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Abstract. The ability to quickly identify whether two binaries are sim-
ilar is critical for many security applications, with use cases ranging
from triaging millions of novel malware samples, to identifying whether
a binary contains a known exploitable bug. There have been many pro-
gram analysis approaches to solving this problem, however, most ma-
chine learning approaches in the last 5 years have focused on function
similarity, and there have been no techniques released that are able to
perform robust many to many comparisons of full programs. In this pa-
per, we present the first machine learning approach capable of learning a
robust representation of programs based on their similarity, using a com-
bination of supervised natural language processing and graph learning.
We name our prototype COBRA: Contrastive Learning to Optimize Bi-
nary Representation Analysis. We evaluate our model on several different
metrics for program similarity, such as compiler optimizations, code ob-
fuscations, and different pieces of semantically similar source code. Our
approach outperforms current techniques for full binary diffing, achiev-
ing an F1 score and AUC .6 and .12, respectively, higher than BinDiff
while also having the ability to perform many-to-many comparisons.

Keywords: Graph Learning · Binary Code · Similarity

1 Introduction

Detecting similar files is often used for tasks such as malware triage [30, 34],
patch analysis [23, 26], and bug search [12, 18, 17, 16, 19, 24]. However, identifying
binary code similarity is very challenging – much of the program semantics can
be lost during the compilation process. Many compiler optimizations such as
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function inlining will drastically change the syntax and structure of a binary
even with the same source code. Figure 1 shows the addr2line program compiled
with two different compilers and two different optimizations. As you can see,
different compiler settings can cause identical source code to appear dramatically
different at the binary level.

There has been a recent explosion in machine learning approaches to solve
this issue. According to a recent survey of binary similarity techniques [28], 7/12
of the binary similarity papers since 2018 have been machine learning based, as
opposed to 4/28 of the papers in the 3 years prior. However, recent solutions
focus on one-to-one comparisons, and do not have the ability to perform efficient
one-to-many or many-to-many comparisons of full programs.

Fig. 1: Addr2line call graph compiled with two different optimizations and compilers.
GCC and O0 on the left, Clang and Os on the right.

There are various levels of comparison granularity – some approaches only
work at the function level, others only work with full programs. Additionally,
there are various levels of comparisons – one-to-one, one-to-many, and many-to-
many. One-to-one comparisons are often used for binary code diffing – they diff
two different programs in order to determine the level of similarity. One-to-many
comparisons compare one query piece of code to many target pieces of code in
order to perform tasks such as bug searches. Many-to-many comparisons do not
distinguish between source and target pieces. All inputs are considered equal,
and many-to-many approaches often output clusters of similar binaries. In order
to perform several tasks, such as malware clustering and triage, efficient many-
to-many comparisons are needed. While one-to-one approaches could be used
pairwise across an entire dataset to perform a one-to-many or many-to-many
comparison, most one-to-many and many-to-many approaches avoid this due to
inefficiency. None of the recent machine learning techniques are able to perform
robust many to many matching at the full program level. We solve this problem
by learning an embedding, i.e., a vector of numbers, for full programs. Similarity
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between two programs can be measured efficiently by taking the distance between
their embeddings, allowing for fast one-to-many and many-to-many comparisons.

Approach. We propose a supervised siamese graph convolutional network to
learn an embedding for a full program’s call graph. Our approach has several
stages. First, we learn embeddings for individual assembly instructions. Next,
we aggregate these instruction embeddings to generate an embedding for a full
function. Finally, we combine these function embeddings with the full program’s
call graph to generate an embedding for a full program. These embeddings con-
tain information from both the function semantics as well as the full call graph
structure. The primary benefit in utilizing function and instruction embeddings
is the modularity - we can easily swap out the function and instruction similarity
components for newer techniques as the field progresses. A full overview of our
approach in action can be seen in Figure 2.

We implement a prototype, COBRA, and conduct an evaluation on a pro-
gram similarity dataset consisting of both compiler optimizations as well as
obfuscations containing more than 8000 binaries. We also evaluate on more than
40,000 binaries from Google Code Jam, an annual programming competition. Bi-
naries from Google Code Jam are different at both the source and binary level,
making similarity detection much more difficult. Our evaluation shows that we
outperform state of the art binary diffing tool BinDiff as well as locality sensitive
hashing algorithms TLSH, SSDeep, SDHash.

