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EXECUTIVE SUMMARY  
 
Our team obtained excellent results in all of the official evaluations of the DARPA Learning with 
Less Labels (LwLL) program. We participated in the image classification, object detection, and 
machine translation tasks. For many of the checkpoints, we achieved the very best results across 
all performers, significantly outperforming the baseline provided by the JPL team. 
 
A key lesson learned to achieve these strong results was to focus on finding a good feature 
embedding, so that new tasks can be learned with just a few examples. When the LwLL program 
first started, the status quo in few-shot learning was largely dictated by sophisticated meta-learning 
techniques. Our ECCV 2020 papers “Rethinking few-shot classification: is a good embedding all 
you need?” [1] and “A broader study of cross-domain few-shot learning” [2] have conveyed to the 
community that using a good learned embedding model can be more effective than sophisticated 
meta-learning algorithms. In addition, when evaluated in our proposed cross-domain few-shot 
learning benchmark, SOTA meta-learning methods at the time were outperformed in relation to 
simple fine-tuning by 12.8% average accuracy. 
 
As a result of these findings, we focused our research efforts on techniques to identify a good 
feature embedding, including self-supervised representation learning and novel model 
architectures. Specifically, to facilitate learning with less data (in addition to less labels), and to 
mitigate important shortcomings related to privacy, ethics, and copyright attribution, we explored 
representation learning based on synthetic data generated by graphics simulators for vision, and 
procedural tasks for machine translation. We have also proposed novel approaches for 
representation learning across domains, and across different modalities such as vision, audio, and 
language, all of which have strong potential to be applied in real-world use cases within the scope 
of the LwLL program. A good feature embedding also depends on the model architecture. We have 
proposed novel transformer models for both image and video classification, with strong 
performance in standard datasets and capabilities to transfer across a wide range of downstream 
tasks. Finally, we have conducted research on other topics related to LwLL, including transfer 
learning and generative data augmentation. Overall, our research has led to more than 20 
publications in the most prestigious AI conferences around the world. 
 
We would like to highlight that several of the research works described above have been integrated 
into our high-performing systems delivered to DARPA for the official program evaluations. For 
example, we have integrated our RegionViT architecture [3] (ICLR 2022), trained our models 
using both real and synthetic data [4] (CVPR 2022), and performed representation learning using 
both labeled and unlabeled data (similar to our Dynamic Distillation Network [5], NeurIPS 2021, 
and Task-Adaptive Feature Sub-Space Learning [6], ECCV 2020). Our proposed cross-domain 
few-shot learning benchmark [2] (ECCV 2020) has been used by other LwLL performers and the 
external community. 
 
Beyond research accomplishments and system deliverables, we have organized a tutorial at ICCV 
2019 and a workshop at CVPR 2020 on visual learning with limited labeled data. Both events 
received quite significant attention by the community and involved the participation of several 
performers of the DARPA LwLL program. We have also developed interactive demos to showcase 
our research to transition partners in the final PI meeting. 
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1. INTRODUCTION: IS A GOOD EMBEDDING ALL YOU NEED?  
 

When we started our participation in the LwLL program, meta-learning was the prevailing 
approach for few-shot learning. The idea was to design “learning to learn” algorithms that could 
quickly adapt to test time tasks with limited data and low computational cost. 

 
While significant progress has been made along this direction, we have shown that a very simple 
baseline based on learning a supervised or self-supervised representation on the meta-training set, 
followed by training a linear classifier on top of this representation (Figure 1), outperformed state-
of-the-art few-shot learning methods (Figure 2). An additional boost was achieved by self-
distillation. This demonstrates that a good learned embedding model can be more effective than 
sophisticated meta-learning algorithms.  More details can be found in our ECCV 2020 paper [1], 
which was the basis for our Phase I image classification system. 
 

 
Figure 1. We use a simple feature extractor based on a pre-trained embedding model and then 

train a linear model using just a few labeled images. 

 

 
Figure 2. Average few-shot classification accuracies with 95% confidence intervals on miniImageNet and tieredImageNet 

In parallel to this work, we have proposed a new benchmark for cross-domain few-shot learning 
[2], analyzing the transferability of models pre-trained on ImageNet to domains of varying 
dissimilarity from natural images, including medical, aerial, and agriculture domains. We have 
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conducted a comprehensive experimental analysis on the proposed benchmark to evaluate state-
of-the-art meta-learning approaches, transfer learning approaches, and newer methods for cross-
domain few-shot learning. The surprising results demonstrate that state-of-art meta-learning 
methods are outperformed by earlier meta-learning approaches, and all meta-learning methods 
underperformed in relation to simple fine-tuning by 12.8% average accuracy. In some cases, meta-
learning even underperformed networks with random weights. 
 
These results served as motivation to adjust our research direction to focus on finding a good 
feature embedding by exploring novel representation learning methods and model architectures. 
In particular, we proposed novel methods for representation learning based on synthetic data 
(section 2.1), across domains (section 2.2), and across modalities (section 2.3). We have also 
proposed novel model architectures with a goal of finding a good feature embedding for LwLL 
(section 2.4) and conducted research on transfer learning (section 2.5). These works have been 
published in the most prestigious Artificial Intelligence conferences around the world and several 
of them have been integrated into our system deliverables, as part of the DARPA LwLL 
evaluations. 
 
 
1.1 Performance on DARPA LwLL evaluations 
 
Our team participated in the machine translation, image classification, and object detection 
evaluations. Figure 3 compares the performance of our system submissions for the final evaluation 
of the DARPA LwLL program against the baseline system provided by JPL. We have achieved 
quite significant improvements over the baseline, as can be seen in the plots. 
 
 

 
Figure 3. Performance of our system in comparison with JPL baseline (final evaluation) 
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We would like to emphasize that several of our papers published in top conferences during the 
LwLL program have been integrated into the systems we delivered for the DARPA evaluations 
[1][3][4][5]. See section 3 for more details about our system deliverables. 
 
