

E
R

D
C

 T
R

-2
3

-1
0

UGV–Localization in 3D and Path-Planning (U-L3AP)

Docker Containers and Images for

Robot Operating System (ROS)–Based

Applications

E
n

g
in

e
e

r
R

e
s

e
a

rc
h

 a
n

d

D
e

v
e

lo
p

m
e

n
t

C
e

n
te

r

Amir Naser, Osama Ennasr, Ahmet Soylemezoglu, and

Garry Glaspell

July 2023

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

The US Army Engineer Research and Development Center (ERDC) solves the

nation’s toughest engineering and environmental challenges. ERDC develops

innovative solutions in civil and military engineering, geospatial sciences, water

resources, and environmental sciences for the Army, the Department of Defense,

civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library

at https://erdclibrary.on.worldcat.org/discovery.

http://www.erdc.usace.army.mil/
https://erdclibrary.on.worldcat.org/discovery

UGV–Localization in 3D and Path-Planning

(U-L3AP)

ERDC TR-23-10

July 2023

Docker Containers and Images for

Robot Operating System (ROS)–Based

Applications

Amir Naser, Osama Ennasr, and Garry Glaspell

US Army Engineer Research and Development Center (ERDC)

Geospatial Research Laboratory (GRL)

7701 Telegraph Road

Alexandria, VA 22315-3864

Ahmet Soylemezoglu

US Army Engineer Research and Development Center (ERDC)

Construction Engineering Research Laboratory (CERL)

2902 Newmark Drive

Champaign, IL 61824

Final Technical Report (TR)

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Prepared for US Army Engineer Research and Development Center (ERDC)

3909 Halls Ferry Road

Vicksburg, MS 39180

 Under FLEX-4

ERDC TR-23-10 ii

Abstract

Docker is a tool designed to make it easier to create, deploy, and run appli-

cations by using containers. Containers allow a developer to package and

ship out an application with all of the parts it needs, such as libraries and

other dependencies. Herein, we investigate using a Docker image to deploy

and run our Robot Operating System (ROS)–based payload on a robot

platform. Ultimately, this would allow us to quickly and efficiently deploy

our payload on multiple platforms.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.

Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to

be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC TR-23-10 iii

Contents

Abstract .. ii

Figures ... v

Preface .. vi

1 Introduction .. 1

1.1 Background ... 1

1.2 Objectives .. 2

1.3 Approach and Scope .. 2

2 Working with Docker Containers ... 4

2.1 Installing Docker for Linux (Ubuntu) .. 4

2.2 How to Pull and Run a Robot Operating System (ROS) Noetic Image 6

2.2.1 Pulling and Running an Image .. 6

2.2.2 Running an Image with GUI Enabled .. 7

2.2.3 How to Rerun an Already Running Container ... 7

2.2.4 How to Pull ROS 2 .. 9

2.3 Volumes ... 9

2.3.1 Using Volumes in a Docker Container .. 10

2.3.2 Mounting Devices .. 11

2.4 Docker Compose to Run Containers ... 12

2.4.1 Description and Basics .. 12

2.4.2 How to Create and Implement a Docker Compose File 12

2.5 Dockerfiles .. 14

2.5.1 Description and Basics .. 14

2.5.2 Dockerfile to Get Started with the Catkin Workspace 16

2.5.3 Full Dockerfile to Install Various Drivers and GitHub Repositories 18

2.6 Updating a Docker Image ... 19

2.6.1 Updating a Docker Image through Dockerfiles ... 19

2.6.2 How to Update a Docker Image while Its Container Is Still Running............. 20

2.6.3 How to Add a File without Entering the Running Docker Container 21

2.7 Pulling and Listing Docker Images .. 22

2.7.1 Pulling Images .. 22

2.7.2 Root User versus Nonroot User ... 22

2.8 Docker Hub ... 23

3 Summary or Conclusion ... 25

References ... 26

Appendix A: Full Dockerfile ... 27

Appendix B: Useful Docker Commands ... 34

ERDC TR-23-10 iv

Appendix C: Docker Resources .. 37

Abbreviations ... 41

Report Documentation Page (SF 298) ... 42

ERDC TR-23-10 v

Figures

1. Terminal output from running the hello-world example. .. 6

2. Terminal output resulting from exiting but not removing the image. 8

3. Example demonstrating the creation of a new image from changes made within a

container. .. 21

4. Example demonstrating copying a file from the host to a container. 22

ERDC TR-23-10 vi

Preface

This study was conducted for the US Army Engineer Research and

Development Center (ERDC) of the US Army Corps of Engineers

(USACE). It was funded by ERDC under FLEX-4.

The work was performed by the Data Representation Branch of ERDC, Ge-

ospatial Research Laboratory (GRL). At the time of publication, Mr. Vineet

Gupta was branch chief, Mr. Jeff Murphy was division chief, and Dr. Aus-

tin Davis was the technical director of the Geospatial Research Laboratory.

The deputy director of ERDC-GRL was Dr. Valerie L. Carney, and the di-

rector was Mr. David R. Hibner. Work was also performed by the Warf-

ighter Engineering Branch of ERDC, Construction Engineering Research

Laboratory (CERL). At the time of publication, Mr. Jeff Burkhalter was

branch chief, Dr. George Calfas was division chief, and Mr. Jim Allen was

the technical director of CERL. The deputy director of ERDC-CERL was

Ms. Michelle Hanson, and the director was Dr. Andrew Nelson.

The authors would like to acknowledge the following individuals for their

contributions to this project: Dr. Anton Netchaev, Mr. Steven Bunkley, and

Mr. Chuck Ellison.

COL Christian Patterson was commander of ERDC, and Dr. David W.

Pittman was the director.

ERDC TR-23-10 1

1 Introduction

1.1 Background

Docker, an open platform for developing, shipping, and running

applications, is used to run software packages called containers. A

container is a lightweight and portable package that contains everything

needed to run the software. This includes the application code, system

tools, libraries, and run time. The only thing preventing a container from

being able to stand alone is that it relies on the host’s operating system

(OS) and kernel for low-level services, such as resource management and

network access. Because containers include everything else that the

application needs to run, they are easy to move from one environment to

another. This makes it possible to run the same application on a

developer’s laptop, a test server, and a production server without changing

the code.

There are several benefits to using Docker:

• Portability. You can develop and test your application on your local

machine and then, with minimal effort, deploy it to any other machine

that is running Docker. The only limitation to portability is that,

because containers do not include their own OS, the container can only

run on the same OS on which it was created (e.g., if you want to run a

Linux-based container, the host machine must have a Linux OS). If you

plan to use a Linux-based container on a Windows OS host, or vice

versa, you will need to either run your container through a virtual

machine (VM) or use Docker Desktop (which runs containers through

a Linux VM in the background). With all of this in mind, containers

make it easy to move applications from one environment to another.

This can be especially useful when working with microservices because

containers allows you to build, test, and deploy each service separately

(White and Christensen 2017).

• Isolation. Each container runs in its own isolated environment. As a

result, you can run multiple applications on the same host without

them interfering with one another and potentially causing conflicts.

For our application, we can install multiple versions of the Robot

Operating System (ROS) with different configurations on a single

ERDC TR-23-10 2

machine. Each image could be tailored for a specific mission

(González-Nalda et al. 2017).

• Scalability. Docker makes it easy to scale applications horizontally

across multiple hosts. Specifically, you can create multiple containers

and distribute the computational load between them (Wendt and

Schüppstuhl 2022).

• Ease of use. Docker provides a simple and consistent way to package

and deploy applications, making it easier for developers to work in

different environments. This reduces the delay between writing code

and running it in production (Cervera and Del Pobil 2019).