Contributions. The contributions of this paper are as follows:

– We propose a supervised algorithm to learn robust representations for full
programs. We leverage both natural language processing and graph learning
techniques in order to generate high quality embeddings for full call graphs.
To the best of our knowledge, it is the first supervised model able to perform
many to many comparisons on full programs based on program similarity.

– We implement a prototype, COBRA, which takes as input a full binary and
generates an embedding. It starts by learning embeddings for assembly in-
structions using fastText [9]. Next, it learns embeddings for functions using
a bidirectional Recurrent Neural Network. Finally, we train a graph convo-
lutional network [32] on the program’s call graph which has been enriched
with the previously learned function embeddings to learn an embedding for
the full program.

– We show that our approach is able to outperform state-of-the-art binary
diffing tools for cross-optimization, obfuscation, and different source code.
In addition, we show that our model is capable of performing higher level
tasks efficiently, such as clustering.

– We provide a brief comparison of Word2vec [39] and fastText [9]. Word2Vec
has been a very popular method of representing instructions in the literature,
but we believe fastText provides more robust representations for instructions.
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Fig. 2: An overview of COBRA.

2 Related Work

Non-learning based Binary Similarity. One common technique to identify
similar files is a similarity digest or ”hash” [42, 46, 15, 33, 50]. This technique is
commonly known as locality sensitive hashing or fuzzy hashing. These hashing
functions convert a large byte string into a smaller, unique string similar to
cryptographic hashes such as MD5 or SHA-1. However, locality sensitive hashing
algorithms are designed to generate similar hashes for similar inputs. Thus, to
quantify the similarity between two files, we can compare the similarity between
their respective hashes rather than needing to compare the files themselves. The
ability to generate a hash is extremely useful for malware triage, as it is much
less computationally expensive to compare hashes and allows analysts to identify
similar pieces of malware. Antivirus tools and engines such as VirusTotal [6] can
generate the locality sensitive hash for a piece of malware once, and then use
that hash in perpetuity to compare that piece of malware to other samples.
Despite the widespread adoption of locality sensitive hashing algorithms, their
effectiveness has been called into question by Pagani et al. [43]. Their results
show that fuzzy hashes work well primarily due to matching the .data section,
as the .data section often remains unchanged through compiler optimizations
and obfuscations.

Other research approaches perform binary diffing using various data struc-
tures. BinDiff [1] performs graph isomorphism detection and matches basic
blocks as well as functions. BinGold [7] extracts a novel data structure called
a semantic flow graph using the data-flow graph as well as the control flow
graph and uses several metrics such as graph edit distance for function simi-
larity. Several approaches generate function signatures[54, 51] for cross platform
bug searches and patch detection. Another technique uses light emulation to
generate traces, and performs a simple jaccard index on the traces of two func-
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tions in order to determine their similarity [12, 55, 29]. Additionally, Bingo [12]
and Bingo-E [55] perform selective inlining of callee functions. In other words,
when their target function calls another function, they inline the assembly of
the called function to ensure that it’s semantics are captured. Another common
technique is to decompose a binary into strands - small sequences of instructions
after a binary has been lifted into an intermediate representation [18, 17, 16],
then find matching strands between two binaries. COP2017 [36] has the ability
to perform comparisons of full programs, but is only able to perform one-to-one
matching by taking the longest common subsequence of basic blocks.

Learning based Binary Similarity. There have also been many learning-
based approaches towards the problem of code diffing and similarity detection.
However, many of these over the past five years focus on function similarity.
According to Haq et al., only 1/11 learning-based approaches are effective on
full programs. DeepBinDiff [22], uses Text Associated DeepWalk [56] to learn
embeddings for individual basic blocks. SAFE [38] uses a self-attentive recur-
rent neural network to generate function embeddings. ASM2Vec [21] learns a
representation for functions using PV-DM [40] by converting each function into
multiple sequences based on its control flow graph and using selective callee ex-
pansion. InnerEye [59] uses neural machine translation to generate embeddings
for basic blocks. αdiff [35] combines two function’s raw bytes, call graph, and
imports to generate a similarity score between the two functions. Gemini [53]
converts basic blocks into a vector of handcrafted features and uses Structure2vec
[14] on a function’s control flow graph to generate an embedding. Trex [45] first
learns assembly instruction semantics by pre-training on sequences of assembly
instructions similar to BERT [20] before finetuning on function pairs.