 

2. METHODS, ASSUMPTIONS, AND PROCEDURES 
 
2.1 Representation Learning based on Synthetic Data  
 
Learning a feature embedding from synthetic data is important for many reasons. Firstly, it allows 
us to learn with “less data”, since we assume synthetic data can be generated on the fly by a 
simulator. Secondly, leveraging synthetic data can mitigate many of the shortcomings inherent in 
real data, including privacy, bias, data protection, and copyright attribution. Finally, embeddings 
from synthetic data can be used in tandem with features learned from real data, as demonstrated in 
our image classification system delivered to DARPA. In this section, we discuss our research on 
synthetic tasks and data for both image classification and machine translation. 
 
2.1.1. Synthetic Data Pre-training for Image Classification 
 
We study, for the first time, the transferability of pre-trained models based on synthetic data 
generated by graphics simulators to downstream tasks from very different domains. In using such 
synthetic data for pre-training, we find that downstream performance on different tasks is favored 
by different configurations of simulation parameters (e.g. lighting, object pose, backgrounds, etc.), 
and that there is no one-size-fits-all solution. For the best performance, it is thus better to tailor 
synthetic pre-training data to a specific downstream task. To this end, we propose Task2Sim, a 
unified model that maps downstream task representations to optimal simulation parameters to 
generate synthetic pre-training data for them. Task2Sim learns this mapping by training to find the 
set of best parameters on a set of “seen” tasks. Once trained, it can then be used to predict best 
simulation parameters for novel “unseen” tasks in one shot, without requiring additional training.  
 
Figure 4 shows more details about our approach. During training, a batch of “seen” tasks is 
provided as input. Their task2vec vector representations are fed as input to Task2Sim, which is a 
parametric model (shared across all tasks) mapping these downstream task2vecs to simulation 
parameters, such as lighting direction, amount of blur, background variability, etc. These 
parameters are then used by a data generator (in our implementation, built using the Three-D-
World platform) to generate a dataset of synthetic images. A classifier model then gets pre-trained 
on these synthetic images, and the backbone is subsequently used for evaluation on specific 
downstream tasks. The classifier’s accuracy on this task is used as a reward to update Task2Sim’s 
parameters. 
 
Given a budget in number of images per class, our extensive experiments with 20 diverse 
downstream tasks (see our CVPR 2022 paper [4] for details) show Task2Sim’s task-adaptive pre-
training data results in significantly better downstream performance than non-adaptively choosing 
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simulation parameters on both seen and unseen tasks. It is even competitive with pre-training on 
real images from ImageNet. 
 

 
Figure 4. Overview of our Task2Sim approach for pre-training models with synthetic data, which is 

adaptively generated based on the input task to maximize downstream task performance. 

We have also explored synthetic data pre-training for video classification [7] and visual question-
answering [8]. In addition, we have shown that it is possible to pre-train models with short 
procedural programs (shaders) [9], which offers better scalability and efficiency compared to data 
generation based on graphics simulators. 
 
2.1.2. Synthetic Pre-Training Tasks for Neural Machine Translation 
 
As motivated above, pre-training models with web-scale crawled corpora can lead to issues of 
toxicity and bias, as well as copyright and privacy concerns. A promising way of alleviating such 
concerns is to conduct pre-training with synthetic tasks and data, since no real-world information 
is ingested by the model. Our ACL 2023 paper [10] proposes several novel approaches to pre-
training NMT models with different levels of lexical and structural knowledge, including (i) 
generating obfuscated data from a large parallel corpus, (ii) concatenating phrase pairs extracted 
from a small word-aligned corpus, and (iii) generating synthetic parallel data without real human 
language corpora. Experiments on multiple language pairs show that pre-training benefits can be 
realized even with high levels of obfuscation or purely synthetic parallel data. We give a brief 
overview of two of our synthetic pre-training tasks below. 
 
Our first task (pb-trees) generates purely synthetic parallel sentence pairs from permuted aligned 
binary trees of “nonsense” symbols. The tree structure is intended to model some aspects of the 
processes that occur during natural language translation, e.g. the reordering of contiguous spans. 
An example pb-trees synthetic sentence pair is shown in Figure 5. 
 

 
Figure 5. Synthetic sentence pair created by permuting aligned binary trees (pb-trees). 

Our second task (phrase-cat) first extracts a set of aligned phrase pairs from a small fine-tuning 
parallel corpus. We then generate new synthetic parallel data by a simple concatenation of 
uniformly sampled phrase pairs. Although the boundaries between phrases are frequently 
ungrammatical, useful information for pre-training NMT models such as local word order and 
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alignments are preserved within each phrase pair. Figure 6 shows an example synthetic sentence 
pair created by concatenation of phrases extracted from a small Indonesian-to-English parallel 
corpus. 
 
 

 
 

Figure 6. Synthetic sentence pair created by concatenating aligned phrases (phrase-cat). 

 
We evaluate our NMT synthetic pre-training tasks on three low-resource language pairs with 
relatively small fine-tuning set sizes: Burmese-to-English (my-en; 18.0k), Indonesian-to-English 
(id-en; 24.5k), and Turkish-to-English (tr-en; 207.7k). Figure 7 shows improvements in 
BLEU scores for both the pb-trees and phrase-cat synthetic pre-training tasks compared to a naïve 
baseline that trains a randomly initialized model using only the fine-tuning data. We call attention 
to the fact that these gains over the baseline are achieved without any additional monolingual or 
parallel labeled data. 
 

 

Figure 7. Synthetic pre-training tasks vs. fine-tuning a randomly initialized model (BLEU). 

