
AFRL-RY-WP-TR-2023-0021

A TENSORFLOW TO REAL-TIME MACHINE LEARNING
(RTML) COMPILER

Miesko Lis
The University of British Columbia

JULY 2023
Final Report

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with The Under Secretary of Defense memorandum dated
24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020. This report is
available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2023-0021 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//Signature//
CHRISTOPHER A. BOZADA
Program Manager
Aerospace Components and Subsystems Division

//Signature//
GENE M. WILKINS, Lt Col, USAF
Deputy Chief
Aerospace Components and Subsystems Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION
PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE

July 2023
2. REPORT TYPE

Final
3. DATES COVERED

START DATE

6 January 2020
END DATE

28 February 2022
4. TITLE AND SUBTITLE
A TENSORFLOW TO REAL-TIME MACHINE LEARNING (RTML) COMPILER
5a. CONTRACT NUMBER

FA8650-20-2-7007
5b. GRANT NUMBER

N/A
5c. PROGRAM ELEMENT NUMBER

61101E

5d. PROJECT NUMBER

1000
5e. TASK NUMBER

N/A
5f. WORK UNIT NUMBER

Y21A

6. AUTHOR(S)

Miesko Lis
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of British Columbia
Vancouver, BC V6T 1Z4, Canada

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY
NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory,
Sensors Directorate
Wright-Patterson Air Force Base,
OH 45433-7320
Air Force Materiel Command,
United States Air Forces

Defense Advanced Research
Projects Agency (DARPA/MTO)
675 North Randolph Street
Arlington, VA 22203

10. SPONSOR/MONITOR'S
ACRONYM(S)

AFRL/RYDI

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RY-WP-TR-
2023-0021

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

This material is based on research sponsored by the Air Force Research Laboratory (AFRL) and the Defense
Advanced Research Projects Agency (DARPA) under agreement number FA8650-19-1-7996. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air
Force Research Laboratory (AFRL), the Defense Advanced Research Projects Agency (DARPA), or the U.S.
Government. Report contains color.
14. ABSTRACT

This project developed techniques for compiling deep learning models to silicon hardware with a computation
mapping and schedule. The key results are (i) a novel technique to effect mapping and scheduling of deep learning
model computations on hardware, and (ii) a proof-of-concept energy-efficient hardware implementation capable of
both training and inference tasks.
15. SUBJECT TERMS

machine learning integrated circuit, machine learning algorithms, real-time machine learning, neuroscience-inspired
architectures, non-neural ML architectures, and generative adversarial learning techniques
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

SAR
18. NUMBER OF PAGES

36 a. REPORT

Unclassified
b. ABSTRACT

Unclassified
C. THIS PAGE

Unclassified
19a. NAME OF RESPONSIBLE PERSON

Christopher Bozada
19b. PHONE NUMBER (Include area code)

 N/A

i
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table of Contents

Section Page

List of Figures ... ii
List of Tables ... iii
1 SUMMARY ... 1
2 INTRODUCTION ... 2

2.1 DNN Accelerator Architectures... 2
2.2 Dataflow Mapping ... 3

3 METHODS, PROCEDURES, AND DESIGN .. 6
3.1 Hardware Architecture Template ... 6
3.1.1 Overall Chip Architecture .. 6
3.1.2 Processing Elements Arrangement and Design ... 6
3.2 Dataflow Scheduling and Mapping Algorithm .. 8
3.2.1 Target Workloads and Representation ... 9
3.2.2 Inferring Reuse .. 10
3.2.3 Loop order (inter-tile reuse) ... 11
3.2.4 Insights ... 11
3.2.5 Representation ... 12
3.2.6 Pruning ... 13
3.2.7 L1 Tile Size Optimization.. 13
3.2.8 Spatial unrolling ... 16
3.2.9 Optimizing the L2 Level and Beyond.. 18
3.2.10 Dynamic Inter-Level Pruning .. 18
3.2.11 Load Balancing and Dataflow ... 19

4 RESULTS AND DISCUSSION .. 21
4.1 Proof-of-Concept Chip Details .. 21
4.2 Measurements: Inference ... 21
4.3 Measurements: Training .. 21

5 CONCLUSIONS ... 25
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 30

ii
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

List of Figures

Figure Page

Figure 1: A Generic Spatial Accelerator Architecture with Per-PE (L1) Memories and a Shared

On-chip L2 Memory... 3
Figure 2: Operation Space of a 1D Convolution. Ifmap is Shifted, Replicated, and Padded by 0

Along the Sliding Window Dimension R ... 4
Figure 3: 1D Convolution Operation Space After Tiling ... 5
Figure 4: Overall Hardware Architecture Template ... 7
Figure 5: SIMD Structure, Illustrated on Inference / Training Forward Pass 7
Figure 6: Architecture Operation for Inference and Training Forward Pass 8
Figure 7: The stages in the Scheduling and Mapping Algorithm ... 10
Figure 8: Representing the Order Space of the 1D Convolution Problem as a trie, and how it can

be Pruned .. 10
Figure 9: L1 Tile Size Search and Pruning ... 15
Figure 10: Load Balancing: Work Tiles are Cut in Half (b) and the Halves Rearranged in Dense-

Sparse Pairs (c) ... 19

iii
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

List of Tables

Table Page

Table 1: Inferred Reuse of Each Tensor in eq. (1) .. 9

1
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1 SUMMARY

Deep learning techniques have become ubiquitous and indispensable in many scientific and
industrial applications. Compared to previous techniques, however, applying deep learning requires
significant computational effort and processing memory, conditions especially challenging for low-
power applications. This need has motivated silicon chips specifically designed to accelerate the
matrix computations that are the core of deep learning operations.

For the most power-limited applications, however, more power efficiency is required. This can be
achieved by tailoring the silicon chip hardware configuration and the how the computation is mapped
to the hardware to the specific deep learning model being employed. Because there is a vast number
of possibilities both in the hardware configuration and how a specific deep learning computations is
mapped to it, automated tools are required to determine efficient solutions.

