energies.

These calculations are enabled by the fluctuation theory for dynamics approach that gives, at

a single temperature, the analytical derivatives of the timescales with respect to (inverse) tempera-

ture. This method also provides a rigorous decomposition of the activation energy, which we have

used to determine the contributions due to the kinetic, Lennard-Jones, and electrostatic energies

from simulations at different temperatures. The largest contribution to the activation energy is due

to electrostatic interactions and it rises significantly upon cooling below the melting temperature.

This is partially cancelled by the negative Lennard-Jones component, which increases in magni-

tude as the temperature is reduced. These contributions are indicative of the shifting structures

explored as the liquid is supercooled. The relative contributions are very similar for reorientation

and diffusion, indicating a common underlying barrier associated with H-bond exchange.

The results presented here demonstrate that, assuming a continuous temperature dependence,269

the structural and dynamical features that control the behavior of supercooled water are present in

the room temperature liquid. This should provide insight into the development and interpretation

of experiments and molecular-level models for supercooled liquid structure and dynamics.
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Chapter 8

On the Temperature Dependence of Liquid Structure

8.1 Introduction

How the properties of molecular systems change with temperature is one of the most fundamental

issues in chemistry. Knowledge of this behavior has not only practical implications, but funda-

mental ones, as it typically permits the separation of energetic and entropic driving forces. Unfor-

tunately, the typical approaches for determining the temperature-dependence is to explicitly carry

out measurements or calculations at a range of temperatures and compute effectively numerical

derivatives characterizing the rate of change. However, recently there have been several new sim-

ulation approaches that determine the change with respect to temperature of both static270,271 and

dynamical13,31,35,37,44,50,58,59 properties directly, by calculation of the analytical derivative. In this

Chapter, we present another member of this class of approaches and illustrate it by application to

the temperature dependence of the structure of liquid water.

From molecular dynamics (MD) simulations, the radial pair distribution function (RDF) is

frequently used to characterize the structure of liquids, as272

g(r) =
V
N2

〈
∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
, (8.1)

where~ri j =~r j−~ri is the intermolecular distance between sites i and j, V the volume, N the number

Adapted with the permission of Zeke A. Piskulich and Ward H. Thompson and AIP Publishing, J. Chem. Phys.
152, 011102 (2020).147
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of molecules, and 〈· · · 〉 represents an ensemble average. Experimentally, RDFs can be obtained,

for example, from the Fourier transform of the structure factor measured by neutron231,273,274 and

X-ray12,274–276 scattering.

The dependence on temperature of the RDF in the canonical ensemble can be seen more clearly

by making explicit the average in Eq. (8.1),

g(r) =
V
N2

1
Q

1
hF

ˆ
dp
ˆ

dqe−βH
∑

i
∑
j 6=i

δ (r−|~ri j|), (8.2)

where H is the Hamiltonian, β = 1/kBT , q and p the system coordinates and momenta, h Planck’s

constant, and F the number of degrees-of-freedom. In evaluating the temperature dependence of

g(r) it is notable that T only appears in the canonical partition function, Q, and the Boltzmann

weighting, e−βH . Thus, taking the derivative with respect to β yields

∂g(r)
∂β

=− V
N2

〈
δH ∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
≡−gH(r), (8.3)

where δH = H−〈H〉 is the fluctuation in the total system energy from its average value, 〈H〉 =

−∂ lnQ/∂β . The second equality defines gH(r). Note that this expression gives the derivative of

the RDF with respect to β by weighting the distribution of site-site distances by the fluctuation in

total energy at that configuration, when δH > 0 the distribution is weighted by a positive number

and when δH < 0 it is weighted by a negative number. In this way, the analytical derivative of the

RDF is obtained, in contrast with the usual numerical derivatives calculated from simulations of

the RDF at different temperatures.

We note that the result in Eq. (8.3) is a straightforward example of fluctuation theory,26,28,206

e.g., relating the heat capacity to the fluctuations in the energy. As such, it can be readily ex-

tended to derivatives with respect to other thermodynamic variables including pressure or chemi-

cal potential. Similar results have been previously derived for various static and dynamical proper-

ties,13,26,28,31,35,37,44,50,58,59,206,270,271 including for the RDF by Mahynski et al.271 In the following

we show that this derivative can be used to obtain the energetic and entropic driving forces, predict
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g(r) over a large temperature range, and extract mechanistic insight.

An additional advantage of this approach is that δH can be decomposed into any additive sum

of terms to gain insight into the origin of the temperature dependence. For example, for a typical

fixed charge MD simulation, one can write

δH = δKE +δVLJ +δVCoul, (8.4)

where KE, VLJ , and VCoul are the kinetic, Lennard-Jones, and Coulombic energies. Using this in

Eq. (8.3) gives

gH(r) = gKE(r)+gLJ(r)+gCoul(r), (8.5)

where each term on the right-hand-side is given by the expression in Eq. (8.3) with δH replaced

by the respective energy component fluctuation, e.g., δVLJ for gLJ(r). We note that, because the

RDF does not involve an average over any p-dependent property, it is straightforward to show that

gKE(r) = 0.

In the following, we apply this approach to investigate the structure and free energetics of water

using only a simulation at room temperature (298.15 K). The focus is the oxygen-oxygen RDF and

its derivative calculated from Eq. (8.3). To test the predictions, additional simulations have been

carried out at different temperatures from 235 to 360 K, hereafter referred to as “T -dependent

Simulations."

8.2 Simulation Methods

The results presented here were obtained from MD simulations of 343 TIP4P/2005 water molecules5

using the LAMMPS program.81 A 50 ns NVT trajectory with 1 fs timestep was propagated at

298.15 K with a density of 0.997 g/cm3 to produce 1,000,000 configurations from which quantities

were averaged. As discussed below, while greater sampling is needed to determine the temperature

derivative of the RDF (and its decomposition) compared to the RDF itself, such a long trajectory is

159



not necessary as the convergence is reasonably rapid. A three-chain Nosé-Hoover thermostat83,84

was utilized to hold simulations at a constant temperature, with a damping parameter of 100 fs. The

water molecules were held rigid by the SHAKE algorithm.82 The Particle Particle Particle Mesh

(PPPM) method was used to calculate the long-range electrostatic interactions.119,120 The SHAKE

and PPPM tolerances were both set to 1.0×10−4. The Lennard-Jones interaction cutoff was 10.5 Å

and long-range tail corrections were used. In addition to the room temperature simulation, 5 ns

simulations using the same protocol were run at 235, 250, 280, 320, and 360 K; results were calcu-

lated from 50,000 configurations. Reported uncertainties are calculated from block averages using

five blocks and reported as 95% confidence intervals according to the Student’s t-Distribution.122

8.3 Results and Discussion

The room temperature O-O RDF is shown along with its derivative with respect to β in Figure 8.1a.

The derivative, ∂gOO(r)/∂β , has a strong positive peak at 2.7 Å in the first solvation shell and a

weaker local maximum in the second solvation shell at 4.4 Å. Between the solvation shells, at 3.1

and 5.7 Å, the derivative is negative where gOO(r) itself is a local minimum. Thus, the deriva-

tive indicates that as temperature decreases (β increases) water becomes increasingly structured,

i.e., the first and second solvation shell peaks increase in amplitude while the minima are low-

ered. This derivative, or a closely related quantity, has been previously obtained numerically from

experimental measurements.277

Insight into the origin of these changes can be obtained by examining the components of the

derivative due to energy contributions, shown in Figure 8.1b. As noted above, the kinetic energy

term, gKE(r), is rigorously zero. The potential energy contributions are both significant in magni-

tude but with opposing signs. In particular, the Coulombic component is the dominant term and

displays the same behavior as the total derivative. The Lennard-Jones contribution is opposite in

sign at all distances, but smaller than gCoul(r). Thus, it only acts to diminish the magnitude of the

derivative relative to the Coulombic term alone.

This behavior can be understood in the context of the RDF itself. The first solvation shell
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Figure 8.1: a: The O-O RDF (black line) and its first derivative (magenta line) calculated from a
single simulation at 298.15 K. b: The derivative ∂gOO(r)/∂β =−gH(r) (magenta line) along with
its contributions due to kinetic energy (X = KE, red line) and Lennard-Jones (X = LJ, violet line)
and Coulombic (X =Coul, blue line) interactions.

is peaked at 2.75 Å, which is within the repulsive region of the Lennard-Jones potential with

σ = 3.1589 Å, held there by favorable Coulombic interactions. As the temperature is lowered, the

liquid becomes more structured as this lowers the electrostatic potential energy at the expense of

the already unfavorable Lennard-Jones interactions.

A particularly interesting feature of the decomposition of gH(r) is that, for distances beyond

the first solvation shell, where the total derivative is zero both gCoul(r) and gLJ(r) are also zero (or

nearly so). The distances at which the derivative ∂gOO(r)/∂β = 0 are ones where the RDF itself

is then effectively independent of temperature. These isosbestic points in the water gOO(r) have

been previously observed in both experimental and simulation studies,12,276,277 particularly one
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obtained in the first solvation shell coordination number. In the present calculations, the isosbestic

point related to the first solvation shell occurs where gH(r) = 0 around 2.9 Å; this occurs by a

cancellation of non-zero contributions of gCoul(r) and gLJ(r) of opposite signs, in contrast to that

observed at larger O-O distances.

It is also instructive to examine the free energy profile that is directly obtained from the RDF

as

∆A(r) =−kBT lng(r)−2kBT lnr, (8.6)

where ∆A(r) is the (constant volume, Helmholtz) free energy as a function of the site-site distance.

The first term is the potential of mean force206 and the second term accounts for the increasing

volume available for other waters as the intermolecular distance, r, increases. It is straightforward

to obtain the derivative of ∆A with respect to β as

∂A(r)
∂β

= kBT
[

gH(r)
g(r)

−∆A(r)
]
, (8.7)

which can be calculated from Eqs. (8.3) and (8.6). Noting that ∆A(r) = ∆U(r)−T ∆S(r), where U

and S are the internal energy and entropy, respectively, this derivative can be used to determine both

terms. Namely, assuming that both ∆U(r) and ∆S(r) are temperature independent, one obtains

∆S(r) =
1

kBT 2
∂A(r)

∂β
, (8.8)

and

∆U(r) =
gH(r)
g(r)

. (8.9)

Thus, the RDF and its derivative from Eq. (8.3) provide the energetic and entropic driving forces

for the liquid structure under the van’t Hoffian assumption that they are do not change with temper-

ature. Unlike the standard approach, in which ∆S(r) is obtained from the slope of ∆A(r) with T at

each r followed by calculation of ∆U(r) = ∆A(r)+T ∆S(r), Eqs. (8.8) and (8.9) can be evaluated

from a simulation at a single temperature.
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Figure 8.2: Helmholtz free energy ∆A(r) (black line) from the O-O RDF is shown along with the
internal energy, ∆U(r), (red line) and entropic, −T ∆S(r), (blue line) contributions.

The entropy and internal energy profiles as a function of O-O distance in water are shown in

Fig. 8.2 along with the free energy. The internal energy exhibits minima at the location of the solva-

tion shells, the peaks in gOO(r), at 2.7, 4,4, and 6.7 Å, with the depth of each minimum decreasing

with the O-O distance. We can note that the derivative decomposition also gives the contributions

to ∆U(r) given Eq. (8.9) and gH(r) = gCoul(r)+gLJ(r). Then, Fig. 8.1b shows that the location of

the solvation shells follows the dominant electrostatic interactions with the well depths determined

further by the direct competition with the Lennard-Jones interactions. The isosbestic points in the

O-O RDF occurs where the gH(r) = 0 and hence where ∆U(r) equals its asymptotic limit. The

results in Fig. 8.1b indicate that, beyond the first solvation shell, the Coulombic and Lennard-Jones

interactions are directly opposed such that when one favors association (lowers the internal energy)

the other disfavors it. Hence, in this region the isosbestic points occur where gCoul(r) = gLJ(r) = 0.

The entropic contribution to the free energy,−T ∆S(r), decreases across the first solvation shell

from 2.5 to a minimum at 3.1 Å, i.e., the entropy increases with O-O distance with a maximum

at the position of the barrier for a water to move between the first two solvation shells (a key

component of hydrogen bond exchange85,88). Following this, energy-entropy compensation is

observed with local maxima in −T ∆S(r) matching the locations of the minima in ∆U(r) along

with an overall decrease associated with the volume term (−2kBT lnr).
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The internal energy and entropy profiles can be used to predict the temperature dependence of

both the free energy curve and the RDF. Solving Eq. (8.6) for the RDF gives

g(r;β ) =
C
r2 e−β∆A(r) =

C
r2 e−β∆U(r) e∆S(r)/kB, (8.10)

where C is a constant that ensures the normalization of g(r) at large r and represents a choice

of the zero of energy for ∆A(r). If the entropy and internal energy are calculated via Eqs. (8.8)

and (8.9) at one temperature, then g(r) can be determined at another T , or β , by Eq. (8.10). This

enables the prediction of the RDF over a wide range of temperatures from simulations at a single

T and the free energy profile – or any other quantity derived from g(r), e.g., coordination number,

configurational entropy – can be obtained in an analogous way.

Unlike previous approaches based on Taylor series expansions,270,271 Eq. (8.10) rigorously

describes the temperature dependence in terms of the energetic and entropic driving forces from

the calculation of a single temperature derivative. If ∆U(r) and ∆S(r) do not depend significantly

on temperature (as the results below indicate is the case), the higher derivatives used in a Taylor

series expansion of g(r) as given in Eq. (8.10) provide only information redundant with ∂g(r)/∂β .

In other words, the primary effect of temperature on the RDF is the explicit T -dependence present

within the Helmholtz free energy. Similarly, this global description of g(r) avoids the requirement

of Boltzmann reweighting methods278 that the temperatures of interest have overlapping energy

distributions. For example, here we make predictions at 235 K from 298.15 K simulations and

these two temperatures have total energy distributions that do not overlap.

The predictions calculated with this approach for the O-O RDF in water are presented in

Fig. 8.3a for temperatures from 235 to 360 K. These results are obtained from the g(r) and gH(r)

presented in Fig. 8.1a calculated from a simulation at 298.15 K. They are compared to the explicit,

T -dependent simulations of the RDF at each of the temperatures shown. The RDFs predicted from

the room temperature simulations are in excellent agreement with the directly calculated ones for

temperatures from 360 to 235 K. The largest deviation is observed for 235 and 250 K in the min-
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imum at ∼ 3.2 Å following the first solvation shell, where the predicted gOO(r) is slightly larger

than that observed in the T -dependent simulations. This indicates that both the internal energy and

entropy profiles are nearly unchanged over a wide range of temperatures, with only small effects

seen in this weakly supercooled regime.

We note that these predictions assume that the temperature dependence in the RDF arises from

that explicit in the Helmholtz free energy, ∆A(r) = ∆U(r)− T ∆S(r), and thus that the internal

energy and entropy are independent of temperature. Based on the results in Fig. 8.3, this is an

accurate description of water from near its boiling point to well into the supercooled regime.

Both the RDF and ∆A(r) results show an increase in the water structuring with decreasing T

as evidenced by the increasing amplitude of the solvation shell peaks and the deeper minima in

gOO(r) in between these. Both this trend and the agreement between the predicted and explicitly

calculated results are also observed when the results are plotted as free energy profiles, ∆AOO(r)

in Fig. 8.3b. Here, the structuring is clearly observed in the increasing depth of the solvation shell

minima and the rising barriers for a water to move between solvation shells as the temperature is

decreased.

Moreover, because the free energy barriers in ∆A(r) correspond to those for a water to move

between solvation shells, these predictions provide insight into dynamical processes as well that

involve such movements, such a. This includes the exchange of hydrogen bond partners85,88 and

allied processes such as diffusion and OH reorientation.

It is useful to consider the convergence of the derivative with the length of the trajectory. This

is illustrated in Fig. 8.4a where the derivative ∂gOO(r)/∂β is plotted as a function of the total

trajectory time. In each case, the calculation is carried out using frames saved every 50 fs, so

the trajectory time is proportional to the number of configurations used in the average. The con-

vergence is also affected by the bin width used in the histogramming, here 0.02 Å. The error,

calculated as the difference with the 50 ns result, is shown in Fig. 8.4b to give a more quantitative

measure of the convergence. The general behavior of the derivative is already obtained with a

0.5 ns trajectory and well determined at simulation times of 2.0 ns or longer, where the errors are
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generally less than 0.1 kcal/mol; these errors are decreased if less spatial resolution is required.

These results show that the temperature derivative of the RDF is accessible with typical simulation

times.

8.4 Conclusions

In summary, we have presented a simple method for calculating the derivative of the radial dis-

tribution function with respect to inverse temperature. This derivative is directly related to the

internal energy (or, in a constant pressure ensemble, the enthalpy), which further provides access

to the entropy. Together, these properties can be used to predict the behavior of the liquid struc-

ture over a wide range of temperatures. The approach is a straightforward extension of fluctuation

theory and is thus completely general. It can be applied to any equilibrium distribution or average

within any ensemble and to other thermodynamic variables. The method is highly accurate over

temperature ranges in which the internal energy and entropy do not change with temperature, or do

so only weakly. Thus, for example, it cannot be used to predict behavior across a first-order phase

transition, as it will instead predict the metastable, e.g. supercooled/superheated, behavior. A key

advantage is the mechanistic insight it can provide through the decomposition of the derivative

into contributions from different interactions present in the system. This approach can be straight-

forwardly implemented in common simulation protocols to provide additional information that is

currently being neglected.
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Chapter 9

Temperature Dependence of the Water Infrared Spectrum:

Driving Forces, Isosbestic Points, and Predictions

9.1 Introduction

The behavior of liquid water vibrational spectra with temperature has long been of interest because

of the potential insight it can offer into the underlying driving forces for the liquid structure and

dynamics.46,46,48,49,105,124,138,197,279–284,284–286,286–295 Among the prominent features observed are

isosbestic points found in the IR282,286,286,287 and Raman280,284,284,288,289,291–295 spectra as tem-

perature is varied. These have been used to argue for two-state models of the water hydrogen-bond

(H-bond) network,282,284–287 but more recently it has been shown they instead arise as a natural

feature of inhomogeneous broadening.291–293

In this Chapter, we investigate the energetic origins of the temperature dependence of the IR

spectrum of dilute HOD in D2O to shed new light on these issues. Specifically, we directly cal-

culate the temperature derivative of the IR spectrum using molecular dynamics (MD) simulations.

The theoretical approach is an application of fluctuation theory to dynamics,13,31,35,58 similar to

that previously described by Morita and co-workers.46,46,48,49 This method provides new mecha-

nistic insight into the energetic driving forces – e.g., kinetic energy, Coulombic and Lennard-Jones

interactions – behind spectral changes with temperature, including the nature and origin of the

Adapted with the permission of Zeke A. Piskulich, and Ward H. Thompson and the American Chemical Society
from J. Phys. Chem. Lett. 11, 7762-7768 (2020).184
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isosbestic point. We show that the effects can be characterized by an (effective) internal energy

as a function of frequency, which itself can be used to predict the IR spectrum for temperatures

spanning at least 80 K.

We calculate the IR lineshape from the Fourier transform

I(ω) =
1

2π

ˆ
∞

−∞

e−iωt
φ(t)dt, (9.1)

of the dipole-dipole response function,

φ(t) =
〈
~µ01(0) ·~µ01(t)ei

´ t
0 ω01(τ)dτ

〉
e−|t|/2T1. (9.2)

Here~µ01(t) = 〈1|µ̂|0〉= µ01(t)~eOH(t) is the matrix element of the transition dipole moment vector

for the OH bond at time t, ω01(t) is the 0→ 1 vibrational frequency at time t, and T1 is the n = 1

vibrational relaxation lifetime. The brackets 〈· · · 〉 indicate a thermal average.

It is within this thermal average that the temperature dependence of the IR spectrum appears

in two factors: the Boltzmann weighting factor in the average and the canonical partition function

that normalizes it.13,31 Thus, taking the derivative of the IR lineshape gives a simple expression

dI(ω)

dβ
=− 1

2π

ˆ
∞

−∞

e−iωt
φH(t)dt, (9.3)

where β = 1/kBT with kB Boltzmann’s constant and φH(t) is, within a sign, the β derivative of

φ(t),
dφ(t)

dβ
=−

〈
δH(0)~µ01(0) ·~µ01(t)ei

´ t
0 ω01(τ)dτ

〉
e−|t|/2T1 =−φH(t). (9.4)

Here, δH(0) = H(0)−〈H〉 is the fluctuation in the total system energy from its average value. For

simplicity, we neglect the temperature dependence of T1 and use the value of 700 fs from Fecko et

al.114

In this work, we evaluate these quantities using the empirical mapping approach196,197,199 from

a classical MD simulation of H2O, considering each OH bond as independent and isotopically di-
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lute (i.e., neglecting vibration-vibration coupling) to effectively model dilute HOD in D2O.197 In

this approach, ω01 and µ01 are obtained from the electric field along the OH bond, exerted by

the surrounding waters on the H atom of interest, as determined by a correlation with electronic

structure results. This approach has been shown to be accurate for a water in a variety of environ-

ments199 and over a wide range of temperatures.197,296

9.2 Computational Methods

MD simulations of 343 TIP4P/20055 molecules in a periodic simulation cell of side length 21.725311 Å

(ρ = 0.997 g/cm3) were carried out using the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS).81 A 1 fs timestep was used with the SHAKE algorithm to hold the water

bonds and angle rigid (tolerance of 1× 10−4) and the electrostatics described with the Particle-

Particle-Particle Mesh Ewald summation method119,120 (tolerance of 1×10−4). At 298.15 K, six

4 ns NVT trajectories were propagated with positions and energies saved every 4 fs; the IR spectra

was calculated at 280, 320, 340, and 360 K from one 4 ns NVT trajectory at each temperature. Tem-

perature was maintained with a Nosé-Hoover thermostat83,84 with a damping parameter of 2 ps,

long enough to avoid thermostat effects on the response functions φ(t) and φH(t). All reported

uncertainties correspond to a 95% confidence interval according to the Student’s t-distribution122

over an average of six blocks (each block representing a 4 ns trajectory).

9.3 Results and Discussion

The simulated IR lineshape for HOD in D2O is presented in Fig. 9.1a. The peak maximum is

at 3382 cm−1 and the full-width half-maximum (FWHM) is 270 cm−1. It is interesting to com-

pare the IR lineshape with the distribution of frequencies, P(ω) = 〈δ [w−w01(Q)]〉, which is

also plotted in Fig. 9.1a. P(ω) is notably blueshifted, with a maximum at 3465 cm−1, broader

(FWHM = 382 cm−1), and more asymmetric with a long tail to lower frequencies. The differ-

ences are partially a result of non-Condon effects, i.e., the transition dipole moment that gov-
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erns the IR intensity is larger for stronger H-bonds, which are captured in the spectral density,

Pµ(ω) = 〈|µ01(Q)|2 δ [w−w01(Q)]〉. The spectral density is also plotted in Fig. 9.1a and more

closely resembles the IR lineshape: it peaks at 3385 cm−1 but is still broader (FWHM = 361 cm−1).

The difference between the the IR lineshape and spectral density can be attributed primarily to dy-

namical effects, particularly motional narrowing resulting from rapid fluctuations of the vibrational

frequency.297
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Figure 9.1: (a) HOD in D2O IR spectrum (black), frequency distribution (red), and spectral density
(blue) at 298.15 K. The (b) frequency distribution, (c) spectral density, and (d) IR spectrum, with
the maximum set to 1, are reproduced (solid black) along with the total derivative with respect to β

(dashed black) and the contributions to the derivative from the kinetic (dashed red), Lennard-Jones
(dashed violet), and Coulombic (dashed blue) energies.

The temperature (or β ) derivative of the frequency distribution and spectral density can be
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calculated like that for I(ω),

dP(ω)

dβ
=−〈δH δ [w−w01(Q)]〉 ≡ −PH(ω), (9.5)

and
dPµ(ω)

dβ
=−〈δH |µ01|2 δ [w−w01(Q)]〉 ≡ −Pµ,H(ω). (9.6)

A key advantage of this approach is that it provides additional mechanistic information because

the system energy is divisible into physically meaningful components, e.g., δH(0) = δKE(0)+

δVLJ(0)+ δVCoul(0), yielding the contributions to the derivative from each of these motions or

interactions, e.g., PH(ω) = PKE(ω)+PLJ(ω)+PCoul(ω). Here, KE is the kinetic energy and VLJ

and VCoul are the Lennard-Jones and Coulombic potential energies. It should be noted that other

decomposition are possible as long as the terms sum to the total energy; though for the present

work we consider the simple decomposition above. The total temperature derivatives of P(ω),

Pµ(ω), and I(ω) are shown in Fig. 9.1b-d along with the contributions to each derivative from the

different energy components.

Considering the frequency distribution first, Fig. 9.1b shows that the total derivative is positive

at lower frequencies (i.e., the amplitude in this region will grow as β increases and T decreases)

and negative at higher frequencies. Note that because P(ω) is a normalized probability distribution,

its derivative must integrate to zero. This gives rise to at least one frequency where the derivative is

zero and therefore where P(ω) is unchanged by temperature (at least over some interval). Geissler

has previously pointed this out in the context of understanding isosbestic points that have been

observed in the Raman and IR spectra of water,291–293 the former of which can often be well

described by the frequency distribution.

New insight into the origin of the isosbestic point is offered by the energetic contributions

to the derivative. Because P(ω) depends only on configurational variables, the kinetic energy

contribution is rigorously zero. The total derivative, dP(ω)/dβ , is thus determined by the direct

competition of the Lennard-Jones and Coulombic interactions. Namely, in an H-bond the waters
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sit on the repulsive wall of the Lennard-Jones potential, held there by the attractive Coulombic at-

traction between the donor H atom and the accepting O atom. The frequency distribution captures

a continuum of H-bond structures with lower frequencies corresponding to greater electrostatic

stabilization and larger Lennard-Jones repulsion. Conversely, the highest frequencies, which re-

flect weak or even transiently broken H-bonds, involve more favorable Lennard-Jones and poorer

Coulombic interactions. This behavior is reflected in the Lennard-Jones and Coulombic contri-

butions to the P(ω) derivative shown in Fig. 9.1b. The former favors higher frequencies and the

latter favors lower frequencies as T decreases. The electrostatic interactions are dominant, so the

total derivative reflects the partial cancellation of the Coulombic contribution by the Lennard-Jones

term.

The frequency where the total derivative is zero, the isosbestic point for P(w) with changes in

T , is thus determined by the competition between the Coulombic and Lennard-Jones interactions

that are held in tension in an H-bond.136,147,160 The same battle between these interactions explains

an analogous isosbestic point in the water O–O radial distribution function,147 which has been

observed in both measurements and simulations.12,276,277,298

The IR spectrum differs from the frequency distribution due to both non-Condon and dynamical

effects (Fig. 9.1a). The effect of the former on the temperature dependence is explored in Fig. 9.1c,

where the spectral density derivative, dPµ(ω)/dβ , is shown along with its kinetic, Lennard-Jones,

and Coulombic energy contributions. These are qualitatively similar to those for the frequency

distribution. Indeed, the spectral density is the frequency distribution weighted by the average

square transition dipole moment at each frequency, increasing the relative amplitude of both Pµ(ω)

and its derivatives at lower frequencies compared to P(ω). The temperature dependence of Pµ(ω)

and P(ω) thus only differ if 〈|µ01|2〉(ω) changes with temperature. Within the empirical mapping

description this is not the case and there is no temperature dependence of the non-Condon effect

itself.

Because the IR spectrum includes dynamical effects that significantly affect the lineshape, it is

perhaps not obvious that it would retain an isosbestic point. This is explored in Fig. 9.1d, which
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shows the total derivative of I(ω) with respect to β and it energetic components. The total deriva-

tive is in general agreement with that previously reported by Joutsuka and Morita using a flexible,

polarizable water model to directly describe the frequencies;48 they did not report energetic de-

compositions. The results clearly show that the general shape of dI(ω)/dβ is similar to that for

the frequency distribution and spectral density, including the presence of a frequency at which the

derivative is zero, indicative of an (at least local) isosbestic point at 3454 cm−1, which is redshifted

relative to the 3482 cm−1 found for P(ω) and Pµ(ω); experiments on H2O find an isosbestic point

at 3460 cm−1.286 As with the frequency distribution, this can be understood based on the ener-

getic contributions to the derivative, which measure how the interactions drive the changes in I(ω)

with T . The dynamical nature of the IR lineshape means that the kinetic energy contribution to its

derivative is non-zero, but it remains quite small. Thus, dI(ω)/dβ is largely determined by the

competition between the Coulombic and Lennard-Jones interactions of the water molecules that,

as T is decreased, favor lower and higher OH frequencies, respectively.

