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Interim Project Report for Grant W911NF-18-1-0063
Report Period - Start Date: 2017-12-30; End Date: 2020-12-29

1 Statement of the problem studied
The overall goal of this project is to develop inference methods that practitioners can trust. Im-
portantly, these methods should be able to run quickly on modern problems of interest, and they
should be able to work on complex data. That is, practitioners should be able to trust these methods
as they actually work in practice. Especially in light of existing heuristics that can yield arbitrarily
wrong results, an important part of reliability comes from supporting theory and evaluation.

Specifically our goal has been to develop algorithms and theory for Bayesian inference and
evaluation. In particular, we aim to guarantee that the quantities of interest to practitioners are
well-recovered by our algorithms and that our algorithms yield fast, practical results. We endeavor
to engage with challenging real-world data problems.

2 Summary of the most important results
Bayesian coreset construction via greedy iterative geodesic ascent [5] Coherent uncertainty
quantification is a key strength of Bayesian methods. But modern algorithms for approximate
Bayesian posterior inference often sacrifice accurate posterior uncertainty estimation in the pursuit
of scalability. This work shows that previous Bayesian coreset construction algorithms – which
build a small, weighted subset of the data that approximates the full dataset – are no exception.
We demonstrate that these algorithms scale the coreset log-likelihood suboptimally, resulting in
underestimated posterior uncertainty. To address this shortcoming, we develop greedy iterative
geodesic ascent (GIGA), a novel algorithm for Bayesian coreset construction that scales the core-
set log-likelihood optimally. GIGA provides geometric decay in posterior approximation error as
a function of coreset size, and maintains the fast running time of its predecessors. Our paper con-
cludes with validation of GIGA on both synthetic and real datasets, demonstrating that it reduces
posterior approximation error by orders of magnitude compared with previous coreset construc-
tions (Fig. 1).

Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic ap-
proach [10] Bayesian inference typically requires the computation of an approximation to the
posterior distribution. An important requirement for an approximate Bayesian inference algorithm
is to output high-accuracy posterior mean and uncertainty estimates. Classical Monte Carlo meth-
ods, particularly Markov Chain Monte Carlo, remain the gold standard for approximate Bayesian
inference because they have a robust finite-sample theory and reliable convergence diagnostics.
However, alternative methods, which are more scalable or apply to problems where Markov Chain
Monte Carlo cannot be used, lack the same finite-data approximation theory and tools for eval-
uating their accuracy. In this work, we develop a flexible new approach to bounding the error
of mean and uncertainty estimates of scalable inference algorithms. Our strategy is to control
the estimation errors in terms of Wasserstein distance, then bound the Wasserstein distance via a
generalized notion of Fisher distance. Unlike computing the Wasserstein distance, which requires
access to the normalized posterior distribution, the Fisher distance is tractable to compute because
it requires access only to the gradient of the log posterior density. We demonstrate the useful-
ness of our Fisher distance approach by deriving bounds on the Wasserstein error of the Laplace
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(a)

Figure 1: Left: Gaussian inference for an unknown mean, showing data (black points and like-
lihood densities), exact posterior (blue), and optimal coreset posterior approximations of size 1
from solving the ideal coreset construction problem (red) and the modified problem (orange). The
orange coreset posterior has artificially low uncertainty. The exact and approximate log-posteriors
are scaled down (by the same amount) for visualization. Right: Comparison of the median Fisher
information distance to the true posterior for GIGA, FW, and RND on the logistic and Poisson
regression models over 20 random trials. Distances are normalized by the median value of RND
for comparison. On the right, computation time is normalized by the median value required to run
MCMC on the full dataset. GIGA consistently outperforms FW and RND.

approximation and Hilbert coresets. We anticipate that our approach will be applicable to many
other approximate inference methods such as the integrated Laplace approximation, variational
inference, and approximate Bayesian computation.

This work provides the missing link between our Hilbert coresets framework and direct theo-
retical error bounds on posterior point estimates and uncertainties.