This document is a progress report on a project to develop techniques for compiling deep learning
models to silicon hardware together with a computation mapping and schedule. The key results are
(i) a novel technique to effect mapping and scheduling of deep learning model computations on
hardware, and (ii) a proof-of-concept energy-efficient hardware implementation capable of both
training and inference tasks.

The mapping technique divides the computation of a specific deep learning model into tiles that can
be scheduled on a hardware accelerator. This is the key step in generating efficient hardware
configurations specific to models, as efficient mapping alone can increase energy efficiency by one
to two orders of magnitude. The technique describes outperforms prior art in efficiency and time-to-
solution and does not rely on opaque parameters that require different settings for each deep learning
model and even each layer of a single model.

The proof-of-concept hardware implementation supports both inference and training of deep learning
models. It achieves efficiency through supporting weight sparsity, both during inference and during
training. Measurements from a tapeout-ready GDSII of a 3mm2 device in the Global Foundries 12nm
process indicate that inference using ResNet50 takes 21ms and expends 8.9mJ per image, while
training of ResNet50 takes 52ms and expends 15.8mJ per image. The proof-of-concept chip has been
taped out and is currently being fabricated.

2
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2 INTRODUCTION

In the past decade, deep neural networks have revolutionized many areas of science and industry.
In tasks like image recognition, they surpassed the error rate of the human visual cortex seven
years ago [1, 2], and has since only improved. Similar successes have been reported on tasks
related to natural language processing, ranging from early sequence-based model successes [3, 4,
5] to giant models such as GPT-3 [6] based on the attention mechanism [7].

However, this advance has come at the cost of dramatic computation requirements: indeed,
the deep learning “revolution” has only been possible because of the advent of graphics
processing units (GPUs) that could be programmed for non-graphics tasks using languages like
CUDA or OpenCL. Still, GPUs are primarily optimized for graphics processing, with many
components that (e.g., texture units) and are less efficient than ideal for deep learning tasks. This
has motivated a large number of hardware accelerators specific to deep learning inference [8, 9,
10, etc.], which are significantly more efficient than even GPUs.

In search for more efficiency, researchers discovered that deep learning models are

overparametrized, and most parameters (model weights) can be set to zero without significant
effect on accuracy. Since GPUs and early hardware accelerators could not take advantage of this,
a new generation of “sparse” hardware accelerators was created, enabling another of efficiency
[11, 12, 13, 14, 15, etc.]. While nearly all of these have focused on inference only, algorithmic
and hardware innovations have also allowed sparse hardware accelerators for training deep neural
networks [16].

However, these accelerators are still general-purpose to an extent: while they are optimized

for deep learning workloads, they can execute any such workload, and are not customized to
specific deep learning models. Potentially, customizing chips — and, more importantly, how
workloads are executed on them — this can unlock another other of magnitude in performance
and energy efficiency.

The purpose of the project reported on in this document is therefore to develop techniques

that allow directly mapping specific deep neural network models to a hardware architecture
together with a mapping and scheduling of exactly how deep learning workloads execute on the
hardware.

2.1 DNN Accelerator Architectures

Figure 1 shows the architecture of a typical DNN accelerator [9, 17, 18, 19, 20, 21, 22, etc.],
implemented as a 2D array of processing elements (PEs). Each PE has a multiply-and-accumulate
(MAC) functional unit and local (L1-level) memories; these either consist of separate memories
for each datatype (i.e., ifmap, weights, and ofmap), or are unified memories that store all three
datatypes. L1 is commonly double-buffered to overlap computation and memory refill.

Accelerators also commonly include a larger memory shared among the PEs (L2-level), as
well as a large off-chip DRAM. The PEs and L2 are typically interconnected via one simple on-
chip interconnect per datatype [9].

3
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Most accelerators are variants of this architecture pattern, because it can amortize the cost of
retrieving data from memory by reusing it several times. The architecture here supports three kinds of
reuse. First, operands may be reused spatially, that is, broadcast to a subset of (or all) PEs. L1 memories
support short-term temporal reuse of operands within each PE, and L2 memories support temporal reuse

across multiple PEs.

Figure 1: A Generic Spatial Accelerator Architecture with Per-PE (L1) Memories and a
Shared On-chip L2 Memory

The desired computation (e.g., DNN inference) is tiled and mapped to these structures to maximize
hardware utilization and minimize energy, through a process called dataflow mapping and described
below.

The flow described in this report generates hardware for variants of this accelerator architecture and
is able to take advantage of all three reuse opportunities.

2.2 Dataflow Mapping

While the design space for efficient hardware architectures is limited by the need to provide reuse
opportunities, how computation — even of a single layer — is mapped to the accelerator is critical to
performance and energy-efficiency. This step is known as dataflow mapping, as forms the heart of
the compilation flow.

Dataflow mapping consists of tiling, loop ordering, and spatial unrolling. To explain each with a

concrete example, we consider the convolution of a 1D tensor ifmap with K 1D filters with length R,
defined by their weights:

ofmap[k, p] =Õ ifmap[p +r] × weight[k, r] (1)
r

Typically, this is expressed as a nested loop [23]:

1: for k K) do 2: for p P) do
3: ofmap[k, p
4: for r R) do
5: ofmap[k, p] += ifmap[p +r] × weight[k, r]
6: end for 7: end for 8: end for

SharedGlobalMemory(L2)

NetworkonChip(NoC)

.....
.......

SpatialAcceleratorChip

PE PE PE localifmap
buffer

PE1

localweight
buffer ×/+weightg

buffer
ifmapp
buffer

×/+

PE

4
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

This defines a 3D operation space of K ×P ×R MAC operations shown in Figure 2a, where the
operands for each MAC can be obtained by projecting its point in the operation space onto the
“walls.” The walls thus correspond to the accessed elements of the ifmap, ofmap, and weight tensors.