It is interesting and useful to examine the thermodynamics that underlie the frequency distribu-

tion by considering the corresponding (Helmholtz) free energy profile as a function of frequency,

∆A(ω) =−kBT lnP(ω) = ∆U(ω)−T ∆S(ω), (9.7)

where ∆U(ω) and ∆S(ω) are the internal energy and entropy. It is straightforward to show that,

within the van’t Hoffian assumption that ∆U(ω) and ∆S(ω) are temperature independent,147

∆U(ω) =
PH(ω)

P(ω)
. (9.8)

The entropic contribution can be directly obtained from ∆A(ω) and ∆U(ω). Geissler derived an

analogous expression to Eq. 9.8 in explaining the ubiquity of isosbestic points.292,293 (The spectral

density free energy is the same as that for P(ω) within the present model.) In addition, because

PH(ω) can be decomposed into Lennard-Jones and Coulombic contributions, so can the internal
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Figure 9.2: Free energy ∆A (solid black), internal energy ∆U (dashed black), entropic contribution
−T ∆S (dashed red) are plotted versus frequency along with the Lennard-Jones (dashed violet) and
Coulombic (dashed blue) internal energy components for the (a) frequency distribution and (b) IR
spectrum at 298.15 K.

energy. Namely,

∆U(ω) =
PLJ(ω)

P(ω)
+

PCoul(ω)

P(ω)
= ∆ULJ(ω)+∆UCoul(ω), (9.9)

providing additional insight into the energetic driving forces.

The free energy, internal energy, entropy, and internal energy components for the frequency

distribution are shown in Fig. 9.2a. The internal energy ∆U(ω) has a broad minimum around

3200 cm−1 resulting from the competition between the Coulombic and Lennard-Jones contri-

butions. The former decreases monotonically toward lower frequencies, i.e., more redshifted,

strongly hydrogen-bonded OH groups, while the latter decreases monotonically as the frequency

increases. The entropic contribution, −T ∆S(ω), also favors higher frequencies, further indicating

that they correspond a more disordered H-bonding arrangement involving weaker, or even tran-

siently broken, H-bonds.

The IR spectrum, as a dynamical quantity, cannot be rigorously converted to a free energy, but

we can consider an effective free energy defined in analogy to Eq. 9.7:

∆AIR(ω) =−kBT ln I(ω) = ∆UIR(ω)−T ∆SIR(ω). (9.10)
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Analogous to the frequency distribution, the internal energy can be decomposed as ∆UIR(ω) =

∆UIR,KE(ω)+∆UIR,LJ(ω)+∆UIR,Coul(ω), noting that the kinetic energy contribution is non-zero.

These effective free energy, internal energy, entropy, and internal energy components for the

IR spectrum are shown in Fig. 9.2b. They exhibit behavior that is generally the same as for the

frequency distribution, with the primary difference occurring at the highest and lowest frequen-

cies. Namely, ∆AIR(ω) asymptotically approaches constant values at the limits of the spectrum.

Similarly, ∆UIR(ω) and −T ∆SIR(ω) exhibit local maxima and minima due to this behavior. This

difference in shapes with the P(ω) results is due to both non-Condon effects, which appear only in

the free energy and entropy, because the transition dipole moment is not T dependent, and dynam-

ical effects such as motional narrowing (see Fig. 9.1a); the latter make these only effective energy

curves. Otherwise, the results for the IR spectrum show the same competition between Coulombic

and Lennard-Jones interactions as well as between internal energy and entropic factors.

Effective internal energy curves have been previously reported by Hare and Sorenson284 and

Walrafen289 obtained from numerical derivatives of the water Raman spectrum. They obtained

shapes quite similar to the ∆UIR(ω) shown in Fig. 9.2b. They assigned the energy difference

between the maximum and minimum in ∆UIR(ω) to that required to break an H-bond; here we

find that difference to be 2.3 kcal/mol whereas they obtained 3.2 and 5.1± 0.5 kcal/mol.284,289

We have separately calculated the activation energy for an H-bond exchange, or “jump," (see Ref.

136) and find Ea, jump = 3.79± 0.06 kcal/mol. Thus, the present results are not consistent with

such an interpretation, though this may be related to the larger non-Condon effects present in the

IR spectrum.

A key advantage of calculating ∆U(ω) is that it provides a van’t Hoff approach to predict P(ω)

at different temperatures from a single temperature simulation as

Ppred(ω;Tb) =
P(ω;Ta)e−(βb−βa)∆U(ω)´

P(ω;Ta)e−(βb−βa)∆U(ω) dω
. (9.11)

The denominator is included to account for the fact that exp{−(βb − βa)∆U(ω)} is not norm

177



3000 3200 3400 3600 3800
ω (cm-1)

0

2

4

6

8
P(

ω
; T

) x
 1

00
0

a

3000 3200 3400 3600 3800
ω (cm-1)

0

2

4

6

8

P(
ω

; T
) x

 1
00

0

b

Figure 9.3: Predicted frequency distribution (solid lines) for 280 (blue), 320 (orange), 340 (ma-
genta), and 360 K (red) from the 298.15 K distribution (black) and its derivative; direct calculations
at these temperatures are shown as dashed lines of the same color. Results are shown based on (a)
first-order Taylor series approximations and (b) van’t Hoff predictions, Eq. 9.11.

conserving. Here the a and b subscripts label the simulation and predicted temperature, respec-

tively. The frequency distribution at other temperatures predicted from Eq. 9.11 based on P(ω) and

∆U(ω) calculated at 298.15 K are shown in Fig. 9.3b and compared to the distributions calculated

directly at the same temperatures. The agreement is excellent. Only for the highest temperature,

360 K, are there any significant differences between the predicted and directly calculated distribu-

tions, where the predicted distribution is slightly too narrow. These shortcomings of the predictions

are indicative of non-van’t Hoff behavior, i.e., temperature dependence of ∆U(ω) and ∆S(ω).

The directly calculated and predicted frequency distributions do not exhibit a precise isos-

bestic point, but only an approximate one, which is a consequence of the normalizing denominator

in Eq. 9.11. Without it, the frequency distribution would have a rigorous isosbestic point at the

frequency where ∆U(ω) = 0, i.e., where dP(ω)/dβ = 0. Note that a first-order Taylor series ex-

pansion of the exponential in Eq. 9.11, P1st−order(ω;Tb) = P(ω;Ta) [1− (βb− βa)∆U(ω)], does

conserve the normalization of the distribution, illustrating the local nature of the isosbestic point.

Results from this description are shown in Fig. 9.3a. The approximation is reasonable for approx-

imately ±20 K from the temperature at which the derivative is calculated, but leads to significant

deviations for larger variations in the temperature.
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Figure 9.4: Predicted IR spectrum (solid lines) for 280 (blue), 320 (orange), 340 (magenta), and
360 K (red) from the 298.15 K spectrum (black) and its derivative; direct calculations at these tem-
peratures are shown as dashed lines of the same color. Both (a) unnormalized and (b) normalized
results, Eq. 9.12, are shown (see the text).

The temperature dependence of the IR spectrum is naturally of greater interest. A key dif-

ference with P(ω) is that the spectrum is not normalized and thus we cannot simply substi-

tute I(ω) for P(ω) in Eq. 9.11. One approach is to use the unnormalized spectrum obtained as

I(ω;Tb) = I(ω;Ta)e−(βb−βa)∆UIR(ω), the results of which are shown in Fig. 9.4a. The spectra pre-

dicted this way are in reasonable agreement with those calculated explicitly at the different temper-

atures. The key differences are, however, an issue of the overall intensity. This can be reasonably

remedied by using the change in the frequency distribution normalization as a proxy, namely,

Ipred(ω;Tb) =
I(ω;Ta)e−(βb−βa)∆UIR(ω)´
P(ω;Ta)e−(βb−βa)∆U(ω) dω

. (9.12)

The results for this approach are presented in Fig. 9.4b. They are in excellent agreement with the

explicit calculations of I(ω,T ), with only slight differences for T ≥ 340 K in the width of the

spectrum. As with P(ω), this renormalization provides a better description of the T -dependent

spectra, but also results in an only approximate isosbestic point (Fig. 9.4b) rather than a precise

one (Fig. 9.4a).
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9.4 Conclusions

In summary, we have directly evaluated the temperature derivatives of the OH frequency distribu-

tion and IR spectrum of HOD in D2O and shown how they can be used to predict the behavior

over a wide range of temperatures (e.g., 280-360 K) using a van’t Hoff relation. The competition

between Coulombic and Lennard-Jones interactions underlies the spectral properties, including

the location of a (near) isosbestic point. A precise isosbestic point is not observed due to a sub-

tle renormalization of the non-norm-conserving van’t Hoff factor. The approaches described here

should be useful in understanding and predicting the temperature dependence for a wide range

of spectroscopic measurements probing liquids, including Raman and two-dimensional IR photon

echo spectra.
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Chapter 10

On the Pressure Dependence of Liquid Structure

10.1 Introduction

Many of liquid water’s anomalous features at low temperatures are thought to originate from

the presence of a transition between a low-density liquid (LDL) phase and a high-density liquid

(HDL) phase located deep within the supercooled regime of water’s phase diagram at high pres-

sures.240,253,299 At pressures below the liquid-liquid critical point which is thought to be around

170 K and 1.95 kbar,240,268,300 the structure of liquid water is made up of both LDL-like (tetrahe-

dral) and HDL-like (distorted tetrahedral) configurations.234,301,302 As temperature increases, the

liquid structure becomes increasingly HDL-like.147,160

Recently, a van’t Hoff approach to predicting the dependence of the radial distribution function

(RDF) of liquid water was developed for the cannonical (NV T , constant volume and temperature)

ensemble.147 Real experiments, however, are typically not carried out under these conditions and

instead occur in the isothermal-isobaric (N pT , constant pressure and temperature) ensemble. In

this ensemble, the simulation cell is able to freely adjust to changes to the hydrogen bond (H-

bond) network leading to more natural arrangements within this network. Importantly, it is likely

that constant pressure is necessary for adequately capturing the reweighting between LDL-like and

HDL-like configurations.

In the present work, we have developed an analogous approach to predict the temperature

dependence of the RDF in the N pT ensemble from simulations at room temperatures. We also

demonstrate for the first time a method for determining the molar volume between water molecules

and using this quantity to predict the pressure-dependence of the RDF. We also demonstrate how
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the change in the enthalpy and the molar volume associated with H-bond exchanges can be calcu-

lated, and that changes in these quantities are consistent with changes observed in the reorientation

activation energy and the diffusion activation volume.

10.2 Theory

The RDF can be calculated in the NPT ensemble, as

gOO(r) =

〈
V
N2 ∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
, (10.1)

where V is the volume, N is the number of molecules, and r is the location along the OO coordinate.

Here, 〈· · · 〉 represents a thermal average, which can be rewritten in terms of the isobaric-isothermal

(NpT) ensemble partition function, ∆, as

g(r) =
1
∆

Tr

[
e−β (H+pV ) V

N2 ∑
i

∑
j 6=i

δ (r−|~ri j|)

]
, (10.2)

where β = 1/(kbT ) is the inverse of Boltzmann’s constant times temperature, H is the Hamiltonian,

p is the pressure, and Tr is an integral over configurations and momenta.

10.2.1 Temperature Derivative

It should be noted that in the above expression only ∆ and e−β (H+pV ) depend on temperature, so

the derivative with respect to β is the product rule,

(
∂g(r)

∂β

)
N,P

= − 1
∆2

∂∆

∂β
Tr

[
e−β (H+pV ) V

N2 ∑
i

∑
j 6=i

δ (r−|~ri j|)

]

+
1
∆

Tr

[
(H + pV )e−β (H+pV ) V

N2 ∑
i

∑
j 6=i

δ (r−|~ri j|)

]
(10.3)

= −

〈
δH

V
N2 ∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
− p

〈
δV

V
N2 ∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
.
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Here, we have recognized that 1/∆∂∆/∂β = 〈H〉+ p〈V 〉, and have defined δH = H −〈H〉 and

δV = V −〈V 〉 as the fluctuations in energy and volume, respectively. It should furthermore be

noted that the first term of the final result (that depends on the energy fluctuation) is similar in

form to the result found previously for the NVT ensemble;147 however, the second term accounts

for the effect of volume fluctuations on the temperature derivative. It should be noted that for p in

bar, and V in Å3, the conversion factor for the second term to units of kcal/mol is 1.4394×10−5, so

except at high pressures, this term contributes only small amounts to the temperature dependence.

10.2.2 Pressure Derivative

The same approach may be applied to calculate the derivative with respect to pressure, which

following similar steps to those above works out to

(
∂g(r)

∂ p

)
N,T

=−β

〈
δV

V
N2 ∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
. (10.4)

which should be recognized as essentially the second term of Eq. 10.4 divided by p. This term’s

units depend on those of βδV which in units of kcal/mol and Å3 can be conveniently converted to

units of bar−1 using the same conversion factor 1.4394×10−5.

10.2.3 Thermodynamic Potential

In the N pT ensemble, the underlying thermodynamic potential is the Gibbs free energy (∆G(r))

which can be calculated along the r coordinate of g(r) through the equation

∆G(r) =−kbT lng(r)−2kbT lnr (10.5)

where the first term is the potential of mean force (PMF) along the r coordinate, and the second

term is related to the increase in volume corresponding to moving further along the r coordinate.
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The derivative of the Gibbs free energy with respect to temperature can be expressed as,

∂∆G(r)
∂β

=−kBT
[

1
g(r)

∂g(r)
∂β

+∆G(r)
]
. (10.6)

Recall that ∆G(r) = ∆H(r)−T ∆S(r) where ∆H(r) is the enthalpy, and ∆S(r) is the entropy. If ∆S

and ∆H are weakly (or independent) of T, it can be shown that

∆H(r) =
−1
g(r)

∂g(r)
∂β

(10.7)

and

∆S(r) =
1

kbT 2
∂∆G(r)

∂β
. (10.8)

These results are essentially identical to those observed for the Helmholz free energy in the NVT

ensemble; however, they differ by the inclusion of the effect of volume fluctuations on the temper-

ature derivative.

Turning to the derivative with respect to pressure, further thermodynamic information is avail-

able by recalling that

dG = µδN + v̄δ p−SδT

=

(
δG
δN

)
δN +

(
δG
δ p

)
δ p+

(
δG
δT

)
δT, (10.9)

where µ is the chemical potential, and v̄ is the molar volume for two water molecules separated by

a distance r. This molar volume can be calculated as

v̄ =
∂∆G
∂ p

=
−1

βg(r)
∂g(r)

∂ p
, (10.10)

which can be evaluated directly from a simulation at a single temperature.
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10.3 Methods

Molecular dynamics simulations were conducted using the Large-Scale Atomistic/Molecular Mas-

sively Parallel Simulator (LAMMPS) in the isothermal-isobaric (N pT ) ensemble.81 Simulations

were run at a variety of temperatures (T =220, 235, 250, 280, 298.15, 320, 360 K) and pressures

(P=0.001, 0.5, 1, 2.5, 5.0, 7.5, 10.0 kbar). We have also evaluated these derivatives for a va-

riety of water models at ambient conditions (SPC/E,42 SPC/Fw,303 TIP3P-PME,304,305 TIP3P-

PME/Fw,304,305 OPC3,306 TIP4P/2005,5 TIP4P/Ew,307 E3B2,194 E3B3195) A three-chain Nosé-

Hoover thermostat was used to maintain the temperature with a damping parameter of 0.1 ps,83,84

a three-chain barostat was used to maintain pressure, with a 1.0 ps damping parameter.226,227

A fully periodic simulation cell was filled with 343 TIP4P/2005 water molecules using PACK-

MOL.162 The SHAKE algorithm was used with a tolerance of 10−4 to hold the water OH bonds

and angles rigid.82 Initial velocities were randomly selected from the Maxwell-Boltzman distribu-

tion at the appropriate temperature. A simulation timestep of 1.0 fs was used for all simulations.

Each simulation was made up of a 1 nanosecond equilibration period, followed by a 50 nanosecond

production run from which configurations were output every 50 fs which were used for calculation

of the values in the present study.

10.4 Results

10.4.1 Dependence of Radial Distribution Function on p,T

We have calculated the water oxygen-oxygen RDF, g(r;T, p) as a function of temperature and

pressure moving away from ambient conditions and have included g(r;T = 298.15K, p) in Fig-

ure 10.1a, and g(r;T, p = 1bar) in Figure 10.1b, respectively. We have also evaluated the deriva-

tive with respect to temperature (Figure 10.1c and Figure 10.1d) and pressure (Figure 10.1e and

Figure 10.1f) over those same ranges.

If we first consider the T -dependence of the RDF, we find that the results are reasonably similar

to those that we found previously for the NV T ensemble;147 however, the present results exhibit
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Figure 10.1: a) p-dependence of g(r), b) T -dependence of g(r), c) P-dependence of g(r) T -
derivative, d) T -dependence of g(r) T -derivative, e) P-dependence of g(r) P-derivative, and f)
T -dependence of g(r) p-derivative.

slightly more structuring than our prevous results (Chapter 8). We also note that the isosbestic point

in the second solvation shell in the NPT ensemble is more approximate than was observed in the
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Figure 10.2: Dependence of the enthalpy, ∆H(r), as a function of a) P, and b) T .

NV T ensemble. With the P-dependent calculations of the RDF we observe that the first peak of the

RDF decreases as pressure is increased, and that there appears to be an overall contraction in the

liquid structure with pressure. We observe a phenomenologically different behavior at pressures

above 2.5 kbar than at pressures below it starting at the minimum separating the first and second
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Figure 10.3: Dependence of the entropic contribution to the free energy, −T ∆S(r), as a function
of a) P, and b) T .

solvation shells caused by a distortion of the water H-bond network and a growing population of

5th-neighbor water molecules in this region as has been recently noted by Teng and co-workers for

other water models.308

Turning to the derivatives with respect to β plotted in Figure 10.1c-d, we find that as pressure
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Figure 10.4: Dependence of the partial molar volume, v̄(r) as a function of a) P, and b) T .

is increased the derivative in the second solvation shell becomes weaker (and essentially zero at

the 7.5 kbar and 10 kbar). We find that the lowest temperatures exhibit the strongest dependence

on β , with 220 K and 235 K exhibiting a more complicated dependence than higher temperatures,

potentially related to the larger prevalence of LDL-like configurations under these conditions. The
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derivatives with respect to p (Figures 10.1e-f) generally vary smoothly, with increases in p leading

to an increase in the region separating the first and second solvation shells, consistent with the

observations made about the P dependence in this region above. We have used these derivatives to

evaluate the enthalpy (Figure 10.2), the entropy (Figure 10.3), and the molar volume (Figure 10.4).

10.5 Discussion

In the remainder of this chapter, we present a calculation of the enthalpic, entropic, and volumetric

changes associated with H-bond exchanges and demonstrate their dependence on T , P. We will

then demonstrate the use of the enthalpy and molar volume to predict the dependence of the RDF

on T , P, respectively.

10.5.1 Connection to H-Bond Exchanges

H-bond exchanges are an essential step in most dynamical processes with liquid water, and have

been suggested by Laage and Hynes to be closely linked with the energetics of liquid structure.85

In particular, these exchanges involve a new acceptor moving from the second solvation shell to

the first, and the old acceptor leaving.

Enthalpically, this can be described by the quantity ∆∆H = ∆H‡
orig+∆H‡

new where ∆H‡
orig is the

barrier to the original acceptor leaving the first solvation shell, and ∆H‡
new is the barrier to the new

acceptor entering the first solvation shell. These can be calculated from the RDF as

∆H‡
orig = ∆HOO(r‡)−∆HOO(r1st)

∆H‡
new = ∆HOO(r‡)−∆HOO(r2nd), (10.11)

where r1st , r2nd , and r‡ are the locations of the enthalpic minima of the first and second solva-

tion shells, as well as the maxima of the transition state separating them. We have illustrated this

schematically in Figure 10.5. Using these locations from the enthalpic surfaces, we can also cal-

culate the change in entropy (∆∆S) associated with an H-bond exchange. We have plotted both of
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Figure 10.5: Schematic diagram of the enthalpic change associated with a hydrogen bond ex-
change.

these as a function of pressure in Figure 10.6a and temperature in Figure 10.6b.

The H-bond exchange enthalpy decreases smoothly as the pressure increases, likely due to

pressure-induced distortions in the H-bond network. This decrease is consistent with a decrease

in the diffusion activation energies (which depends on H-bond exchanges as a fundamental step)

that has been observed experimentally. Over this pressure range, we see the entropy change ∆∆S

decreases as well.

The dependence of the H-bond exchange enthalpy on temperature is consistent with past sim-

ulation measurements that the activation energies of various dynamical timescales (e.g. water re-

orientation) grow significantly as the simulation temperature decreases. Interestingly, the present

results indicate that the Van’t Hoffian approach147 that has been used previously to predict the

RDF from room temperature simulations is unlikely to work well down to the lowest temperatures

as our results indicate that in the supercooled regime ∆∆H (and ∆∆S) exhibit strong temperature

dependence.

This temperature dependence of ∆∆H is likely the origin of the increasingly non-Arrhenius
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Figure 10.6: Dependence of the changes in the enthalpy (black) and entropy (red) involved in H-
Bond exchanges as a function of a) pressure and b) temperature.

nature of dynamical timescales observed in the supercooled regime. A recent study from our

group (Chapter 7) has calculated the OH reorientation activation energies using the same water

model as our current results, and thus we have plotted those activation energies, Ea,τ2 , as a function

of our values of ∆∆H in Figure 10.7. We find that these values have a strong, linear correlation
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Figure 10.7: Plot of the OH reorientation activation energy as a function of ∆∆H for TIP4P/2005
water. A linear fit is included as a solid red line.

(R2 = 0.998). This is unsurprising, as H-bond exchanges are known to be a key underlying step

in water reorientation; however, this lends support to the idea that structural changes (i.e. an

increasing fraction of LDL-like configurations) are a key contributor to the non-Arrhenius effects

observed for dynamical timescales in the supercooled regime.

A similar analysis can be done by calculating ∆∆v̄, which is the change in the molar volume

over the course of an H-bond exchange. We have again included the dependence of this quantity

as a function of pressure and temperature in Figure 10.8a and Figure 10.8b. As pressure increases,

we find that the H-bond exchange molar volume becomes less negative, indicating that the H-

bond exchange transition state (a bifurcated H-bond) increases in volume with pressure. A similar

dependence on increasing temperature is noted, with higher temperatures having smaller (less

negative) molar volumes. This behavior is consistent with a more distorted H-bond network at

higher pressures and temperatures, whereas lower temperatures and pressures favor increasing
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Figure 10.8: Dependence of the change in the molar volume as a function of a) pressure and b)
temperature.

structuring.

A similar connection to that made between ∆∆H and Ea,τ2 can be made for the activation

volume, ∆V ‡, and ∆∆v̄ as both are essentially measures of the relative size of the transition state

compared to the reactant state. In a recent study (Chapter 6), a number of diffusion activation
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volumes were calculated for the same water model used in our present study.59 In that study we

observed that as pressure increased at room temperature there was an increase in the activation

volume consistent with the trends we have observed in ∆∆v̄. We similarly found that as temperature

increased so did the activation volume, consistent with the present T-dependence of ∆∆v̄. We have

Figure 10.9: Dependence of the activation volume, ∆V ‡ on the change in the molar volume during
an H-bond exchange, ∆∆v̄. A linear fit is included as a solid red line.

furthermore evaluated the value of ∆∆ν for a variety of water models, and correlated these values

with the published activation volumes of H-Bond jumps for these models (Chapter 11).309 We

have included these results in Figure 10.9. We find that there is a linear correlation (R2 = 0.88)

between these values, which further demonstrates the connection of the liquid structure to the

dynamics of H-bond exchanges. The relative weakness (though it is still quite strong) of the

present correlation compared to the above correlation for ∆∆H is likely due to the fact that the

activation volume describes the relative size of the transistion state, including the surrounding

water molecules, compared to that of the reactant state. It is unlikely that this can be fully described
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by a single coordinate like rOO as we have done here; however, as a first description this works

relatively well.

10.5.2 Predictions of the RDF

Figure 10.10: Predictions of the RDF from 1 bar, 298.15 K as a function of a) pressure, and b)
temperature. Predictions are presented as open circles, simulation results are presented as solid
lines.

In a recent study, we demonstrated a Van’t Hoff approach to predicting the temperature depen-
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dence of the RDF in the NVT ensemble. In the N pT ensemble a similar expression can be derived,

as

g(r;β ) = g(r;β0)e−(β−β0)∆H(r) (10.12)

where here g(r;β0) is the RDF at the reference temperature, β0. Here, we have made the assump-

tion that ∆H(r) and ∆S(r) are only weakly T-dependent (though Figures 10.2b and 10.6b indicate

that while appropriate at temperatures near β0, this is unlikely to hold over the entire considered

range). A similar expression can be derived for predicting the P dependence, as

g(r; p) = g(r; p0)e−(p−p0)β∆v̄(r) (10.13)

where here g(r; p0) is now the RDF at the reference pressure, p0. We have again assumed that

∆ν(r) is weakly dependent on pressure (which again our results in Figure 10.4a, and Figure 10.8a

indicate may be appropriate at pressures nearby p0).

We have presented our predictions with respect to pressure and temperature (made from 1 bar)

in Figures 10.10a and 10.10b, respectively. As expected, predictions with respect to pressure work

well over only a narrow range (up to 1 kbar); at higher pressures the present method predicts a peak

growing in around 3.5 Å that corresponds with the minima in the molar volume. It is likely that the

explicit p-dependence of the molar volume must be included in order to predict pressures further

away. The method performs significantly better for predicting the temperature dependence, as it

did for the NV T ensemble, with the prediction only starting to deviate in the supercooled regime.

At 235 K, however, these deviations are larger than were present in that ensemble, likely due to a

more significant change in the enthalpy.

10.6 Conclusions

In the present work we have demonstrated the calculation of derivatives of the radial distribution

function with respect to pressure and temperature, and how these allow the direct evaluation of the
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enthalpy, entropy, and the molar volume. We then use these parameters to calculate the change

in these parameters over the course of a hydrogen-bond exchange as a function of pressure and

temperature. We demonstrate that increasing pressure leads to a decrease in the enthalpy, and the

entropy associated with H-bond exchanges, along with a smaller (less negative) molar volume,

consistent with a distorted H-bond network leading to a less-structured liquid state. Similarly, we

find similar trends with respect to increasing temperature, consistent with a picture of the liquid

becoming less tetrahedral as the liquid is heated from the supercooled regime.

We then demonstrated the use of the enthalpy and the molar volume in order to predict the

dependence of the RDF on temperature, and pressure, respectively. We found that the predic-

tion performed reasonably well with respect to temperature, with deviations appearing only deep

within the supercooled regime. On the other hand, the predictions with respect to pressure perform

comparably poorly, only accurately predicting up to 1 kbar. In the future, higher derivatives could

be used to account for changes in the molar volume and enthalpy with respect to pressure, and

temperature, respectively.
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Part III

Toward A Unified Picture of Water

Dynamics
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In Part 3, we use large fluctuation theory calculations that span a variety of water models and

time correlation functions that have been discussed in the previous parts and use them to develop an

underlying picture of water dynamics. Chapter 11 demonstrates the activation energies and activa-

tion volumes for a wide range of water models, and Chapter 12 demonstrates how these activation

energies can be combined with enthalpies calculated from the radial distribution function to predict

experimental activation energies of diffusion, reorientation, and hydrogen bond exchanges. Chap-

ter 13 demonstrates that fluctuation theory can be used to write down a dynamical Maxwell relation

that unifies pressure and temperature derivatives; we use it to propose a global fitting function of

dynamics in liquid water.
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Chapter 11

Examining the Role of Different Molecular Interactions on

Activation Energies and Activation Volumes in Liquid Water

11.1 Introduction

Liquid water plays a vital role in many processes in chemistry and biology. It is thus of no sur-

prise that a plethora of approaches have been developed to describe its interactions in the neat

liquid,5,42,303,307 in solution,310 and near proteins.304,311,312 These models are typically developed

to recreate a specific subset of the features of liquid water (e.g., density maximum, melting tem-

perature, vaporization enthalpy), sometimes at the expense of other properties. Regardless of these

limitations, empirical water models have been widely successful in developing our understand-

ing of water as a neat liquid,85,88,124,174,190,313–315 under extreme conditions,145,146,240,299 and in

complex environments.89,316–320

Most water models, however, do not directly incorporate dynamical quantities into their pa-

rameter optimization and even fewer use the temperature or pressure dependence of these quanti-

ties.194,195,303,306 These dependencies are omitted both because their inclusion would significantly

increase the complexity of fitting force-field parameters and the difficulty of computing the prop-

erties, e.g., the modification of dynamical timescales with pressure typically requires precise cal-

culations over a large range of pressures. This has led to a situation where many empirical water

Adapted with the permission of Zeke A. Piskulich, and Ward H. Thompson and the American Chemical Society
from J. Chem. Theor. Comput. 17, p. 2659-2671 (2021).309
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models accurately describe the self-diffusion coefficient in the bulk liquid at 298.15 K and 1 bar

but display variable success in reproducing the behavior under other conditions. Activation ener-

gies and volumes are the key measures of the temperature and pressure dependence of dynamical

timescales, indicating how they behave at nearby conditions.

The activation energy of a dynamical timescale τ ,

Ea =−
∂ ln(1/τ)

∂β
, (11.1)

where β = 1/(kbT ) with kb Boltzmann’s constant and T temperature, represents the first-order

description of the timescale’s temperature dependence. Typically, activation energies are calcu-

lated numerically from experimental or simulation T -dependent data using the Arrhenius equation,

k(T ) = Ae−βEa , where the prefactor A and Ea are assumed to be temperature independent.

Similarly, the activation volume of a timescale,

∆V ‡ =−kbT
∂ ln(1/τ)

∂ p
, (11.2)

is the first-order description of the timescale’s dependence on the pressure p. As is the case for

the activation energies, a numerical approach involving experiments or simulations over a range

of pressures is typically used.61,64,218 However, such an analysis can be significantly more com-

plicated because large pressure ranges – on the order of thousands of bar – are often required to

resolve changes in the timescale.