Malware Clustering A common use of full program similarity is malware
clustering and categorization. Clustering requires the ability to perform many
to many comparisons. AMCS [57] uses instruction frequency and function based
instruction sequences for categorization and clustering. Rieck et al. [49] clusters
malware based on the reports generated from executing malware in CWSand-
box. EC2 [11] uses ensemble clustering and classification on both static and
dynamic features to generate malware clusters. Zhuang et al. [58] clusters web-
sites together with malware binaries by using term frequency for websites and
instruction frequency for binaries with an ensemble clustering scheme. Firma [47]
clusters based on network traffic after executing malware in a sandbox. Bayer et
al. [8] uses taint tracing to generate an execution trace for a piece of malware af-
ter executing in a sandbox, and then clusters with Jaccard Distance and Cosine
Similarity.

3 Approach

3.1 Approach Overview

The full system can be broken down into the following stages. Each stage requires
separate preprocessing before training:
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1. Assembly Instruction Embeddings: We leverage fastText to learn embeddings
to encapsulate similarities between single instructions.

2. Function Embeddings: We feed in a function represented as a sequence of
instruction embeddings to a bidirectional recurrent neural network in order
to generate embeddings for functions. Our approach is based largely off of
SAFE[38].

3. Call Graph Embeddings: We first annotate each vertex of the program’s call
graph with the embedding for that function. We then feed this annotated
call graph into a siamese graph convolutional network in order to generate
embeddings for full programs.

3.2 Assembly Instruction Embeddings

In the first stage of our system, we learn an embedding
−→
i for each instruction

i such that
−→
i ∈ Rn.

Preprocessing. Before training, we preprocess all instructions to reduce the
vocabulary size. We process instructions very similarly to SAFE[38]. We replace
all base memory addresses with the special symbol MEM and all immediate
values whose absolute value is above 500 with the special symbol IMM. We then
concatenate the mnemonic and operands into a single string after performing
this filtering. Several examples are detailed below.

MOV EAX, 600 → MOVEAXIMM

MOV EAX, [0xdeadbeef ] → MOVEAXMEM

MOV EAX, [EBP+4] → MOVEAX[EBP+4].

We implement this step using Ghidra to extract instructions before prepro-
cessing.

fastText. Almost all machine learning models which generate instruction level
embeddings use Word2vec [22, 38, 21, 59, 48]. However, Duan et al. showed in
DeepBinDiff [22] that a Word2vec model trained on CoreUtils v8.29 compiled
with gcc could only generate embeddings for 78.37% of instructions on Core-
Utils v8.29 compiled with clang. In other words, 21.63% of instructions cannot
be modeled on the same source code when a different compiler is used. Deep-
Bindiff and some other algorithms solve this by modeling opcodes and operands
separately. However, we feel that this limits the vocabulary size too much. In
order to remedy these problems, we use fastText. We find that fastText offers
both improved performance as well as the ability to generate embeddings for
words that are not in the vocabulary. To the best of our knowledge, this is the
first paper to use fastText to generate assembly instruction embeddings.

The primary difference between fastText and Word2vec is the use of charac-
ter n-grams. Word2vec treats each word as an atomic unit, and can only learn
embeddings for complete words. MOV EAX 0x1 is treated as a completely sep-
arate word to MOV EAX 0x2 despite being very similar, both using the same
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opcode and operand. However, fastText captures this relationship by learning
embeddings for the n-grams that are within a word. For example, the word
MOVEAX1 and n = 3 can be broken down into the following ngrams:

<MO, MOV, OVE, VEA, EAX, AX1, X1>

as well as the special sequence

<MOVEAX1>.

The < and > signs are to denote the beginning and end of the sequence. For
fastText, the distance between two words is an aggregate metric between their
n-grams, as opposed to treating the entire word as an atomic unit. We find this
beneficial for two reasons:

1. Semantically similar instructions will often have the same mnemonics and
registers. In the example above, MOV EAX 0x2 has many of the same n-
grams as MOV EAX 0x1 that are captured, whereas Word2vec treats them
both as completely separate units. While there are cases in which Word2vec
performs better, such as MOV RAX 0 and XOR RAX, RAX, we have anec-
dotally observed these to be less common.