(a) operation space (b) operation space tiling

Figure 2: Operation Space of a 1D Convolution. Ifmap is Shifted, Replicated, and Padded by 0

Along the Sliding Window Dimension R

The per-PE (L1) memories are far too small to contain the entire ifmap, ofmap, and weight tensors. To

support temporal reuse, the operation space must be tiled into L1-tiles with memory footprints that fit
in the L1 memories.

Figure 2b shows this for the running convolution example. The volume of each tile shows the MAC
operations performed in this tile, while the surfaces W1, O1, and I1 correspond to the regions of the

weight, ofmap, and ifmap accessed. If these are stored in L1 memories, they can be reused: e.g., W1

can be temporally reused across the P extent of the tile.

This corresponds to the following pseudocode, where the K dimension is divided into KL2 equal tiles

of size KL1, the P dimension into PL2 equal tiles of size PL1:
1: for k2 KL2) do 2: for p2 PL2) do 3: for k1 KL1) do 4:

for p1 PL1) do
5: k k2 ×KL1 +k1

6: p p2 ×PL1 +p1

7: ofmap[k, p
8: for r R) do
9: ofmap[k, p] += ifmap[p +r] × weight[k, r]

10: end for
11: end for
12: end for

P

K

R

(k,r,p)

5
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

13: end for
14:end for

In addition to the intra-tile reuse described above, some tensor regions can be further temporally
reused over multiple tiles. In Figure 2b, for example, region W1 can remain in L1 if tile 3 is
processed in the same PE right after tile 4 (as it is in the pseudocode).

We can control what is reused between tiles by changing the tile traversal order. We will write orders

by listing loop bounds outermost-to-innermost, so the pseudocode above is KL2PL2KL1PL1R. If we

swap section 2.2 (order PL2KL2KL1PL1R), tile 2 will be processed right after tile 4, reusing the I1
region of ifmap in L1.

Figure 3: 1D Convolution Operation Space After Tiling

P dimension is divided into PL2 tiles of size PL1. Similarly, K dimension is tiled into KL2 tiles of size
KL1.

Finally, loops can be spatially unrolled so that different tiles are assigned to different PEs. For

example, in Figure 3 the K dimension is unrolled spatially across two PEs, so tiles 1 and 3 will be
computed by PEs 1 and 2 in the first step, and then tiles 2 and 4 in the next. This allows inter-tile

spatial reuse: each pair of tiles processed concurrently by the PEs accesses the same region of the

ifmap, which can be broadcast to both PEs.

Considering all combinations of tiling, traversal order, and unrolling results in an enormous search

space for operations such as convolution. For example, the third layer of ResNet [24] yields 2.6×1010

possible configurations for execution on an accelerator architecture like the one in section 2.1, even
with batch size 1 and only considering equally-sized tiles.

L2 KL2 ,R,R=1 L2 ,P,P=1 L2 =2 L2

PE1 PE2

KL2 ,R,R=1 L2 =1 ,P L2 =2

PE1 PE2
Tile1 Tile3 Tile2 Tile4

6
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

3 METHODS, PROCEDURES, AND DESIGN

The compilation flow developed as part of this project consists of key two steps: generation of a
hardware description for an accelerator that will efficiently execute the input DNN model, and
mapping/scheduling of the computations required in the input model to the generated hardware. This
section describes the salient aspects of each step.

3.1 Hardware Architecture Template

The architecture template used to generate the hardware is capable of executing both inference
and training of deep neural network models, with sparsity in one of the inputs (weights for
inference and training forward pass, and activations during the training backpropagation passes).

3.1.1 Overall Chip Architecture

The overall architecture pattern is illustrated in fig. 4. It consists of four components: a
decompression/compression module that converts compressed data (weights, input activations,
etc.) retrieved from off-chip (e.g., from off-chip DRAM) to a decompressed form suitable for
distributing among the processing elements; a multi-banked global buffer (GLB) shared among
all processing elements that facilitates reuse of data fetched from off-chip storage; a simple
network-on-chip (NOC) that connects the GLB banks with processing elements; and a 2D array
of processing elements (PEs) that perform the required computations.

Depending on the input model and imposed hardware constraints (e.g., silicon area), the exact
configuration of the elements in the generated hardware (e.g., number of GLB banks, number of
PEs, etc.) varies.

3.1.2 Processing Elements Arrangement and Design

The processing elements are arranged in a single-instruction-multiple-data (SIMD) architecture
that permits reuse of one input (typically the sparse input, such as sparse weights during
inference) through broadcasting it to all processing elements in the SIMD group. This
arrangement supports sparsity in one dimension, which allows efficient hardware utilization in
both inference and training tasks.

7
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 4: Overall Hardware Architecture Template

Figure 5: SIMD Structure, Illustrated on Inference / Training Forward Pass

Training backward and weight-update passes reuse the same hardware, with input1/input2 and
coordinate computations suitably changed.

Figure 5 illustrates the SIMD arrangement, using a configuration during a convolutional layer
inference task. During other tasks (e.g., training back-propagation), the hardware and computation
remain the same, but the computed coordinates change: for example, for the weight-update pass, the

output activation map coordinates p and q become the output weight filter coordinates r and s, and so
forth.

Each SIMD unit (one row of the 2D array) operates on the same sparse input (during inference and
training forward pass, this is the sparse weights), which is broadcast to all processing elements in the
SIMD unit as shown in the figure. Each SIMD unit includes a shared SRAM that holds this data
(input2 in the figure) in a format where non-zero elements are contiguous; this avoids any
computation on ineffectual (zero-valued) weights and saves an order of magnitude in energy over a
design where all weights are used for computation.

8
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

In contrast, the other two data elements required by the processing element (here, input1 and output)
are computed separately in each PE.Figure 6 illustrates the pipelined architecture of each processing
element. The processing element has two local SRAMs (in this configuration, one used for input1
and the other for psum), with the psum memory being updated in read-modify-write manner.