While both activation parameters provide only a local viewpoint of the T and p dependence

of these timescales and ignore non-Arrhenius effects, they are the primary contributors to these

dependence and thus must be accurate for a model to perform well at other conditions.

In this Chapter, we examine three key timescales for liquid water – the H-bond exchange, or

“jump" time, the OH reorientation time, and the self-diffusion coefficient – and the correspond-

ing activation parameters for the SPC/E,42 SPC/Fw,303 TIP3P-PME,304,305 TIP3P-PME/Fw,304,305

OPC3,306 TIP4P/Ew,307 TIP4P/2005,5 E3B2,194 and E3B3195 water models using the recently de-
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Figure 11.1: Schematic diagram of interaction sites for the water force fields.

veloped fluctuation theory for dynamics.13,31,44,50,58,136,147,160,184 This method allows Ea and ∆V ‡

to be calculated directly using simulations at a single temperature and pressure rather than the

numerical Arrhenius approach. Thus, it provides the activation energy and activation volume to

high precision. In addition, it provides a route to otherwise unavailable mechanistic information

through a rigorous decomposition of the activation energy into components associated with the

motions and interactions present in the system.

11.2 Computational Methods

11.2.1 Force Fields

In the present work we have selected several commonly used water force fields5,42,194,195,303–307

used in molecular dynamics (MD) simulations. These include three- and four-site models, rigid

and flexible models, and some that include three-body effects. While these models reflect only a

small subset of the vast number of available force fields, they are widely used in describing water

in the neat liquid, in complex environments, and in biomolecular simulations.

All of the models use an oxygen-oxygen Lennard-Jones potential to describe the van der Waals
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Water σOO εOO qO qH r0 kOH θ0 kθ rOM qM
Model (Å) (kcal/mol) (e) (e) (Å) (K) (degrees) (K) (Å) (e)

SPC/E 42 3.166 0.155 -0.8476 0.4238 1.0 - 109.47 - - -
SPC/Fw 303 3.165 0.155 -0.82 0.41 1.012 1059.162 113.24 75.90 - -

TIP3P-PME 304,305 3.188 0.102 -0.83 0.415 0.9572 - 104.52 - - -
TIP3P-PME/Fw 304,305 3.188 0.102 -0.83 0.415 0.9572 900 104.52 110 - -

OPC3 306 3.17427 0.16341 -0.89517 0.447585 0.97888 - 109.47 - - -
E3B2 194 3.1536 0.1550 0.0 0.520 0.9572 - 104.52 - 0.1550 -1.040
E3B3 195 3.1589 0.1852 0.0 0.5564 0.9572 - 104.52 - 0.1546 -1.1128

TIP4P/2005 5 3.1589 0.1852 0.0 0.5564 0.9572 - 104.52 - 0.1546 -1.1128
TIP4P/Ew 307 3.16435 0.16275 0.0 0.5242 0.9572 - 104.52 - 0.1250 -1.0484

Note: σHH and εHH are zero for all models.
Water Model E2 k2 Ea Eb Ec k3

kcal/mol Å−1 kJ/mol kJ/mol kJ/mol Å−1

E3B2 2.349×106 4.872 1745.7 -4565.0 7606.8 1.907
E3B3 0.453×106 4.872 150.0 -1005.0 1880.0 1.907

Table 11.1: Force field parameters used for each of the water models.

interactions,

ULJ(rOO) = 4εOO

[(
σOO

rOO

)12

−
(

σOO

rOO

)6
]
, (11.3)

where rOO is the O–O distance, εOO the depth of the well, and σOO the site diameter. Note, each of

the present calculations also use the long-range tail corrections to the energy and pressure described

by Sun.321 The electrostatic interactions are calculated using Coulomb’s law, as

UElec(ri j) = ∑
i

∑
j

qi q j

4πε0ri j
, (11.4)

where qi and q j are the charges of the ith and jth atoms separated by distance ri j, and ε0 is the

permitivity of free space. The long-range electrostatics are described using the Particle-Particle-

Particle-Mesh Ewald (PPPM) summation method.119,120 We have included in Table 11.1 the po-

tential parameters for each model investigated in the present work.

In three of the water models studied (SPC/E, TIP3P-PME, and OPC3) the molecular interac-

tions are fully described by Eqs. (11.3) and (11.4) with the SHAKE algorithm82 used to hold the

bonds and angles at their equilibrium values.

Two other models (SPC/Fw and TIP3P-PME/Fw) incorporate flexibility in the form of har-

204



monic bond stretches and angle bends, as

Ubond(rOH) =
1
2

kOH (rOH− r0)
2, (11.5)

and

Uangle(θ) =
1
2

kθ (θHOH−θ0)
2, (11.6)

where kOH (kθ ) is the bond (angle) force constant, rOH (θHOH) is the instantaneous bond length

(angle), and r0 (θ0) is the equilibrium bond length (angle). For SPC/Fw the force field was ob-

tained by a reparameterization of the SPC/E Lennard-Jones parameters while adding flexibility,303

while for TIP3P-PME/Fw flexibility was added without other changes from the TIP3P-PME pa-

rameters.304,305 It should be noted that the PME variant of TIP3P uses the corrected parameters

developed by Price and Brooks in Ref. 305 which account for the inclusion of long-range electro-

statics in the calculations. Previous studies indicate that the original TIP3P parameterization has

even faster dynamics than TIP3P-PME.304,305

Two additional models use a 4-site description of water (TIP4P/Ew and TIP4P/2005) in which

the oxygen retains its Lennard-Jones site but the oxygen charge is moved a distance rOM away

from the oxygen atom along the bisector of the HOH angle between the hydrogen atoms. This is

depicted schematically in Fig. 11.1. These interactions are still calculated from Eqs. (11.3) and

(11.4), but with the modified oxygen charge position.

The models listed above are completely pairwise, with many-body effects included only in an

average way by virtue of the fitting to experimental data. The E3B models developed by Tainter

et al.194,195 are built on top of existing 4-site descriptions of the pairwise interactions to include

explicit three-body cooperativity as part of the model. The total potential energy of each E3B

model may be written in terms of the above equations as

UE3B =Ubase +U2 +U3−body, (11.7)
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where here Ubase is the potential energy described by the TIP4P model (E3B2) or the TIP4P/2005

model (E3B3).

This first term in the three-body part,

U2(ri j) = E2 ∑
i, j

e−k2ri j , (11.8)

removes the many-body interactions typically built into two-body potentials implicitly. Here E2

and k2 are constants and ri j is the distance between the two oxygen atoms. The explicit 3-body

part of the potential is

U3−body =UA +UB +UC (11.9)

where A, B, and C are labels for anti-cooperative double H-bond donor interactions (central water

donates H-bonds to two other waters), cooperative interaction of molecules that donate and accept

an H-bond (central water donates to one water, accepts from another), and the anti-cooperative

double H-bond acceptor interactions (central water accepts from two other waters), respectively.

These three configurations are illustrated below in Fig. 11.4. The terms UA, UB, and UC are calcu-

lated as

UX = EX ∑
i, j,k,l

f (ri j) f (rkl), (11.10)

where X = A, B, or C, and ri j and rkl are the Hd · · ·Oa hydrogen bond distances connecting the

central water molecule to the two other water molecules in the triad interaction.

The function f (r) is given by

f (r) = e−k3r s(r), (11.11)

where s(r) is the switching function,

s(r) =


1 r < rs

(r f−r)2(r f+2r−3rs)

(r f−rs)3 rs ≤ r ≤ r f

0 r > r f

(11.12)
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which smoothly truncates the calculation of 3-body interactions at OH distances between rs =

5.0 Å and r f = 5.2 Å. This term is included because the summations in Eqs. (11.9) and (11.10)

include 42 terms, which fall off nearly to zero beyond 5.0 Å, thus these terms are excluded at

greater distances for computational efficiency.

11.2.2 Fluctuation Theory

Recently, we have shown how the temperature and pressure dependence for a general property can

be obtained from simulations at a single p and T using fluctuation theory for dynamics.13,31,44,50,58,136,147,160,184

To illustrate the approach, we can consider a general time-dependent property, f (t), and its average

in the isobaric-isothermal (N pT ) ensemble, 〈 f (t)〉. It is straightforward to show that the tempera-

ture derivative of the average is given by

∂ 〈 f (t)〉
∂β

=−〈[δH(0)+ pδV (0)] f (t)〉, (11.13)

where δH(0) = H(0)−〈H〉 and δV (0) = V (0)−〈V 〉 are the fluctuations in energy and volume,

respectively, at t = 0. We note that at 1 bar, the pδV term is approximately 104−105 times smaller

than the δH(0) contribution and thus can be neglected at low pressures. Thus, in this work we take

∂ 〈 f (t)〉
∂β

=−〈δH(0) f (t)〉. (11.14)

The pressure derivative can similarly be expressed as59

∂ 〈 f (t)〉
∂ p

=−β 〈δV (0) f (t)〉. (11.15)

A key feature of the expressions in Eqs. (11.14) and (11.15) is that they can be evaluated from

the same simulations, at a single p and T , used to calculate 〈 f (t)〉 itself. That is, they are the

analytical derivatives with respect to β and p in contrast to the numerical derivative obtained from

an Arrhenius analysis in either T or p.
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In the following, we describe how this dynamical fluctuation theory can be straightforwardly

applied to determine the temperature and pressure dependence of the diffusion coefficient, the OH

reorientation time, and the H-bond exchange jump time.

11.2.2.1 Diffusion Coefficients

A key measure of water dynamics is contained in the self-diffusion coefficient, D, which can be

obtained experimentally from quasi-elastic neutron scattering,144 tracer studies,4,322 or Nuclear

Magnetic Resonance (NMR) measurements.2,3,54,267 In MD simulations, the diffusion coefficient

is obtained from the long-time behavior of the average mean-squared displacement, 〈MSD(t)〉 =

〈|~r(0)−~r(t)|2〉,

D = lim
t→∞

〈MSD(t)〉
6t

, (11.16)

where~r(t) is the molecule position, here defined by the location of the oxygen atom, at time t.

Taking the derivative of D in Eq. (11.16) with respect to β gives a result analogous to that in

Eq. (11.14),
∂D
∂β

=− lim
t→∞

〈δH(0) |~r(0)−~r(t)|2〉
6t

, (11.17)

so that the activation energy associated with the diffusion coefficient is

Ea,D =
lim
t→∞
〈δH(0) |~r(0)−~r(t)|2〉

lim
t→∞
〈|~r(0)−~r(t)|2〉

. (11.18)

In practice, the ratio of the slopes (at long times) of the numerator and denominator are used to

determine Ea,D. Analogous results are obtained for the pressure derivative giving

∆V ‡
D =

lim
t→∞
〈δV (0) |~r(0)−~r(t)|2〉

lim
t→∞
〈|~r(0)−~r(t)|2〉

. (11.19)

for the activation volume for diffusion.

It is well known that D is underestimated in periodic-boundary condition (PBC) simulations
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such as those used here. This can be corrected using247,323

D = DPBC +
2.837297kBT

6πηsL
, (11.20)

where DPBC is the value calculated from Eq. (11.16) in PBC simulations, ηs is the shear viscosity,

and L is the side length of the PBC simulation cell. From a simulation, the shear viscosity is

evaluated from the Green-Kubo relation,

ηs =
V

kBT

ˆ
∞

0
〈Pαβ (0)Pαβ (t)〉dt, (11.21)

where here the repeated αβ subscript denotes an average of the five correlation functions con-

structed from the stress tensor: (Pxx−Pyy)/2,(Pyy−Pzz)/2, Pxy, Pyz, and Pxz. We have previously

shown Ea,D is unaffected by this correction if the Stokes-Einstein relation holds and only minimally

affected if it does not,50 so no corrections are used.

We have previously reported diffusion activation energies for SPC/E and TIP4P/2005 water

using this method58,160 as well as activation volumes for TIP4P/2005 water.59

11.2.2.2 Reorientation Times

The OH reorientational dynamics of water are most frequently characterized by the second-order

reorientation time correlation function (TCF),

C2(t) = 〈P2 [~eOH(0) ·~eOH(t)]〉, (11.22)

where~eOH is a unit vector along the OH bond and P2 is the 2nd Legendre polynomial. The dynamics

can be measured by infrared pump-probe anisotropy experiments, which determine the anisotropy

decay, r(t) = 0.4C2(t),71 or NMR measurements that yield the average reorientation time given by

the integral of C2(t).43

In water, C2(t) decays on three timescales which can be attributed to inertial, librational, and
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reorientation associated with H-bond dynamics. It is this last, denoted as τ2, which is of greatest

interest and the focus of the present work. The timescales can be obtained by fitting C2(t) to a

tri-exponential function

C2(t) = ∑
α

Aα e−t/τα , (11.23)

where α = iner, libr, and 2. Following Eqs. (11.14) and (11.15), it is straightforward to show that

∂C2(t)
∂β

=−〈δH(0)P2 [~eOH(0) ·~eOH(t)]〉, (11.24)

and
∂C2(t)

∂ p
=−β 〈δV (0)P2 [~eOH(0) ·~eOH(t)]〉. (11.25)

These derivative TCFs can be fit to the corresponding derivative of Eq. (11.23),

∂C2(t)
∂x

= ∑
α

[
∂Aα

∂x
−Aαt

∂ (1/τα)

∂x

]
e−t/τα , (11.26)

where x = β or p. In the fitting, the amplitudes Aα and timescales τα are constrained to the values

obtained in fitting C2(t) to Eq. (11.23) so that their derivatives are the fitting parameters. Given

the timescale and its derivatives, the reorientational activation energy, Ea,2, and activation volume,

∆V ‡
2 , can be obtained. We have previously calculated reorientation activation energies in this way

for the SPC/E58,136 and TIP4P/200544 models, but have never reported reorientation activation

volumes.

11.2.2.3 H-bond Jump Times

The fundamental molecular mechanism underlying both diffusion and reorientation in water is the

exchange of H-bond partners.85,88,178 These exchanges, or “jumps," can be thought of as a kind of

chemical reaction in which an OH group breaks one H-bond and forms another. The corresponding
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rate constant can be obtained from the stable-states, side-side, time correlation function,

Cab(t) = 〈na(0)nb(t)〉 (11.27)

where na = 1 (nb = 1) if the OH is H-bonded to acceptor a (b). Thus, for an OH initially H-bonded

to an acceptor labeled a, Cab(t) is zero at t = 0 when na = 1 and nb = 0, but rises as OH groups

switch to new acceptors. The time dependence is such that 1−Cab(t) decays with the jump time

τ0, which is the inverse of the rate constant for the H-bond exchange. In practice, there is also some

small-amplitude, short-time dynamics not associated with the H-bond jumps so that 1−Cab(t) is

accurately fit by Eq. (11.23) with two exponentials and the longer timescale equal to τ0.

The derivatives of the stable-states TCF are obtained from Eqs. (11.14) and (11.15) as

∂ [1−Cab(t)]
∂β

= 〈δH(0)na(0)nb(t)〉, (11.28)

and
∂ [1−Cab(t)]

∂ p
= β 〈δV (0)na(0)nb(t)〉. (11.29)

In analogy to the reorientational dynamics, these derivative TCFs can be fit to Eq. (11.26) to ob-

tain ∂ (1/τ0)/∂β and ∂ (1/τ0)/∂ p and then the jump time activation energy, Ea,0, and activation

volume, ∆V ‡
0 . It should be noted that for both reorientational and jump dynamics, finite simulation

size effects are not expected to play as large a role as they do for diffusion due to the small vol-

ume of each water molecule.324 We have recently carried out a detailed investigation of the jump

activation energies for SPC/E water.136

11.2.2.4 Activation Energy Decompositions

A key feature of fluctuation theory for dynamics is the ability to decompose the activation energy

by separating the energy fluctuation into components, e.g., δH = δKE+δULJ+δUElec+δUBond+

δUAngle +δU2 +δU3−body. This allows the calculation of different contributions to the activation
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energy as

Ea = EKE
a +ELJ

a +EElec
a

+ EBond
a +EAngle

a (11.30)

+ EU2
a +E3−body

a .

These different contributions to the activation energy can be understood in terms of Tolman’s

(rigorous) perspective in which the activation energy is equal to the average energy of reacting

species minus the average energy of reactant species.18 That is, rather than the energy of the

barrier itself, Ea is the energy required to overcome the barrier and hence is decomposable.

As an example, the kinetic energy contribution to the diffusion activation energy can be calcu-

lated by replacing δH(0) with δKE(0) in the derivative of the mean-squared displacement. Then,

the kinetic energy contribution is given by

EKE
a,D =

lim
t→∞
〈δKE(0) |~r(0)−~r(t)|2〉

lim
t→∞
〈|~r(0)−~r(t)|2〉

, (11.31)

and can be interpreted as the average kinetic energy of diffusing molecules minus the average

kinetic energy of all molecules.

Extracting activation energy contributions to the jump or reorientation derivative TCFs are like-

wise straightforward. The relevant component of the derivative of the timescale, e.g., ∂ (1/τ0)/∂β KE ,

is extracted as discussed by fitting the contribution TCF, e.g., 〈δKE(0)na(0)nb(t)〉 to Eq. (11.26)

just as the total derivative TCF is fit. This derivative value is then used to calculate the activation

energy component, EKE
a,0 = (1/τ0)[∂ (1/τ0)/∂β KE ].

11.2.3 Simulation Details

For each model, we used PACKMOL162 to generate initial configurations and necessary data

files for MD simulations. Initial velocities were generated from the room temperature Maxwell-
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Boltzmann distribution. Simulations were run using the Large-Scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS).81 An isothermal-isobaric, N pT , ensemble trajectory was propa-

gated at 1 bar and 298.15 K for 1 ns to reach equilibrium, and then production simulations were run

for 50 ns.226,227 A Nosé-Hoover thermostat and barostat were used, both of chain length 3, with

damping parameters of 100 fs and 1000 fs, respectively.83,84 From these production simulations,

configurations and velocities were output every 1 ps, for a total of 50,000 configurations for each

water model.

From each of these saved configurations a 20 ps constant energy, NV E, simulation was prop-

agated with configurations dumped every 10 fs, from which the TCFs were calculated. Reported

values were obtained by averaging these TCFs across all 50,000 trajectories, and then fitting these

averaged results. Similarly, derivative correlation functions were calculated in the same way with

each trajectory’s contribution to the average weighted by the fluctuation in the energy. Uncertain-

ties in the fluctuation calculation are reported using block averaging over 10 blocks, and represent

a 95% confidence interval according to Student’s t-distribution.122

We have additionally calculated the viscosity of each water model from additional MD sim-

ulations. For these simulations, five sets of equilibrium configurations and velocities were used

as starting points for 1 ns NVT simulations, from which viscosities were calculated using the

Green-Kubo formalism described in Sec. 11.2.2.1. Each trajectory was used as a block for block

averaging and values are again reported as a 95 % confidence interval. For TIP3P-PME/Fw the

pressure tensor was output every 4 ps as it was required to accurately capture the oscillations in the

correlation function. For all other models the pressure tensor was output every 10 ps. For all mod-

els the viscosity time-correlation function was calculated over 5 ps, with time origins separated

every 100 fs.

For all simulations, the timestep was 1 fs and the PPPM method119,120 was used for the calcula-

tion of electrostatic interactions, with a tolerance parameter of 1×10−4. For simulations involving

rigid water molecules, the SHAKE algorithm82 was used to hold bonds and angles constant, also

with a tolerance of 1×10−4.
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Figure 11.2: The H-bond jump time τ0 (black), OH reorientation time τ2 (red), and diffusion
coefficient D (blue) are presented for each water model. Experimental values for the reorientation
time7–9 (red dashed line) and diffusion coefficient10 (blue dashed line) are also included.

11.3 Results and Discussion

We have evaluated the jump time τ0, the reorientation time τ2, and the diffusion coefficient D along

with their activation energies and volumes calculated using dynamical fluctuation theory. In the

following, we present and discuss the values obtained for these properties from the different water

models and compare with available experimental results.

11.3.1 Timescales

We begin by examining the jump time, reorientation time, diffusion coefficient, and viscosity cal-

culated from the simulations described in Sec. 11.2 for each studied force field. We have reported

these timescales for each model in Table 11.2 and plotted them in Fig. 11.2. For comparison, we
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Model τ0 τ2 DPBC D ηs

SPC/E 3.1603 2.6334 2.4374 2.852 0.713
SPC/Fw 3.23720 2.69921 2.35818 2.723 0.825

TIP3P-PME 2.2453 1.6867 3.8236 4.463 0.462
TIP3P-PME/Fw 3.27310 2.60310 2.3915 2.761 0.802

OPC3 3.5317 3.0318 2.1204 2.481 0.822
E3B2 4.4407 3.90711 1.7213 2.001 1.033
E3B3 4.3467 3.87111 1.7274 2.022 1.014

TIP4P/2005 3.6577 3.1658 2.0304 2.371 0.852
TIP4P/Ew 3.3514 2.8156 2.3143 2.702 0.753

Expt.7–10,141 – 2.6 2.30 0.8903

Table 11.2: H-bond jump time τ0, OH reorientation time τ2, diffusion coefficients directly from the
simulations, DPBC, and corrected for finite-size effects, D, and shear viscosities, ηs for different
water models; times are in ps, diffusion coefficients are in 10−5 cm2/s, and shear viscosities are in
cP. Subscripts indicate uncertainties in the trailing digit(s).

have included available experimental literature results, Note that pump-probe IR anisotropy results

have yielded τ2 = 2.5,7 2.6,8 and 2.7 ps;9 in the following we use the average of these results,

2.6 ps, as the experimental value.

We first consider the rigid 3-site water models, SPC/E, TIP3P-PME, and OPC3. These models

give some of the shortest reorientation and jump times and some of the largest diffusion coeffi-

cients. In particular, the τ2 value predicted by the SPC/E (2.63 ps) model is in excellent agreement

with the measured result of 2.6 ps. In contrast, the OPC3 (3.03 ps) predicts slower dynamics than

measured while the TIP3P-PME reorientation time of 1.67 ps is dramatically lower.

The H-bond jump time cannot be directly extracted from experimental measurements and thus

we do not have an unambiguous way to use it to test the models. However, because the OH reori-

entation time is dominated by the timescale for H-bond jumps,85,88 it is a reasonable assumption

that the models which describe τ2 well should yield the most accurate jump time. This yields an

inference that the “experimental" τ0 is approximately 3.2−3.3 ps, based on the SPC/E, SPC/Fw,

and TIP3P-PME/Fw results.

The diffusion coefficients for the rigid 3-site models overestimate the experimental value. The

SPC/E and OPC3 do so modestly, yielding values that are 24 and 8% larger than the measured

D. As with the other timescales, the TIP3P-PME model predicts grossly accelerated diffusive

dynamics with D more than 93% too big. The viscosities of these models are consistent with
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this as they have significantly lower values than that reported experimentally.141 It is certainly

interesting that a model like SPC/E correctly predicts τ2, but overestimates D. Both quantities

have H-bond exchanges as the underlying process, but diffusion involves a component related to

the size of the translational “jump" upon exchange178 and perhaps it is this structural quantity that

is not properly described within the SPC/E model.

The impact of the faster dynamics in the TIP3P-PME model should be clearly recognized

given that it is one of the most frequently used models for biomolecular simulations. The present

results indicate that not only does the TIP3P-PME model diffuse and reorient more quickly than

real water as has been frequently reported in the literature,311,325,326 it likely also exchanges H-

bond partners more quickly than real water. This could have important implications for studies of

processes influenced by these motions, e.g., water dynamics involved in enzymatic reactions and

in hydration of proteins.

Two of the models studied, SPC/Fw and TIP3P-PME/Fw, involve the addition of bond and

angle flexibility to a rigid 3-site model. Interestingly, the addition of flexibility appears to fix

many of the sins of the TIP3P-PME model. TIP3P-PME/Fw gives a reorientation time in perfect

agreement with the experimental result and has a diffusion coefficient that is significantly more

reasonable. Furthermore, the viscosity of TIP3P-PME/Fw is nearly double that of TIP3P-PME,

bringing it in line with the other 3-site models studied. Interestingly, the SPC/Fw model, which

both adds flexibility and reparameterizes the intramolecular interactions, provides only minimal

differences in the timescales when compared with the SPC/E model though it does slightly increase

the models viscosity.

Compared with the 3-site models, the dynamics of the 4-site models, TIP4P/2005 and TIP4P/Ew,

are generally slower. We find OH reorientation times of 2.82 ps for TIP4P/Ew and 3.17 ps for

TIP4P/2005, which are longer than the measured τ2. This suggests that these models also overesti-

mate the H-bond jump time. On the other hand, the TIP4P/2005 diffusion coefficient, 2.37×10−5

cm2/s, is the closest to the experimental value out of all the force fields studied and TIP4P/Ew

gives a reasonable result (2.70×10−5 cm2/s). Likewise, the TIP4P/2005 viscosity is the closest to
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the experimental value of all the water models. Like the 3-site models, the 4-site model with the

most accurate reorientation time, TIP4P/Ew, gives a diffusion coefficient that is too large, while

the excellent prediction of D by TIP4P/2005 is accompanied by a reorientation time that is 22%

larger than obtained in experiments.

The addition of 3-body interactions in the E3B2 and E3B3 models leads to slower dynamics

compared to the pairwise 4-site models. They exhibit reorientation times that are too long by more

∼ 1.2 ps (50%) and diffusion coefficients that are underestimated, unlike all the other force fields

considered. The predicted D are, however, quite reasonable, providing the second best agreement

behind the TIP4P/2005 model (upon which the E3B3 model is based). The slower D than experi-

ment is consistent with our calculated values of the viscosity, which indicate that both E3B variants

are more viscous than experiment.

Overall, the results show that the best models to use to obtain the correct OH reorientation

time at 298.15 K and 1 bar are the rigid 3-site SPC/E and the flexible variants SPC/Fw and TIP3P-

PME/Fw. For diffusion, the TIP4P/2005 force field provides the most faithful reproduction of the

experimental D.

11.3.2 Activation Energies

We next turn to an investigation of the temperature dependence of each water model as measured

by the activation energies of the jump time, the OH reorientation time, and the diffusion coefficient

at ambient conditions (298.15 K, 1 bar). The calculated activation energies (and their decomposi-

tions) are provided in Table 11.3 and plotted them in Fig. 11.3.

Measured activation energies have been reported for the reorientation time and diffusion co-

efficient. In the former case, Ea,2 = 4.1± 0.5 kcal/mol was obtained by Petersen et al.7 and

3.7± 0.5 kcal/mol by Nicodemus et al.105 Several measurements of the diffusion activation en-

ergy have been reported including 4.2,322 4.3,3 4.4,4 4.5,54 and 4.6 kcal/mol,53 and thus we take

4.4 kcal/mol as the experimental value in Fig. 11.3.

We first examine the reorientation activation energies, Ea,2, which range from 2.98 to 4.69 kcal/-
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Jump Time, τ0

Model Total KE Elec LJ Bond Bend E3B E2 Ea Eb Ec

SPC/E 3.094 0.952 2.855 -0.724 - - - - - - -
SPC/Fw 3.276 1.022 2.9813 -0.715 -0.147 0.132 - - - - -

TIP3P-PME 2.715 0.883 2.304 -0.473 - - - - - - -
TIP3P-PME/Fw 3.386 1.043 3.0210 -0.695 -0.093 0.102 - - - - -

OPC3 3.266 0.983 3.027 -0.744 - - - - - - -
E3B2 4.116 1.093 3.995 -1.252 - - 0.281 -0.311 0.011 -0.126 0.75
E3B3 4.032 1.074 4.1611 -1.295 - - 0.091 -0.041 0.011 -0.152 0.282

TIP4P/2005 3.635 1.044 3.698 -1.106 - - - - - -
TIP4P/Ew 3.526 1.003 3.548 -1.015 - - - - - -

Reorientation Time, τ2
Experiment:7,105 4.1±0.5, 3.7±0.5 kcal/mol

Model Total KE Elec LJ Bond Bend E3B E2 Ea Eb Ec

SPC/E 3.545 1.084 3.336 -0.867 - - - - - - -
SPC/Fw 3.699 1.175 3.3421 -0.839 -0.149 0.152 - - - - -

TIP3P-PME 2.987 0.946 2.6411 -0.609 - - - - - - -
TIP3P-PME/Fw 3.795 1.184 3.4114 -0.8610 -0.064 0.112 - - - - -

OPC3 3.715 1.133 3.4512 -0.877 - - - - - - -
E3B2 4.6910 1.265 4.538 -1.426 - - 0.322 -0.393 -0.042 0.3913 0.3510
E3B3 4.558 1.245 4.6611 -1.446 - - 0.101 -0.051 0.001 -0.064 0.214

TIP4P/2005 4.1210 1.215 4.1914 -1.288 - - - - - - -
TIP4P/Ew 3.9810 1.125 3.9812 -1.138 - - - - - - -

Diffusion Coefficient, D
Experiment:3,4,53,54,322 4.2-4.6 kcal/mol

Model Total KE Elec LJ Bond Bend E3B E2 Ea Eb Ec

SPC/E 3.619 1.074 3.4912 -0.966 - - - - - - -
SPC/Fw 3.8010 1.173 3.6421 -0.987 -0.157 0.134 - - - - -

TIP3P-PME 3.268 0.944 3.148 -0.823 - - - - - - -
TIP3P-PME/Fw 4.048 1.305 3.5312 -0.956 0.074 0.103 - - - - -

OPC3 3.847 1.113 3.7810 -1.056 - - - - - - -
E3B2 4.739 1.274 4.6211 -1.486 - - 0.3111 -0.523 -0.182 1.8614 -0.8510
E3B3 4.5911 1.235 4.7410 -1.488 - - 0.091 -0.071 -0.011 0.243 -0.073

TIP4P/2005 4.105 1.164 4.186 -1.245 - - - - - - -
TIP4P/Ew 4.039 1.144 4.1012 -1.219 - - - - - - -

Table 11.3: Activation energies (in kcal/mol) of the jump time, OH reorientation time, and diffu-
sion coefficient. Subscripts indicate uncertainties in the trailing digit(s).
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Figure 11.3: Activation energy decomposition for the studied water models are included for a) the
jump time, b) the reorientation time, and c) the diffusion coefficient. The total, kinetic, electro-
static, Lennard-Jones, and other contributions to the activation energy are presented in black, red,
blue, purple, and orange, respectively. The experimental values of the diffusion and reorientation
activation energies are included as black dashed lines on their respective plots. Experimental un-
certainties are included as gray solid lines.

mol. All of the models, except TIP3P-PME which has the lowest activation energy, are in agree-

ment, within errors, of one of the reported measured values. However, this is largely due to the

significant difference between the two reported experimental Ea,2 results and their sizable error

uncertainties. As with the reorientation timescales, the calculated activation energies appear to fall

into two general categories. Namely, the rigid and flexible 3-site models (excepting TIP3P-PME)

give Ea,2' 3.5−3.8 kcal/mol, while the 4-site and E3B force fields yield larger activation energies

of 4.0−4.7 kcal/mol. Unfortunately, it is not possible to determine which is a better description of

the true temperature dependence of liquid water with the currently available experimental data.