2. fastText is able to generate embeddings for out-of-vocabulary words by tak-
ing the seen n-grams of the word. Because Word2vec treats words as an
atomic unit, it cannot generate embeddings for words that is has not seen
during training. Given that there are a very large number of potential assem-
bly instructions and the generated assembly instructions are often dependent
on compilers, we find this to be an important characteristic.

3.3 Function Embeddings

In the second stage of our system, we learn an embedding
−→
f for each function

f such that
−→
f ∈ Rn. We represent each function f as a sequence of instruction

embeddings
−→
i , and feed that into a bidirectional recurrent neural network with

a siamese architecture. Using this, we are able to generate similarity-preserving
embeddings which capture the semantic behavior of functions.

Siamese Architecture. The embedding model parameters are learned using a
pairwise approach and a siamese architecture. At training time, the model is fed
two functions f1, f2 separately, and outputs an embedding for each function.
The functions can then be determined to be similar or different by calculating
their cosine similarity with the formula below:

cos(
−→
f1,
−→
f2) =

−→
f1
−→
f2

‖−→f1‖‖−→f2‖
=

∑n
i=1

−→
f1i
−→
f2i√∑n

i=1 (
−→
f1i)

2

√∑n
i=1 (
−→
f2i)

2

(1)

The network is trained using function pairs <
−→
f1,
−→
f2>, and labelled with

ground truth yi ∈ {+1,−1}. To train the network, we use the contrastive loss
function proposed by Hadsell et al. [27] below:

L(Y,
−→
f1,
−→
f2) = (1− Y )

1

2
(Dw)2 + (Y )

1

2
{max(0,m−Dw})2 (2)
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Fig. 3: The SAFE embedding network.

where Dw is defined as the cosine similarity between
−→
f1 and

−→
f2. m is the mar-

gin, meaning that dissimilar pairs only contribute to the loss if their euclidean
distance is within this radius. An overview of SAFE can be seen in Figure 3.

3.4 Program Embeddings

Finally, we learn an embedding −→p for each program p such that −→p ∈ Rn. In
order to represent the entire program, we use the call graph. We represent each
program p as two matrices using it’s call graph. The first is an N ×D matrix,
where N is the number of functions, and D is the length of features associated
with each node. The feature for each node is the function embedding for that
node, of length 100 in our case. The second matrix is an adjacency matrix of the
call graph.

Intuition. Two similar programs will often have similar call graph structures.
There have been multiple efforts to using call graphs in order to determine pro-
gram similarity [52, 35]. However, using only the call graph structure does not
encapsulate the contents of the functions themselves. Likewise, taking a purely
function-based approach for binary similarity neglects information provided by
the structure of the program as a whole. We aim to combine these two ap-
proaches by using a graph convolutional network. By annotating each node in
the call graph with the embedding for that function, each node contains infor-
mation about the semantics of that particular function. By passing in the full
call graph structure, our model is able to learn from the holistic functionality
of the program in order to generate full program embeddings. We then train a
graph convolutional network, a model which learns from both node features and
graph structure, in order to learn embeddings for full programs.

Graph Convolutional Networks. Traditional convolutional neural networks
operate under the assumption that the input is grid-structured as opposed to
arbitrarily structured graphs. However, Bruna et al. generalized convolutional
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networks to graphs, applying filters on a graph’s frequency modes computed
by graph Fourier transform [10]. Since then, graph convolutional networks have
evolved and been used for many graph-based data problems, such as protein
function prediction [25] and fake news detection [41]. Broadly speaking, graph
convolutional networks learn a set of features from a graph taking as input:

– A feature vector xi for every node i in the form of an N ×D matrix, where
N is the number of nodes and D is the number of features.

– The graph structure in matrix form, typically the adjacency matrix.

and outputs an N ×F feature matrix, where F is the number of output features
per node. We can then use normal pooling and fully connected layers across the
full graph to train a siamese-style network. The high-level siamese architecture
of this network is very similar to that of the function embedding network.