1.2 Objectives

This report addresses the focus areas established in Army Multi-Domain

Intelligence: FY21-22 S&T Focus Areas (Office of the Deputy Chief of Staff

2020). Specifically, this work addresses this statement from that text:

“Wars will be fought at hyper speed and scale, dominated by technologies

such as robotics and autonomous systems (RAS), machine learning (ML),

and AI [artificial intelligence] capabilities, which are widely available,

packaged, and ready for use” (5). Our objective is to leverage containers

for rapid deployment of software to multiple robotic platforms. Containers

also simplify the process of maintaining robotic platforms and allow for

version control.

1.3 Approach and Scope

Containers and VMs are both virtualization methods that allow you to run

multiple OSs on a single physical machine. However, they work in slightly

different ways.

A container is a lightweight, portable, and executable package. It includes

everything (besides the base OS that is needed and provided by the host

machine) that an application needs to run, including the application code,

libraries, dependencies, and run time. Because containers include only the

minimum required components and share the host OS’s kernel, they are

much lighter and more efficient than VMs. Containers are typically used to

deploy and run microservice-based applications, which are made up of

small, independent, and modular components that communicate with

each other through application programming interfaces (APIs).

ERDC TR-23-10 3

A VM is a complete emulation of a physical computer that runs on top of a

host OS. A VM includes a full copy of an OS and virtual hardware, such as

CPU, memory, storage, and networking devices. Because VMs include a

full copy of the OS and virtual hardware, they are much heavier and

require more resources than containers. VMs are typically used to run

legacy applications, test software in different environments, and isolate

applications from one another.

For the purposes of running applications on robots, containers can be used

to quickly and safely install the necessary files and dependencies on a

robotics platform. This report focuses on creating, running, and deploying

a container built around our sensor payload for applications focused on

simultaneous localization and mapping.

ERDC TR-23-10 4

2 Working with Docker Containers

This chapter provides instructions for installing and running Docker.

Mounting volumes and updating and pulling Docker images are also dis-

cussed. Finally, a Dockerfile that contains all the software and files neces-

sary to recreate our robot payload is provided.

2.1 Installing Docker for Linux (Ubuntu)

To start using Docker, you will need to install it on your system. Docker is

available for Windows, Mac, and Linux. For this document, we will focus

solely on how to install Docker for Linux (Ubuntu). Instructions for

macOS and Windows are provided on the Docker website.*

Docker stores images in different locations, depending on whether you use

root privileges (i.e., using sudo on the command line). If the Docker

daemon runs as the root user, it has access to the entire file system. Thus,

the image is stored in the default Docker image storage location, which is

typically /var/lib/docker. However, if the Docker image is built without

using sudo, the image is stored in the current user’s home directory, under

the .docker directory. This is because the current user does not have

permission to write to the /var/lib/docker directory.

It is generally recommended to use sudo when working with Docker when

you need to ensure that the daemon has all the necessary permissions to

perform operations (Docker, n.d.). One specific reason to use sudo is so

that you will have root privileges in order to implement the GUI in the

Docker/ros:noetic images. However, this could pose a security risk. With

all of this in mind, the steps to install Docker are as follows.

 Add the Docker repository to your system.

sudo apt-get update

sudo apt-get -y install apt-transport-https ca-certificates

curl gnupg-agent software-properties-common

* https://docs.docker.com/get-docker/

ERDC TR-23-10 5

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo

apt-key add –

sudo add-apt-repository "deb⎵[arch=amd64]⎵https://

download.docker.com/linux/ubuntu⎵$(lsb_release\⎵-cs)

⎵stable"

 Install Docker.