The picture for diffusion is somewhat clearer. The TIP3P-PME model gives an Ea,D that is
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lower by more than 0.3 kcal/mol than that for any other force field. Otherwise, the same division

of the results into 3-site models that give lower activation energies, 3.6− 4.0 kcal/mol and 4-site

and 3-body models that give higher activation energies, 4.0− 4.7 kcal/mol is apparent, though

with values that overlap. The latter group is in better accord with the measured diffusion activation

energy, suggesting that these force fields better represent the temperature dependence of water

diffusion.

No experimental value exists to which we can compare the calculated jump activation energies,

but we find that the ordering of the activation energies in these models is similar to that of Ea,2.

The TIP3P-PME result lies significantly outside the range of the other models. The 3-site models

predict a weaker temperature dependence of the H-bond jump time, Ea,0 ' 3.1− 3.4 kcal/mol

compared to the TIP4P- and E3B-based descriptions which give 3.5−4.1 kcal/mol.

We have recently shown136 that Ea,2 may be calculated based on the extended jump model,85,88

which gives it as a contribution from two terms. The first is the contribution due to jumps including

Ea,0 and a measure of the temperature dependence of the size of the angular jump. The second is

the activation energy of the unbroken H-bond, or “frame," reorientation obtained from the C2(t)

TCF based on the Od · · ·Oa vector for H-bonded pairs between jumps. In that work we found

that the jump term for the SPC/E model contributed 2.56 kcal/mol to the reorientation activation

energy while the frame reorientation added 1.37 kcal/mol. In the present work, we have not calcu-

lated these contributions, but it is interesting to consider that different water models might predict

different relative jump and frame contributions to Ea,2.

The addition of 3-body contributions in the E3B2 and E3B3 models raises the activation en-

ergies of all three timescales significantly by about 0.4− 0.7 kcal/mol compared to the 4-site de-

scriptions. Experimental uncertainty does not allow us to differentiate between these values based

on measurements.

The present results indicate that the 4-site and 3-body force fields provide better descriptions of

the diffusion coefficient and the corresponding activation energy. The TIP4P/2005 model appears

to give the best agreement with measurements of these quantities. This is consistent with its wide
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use in modeling the T -dependence of water dynamics, including at temperatures far from ambient

conditions.160,236,327 However, as noted above, 3-site models like SPC/E and TIP3P-PME/Fw are

superior at describing the OH reorientation time, but unfortunately we cannot use experimental

measurements of the associated activation energy to determine if they also properly describe the

temperature dependence.

11.3.3 Activation Energy Decomposition

As we have noted, a key advantage of the fluctuation theory for dynamics approach is the mech-

anistic insight it generates via a rigorous decomposition of the activation energy based on the

motions and interactions present in the system. To explore possible differences in the activation

energy origins for the different water models we have decomposed them into contributions from

the inter- and intramolecular interactions as described in Sec. 11.2.2.4. The results are given in

Table 11.3 and Fig. 11.3.

We first note that every model exhibits the same qualitative, even semi-quantitative behavior, in

which the dominant contribution is associated with electrostatics, the kinetic energy is a more mod-

est, positive component, and the Lennard-Jones interactions reduce the activation energy. We have

previously observed this behavior for the SPC/E and TIP4P/2005 models13,44,50,58,136,160 Specifi-

cally, we found that the competition between EElec
a and ELJ

a can be understood by the interactions

involved in breaking an H-bond. During an H-bond exchange, the H-bond acceptor moves out of

the first solvation shell of the donor water molecule. This requires an increase in the electrostatic

energy between the two molecules but a decrease in the Lennard-Jones interactions, which lie on

the repulsive wall of the potential in the intact H-bond. The present results indicate that, despite

the relatively wide ranges of timescales and activation energies calculated from these models, they

treat the underlying competition between these contributions in a similar way.

Considering specifically the kinetic energy contribution to the activation energies, we see (Ta-

ble 11.3) that it lies in the range 0.88− 1.3 kcal/mol over the full set of models and timescales.

The smallest kinetic energy contributions occur for the TIP3P-PME model in every case, which
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we noted above significantly underestimates every activation energy. Ignoring this model we find

that the range of values is even smaller for a given timescale where for the jump time EKE
a,0 =

0.95−1.09 kcal/mol, for the reorientation time EKE
a,2 = 1.08−1.26 kcal/mol, and for the diffusion

coefficient EKE
a,D = 1.07− 1.30 kcal/mol. While these differences are small, the E3B models con-

sistently have the largest kinetic energy contribution and the SPC/E, OPC3, and TIP4P/Ew force

fields have the smallest.

Examination of the electrostatic contributions also yields a consistent picture. It is not only

the largest contribution but quite close to the total activation energy, within ∼ 0.4 kcal/mol, in

every case. In this way it closely tracks the trends in the activation energy for the different models

that are discussed above. As would be expected from the physical picture of competition between

the electrostatic and Lennard-Jones interactions we have just described, we find EElec
a and ELJ

a

are anti-correlated. Smaller electrostatic contributions, which occur particularly for the rigid and

flexible 3-site models, are accompanied by smaller in magnitude (less negative) Lennard-Jones

components. In contrast, for the 4-site and 3-body force fields we find the electrostatic component

of the activation energy is larger and the corresponding Lennard-Jones term is bigger in magnitude

(more negative).

It is also interesting to consider the other contributions to the activation energy associated with

flexibility or 3-body interactions that are not shared by every model. Interestingly, the bending and

stretching contributions to the activation energy of SPC/Fw essentially cancel each other for every

timescale so that the molecular flexibility has no direct effect on the activation energy. This is also

true for the TIP3P-PME/Fw model for the jump and reorientation time activation energies, but they

combine to increase Ea,D in the case of diffusion. More importantly, these results indicate that the

differences in the Ea predicted by the SPC/E and SPC/Fw models, which are modest, and those

between the TIP3P-PME and TIP3P-PME/Fw models, which are significant, must be attributed to

underlying changes in the liquid structure induced by the addition of flexibility rather than a direct

role in the dynamics.

In the E3B2 and E3B3 models, the activation energy contributions that come from the addition
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E3B3 (empty bars) models.

of 3-body interactions likewise do not add up to the total difference in the activation energy when

compared with their base models (TIP4P/2005 for E3B3). Indeed, the 3-body terms add∼ 0.3 and
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0.1 kcal/mol to the activation energy of each timescale for the E3B2 and E3B3 model, respectively.

Note that, in the case where a direct comparison is possible, the overall activation energies are

0.39− 0.43 kcal/mol higher for the E3B3 force field than for the base TIP4P/2005 description.

Thus, as was the case for the effect of molecular flexibility, it is apparent that the key effect of

including 3-body interactions is the modification of the liquid structure.

The 3-body contribution to the activation energy can be further decomposed into the compo-

nents due to the many-body correction to the pairwise potential (EU2
a ), anti-cooperative arrange-

ments (EUA
a and EUC

a ), and cooperative arrangements (EUB
a ). We have plotted this decomposition for

both E3B2 and E3B3 in Fig. 11.4 along with a schematic illustration of the latter three interactions.

For both models, the EU2
a represents a small negative contribution to the activation energy, but the

magnitude for E3B2 is significantly greater than that of E3B3. Because the U2 term is designed to

remove the many-body effects implicitly included in the base pairwise force field,194,195 this term

provides insight into the approximate magnitude of the base model activation energy associated

with those many-body effects. Thus, the negative values of EU2
a indicates that the base 4-site po-

tentials (TIP4P, TIP4P/2005) would have lower activation energies if many-body effects were not

included implicitly.

For both models, the anti-cooperative arrangement term EUA
a contributes the least to the acti-

vation energy, with only reorientation and diffusion having slight negative contributions for the

E3B2 model. This suggests that the base 4-site models accurately describe the T -dependence of

the Type A, anti-cooperative, arrangements without explicit inclusion of 3-body effects. The ma-

jority of the remaining contribution to the activation energy comes from the Type B and Type C

arrangements, which are (generally) in opposition to one another for each timescale. Interestingly,

the Type B (cooperative) configurations appear to strongly increase the T -dependence of the dif-

fusion coefficient, while decreasing the T -dependence of the jump time. Meanwhile, the Type C

(anti-cooperative) configurations display the opposite effect. The reorientation activation energy

displays behavior intermediate between that of the H-bond jump time and the diffusion coefficient.
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Figure 11.5: Activation volumes of the jump time, ∆V ‡
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2 (red), and
diffusion coefficient, ∆V ‡

D (blue). The average experimental diffusion activation volume1,2,4 is also
shown (dashed blue line; experimental ranges indicated by gray solid lines). The experimental
reorientation activation volume at 450 bar is also listed.11

11.3.4 Activation Volumes

Finally, we examine the pressure dependence of the dynamical timescales predicted by the differ-

ent water models as represented by the activation volumes. Specifically, we have calculated the

activation volumes at 298.15 K and 1 bar of the H-bond jump time, OH reorientation time, and

diffusion coefficient. The values are provided in Table 11.4 and the results are plotted in Fig. 11.5.

We compare with experimental results based on fitting to NMR measurements of D at a series of

pressures.1,2,4 Recently, Fanetti et al. have published pump-probe anisotropy measurements of the

reorientation time over a wide range of pressures.11 We have used their values of the reorientation

time at 1 bar, 600 bar, and 900 bar to evaluate the reorientation activation volume (∆V ‡
2 ) numer-
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Model ∆V ‡
0 ∆V ‡

2 ∆V ‡
D

SPC/E -2.5611 -1.8313 0.3210
SPC/Fw -2.3512 -1.6616 0.4114

TIP3P-PME -1.9610 -0.9915 1.4813
TIP3P-PME/Fw -1.689 -0.9117 1.0412

OPC3 -2.8614 -2.1720 -0.1119
E3B2 -3.7711 -3.3621 -0.8914
E3B3 -4.6721 -4.3629 -1.7923

TIP4P/2005 -4.4712 -4.0812 -1.1913
TIP4P/Ew -4.0417 -3.4817 -1.0120
Expt.1,2,4,11 - -6.9a (-1.3)-(-1.6)

aAt 450 bar.

Table 11.4: Activation volumes (in cm3/mol) of the jump time, ∆V ‡
0 , reorientation time, ∆V ‡

2 and
diffusion coefficient, ∆V ‡

D. Subscripts indicate uncertainties in the trailing digit(s).

ically, for which we have found a value of −6.9 cm3/mol. To the best of our knowledge, this is

the first experimental value for the activation volume of the τ2 timescale. We are unaware of any

measurements for τ0.

We first note the general features of the results. We find that the activation volumes for the

H-bond jump time, ∆V ‡
0 , and the OH reorientation time, ∆V ‡

2 are negative for all of the models and

that, in every case, ∆V ‡
0 is larger in magnitude (more negative) than ∆V ‡

2 . The negative activation

volumes here correspond to an increase (decrease) in the corresponding rate constant (timescale)

with increasing pressure. However, for the diffusion coefficient the 3-site models predict an activa-

tion volume that is positive or zero (within errors) but the 4-site and 3-body models yield a negative

activation volume. This is an interesting contrast with the activation energy, where we observed

comparatively small quantitative differences between the results for the different timescales, par-

ticularly for Ea,2 and Ea,D. We note that the diffusion activation volume, ∆V ‡
D, changes sign with

both pressure and temperature,3,10 so that the quantitative results here apply only for the ambient

conditions at which they were evaluated.

While the experimental ∆V ‡
2 for reorientation is not centered around 1 bar,11 it is still in rea-

sonable agreement with our calculated results. Importantly, it suggests that the stronger pressure

effect observed in the simulations for the reorientation time compared to the diffusion coefficient

matches the available experimental data showing |∆V ‡
2 | > |∆V ‡

D|. Fanetti et al. also reported the
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p-dependence of τ2 for the ASAP water force-field,328 using their values and an Arrhenius-type

numerical procedure we estimate an activation volume of ∆V ‡
2 =−3.7 cm3/mol, which is in general

agreement with the present, directly calculated, results for different models.

We note that the activation volume measures the difference in volume of the transition state

and reactant structures, broadly defined in that it contains any changes in the surrounding solvent

arrangement as well.62 Thus, a negative (positive) activation volume corresponds to a reduction

(increase) in size moving from the reactant state to the transition state. The present results suggest

that the volume of the transition state for diffusion is distinctly different than that for reorienta-

tion and H-bond jumps despite the fact that the activation energies are quite similar. The latter is

understood as a signature of the fact that both reorientation and diffusion have H-bond exchanges

as their underlying fundamental process. A key difference between the processes is that diffusion

has a component associated with a translational jump accompanying the exchange178 while reori-

entation involves one due to an angular jump. While an extended jump model has been developed

for OH reorientation,85,88 a similar rigorous description is lacking for diffusion; the present results

indicate that an accurate reproduction of the diffusion activation volume and its connection to the

jump activation volume should be key targets of such a model.

Comparing the results from the different water models does give a consistent picture across

the three timescales. Namely, the 3-site models predict larger (positive or less negative) activation

volumes in all cases. For diffusion, this means that the 3-site models incorrectly predict the relative

size of the transition state and reactant arrangements. The 4-site and 3-body models give ∆V ‡
D '

−0.9 to −1.8 cm3/mol, which is in reasonable agreement with the range of experimental values.

The TIP4P/2005 (−1.19±0.13 cm3/mol) and E3B3 (−1.79±0.23 cm3/mol) force fields give the

overall best results and the only ones that overlap, within error, with the measurements.

In the case of the activation volumes for τ0 and τ2, the 3-site models are quantitatively, but

not qualitatively, different. They predict negative activation volumes, but ones that are as much as

3−4 times smaller than the 4-site and 3-body models. Interestingly, the two 3-body models yield

significantly different activation volumes, with the E3B2 model giving results∼ 0.9−1.0 cm3/mol
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larger than the E3B3 values for every timescale. This leads to E3B2 activation volumes that are

less negative than the 4-site (TIP4P/2005 and TIP4P/Ew) models, but more negative E3B3 activa-

tion volumes. It is tempting to speculate that this is associated with the larger contributions of the

Type B and Type C configurations in the E3B2 model as observed in the activation energy decom-

positions, Fig. 11.4, but we do not currently have an approach for evaluating such a hypothesis.

The TIP3P-PME and TIP3P-PME/Fw models are the largest outliers as they predict the most

positive ∆V ‡
D and the smallest magnitude ∆V ‡

0 and ∆V ‡
2 . The diffusion result is furthest from the

measured values and indicates that these force fields do not adequately describe the pressure de-

pendence. It is interesting that, while the TIP3P-PME/Fw model substantially improves on the

deficiencies of TIP3P-PME with respect to timescales (Table 11.2) and activation energies (Ta-

ble 11.3), it does not notably improve upon the pressure dependence.

11.4 Conclusions

In the present work, we have used dynamical fluctuation theory to evaluate the timescales, acti-

vation energies, and activation volumes of the H-bond exchange, or “jump," time, the OH reori-

entation time, and the diffusion coefficient for several commonly used water models. While these

timescales are non-Arrhenius in water, these activation parameters provide a good measure of the

local temperature/pressure dependencies (for example, the activation energy provides a good esti-

mate for the T -dependence160 of these timescales over a range∼ 280−340 K). To our knowledge,

this is the first calculation of the jump and reorientation activation volumes. We do note that, in

this first comparison between models, we have not considered polarizable models, models with

more than four sites, electronic structure-based descriptions, or potentials that include more than

3-body effects,329 which could provide improvement to some or all of the quantities calculated in

the present work.

The results show that SPC/E, SPC/Fw, and TIP3P-PME/Fw provide the best description of re-

orientation timescales in liquid water whereas TIP4P/2005 most faithfully reproduces the measured

diffusion coefficient. The four-site and three-body models more accurately predict the diffusion
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activation energy, and thus at least the local temperature dependence of diffusion, compared to

any of the 3-site models. The TIP3P-PME force field does a universally poor job of describing

timescales, activation energies, and activation volumes. We are unable to distinguish between the

other models based on the reorientation or jump time activation energies, due to the significant

uncertainty in the experimental result for the former and the lack of measurements for the latter.

We have decomposed the activation energies and found that all of the models share the same

underlying mechanistic origin of the water dynamics. Namely, a strong competition is observed

between the electrostatic and Lennard-Jones interactions with the former representing the dominant

contribution. Molecular flexibility and 3-body effects both provide a small direct contribution

to the activation energy, but also lead to other changes, e.g., in the liquid structure, that more

significantly affect the activation energy.

The superior description of the four-site and 3-body models also extends to the pressure de-

pendence, where the activation volumes for both the reorientation time and diffusion coefficient

are in significantly better agreement with experiment than those of the 3-site models. Surprisingly,

the activation volumes for the OH reorientation and H-bond jump times are substantially more

negative than those for the diffusion coefficient.

Overall, of the force fields examined, TIP4P/2005 and E3B3 (which adds three-body inter-

actions to the TIP4P/2005 model) give the best representation of the dynamical properties and

their temperature and pressure dependence. However, this conclusion comes with qualifications.

These models overestimate the OH reorientation timescale (and presumably the H-bond jump time)

while simultaneously matching experimental measurements of the diffusion coefficient, its activa-

tion energy, and its activation volume. The reorientation time is more accurately predicted by the

three-site SPC/E, SPC/Fw, and TIP3P-PME/Fw models that, however, predict diffusion that is too

fast and a diffusion activation energy that is too low.
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Chapter 12

The water hydrogen bond jump activation energy can be

inferred from experimental data

12.1 Introduction

One of the hallmarks of liquid water is its extensive hydrogen bond (H-Bond) network. The ability

of this network to quickly exchange these H-bonds is responsible for many of the noteworthy fea-

tures of the neat liquid.8,172,174,176 Under ambient conditions, H-bond exchanges play a critical role

in most dynamical processes including diffusion,315 reorientation,85,104 viscosity,3,4,141,142 spec-

tral diffusion,123,138,330 dielectric relaxation,140,331 structural rearrangements,143,144 and chemical

reactions.90–92 As these exchanges play such a ubiquitous role, it is not surprising that they have

been characterized in great detail.

Laage and Hynes developed a theoretical treatment of these H-bond exchanges, called the

Extended-Jump Model, was developed to describe the reorientation of water molecules in terms

of finite amplitude “jumps" between H-bond partners as well as a part that comes from the re-

orientation of the unbroken Od · · ·Oa “frame".85,88 The reorientation time, which is measured in

pump-probe Infrared anisotropy experiments,71 can be expressed in terms of these components as,

1
τ2

=
1

τ
jump

2

+
1

τ
f rame

2

(12.1)

where τ
f rame

2 is the frame reorientation time, τ
jump

2 = τ0/w̄2 is the jump contribution to the reorien-

tation time. Here, τ0 is the characteristic "jump" time of H-bond exchanges, and w̄2 is the average
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value of the jump angle weighting function derived by Ivanov.111

This jump timescale measures the survival lifetime of a hydrogen bond, and is one of the

fundamental timescales of liquid water. From a molecular simulation, τ0 can be calculated from

the stable states picture33 using the “side-side" correlation function, as

Cab(t) = 〈na(0)nb(t)〉, (12.2)

where na (nb) is equal to 1 if the chosen OH is H-bonded to molecule a (b), and is otherwise

zero. Absorbing boundary conditions are used so that after an exchange occurs, that molecule’s

contribution remains zero regardless of whether it switches back to its original H-bond partner

due to a further exchange. The function 1−Cab(t) decays exponentially at longer times with the

timescale τ0 (which in practice is fit with a double exponential to allow for transient behavior at

early times).

While this theoretical framework provides powerful insights into water H-bond dynamics within

molecular dynamics simulations, it is surprising that a method for measuring τ0 experimentally has

not yet been developed. This has not only restricted the ability to measure this timescale, but it has

also made experimental measurements of the jump activation energy,

Ea,0 =−
∂ ln(1/τ0)

∂β
, (12.3)

impossible. Here β = 1/(kbT ), kb is Boltzmann’s constant and T the temperature. As jumps

are the elementary steps in many dynamic processes in liquid water and aqueous solutions, their

present immeasurability presents an important challenge to be overcome.

In the present work, we present a theoretical development that allows for the experimental jump

activation energy to be estimated using information available from correlations between structure

and dynamics present within molecular dynamics simulations and applying them to the experi-

mental liquid structure. Specifically, the present work identifies a linear relationships between the

enthalpies and entropies associated with exchanging H-bonds and calculated activation energies of
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dynamic timescales from a variety of molecular models of liquid water. These relationships are

then used along with experimental values of the aforementioned enthalpies and entropies to predict

the jump activation energy.

12.2 Computational Methods

For each model, we generated configurations using PACKMOL162 to generate initial configura-

tions and necessary data files for molecular dynamics simulations. Initial velocities were generated

from the room temperature Maxwell-Boltzmann distribution. Molecular dynamics simulations

were run using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).81

Liquid structures were calculated from separate long trajectories, propagated for 50 ns in the NpT

ensemble at 1 bar and 298.15 K after a 1 ns equilibration. For these trajectories, configurations

were output every 100 fs (in total 500,000 configurations) from which the radial distribution func-

tion and its derivative were calculated.

A Nosé-Hoover thermostat and barostat were used, both of chain length 3, with damping pa-

rameters of 100 fs and 1000 fs, respectively.83,84 For all simulations, the Particle-Particle-Particle

Mesh (PPPM) Ewald summation method was used for the calculation of electrostatic interactions,

with a tolerance parameter of 1×10−4.119,120 For simulations involving rigid water molecules, the

SHAKE algorithm was used to hold bonds and angles constant, also with a tolerance of 1×10−4.82

12.3 Results and Discussion

In a recent study, we have directly calculated the activation energy for water diffusion, OH reorien-

tation, and H-bond exchanges using the fluctuation theory for dynamics approach for a wide range

of water models.309 This method enables the direct determination of an activation energy from

simulations at a single temperature,13,58,309 by computing the analytical derivative of a timescale

or rate constant with respect to temperature at a single temperature and pressure, in contrast to the

numerical derivative obtained in an Arrhenius analysis.
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Figure 12.1: Plots of the liquid water OO a) radial distribution function and b) the β derivative of
the RDF, −gH,OO(r), for each model. Insets show a closer view of the first maximum.

The same approach can be used to calculate the temperature dependence of static equilibrium

properties.147,270,271 In liquids, the pair-distribution function (RDF) is frequently used to charac-

terize liquid structure,272 as

gOO(r) =
V
N2

〈
∑

i
∑

j
δ (r−|~ri j|)

〉
, (12.4)
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where ~ri j =~r j −~ri is the distance between sites i and j, N is the number of molecules, r is the

distance along the O · · ·O coordinate, and V is the volume. Experimentally, RDFs are obtained

as the Fourier transform of the structure factor measured by either neutron231,273,274 or X-ray

scattering.12,275 Using fluctuation theory, we have previously demonstrated that the derivative of

the RDF with respect to β can be expressed in terms of fluctuation theory as,

∂gOO(r)
∂β

= − V
N2

〈
δH ∑

i
∑

j
δ (r−|~ri j|)

〉
= −gH,OO(r). (12.5)

Here we have neglected the pδV contribution to the derivative present in the NpT ensemble, which

is negligible at 1 bar. This derivative is evaluated directly at a single T and p.

We have calculated the RDF for each water model listed in the first column of Table 12.1

and plotted the in Fig 12.1a. The studied models represent a wide range of parametrizations,

that span 3-site and 4-site models, and include flexible, and 3-body interactions. In this figure,

we have also included the experimental radial distribution function at 295.1 K as measured by

Skinner and Benmore using X-ray diffraction.12 Each model exhibits moderate agreement with

the experimental RDF, but all overestimate the height of the first peak. The models generally agree

on the peak’s location along r, with the exception of the TIP3P-PME and TIP3P-PME/Fw models

which predict a more contracted liquid structure.

We have also directly calculated the β derivative of the RDF at 298.15 K for each water model

using Eq. (12.5) and have used the experimentally measured RDFs at 307 K and 284.5 K to evaluate

this derivative numerically.12 The results are plotted in Fig 12.1b. The model and the experimental

derivatives are in general qualitative agreement though the models exhibit slightly less structure

than the experimental result. Interestingly the 4-site models are in general agreement with ex-

periment after the first minimum (located at about 3.1 Å); however, only TIP3P-PME is in good

agreement with the height of the first maximum with the other models slightly overestimating the

T -dependence of the peak.
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Figure 12.2: Water OO (a) Gibbs free energy, (b) enthalpy, and (c) entropy profiles. (The first
minimum is set to zero in each case.)
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The Gibbs free energy can be calculated from the RDF as,

∆GOO(r) =−kbT lngOO(r)−2kbT lnr, (12.6)

where the first term is the potential of mean force and the second term is the entropy associated

with the increasing volume with r. The calculated ∆GOO(r) for each model and the experimental

results of Ref. 12 are shown in Fig. 12.2. We find that the free energy barrier to move from the first

to the second solvation shell is overestimated by each model compared with experiment. Generally,

we observe that a higher barrier between the first and second solvation shell corresponds with an

overall shallower minimum in the second solvation shell, though the two flexible models do not

follow this pattern.

It is straightforward to show147 that the derivative gH,OO(r) can be used to determine the cor-

responding enthalpy,

∆HOO(r) =
gH,OO(r)
gOO(r)

, (12.7)

and the entropic contribution to the Gibbs free energy as,

−T ∆SOO(r) = ∆GOO(r)−∆HOO(r), (12.8)

using ∆GOO(r) = ∆HOO(r)− T ∆SOO(r) and assuming ∆H and ∆S are independent of tempera-

ture. The enthalpy and entropy contributions to the free energy calculated in this way are shown

in Fig. 12.2. Both quantities exhibit more structuring in the experimental results than in the sim-

ulations. The experimental enthalpic barrier for moving from the first to second solvation shell is

in best agreement with the E3B models, though the measured second solvation shell minimum is

shallower than predicted by any of the models. The experimental entropy profile is similar to that

predicted by all of the water models and agrees best with the 4-site models studied. However, at

short distances the measured −T ∆SOO(r) increases more steeply than in any of the models.

We have previously reported calculations of the diffusion, reorientation, and the jump activation
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energies for the models considered here (Chapter 11).309 We will now examine the relationship be-

tween the enthalpic (and entropic) change associated with exchanging an H-bond and the observed

activation energy for each of these three timescales.

Figure 12.3: Schematic of the liquid water OO a) enthalpic and b) entropic contributions to the
free energy. Indicated on the plot are the positions r1st , r‡, and r2nd as well as marking the forward
and backward directions over the enthalpic barrier.

At this point, it should be pointed out that the hydrogen bond jump involves the breakage

of, at a minimum, two H-Bonds, in order to free both an acceptor and a donor. Thus, we can

consider the quantity ∆∆H = ∆H f +∆Hb which corresponds to the sum of the enthalpy barrier in

both directions. Here we define ∆H f and ∆Hb as the enthalpy required to cross the barrier in the
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Model E†
a,0 ∆∆H ∆∆Hθ -T∆∆S

SPC/E42 3.094 2.585 0.517 -1.5010
SPC/Fw303 3.276 2.729 0.5511 -1.5714

TIP3P-PME304,305 2.715 2.283 0.436 -1.394
TIP3P-PME/Fw304,305 3.386 2.827 0.5610 -1.639

OPC3306 3.266 2.588 0.6810 -1.4511
E3B2194 4.116 3.718 0.4010 -2.548
E3B3195 4.032 3.5813 0.4515 -2.4016

TIP4P/20055 3.635 3.255 0.388 -2.105
TIP4P/Ew307 3.526 3.188 0.349 -2.0313

Expt332 3.43 2.97 0.46 -2.16
† values have been reproduced from Ref. 309.