Scalable Gaussian process inference with finite-data mean and variance guarantees [11]
Gaussian processes (GPs) offer a flexible class of priors for nonparametric Bayesian regression,
but popular GP posterior inference methods are typically prohibitively slow or lack desirable finite-
data guarantees on quality. We develop an approach to scalable approximate GP regression with
finite-data guarantees on the accuracy of pointwise posterior mean and variance estimates. Our
main contribution is a novel objective for approximate inference in the nonparametric setting: the
preconditioned Fisher (pF) divergence. We show that unlike the Kullback–Leibler divergence
(used in variational inference), the pF divergence bounds the 2-Wasserstein distance, which in turn
provides tight bounds the pointwise difference of the mean and variance functions. We demonstrate
that, for sparse GP likelihood approximations, we can minimize the pF divergence efficiently. Our
experiments show that optimizing the pF divergence has the same computational requirements as
variational sparse GPs while providing comparable empirical performance – in addition to our
novel finite-data quality guarantees.
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Minimal I-MAP MCMC for scalable structure discovery in causal DAG models [1] Learning
a Bayesian network (BN) from data can be useful for decision-making or discovering causal rela-
tionships. However, traditional methods often fail in modern applications, which exhibit a larger
number of observed variables than data points. The resulting uncertainty about the underlying
network as well as the desire to incorporate prior information recommend a Bayesian approach to
learning the BN, but the highly combinatorial structure of BNs poses a striking challenge for infer-
ence. The current state-of-the-art methods such as order MCMC are faster than previous methods
but prevent the use of many natural structural priors and still have running time exponential in
the maximum indegree of the true directed acyclic graph (DAG) of the BN. We here propose an
alternative posterior approximation based on the observation that, if we incorporate empirical con-
ditional independence tests, we can focus on a high-probability DAG associated with each order of
the vertices. We show that our method allows the desired flexibility in prior specification, removes
timing dependence on the maximum indegree, and yields provably good posterior approximations;
in addition, we show that it achieves superior accuracy, scalability (Fig. 2), and sampler mixing on
several datasets.

Figure 2: Average iteration times for different sized networks. The times are relative to the av-
erage iteration time for p = 25 nodes; c denotes the slope of the dotted lines and estimates the
computational complexity O(pc). We compare our method, minIMAP, to order MCMC.

A Swiss Army Infinitesimal Jackknife [9] The error or variability of machine learning algo-
rithms is often assessed by repeatedly re-fitting a model with different weighted versions of the
observed data. The ubiquitous tools of cross-validation (CV) and the bootstrap are examples of
this technique. These methods are powerful in large part due to their model agnosticism but can
be slow to run on modern, large data sets due to the need to repeatedly re-fit the model. In this
work, we use a linear approximation to the dependence of the fitting procedure on the weights,
producing results that can be faster than repeated re-fitting by an order of magnitude. This lin-
ear approximation is sometimes known as the ”infinitesimal jackknife” in the statistics literature,
where it is mostly used as a theoretical tool to prove asymptotic results. We provide explicit finite-
sample error bounds for the infinitesimal jackknife in terms of a small number of simple, verifiable
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assumptions. Our results apply whether the weights and data are stochastic or deterministic, and
so can be used as a tool for proving the accuracy of the infinitesimal jackknife on a wide variety
of problems. As a corollary, we state mild regularity conditions under which our approximation
consistently estimates true leave-k-out cross-validation for any fixed k. These theoretical results,
together with modern automatic differentiation software, support the application of the infinites-
imal jackknife to a wide variety of practical problems in machine learning, providing a “Swiss
Army infinitesimal jackknife.” We demonstrate the accuracy of our methods on a range of simu-
lated and real datasets (Fig. 3).

Figure 3: We consider a genomics application in which we use CV to choose the degree of a spline
smoother when clustering time series of gene expression data. We show that our method is more
accurate than exact CV in this example and orders of magnitude faster – essentially the same speed
as running the algorithm once.