 
2.2 Representation Learning across Domains  

 
One of the more powerful qualities of human cognition is the ability to apply our sensory signals 
in other previously unseen domains with little or no labeled data. This quality of “cross-domain 
generalization” is a necessary trait in many real-world applications. In our series of works on this 
topic, we have covered numerous aspects of this important and impactful research problem, 
including: (i) self-supervised domain adaptation and generalization without any paired data (CVPR 
2022) [11]; (ii) cross-domain few-shot learning allowing leveraging other domains pre-training 
(ECCV 2020, NeurIPS 2021) [2][5]; and (iii) enhancing cross-domain transferability via 
contrastive learning (ICCV 2021) [12].  
 
In our paper “Unsupervised domain generalization by learning a bridge across domains” [11] we 
aim to find the best representation for images across domains by mapping all domains to a joint 
“bridge” domain in which the inter-domain variance is minimal. In contrast to most cross-domain 
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papers which utilize the source domain 
for supervision, we apply a relatively 
new and very practical methodology of 
unsupervised domain generalization 
(UDG), where we have no training 
supervision in the source nor in the 
target domains. We learn the 
representation by leveraging our Bridge 
Across Domains (BrAD) which is an 
auxiliary domain accompanied by a set 
of semantics preserving visual 
mappings to BrAD from each of the 
training domains. The BrAD and 
mappings to it are learned jointly with a 
contrastive self-supervised 
representation model that semantically 
aligns each of the domains to its BrAD-
projection, and hence implicitly drives 
all the domains, including unseen ones, 
to semantically align to each other (see 
Figure 8). In this work, we show how 
using an edge-regularized BrAD 
achieves significant gains across multiple benchmarks and a range of tasks, including UDG, few-
shot unsupervised domain adaptation, and unsupervised generalization across multi-domain 
datasets, including generalization to unseen domains and classes.  
 
 
In another work “Dynamic distillation network for cross-domain few-shot recognition with 
unlabeled data” [5], we tackle the problem of cross-domain few-shot learning where there is a 
large shift between the base and target domain. The problem of cross-domain few-shot recognition 
with unlabeled target data is largely unaddressed in the literature (see Figure 9). STARTUP was 
the first method that tackles this problem using self-training. However, it uses a fixed teacher 
pretrained on a labeled base dataset to create soft labels for the unlabeled target samples. As the 
base dataset and unlabeled dataset are from different domains, projecting the target images in the 
class-domain of the base dataset with a fixed pretrained model might be sub-optimal. We propose 
a simple dynamic distillation-based approach to facilitate unlabeled images from the novel/base 
dataset. We impose consistency regularization by calculating predictions from the weakly-
augmented versions of the unlabeled images from a teacher network and matching it with the 
strongly augmented versions of the same images from a student network. The parameters of the 
teacher network are updated as exponential moving average of the parameters of the student 
network. We show that the proposed network learns representation that can be easily adapted to 
the target domain even though it has not been trained with target-specific classes during the 
pretraining phase. Our model outperforms the current state-of-the art method by 4.4% for 1-shot 
and 3.6% for 5-shot classification in the BSCD-FSL benchmark, and also shows competitive 
performance on traditional in-domain few-shot learning task. 

Figure 8. An illustration of our Bridge Across Domains (BrAD) 
approach. 
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2.3 Representation Learning across Modalities 
 
Recent studies popularized the use of massive scale free-form text as a means of cross-modal 
supervision, unlocking use cases such as zero-shot classification, which is very relevant within the 
scope of the LwLL program. We have done research work in the domain of cross-modal 
representation learning: (i) using self-training, multiple-instance learning, and language side 
expansion for improved zero-shot recognition in videos [13]; (ii) multiple-instance learning for 
improved expert domains cross-modal alignment (NeurIPS 22) [14]; (iii) continual, data-free, 
improvement without forgetting of vision & language models (CVPR 23) [15]; (iv) text-side 
augmentation (CVPR 2023) [16] and synthetic data  for enhancing zero-shot compositional 
reasoning capabilities in Vision & Language models [17]; and (v) effective cross-modal grounding 
(ICCV 21) [18]. Bellow we describe in more detail two of our representative publications along 
this direction. 
 
Foundation Models (FMs) have demonstrated unprecedented capabilities including zero-shot 
learning, high fidelity data synthesis, and out of domain generalization. However, as we show in 
our paper “FETA: Towards Specializing Foundation Models for Expert Task Applications” [14], 
FMs still have poor out-of-the-box performance on expert tasks (e.g. retrieval of car manuals 
technical illustrations from language queries), data for which is either unseen or belonging to a 
long-tail part of the data distribution of the huge datasets used for FM pre-training. This underlines 
the necessity to explicitly evaluate and finetune FMs on such expert tasks, arguably ones that 
appear the most in practical real-world applications. In our work, we propose a first of its kind 
FETA benchmark built around the task of teaching FMs to understand technical documentation, 
via learning to match their graphical illustrations to corresponding language descriptions. Our 
FETA benchmark focuses on text-to-image and image-to-text retrieval in public car manuals and 
sales catalogue brochures. FETA is equipped with a procedure for completely automatic annotation 
extraction, allowing easy extension of FETA to more documentation types and application domains 
in the future. Our automatic annotation leads to an automated performance metric shown to be 
consistent with metrics computed on human-curated annotations (also released). We provide 

Figure 9. Our cross-domain few-shot learning setting with additional unlabeled images. 
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multiple baselines and analysis of popular FMs on FETA leading to several interesting findings 
that we believe would be very valuable to the FM community, paving the way towards real-world 
application of FMs for practical expert tasks currently “overlooked” by standard benchmarks 
focusing on common objects.  
 

 
Figure 10. A comparison of the FETA dataset to common Vision and Language datasets. 