Again, the figure illustrates computation in for backward and weight-update passes during training,
the same architecture is used, with only the coordinates being computed changing to match the
problem at hand.

The hardware architecture described here enables both temporal reuse (through on-chip memories)
and broadcast-type spatial reuse (via SIMD techniques). To take advantage of this, however, the
computation of interest (such as deep neural network inference) must be carefully mapped and
scheduled to execute on the hardware. This critical component of the compilation flow is described
in the next section (section 3.2).

Figure 6: Architecture Operation for Inference and Training Forward Pass

Training backward and weight-update passes reuse the same hardware, with input1/input2 and
coordinate computations suitably changed.

3.2 Dataflow Scheduling and Mapping Algorithm

Figure 7 shows the overall flow of the mapping and scheduling algorithm developed in this project.
The tool first accepts a description of the target architecture as well as the description of the tensor
workload (section 3.2.1), and infers which tensors can be reused across which dimensions
(section 3.2.2). Next, the algorithm determines a set of promising loop orderings (section 3.2.3),
and a set of viable tiling candidates for L1 (section 3.2.7). If per-PE memories end at L11, we

1 The spatial unrolling step may occur later in the sequence if the PE has multiple private memory levels.

9
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

then find a set of spatial unrolling candidates (i.e., dimensions that will be spatially unrolled across
the PE array) for each tiling candidate (section 3.2.8).

Next, we estimate the energy of each tiling candidate and their respective unrolling candidates, and
apply a variant of alpha-beta pruning to remove suboptimal solutions (section 3.2.10).

Finally, we repeat steps and at each enclosing memory level (L2, L3, ...) (section 3.2.9)
for each solution candidate, using the inter-tile traversal ordering of the prior level as the intra-tile
order for the current level (e.g., intra-tile traversal at L2 equals the inter-tile order at L1).

In the rest of this section, we explain each of these steps in detail. As the running example, we will
use a slightly more complex version of the 1D convolution example from section 2, where the ifmap

vector has C channels and the ofmap vector has K channels:

ofmap[k, p] =ÕÕ ifmap[c, p +r] × weight[c, k, r]. (1) c r (2)

3.2.1 Target Workloads and Representation

The algorithm targets matrix algebra workloads that consist of nested loops with no inter-loop
dependencies, i.e., loops that can be freely reordered; this includes deep neural network workloads,
but also includes other tensor operations. The computations may include sliding-window access
patterns, as found in, e.g., convolution operations. These workloads span a range of real life
problems, such as convolution layers and fully connected layers for neural networks, MTTKRP [25],

TTMC [26] (which are bottleneck kernels in tensor decompositions), and various tensor contraction
workloads that permeate the optimization domain [27, 28, 29, 30, 31, 32]. In contrast, many prior
works such as [33, 34, 35] hardcode assumptions about how operands interact, and so only support
optimization of a small subset of these workloads (mostly conv and fully connected layers).

Table 1: Inferred Reuse of Each Tensor in eq. (1)

tensor indexed by full reuse partial reuse

ofmap k, p cr
ifmap c, p, r k p, r
weight c, k, r p

10
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 7: The stages in the Scheduling and Mapping Algorithm

Figure 8: Representing the Order Space of the 1D Convolution Problem as a trie, and how it
can be Pruned

3.2.2 Inferring Reuse

From this problem description, the algorithm infers reuse as follows. First, observe that the location
accessed in each tensor can change only when the problem dimensions that index this tensor (the
tensor’s indexing dimensions) change. In contrast, when any of the tensor’s non-indexing dimensions

change, the location in the tensor stays the same. For example, in eq. (1), C, R, and P are indexing

dimensions for ifmap, while K is a non-indexing dimension. It follows that the tensor can be fully

reused across any non-indexing dimension.

A second kind of reuse arises when a tensor index is an arithmetic combination of problem

dimensions, such as the p +r index of ifmap in eq. (1). This is because p +r can have the same value

for multiple values of p and r . Typically this involves less reuse than is due to non-indexing
dimensions — e.g., in eq. (1), ifmap[0] from tile 1 is not reused but ifmap[1] and ifmap[2] are — so
we refer to this as partial reuse.

11
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

In general, inferring this reuse requires algebraic analysis on the indexing expression [36?]. The
algorithm described here, however, only considers the common case where the partial reuse is due to
arithmetic combinations of multiple problem dimensions and which includes all deep learning
workloads. Table 1 shows the reuse dimensions inferred from eq. (1).

3.2.3 Loop order (inter-tile reuse)

Recall that the order in which loops are nested determines the inter-tile reuse. In this section, we
show how the algorithm examines the potential orders and rejects those that exhibit strictly worse
reuse.

3.2.4 Insights

The method presented here relies on the following observations, which we explain by discussing the
traversal between L1 tiles (i.e., ordering at the L2 level) in the running example (eq. (1)). Below, we
have isolated the L2 level of an example dataflow for this computation:

1: for k2 KL2) do
 2: for p2 PL2) do

3: for c2 CL2) do 4: for r2

RL2) do

 5: L1 tile computation
 6: end for
 7: end for
 8: end for

9: end for

Observe that while K is a non-indexing dimension of ifmap, in this loop order ifmap actually cannot

be reused across K. This is because the loop that iterates over C (section 3.2.4) is inside the K loop

(section 3.2.4) — that is, within each iteration of the K loop, there are multiple iterations of the C
loop that replace the ifmap tensor in L1 and prevent reuse between K iterations. In the general case,
this observation becomes:

Observation 1

For a non-indexing dimension of an operand to actually reuse the operand, it must either
be the inner-most loop, or the loops inside it must be limited to the other non-indexing
dimensions of that same operand.