The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Di-
mensions [3] Discovering interaction effects on a response of interest is a fundamental problem
faced in biology, medicine, economics, and many other scientific disciplines. In theory, Bayesian
methods for discovering pairwise interactions enjoy many benefits such as coherent uncertainty
quantification, the ability to incorporate background knowledge, and desirable shrinkage prop-
erties. In practice, however, Bayesian methods are often computationally intractable for even
moderate-dimensional problems. Our key insight is that many hierarchical models of practical
interest admit a particular Gaussian process (GP) representation; the GP allows us to capture
the posterior with a vector of O(p) kernel hyper-parameters rather than O(p2) interactions and
main effects. With the implicit representation, we can run Markov chain Monte Carlo (MCMC)
over model hyper-parameters in time and memory linear in p per iteration. We focus on sparsity-
inducing models and show on datasets with a variety of covariate behaviors that our method: (1)
reduces runtime by orders of magnitude over naive applications of MCMC, (2) provides lower

4



Table 1: Building dataset results. MAIN (respectively, PAIR) MSE refers to total error in estimat-
ing main (respectively, pairwise) effects. The main and pairwise MSE added together yield the
total MSE. The second and fourth columns show (# of effects correctly selected) : (# of incorrect
effects selected) for main and pairwise effects, respectively. Larger green values are better while
larger red values are worse. We compare our method to two variants of LASSO designed to solve
this problem. In particular, notice that our method picks up at least as many correct effects as any
other method and zero incorrect effects (the best possible number of incorrect effects).

METHOD MAIN MSE # MAIN PAIR MSE # PAIR

OUR METHOD 0.1 3 : 0 7.0 3 : 0
PLASSO 5.0 2 : 5 9.3 3 : 21
HLASSO 1.5 3 : 19 7.8 3 : 18

Type I and Type II error relative to state-of-the-art LASSO-based approaches, and (3) offers im-
proved computational scaling in high dimensions relative to existing Bayesian and LASSO-based
approaches.

Data-dependent compression of random features for large-scale kernel approximation [2]
Kernel methods offer the flexibility to learn complex relationships in modern, large data sets while
enjoying strong theoretical guarantees on quality. Unfortunately, these methods typically require
cubic running time in the data set size, a prohibitive cost in the large-data setting. Random fea-
ture maps (RFMs) and the Nyström method both consider low-rank approximations to the kernel
matrix as a potential solution. But, in order to achieve desirable theoretical guarantees, the former
may require a prohibitively large number of features J+, and the latter may be prohibitively ex-
pensive for high-dimensional problems. We propose to combine the simplicity and generality of
RFMs with a data-dependent feature selection scheme to achieve desirable theoretical approxima-
tion properties of Nyström with just O(logJ+) features. Our key insight is to begin with a large set
of random features, then reduce them to a small number of weighted features in a data-dependent,
computationally efficient way, while preserving the statistical guarantees of using the original large
set of features. We achieve this compression exactly by repurposing the efficient Bayesian coreset
construction algorithms we developed in previous work for this project [5] – but now applying it to
reduce the number of features rather than the cardinality of a data set. We demonstrate the efficacy
of our method with theory and experiments—including on a data set with over 50 million observa-
tions. In particular, we show that our method achieves small kernel matrix approximation error and
better test set accuracy with provably fewer random features than state-of-the-art methods. See,
e.g., Figure 4.

LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations [15]
Due to the ease of modern data collection, applied statisticians often have access to a large set of
covariates that they wish to relate to some observed outcome. Generalized linear models (GLMs)
offer a particularly interpretable framework for such an analysis. In these high-dimensional prob-
lems, the number of covariates is often large relative to the number of observations, so we face
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Figure 4: Kernel matrix approximation error is on the vertical axes. Lower is better. The horizontal
axis gives the number of features. Points average 20 runs; error bar is one standard deviation.
RFM stands for random feature maps. RFM-JL represents a widely used compression method for
random feature maps. We find that while RFM-JL does not decrease Frobenius error for different
numbers of features, our method (RFM-GIGA) decreases error substantially.

non-trivial inferential uncertainty; a Bayesian approach allows coherent quantification of this un-
certainty. Unfortunately, existing methods for Bayesian inference in GLMs require running times
roughly cubic in parameter dimension, and so are limited to settings with at most tens of thou-
sand parameters. We propose to reduce time and memory costs with a low-rank approximation of
the data in an approach we call LR-GLM. When used with the Laplace approximation or Markov
chain Monte Carlo, LR-GLM provides a full Bayesian posterior approximation and admits run-
ning times reduced by a full factor of the parameter dimension. We rigorously establish the quality
of our approximation and show how the choice of rank allows a tunable computational–statistical
trade-off. Experiments support our theory and demonstrate the efficacy of LR-GLM on real large-
scale datasets.