 
In another work [16], we examine the abilities of 
recent Foundation Models understanding of 
complex concepts. Our paper “Teaching Structured 
Vision & Language Concepts to Vision & Language 
Models”  introduces the collective notion of 
Structured Vision & Language Concepts (SVLC) 
which includes object attributes, relations, and states 
which are present in the text and visible in the image. 
While Vision and Language (VL) models 
demonstrated remarkable zero-shot performance in 
a variety of tasks, some aspects of complex language 
understanding remain a challenge. Recent studies 
have shown that even the best VL models struggle 
with SVLC. A possible way of fixing this issue is by 
collecting dedicated datasets for teaching each 
SVLC type, yet this might be expensive and time-
consuming. Instead, we propose a more elegant 
data-driven approach for enhancing VL models' 
understanding of SVLCs that makes more effective use of existing VL pre-training datasets and 
does not require any additional data. While automatic understanding of image structure still 

Figure 11. An illustration of our method for text 
augmentations to improve SVLC understanding. 



Approved for Public Release; Distribution Unlimited. 
10 

 

remains largely unsolved, language structure is much better modeled and understood, allowing for 
its effective utilization in teaching VL models. We propose various techniques based on language 
structure understanding that can be used to manipulate the textual part of off-the-shelf paired VL 
datasets (see details in [16]). VL models trained with the updated data exhibit a significant 
improvement of up to 15% in their SVLC understanding with only a mild degradation in their 
zero-shot capabilities both when training from scratch or fine-tuning a pre-trained model.  
 
2.4 Novel Model Architecture: RegionViT  
 
Vision transformer (ViT) has recently shown its strong capability in achieving comparable results 
to convolutional neural networks (CNNs) on image classification. However, vanilla ViT simply 
inherits the same architecture from the natural language processing directly, which is often not 
optimized for vision applications. For example, the transformer has an isotropic network structure 
with a fixed number of tokens and unchanged embedding size, which loses the capability to model 
the context with different scales and allocates computations at different scales. Another critical 
bottleneck of the transformer is that the self-attention module has a quadratic cost in memory and 
computation with regard to the sequence length (i.e., the number of tokens). This issue is even 
worse in ViT as images are 2-D, suggesting a quadratic relationship between the number of tokens 
and image resolution. As a result, ViT indicates a quadruple complexity w.r.t image resolution. The 
highly compute- and memory-intensive self-attention makes it challenging to train vision 
transformer models at fine-grained patch sizes.  Motivated by this, we propose a new architecture 
that adopts the pyramid structure and employ novel regional-to-local attention rather than global 
self-attention in vision transformers. Specifically, our approach first divides the input image into a 
group of non-overlapping patches of large size (e.g., 28×28), on which regional tokens are 
computed via linear projection. Similarly, local tokens are created for each region using a smaller 
patch size (e.g., 4×4). We then use a standard transformer to process regional and local tokens 
separately. To enable communication between the two types of tokens, we first perform self-
attention on regional tokens (regional attention) and then jointly attend to the local tokens of each 
region including their associated regional token (local attention). By doing so, regional tokens pass 
global contextual information to local tokens efficiently while being able to effectively learn from 
local tokens themselves. Therefore, even though local self-attention confines the scope in a local 
region but it can still receive global information. For clarity, we represent this two-stage attention 
mechanism as Regional-to-Local Attention, or R2L attention for short (see Figure 12 for an 
illustration). Since both regional and local attention involve much fewer tokens, our R2L attention 
requires substantially less memory than regular global self-attention used in vision transformers. 
For example, in our default setting, the memory saving using R2L attention can be up to as much 
as 73%. We demonstrate the effectiveness of our approach on image classification and several 
downstream vision tasks including object detection and action recognition. We employ RegionViT 
in our image classification system which is described later in Section 4.1. For more details on 
RegionViT, check our ICLR 2022 paper [3]. 
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Figure 12. Regional-to-Local Attention for Vision Transformers. 

 
 
 
2.5 Transfer Learning 
 
Currently, transfer learning methods rely on manual decisions for questions such as: which pre-
training model (feature embedding) to select? Which layers to freeze or fine-tune? Which features 
to share across tasks? Throughout the program, we have conducted research to automate these 
decisions. 
 
Specifically, we proposed an adaptive fine-
tuning approach, called SpotTune, which finds 
the optimal fine- tuning strategy per instance for 
the target data. In SpotTune, given an image 
from the target task, a policy network is used to 
make routing decisions on whether to pass the 
image through the fine-tuned layers or the pre-
trained layers (see Figure 13). We conducted 
extensive experiments to demonstrate the 
effectiveness of our proposed approach. Our 
method outperforms the traditional fine-tuning 
approach on 12 out of 14 standard datasets. We 
also compared SpotTune with other state-of-
the-art fine-tuning strategies, showing superior 
performance. On the Visual Decathlon datasets, 
our method achieves the highest score across the 
board without bells and whistles. For more 
details about SpotTune and results, see our 
CVPR 2019 paper [19]. 
 

Figure 13. Our proposed method, SpotTune, automatically 
decides which layers of the network model should be fine-

tuned to improve transfer learning performance. 
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We have also extended SpotTune to multi-task learning (see Adashare, NeurIPS 2020 [20]) and 
conducted a comprehensive analysis related to the impact of contrastive representations in transfer 
learning performance [12]. 
 
Finally, we have conducted research on pre-trained model selection. Figure 14 shows an analysis 
of the effectiveness of model selection considering the size of the source training set and similarity 
to the target domain. See more details in [21]. Our work on model selection has been integrated 
into our image classification and objected detection systems delivered to DARPA, as detailed later. 
 