4 Datasets

We use four different datasets to train and evaluate our models. We refer to them
as the Android NDK [3], X86-SOK [44], VCPKG [5], and Google Code Jam [4].
Each dataset contains binaries and functions that appear diverse but perform
the same functionality. Our datasets are diversified primarily using compiler
optimizations and obfuscations. We remove all duplicate functions as well as
functions that do not have names.

Android NDK. The Android NDK is a toolset that allows developers to im-
plement parts of their apps using native-code languages such as C and C++
in order to interact more directly with the kernel or the hardware. It includes
a number of example programs for demonstration purposes that we use as a
dataset for evaluation. We can compile these while introducing obfuscations from
Obfuscator-LLVM [31] to generate software diversity. The obfuscations used are
bogus control flow (BCF ), instruction substitution (SUB), and control flow flat-
tening (FLA) for a total of 2632 binaries and 27441 functions.:

– BCF obfuscates the program by modifying the control flow graph. It adds
a large number of irrelevant control flow and basic blocks as well as merging
and reordering existing blocks.

– SUB replaces standard binary operators with functionally equivalent se-
quences of instructions. For example, addition can be rewritten as a =
b − (−c), and subtraction can be written as r = rand(); a = b + r; a =
a− c; a = a− r

– FLA completely flattens the control flow graph of a function by replacing
conditional statements with switches, as well as modifying the instructions
for entering and exiting basic blocks.

We can combine these in order to generate heavily obfuscated programs as well
as varying the architecture (X86, X86-64).

X86-SOK. We also use the Linux binaries from the dataset provided by Pang
et al. [44]. It is a dataset compiled with different compilers (GCC-8.1.0, LLVM
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6.0.0) and optimizations (O1, O2, O3, O4, Os, Ofast), resulting in 3342 distinct
binaries and 971,305 functions. Below are summaries of the optimization levels.
More details on the optimization levels can be found on their website [2].

– O0 : Reduces compilation time and ensures debugging information produces
the correct results.

– O1 : The compiler tries to reduce code size and execution time while mini-
mizing compilation time.

– O2 : The compiler performs all optimizations that do not involve a space-
speed tradeoff. As opposed to O1, O2 increases compilation time.

– O3 : A superset of O2 with even more aggressive optimizations enabled.
– Os: The compiler enables all optimizations except those that increase the

code size.
– Ofast : The compiler enables all optimizations from O3, as well as additional

options to increase speed.

VCPKG. VCPKG is a tool developed by Microsoft that acts as a package man-
ager for various open-source libraries written in C and C++. We downloaded
a dataset of 446 programs and compiled with MSVC with various optimiza-
tions(O1, O2, Od, Ox, Os) for a total of 2230 binaries and 20970 functions.
All programs are 64 bit. Below are summaries of the optimization levels. More
details about the optimizations can be found on their website [13].

– O1 : The compiler creates the smallest code size possible.
– O2 : The compiler optimizes for maximum speed.
– Od : The compiler disables all optimization.
– Os: The compiler favors optimizations that reduce size. This is a subset of

O1.
– Ox : The compiler favors optimizations that increase speed. This is a subset

of O2.

Google Code Jam. Google Code Jam is a programming competition run by
Google each year. They are an interesting test case for program similarity - pro-
grams that solve the same problem have similar semantics and functionality, but
are implemented differently by different authors. Unlike the previous datasets,
these samples are different at both the source and binary level. However, because
these binaries are much smaller and are meant to only be run from the command
line, we consider these samples separate from our other three datasets. There are
a total of 41573 unique solutions to 222 problems. Several examples of problems
are listed below.

– Given a string of digits S, insert a minimum number of opening and closing
parentheses into it such that the resulting string is balanced and each digit
d is inside exactly d pairs of matching parentheses.

– Given a number N where N contains at least one digit that is a 4, find two
numbers A and B such that neither A nor B contains any digit that is a 4,
and A + B = N.
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5 Evaluation and Results

5.1 Assembly Embeddings

The assembly instructions are difficult to evaluate objectively, as there does
not exist a centralized dataset for comparing assembly instruction similarity.
To show how fastText outperforms Word2vec, we generate a small dataset of
5 classes with 10 instructions each, with hand-written labels according to their
semantic similarity. We then generate the corresponding embeddings for each,
and plot it using t-SNE [37], a useful tool for dimensionality reduction. The five
classes are Subtraction instructions, Addition Instructions, XOR instructions,
MOV instructions, Stack Operations.