Next, note that while the innermost loops R (section 3.2.4) and C (section 3.2.4) lead to the reuse of

the ofmap tensor, reordering the loops above them (i.e., section 3.2.4 and section 3.2.4) does not

impact the number of accesses to weight and ifmap even though these tensors could potentially be

12
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

reused across P and K respectively. This is because C and R index weight and ifmap, and they load

different tiles of these tensors within each iteration of P and K, destroying any potential reuse. The
general case is:

Observation 2

Only a subset of the loops — precisely, the innermost loops that reuse the same tensor —
determine the reuse, and hence only the ordering of those loops needs to be optimized.

Lastly, observe that C (section 3.2.4) and R (section 3.2.4) are full-reuse dimensions of ofmap, while

R is also a partial-reuse dimension for ifmap. If we make R the innermost loop, we fully reuse ofmap
across R and C and we partially reuse ifmap across R. On the other hand, if C is inner-most (i.e.,

section 3.2.4 and section 3.2.4 are swapped), the partial reuse of ifmap will be destroyed because C is

an indexing dimension of ifmap. In general:

Observation 3

Even when considering only the inner loops that reuse the same tensor, certain ordering of
these inner loops may lead to less reuse than others.

3.2.5 Representation

To take advantage of these observations, the mapping algorithm represents the loop ordering search
space by a trie, illustrated in fig. 8 on the running example from eq. (1).

Each node represents a partially-determined loop order, and is annotated with the available reuse. At
the root, the dimensions of all four nested loops are undetermined (represented by x). The immediate
children represent the possible choices for the innermost loop: e.g., xxxC means C is traversed in the
innermost loop while the outer loops are undetermined. Their children, in turn, represent the traversal

order of the innermost loop and the next-innermost loop: e.g., xxRK traverses K as the innermost

loop and R in the next-innermost, and so on.

Each node is annotated with the operand(s) that can be reused: in ofmap (of) is reused when the

innermost loop traverses the input channel (xxxC), in both ofmap and ifmap are reused when the

innermost loop is the filter dimension R, and so on. Note that reuse can remain or disappear at higher

levels due to Observation 1: for example, in node , the ofmap reuse across C is available because

13
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

all innermost loops also reuse ofmap , while the weight reuse across P in is not available

because weight is not reused across R in .

3.2.6 Pruning

Once the trie has been constructed, some nodes can be pruned as strictly worse, relying on the two
rules below. (Our implementation in fact never generates these nodes, but we discuss the concepts in
terms of pruning for clarity.)

First, any nodes that offer no further reuse compared to their parent node can be pruned, since none
of their children will offer any further reuse either (Observation 2). For example, xxCK is pruned

away because C reuses ofmap, but ofmap reuse has already been destroyed by the inner K loop. Based
on the same argument, xxKR and xxPR will also be pruned.

Second, if two child nodes either: (i) lead to reusing the same tensor from the same dimensions A
and B (although with different innermost orderings, such as xxAB and xxBA), or (ii) one node leads

to reusing the same tensor as the other but also additionally reuses another tensor , then one of the
children can be pruned (Observation 3). Figure 8 shows that since xxCR reuses the same

operands as xxxC (i.e., ofmap via R and C), but also leads to additional partial reuse of ifmap via

the R dimension, the xxxC node is pruned away .

The mapping algorithm is conservative and only prunes orderings that provably lead to suboptimal
reuse or reuse that is already being offered by another ordering. For example, in fig. 8, both xxRK
and xxPK are kept: even though both reuse ifmap, the partial reuse is offered by different dimensions,

so one could lead to more reuse than the other depending on the P and R bounds.

Removing provably-worse orderings significantly prunes the ordering space. For example, for
batched convolution, the set of potential orderings is pruned from 7! =5040 to 10 orderings.

3.2.7 L1 Tile Size Optimization

Next, algebraic analysis selects efficient L1 memory tile configurations, which in turn determines
both the intra-L1 reuse and what can be reused at higher levels. We again explain this in terms of
pruning, although the actual algorithm never actually generates the suboptimal configurations.
Insights To determine suboptimal L1 tilings, let us consider the following dataflow for eq. (1):

1: for p2 PL2) do
 2: for k2 KL2) do
 3: for c2 CL2) do

14
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

 4: for p1 PL1) do
 5: for k1 KL1) do

6: for c1 CL1) do 7: for r1 R)
do

 8: computation
 9: end for
 10: end for
 11: end for
 12: end for
 13: end for
 14: end for

15: end for

Here, the L1 tile sizes are PL1×KL1 for ofmap, CL1×KL1×R for weight, and (PL1+R 1)×CL1 for ifmap,

and the total number of L1 tile iterations is PL2 ×KL2 ×CL2. Thus, to execute the full workload, the

total number of L2 memory accesses would be #passes × tile_size, broken down as:

:

 = P ×K ×CL*2 = P ×K

Here, ofmap is reused CL2 times — that is, ofmap remains in L1 between L1 tiles — because that is
the innermost L2 loop. The total L2 access count is the sum of eqs. (2) to (4):

L2 accesses = KL2 ×C ×PL2(PL1 +R 1)

ifmap KL2 ×PL2 ×CL2(PL1 +R 1) ×CL1

= KL2 ×C ×PL2(PL1 +R 1) weight
:KL2 ×PL2 ×CL2(CL1 ×KL1 ×R)

(2)

 = C ×K ×R × PL2
| {z }

problem dimensions

ofmap :KL2 ×PL2 ×CL *2(PreusedL1 ×KL1)

reused

(3)

(4)

15
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

(5)
+C ×K ×R ×PL2 +P ×K

For best L1 reuse, our task is to minimize this, under the constraint that the L1 tiles of all datatypes

fit in the L1 memories — e.g., RL1 ×CL1 ×KL1 must not exceed the L1 weight buffer.