 

 
Figure 14. Relationship of performance of the target model to size of the source dataset (X-axis) and its 

similarity with source dataset (Y -axis) for 9 targets over 8 sources 

 
 

3. SYSTEM DELIVERABLES, RESULTS, AND DISCUSSION 
 
3.1 Image Classification  
 
In this section, we will describe our phase-3 image classification system. Our design choices have 
followed the research outcomes we obtained in Section 2. First, we will discuss the various 
architectural details of our system, then we will show how we leverage synthetic data in our system 
and other training details. Finally, we show the performance on the development datasets with 
analysis through ablation studies. We mainly focus on our motivation of choosing a good 
embedding and try to resonate with it through innovations in model architecture and training data. 
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3.1.1 System Overview 
 

In Figure 15, we show the overview of the 
image classification system. The system 
backbone consists of an ensemble group of 
four different model architectures, namely, 
from left-to-right, – M1: EfficientNet-V2-S 
[22] M2: IBM RegionViT-S [3], M3: 
SwinV2 Transformer [23], M4: EfficientNet-
V2-S [22]. The advantages of convolutional 
neural networks (CNNs) over vision 
transformers and vice versa has been well 
studied in the computer vision literature [24]. 
While the sliding-window strategy of 
training CNNs can learn feature embeddings 
with information like corners and lines, self-
attention in transformers can capture information across distant image locations. In order to capture 
the best of both worlds and harness complementary information from different models, our system 
is comprised of state-of-the-art architectures belonging to both categories. We follow a two-step 
training process in deploying our system: (1) representation learning through pretraining and (2) 
finetuning for few-shot classification. As shown in the figure, for pretraining, we consider all the 
available stage data (base/adapt) as unlabeled and pretrain models M1, M2, and M3 using the self-
supervised DINO loss [25]. On the other hand, we use synthetic data to pretrain the model M4 
with full supervision, as we already have the labels for all the images. Once we have all the 4 
models pretrained, for the first 3 checkpoints, we freeze the backbone of each model, which makes 
each of the models act as a feature extractor. Once, we have the features extracted, for few-shot 
classification, we employ a linear support vector classifier on top of the extracted features and 
obtain the predictions for each of the four models. We then average the predictions from all the 
models to obtain the final ensemble prediction. In the following sections, we will describe each of 
the components in detail. 
 
 
3.1.2 Leveraging Synthetic Data 
 
In our system we explore the use of synthetic 
data generated using the Task2Sim framework 
described in Section 2.1. We use the best 
parameters from Task2Sim optimization and 
pretrain an EfficientNet-V2 model in a fully-
supervised fashion using cross-entropy loss as 
shown in Figure 16. The pretraining is performed as an offline step and once done, the Synthetic 
model is used as a feature extractor in the further fine-tuning steps.  
 
 
 
 

 

Figure 15. Overview of the image classification system. 

Figure 16. Overview of the synthetic pretraining step. 
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3.1.3 Self-supervision through DINO for better initialization 
 
As mentioned above, in the pretraining step, we employ DINO 
loss for self-supervision pretraining of all the models. As shown 
in Figure 17, DINO leverages two different views or 
augmentations of the same image and passes them through a 
student and a teacher network of the same architecture. The 
similarity of the output predictions is measured using a cross-
entropy loss. The output of the teacher network is centered and 
gradients are not backpropagated through it; instead, exponential 
moving average is used for updating the parameters of the teacher 
network. For more details, please refer to the DINO paper by 
Caron et. al. [25]. We pretrain models M1, M2, and M3 using 
DINO considering all the available stage data as unlabeled. E.g. 
in the base stage, we take all the images and pretrain the models using DINO, while in the adapt 
stage we take all the images in adapt as well as base (only if the class overlap between base and 
adapt is 75%, else we consider only adapt data) and pretrain the models using DINO. Once 
pretrained, we use the weights as initialization for the few-shot finetuning ahead. Figure 18 shows 
the effect of using DINO pretraining on the three development tasks. As can be seen, DINO helps 
boost the performance considerably for all the three datasets and hence provides a robust 
initialization for few-shot finetuning. 
 
 
 
 
 
 
 
 
 

3.1.4 Dynamic Model Selection for Later Checkpoints 
 
We use the four-model ensemble group only for the first three checkpoints where the labeled data 
available to us is very low. As we progress to the later checkpoints, the amount of labeled data 
increases and hence, instead of freezing the backbones of all the model architectures, in order to 
achieve good performance, we need to leverage full-finetuning of these models. But, with a given 
time constraint, finetuning all the four models is not feasible; hence, we adopt a dynamic model 
selection strategy for the checkpoints 4 and beyond. We start with 4 models: 2 copies of 
EfficientNet-V2 (one initialized with DINO and one with ImageNet weights), and 2 copies of 
RegionViT (one initialized with DINO and one with ImageNet weights). We then perform a 
logistic regression prediction using all the 4 models and select the best 2 models for further 

 Figure 17. Overview of self-supervised 
pretraining using DINO. Figure 

borrowed from Caron et. al. [25]. 

Figure 18. Comparison of performance with and without self-supervised pretraining with DINO. 

(a) Mars Surface (b) DomainNet Clipart (c) CIFAR-100 
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training. After selection, we unfreeze the backbone and train the models on the available labeled 
data for the checkpoint. In addition to this, we also incorporate an adaptive learning rate selector, 
which basically performs a few steps of training on these models, gets validation accuracy and 
chooses the learning rate values providing the best validation accuracy. This design is important 
as we do not know what type of data the model gets to see, and as different distributions of data 
are sensitive to different learning rate values. 
  
3.1.5 Performance on Development Datasets 
 
We extensively validate our system on multiple development datasets covering a wide variety of 
data. From high domain shift datasets like Mars Surface, Mars Curiosity, to large-scale datasets 
like DomainNet, in Figure 19, we report the performance of our system and compare it with the 
JPL baseline and our Phase-2 system. As can be observed, the Phase-3 system provides superior 
accuracy as compared to the Phase-2 system and the JPL baseline. We mainly attribute this to the 
complementary information from each of the models in the ensemble group which is harnessed 
for improved classification performance on all the datasets. 
 