To evaluate, we generated all pairwise instruction comparisons between our
dataset. As seen in a ROC curve in Figure 4, fastText has a substantially higher
AUC of .93 compared to Word2vec’s .59, as well as higher precision and recall
as shown in Table 1. However, It is important to note that there are certain
instructions that Word2Vec performs better on, such as JZ MEMORY and JNZ
MEMORY which are both JUMP instructions. This is unsurprising, as they
do not share ngrams. We leave a more robust evaluation of fastText against
Word2vec with a larger dataset for future work.

Fig. 4: ROC Curve of fastText compared
to Word2vec.

Model Precision Recall F1

fastText .50 .84 .63

Word2vec .19 .54 .28

Table 1: Precision and Recall of
W2V vs. FastText

5.2 Function Embeddings

Android NDK, X86-SOK, VCPKG. We train our network on pairs of func-
tions. For every function in our dataset, we generate a similar pair labeled as +1
and a dissimilar pair labeled as -1. A similar pair is the same function either com-
piled with a different optimization or a different obfuscation. A dissimilar pair
is a different function entirely. This results in a total number of pairs twice that
of our total number of functions. We test our performance on all three datasets
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Fig. 5: ROC Curves on each of our func-
tion datasets.

Dataset Precision Recall F1

Android .852 .867 .859

X86-SOK .801 .778 .793

VCPKG .815 .814 .815

Table 2: Precision and Recall on
each of our function datasets.

separately to ensure our model is able to learn all three, using a 90-10 train-test
split to train and evaluate our models. It is important to note that we split our
training and test set based on classes before generating the pairs. For example,
our dataset might consist of f1, f2, f3, f4, f5, where each function has several
different versions. We train on pairs generated from functions f1, f2, f3 and
test on pairs generated from f4, f5. We do not evaluate our function embedding
model against other state-of-the-art approaches, as our goal is not to outperform
all function similarity models, but to outperform full program similarity models.
However, we are able to see in Table 2 as well as in Figure 5 that our models
are able to generate embeddings which capture function similarity, achieving F1
scores of .859, .793, and .815 on the Android, X86-SOK, and VCPKG datasets
respectively.

Fig. 6: ROC Curves from Google Code Jam functions.

Google Code Jam. We also train and evaluate our function similarity model
on the functions extracted from Google Code Jam and compare to some existing
approaches. We find that our model is able to outperform some common tools
used for program similarity, achieving an AUC of .88 as compared to the next
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highest of .63 by BinDiff. This suggests that machine learning models are capable
of learning a higher level of semantic similarity than existing tools. The functions
may not be noticeably similar at the assembly level, making it hard for tools such
as TLSH which rely on heuristics such as shared instruction ngrams. A ROC
curve can be seen in Figure 6.

5.3 Program Similarity

For the full program similarity embeddings, we use a similar approach to our
function embeddings. For each program, we extract the call graph, and annotate
each node with the function embedding for that node. Then, for each call graph
in our dataset, we generate similar pairs labelled as +1 and dissimilar pairs
labelled as -1. Similar to learning our function embeddings, we split our training
and test set based on classes before generating the pairs. We perform multiple
experiments to test the robustness of our final embeddings:

Fig. 7: ROC Curve for COBRA compared
to Bindiff, TLSH, SDHASH, and SSDEEP
for samples from Coreutils.

Tool Precision Recall F1

ssdeep .33 1 .49

sdhash .33 .999 .49

tlsh .46 .54 .60

Bindiff .81 .81 .81

COBRA .88 .86 .87

Table 3: Precision and Recall for
Coreutils.

– We perform 10-fold Cross Validation using the X86-SOK dataset. We report
results from the entire dataset, as well as isolating the test samples from
GNU Coreutils. We select Coreutils as it is difficult for binary similarity as
the programs share large amounts of library functions.

– We train on 90% of the X86-SOK dataset, validate on 10% of the X86-SOK
dataset, and test on VCPKG and OLLVM obfuscations

– We perform a 90-10 train-test split on Google Code Jam.
– COBRA is the first tool able to generate many-many comparisons of full

programs based on similarity, allowing for additional applications such as
clustering. We showcase this using a dimensionality reduction algorithm t-
SNE.