Table 12.1: Ea,0, ∆∆H, ∆∆Hθ , and −T ∆∆S for each water model and experiment.12

forward and backward directions, respectively. These are calculated as

∆H f = ∆HOO(r‡)−∆HOO(r1st) (12.9)

∆Hb = ∆HOO(r‡)−∆HOO(r2nd),

where r‡, r1st , and r2nd are the positions of the transition state, the first solvation shell, and sec-

ond solvation shell, respectively. A schematic diagram of ∆HOO(r) and −T ∆SOO(r) with these

positions overlayed has been included in Figure 12.3. A similar approach has previously been

successfully used with the RDF to estimate the jump time, though it relies on information only

available from simulations.127

Laage and Hynes have suggested previously that the jump activation energy can be expressed

as Ea,0 = ∆∆H +∆∆Hθ where the second term corresponds to a separate barrier along an angular

coordinate.85 From our present calculations, we find that the SPC/E model ∆∆H is 2.58 kcal/mol

± 0.06 kcal/mol, and its Ea,0 is 3.09 kcal/mol ± 0.04 kcal/mol. Using these values, we then find

∆∆Hθ = 0.51 ± 0.07 kcal/mol in close agreement with Laage’s result of 0.50 kcal/mol. In the

fourth column of Table 12.1 we have included our calculated values of ∆∆Hθ = Ea,0−∆∆H for

each water model. Interestingly, 4-site models have generally larger values of ∆∆H and smaller

values of ∆∆Hθ than their 3-site brethren, leading to higher values of Ea,0.
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Figure 12.4: Plot of the jump, reorientation, and diffusion activation energies plotted for each water
model as a function of ∆∆H (top panels) and ∆∆S (bottom panels). Linear fits are included for each
panel as a dashed line in the same color. The predicted activation energies from Skinner’s X-ray
data generated using the correlations of ∆∆H are included on each plot.

It is useful to consider instead that there may be a linear dependence of a given activation

energy on the enthalpic barrier ∆∆H, such that

Ea,X = mH,X (∆∆H) + bH,X , (12.10)

where here bH,X is the y-intercept, the value mH,X is the slope, and X represents the timescale

(either 0, 2, or D).

We have plotted the jump, reorientation and diffusion activation energies of each water model

as a function of their corresponding values of ∆∆H in Figure 12.4a. We have included the linear

fit described by Eq. (12.10). For all three timescales Ea,X and ∆∆H have a strong linear correlation

(R2 between 0.916 and 0.957).
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We have also calculated −T ∆∆S, the entropic contribution to the free energy barrier corre-

sponding to an H-Bond exchange, which we have included in the fifth column of Table 12.1. With

this a similar linear equation may be obtained, as

Ea,X = mS,X (−T ∆∆S)−bS,X . (12.11)

Here mS,X and bS,X are again the slope and the y-intercept.

As with above, we have plotted Ea,X as a function of −T ∆∆S for each water model in Fig-

ure 12.4b and fitted these correlations to Eq. (12.11). We have gain found that while these cor-

relations remain strong (R2 between 0.842 and 0.887), they are weaker than what we found for

the enthalpic correlations. The strong linear correlations of the activation energies with both ∆∆H

and−T ∆∆S is likely a direct result of enthalpy-entropy compensation between water models - this

may also explain why the RDF of SPC/E meshes well with experimental RDFs, but performs so

poorly at describing the T-dependence of dynamics.

From Skinner and Benmore’s experiments,12 we have followed a similar procedure to numer-

ically evaluate ∆∆HSB = 2.97 kcal/mol and −T ∆∆SSB =−2.16 kcal/mol. Both results fall within

the range predicted by simulations, with ∆∆HSB falling in between the values predicted by the

3-site and 4-site models. The value of ∆∆SSB falls very near the value predicted by the TIP4P/2005

model.

As the correlation for ∆∆H is stronger than the entropic correlation, we use our calculated

∆∆HSB and our fitted parameters in Table S1 to infer the experimental activation energies. We will

begin by first using this technique to predict Ea,2 and Ea,D as we have experimental measurements

to which we can compare. We find Ea,2 = 3.89 kcal/mol which is in good agreement with both the

value measured by Petersen (4.1 ± 0.5 kcal/mol) and Nicodemus (3.7 ± 0.5 kcal/mol).7,105 Fol-

lowing the same procedure, we find that Ea,D = 4.00 kcal/mol, which is close to the experimental

range (4.2-4.6 kcal/mol).3,4,54,322 We have repeated the above using the entropic correlations and

−T ∆∆SHB and found that those predict values of 4.26 kcal/mol and 4.30 kcal/mol for Ea,2 and
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Ea,D respectively. While these values are also reasonable, the correlation is stronger for ∆∆H and

thus likely provides the better estimate of the activation energy.

As the estimations of Ea,2 and Ea,D appear to be in accord with experiment, we can then apply

the same technique applied to the jump activation energy. We find that Ea,0 = 3.43 kcal/mol,

which to the best of our knowledge is the first estimate of this value. Due to the factors involved

(mixture of experiments, simulations etc.), it is difficult to directly calculate the uncertainty in this

value; however, error propagation suggests it is near 0.60 kcal/mol. As with above, if we utilize

the entropic correlations instead we find that the jump activation energy is 3.76 kcal/mol which

is within uncertainty of our above calculated value, but suffers from the same weaker correlation

mentioned above.

Furthermore, a two step process using the experimental Ea,D and Ea,2 in reverse to first predict

∆∆H, and then using that value to predict Ea,0 produces viable values for this activation energy in

relatively good agreement with our value reported above. Furthermore, for the TIP4P/2005 model

we find Ea,0 =3.63 kcal/mol which is close to our value. This is signficant as this particular model

describes Ea,2 and Ea,D to high accuracy compared to experiment, and thus likely does for Ea,0 as

well. Furthermore, from Skinner’s value of the jump activation energy, we find that ∆∆Hθ = 0.46

kcal/mol, which is right in the range calculated for the four-site models.

12.4 Conclusions

In summary, we have used molecular dynamics simulations of nine commonly used water models

to evaluate the connection between liquid structure and dynamics. Presently, we have calculated

the RDF, the Gibbs free energy, the enthalpy, and the entropic contribution to the free energy

along the OO coordinate in water using fluctuation theory for each of the water models. We

then discovered a strong linear dependence between the activation energies of three dynamical

timescales (hydrogen bond exchanges, reorientation, and diffusion) and enthalpic barriers involved

in a hydrogen bond exchange through calculations with nine commonly used water models. We

have then used experimental T -dependent RDFs measured by Skinner and co-workers to estimate
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the jump activation energy for the first time, which we find to be 3.43 kcal/mol.
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Chapter 13

A Dynamical Maxwell Relation

13.1 Introduction

Practically every undergraduate physical chemistry student learns about the Maxwell relations that

provide important connections between thermodynamic variables333 (and some of the students

even remember them!). These relationships arise naturally from the fact that thermodynamic func-

tions like enthalpy and free energy are state functions. And they are used to provide a deeper

understanding of the properties of chemical systems, e.g., how entropy changes with volume at

constant temperature.333

In examining chemical dynamics, one often faces the same issue that motivates the Maxwell

relations: How does a property change with the independent thermodynamic variables like pres-

sure (p) and temperature (T ). The difference is that the fundamental quantities of interest are

dynamical, e.g., reaction rate constants, timescales, or transport coefficients. Indeed, the tempera-

ture dependence of a reaction rate constant, expressed as the activation energy,14,17,18 is a central

feature of reaction rate theory. Similarly, while significantly less attention has been paid to it, the

activation volume characterizes the change of a rate constant with pressure.60,61

In the Arrhenius perspective, the activation energy is assumed to be constant and provides in-

sight into the magnitude of the (fixed) underlying energetic barrier of the process.18,333 However,

for some processes non-Arrhenius behavior is quantitatively and qualitatively important. The dy-

namics of liquid water is one such case, where temperature-dependent activation energies have

been observed for diffusion,1–4,10,160 reorientation dynamics,52,138,160 and viscosity;141,334 these

processes have a common underlying barrier associated with the exchange of hydrogen-bond (H-
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bond) acceptors, which itself exhibits non-Arrhenius behavior that are largely attributed to changes

in the H-bond network. Other cases are reactions in which quantum mechanical tunneling repre-

sents a significant contribution (typically at lower temperatures) and enzymatic reactions.57

The effect of pressure on dynamical processes is typically much more modest than that of

temperature and can often only be resolved by varying p by hundreds or thousands of bar.1,3,4,221

In many cases, this behavior is Arrhenius-like, i.e., the activation volume is constant with pressure.

Then, the activation volume can be obtained from an Arrhenius analysis based on measurement or

simulation of the rate constant, or other dynamical timescale, at a few (widely different) pressures.

In other systems, however, the activation volume can change significantly, even in the sign, as

the pressure is varied. Because the activation volume represents the relative space taken up by

the transition state configuration compared to that of the reactants, this suggests a change in the

mechanistic details. Note that the “volume" difference here applies to the entire system, including

any arrangements of the solvent, whether it is innocent in the reaction or not.62

In cases where the activation energy is not constant with thermodynamic conditions, a full

understanding of the dynamics requires a description of how the energy required to carry out the

process of interest changes with the temperature and pressure. The same is certainly true of the

activation volume. In this Chapter we explore this issue theoretically, in the context of an effective

Maxwell relation for a dynamical variable such as a rate constant, and computationally, through

simulations of the water diffusion coefficient. We also propose a method for global fitting of a

dynamical timescale based on these ideas that is parameterized only by physically meaningful

quantities and demonstrate it by analysis of the extensive existing experimental data for the water

diffusion coefficient.
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13.2 Theory

13.2.1 Maxwell Relation for a Dynamical Variable

In the isobaric-isothermal (N pT ) ensemble, we can consider a generic rate constant, transport

coefficient, or (inverse) timescale – which we will denote as k – as a function of the independent

thermodynamic variables such that its total differential is given by

dk =
(

∂k
∂T

)
p,N

dT +

(
∂k
∂ p

)
T,N

d p+
(

∂k
∂N

)
p,T

dN. (13.1)

In the following, we will assume that N is fixed and it will be convenient to consider lnk rather

than the diffusion coefficient itself and to use β = 1/kBT rather than T as an independent variable

(where kB is Boltzmann’s constant). Then, we have

d lnk =
(

∂ lnk
∂β

)
p

dβ +

(
∂ lnk
∂ p

)
β

d p, (13.2)

as the total differential of interest.

The partial derivatives appearing in Eq. (13.2) can be identified as physically meaningful, mea-

surable quantities in reaction rate theory (and in the theory of transport coefficients). Namely, the

activation energy, Ea, is given by the first derivative as

(
∂ lnk
∂β

)
p
=−Ea, (13.3)

i.e., a measure of the temperature dependence of k. Similarly,

(
∂ lnk
∂ p

)
β

=−β∆V ‡, (13.4)

gives the activation volume, ∆V ‡, reflecting how k is influenced by pressure. Thus, the total differ-
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ential of k, can be written as

d lnk =−Eadβ −β∆V ‡d p, (13.5)

which suggests that we can think of β and p as natural variables of the rate constant (or transport

coefficient).

We can then proceed in complete analogy to the derivation of a thermodynamic Maxwell rela-

tion, by noting that (
∂ 2 lnk
∂ p∂β

)
=

(
∂ 2 lnk
∂β∂ p

)
. (13.6)

Evaluating these cross-derivatives yields the Maxwell relation

(
∂Ea

∂ p

)
β

= ∆V ‡ +β

(
∂∆V ‡

∂β

)
p
. (13.7)

This equation demonstrates the relationship between the pressure dependence of the activation

energy to the temperature dependence of the activation volume. Because the meaning of k is

general, this equation should hold for rate constants, transport coefficients, and other dynamical

timescales. In the following, we examine the underpinings of this Maxwell relation.

13.2.2 Fluctuation Theory and the Maxwell Relation

It is intructive to examine how the Maxwell relation in Eq. (13.7) arises naturally within fluctuation

theory. We can consider an ensemble of N pT trajectories, each with a different (fixed) energy and

volume, such that the rate constant is given by

k = 〈ki〉=
1

∆(N, p,T )
Tr
[
e−β (Hi+pVi)ki

]
, (13.8)

where Hi and Vi are the fixed energy and volume of the ith trajectory and Tr indicates a sum over

all the trajectories, ∆(N, p,T ) = Tr[e−β (Hi+pVi)] is the isobaric-isothermal partition function, and

thus 〈· · · 〉, indicates an ensemble average. Note that ki is itself an average over the ith constant

energy and volume trajectory, typically a time correlation function, e.g., for a reaction rate constant
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limt→long〈Fs(0)θ [s(t)]〉i where Fs is the flux across the transition state dividing surface defined by

s= 0 and θ is the Heaviside step function. Recall, however, that k can also be a transport coefficient

or other dynamical quantity, which are also expressible as averaged time correlation functions.

We have earlier shown13,44,58,59,136,147,160,168,184,309 that the derivatives of Eq. (13.8) with re-

spect to the independent thermodynamic variables can be expressed in terms of fluctuations. Namely,

it is straightforward to show that

∂k
∂β

=−〈[δHi + pδVi]ki〉, (13.9)

where δHi = Hi−〈Hi〉 and δVi =Vi−〈Vi〉 are the fluctuations in energy and volume respectively

of the ith trajectory from the average of all the trajectories in the N pT ensemble. Similarly, the

pressure derivative is given by
∂k
∂ p

=−β 〈δVi ki〉. (13.10)

Both of these quantities can be directly calculated from an ensemble of isobaric-isothermal trajec-

tories.

The activation energy can be obtained by combining Eqs. (13.9) and (13.3) to yield

Ea =
〈[δHi + pδVi]ki〉

〈ki〉
. (13.11)

This fluctuation theory result has a straightfoward and useful physical interpretation. The activation

energy is the correlation of the enthalpy of the system, Hi = Hi+ pVi with the rate constant. Thus,

if, when the enthalpy is larger (smaller) than average the process is faster (slower), Ea is positive

and, the greater the effect of an enthalpy fluctuation on the rate constant, the bigger the magnitude

of the activation energy. This activation energy includes, as one component, the activation volume.

This can be seen by using Eqs. (13.9) and (13.4), to find

∆V ‡ =
〈δVi ki〉
〈ki〉

. (13.12)
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This is the first term on the right-hand-side (rhs) of the Maxwell relation, Eq. (13.7). It also has an

analogous interpretation to the activation energy in that it measures the effect of the volume on the

rate constant.

The remaining terms in the Maxwell relation are more challenging as they involve higher,

cross-derivatives. However, the second term on the rhs of Eq. (13.7) can be obtained by taking the

derivative of Eq. (13.12) with respect to β . This gives

∂∆V ‡

∂β
=

1
〈ki〉

∂ 〈δVi ki〉
∂β

+∆V ‡ Ea. (13.13)

The derivative in the first term is more explicitly written as

∂ 〈δVi ki〉
∂β

=
∂

∂β

1
∆

Tr
[
e−β (Hi+pVi)δVi ki

]
, (13.14)

which involves three terms due to the temperature dependence of ∆, the Boltzmann weighting, and

the average volume in ∆Vi. Evaluating the derivative yields

∂ 〈δVi ki〉
∂β

= 〈Hi + pVi〉〈δVi ki〉−〈[Hi + pVi]δVi ki〉

− ∂ 〈Vi〉
∂β
〈ki〉

= −〈[δHi + pδVi]δVi ki〉−
∂ 〈Vi〉
∂β
〈ki〉. (13.15)

Thus, we find that

β
∂∆V ‡

∂β
= −β

〈[δHi + pδVi]δVi ki〉
〈ki〉

− β
∂ 〈Vi〉
∂β

+β∆V ‡Ea, (13.16)

for the second term on the rhs of the Maxwell relation.

The left-hand-side (lhs) of Eq. (13.7) can be derived in a completely analogous fashion. From
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Eq. (13.11), we have
∂Ea

∂ p
=

1
〈ki〉

∂ 〈[δHi + pδVi]ki〉
∂ p

+Ea β ∆V ‡, (13.17)

using Eq. (13.10). The first term has three pressure-dependent quantities and proceeding as before,

it is straightfoward to show that

∂Ea

∂ p
= −β

〈[δHi + pδVi]δVi ki〉
〈ki〉

+∆V ‡

+ β∆V ‡Ea−
∂ 〈Hi〉

∂ p
− p

∂ 〈Vi〉
∂ p

. (13.18)

represents the lhs of the Maxwell relation in Eq. (13.7).

Comparing the fluctuation theory results for the lhs and rhs of the Maxwell relation using

Eqs. (13.18) and (13.16), it is clear that it holds if

∂ 〈Hi〉
∂ p

+ p
∂ 〈Vi〉
∂ p

= β
∂ 〈Vi〉
∂β

. (13.19)

This equation does not involve any dynamical property and is a purely thermodynamic relationship

that involves the averages present in the fluctuations. It is not hard to show that it is equivalent to

the connection, derived using a Maxwell relation, between the pressure derivative of the enthalpy,

H = 〈Hi + pVi〉, and the temperature derivative of the volume

(
∂H

∂ p

)
T
= T

(
dS
d p

)
T
+V = β

(
dV
dβ

)
p
+V, (13.20)

where S is the entropy.

Thus, we have evaluated the Maxwell relation for a dynamical quantity, Eq. (13.7), within the

context of fluctuation theory. A key result is that the central quantity is the second-order correlation

of the fluctuations,

−β
〈[δHi + pδVi]δVi ki〉

〈ki〉
, (13.21)

that describes both the pressure dependence of the activation energy and the temperature depen-
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dence of the activation volume.

In the following, we evaluate and examine the different elements of the Maxwell relation from

the fluctuation theory expressions. We consider as a particular example the case of liquid water

self-diffusion. It is known that water diffusion exhibits interesting temperature dependence of ∆V ‡

(and consequently pressure dependence of Ea). The generality of the equations shown above for a

nominal rate constant k are straightforwardly applied to the case of the water diffusion coefficient

D. Practically, we evaluate the fluctuation theory quantities as they are described above by gen-

erating an isobaric-isothermal ensemble of constant energy and volume trajectories, from each of

which we extract a diffusion coefficient Di.

13.3 Computational Methods

We have evaluated the quantities in the Maxwell relation using LAMMPS81 molecular dynamics

simulations of 343 TIP4P/20055 water molecules. A 200 ns N pT trajectory at 1 bar and 298.15

K was propagated using a three-chain Nosé-Hoover thermostat and barostat.83,84 A simulation

timestep of 1 fs was used, and the thermostat and barostat damping parameters were 100 fs and

1 ps, respectively. The molecules were held rigid using the SHAKE algorithm with a 1.0× 10−4

tolerance parameter. The Particle-Particle-Particle-Mesh (PPPM) method119,120 was used to cal-

culate long-range electrostatic interactions (tolerance parameter of 1.0× 10−4). Tail corrections

were included to achieve the correct density. From this simulation, 200,000 configurations, each

separated by 1 ps, were used as starting points for 50 ps NV E trajectories. From each trajec-

tory, the mean-squared-displacement, MSD(t) = 〈|~r(t)−~r(0)|2〉, was calculated for t = 0 to 20 ps

with multiple time origins separated by 1 ps, the last 5 ps of which was fit to a line to compute

Di = slopei/6. All uncertainties were calculated over 4 blocks and represent a 95% confidence

interval based on the Student’s t-distribution.122
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13.4 Results and Discussion

The remainder of this Chapter focuses on two objectives. First, we use the fluctuation theory for

dynamics to calculate each of the terms involved in the Maxwell relation for the water self-diffusion

coefficient from simulations at a single phase point (298.15 K and 1 bar). Second, we suggest that

the Maxwell relation suggests a physically motivated, (relatively) global mathematical description

for the water diffusion coefficient as a function of pressure and temperature and demonstrate its

utility by fitting existing experimental data in the literature.

13.4.1 Contributions to the Maxwell Relation

From our simulations, we have evaluated the diffusion coefficient to be (2.030± 0.001)× 10−5

cm2/s with our periodic boundary condition simulations. Using the correction for finite-size ef-

fects proposed by others,247,323 based on the shear viscosity of 0.855 cP for the TIP4P/2005

water model,335 we get D = 2.332× 10−5 cm2/s. (The calculated quantities from the present

simulations are included in Table 13.1.) which is in good agreement with our previously re-

ported values,50,160. Furthermore, we have used Eq. (13.12) to directly evaluate the activation

energy and the activation volume from our simulations, and we find Ea = 4.14±0.02 kcal/mol and

∆V ‡ =−1.32±0.02 cm3/mol, in good agreement with our previously reported results.59,309

Hydrogen bond-exchanges are the primary mechanism for diffusion in liquid water,178 and

both the activation parameters reported here are consistent with that picture. The diffusion acti-

vation energy reported here is very close to the hydrogen bond exchange activation energy that

we have calculated for TIP4P/2005 water, which we have found from an NVT simulation to be

3.79±0.06 kcal/mol.136 The negative activation volume for diffusion is related to the reduction of

volume associated with moving towards the transition state of a hydrogen bond-exchange, when

considering the three water molecules involved within that exchange.

The rhs of the Maxwell Relation involves the temperature derivative of the activation volume,

β (∂∆V ‡/∂β ). Of the three terms that contribution to this derivative as expressed in Eq. (13.16),
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the last depends only on the product of the activation parameters discussed above which yield

β∆V ‡Ea = −9.23± 0.12 cm3/mol. The second term, −β (∂ 〈Vi〉/∂β ) is calculated as 〈[δHi +

pδVi]Vi〉, obtained from the N pT simulation described in Sec. 13.3, and found to be 509.63±14.48

cm3/mol. This term, within a factor of 1/(T 〈Vi〉), is the thermal expansion coefficient, α , which

we find to be (27.6±0.8)×10−5 K−1, in reasonable agreement with the previously reported value

of 28×10−5 K−1.5

The final term contributing to β (∂∆V ‡/∂β ) is the cross-correlation term given in Eq. (13.21).

The present calculations give this as −521.33± 17.13 cm3/mol. Combined with the two terms

discussed in the preceding paragraph, we see that the change in activation energy with temperature

is determined by a significant cancellation between this cross-correlation term and the temperature

dependence of the average volume,−β∂ 〈Vi〉/∂β . The total result obtained for β (∂∆V ‡/∂β ) from

all three terms is −20.93± 3.49 cm3/mol. Unfortunately, at present this value does not appear

to be consistent with those described by the experiments that we will detail below; however, it

is possible that in the future advanced sampling techniques will make it simpler to resolve this

derivative. Note that the smaller error bars on β (∂∆V ‡/∂β ), compared to those for the contributing

terms, arises because the canceling terms have error that is correlated. Within the uncertainty of

the components, there is still room for this value to change significantly in a way that would bring

it into better agreement with the remainder of the results presented in this chapter.

This result indicates that as temperature increases, the activation volume should likewise in-

crease (i.e., the transition state structure for the H-bond exchange increases in size). This is con-

sistent with previous measurements3,10 and our prior calculations59 of the activation volume. For

example, our calculations found that when the temperature increases from 283.15 to 473.15 K at

100 bar, ∆V ‡ increases from -2.43 to 6.13 cm3/mol.

As expressed in the Maxwell relation, Eq. (13.7), the derivative of the activation energy with re-

spect to pressure, ∂Ea/∂ p, contains the same information. We have evaluated it using Eq. (13.18),

where the only terms involved that have not been discussed above are −∂ 〈Hi〉/∂ p = β 〈δVi Hi〉

and −∂ 〈Vi〉/∂ p = β p〈δViVi〉. The calculations yield 509.35±14.48 and 0.285±0.001 cm3/mol,
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respectively. Within a factor of 1/〈Vi〉, the latter term is the isothermal compressibility, κT , which

we find to be 4.61±0.02 bar−1, in good agreement with the reported value of 4.65±0.1 bar−1.5

Combining the terms in Eq. (13.18) gives ∂Ea/∂ p =−22.25±3.49 cm3/mol. This is identical

to what we obtain from the sum ∆V ‡ +β (∂∆V ‡/∂β ), as expected. Interpreting this value is may

be simplified by expressing it as (−5.32± 0.83)× 10−4 kcal/(mol bar). This makes it clear that

increases in pressure lead to slight decreases in the diffusion activation energy, with substantial (on

the order of kbar) changes required to significantly affect Ea.

13.4.2 Physically Motivated Description of D(p,T )

The Maxwell relation given in Eq. (13.7) and its origins suggest a way to describe the pressure and

temperature dependence of a dynamical quantity in a physically motivated way. Here, we explore

this approach for the particular case of the water self-diffusion coefficient, but it is completely

general and could be equally well applied to reaction rate constants or dynamical timescales, as

long as they are measures of activated processes.

The water diffusion coefficient (like other dynamical properties of liquid water) is well-known

to be significantly non-Arrhenius.1–4,10,160 We can describe this behavior by a Taylor series expan-

sion in p and β about a set of reference values

lnD(p,β ) = lnD(p0,β0)+
∂ lnD

∂β

∣∣∣∣
0
(β −β0)

+
∂ lnD

∂ p

∣∣∣∣
0
(p− p0)+

1
2

∂ 2 lnD
∂β 2

∣∣∣∣
0
(β −β0)

2

+
1
2

∂ 2 lnD
∂ p2

∣∣∣∣
0
(p− p0)

2

+
∂ 2 lnD
∂ p∂β

∣∣∣∣
0
(p− p0)(β −β0), (13.22)

where the subscript “0" on the derivatives indicates evaluation at the reference point, p0 and β0.

However, we can identify the derivatives of lnD as the activation energy and volume so that this
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can be written as,

ln
D(p,β )

D(p0,β0)
= −Ea,0∆β −β∆V ‡

0 ∆p− 1
2

∂Ea

∂β

∣∣∣∣
0

∆β
2

− β

2
∂∆V ‡

∂ p

∣∣∣∣
0

∆p2− ∂Ea

∂ p

∣∣∣∣
0

∆p∆β , (13.23)

with ∆β = β − β0 and ∆p = p− p0. Here, we have noted that, in this explicitly non-Arrhenius

description, the activation energy and volume are functions of p and β so that Ea,0 and ∆V ‡
0 indicate

their values at p0 and β0.

Note that the Maxwell relation, Eq. (13.7) can be used to express the last term in Eq. (13.23),

which, after some rearrangement, gives

ln
D(p,β )

D(p0,β0)
= −Ea,0∆β −β0∆V ‡

0 ∆p−2∆V ‡
0 ∆β∆p

− 1
2

∂Ea

∂β

∣∣∣∣
0

∆β
2− β

2
∂∆V ‡

∂ p

∣∣∣∣
0

∆p2

− β0
∂∆V ‡

∂β

∣∣∣∣
0

∆p∆β . (13.24)

These two formulas, Eqs. (13.23) and (13.24), can both be used to fit experimental measurements

of the diffusion coefficient as a function of temperature and pressure. An advantage of these

expressions is that the fitting parameters represent physically meaningful properties: the activation

energy and volume and their first derivatives with respect to β and pressure that are the clearest

measures of non-Arrhenius behavior.

We can illustrate and test the global description of the pressure and temperature dependence

of the water diffusion coefficient by using Eq. (13.24), or its equivalent Eq. (13.23), to fit existing

measurement data in the literature.1–4 We consider results from four separate studies that have

examined D(p,T ) for H2O, primarily using NMR measurements, over different ranges of pressure

and temperature.

We first consider the NMR tracer measurements by Woolf of THO diffusion in H2O.4 Tem-

peratures from 277 to 318 K and pressures from 1 to ∼ 2400 bar were considered and the results
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Figure 13.1: Comparison of measured D(p,T ) from Woolf4 (circles) compared to its fit (dashed
lines) to Eq. (13.24).

are shown in Fig. 13.1 and compared to the fit to Eq. (13.24). The resulting fitting parameters

are given in Table 13.1 and will be discussed below; note that six of the parameters are unique

while ∂Ea/∂ p and β (∂∆V ‡/∂β ) are related through Eq. (13.7). Woolf fit the diffusion data to

an eight-parameter expression that has the characteristics of a polynomial in 1/T and obtained a

root-mean-squared deviation (RMSD) from the data of 0.014× 10−5 cm2/s. The present fitting

approach gives a comparable RMSD of 0.017× 10−5 cm2/s with two fewer parameters. Overall,

Fig. 13.1 shows that Eq. (13.24) does an excellent job of describing the experimental data with an

even representation of the data at all p and T .

One of the largest data sets for water diffusion was provided by Krynicki et al. based on proton

spin echo NMR measurements.3 These data extend from 1 to 1700 bar and 275 to 498 K and are

plotted in Fig. 13.2 where they are compared to their fit to Eq. (13.24). In this case, the fit is not

as good as that in Fig. 13.1, with the most marked deviations occurring in the 298.2 and 472.2 K

isotherms. In particular, the fit underestimates D at room temperature for all pressures and do so at

323.2 K for pressures above ∼ 400 bar. At 472.2 K the fit underestimates the rate of decrease of D
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Figure 13.2: Comparison of measured D(p,T ) from Krynicki3 (circles) compared to its fit (dashed
lines) to Eq. (13.24) at high (top panel) and low (bottom panel) temperatures.
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Quantity Ref. 4 Ref. 3 Ref. 1 Ref. 2 TIP4P/2005a Units
D 2.25 2.23 2.30 2.26 2.332±0.001 10−5 cm2/s
Ea 4.29 4.41 4.22 4.08 4.14±0.02 kcal/mol

∆V ‡ -1.33 -0.43 -0.77 -1.33 −1.32±0.02 cm3/mol
∂Ea
∂β

5.15 2.07 3.40 4.20 4.33±1.07 (kcal/mol)2

∂∆V ‡

∂ p 1.20 1.18 0.81 1.07 1.12±0.20 10−3 cm3/mol/bar
∂Ea
∂ p -5.29 -3.25 -3.52 -2.86 −22.25±3.49 cm3/mol

β
∂∆V ‡

∂β
-3.96 -2.83 -2.75 -1.52 −20.93±3.49 cm3/mol

aThis work

Table 13.1: Summary of fits of Eqs. (13.23) and (13.24) to experimental measurements1–4 and
direct simulation results for TIP4P/2005 water. Values are for 298.15 K and 1 bar.

with increasing pressure. Beyond these deficiencies, however, the agreement is good for most of

the temperatures and pressures explored; the average absolute error is 2.3%, on the same order of

the error estimates of the measurements of 1.5-4%.