    
 
 
 
3.1.6 Ablation Studies 
 
In order to analyze the contribution of each of the models in the ensemble group, in Figure 20 and 
Figure 21, we remove a given model from the system and then observe the change in performance 

Mars Surface Mars Curiosity CIFAR-100 DomainNet-Real 

Without Synthetic Model Without SwinV2 Transformer Without RegionViT 
Figure 20. The above plots, from left to right, show accuracy by removing the Synthetic model, the SwinV2 

transformer, and the RegionViT model, respectively, on CIFAR-100 dataset. 

Figure 19. Performance on development datasets. Plots show the accuracy of the JPL baseline, Phase-2 system, and 
Phase-3 system on, from left-to-right, Mars Surface, Mars Curiosity, CIFAR-100, and DomainNet-Real datasets. 
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in CIFAR-100 and EuroSAT dataset, respectively. As can be seen from Figure 20, for CIFAR-100 
dataset, removing the Synthetic model and the SwinV2 transformer results in a considerable drop 
in accuracy, while removing the RegionViT model shows slight decrease in the performance. This 
implies that CIFAR-100 benefits greatly from the Synthetic model and the SwinV2 transformer as 
compared to the RegionViT model. 
 
On the other hand, as can be observed from Figure 21, for EuroSAT dataset, removing the Synthetic 
model and the SwinV2 transformer slightly reduce the performance, while removing the 
RegionViT model from the system drastically drops the accuracy. This tells us the importance of 
the RegionViT model for the EuroSAT dataset. 

 
These observations tell us that different models can help different datasets in different magnitudes 
and corroborate our motivation of finding a good embedding by hitchhiking an ensemble of strong 
models. 
 
 

3.2 Object Detection  
 
3.2.1. Overview 
 
Our object detection system (Figure 22) is based on an ensemble of models, including those 
pretrained on the whitelist datasets. In the recurrent training scheme of the LwLL program, our 
flow consists of (1) initial performance evaluation of the models, (2) training on the available 
labels, with data-dependent hyper-parameters, in a semi-supervised setting, and (3) merging the 
predictions of the models on test images for final output. 
 

Figure 21. The above plots, from left to right, show accuracy by removing the Synthetic model, the SwinV2 
transformer, and the RegionViT model, respectively, on EuroSAT dataset. 

 

Without Synthetic Model Without SwinV2 Transformer Without RegionViT 
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Figure 22. Overview of our object detection system. 

 
3.2.2 Main features of the system 
 
Dynamic model selection 
Our dynamic model selection mechanism consists of performance evaluation of the ensemble 
models prior to the training at each checkpoint, using the new available labels as validation data. 
Post-training, this evaluation is used to weight the models for predictions merging, in the simplest 
case just selecting the best model for the current checkpoint. Furthermore, the implemented logic 
accounts for possible model divergence, stopping its training and removing from the ensemble, 
and also trims the ensemble towards the last (longest) checkpoints, retaining only the best-
performing models. 
 
Automatic hyper-parameter selection 
The following parameters are critical for any object detection system performance: (1) learning 
rate of the optimizer, (2) image sizes used for training/inference, (3) number of iterations for the 
training. These parameters depend on the dataset, but properties of the target datasets are a-priori 
unknown. We perform automatic selection of these hyperparameters during the training.  
  
Learning rate, (LR):  a few copies of a model with 10x-factor difference in LR are used in initial 
(fast) checkpoints, and the best version is retained.  
 
Image sizes: Batch size (per GPU) depends on the image resolution used. So, if the original image 
sizes are large, we decrease the batch size in order to maintain the resolution and still fit into GPU 
memory.  
 
Number of iterations: it usually depends linearly on the dataset size, but in case of the LwLL 
regime with exponentially increasing data sizes, such approach will lead to significantly high 
number of iterations. Therefore, we use a sublinear regime for the number of iterations as a 
function of the number of samples in each checkpoint. 
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Semi-supervised learning (SSL) 
Initially, we have attempted to deploy the standard Unbiased 
Teacher (UBT) algorithm [26] for model training at early 
checkpoints (where it is still feasible to use SSL, due to time 
limitations), but this did not lead to notable improvements. In 
Phase 3, we have implemented an ad-hoc version of SSL training, 
based on ideas of UBT and specialized image augmentation, 
featured in recent literature [27][28]. Specifically, pseudolabels, 
generated with a fully-supervised model are used to augment the 
original training data by the mixup technique, gluing in the object 
crops from unlabeled images. This operation is followed by affine 
transformations and color-space augmentations. While such 
operation is computationally expensive to apply for all LwLL 
checkpoints, it yields good improvements in first few (low-labels) 
checkpoints (Figure 23). 
 
 
Additional architectures 
In Phase 3, we added the transformer-based SWIN architecture, 
in addition to ResNet and EfficientNet backbones as used before. 
This has enabled higher performance across the datasets (Figure 
24). 
 
Support for aerial data 
During the system development, in the period of evaluation by 
transition partners, we have extended the system support to aerial 
data, which has proved challenging for the phase 2 system. 
Augmentation by rotation of the training images by 90-degrees 
steps has led to performance improvements (such augmentation 
is natural for aerial data). We also found that longer training 
protocols and validation-based selection of best training 
checkpoint are valuable for such data. 
 