Our final model had two convolutional layers with sizes 64 and 32 with reLU
activation functions, followed by two dense layers of size 256 and 128 with reLU
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activation functions. The final layer outputs the final embedding. The model
is trained with contrastive loss and optimized with RMSProp on a Volta V100
GPU with 32GB memory. We evaluate against Bindiff, TLSH, SDHash, and
SSDeep. We would have liked to evaluate against COP2017 [36] but the authors
did not respond to our email requesting to obtain the tool.

Tool Metric O0
O1

O0
O2

O0
O3

O0
Os

O0
Of

O1
O2

O1
O3

O1
Os

O1
Of

O2
O3

O2
Os

O2
Of

O3
Os

O3
Of

Os
Of

Avg

ssdeep

Precision .54 .55 .54 .49 .46 .52 .53 .53 .50 .54 .50 .52 .48 .49 .51 .51

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F1 .70 .71 .70 .66 .63 .69 .69 .69 .67 .70 .66 .69 .65 .66 .67 .68

sdhash

Precision .54 .55 .54 .49 .47 .52 .53 .53 .50 .54 .50 .52 .48 .49 .51 .51

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F1 .70 .71 .70 .66 .63 .69 .69 .69 .67 .70 .66 .69 .65 .66 .67 .68

TLSH

Precision .87 .93 .85 .91 .84 .67 .76 .84 .85 .86 .77 .89 .89 .88 .69 .83

Recall .49 .59 .57 .50 .59 .77 .81 .68 .70 .60 .53 .60 .51 .74 .86 .64

F1 .63 .72 .68 .65 .69 .72 .78 .75 .77 .71 .63 .71 .65 .80 .77 .71

BinDiff

Precision .83 .85 .85 .80 .84 .80 .82 .79 .81 .79 .77 .87 .83 .77 .76 .81

Recall .80 .73 .71 .88 .76 .87 .84 .89 .85 .89 .92 .61 .80 .93 .94 .83

F1 .82 .78 .77 .84 .80 .83 .83 .84 .83 .84 .84 .72 .81 .84 .84 .81

COBRA

Precision .93 .86 .84 .85 .95 .92 .87 .81 .87 .84 .89 .84 .88 .91 .93 .88

Recall .90 .97 .93 .93 .78 .94 .95 .93 .96 .90 .93 .93 .91 .91 0.91.92

F1 .91 .91 .88 .89 .86 .93 .91 .87 .91 .87 .91 .88 .89 .91 .92 .90

Table 4: Detailed precision and recall across varying levels of optimization.

X86-SOK. For the X86-SOK dataset, we use 10-fold Cross Validation, and gen-
erated one positive pair and one negative pair during training. During testing,
we generated two positive pairs and two negative pairs for each sample to en-
sure that we had sufficient results. We compared our approach to four existing
techniques for binary similarity. We have two scenarios for testing.

– In the first scenario, we aggregate our results over each of our testing splits
during our 10-fold cross validation. The ROC curve is shown in Figure 9.
We get .94 AUC, outperforming the next highest of .90 with Bindiff. The
precision and recall of each comparison is shown in Table 4. One interest-
ing result is TLSH’s relatively high precision rate. This is likely because it
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Fig. 8: Final Embeddings of X86-SOK dataset with t-SNE.

is very uncommon for two different programs to share a significant number
of instruction n-grams. However, the recall rate is relatively low given that
compiler optimizations can cause significant perturbations at times. We also
showcase the many-to-many capabilities of our tool by generating a visual-
ization with t-SNE, shown in Figure 8. We can see that many of the classes
are in visibly distinct clusters.

– In the second scenario, we only test on Coreutils. The ROC curve is shown
in Figure 7. We get .88 AUC, outperforming the next highest of .76 again
with BinDiff. The precision and recall is shown in Table 3. COBRA is still
able to detect similarity despite Coreutils being notably harder than the rest
of the dataset due to the amount of shared code.