What are the degrees of freedom here? Equations (2) to (4) involve either full problem dimensions

(e.g., C, K and R in eq. (3)) — which we cannot change — or loop bounds (e.g., PL2 in eq. (3)) —

which we can select to change L1 tile dimensions. For example, the ofmap access count P ×K only
includes full problem dimensions (eq. (4)), so we cannot change it by altering L1 tile dimensions.

Our options are therefore to decrease KL2 or PL2 to minimize ifmap and weight fetches.

Now, consider for the sake of argument two configurations where (a) KL2 =2 or (b) KL2 =3, and no
other loop bounds change. If both (a) and (b) fit in the L1 memories, then (a) offers strictly more
reuse (and lower energy), because there are fewer ifmap and weight fetches. We can generalize this
observation and use it to prune suboptimal L1 tile sizes:

Figure 9: L1 Tile Size Search and Pruning

The workload is the 1D convolution where P =14, K = 4, C =4, R =3, and L1 size is 8 entries.

Observation 4

For any given tile T , if any of its L1 dimension can be enlarged while still fitting in the L1,

the larger tile will have fewer data accesses; therefore T can be pruned.

16
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Representation To take advantage of observation 4, we again formulate the problem as a search
tree, this time rooted at the smallest L1 tile possible (where every dimension is 1). Figure 9 shows

this for the running example where the total problem dimensions are P =14, K =4, R =4, C =4 and the
unified L1 memory has 8 entries.

Each node is an L1 tile size candidate, annotated with its L1 tile dimensions and the L1 memory
footprint (we show a unified L1 here for clarity; there would be separate per-datatype footprints if L1
memories were separated by datatype). Each of its children is a candidate that is identical to the
parent node except for one dimension, which is enlarged to the next higher factor of the
corresponding problem dimension. For example, node , which represents the L1 tile with CL1 =2,
PL1 =1, KL1 =1, RL1 =1, while its child is the same except PL1 =2.

Based on observation 4, nodes that have at least one child that still fits in L1 can be pruned, because
the child offers strictly more reuse. For example, still fits in L1 and has more reuse than its parent

, so can be pruned.

In contrast, node cannot be enlarged in any dimension without exceeding the L1 capacity. This is
therefore a candidate for the optimal L1 tile, and remains unpruned.

Note that we can only use this method to draw conclusions between a node and its descendants (such
as and). Our pruning rule cannot draw further conclusions about nodes where different
dimensions have been enlarged: for example, and cannot be directly compared without
knowing the next-level (e.g., L2) tiling, so both nodes are kept.

Applying this technique, the L1 tile search space for ResNet-18 [24] convolution layers is reduced by
up to 80% (vs all valid L1 tile candidates).

Finally, for each remaining L1 tile, we compute the number of memory accesses under each
remaining loop ordering (section 3.2.3), and pair the L1 tile with the ordering that leads to the fewest
memory accesses.

3.2.8 Spatial unrolling

At this point, we have a set of candidate L1 tiles, each with its optimal L2 loop order. For each of
these options, we find the best ways to spatially distribute the work among multiple PEs.

In the running example, this step takes place between the L1 and L2 levels because the L1 memories
are private and the L2 is shared among all PEs. If both L1 and L2 were private, we would spatially
unroll after L2; indeed, this can occur multiple times if the PEs are clustered with per-cluster storage
[37].
Insight Spatially unrolling some loops can reduce the number of L2 accesses if the same data is
needed by multiple PEs at the same time by broadcasting said data (see section 2).

We continue the running example, now adding a spatial tile in each dimension, so that now P = PL2
×Pspatial ×PL1, etc.:

1: for k2 KL2) do

17
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

 2: for p2 PL2) do
 3: for c2 CL2) do
 4: for kspatial Kspatial) do
 5: for pspatial Pspatial) do
 6: for cspatial Cspatial) do
 7: for k1 KL1) do
 8: for p1 PL1) do
 9: for c1 CL1) do
 10: for r R) do
 11: compute
 12: end for
 13: end for
 14: end for
 15: end for
 16: end for
 17: end for
 18: end for
 19: end for
 20: end for

21: end for

To account for the spatial unrolling, we expand the equations from section 3.2.7:
ifmap :KL2 ×PL2 ×CL2(Pspatial ×PL1 +R 1)

(6)
×Cspatial ×CL1 = KL2 ×C ×PL2(PL1 +R 1)

:

×KL1) = P ×K ×CL*2 = P ×K

Observe that the L2 access count for each tensor is affected only by the spatially unrolled dimensions

that index that tensor. For example, Pspatial does not affect weights acceses because weights are not

indexed by P and can be broadcast to all PEs across which P is unrolled.

weight KL2 ×PL2 ×CL2(Cspatial ×CL1 ×Kspatial
×KL1 ×R) = C ×K ×R ×PL2

(7)

ofmap :KL2 ×PL2 ×CL*2(Preusedspatial ×PL1 ×Kspatial

reused (8)

18
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Once again, since ofmap is temporally reused across C at the L1 local buffers, CL2 does not affect the
total number of L2 accesses (i.e., the sum of eq. (6), eq. (7), and eq. (8)). Therefore, to reduce the

total access count, we must reduce some combination of PL2 and KL2. This time, however, each

candidate tile has PL1 and KL1 already determined in section 3.2.7, so those cannot change. Instead,

we can unroll P and K spatially, i.e., maximize Pspatial, Kspatial, or some combination of those. We do
not make any conclusion about the combination of the factors that should be unrolled (i.e., it tries all
the possible combination for those factors), but rather infers what dimensions should not be unrolled

(e.g., CL2 in this example). In general:

Observation 5

To maximize the spatial reuse when unrolling dimensions, the reuse dimensions of the

operand(s) that are temporally reused at the PE local buffers should not be spatially
unrolled, unless the PE array cannot be utilized otherwise.

Finally, for each L1 tile/ordering pair, we consider each remaining unrolling dimension and
enumerate all of its factors, retaining all resulting combinations. With our unrolling technique, we

can prune more than 90% of unrolling candidates for ResNet-18 [24] convolution layers and a 14×12
PE array, similar to the one used in [9].