 
3.2.3. Performance of Phase-2 vs Phase-3 systems 
In the final evaluation, our system has shown a strong performance superior to the JPL baseline, 
which has justified the steps taken in the development. For most development datasets (provided 
by the program and our own), we observe performance increase relative to the previous version of 
the system (Figure 25). Here the blue graphs correspond to previous phase 2 system and orange 
graphs are for the latest system. In the first checkpoints, the SSL mechanism proves more effective, 
while stronger backbone and longer protocols have provided improvements along all checkpoints. 
Some performance drops, observed for aerial datasets in some checkpoints, are prevented by in-
training validation for best iteration selection. However, for some checkpoints of some datasets, 

Figure 23. Performance improvement 
due to SSL training 

Figure 24. Performance with 
backbones of different architectures. 
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the phase-2 system yields better results. We observe gains due to stronger backbone (SWIN) across 
the checkpoints, and gains for aerial data due to rotation-based augmentation. Overall, we have 
developed a strong and robust object detection system that can handle different dataset types with 
reduced expert supervision. 
 

 
 

Figure 25. Performance graphs for phases 2, 3 of our system and the baseline (JPL) 
system, for some of the development datasets. 

 
3.3 Machine Translation 
 
For our Phase 3 MT submission, we developed a two-stage pre-training with translation task 
customization pipeline. The first stage consists of large-scale monolingual language model (LM) 
pre-training. We use the mBART-50 model which is trained as a sequence-to-sequence denoising 
autoencoder using the BART [29] objective on a large corpus of monolingual data covering 50 
individual languages [30]. In the second stage of our pipeline, we customize the pre-trained 
mBART model for the task of translation using parallel data from the LwLL whitelist. The mBART 
model uses source and target language code embeddings to support translation between any two 
languages. Any language pairs excluded from the whitelist (which includes the languages of the 
development and evaluation tasks) represent zero-shot directions at the beginning of a LwLL 
session. When parallel data is presented to the model we tokenize and prepend a language code 
prefix as shown in Figure 26 (left). The mBART-50 model includes pre-trained language code 
embeddings for only 50 languages, but our MT system must be able to handle any source language. 
For example, Figure 26 (right) shows that 31 of the languages in the LwLL whitelist do not have 
a corresponding language code in mBART-50. For those languages, we borrow as a default the 
language code embedding from French. 
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Figure 26. Tokenization with language codes (left) and whitelist coverage by model (right). 

 
The main advantage of our two-stage pipeline is that it achieves strong transfer learning from both 
monolingual pre-training and translation task customization. For many language pairs, our model 
obtains good translation quality even in zero-shot settings. 
 
 
3.3.1 MT System Evaluation and Analysis 
 
Figure 27 shows BLEU scores for the three LwLL development tasks. We compare the 
performance of our Phase 2 (orange) and Phase 3 (gold) submissions against the JPL baseline 
(blue). Our P3 system significantly outperformed our P2 system on all three tasks. Our P2 system, 
a 55-languages-to-English sequence-to-sequence transformer trained using only the whitelisted 
parallel data and therefore without the advantage of large-scale monolingual pre-training, 
struggled on the sin-eng task because there were no useful related languages in the LwLL 
whitelist. Our P3 system obtains much better BLEU scores on this task because it has the advantage 
of pre-training on a large collection of monolingual data that includes Sinhala allowing it to learn 
useful representations and embeddings. 
 
 

   

Figure 27. IBM MT progress: P3 vs. P2 vs. JPL baseline on LwLL development tasks. 

 
Figure 28 shows that the early checkpoints of the base stage most clearly demonstrate the 
advantage of our pre-training + translation task customization approach. For example, our P3 
system improves by an average of over 27 BLEU vs. our P2 system on the sin-eng task.  
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Figure 28. Mean change in BLEU for early vs. later checkpoints on LwLL development tasks. 

 
Figure 29 compares mBART-25 and mBART-50 against our P3 model customized for the 
translation task on the first four checkpoints of each development task. We first compare the 
performance of models without parallel data customization: mBART-25 and mBART-50. For 
sin-eng, which is covered by both mBART-25 and mBART-50, the models have similar 
performance. For fas-eng and pol-eng, which are included in mBART-50 but not mBART-
25, there is a clear performance gap. Monolingual pre-training language coverage is thus an 
important factor that determines how effectively the model can learn to translate when presented 
with parallel data for a previously unseen language pair. Comparing the monolingually trained 
models against our P3 multilingual NMT pre-trained model (mBART-50-mNMT) shows that 
parallel data from other language pairs can also provide strong transfer learning capabilities. Our 
P3 model has much higher BLEU scores in the early checkpoints compared to standard off-the-
shelf mBART pre-trained models. 
 
 
 

   

Figure 29.  Pure monolingual pre-training vs. translation task customization. 

 
Figure 30 shows the gains made by our P3 system over our P2 system on the official evaluation 
tasks. We see BLEU score improvements on all three tasks. Task 2, which was very difficult for 
our P2 system, shows the most improvement. Task 3 is still difficult for our model: although our 
P3 system did improve, we still lag the baseline in some checkpoints. In the PI meeting, the source 
language for Task 3 was revealed to be Hungarian. This explains the difficulty of this task for our 
model: Hungarian is not included in mBART-50 pre-training. Performance on this task could have 
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been improved by extending the model to cover additional languages, or by choosing a pre-trained 
model such as mT5 [31] that includes more languages in its pre-training. 
 

   

Figure 30.  IBM MT progress: P3 vs. P2 vs. JPL baseline on LwLL evaluation tasks. 

 
 
3.3.2 MT Zero-Shot Decoding Performance 
 
Zero-shot decoding results for our model are shown in Figure 31. We evaluate zero-shot 
performance using the FLORES-dev [32] set to avoid any possible train/test bias in the LwLL 
development task data. We see that using off-the-shelf versions of mBART-25 and mBART-50 
without translation task customization is ineffective: the zero-shot BLEU scores are close to zero 
for all three development tasks. These two models do not yet know how to translate. Our P2 55-
languages-to-English transformer trained using only parallel data from the LwLL whitelist does 
better on the fas-eng and pol-eng tasks. However, it performs poorly on the sin-eng task. 
This is because Sinhala has an unusual script and there are no related languages in the LwLL 
whitelist that help via transfer learning. Our P3 model, that includes large-scale monolingual pre-
training on all three of the development task languages, achieves good BLEU scores for a zero-
shot setting on all three language pairs. 
 