A Higher-Order Swiss Army Infinitesimal Jackknife [8] Cross validation (CV) and the boot-
strap are ubiquitous model-agnostic tools for assessing the error or variability of machine learning
and statistical estimators. However, these methods require repeatedly re-fitting the model with dif-
ferent weighted versions of the original dataset, which can be prohibitively time-consuming. For
sufficiently regular optimization problems the optimum depends smoothly on the data weights, and
so the process of repeatedly re-fitting can be approximated with a Taylor series that can be often
evaluated relatively quickly. In our previous work for this project, we showed that the first-order
approximation works well in theory and in practice. In the current work, we consider high-order
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approximations, which we call the “higher order infinitesimal jackknife” (HOIJ). Under mild reg-
ularity conditions, we provide a simple recursive procedure to compute approximations of all or-
ders with finite-sample accuracy bounds. Additionally, we show that the HOIJ can be efficiently
computed even in high dimensions using forward mode automatic differentiation. We show that
a linear approximation with bootstrap weights approximation is equivalent to those provided by
asymptotic normal approximations. Consequently, the HOIJ opens up the possibility of enjoying
higher-order accuracy properties of the bootstrap using local approximations. Consistency of the
HOIJ for leave-one-out CV under different asymptotic regimes follows as corollaries from our fi-
nite sample bounds under additional regularity assumptions. The generality of the computation
and bounds motivate the name “higher-order Swiss Army infinitesimal jackknife.”

Local exchangeability [6] Exchangeability – in which the distribution of an infinite sequence
is invariant to reorderings of its elements – implies the existence of a simple conditional indepen-
dence structure that may be leveraged in the design of probabilistic models and efficient inference
algorithms. In practice, however, this assumption is too strong an idealization; the distribution
typically fails to be exactly invariant to permutations and de Finetti’s representation theory does
not apply. Thus there is the need for a distributional assumption that is both weak enough to hold
in practice, and strong enough to guarantee a useful underlying representation. We introduce a
relaxed notion of local exchangeability – where swapping data associated with nearby covariates
causes a bounded change in the distribution. Next, we prove that locally exchangeable processes
correspond to independent observations from an underlying measure-valued stochastic process,
showing that de Finetti’s theorem is robust to perturbation and providing further justification for
the Bayesian modelling approach. We also provide an investigation of approximate sufficiency
and sample continuity properties of locally exchangeable processes on the real line. The paper
concludes with examples of popular statistical models that exhibit local exchangeability.

Validated Variational Inference via Practical Posterior Error Bounds [12] Variational infer-
ence has become an increasingly attractive fast alternative to Markov chain Monte Carlo methods
for approximate Bayesian inference. However, a major obstacle to the widespread use of varia-
tional methods is the lack of post-hoc accuracy measures that are both theoretically justified and
computationally efficient. In fact, in this paper, we show cases where the Kullback-Leibler diver-
gence can be small but posterior mean and variance estimates – even in unimodal, one-dimensional
distributions – can be arbitrarily wrong. To address these issues, we provide rigorous bounds on the
error of posterior mean and uncertainty estimates that arise from full-distribution approximations,
as in variational inference. Our bounds are widely applicable, as they require only that the ap-
proximating and exact posteriors have polynomial moments. Our bounds are also computationally
efficient for variational inference because they require only standard values from variational objec-
tives, straightforward analytic calculations, and simple Monte Carlo estimates. We show that our
analysis naturally leads to a new and improved workflow for validated variational inference. Fi-
nally, we demonstrate the utility of our proposed workflow and error bounds on a robust regression
problem and on a real-data example with a widely used multilevel hierarchical model.