Harris and Woolf reported measurements of D for 277-333 K and for pressures up to 3000 bar.1

It is worth noting that they observed some significant differences with the measurements of Kryn-

icki et al.,3 the primary one being that the latter observed the maximum in D with increasing p

at lower pressures than Harris and Woolf. The data from Ref. 1 are presented in Fig. 13.3 and

compared to the result of fitting to Eq. (13.24). The fit is in excellent agreement with the measured

D across the range of pressures and temperatures, with an average absolute error of < 1%.

Finally, we consider NMR spin-echo measurements by Harris and Newitt aimed primarily at

T below room temperature extending to pressures around 3500 bar.2 Their results are plotted in

Fig. 13.4 and compared to the present fit, which is in excellent agreement, even down to the lowest

temperature of 253.2 K. It is important to note that the expansion in Eq. (13.23) or (13.24) is based

on an assumption of a relatively smooth variation of D with pressure and temperature. It is thus

not expected that it would accurately describe the dramatic slowdown in the diffusion coefficient

(divergence of 1/D) as the Widom line is approached upon lowering the temperature.6,145,146 We

anticipate that the fitting approach described here will not be adequate at significantly lower tem-

peratures. It is therefore all the more encouraging that the approach works satisfactorily down
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to such low T . The average absolute error with the data of Harris and Newitt is < 1% and the

maximum error is < 2%.

We now turn to an examination of the results of the fitting, namely, the optimized parameters

obtained for each data set that are provided in Table 13.1. All the fits naturally give values of

D(1 bar, 298.15 K) that are the same or close to the actual measured value. More interesting is the

activation energy, for which values between 4.08-4.41 kcal/mol are obtained. These are close to

the values of Ea = 4.37 and 4.33 found directly by Arrhenius analyses in Refs.4 and3, respectively.

The results are also in good agreement with the present simulations. There is a greater spread in

the values obtained for the activation volume. All of the fits give ∆V ‡ < 0, as do our simulations,

but with magnitudes that vary from -0.43 to -1.33 cm3/mol.

The other fitting parameters represent higher derivatives of the diffusion coefficient with respect

to β and p. The non-Arrhenius behavior is most directly expressed in ∂Ea/∂β , which has values

of 2.07 to 5.15 (kcal/mol)2 at 298.15 K and 1 bar based on the fitting. We note that this quantity

can be written as
∂Ea

∂β
= E2

a −
1
D

∂ 2D
∂β 2 , (13.25)

which indicates that it is determined by the cancellation of two opposing terms that are both sig-

nificant in magnitude. It is this cancellation that makes it more challenging to determine with our

fluctuation theory approach such that the current calculations cannot distinguish its sign outside

of error bars (Table 13.1). Nevertheless, the TIP4P/2005 simulation results do overlap, with the

lowest of the values obtained by fitting.

The situation is a bit clearer for the pressure dependence of the activation volume. This depen-

dence is weak and found to be (0.81 – 1.20)×10−3 cm3/(mol bar). The TIP4P/2005 model gives a

result, (1.15±0.62)×10−3 cm3/(mol bar), that is in good agreement with these values. Note that

this derivative and the value of ∆V ‡(p0,β0) indicate that the activation volume changes in sign as

the pressure is increased, but this requires an increase of the pressure by ∼ 1000 bar.

Finally, the key elements of the Maxwell relation, Eq. (13.7), are also obtained from the fitting.

Namely, ∂Ea/∂ p is negative with values of -2.86 to -5.29 cm3/mol. This is related to β (∂∆V ‡/∂β )
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by ∆V ‡ and so is also negative with values of -1.52 to -3.96 cm3/mol.

Taken as a whole, while these fits do not quantitatively determine all the pressure and tem-

perature dependencies of D(p,T ) to high precision due to differences between the data sets, they

do present a consistent semi-quantitative physical picture across. The diffusion coefficient and

activation energy are quite well determined and in agreement across the different measurements.

Greater uncertainty exists in the activation volume and the higher derivatives, but the fitting ap-

proach illustrates how these fundamental properties of the diffusion coefficient can be determined

given sufficiently extensive and accurate measurements.

13.5 Conclusions

Thus, we have demonstrated the existence of a Maxwell relation for the diffusion coefficient and

used it to create a global fitting function made up of physically motivated parameters. We found

that this fitting function was able to describe experimental observables (e.g. activation energies,

and activation volumes) with relatively high accuracy. We then demonstrated that many of these

parameters were consistent with results calculated from simulations (with the exception of the sim-

ulation cross-derivative, which was difficult to calculate to high accuracy with present techniques).

To the best of our knowledge, this is the first such global fitting function to describe diffusion

temperature and pressure dependence in liquid water using only physically motivated parameters.

Should the cross-derivative become easier to resolve with increased computational power in the fu-

ture, this approach would provide the ability to predict the diffusion coefficient over a wide range

of temperatures and pressures.
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Part IV

Complex Systems
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CO2-Expanded Electrolytes

Polyacrylamide Hydrogels

In Part 4, we consider two systems that are not neat water. In Chapter 14 we describe the

calculation of phase equilibria, shear viscosities, diffusion coefficients and diffusion activation

energies in CO2-expanded electrolytes and how they can be used to further our understanding of

the role of electrolyte in those systems. Chapter 15 develops a simple model that demonstrates that

water reorientation times are invariant with acrylamide polymer chain length in hydrogels.
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Chapter 14

Vapor-Liquid Equilibria and Diffusion in CO2-Expanded

Electrolytes

14.1 Introduction

Recently, a class of reaction media for catalysis called carbon-dioxide (CO2) expanded liquids

(CXLs), in which a gas is dissolved in an organic solvent, has attracted significant and grow-

ing interest.336–338 Experimental studies have shown that CXLs provide the advantages of both

traditional organic solvents and super-critical fluids, while reducing many disadvantages of both

media.337–339 Specifically, CXLs have been seen to have pressure-tunable solubility of CO2, a vol-

ume expansion effect that can result in a five-fold reduction in the amount of solvent as well as a

decrease in viscosity and an increase in diffusion.337,339–342

Recently, Shaughnessy et al. demonstrated the use of a CXL-based electrolyte (CXE) for the

conversion of CO2 to carbon monoxide (CO) could provide an order of magnitude enhancement in

the reaction rate.343 Their experimental and simulation studies have demonstrated that this reaction

rate enhancement occurs at an optimum CO2 concentration, rather than increasing monotonically

with CO2 pressure due to increased electrical resistance at higher pressures. Recent work with a

Re(CO)3(bpy)Cl catalyst has demonstrated that reasonably low pressures of CO2 lead to significant

enhancements in the reaction rate.342

While CXLs have been studied in great detail both by experiment and simulation, to the best

of our knowledge the COMSOL simulations by Shaughnessy and co-workers represent the bulk of

the modeling work that has been done on CO2-expanded electrolytes, there has been as of yet no
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atomistic simulations of these systems.344 Experiments have shown that the addition of electrolyte

decreases the volume expansion effect; however, it is not well understood whether this is a direct

effect of the electrolyte or if it is a secondary effect of a reduction in the CO2 solubility driven by

the addition of electrolyte. Furthermore, currently little is known about the specific influence of

the electrolyte on the transport of specific species within the liquid phase.

In the present work, we present molecular dynamics (MD) simulations of a model CO2-

expanded Acetonitrile (MeCN) electrolyte solution at constant CO2 concentrations as a function

of electrolyte concentration. Specifically, we have calculated the shear viscosity and the diffusion

coefficients and have demonstrated that the addition of electrolyte leads to a higher overall vis-

cosity and slower diffusion of both CO2 and MeCN. We then use dynamical fluctuation theory to

calculate the diffusion activation energy and use it and our diffusion results to demonstrate that the

decrease in MeCN diffusion with increasing electrolyte concentration is well described by changes

in the activation energy; however, the slowed CO2 diffusion is due to a decreased activation entropy

caused by preferential solvation.

14.2 Methods
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Figure 14.1: Left Panel: The vapor-liquid equilibrium for the binary MeCN-CO2 mixture is pre-
sented. The liquid phase compositions are presented in black, the vapor phase compositions are
presented in red. Middle Panel: The volume expansion for the binary mixture is presented. Right
Panel: Schematic diagram of the volume expansion observed during the CO2 expansion process.

264



14.2.1 Transport Properties

The shear viscosity, ηs, was calculated using the Green-Kubo (GK) relation,

ηs =
V

kBT

ˆ
∞

0
〈Pαβ (0)Pαβ (t)〉dt

≡ βV
ˆ

∞

0
Cηs(t)dt, (14.1)

where 〈· · · 〉 indicates an ensemble average, t is time, V is the simulation box volume, and β =

1/(kBT ). The term Pαβ represents the average of the five autocorrelation functions constructed

from the anisotropic contributions to the stress tensor: Pxy, Pyz, Pxz, (Pxx − Pyy)/2, and (Pyy −

Pzz)/2. In our simulations shear viscosities were averaged over time origins separated by 1.0 ps,

and were calculated up to 5.0 ps. Cηs(t) were integrated using the trapezoid rule with a spacing

between successive steps of 10.0 fs. Final values of ηs were extracted from an average over the

last picosecond of the correlation function, in which it has already reached linearity.

Diffusion coefficients are calculated from MD simulations from the mean-squared displace-

ment (MSD),

MSD(t) =
〈
|~r(t)−~r(0)|2

〉
. (14.2)

Here, ~r(t) is the time-dependent position vector corresponding to the molecular center of mass.

From the MSD the diffusion coefficient can be extracted from our simulations through the rela-

tionship,

DPBC = lim
t→long

MSD(t)
6t

, (14.3)

where DPBC is the diffusion coefficient extracted from our simulations under periodic boundary

conditions. We have further calculated the finite-size corrections to the diffusion using our cal-

culated values of the viscosity in the manner described by Yeh and Hummer.247 Thus, diffusion

coefficients were reported as,

D = DPBC +
kBT ξ

6πηsL
(14.4)
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where we have used the value ξ ≈ 2.837297 as is reported in that work.

14.2.2 Activation Energies

In general, the activation energy of a dynamical quantity (e.g., the diffusion coefficient) may be

expressed as a derivative of that timescale with respect to β = 1
kbT , as

Ea,D =−∂ ln[D]

∂β
=− 1

D
∂D
∂β

, (14.5)

where this derivative would generally be evaluated through a numerical derivative using the Ar-

rhenius equation, D = Ae−Ea,Dβ . This numerical method is not valid; however, for systems with a

temperature-dependent chemical potential as is the case of CXEs, where the CO2-composition is

temperature dependent.

Recently, an extension of statistical mechanical fluctuation theory applied to dynamics has pro-

vided a means by which activation energies may be evaluated directly from simulations at a single

temperature. This new technique avoids the requirement of running simulations at other tempera-

tures, and thus avoids the above mentioned compositional challenges. Within the fluctuation theory

description, the activation energy of the diffusion coefficient in Eq. 14.3 can be written as,

Ea,D =
limt→long MSDH(t)
limt→long MSD(t)

, (14.6)

where here MSDH(t) is the derivative of Eq. 14.2 with respect to β .This derivative can be written

down directly as,

∂MSD(t)
∂β

= −
〈

δH(0) |~r(t)−~r(0)|2
〉

(14.7)

= −MSDH(t).

Here δH(0) = H(0)−〈H〉 is the fluctuation in energy from the average energy. Generally, the

ratio in Eq. (14.6) is calculated as the ratio of the long time limit slopes of MSDH(t) and MSD(t).
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MeCN
kθ = 20 kcal/(mol Å2), θ = 180◦

Atom σ ε Q
CH3 3.6 0.37955 0.269

C 3.4 0.09936 0.129
N 3.3 0.09936 -0.398:

CO2
kθ = 58 kcal/(mol Å2), θ = 180◦

Atom σ ε Q
C 3.033 0.15998 0.6512
O 2.757 0.05589 -0.3256

Electrolyte
kθ = 227 kcal/(mol Å2), θ = 109.5◦

Atom σ ε Q
Li+ 2.2742 0.01828 0.8
Cl 3.996 0.2500 0.77984
O 3.5918 0.1561 -0.39496

Table 14.1: Force Field Parameters

It should be noted that it has been shown previously that Ea,D = Ea,DPBC .

14.3 Simulation Details

14.3.1 Force Fields

The MeCN force field developed by Edwards et. al345 and the EPM2 CO2 force field346 were

used for all simulations as the Edwards force field has previously been used successfully to de-

scribe electrolyte solutions347,348 and the EPM2 force-field has been typically been used in stud-

ies involving gas expansion.340,341,349–353 We have taken the AMBER force-field parameters for

lithium,354 and the Ottoson et al.355 parameters for perchlorate and scaled the charges by a factor

of 0.8 to prevent aggregation at the highest CO2 concentrations. The aim of the present work is to

determine a qualitative, rather than quantitative, description of the effect of inclusion of electrolyte

in CXEs, thus such a scaling is reasonable. Force-field parameters for these models have been

included in Table 14.1.

Intermolecular interactions were treated via a Lennard-Jones potential with a cutoff of 12.0 Å.
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Long-range tail corrections were included and the Lorentz-Berthelot combining rules were used for

unlike intramolecular interactions.79,80 For VLE simulations, the Ewald summation method was

used to calculate long-range electrostatic interactions. A real space cutoff of 10 Å and 20 Å were

used for the liquid and vapor phases, respectively. For molecular dynamics (MD) simulations, the

Particle-Particle-Particle Mesh Ewald (PPPM) method used a real-space cutoff of 10 Å.119,120 For

all simulations, the Ewald/PPPM accuracy parameter was set to 10−5.

14.3.2 Vapor Liquid Equilibrium

Vapor-liquid equilibrium (VLE) were calculated from constant pressure Gibbs Ensemble Monte

Carlo (µPT -GEMC)356 simulations using the open-source software GPU-Optimized Monte Carlo

(GOMC).357,358 All VLE simulations consist of 1,000 CXL molecules, cofigurations were gener-

ated using PACKMOL.162 All VLE coexistence curves were calculated at a temperature of 298.15

K and were run in 10 bar increments from 10-50 bar for each ion concentration. Monte Carlo

(MC) move frequencies of 0.35, 0.34, 0.01, and 0.30 were used for translation, rotation, volume,

and swap moves, respectively. Simulations were equilibrated for 50,000 cycles, with a cycle be-

ing equivalent to 1,000 MC steps. Average compositions and densities were calculated over a

250,000 cycle production run. Reported uncertainties represent a 95% confidence interval taken

from Student’s t-distribution calculated by averaging over 5blocks.122

14.3.3 MD Simulations

Initial conditions for MD diffusion and mobility calculations are generated from the average den-

sity and CO2 concentration calculated from the binary µPT -GEMC simulations using PACK-

MOL.162. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used

for all Molecular Dynamics simulations.81

The MD simulations in the present work fall into three categories: 1) simulations of the volume

expansion, 2) simulations of the dynamics, and 3) simulations to calculate activation energies. All

MD simulations have been carried out at 1, 10, 20, 30, 40, and 50 bar, and at room temperature.
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For all simulations involving a thermostat, a Nosé -Hoover thermostat of chain-length 3 was used

with a thermostat damping parameter of 100.0 fs.83,84 For all constant pressure simulations, a baro-

stat damping parameter of 1000.0 fs was used.226,227 All simulations were run with a simulation

timestep of 1.0 fs, and the bonds of both MeCN and CO2 were held rigid with the SHAKE algo-

rithm.82 As with the VLE simulations above, reported uncertainties represent a 95% confidence

interval taken from Student’s t-distribution calculated by averaging over 5 blocks.122

14.3.3.1 Volume Expansion Simulations

For the volume expansion MD simulations, a simulation cell consisting of 1,000 MeCN molecules

was generated. For each volume expansion point an appropriate number of CO2 were added to

reach the CO2 concentrations appropriate for the pressure, as calculated from the VLE simulations

(see Table 14.2). Electrolyte molecules were added to reach mole fractions of 0.0, 0.02, 0.04,

and 0.07. Each simulation was equilibrated for 1 nanosecond, following which a 5.0 nanosecond

simulation was used as a production run. From this trajectory, average volumes were calculated at

each pressure and volume expansions were calculated as V/V0 =V (P)/V (1bar).

14.3.3.2 Transport Calculations

For the transport property calculations, MD simulations were run with 1,000 solvent molecules

in the presence of 0, 1, 10, 20, and 40 pairs of the lithium perchlorate model electrolyte, where

the 0 case corresponds to the binary system. Simulations were first equilibrated in the cannonical

ensemble (NVT) for 500 ps, followed by a 2 ns equilibration in the isothermal isobaric ensemble

(NPT), the last half of which was used to determine the average density. The box size and coordi-

nates were then remapped to this density and equilibrated in the NVT ensemble for a further 500

ps. Following equilibration, a 50 ns NVT trajectory was propagated from which dynamical and

structural quantities were calculated.
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P xCO2 NCO2 NMeCN
1 0.0 1 999

10 0.1147 114 886
20 0.2259 225 775
30 0.32414 324 676
40 0.43320 433 567
50 0.56421 564 436

Table 14.2: GEMC concentrations and volume expansions, as well as solvent numbers. Uncertain-
ties are included as subscripts.

V/V0 (%)
P xLiClO4=0 xLiClO4=0.02 xLiClO4=0.04 xLiClO4=0.07
1 100.0 100.0 100.0 100.0

10 110.01 110.11 110.11 110.11
20 123.11 123.11 123.11 123.11
30 139.71 138.61 138.61 138.51
40 162.51 162.41 162.21 162.22
50 208.62 208.31 208.01 208.02

Table 14.3: Volume expansions calculated as a function of pressure for each electrolyte concentra-
tion, xLiClO4 .

14.3.3.3 Activation Energy Calculations

Configurations and momenta were saved every picosecond from each of the above described 50 ns

trajectories. 20,000 of these configurations were used as initial conditions for 20 ps NVE trajecto-

ries, from which the derivative TCF was calculated as described above and activation energies were

evaluated. Activation energies were calculated by fitting the derivative TCF and the unweighted

TCF from 10-20 ps, and taking the ratio of the slopes in Eq. 14.6.

14.4 Results and Discussion

We have calculated the phase equilibria of CO2-expanded MeCN without the inclusion of elec-

trolyte from our GEMC simulations. These calculations have been explored previously for other

combinations of force-fields340,359,360 however, we have included them here for completeness as

the CO2 concentrations calculated are necessary for the MD simulations that will be discussed

270



throughout the remainder of this Chapter. The binary phase diagram is included in Figure 14.1,

and the system information is included in Table 14.2.

Furthermore, we have calculated the volume expansions of both the binary system, as well as

the system with electrolyte. Interestingly, we found that adding electrolyte did not significantly

quantitatively change the degree of expansion. As such, we have tabulated the values for the

all electrolyte concentrations in Table 14.3, but have only plotted the binary volume expansion

in Figure 14.1b. It should be noted that this is not consistent with the decrease in the volume

expanion observed by Shaughnessy et al.;343 however, it has long been understood that the volume

expansion is directly dependent on the concentration of CO2.361 Thus, this disagreement likely

comes from the presence of electrolyte decreasing the solubility of CO2 in the liquid phase in the

experiments which is not a feature captured within the present simulations.

In the present investigation, we explore the dependence of the shear viscosity, the diffusion

coefficient, and the diffusion activation energy on electrolyte concentration in order to better un-

derstand the effect of electrolyte on these properties under conditions of constant CO2 concentra-

tion. Futhermore, we will demonstrate that electrolyte affects the diffusion of MeCN and CO2

differently.

14.4.1 Viscosity and Diffusion

We have calculated the viscosity using Eq. (14.1) for each electrolyte concentration, the results of

which are plotted in Figure 14.2a. The trends with CO2 concentration are nearly identical for each

electrolyte concentration, with the value of decreasing essentially linearly over the concentration

range. Interestingly, at 50 bar, the viscosity value is essentially a factor of 2 smaller for every

electrolyte concentration considered. On the other hand, the viscosity increases significantly as

electrolyte concentration is increased, going from 0.243 cP in the binary system to 0.387 ± 0.004

cP at the highest electrolyte concentration for the simulations at 50 bar.

We have also calculated the viscosities for “neutralized" systems in which the electrolyte

molecule net charges have been set to zero. These simulations, as described in detail in Support-
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Figure 14.2: a) Shear viscosities as a function of CO2 concentration. b) Diffusion coefficients for
MeCN (blue) and CO2 (red) and shear viscosities (black) for the “Neutralized" system. c) Diffusion
coefficients for the “Charged" system for MeCN (blue) and CO2 (red). d) Diffusion coefficients for
the “Charged" system for Li+ (indigo) and ClO4

– (green). Electrolyte concentrations are indicated
in the figure legends.
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ing Information, demonstrate essentially the same dependence of the viscosity on xCO2; however,

we find no significant dependence of the viscosity on the electrolyte concentration in those sim-

ulations. Thus, it is is clear that it is the charge-charge interactions between the electrolyte and

solvent that are causing the increased viscosity observed in our regular electrolyte system, rather

than another colligative effect.

We have also calculated the diffusion coefficient using Eq. (14.2-14.3) as described in Methods

and have included them in Figure 14.2b and Figure 14.2c. Reported diffusion coefficients also

include the finite size corrections proposed by Yeh and Hummer as described in Eq. 14.4. These

corrections are very important when examining diffusion in these systems due to the large changes

in the shear viscosity with both CO2 and electrolyte concentration described above.

For the “charged" system, we again find distinct trends with CO2 and electrolyte concentra-

tion. As CO2 concentration increases, there is a significant increase in the diffusion coefficient of

all four species. Similarly, as electrolyte concentration is increased the diffusion coefficient of all

species, including the electrolyte, is slowed. This has important implications for electrochemical

experiments as it indicates that the presence of the electrolyte not only directly impacts the con-

ductivity, but it also affects how quickly CO2 is able to reach the reaction site in electrochemical

experiments using this media. It also indicates that the electrolyte transport through the system is

also very dependent on the electrolyte concentration.

We also consider the unitless quantities D/D0,C = D(P)/D(1 bar), η/η0,C = η(P)/η(1 bar),

and D/D0,E = D(xLiClO4)/D(xLiClO4 = 0.0) which allow for direct comparison of the effects elec-

trolyte and CO2 concentration on the diffusion and viscosity. We have included plots of these ratios

in Figure 14.3a and Figure 14.3b, respectively.

The ratio for the diffusion coefficients provides key mechanistic insight into the interplay be-

tween CO2-expansion and electrolyte concentration. For MeCN, both D/D0,C and D/D0,E are

more widely spread than for CO2. Specifically, our results indicate that CO2-expansion enhances

CO2-diffusion uniformly causing relatively little, to no, change to overall degree of the expansion

effect on the diffusion coefficient. Alternatively, we find that as electrolyte is added the enhance-
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Figure 14.3: a) The ratio D/D0,C is shown on the primary axis. The ratio η/η0 is shown in black.
CO2 results are shown in red, and MeCN results are shown in blue. Electrolyte concentrations are
indicated in the figure legend. b) The ratio D/D0,E is shown. CO2 results are shown in red, and
MeCN results are shown in blue. CO2 oncentrations are indicated in the figure legend.
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MeCN
EH

a (kcal/mol) ELJ
a (kcal/mol) EKE

a (kcal/mol) EAng
a (kcal/mol) EElec

a (kcal/mol)
P (bar) 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

1 1.178 1.2711 1.4610 0.234 0.224 0.316 0.575 0.628 0.686 0.153 0.193 0.194 0.223 0.244 0.294
10 1.198 1.217 1.399 0.225 0.194 0.266 0.625 0.625 0.657 0.174 0.153 0.194 0.184 0.254 0.297
20 1.055 1.205 1.3110 0.185 0.216 0.235 0.555 0.595 0.635 0.143 0.153 0.155 0.184 0.244 0.304
30 1.059 1.106 1.248 0.183 0.174 0.216 0.568 0.597 0.604 0.123 0.113 0.144 0.194 0.223 0.295
40 0.9311 1.1112 1.1410 0.154 0.165 0.164 0.498 0.576 0.546 0.113 0.154 0.164 0.184 0.245 0.293
50 0.945 0.9912 1.1911 0.103 0.145 0.136 0.544 0.545 0.588 0.113 0.096 0.134 0.194 0.235 0.334

CO2

EH
a (kcal/mol) ELJ

a (kcal/mol) EKE
a (kcal/mol) EAng

a (kcal/mol) EElec
a (kcal/mol)

P (bar) 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
10 1.1612 1.0814 1.2610 0.276 0.146 0.248 0.548 0.5911 0.6111 0.196 0.135 0.135 0.158 0.219 0.287
20 0.854 1.1010 1.1111 0.156 0.178 0.207 0.476 0.557 0.536 0.103 0.154 0.165 0.145 0.225 0.216
30 0.978 0.946 1.0111 0.154 0.155 0.184 0.549 0.497 0.517 0.114 0.104 0.125 0.164 0.214 0.216
40 0.877 0.927 0.867 0.134 0.145 0.114 0.456 0.486 0.446 0.112 0.134 0.114 0.184 0.185 0.205
50 0.788 0.737 0.799 0.113 0.083 0.114 0.434 0.416 0.457 0.113 0.093 0.083 0.144 0.163 0.154

Table 14.4: Activation energy decompositions for both MeCN and CO2 diffusion as a function of
pressure and number of ions. Uncertainties in the final digits are included as subscripts.

ment of the MeCN diffusion coefficient is lessened. These results are consistent with a picture

of MECN preferentially solvating the electrolyte, thus weakening the expansion-induced enhance-

ment of its transport. This can also be seen in Figure 14.3b where for a particular electrolyte con-

centration the ratio D/D0,E is independent of CO2 concentration for CO2 diffusion, but decreases

for MeCN.

14.4.2 Activation Energies

To better understand these CXEs, we have used dynamical fluctuation theory to directly calculate

the activation energy from our room temperature simulations as a function of CO2 and electrolyte

concentration as described in Methods. The dynamical fluctuation theory approach is ideally suited

for application to CXEs as the solubility of CO2 is dependent on temperature, thus calculation of

activation energies through a traditional Arrhenius approach implicitly includes a contribution from

this temperature dependent solubility.

Beginning with the binary system we present the total activation energy of MeCN diffusion as

a function of CO2 concentration in Figure 14.4a. As concentration of CO2 is increased the MeCN

diffusion activation energy decreases from 1.17 ± 0.08 kcal/mol when xCO2=0.0 to 0.94 ± 0.05

kcal/mol when xCO2=0.564. Figure 14.4b presents similar results for the diffusion activation energy
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Figure 14.4: Activation energies for the highest concentration of electrolyte of a) MeCN, b) CO2
as a function of pressure. The decomposition of the activation energy is presented in the figure
legend.
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of CO2 over the same range of CO2 concentrations. At the lowest concentration with CO2 present

(xCO2=0.114) the diffusion activation energy is 1.16 ± 0.12 kcal/mol, which then decreases to a

value of 0.78 ± 0.08 kcal/mol as CO2 concentration is increased. In both cases, these results are

consistent with past and present observations that diffusion of both CO2 and MeCN is enhanced

within CO2-expanded media. The larger decrease in the CO2 activation energy over this range of

pressures is consistent with the faster increase in D/D0 observed for CO2 diffusion compared to

that of MeCN.

As the focus of this study is on the effect of electrolyte concentration on the transport proper-

ties within these CO2-expanded electrolytes, we have also calculated the total activation energies

for systems with 20 and 40 ion pairs present in addition to the binary system discussed above and

included these in Figure 14.4a and 14.4b. We again observe that there is a decrease in both the

MeCN and CO2 activation energies as a function of increasing CO2 concentration. As concen-

tration of the ions increases the MeCN activation energy increases significantly (e.g., from 1.17

kcal/mol in the binary to 1.46 kcal/mol with 40 ions) corresponding with the drop in the diffusion

coefficients that we observe with increasing ion concentration. Interestingly, we do not observe

this for the activation energies of CO2 diffusion. Instead, we find that the CO2 activation energies

are essentially independent of ion concentration even though we observe similar slowdowns in the

diffusion coefficient to what we observed for MeCN.