 

Figure 31. Zero-shot decoding on FLORES-dev for LwLL development task language pairs. 
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3.3.3 MT Implementation Details 
 
For each checkpoint of a LwLL session, our P3 system is fine-tuned with target language 
translations returned though the API up to the specified checkpoint budget. All data is tokenized 
using the mBART sentencepiece  model with a vocabulary size of 250k. We fine-tune the 
pre-trained model on a merged data set created by combining labels from the current checkpoint 
and all previous checkpoints for each stage. In the base stage, fine-tuning starts from the original  
 
pre-trained model. In the adaptation stage, fine-tuning starts from the fine-tuned model obtained 
in the final checkpoint of the base stage. We do not prioritize label requests and simply sample 
labels uniformly at random from the training set. At the start of each checkpoint, we reset the 
optimizer and learning rate. We adjust the number of warm-up steps according to the total label 
budget, maximum number of epochs, and batch size. Ten percent of the labeled sentence pairs are 
reserved for validation data. Minimal length- and length-ratio-based filters are applied to the 
returned labels. All pre-training and fine-tuning is implemented using the transformers library from 
HuggingFace1. The model has 630m parameters and we optimized the training schedule, learning 
rate, and warmup ratio on the development tasks. 
 
 

4. PUBLICATIONS, ACTIVITIES, AND DEMOS 
 
4.1 Publications  
 
Throughout the program, we have published our work in the most prestigious artificial intelligence 
conferences in the world (CVPR, ICCV, ECCV, NeurIPS, ICLR, ACL, AAAI, and more). Below 
we include selected publications per topic: 
 
 Is a good embedding all you need? [1], [2] 

 
 Pre-training and transfer from synthetic data: [4], [7], [8], [9], [10], [33] 

 
 Representation Learning: [5], [11], [34], [35] 

 
 Transfer Learning: [12], [19], [20], [21] 

 
 Generative Data Augmentation: [36], [37], [38] 

 
 Domain Adaptation: [39] (Best paper award, Honorable mention, WACV 2023) 

 
 

 
 

 
1 htps://huggingface.co/docs/transformers/index 
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4.2 Tutorials  
 
We organized a tutorial at ICCV 2019 on visual learning with limited labeled data. Our tutorial 
was very successful, and very well attended (see Figure below). The room was packed and 
overflowing, with a much larger number of attendees compared to other tutorials and workshops 
on that day. 
 

 
Figure 32. Our team organized a tutorial on visual learning with limited labeled data at ICCV 2019.  

 
 
4.3 Workshops  
 
We organized the Visual Learning with Limited Labels (VL3) workshop at CVPR 2020. The 
workshop received a lot of attention, with 60 paper submissions. We accepted 8 papers as oral 
presentations, and 39 papers as posters. In addition, as part of this workshop, we had a challenge 
on cross-domain few-shot classification, with the participation of 9 teams. Our invited speakers 
included several performers of the DARPA LwLL program. 
 
 
4.4 Demos for Transition Partners  
 
We presented two demos of our systems during the PI meeting. The first demo covers our image 
classification and object detection systems that were submitted for the final evaluation of the 
program. The demos illustrated a use-case of satellite imagery coarse classification, followed by 
detailed object detection. The figures below show screenshots of the demo screen: 
 

 

Figure 33.  Screenshot from the image classification demo (left) and the object detection demo (right). 
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The second demo that we presented was our unsupervised cross-domain system that accompanies 
our paper [11]. This demo is openly available at the following location: 
 
https://mitibmdemos.draco.res.ibm.com/cdr/.  
 
 
 

 

Figure 34. A screenshot from the "Bridge Across Domains" demo. 

 
 
 

5. CONCLUSIONS AND RECOMMENDATIONS  
 
Throughout the more than three years of the DARPA LwLL program, our team has made 
significant advances in the field of learning with less labels and related topics such as cross-domain 
and multi-modal learning. We have contributed over 20 published research papers to top ranking 
venues such as CVPR, NeurIPS, ICCV/ECCV, among others. We have also organized workshops 
and a tutorial promoting the field and the goals of the DARPA LwLL program in the scientific 
community. In addition, we achieved excellent results in the competitive DARPA LwLL 
evaluations, surpassing the baselines and (frequently) the results of all other performers. 
 
More specifically, our team has contributed several novel techniques that seek to find a good 
embedding: representation learning; model architectures; and pre-trained model selection. Many 
of these techniques were integrated into our system submissions for the official DARPA LwLL 
evaluations. We have shown our contributions to generalize well to all three problem domains we 
participated in, including image classification, object detection, and machine translation, leading 
to strong and highly competitive results on our part. 
 
Looking to the future of the LwLL field, although a lot of progress has been made, many interesting 
research questions remain open. As with most of the AI research community, our current belief is 
that future methods will mostly rely on (multi-modal) foundation models as the basis of all AI 
solutions, including those of open-vocabulary (natural language input) low-shot and zero-shot 
learning tasks that have been the focus of DARPA LwLL. We believe that language modeling as 
well as cross modal learning are key to these future solutions. We (and others in the scientific 

https://mitibmdemos.draco.res.ibm.com/cdr/
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community) have already made some interesting advances along this relatively new paradigm, and 
more exciting advances are just around the corner. We also believe that pre-training models on 
synthetic data is another very important direction, not only for addressing the problem of learning 
with less labels (and less data), but also to mitigate issues inherent with real-world datasets related 
to privacy, copyright, data protection, bias, and ethics. 
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