An Automatic Finite-Sample Robustness Metric: Can Dropping a Little Data Change Con-
clusions? [4] We propose a method to assess the sensitivity of econometric analyses to the
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removal of a small fraction of the sample. Analyzing all possible data subsets of a certain size is
computationally prohibitive, so we provide a finite-sample metric to approximately compute the
number (or fraction) of observations that has the greatest influence on a given result when dropped.
We call our resulting metric the Approximate Maximum Influence Perturbation. Our approxima-
tion is automatically computable and works for common estimators (including OLS, IV, GMM,
MLE, and variational Bayes). We provide explicit finite-sample error bounds on our approxima-
tion for linear and instrumental variables regressions. At minimal computational cost, our metric
provides an exact finite-sample lower bound on sensitivity for any estimator, so any non-robustness
our metric finds is conclusive. We demonstrate that the Approximate Maximum Influence Pertur-
bation is driven by a low signal-to-noise ratio in the inference problem, is not reflected in standard
errors, does not disappear asymptotically, and is not a product of misspecification. Several empir-
ical applications show that even 2-parameter linear regression analyses of randomized trials can
be highly sensitive. While we find some applications are robust, in others the sign of a treatment
effect can be changed by dropping less than 1% of the sample even when standard errors are small.

Approximate Cross-Validation in High Dimensions with Guarantees [13] Leave-one-out cross-
validation (LOOCV) can be particularly accurate among cross- validation (CV) variants for ma-
chine learning assessment tasks – e.g., assessing methods’ error or variability. But it is expensive
to re-fit a model N times for a dataset of size N. Previous work has shown that approximations to
LOOCV can be both fast and accurate – when the unknown parameter is of small, fixed dimension.
But these approximations incur a running time roughly cubic in dimension – and we show that,
besides computational issues, their accuracy dramatically deteriorates in high dimensions. Au-
thors have suggested many potential and seemingly intuitive solutions, but these methods have not
yet been systematically evaluated or compared. We find that all but one perform so poorly as to
be unusable for approximating LOOCV. Crucially, though, we are able to show, both empirically
and theoretically, that one approximation can perform well in high dimensions – in cases where
the high-dimensional parameter exhibits sparsity. Under interpretable assumptions, our theory
demonstrates that the problem can be reduced to working within an empirically recovered (small)
support. This procedure is straightforward to implement, and we prove that its running time and
error depend on the (small) support size even when the full parameter dimension is large.

Approximate Cross-Validation with Low-Rank Data in High Dimensions [14] Many recent
advances in machine learning are driven by a challenging trifecta: large data size N; high dimen-
sions; and expensive algorithms. In this setting, cross-validation (CV) serves as an important tool
for model assessment. Recent advances in approximate cross validation (ACV) provide accurate
approximations to CV with only a single model fit, avoiding traditional CV’s requirement for re-
peated runs of expensive algorithms. Unfortunately, these ACV methods can lose both speed and
accuracy in high dimensions – unless sparsity structure is present in the data. Fortunately, there
is an alternative type of simplifying structure that is present in most data: approximate low rank
(ALR). Guided by this observation, we develop a new algorithm for ACV that is fast and accurate
in the presence of ALR data. Our first key insight is that the Hessian matrix – whose inverse forms
the computational bottleneck of existing ACV methods – is ALR. We show that, despite our use of
the inverse Hessian, a low-rank approximation using the largest (rather than the smallest) matrix
eigenvalues enables fast, reliable ACV. Our second key insight is that, in the presence of ALR data,
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error in existing ACV methods roughly grows with the (approximate, low) rank rather than with
the (full, high) dimension. These insights allow us to prove theoretical guarantees on the quality of
our proposed algorithm – along with fast-to-compute upper bounds on its error. We demonstrate
the speed and accuracy of our method, as well as the usefulness of our bounds, on a range of real
and simulated data sets.

Approximate Cross-Validation for Structured Models [7] Many modern data analyses bene-
fit from explicitly modeling dependence structure in data – such as measurements across time or
space, ordered words in a sentence, or genes in a genome. Cross-validation is the gold standard to
evaluate these analyses but can be prohibitively slow due to the need to re-run already-expensive
learning algorithms many times. Previous work has shown approximate cross-validation (ACV)
methods provide a fast and provably accurate alternative in the setting of empirical risk minimiza-
tion. But this existing ACV work is restricted to simpler models by the assumptions that (i) data
are independent and (ii) an exact initial model fit is available. In structured data analyses, (i) is
always untrue, and (ii) is often untrue. In the present work, we address (i) by extending ACV to
models with dependence structure. To address (ii), we verify – both theoretically and empirically
– that ACV quality deteriorates smoothly with noise in the initial fit. We demonstrate the accuracy
and computational benefits of our proposed methods on a diverse set of real-world applications.
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