3.2.9 Optimizing the L2 Level and Beyond

At this point, we have a set of candidate L1 tiles, each with its optimal L2 loop ordering and potential
spatial unrollings.

For each candidate, we generate the potential L2 tile sizes in the same way as for L1 (section 3.2.7),
exploring and pruning the tile space using the same search tree representation; again, each L2 tile is
paired with its optimal L3 loop ordering. (The spatial unrolling step is only repeated if the next
memory level (L3) is shared among multiple L2s.)

This process repeats until tile candidates have been computed for all on-chip memory levels.
Note that this will likely result in multiple L2 tile options for each L1 tile candidate, and so on; we
show how to avoid evaluating all of them below.

3.2.10 Dynamic Inter-Level Pruning

Rather than examine all possible combinations of tile sizes (L1, L2 tiles, etc.), we evaluate them in a
specific order and employs a variant of alpha-beta pruning [38] to dynamically reject suboptimal
tiles.

19
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Figure 10: Load Balancing: Work Tiles are Cut in Half (b) and the Halves Rearranged in
Dense-Sparse Pairs (c)

To do this, we first assign a cost to each L1 tile, equal to energy incurred from the transactions
between the L1 and L2 (the number of transactions obtained from using the equations in section
3.2.7); we refer to this cost as the L1-cost. Similarly, we refer to the energy from the transactions

between the L2 and DRAM (or L3) as the L2-cost, determined by the L2 equivalents of the same
equations, and so on.

Next, we also compute an ideal bound for the L2-cost, by assuming each operand is only ever
fetched once (cf. section 3.2.7); we call this L2-ideal. This number is unrealistic because specific
loop orders reuse only subsets of operands; however, we can use it to prune the search space as
follows.

We start the search by examining the L1 tile with the lowest L1-cost. We generate and examine
examine all of the L2 tile candidates for this L1 tile, select the L2 tile with the minimum L2-cost, and
obtain the current-best L1+L2 cost candidate by adding the L1- and L2-costs.

Next, we examine the L1 tile with the next-lowest L1-cost. We compute the ideal L1+L2-cost by
adding the actual L1-cost to the L2-ideal cost lower bound. If this cost exceeds the current-best
L1+L2 cost, we can reject the current L1 tile, because no possible L2 ordering can have a lower L2
cost than the ideal. Moreover, we can also reject the remaining L1 tiles, because all of them have a
higher L1 cost and therefore a higher L1+L2 lower bound.

If, on the other hand, the ideal cost is less than current-best, we evaluate all L2 tile options for this L1
tile, update the current-best L1+L2 cost as before, and continue the process.

Applying this technique on ResNet-18 [24], we reduce the number of searched L1 tiles by 50-80%,
while reducing the number of evaluated L2 tiles by 60–90%.

3.2.11 Load Balancing and Dataflow

When model weights are sparse (e.g., inference on pruned models or during a pruning-whiletraining
process), load imbalance can arise because tiles assigned to different processing elements can have
different sparsity. When this occurs, all processing elements that have finished processing their tiles
must wait for the slowest processing element to finish before accepting new tiles. With typical

A B D

A1 B1 D1A2 B2 D2

A1 B1 D1C2 B2D2

)()a C

C1 C2

C1 A2

(b)

())c

dense sparse

(d) A’ B’ D’C’

20
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

weight sparsity rates (90%), this load imbalance causes an average execution latency overhead of
50%, in some times exceeding 100% (i.e., more than double the time required to compute the same
number of operations if they were perfectly balanced).

To combat this, our flow relies on a load balancing scheme to bring the amounts of work allocated to
the processing elements within a small margin of one another. Figure 10 illustrates this load
balancing process. First, every work tile (a) is cut into two halves along one of the tile dimensions
(b); because sparsity is almost certainly uneven within the tile, the two halves will likely have
different densities. Next, the halves are sorted according to density, and half-tiles are matched
starting from opposite ends (c): the sparsest half-tile is matched with the densest half-tile, and so on.
This ensures that each newly formed tile is as close as possible to the average density across all PE
work tiles (d).

21
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

4 RESULTS AND DISCUSSION

This section describes a proof-of-concept chip tapeout to verify the compilation flow described in
section 3, as well as measurements on the post-layout GDSII form of the chip pre-tapeout. Note that
the methods and design procedures developed during this project are described in the previous
section (section 3).

4.1 Proof-of-Concept Chip Details

A proof-of-concept chip RTL was generated for tapeout in Global Foundries 12nm technology
(GF12). The device architecture is organized as described in section 3.1, including support for sparse
inference and training (compression/decompression) and SIMD organization.

The chip has a total silicon area of 3mm2, and is configured with192 processing elements (PEs) in a
16×12 grid. Because the device supports training as well as inference, all data-related computations
(e.g., multiply-and-add units) are performed in floating-point arithmetic in the 16-bit bfloat16 format
(1 sign bit, 8-bit exponent, 7-bit mantissa).

However, as we were unable to obtain DRAM IP blocks either through DARPA channels or from the
ASIC library provider (Synopsys), the device does not include a DRAM interface. Instead, the chip
includes a custom off-chip interface that connects to an FPGA; the FPGA acts as a virtual DRAM
device to feed data to the chip as a DRAM interface would.

The device was taped out in early 2022; samples are expected in September 2022.

To efficiently map DNN workloads to the generated hardware, techniques developed in section 3.2
were used.

4.2 Measurements: Inference

Measurements on inference tasks were performed for three benchmarks for the MLPerf suite:
ResNet 50 (classification), GNMT (language model), and Mask RCNN (image segmentation).
Measurements are reported for both batch processing and single inputs (e.g., single images). All
measurements used the pre-layout chip GDSII.

The measurements are reported in table 2. Note that the models perform different tasks and have very
different input sizes; thus, the latency and energy numbers cannot be compared between models.