Within the fluctuation theory approach, activation energies can be decomposed according to the

different types of molecular interactions in the system.13 In the present CO2-expanded electrolyte

system the activation energies can be subdivided into contributions from the Lennard-Jones poten-

tial energy, the electrostatic potential energy, the angle bending potential energy, and the kinetic

energy, as

Ea = Ea,LJ +Ea,Elec +Ea,Ang +Ea,KE. (14.8)

This decomposition can be understood within the context of the Tolman interpretation of activation

energies, where activation energies are thought of as the amount of excess energy compared to

"reactants" required to surmount the barrier to diffusion rather than being the electronic barrier
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itself.18

Our activation energy decompositions are also included in Figure 14.4a and Figure 14.4b. At

all pressures, we find that the largest contribution to both the MeCN and CO2 diffusion activation

energy comes from the kinetic energy. The other contributions from the Lennard-Jones potential

energy, the angular bending potential energy, and the electrostatic potential energy contribute rel-

atively similar amounts. Upon addition of electrolyte, the electrostatic contribution to the MeCN

activation energy increases (e.g., this contribution at 50 bar increases from 0.18 kcal/mol in the

binary system to 0.33 kcal/mol at the highest electrolyte concentration). Over this same range

the CO2 electrostatic contribution doesn’t increase within uncertainty (0.14 kcal/mol in the binary,

0.15 kcal/mol at the highest electrolyte concentration. In the following section, we will demon-

strate that this increase is likely consistent with preferential solvation of the electrolyte by MeCN.

14.5 Discussion

In the remainder of this work, we will demonstrate using activation energies and activation en-

tropies that the observed slowdown of CO2 diffusion is consistent with preferential solvation of

the electrolyte by MeCN creating an excluded volume into which CO2 cannot diffuse.

14.5.1 Entropic Origin of Slowed CO2 Diffusion

Activation energies in the NVT ensemble (as is the case in our simulations) can be described in

terms of transition state theory as coming from the internal energy barrier (or enthalpic barrier) un-

derlying the reaction coordinate. To better understand this, we turn to an Eyring-Polyani equation

to look at the ratio between diffusion coefficients D f /Dref (here the subscripts indicate a state f ,

and a reference state ref ),
D f

Dref
= exp

{
−∆∆A‡

kbT

}
, (14.9)

where here ∆∆A‡ =∆A‡
f −∆A‡

ref is the difference Helmholz free energy of activation between f and

ref. This can be further subdivided into a term related to the difference in activation entropies,∆∆S‡,
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Figure 14.5: Comparison of D f /Dref and the arrhenius exponent corresponding to ∆Ea = Ea, f −
Ea,ref. MeCN results are included in panel a, CO2 results are included in panel b. Linear fits are
included as dashed lines. The line of constant entropy (y = x) is included as a solid black line.
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and activation internal energies, ∆∆U‡, between states f and ref, as

D f

Dref
= exp

{
−∆Ea

kbT
+

∆∆S‡

kb

}
(14.10)

where here we have made the replacement ∆∆U‡ = ∆Ea (and have made the assumption that there

is minimal recrossing).

To explore this, we have selected our diffusion coefficient at 1 bar and no electrolyte, Dref =

D(P = 1bar,xLiCLO4 = 0), as our reference state, and then mapped the ratio D f /Dref (here D f =

D(P,xLiCLO4)) against the corresponding exponential of the activation energy difference, exp
{
−∆Ea

kbT

}
.

We have included this in Figure 14.5 for both the diffusion of MeCN in panel a, and CO2 in panel

b for the entire pressure and electrolyte dependence of the diffusion coefficients investigated in the

present study. This mapping scheme is convenient as it provides a measure of the differences in

activation entropies between states f and "ref", values above the line y = x indicate that state f has

a larger activation entropy, whereas values below indicate that the activation entropy is reduced.

For MeCN diffusion, we find that that these quantities have a strong, linear correlation (R2 =

0.90) with a slope greater than one (1.16), indicating that in general increasing either electrolyte

concentration or pressure leads to an increased activation entropy for MeCN diffusion. With that

said, the uncertainties in our calculated values for MeCN include the line y = x, indicating that the

differences between observed diffusion coefficients comes primarily from the differences in the

activation energy (and thus activation internal energy).

For CO2 diffusion, we find a weaker linear correlation (R2 = 0.76) with a slope significantly

less than one (0.60), indicating that increasing electrolyte concentration or pressure leads to a de-

crease in the activation entropy. Importantly, unlike MeCN, many of the calculated values are re-

solved within uncertainty as not including the line y= x. Our present results indicate that increasing

the electrolyte concentration decreases the activation entropy while the activation energy remains

unchanged, leading to a slowdown of the diffusion coefficient. This decrease in the activation

entropy likely comes from an excluded volume effect caused by MeCN molecules preferentially
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solvating electrolyte molecules.

14.5.2 Activation Energy Decomposition

Importantly, our decomposition of the activation energy lends further support to our interpretation

that the decreased activation entropy is responsible for the observed slowdown in the CO2 diffusion

coefficient as electrolyte concentration increases. Above, we found that the MeCN electrostatic

contribution to the diffusion activation energy increases as electrolyte concentration is increased.

This increase is consistent with a picture of MeCN preferentially solvating the electrolyte through

attractive electrostatic interactions. To diffuse, MeCN needs to break free from these attractive

charge-charge interactions leading to the higher electrostatic contribution to the activation energy.

CO2 on the other hand, has weaker interactions with the electrolyte and thus do not have the same

attractive interactions to overcome to diffuse freely. Instead, the MeCN-electrolyte clusters act as

excluded volumes into which CO2 cannot diffuse.

14.6 Conclusions

In this Chapter, we have studied the viscosity and diffusion of a model CO2-expanded electrolyte.

We have applied dynamical fluctuation theory to these systems in order to directly calculate the

activation energies within this electrolyte at a single temperature over a range of pressures.

In particular, we have demonstrated that the addition of electrolyte leads to strong electrostatic

interactions between MeCN and the electrolyte that leads to a significant increase in the shear

viscosity. These same interactions lead to an increase in the MeCN diffusion activation energy,

and an overall slowdown of MeCN diffusion. While CO2 exhibits a similar slowdown, the present

calculations indicate that this slowdown is likely related to a decrease in the available space for

CO2 to diffuse as seen by a decreasing activation entropy.
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Chapter 15

Water Reorientation Times are Invariant with Acrylamide

Chain Length

15.1 Introduction

Hydrogels are polymer materials that are heavily crosslinked by a combination of hydrogen and

chemical bonds. These crosslinked polymers are able to absorb a significant amount of water,

which has led to them being used for a wide range of applications in commercial products362 (e.g.

diapers, grow-in-water toys, and fire-retardant gels) and in biomedical applications363–366 (e.g.

drug delivery, wound dressings, and contact lenses).

Hydrogels are a unique example of the nanoscale confinement of liquid water.367 Instead of

confinement within a spherical cavity as is found in reverse micelles or within a cylindrical pore

as found in nanoporous silica, hydrogels form a networked series of polymer threads with mul-

tiple channels in which water is confined.368,369 The mean channel diameter in a polyacrylamide

(PAAm) hydrogel can range from 73-139 Å at low concentrations to 15-38 Å at higher concentra-

tions.367

Recently, Yan and coworkers have studied PAAm hydrogels using ultrafast Infrared (IR) spec-

troscopy and have demonstrated that water confined in hydrogels exhibit generally slower dynam-

ics than neat water, water molecules in hydrogels exhibit significantly faster dynamics than they

do in reverse micelles of similar diameter.367 In reverse micelles (and in nanopores), dynamics of

water are part of essentially two ensembles with interfacial waters exhibiting slowed dynamics,

whereas the waters in the core of the confined region retain bulk-like character.201,368 In their ex-
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Figure 15.1: The reorientation time (τ2) is presented for the 1-mer (black circles), 3-mer (red
circles), and the 5-mer (blue circles). The neat water reorientation time (τ2,neat=2.65 ps) is included
as a dashed black line.

periments with PAAm hydrogels, Yan and coworkers did not find evidence of this two-ensemble

behavior and instead found that the presence of hydrogel acts to slow down dynamics of the con-

fined waters as a single ensemble. They posited that this behavior was caused by the presence of

sites on the polymer that are able to accept and donate hydrogen bonds (H-Bonds) with water, thus

having a smaller impact on the hydrogen bond network than the anionic sulfonate groups inside

reverse micelles or hydroxyl groups on the inside of silica pores.

Recent, currently unpublished, experiments from the same group (Michael Fayer - Stanford

University) have found that water molecules at the same PAAm concentration exhibit similar ori-

entational relaxation times whether or not polymer crosslinks are present. Indeed, for a range of

polymer chain lengths, including the monomer, they find that the orientational relaxation time is

essentially independent of the chain-length. The present simulation results, illustrated in Figure
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1-mer 3-mer 5-mer
% NPAAm Nw L NPAAm Nw L NPAAm Nw L
5 5 395 23.09 2 450 24.09 1 395 23.02

10 11 396 23.46 4 432 24.05 2 353 22.47
25 31 369 24.14 12 432 25.14 6 357 23.52
40 57 343 25.11 22 396 24.09 12 361 24.92

Table 15.1: Compositions and simulation cell side lengths for each of the polymer concentrations
and chain-lengths.

15.1, demonstrate the same chain-length independence of the reorientation time. To this point, the

origin of this chain length independence, and the above-described ensemble-like confined behavior

of water dynamics are not well understood.

In the present work, we have undertaken molecular dynamics simulations of various concen-

trations of PAAm (with no crosslinks) in order to better understand the behavior of water dynamics

within these unique confined materials. We will demonstrate that simulation results over the avail-

able experimental vibrational lifetime exhibit similar invariance of the orientational timescales

with respect to chain-length; however, we will demonstrate that significant differences are ob-

served after this vibrational lifetime. In the present work, we demonstrate that dynamics within

these systems, including the longer time dynamics, are well described by a three-ensemble model

where water molecules exhibit differing dynamics when hydrogen bonded to the polymer, when in

the first solvation shell of the polymer, and when in the bulk.

15.2 Methods

15.2.1 System Details

We have simulated the 1-mer, 3-mer, and 5-mer variants of the PAAm polymer in aqueous solution

at four mass concentrations (5%, 10%, 25%, and 40%). We have used the OPLS/All-Atom force

field, built using the LiParGen Server, to describe PAAm Lennard-Jones parameters, charges, bond

lengths and equilibrium angles, bond and angle force constants, dihedral, and improper parameters.

Bond stretches and angle bends are described within this model by a harmonic potential function,
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dihedrals and impropers are described in the usual way for OPLS.370–372

15.2.2 Solvation Shell Calculations

We have calculated the radial distribution function (RDF) between each of the sites on our PAAm

molecules and the surrounding water molecules for each of the above described systems. The RDF

can be calculated as,

g(r) =
V
N2

〈
∑

i
∑
j 6=i

δ (r−|~ri j|)

〉
, (15.1)

where here V is the volume, N is the number of molecules, and r is the distance. We have then

used the first minimums calculated from the RDF to determine the occupancy of the solvation shell

by counting molecules for the closest site that they are near.

We have roughly calculated the radial distribution functions between water oxygen atoms and

the oxygen, carbon and nitrogen atoms on PAAm. We then used these to calculate the location

of the minimum separating the first and second solvation shells, which we found to be largely

independent of chain length and polymer concentration. As such, have selected a uniform criteria

for calculating the cutoff distances based of a single set of parameters to define this solvation shell.

For a water to be defined as part of the the solvation shell, one of the following is defined is true:

rOPAAmOw ≤ 3.25 Å, rNPAAmOw ≤ 3.5 Å, or rCPAAmOw ≤ 4.75 Å.

We have then used this definition, as well as H-bonding criteria (rOwX ≤ 3.5 Å, rHwX ≤ 2.45,

and θHwOwX ≤ 30.0deg, where X is a PAAm H-bond acceptor), to categorize the water OH groups

into "HB" OHs that are H-bonded to PAAm, "1st" OHs that are not H-bonded to PAAm but are

present in the first solvation shell, and "bulk" OHs that do not belong to either category. Clearly,

there are further categorizations that could be added (for instance, OHs in the first solvation shell of

two PAAm molecules); however, for simplicity in this work we consider only the above described

categories.
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15.2.3 Reorientation Correlation Function

The reorientation correlation function describes the loss of memory of particular OH orientation

over time, and can be written in the form of a time-correlation function (TCF), as

C2(t) = 〈P2 [~e(0) ·~e(t)]〉 (15.2)

where here, P2 is the second legendre polynomial, and ~e(t) is the orientation of a unit vector

pointing along the OH bond of water at time t. This TCF describes, within a factor of 0.4, the

orientational relaxation measured from pump-probe IR spectroscopy.

In the present work, we calculate the reorientation correlation function for all water OHs in our

simulations; however, we also calculate individual reorientation correlation functions for the "1st",

"HB", and "bulk" categories described in the previous section. To accomplish this, we check the

occupancy of the OH at t = 0 and then subdivide the reorientation TCFs based on this occupancy.

15.2.4 Simulation Details

We have built systems at the compositions described in Table 15.1 of PAAm and spc/e water using

PACKMOL,162 and used a custom program to build a data file compatible with the Large Scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) program,81 which we have used for

all simulations in the present study.

All simulations in the NVT ensemble were undertaken using a Nosè-Hoover thermostat with

a damping parameter of 100.0 fs at 298.15 K.83,84 All simulations in the NpT ensemble utilize

the same thermostat along with a barostat with a 1000.0 fs damping parameter.226,227 All water

molecules were held rigid using the SHAKE algorithm with a tolerance of 1.0×1004.82 All simula-

tion cells were fully periodic. Electrostatic interactions were calculated using the Particle-Particle-

Particle Mesh Ewald method, with a tolerance of 1.0 ×1004. All uncertainties reported are calcu-

lated over 5-blocks and represent 95% confidence intervals based on Student’s t-distribution.122

All initial velocities (selected at any point) were chosen randomly from the Maxwell-Boltzmann
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distribution.

Starting configurations were generated by equilibrating in the NVT ensemble for 1 nanosecond,

before switching to the NpT ensemble for 2 nanoseconds, the last nanosecond of which was used

to calculate the average volume. The simulation cell was then remapped to this average volume

and simulated in the NVT ensemble again for a further 2 nanoseconds.

The above configurations were then used as the starting point for five separate simulations in

which all of the atoms were given new velocities selected randomly from the Maxwell-Boltzmann

distribution. Following this, a 2 ns NVT trajectory was propagated with only the last half used

for calculating solvation shell occupancy, hydrogen bonding, and time-correlation functions. TCF

time origins were separated by 1 picosecond, configurations were dumped every 10 fs, and corre-

lation functions were calculated out for 50 ps.

15.3 Theoretical Model

Within our subdivision of the reorientation times into the categories of “HB", “1st", and “bulk"

described above, the total observed reorientation time can be written as

1
τ2

=
fHB

τ2,HB
+

f1st

τ2,1st
+

fbulk

τ2,bulk
(15.3)

where fHB, f1st , and fbulk are the fraction of water OHs in each category.

The fraction of water OHs H-bonded to PAAm can be calculated as

fHB =
sNPAAmnHB

2Nw
, (15.4)

where NPAAm is the number of PAAm molecules, s is the chain length, ñHB is the average number

of OHs H-bonded to PAAm per monomer unit, and Nw is the number of waters.

To calculate f1st , we turn to a simple model where PAAm mers are thought up of being made

up of “end", or “middle" groups. In this model, the 1-mer is made up of two halves of an end unit
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Figure 15.2: A schematic diagram of the simplified PAAm model, separating the mers into "end"
groups (orange) and "middle" groups (green).

(1ñend), the 3-mer is made up of one “end" unit and two “middle" units (1ñend + 2ñmid), and the

5-mer is made up of one “end" unit and four “middle" units (1ñend +4ñmid). A schematic diagram

of this model is included in Figure 15.2. Then, the total number of OH groups in the first solvation

shell of PAAm can be written as N1st = NPAAm(ñend − ñmid)+ sNPAAmñmid , giving the fraction of

OHs in the first solvation shell to be

f1st =
NPAAm(ñend− ñmid)

2Nw
+

sNPAAmñmid

2Nw
. (15.5)

288



The fraction of bulk OHs may then be calculated as fbulk = 1− fHB− f1st , or

fbulk = 1− NPAAm(ñend− ñmid)

2Nw
+

sNPAAm(ñHB + ñmid)

2Nw
. (15.6)

Equations (15.4-15.6) can then be combined with equation (15.3) to find,

1
τ2

=
1

τ2,bulk
+

NPAAm

2Nw
(ñend− ñmid)

(
1

τ2,1st
− 1

τ2,bulk

)
+

sNPAAm

Nw

[
ñHB

(
1

τ2,HB
− 1

τ2,bulk

)
+ ñmid

(
1

τ2,1st
− 1

τ2,bulk

)]
. (15.7)

Here, the chain length dependence appears only in the third term. However, by recognizing that,

M% =
MPAAm(s)

Mw
100% =

sNPAAmmPAAm,u

Nwmw
, (15.8)

where M% is the mass concentration, mw is the molar mass of water, and mPAAm,u is the molar

mass of the PAAm monomer. Then Eq. (15.7) can be re-written as,

1
τ2

=
1

τ2,bulk
+

M%mw

2mPAAm,us100%
(ñend− ñmid)

(
1

τ2,1st
− 1

τ2,bulk

)
+

M%mw

2mPAAm,u100%

[
ñHB

(
1

τ2,HB
− 1

τ2,bulk

)
+ ñmid

(
1

τ2,1st
− 1

τ2,bulk

)]
, (15.9)

where here the chain length dependence is only found in the denominator of the second term,

indicating that the chain length dependence of τ2 is biggest for the monomer, and then becomes

less significant as the chain length increases.

15.4 Results and Discussion

In the remainder of this work, we will demonstrate that the above-described theoretical model

demonstrates qualitatively the origin of the chain-length independence, and that it describes the

low-concentration behavior observed in our simulations quantitatively.
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Figure 15.3: Counts (per monomer unit) of (top panel) OHs in the first solvation shell (but not
H-bonded to PAAm) and (bottom panel) OHs H-bonded to PAAm. Results are presented for the
1-mer (black), 3-mer (red), and 5-mer (blue).

15.4.1 Categorization of OH groups

We have included our average values for the number of OHs that are H-bonded per-monomer unit

(nHB), as well as the average number of OHs in the first solvation shell of PAAm per monomer

unit (n1st) and have included both in Table 15.2 and in Figure 15.3. Both quantities decrease

with increasing concentration; for example in the 3-mer nHB decreases from 2.69 to 2.12 and n1st

decreases from 17.15 to 6.96.

15.4.2 Reorientation Times

The reorientation correlation function has been calculated for each of the PAAm chain lengths

and concentrations. These have been fit to a single exponential function from 2-10 picoseconds

(the range observable in experiment) to extract the reorientation time, τ2. The fitted timescales
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nHB n1st

M% 1-mer 3-mer 5-mer 1-mer 3-mer 5-mer
5% 2.924 2.697 2.602 31.4265 17.151.24 14.6716
10% 2.835 2.611 2.458 26.0079 15.571.1 12.2868
25% 2.584 2.352 2.2915 15.373 10.5326 9.311.12
40% 2.294 2.124 2.012 8.726 6.9626 6.1136

Table 15.2: Counts (per monomer unit) of OHs H-bonded to PAAm and OHs in the first solvation
shell.

Figure 15.4: The categorized reorientation correlation times are presented for the 1-mer (black),
the 3-mer (red), and the 5-mer (blue). 1st solvation shell values (τ2,1st) are included as squares, H-
bonded values (τ2,HB) are included as diamonds, and bulk values (τ2,bulk) are included as upwards
triangles. The neat water value (τ2,neat=2.65 ps) is included as a dashed black line.
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τ2 (ps) τ2,1st (ps) τ2,hbond (ps) τ2,bulk (ps)

M% 1-mer 3-mer 5-mer 1-mer 3-mer 5-mer 1-mer 3-mer 5-mer 1-mer 3-mer 5-mer
5% 2.975 2.874 2.844 3.527 3.8312 3.968 4.8422 5.5232 5.7229 2.775 2.674 2.663
10% 3.257 3.225 3.126 3.719 4.1914 4.2512 5.5124 6.1845 6.6442 2.776 2.764 2.705
25% 4.645 4.4710 4.3910 4.734 5.0918 5.1115 6.9520 8.2226 8.7788 3.275 3.036 3.019
40% 6.707 6.6311 6.4916 6.338 6.5918 6.8336 9.6125 11.6132 12.4653 3.6810 3.4512 3.288

Table 15.3: OH reorientation times calculated for each concentration and chain length of PAAm.
Included are reorientation of all OHs (τ2), OHs in the 1st solvation shell (τ2,1st), OHs H-bonded
to PAAm (τ2,hbond), and OHs that are neither H-bonded to PAAm or in the first solvation shell
(τ2,bulk).

are included in Figure 15.1. As the PAAm concentration increases the reorientation time gets

increasingly slower; however, we see minimal dependence on chain length regardless of PAAm

concentration. For instance, moving from a PAAm concentration of 5% to 40% τ2 increases from

2.97 ps to 6.70 ps for the 1-mer and we see an almost identical increase from 2.84 ps to 6.49 ps

for the 5-mer. These reorientation times have been tabulated in Table 15.3. All of these are longer

than the reorientation time of neat water, which for SPC/E is about 2.65 picoseconds.

Using the information calculated in the previous section, we have calculated the reorientation

correlation function for OHs that are in the first solvation shell of PAAm (but not H-Bonded) at

t = 0 ps. We have included the timescales, hereafter referred to as τ2,1st , obtained by the same fitting

procedure described above in Table 15.3. We find that these are all significantly slower than the neat

reorientation time, and that like the results described above these increase significantly as PAAm

concentration increases. Unlike the total results, we find that there is a moderate dependence on the

chain length with higher chain lengths resulting in slightly slower reorientation in the first solvation

shell (e.g., 6.33 ps for the 1-mer and 6.83 ps for the 5-mer at 40%).

We have similarly calculated the reorientation correlation functions for OHs that are H-Bonded

to PAAm at t = 0 ps. We have again extracted the timescales (hereafter referred to as τ2,HB)

and included them in Table 15.3. These timescales exhibit the largest increase with chain length,

increasing from 9.61 ps to 12.46 ps at 40% going from the 1-mer to the 5-mer. Lastly, we have

calculated the reorientation correlation functions for OHs that are involved with neither of these

categories (hereafter referred to as τ2,bulk). These results are generally independent of the chain
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Model Parameters
ñHB ñend ñmid mw (g/mol) mPAAm,u (g/mol)
2.60 31.42 10.02 18.01 71.08

τ2,HB(M%) = 4.39 + 0.1639M%
τ2,1st(M%) = 3.26 + 0.0793M%
τ2,bulk(M%) = 2.55 + 0.0226M%

Table 15.4: Model parameters used for Eq. 15.9.

length, with the exception of the highest concentrations due to a decreasing occupancy of this

category. Furthermore, they are all relatively close to the neat value of 2.65 ps (for instance 2.77 ps

for the 1-mer at 5% and 10%). We do see a slight increase of the bulk timescale as concentration

increases indicating that this category isn’t exactly bulk-like, likely because we have not consider

water molecules in higher solvation shells.

Importantly, our results presently indicate that there are distinct populations of water molecules

that exhibit different reorientation times surrounding PAAm molecules. Our simulation results do

not exhibit the uniform slowdown noted by experiment;367 however, this could be related to issues

with experimental resolution of these timescales.

15.4.3 Model Parameters

With the data calculated in the previous two subsections, we now have nearly all the pieces required

by Eq. 15.9, with the exception of the three parameters (ñHB, ñend , and ñmid), as well as as a general

set of timescales to use for the prediction. We can use the OH counts in Table 15.2 to calculate the

average number of hydrogen bonds per monomer unit, ñHB, directly from our simulations at 5%

(where there are relatively few water molecules bridging two PAAm molecules). We do this by

averaging the 5% results for the 1-mer, the 3-mer, and the 5-mer which we find to be ñHB = 2.74.

Similarly, the value of ñend may be calculated from this data by recognizing that in the 1-mer,

ñend = n1st = 31.42, as the 1-mer is essentially made up of a single end unit. ñmid can then be

calculated using the 3-mer as ñmid = (sn1st − ñend)/(s− 1) = 10.02 (for the 5-mer, this is 10.48

which is relatively close).
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Figure 15.5: The total reorientation correlation times (τ2) are presented for the 1-mer (black), the
3-mer (red), and the 5-mer (blue).The neat water value (τ2,neat=2.65 ps) is included as a dashed
black line. We have included the results from our simple model, described by Eq. 15.9 using the
parameters from Table 15.4 for the 1-mer (black), 3-mer (red), 5-mer (blue), 7-mer (purple), 9-mer
(magenta), 11-mer (orange), and 15-mer (green). The inset figure shows the low concentration
data, the main figure shows high concentrations. The 1-mer result corrected by se f f is included as
a black dashed line.

In order to create a simplified model, we have averaged the rate constants (inverse timescales)

of each category to get values for τ2,HB,τ2,1st , and τ2,Bulk that are independent of chain length. We

have then linearly fit these values versus concentration (using all four concentrations) to develop

our model. We have included a summary of the final selected model parameters in Table 15.4.

15.4.4 Chain Length-Independence

In Figure 15.5 we have plotted our model as a function of M% for varying chain lengths. Our

model results demonstrate some dependence on the chain length moving from the 1-mer to the

5-mer; however, at higher chain-lengths this dependence becomes insignificant as the second term
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of Eq. 15.9 gets smaller. This also demonstrates the likely origin of the experimental findings

that PAAm hydrogels with polymer crosslinks and PAAm molecules without these crosslinks have

similar reorientation times. Our model and simulation results demonstrate that the chain-length

dependence is strongest at the shortest chain lengths; however, the observed differences in our

simulation results are likely smaller than what could be observed experimentally.

Our model fails most significantly for the 1-mer at higher concentrations; however, it performs

fairly well at the lowest concentrations (5% and 10%). Our model does not consider the influence

of overlapping solvation shells, e.g. water molecules located within the first solvation shell of two

different PAAm molecules. At the lowest concentrations these are quite rare; in the 5% solution

of the 1-mer, 91.9% of non-bulk waters are in the solvation shell of exactly one PAAm molecule,

7.7% are in the solvation shell of exactly two PAAm molecules, and 0.4% are in the solvation

shell of exactly three PAAm molecules. This changes only slightly for the 10% solution, with

these numbers changing to 78.3%, 18.8%, and 2.6%, respectively. For this concentration, we see

that a fourth population corresponding to waters in four or more solvation shells appears at around

0.3%. At the highest concentration, however, the fractions of waters in more than a single PAAm

solvation shells increases signficantly with 34% in exactly two, 24.3% in exactly three, 14.3% in

four or more solvation shells, and only 27.4% in exactly one solvation shell.

This increasing population of water molecules in the first solvation shell of more than one

PAAm molecule likely explains the failure of our model at higher concentrations. One way of

thinking about this is that water molecules may be acting effectively as bridges between polymer

molecules at higher concentrations, leading to faster timescales than our model predicts at these

concentrations due to these “bridged" monomers having an effective chain length longer than the

monomer by itself. This effect is present in the higher chain lengths that we have observed; how-

ever, to not the same extent. For instance, the 5-mer doesn’t have any population in three or more

shells until the 25% solution, where this population is still small (2.4% in three shells, 0.3% in

four or more). We can make a slight modification to our model, by calculating this effective chain

length for the 1-mer as se f f = f1 +2 f2 +3 f3 +4 f4, where fX is the fraction of water molecules in
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exactly X solvation shells. We have included a corrected 1-mer model result using this effective

chain length as a dashed line in Figure 15.5, we see that it significantly corrects the behavior of

the 1-mer bringing the model prediction at even 40% into relatively good agreement with our sim-

ulation results. This could potentially be improved further by the inclusion of fractions in larger

numbers of solvation shells.

15.5 Conclusions

We have presented a simple model for the experimentally observed independence of the reorienta-

tion time in PAAm solutions on chain length. Within the proposed model, the total reorientation

time is a combination of the reorientation times of OHs that are in the first solvation shell, hydro-

gen bonded to PAAm, and bulk. These timescales are scaled by the fraction of OHs in each of

these categories. Specifically, we demonstrate that chain length dependence appears in the denom-

inator of a single term involved in the model leading to independence for longer chains, consistent

with experimental observations that the crosslinked polymer exhibits similar water dynamics to

solutions without crosslinks. We also demonstrated that deviations in the model prediction for the

1-mer can be corrected by considering an effective chain length longer than the monomer.
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End Matter
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Chapter 16

Concluding Remarks, Outlook, and Technological Impediments

Overall, in this thesis we have presented the dynamical fluctuation theory approach which allows

for the calculation of temperature and pressure derivatives of dynamical timescales from simu-

lations at a single temperature and pressure. A key advantage of this approach is the fact that it

allows for the direct decomposition of the activation energy into contributions from specific molec-

ular interactions, providing deeper insight into the driving forces that underly these timescales. In

the remainder of this chapter, we will summarize each part of my thesis and then provide a future

outlook on where we believe the future work should be directed. In the final section, we will out-

line current technological limitations as well as a roadmap for looking at systems once they are

overcome.

16.1 Activation Energies of Dynamical Timescales

In the first part of the thesis, we developed the dynamical fluctuation theory method, which al-

lows for activation energies to be evaluated directly using simulations at a single temperature and

pressure. We then applied this technique to calculate activation energies in liquid water for the

diffusion coefficient, the OH and average reorientation times, the “jump" H-Bond exchange time,

the reorientation of the H-Bond “frame" time, and the spectral diffusion time. Across this part, we

were able to delve into the driving forces that underly these processes and found that all of these

activation energies share a common theme of competition between a positive electrostatic contri-

bution to the activation energy winning out over a negative contribution from the Lennard-Jones

potential energy. This competition originates from the requirement of breaking an H-bond where
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the water molecule moves from the first solvation shell to the second solvation shell, moving down

from the repulsive wall of the Lennard-Jones potential and moving up from the attractive well of

the Coulombic interactions.