Evaluation on Android and VCPKG. A concern of ours was that COBRA
was simply memorizing the transformations in our datasets and would be un-
able to predict any new transformations or obfuscations in the future. In order to
ensure that COBRA is capable of generalizing to new, unseen transformations,
we train our model on 90% of the X86-SOK dataset, then test on the OLLVM
obfuscations as well as Windows binaries. Details of these datasets can be seen
in Section 4. This ensures that at testing time, the model has to predict whether
two binaries are the same even when unseen transformations are applied. Pre-
cision, recall, and F1 can be seen in Tables 5 and 6. ROC curves can be seen
in Figures 10 and 11. Even evaluated against unseen transformations, COBRA
is able outperform all one-to-many and many-to-many approaches, and is only
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Fig. 9: ROC Curve for COBRA compared to Bindiff, TLSH, SDHASH, and SSDEEP
across the entire X86-SOK dataset.

slightly worse than BinDiff. It is important to note that BinDiff has a significant
advantage over COBRA in that it takes in two programs and directly computes
a similarity score, whereas COBRA must learn a generic representation for each
program, which is a significantly harder task.

Fig. 10: ROC curve for COBRA compared
to BinDiff, TLSH, SDHASH, and SS-
DEEP across the Android NDK compiled
with OLLVM Obfuscations.

Tool Precision Recall F1

ssdeep .46 1 .63

sdhash .46 .999 .63

tlsh .87 .66 .75

COBRA .77 .86 .81

BinDiff .86 .91 .89

Table 5: Detailed COBRA Pre-
cision and Recall after being
trained on X86-SOK and evalu-
ated on Android.

Google Code Jam. Finally, we train and evaluate our model on a selection of
41573 solution files to 222 problems from Google Code Jam. We train it in a
similar fashion, except similar samples are two solutions to the same problem,
and dissimilar samples are two solutions to different problems. No special inlining
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Fig. 11: ROC curve for COBRA compared
to BinDiff, TLSH, SDHASH, and SS-
DEEP on VCPKG compiled with MSVC.

Tool Precision Recall F1

ssdeep .39 1 .64

sdhash .48 .999 .64

tlsh .93 .65 .77

BinDiff .88 .85 .86

COBRA .83 .82 .82

Table 6: Detailed COBRA Pre-
cision and Recall after being
trained on X86-SOK and evalu-
ated on vcpkg.

or preprocessing was performed with this dataset. A ROC curve can be seen in
Figure 12, where we achieve .77 AUC, outperforming the next highest of BinDiff
at .66. Precision and recall can be seen in Table 7, where we achieve an F1 score
of .73, outperforming BinDiff’s score of .61. It is worth noting that SSDeep and
SDHash have the next highest F1 scores by outputting a positive prediction
every time.

Predicting whether two binaries are solutions to the same problem is much
harder than our previous experiments using compiler optimizations and obfus-
cations, as the code is no longer identical at the source level. The performance
of all tools is notably lower. This is likely both due to the inherent difficulty of
the problem as well as the size of the binaries. The solution is implemented in a
couple of functions at most, and so binaries are primarily comprised of compiler
intrinsics and library functions, making it much harder to differentiate between
classes at the binary level. However, we still believe these are promising results
that our model can distinguish between high levels of semantic similarity at the
binary level. Future work will address how we can improve our technique and
training to better handle cases of semantic similarity, as seen in the Google Code
Jam dataset.

6 Limitations and Future Work

There are some limitations to our current approach. First, we are only able
to handle the x86 and x86-64 architectures. Second, it has very limited inter-
pretability. Given an embedding for a program, it is very difficult to know why
the model generated that embedding. It will be interesting to incorporate some
interpretability work into our model. Finally, our performance on Google Code
Jam has room for improvement.
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Fig. 12: Final ROC curve for full Google
Code Jam programs.

Tool Precision Recall F1

ssdeep .51 .999 .67

sdhash .51 .999 .67

tlsh .61 .59 .60

BinDiff .62 .60 .61

COBRA .68 .80 .73

Table 7: Google Code Jam pre-
cision and recall

7 Conclusion,

In this paper, we propose a novel graph learning algorithm to learn representa-
tions for full programs that are robust to syntactic changes. We start by learning
function embeddings using natural languge processing techniques, and then train
a graph convolutional network over the program’s full call graph while incorpo-
rating the function embeddings. We have found that our model outperforms
current approaches on detecting the same code with various optimizations and
transformations applied, and on detecting semantically similar source code writ-
ten by different programmers.
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