4.3 Measurements: Training

Measurements on training tasks were performed for three benchmarks for the MLPerf suite: ResNet
50 (classification), GNMT (language model), and Mask RCNN (image segmentation).

Because the computation for the different phases has different properties — for example, in CNNs,
the forward and backward passes involve convolving a large tensor with a small convolutional kernel
to obtain a large tensor, whereas the weight update pass convolves two large tensors to obtain a small
one — the mappings obtained from the (see section 3.2) have different batch sizes for the passes.

22
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

As with inference measurements, we used the pre-layout chip GDSII.

The measurements are reported in table 3. Note that the models perform different tasks and have very
different input sizes; thus, the latency and energy numbers cannot be compared between models.

23
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

24
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

25
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5 CONCLUSIONS

This document reports on the key findings from grant FA8650-20-2-7007 (RTML), an effort to
develop techniques to compile DNN models directly to hardware. The flow consists of two
components: (i) generating hardware architecture from a template, described in section 3.1, and (ii)
mapping of the DNN computation to the generated hardware, described in section 3.2.

As part of the project, a proof-of-concept hardware implementation was generated and taped out in
the GF12 process. The chip supports both inference and training of deep learning models, achieving
efficiency through supporting sparse computation in both cases.

26
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

References

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the Gap to Human-
Level
Performance in Face Verification,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-
Level
Performance on ImageNet Classification,” in IEEE International Conference on Computer
Vision (ICCV), 2015.

[3] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural
networks,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” in NIPS, 2014.

[5] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke, “The Microsoft 2017
Conversational Speech Recognition System,” arXiv:1708.06073, 2017.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P.
Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[7]
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A small-
footprint high-throughput accelerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[9] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016, pp. 367–379.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N.
Boden, A. Borchers et al., “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” in ISCA, 2017.

[11] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE: efficient
inference engine on compressed deep neural network,” in ISCA, 2016.

[12] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X: An accelerator for sparse neural networks,” in MICRO, 2016.

27
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[13] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W.
Keckler, and W. J. Dally, “SCNN: An accelerator for compressed-sparse convolutional
neural networks,” in ISCA, 2017.

[14] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible Accelerator for
Emerging Deep Neural Networks on Mobile Devices,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2019.

[15] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “SparTen: A Sparse Tensor
Accelerator for Convolutional Neural Networks,” in MICRO, 2019.

[16] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and M. Lis, “Procrustes: a
dataflow and accelerator for sparse deep neural network training,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 711–
724.

[17] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 1, pp. 127–138, 2016.

[18] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W.
Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-sparse convolutional neural
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1708.04485

[19] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam,
“Shidiannao: Shifting vision processing closer to the sensor,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture (ISCA), ser. ISCA ’15. New
York, NY, USA: Association for Computing Machinery, 2015, pp. 92–104. [Online].
Available: https://doi.org/10.1145/2749469.2750389

[20] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and M. Lis, “Procrustes: a
dataflow and accelerator for sparse deep neural network training,” 2020. [Online].
Available:
https://arxiv.org/abs/2009.10976

[21] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:
Efficient inference engine on compressed deep neural network,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.01528

[22] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh, “Snapea:
Predictive early activation for reducing computation in deep convolutional neural
networks,” in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 662–673.

[23] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara, R. Venkatesan, B.
Khailany, S. W. Keckler, and J. Emer, “Timeloop: A systematic approach to dnn accelerator
evaluation,” in 2019 IEEE international symposium on performance analysis of systems and
software (ISPASS). IEEE, 2019, pp. 304–315.

28
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR),
2016, pp. 770–778.

[25] A. K. Smilde, P. Geladi, and R. Bro, Multi-way analysis: applications in the chemical
sciences.
John Wiley & Sons, 2005.

[26] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression for large-scale
scientific
data,” in 2016 IEEE international parallel and distributed processing symposium (IPDPS).
IEEE, 2016, pp. 912–922.

[27] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles:
Tensorfaces,” in European conference on computer vision (ECCV). Springer, 2002, pp.
447–460.

[28] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “Cubesvd: a novel approach to
personalized web search,” in Proceedings of the 14th international conference on World
Wide Web (WWW ’05), 2005, pp. 382–390.

[29] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up
convolutional neural networks using fine-tuned cp-decomposition,” arXiv preprint
arXiv:1412.6553, 2014.

[30] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear structure
within convolutional networks for efficient evaluation,” Advances in neural information
processing systems, vol. 27, 2014.

[31] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos,
“Tensor decomposition for signal processing and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[32] J. Kossaifi, A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar, “Tensor contraction
layers for parsimonious deep nets,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPR), 2017, pp. 26–32.

[33] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek, T. Norell, and Y. S.
Shao, “Cosa: Scheduling by constrained optimization for spatial accelerators,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).
 IEEE, 2021, pp. 554–566.

[34] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava, “Dmazerunner: Executing
perfectly nested loops on dataflow accelerators,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1–27, 2019.

29
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

[35] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha, P. Raina et al.,
“Interstellar: Using halide’s scheduling language to analyze dnn accelerators,” in

Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2020, pp. 369–383.

[36] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation

(PLDI), ser. PLDI ’91. New York, NY, USA: Association for Computing Machinery,
1991, pp. 30–44. [Online]. Available: https://doi.org/10.1145/113445.113449

[37] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J. Dally, J. Emer, C. T.
Gray, B. Khailany, and S. W. Keckler, “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 14–27. [Online]. Available:
https://doi.org/10.1145/3352460.3358302

[38] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,” Artificial intelligence,
vol. 6, no. 4, pp. 293–326, 1975.

30
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ACRONYM DESCRIPTION
PEs Processing Elements
MAC Multiply-and-Accumulate
NOC Network-on-Chip
GLB Global Buffer
SIMD Single-Instruction-Multiple-Data