Using these techniques, we were able to demonstrate that there is a resolvable difference in

the activation energies of OH reorientation (measured by Infrared Pump-Probe Anisotropy) and

average reorientation (measured by Nuclear Magenetic Resonance). We also demonstrated that

the extended-jump model which outlines “jump" reorientation as an essential component of OH-

reorientation, is consistent not only on the level of timescales but also is consistent on the level

of activation energies, as well as mechanistically via their decompositions. We have also demon-

strated that the “jump" time (and activation energy) are separately resolvable from the spectral dif-

fusion time (and activation energy), indicating that these are two separate timescales found within

liquid water rather than the same timescale as has been previously thought.

16.2 Water Under Extreme Conditions

In the second part, we discussed water at pressures and temperatures away from standard con-

ditions. In particular, we demonstrated that dynamical fluctuation theory can be used to evaluate

pressure derivatives in addition to the temperature derivatives calculated in the previous part. These

pressure derivatives were then used to evaluate activation volumes, which measure the relative size

of the transition state of a dynamical timescale compared to the reactant state, over a wide-range

of temperatures and pressures in liquid water. We were able to demonstrate that these activation

volumes were consistent with experimental results.

The remainder of this part has focused on the use of the calculated derivatives to predict the

temperature and pressure dependence of dynamical and structural properties. We first demon-

strated an extension to our developed fluctuation theory approach to calculate the second tem-

perature derivative of dynamical timescales at room temperature, and then used them to predict

the temperature dependence of these timescales deep into the supercooled regime. We developed

methods for using a Van’t Hoff approach for using the first temperature derivative of the liquid
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structure and the water infrared spectrum to predict their temperature dependence to high accuracy.

We furthermore showed that a similar approach could be used to predict the pressure dependence

by direct calculation of the molar volume using the derivative with respect to pressure.

16.3 Toward a Unified Picture of Water Dynamics

In the third part we expanded on the themes of the first two parts focusing on the H-Bond “jump"

as the key underlying mechanism for most dynamical timescales in liquid water alongside the de-

sire to predict these timescales over a wide range of temperatures and pressures. In particular, we

discovered that the enthalpy change associated with an H-Bond exchange could be calculated from

the oxygen-oxygen radial distribution function, and is strongly correlated with the activation ener-

gies observed for diffusion, reorientation, and H-Bond “jumps". We then developed a physically

motivated global fitting function using a dynamical Maxwell relation and used this function to fit

a broad range of experimental data over T and P.

16.4 Complex Systems

In the final part we apply the dynamical fluctuation theory approach to a variety of systems outside

of pure water in order to demonstrate its flexibility to study other systems. With it, we were able to

identify a different role for enthalpy and entropy within the diffusion of CO2-expanded electrolyte

systems that originates from preferential solvation of electrolyte by acetonitrile. We furthermore

developed a simple model for understanding the origin of chain-length independence in hydrogels

in terms of the reorientation of water molecules in hydrogen bonded to the polymer, in the first

solvation shell, and in the bulk. We demonstrated that it is only at longer chain lengths that the

reorientation becomes essentially independent of the chain length.
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16.5 Outlook

In this Section, some low-hanging fruit is briefly described that could provide interesting avenues

of research. Many of these aspects will be discussed in greater detail in the next Chapter.

16.5.1 Maxwell Relations

A similar Maxwell relation to that derived in the third part of this thesis can be written for other

dynamical timescales, and structural properties, and could potentially lead to further insights into

these properties. Importantly, this could provide an avenue into developing a global fitting function

for the liquid structure and other quantities. Furthermore, there is nothing in that derivation that

requires the system to be liquid water. It would be interesting, for instance, to consider binary

mixtures and dynamical Maxwell relations that depend on concentration.

16.5.2 Jump Diffusion Model

The present results within this thesis have furthered evidence that H-Bond exchanges play an inte-

gral role to diffusion; however, currently no theoretical framework like the extended-jump model

which describes the relationship of these exchanges to reorientation exists presently for diffusion.

Future work should continue to examine the underlying mechanisms of diffusion to look for such

a diffusive “jump" model.

16.5.3 Other Quantities

There are a wide range of other quantities for which derivatives could be calculated, specifically,

nearly anything that can be written as a thermal average can have fluctuation theory applied to

it. In the next Chapter, a few of these quantities will be outlined; however, the list is not (yet)

exhaustive. The software developed over the course of this thesis is fairly flexible and is likely

able to calculate a fair number of additional quantities that have not been considered in the present

study with minimal additional modification.
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16.5.4 Other Derivatives

In the present thesis, we presented approaches for taking temperature and pressure derivatives .

There are other derivatives that are possible with respect to chemical potential and potential pa-

rameters that could provide interesting directions for future study. For instance, could potential

parameter derivatives be used to create an improved water model? Could the concentration de-

pendence of the liquid structure in aqueous electrolytes be predicted from simulations at a single

concentration? These, and more, are open questions that could be interesting to consider in the

future.

16.5.5 Other Systems

There are a wide variety of systems that could, and should, be studied through the presently de-

scribed approaches. Systems that should especially be of interest are those in which activation

parameters are normally difficult to obtain because they change in nature with temperature or

pressure (e.g. phase transitions, solutions, nanoconfinement), systems in which activation energy

decompositions could provide unique insight (e.g. water around particular sites of biomolecules),

and systems in which high accuracy resolution of the activation energy is desired.

16.6 Technological Impediments

16.6.1 Size Effects

The present approach that has been described throughout this work has performed generally well

for the systems that have been studied thus far (on the order of 300 molecules, in general). There

are two issues with the present formulation of the method that lead to non-ideal effects that prevent

scaling the present methods to larger systems. The first is related to Computational Power and data

storage, the second is related to the effect of system size on thermal fluctuations.
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16.6.2 Computational Power and Data Storage

A key recurring issue with the current implementation of the method is that it requires the gener-

ation of anywhere between 4-20 separate files for each NVE trajectory. As future additions to the

code are added it is likely that these numbers could increase significantly. Presently, for 50,000

trajectories this can lead to a million files (not including the other files required for the calculation

to run - in general it can exceed 1.5 million). Effort should be made to create a more efficient

method of storing these files in a compact way. Higher trajectory counts are possible, but place

considerable strain on the file system. In addition to file counts, the storage space is also a frequent

issue. Data is presently stored in python “pickle" files; however, care needs to be taken with these

files as they are subject to changes in python version that can lead to incompatibilities. At some

point, the log files from the trajectories should also be converted to these types of files as the logs

are the largest source of used storage space.

A deeper issue is that presently the length of possible NV E trajectories is limited by the avail-

able computational power. Even 50 picosecond trajectories can significantly increase the length

of time that the calculation takes. In general, it would be ideal if the present approaches could be

incorporated directly within a Molecular Dynamics simulation package in order to better utilize

storage and processing power.

16.6.2.1 Ab Initio Molecular Dynamics

At the time of the present study, the computational power is not available to study the present

systems using ab initio molecular dynamics (AIMD) simulations due to the high computational

expense of these types of simulations. Similarly, simulation methods that incorporate many-body

effects and nuclear quantum effects are likewise computationally straining. Twenty years ago

the available computational power would not have been enough to run many of the simulations

involved in the present work. Hopefully computational power will continue to improve to such a

point that fluctuation theory can feasibly be applied to AIMD simulations (which I estimate to be

approximately the point where a 5 ns AIMD can be run in around a month).
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16.6.3 Thermal Fluctuations

It is a well known quality from statistical mechanics that the relative size of the energy fluctuations,√
〈δE2〉/〈E〉, decrease as 1/

√
N as the number of molecules are increased.26. This presents an

issue in our present approach which couples the fluctuation in energy to the diffusion coefficient

as the system size is increased the energy fluctuations are less and less related to the motions of a

particular molecule. A potentially improved approach would be to consider the energy fluctuations

within a spherical shell around each molecule individually and weight the individual process, rather

than the average over all molecules.
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Chapter 17

Future Work

In this Chapter we present further details on avenues for future study, including the calculation

of derivatives of other quantities (e.g. other time-correlation functions), other derivatives (e.g.

derivatives with respect to potential parameters), and other systems (e.g. biomolecules).

17.1 Other Quantities

A wide range of other time correlation functions and distributions exist that have not been exam-

ined in the present work. In this thesis, derivatives of the mean-squared displacement, the first three

orders of the reorientation correlation function (and the integrated reorientation correlation func-

tion), the jump (side-side) correlation function, the reactive-flux (flux-side) correlation function,

the infrared spectrum, the frequency-frequency correlation function, and the radial distribution

function were all calculated. This has also been demonstrated for the shear-viscosity Green Kubo

relation in Ref. 50.

17.1.1 Raman Spectroscopy

There are however a significant number of remaining correlation functions that could be calculated.

For instance, the Raman spectra is typically calculated through the relation

Iiso(ω) =
1

2π

ˆ
∞

−∞

e−ωt
φiso(t)dt (17.1)

305



where

φiso(t) =
〈

α01(0)α01(t)ei
´ t

0 ω(τ)dτ

〉
e−

|t|
2T1 . (17.2)

Here, ω is the frequency, T1 is the vibrational energy relaxation time, and α01 is the transition

polarizability between the ground and first-excited vibrational states. α = (αxx +αyy +αzz)/3 for

the isotropic lineshape. Thus, the derivative of the isotropic Raman lineshape can be written as

∂ Iiso(ω)

∂β
=− 1

2π

ˆ
∞

−∞

e−iωt
φiso,H(t)dt, (17.3)

where

φiso,H =−∂φ(t)
∂β

=
〈

δH(0)α01(0)α01(t)ei
´ t

0 ω(τ)dτ

〉
e−

|t|
2T1 . (17.4)

A similar approach could be used to calculate derivatives of lineshapes from other types of

spectroscopies, for instance two-dimensional infrared spectroscopy, and sum-frequency genera-

tion.

17.1.2 Dielectric Relaxation

Another time-correlation that may be of interest is the dipole-moment correlation function373

which describes dielectric relaxation through the relation

ε ′+ iε ′′

∆ε
= 1− iω

ˆ
∞

0
P1(t)e−iωtdt, (17.5)

where ε ′ is the frequency dielectric constant, ε ′′ is the dielectric loss, and ∆ε is the dielectric

strength. Here,

P1(t) =
〈MMM(0)MMM(t)〉−〈MMM(0)〉2

〈MMM(0)MMM(0)〉−〈MMM(0)〉2
, (17.6)
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where MMM(t) is the dipole moment of the simulation box at time t. The derivative of P1(t) is

∂P1(t)
∂β

=
2〈MMM(0)〉〈δHMMM(0)〉+ 〈δHMMM(0)〉
〈MMM(0)MMM(0)〉−〈MMM(0)〉2

+
〈MMM(0)〉2 [2〈MMM(0)〉〈δHMMM(0)〉−〈δHMMM(0)MMM(0)〉]

[〈MMM(0)MMM(0)〉−〈MMM(0)〉2]2
(17.7)

+
〈MMM(0)MMM(t)〉 [〈δHMMM(0)MMM(0)〉−2〈MMM(0)〉〈δHMMM(0)〉]

[〈MMM(0)MMM(0)〉−〈MMM(0)〉2]2
,

where only the final term is time-dependent. As we did above for the Raman spectrum, we can

take the derivative of Eq. 17.5 as

∂

∂β

[
ε ′+ iε ′′

∆ε

]
=−iω

ˆ
∞

0
e−iωt ∂P1(t)

∂β
dt. (17.8)

Here, it should be noted that the dielectric strength can be expressed as

∆ε =
4βπ〈MMM(0)2

3V
(17.9)

where here V is the volume. Thus, the derivative of this dielectric strength can be written as

∂∆ε

∂β
=

4π

[
〈MMM(((000)))2〉−β 〈δHMMM(((000)))2〉

]
3V

. (17.10)

Thus this provides a means of studying the temperature dependence of the dielectric relaxation

as a function of frequency.

17.1.3 Non-Equilibrium Methods

There are many other TCFs that could benefit from such temperature derivatives, for instance those

involved in non-equilibrium methods and reverse nonequilibrium molecular dynamics methods.

These could potentially provide an approach for a better estimate of the viscosity activation energy

(instead of the Green-Kubo approach).
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17.1.4 Weighted Histogram Analysis Method

The weighted histogram analysis is a key method for determining the potential of mean force

(PMF) along a particular coordinate (or set of coordinates).374 The method operates running a

set of simulations with bias potentials each placed at a different location along the coordinate of

interest. For instance, in the case of a distance coordinate the total unbiased distribution can be

calculated using the equations,

〈p(r)〉= ∑
Nw
i=1 Ni〈p(r)〉(i)

∑
Nw
i=1 Nie−β [U (i)

bias(r)−Fi]
(17.11)

and

Fi =−
1
β

ln

[
∑
rbins

e−βU (i)
bias(r)〈p(r)〉

]
. (17.12)

Here, 〈p(r)〉 is the unbiased distribution, Nw is the number of simulation windows run along the

coordinate r, 〈p̃i(r)〉 is the unbiased distribution calculated from window i, Ni is the total number

of measurements of the collective variable in window i, U (i)
bias(r) is the value of the bias potential

of window i at a distance r, and Fi is the free energy shift of window i. Beginning with an initial

guess for the set of free energy shifts, {Fi}, the calculation works by using these to calculate the

distribution in Eq. 17.11, which is then used to calculate a new set of {Fi} using Eq. 17.12. This is

then iterated until the distribution is converged.

Using fluctuation theory, the derivative of the unbiased distribution function can be calculated

as

∂ 〈p(r)〉
∂β

=
∑

Nw
i=1 Ni

∂ 〈p(r)〉(i)
∂β

−〈p〉∑Nw
i=1 N je

−β

[
U (i)

bias(r)−Fi

] [
β

∂Fi
∂β

+Fi−U (i)
bias(r)

]
∑

Nw
i=1 Nie

−β

[
U (i)

bias(r)−Fi

] , (17.13)

where here ∂Fi/∂β is the derivative of the free energy shift of window i. ∂ 〈p(r)〉(i)/∂β is the
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temperature derivative of the biased distribution function, which can be calculated as,

∂ 〈p(r)〉(i)

∂β
=−

〈
δ H̃(r) p(r)

〉(i) (17.14)

where here δ H̃ = H̃ − 〈H̃〉 is the fluctuation in the energy of the biased simulation (including

the component that comes from the biasing potential). With these equations, the final unbiased

derivative may be re-expressed as,

∂ 〈p(r)〉
∂β

=
−∑

Nw
i=1 Ni

〈
δ H̃(r) p(r)

〉(i)−〈p〉∑Nw
i=1 N je

−β

[
U (i)

bias(r)−Fi

] [
β

∂Fi
∂β

+Fi−U (i)
bias(r)

]
∑

Nw
i=1 Nie

−β

[
U (i)

bias(r)−Fi

] .

(17.15)

Finally, the derivative of the free energy shift, ∂Fi/∂β , can be calculated as

∂Fi

∂β
=−Fi

β
−

∑rbins

(
∂ 〈p(r)〉

∂β
−U (i)

bias(r)〈p(r)〉
)

e−βU (i)
bias(r)

β ∑rbins
e−βU (i)

bias(r)〈p(r)〉
. (17.16)

Thus, a new iterative process using these equations could be undertaken where the original

wham procedure is followed to calculate 〈p(r)〉, and {Fi}. Following this procedure, a second

self-consistent calculation of Eq. 17.15 and Eq. 17.16 is followed to determine the derivative of

the potential of mean force. It should be noted that this approach is likely not only restricted to

temperature derivatives, but similar expressions may be derived for potential parameter derivatives,

pressure derivatives, and chemical potential derivatives as well.

17.2 Other Derivatives

17.2.1 Potential Parameter Derivatives

A consistent problem in molecular dynamics simulation is the need to choose the correct molecu-

lar model to describe experiment with qualitative accuracy. Indeed, new force-fields are frequently

created to match a certain set of experimental observables. This can be challenging as it is not
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always clear exactly how changing a particular parameter of the force-field will influence struc-

tural and dynamical quantities, so instead frequently it becomes a computationally expensive opti-

mization problem where parameters are varied independently and then simulations are run to see

whether they improve the behavior of the model. We long considered whether derivatives with re-

spect to the potential parameters could be used to predict the dependence of dynamical timescales

on, for example, the Lennard-Jones σ parameter. Unfortunately, such a derivative for a time-

dependent quantity like the diffusion coefficient ends up requiring a derivative of the Liouville

operator which renders the problem computationally difficult.

However, for a quantity that is time-independent, for instance liquid structure, the derivative

of the Liouville operator is not needed. For a given time independent distribution, P(x) = 〈δ (x−

x̃(QQQ))〉, where x is a coordinate in the system that is time-independent, then the derivative of P(x)

with respect to a general potential parameter α can be written as,

∂P(x)
∂α

=−β

〈
δ

(
∂V
∂α

)
δ (x− x̃)

〉
. (17.17)

Then, for the Lennard-Jones parameters (α = ε,σ and Q) the derivatives can be written as,

∂P(x)
∂ε

=−β

ε
〈δVLJδ (x− x̃)〉 , (17.18)

∂P(x)
∂σ

=−β

〈
δ

[
6VLJ

σ
+

24ε

σ

(
σ

r

)12
]

δ (x− x̃)
〉
, (17.19)

and
∂P(x)

∂Q
=−2β

Q
〈δVcoulδ (x− x̃)〉 (17.20)

where δVLJ is the fluctuation in the Lennard-Jones potential energy, and Vcoul is the fluctuation

in the Coulombic potential energy. Conveniently, for derivatives with respect to ε and Q all the

information required for such a calculation is already typically output from a molecular dynamics

simulation, thus to calculate all three derivatives only the σ derivative requires extra information to

be provided in the output file. It is possible that in the future advanced sampling techniques could
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enhance the calculation of these higher derivatives and make them more reasonable to resolve.

17.2.2 Chemical Potential Derivatives

During my graduate work, we have discussed a number of times the approach for calculating the

derivative with respect to the chemical potential, which could then be used to understand the de-

pendence of dynamical quantities and timescales on concentration. One such model system where

such derivatives may provide useful information is the CO2-expanded electrolyte system discussed

in Chapter 15, where the dynamics of the solvent are strongly concentration-dependent. Further-

more, a question to consider is whether such derivatives could be used to predict the concentration

dependence as we have predicted the temperature and pressure dependence of timescales and struc-

tural properties throughout the second part of this thesis?

In the Grand Canonical Ensemble (µiV T ) the diffusion coefficient can be expressed as

〈D〉= 1
Ω

Tr
{

e−β (H+∑species Niµi)D
}

(17.21)

where here Ω is the Grand Canonical partition function, Ni is the number of molecules of species i,

and µi is the chemical potential of species i. In the same manner described in Chapter 6 Eq. (6.9),

the derivative with respect to µi can be written as

∂D
∂ µi

=−β 〈δNi(0)D〉 (17.22)

where here δNi(0) = Ni(0)−〈Ni〉 is the fluctuation in the number of species i. In a molecular

dynamics simulation, such an approach could likely be achieved by examining the diffusion co-

efficient within a sub-volume of the simulation cell and then weighting by the fluctuation in the

number of i within that sub-volume compared to the average number. This is an ongoing problem

that should be fairly easy to implement in the future.
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17.2.3 High-Order Derivatives
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Figure 17.1: The first three derivatives of the reorientation correlation function are included (black)
along with their fits (red) for TIP4P/2005 water at room temperature.

In the work described in this thesis, we have demonstrated the calculation of up to the second

derivative with respect to temperature and pressure. Here, I briefly outline the third and fourth

derivatives with respect to temperature. Recall that the first derivative of a time-dependent quantity

〈 f (t)〉 can be expressed as,
∂ 〈 f (t)〉

∂β
=−〈δH(0) f (t)〉 (17.23)

where here the mark ′ indicates a temperature derivative. The second derivative is

∂ 2〈 f (t)〉
∂β 2 =

〈[
δH(0)2−〈δH2〉

]〉
. (17.24)
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This procedure can be continued to calculate the third derivative,

∂ 3〈 f (t)〉
∂β 3 =−〈δH(0)3 f (t)〉+ 〈δH3〉〈 f (t)〉−3〈δH2〉∂ 〈 f (t)〉

∂β
, (17.25)

and the fourth derivative,

∂ 4〈 f (t)〉
∂β 4 =

〈[
δH(0)4−

〈
δH4〉] f (t)

〉
−6
〈
δH2〉 ∂ 2〈 f (t)〉

∂β 2 +4
〈
δH3〉 ∂ 〈 f (t)〉

∂β
(17.26)

As an example, we have calculated the first three derivatives of the C2 reorientation correlation

function for TIP4P/2005 water at room temperature from 1 million NVE trajectories and plotted

them in figure 17.1. More simulations would be needed to resolve the fourth derivative. These can

be fit by taking successive derivatives of the triple exponential fitting. For more information on the

simulation setup, see Chapter 7.

17.3 Other Systems

The advantage of the fluctuation theory approach is that it is not mathematically bound to a par-

ticular system, and is instead applicable to a wide-variety of systems. In this thesis, we have

considered primarily applications to liquid water; however, we have also applied it to the CO2-

expanded electrolyte system successfully. Other members of our group have successfully applied

similar approaches to aqueous electrolyte solutions,375 and alanine dipeptide conformational equi-

libria.376 Ongoing work in our group is working on applying these methods to reactions involving

Criegee intermediate reactions.

17.3.1 Activation Parameters Near Phase Transitions

A key drawback of traditional Arrhenius analysis is the wide-range of temperatures needed to

extract an activation energy. Near the boiling point, or any other phase transition, this required

temperature range prevents calculation of the activation energies using traditional approaches. A
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key feature of dynamical fluctuation theory is the ability to determine activation parameters from

simulations at a single temperature and pressure, and thus provides the ability to calculate the

activation energy without this issue.

17.3.2 Liquids at Interfaces

A key system where activation energies could provide important information is the solid-liquid

interface as the presence of an interface both slows the dynamics of the water molecules in the in-

terfacial region, and likely also modifies the temperature dependence of these dynamics. It would

potentially be of interest to study the dependence of the diffusion activation energy as a function

of distance from the interface both a slab surface, but also in nanopores under confinement. Acti-

vation energies would provide a window into the specific molecular interactions that drive slowed

diffusion in the interfacial region and would allow for the decomposition of the activation ener-

gies into contributions from different sites on the surface of the interface. Furthermore, work with

the nanoporous silica model developed by the Thompson group would be a natural next step for

studying a combination of interfacial and confinement effects.

17.3.3 Biomolecules

With a large heterogeneity of sites available to interact with water molecules, it is possible that

fluctuation theory could present a useful technique for understanding the effect of these sites on

dynamical timescales. Recently, Laage and co-workers have developed site-specific methods for

mapping water dynamics within the first solvation layer (similar to the maps we generated earlier

in this thesis).89 In their work, they demonstrated that there is not uniform slowdown in the first hy-

dration layer but instead that associated with the heterogeneity of sites there is also a heterogeneity

of water reorientation times associated with those sites. Unfortunately, biomolecules can undergo

conformational changes with respect to temperature making mapping activation energies using tra-

ditional techniques complicated. It is likely; however, that the fluctuation theory approach could

be used to better understand these systems as a temperature range is not required for this approach.
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Furthermore, the decomposition of the activation energies could provide otherwise unobtainable

insight into the driving forces underlying water dynamics in the first hydration layer.

17.3.4 Lithium Fluoride Ion Pairing

We have recently been working with Chris Mundy and Gregory Schenter at Pacific Northwest

National Laboratory to develop the first ever application of the fluctuation theory approach to Ab

Initio Molecular Dynamics (AIMD) simulations. Due to the computational limitations at the time

of writing this thesis, we have selected Lithium Fluoride ion pairing in liquid water. Ion pairing is

an ideal system for testing the method as each NVE trajectory is only required to be 2 picoseconds;

rather than the 20 picosecond (or longer) trajectories required for other dynamical timescales.

17.3.4.1 Theory

The reactive flux (or flux-side) time-correlation function (TCF) can be written as

C f s(t) = 〈Fs(0)θ
[
s(t)− s‡

]
〉. (17.27)

Here, Fs(0) = δ
[
s(0)− s‡]vs(0) is the classical flux at t = 0 through the dividing surface s = s‡,

where s < s‡ describes reactants, and s > s‡ describes products. vs(0) is the velocity along the

reaction coordinate at t = 0, θ(s) is the Heaviside step function, and 〈· · · 〉 indicates a thermal

average.

From the flux-side TCF, the reaction rate constant can be written as the long time limit, as

k = lim
t→long

C f s(t) (17.28)

where this limit is taken to a long enough time that the reaction has occurred, but not so long that

the reaction can go to products and then return again to reactants.
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The activation energy can be written in terms of the flux-side TCF, giving

Ea =−
1
k

lim
t→long

∂C f s(t)
∂β

. (17.29)

This derivative may be easily calculated by recognizing that the thermal average may be rewritten

as,

C f s(t) =
1

Qr
Tr
[
e−βHFs(0)θ

[
s(t)− s‡

]]
(17.30)

where here Qr is the reactant partition function, H is the Hamiltonian, and Tr is an average over all

coordinates and momenta. Of these parameters, it should be noted that only the reactant partition

function, Qr, and the Boltzmann factor, e−βH depend upon temperature. Thus, the derivative in

Eq. 17.29 can be expressed as,

∂C f s(t)
∂β

=− 1
Qr

Tr
[
e−βHH(0)Fs(0)θ

[
s(t)− s‡

]]
− ∂ lnQr

∂β
C f s(t), (17.31)

where −∂Qr
∂β

= 〈H〉r is the average energy of the reactants. This expression can then be simplified,

as
∂C f s(t)

∂β
=−〈δH(0)Fs(0)θ

[
s(t)− s‡

]
〉, (17.32)

where now the derivative is expressed as a new TCF that resembles the original flux-side TCF

but is now weighted by the fluctuation of the energy from the average reactant energy, δH(0) =

H(0)−〈H〉r. Combined with Eq. 17.29, the activation energy is written as

Ea = lim
t→long

〈δH(0)Fs(0)θ
[
s(t)− s‡]〉

〈Fs(0)θ [s(t)− s‡]〉
. (17.33)

17.3.4.2 Methods

A simulation of 96 water molecules and one lithium fluoride ion pair was simulated using the

CP2K software in the NVT ensemble at a temperature of 298.15 K. In this simulation, the ion

pair was constrained to be at the transition state determined from the maximum separating the
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Figure 17.2: The potential of mean force calculated from the AIMD simulations. Harmonic fits of
the CIP and SSIP wells are included as red and blue dashed lines, respectively.

contact ion pair (CIP) and the solvent-separated ion pair (SSIP) along the rLi+ · · ·rF− coordinate.

From this simulation, 1391 separate configurations and momenta were saved as starting points

for separate, short 2 picosecond NVE trajectories. In these NVE trajectories, the relative velocity

along the Li+· · ·F– were randomly re-selected from the Maxwell-Boltzmann distribution. For

these simulations, a simulation timestep of 0.5 fs was chosen and configurations were output every

5 fs.

17.3.4.3 Preliminary Results

AIMD PMF

We have used the Weighted Histogram Analysis Method (WHAM) to calculate the potential of

mean force along the~r = rLi+ · · ·rF− coordinate for our AIMD system. The contact ion pair (CIP)

well is at a minimum value at~r = 1.86 Å, the transition state (TS) occurs at~r = 2.58 Å, and the

solvent-separated ion pair (SSIP) well is at its minimum value at~r = 4.15 Å. Relative to the CIP,

the Helmholz free energy of the TS is 4.0 kcal/mol, and for the SSIP it is 0.66 kcal/mol.

317



Figure 17.3: Activation energy decompositions for ion pairing. The total activation energy, the
kinetic contribution to the activation energy, and the potential contribution to the activation energy
are included in black, red, and blue, respectively.

Ea,H Ea,KE Ea,U

8.75 9.40 -0.65

Table 17.1: Activation energies (in kcal/mol) for ion pairing.

As is required to obtain the activation energies, we have calculated the average energy in each

of these reactant basins. We find that the SSIP average reactant energy is 2.11 kcal/mol larger than

that of the CIP, corresponding to an entropy change of 5.4 cal/mol/K moving from the CIP to the

SSIP.

AIMD TCFs

In Figure 17.3a and 17.3b we have calculated the activation energy decomposition for ion

pairing. We have included these in Table 17.1, calculated as a fit to a horizontal line over the last

500 femtoseconds. We find that the activation energy is significantly higher than the free energy

barrier, indicating a large role of entropy in the ion pairing process.

In the future, more detailed calculations are necessary to determine whether the above de-

scribed behavior is physical. Ongoing work is looking at developing a classical LiF model that
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adequately describes the potential of mean force in order to do a corresponding classical molecular

dynamics calculation to see if these same entropic behavior is witnessed. As such, the present

calculations should be interpreted as a proof of principle for the time being.

17.4 Summary

As was the case for the present thesis, this Chapter only a small subset of the possibilities for future

development of dynamical fluctuation theory have been presented. Nearly any dynamical system

could likely benefit from various applications of the developed approaches. Future technological

and theoretical innovations will likely make these approaches less expensive and more feasible for

future implementation of this method.
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