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

uidmap

 Add your user account to the docker group.

sudo usermod -aG docker $USER newgrp docker

Optional: Download the latest Docker Desktop package. You can

install Docker Desktop, which is an application that allows you to run

and view your Docker containers and images. However, we ran into

issues with Docker Desktop when using GUI applications. Also,

Docker Desktop only shows containers and images run without sudo

privileges. Therefore, if you plan to use GUI interfaces, it is

recommended that you do not install Docker Desktop.

wget https://desktop.docker.com/linux/main/amd64/docker-

desktop-4.12.0-amd64.deb

 Optional: Install Docker Desktop.

sudo apt-get install ./docker-desktop-4.12.0-amd64. deb

You can verify Docker Desktop installation by running the hello-world

image. Figure 1 shows the output of running the command that follows:

sudo docker run hello-world

https://download.docker.com/linux/ubuntu

ERDC TR-23-10 6

Figure 1. Terminal output from running the hello-world example.

2.2 How to Pull and Run a Robot Operating System (ROS) Noetic

Image

Rather than building an ROS from scratch, official ROS docker images can

be used. Images for popular ROS 1 distributions, such as Melodic and No-

etic, as well as ROS 2 images for Foxy and Humble, are available. The fol-

lowing sections focus on pulling ROS 1 Noetic.

2.2.1 Pulling and Running an Image

Pull the ROS Noetic Docker image from Docker Hub with the command

that follows:

docker pull ros:noetic

To run a new Docker container using the ROS Noetic image, use the

following command:

docker run -it --name my_ros_container ros:noetic bash

This will start a new Docker container, with the ROS Noetic image, and

open a bash shell inside the container. In this command, --name is a flag

that specifies a name for the container. The value that follows the flag,

my_ros_container, is the name that will be assigned to the container.

You can now use the ROS Noetic command line tools and libraries inside

the container.

ERDC TR-23-10 7

2.2.2 Running an Image with GUI Enabled

To use the ROS Noetic GUI tools, the container requires additional options

to enable access to the host’s display and input devices. The image also

needs to be pulled with sudo.

xhost+

sudo docker run -it --name my_ros_container --net=host

--env="DISPLAY" --volume="$HOME/.Xauthority:/root/.

Xauthority:rw" ros:noetic bash

This command allows you to run ROS Noetic GUI tools inside the

container and to display them on the host’s desktop. This is done by

sharing the host’s X Server with the container by creating this volume:

--volume="\$HOME/.Xauthority:/root/.Xauthority:rw".

Then, the host’s display environment variable, --env="DISPLAY", is shared

to the container. Last, you run the container with the host network driver

with --net=host.

You can also mount a volume to the container for persisting data.

Specifically for our use case, this is our ROS workspace; mounting a

volume ensures that our workspace is maintained between sessions. The

generic line to mount a volume is to add the following tag to your sudo

docker run command:

--volume="/path/on/host:/path/in/container"

or

-v /path/on/host:/path/in/container

Volumes are covered in greater detail in Section 2.3.

2.2.3 How to Rerun an Already Running Container

If you exit a container after it has been created and run using a command

similar to the one that follows, it cannot be reopened by running the same

docker run command:

ERDC TR-23-10 8

docker run -it --name my_ros_container ros:noetic bash exit

Figure 2 shows the result of attempting to reopen an exited, but not

removed, image.

Figure 2. Terminal output resulting from exiting but not removing the image.

There are a couple of options available for avoiding this issue. You can

either stop and remove the container and repeat the initial docker run

command, or you can use the docker start command.

To stop, remove, and rerun a running container named my_ros_container,

use the following commands:

docker stop my_ros_container

docker rm my_ros_container

docker run -it --name my_ros_container ros:noetic bash

However, by doing so, you eliminate any changes made to the initial

container or image if you have not already committed. The preferred

option, then, is to use the docker start command. This command

effectively reruns the container without requiring you to stop and remove

the previous container. For example, if you want to start a container

named my_ros_container, you can use the following command:

docker start my_ros_container

This command will start the container and run it in the background. If you

want to attach to the container and access its terminal, you can use the -a

flag to attach to the container. However, the Docker daemon sometimes

freezes and does not work properly when using this method:

docker start -a my_ros_container

The docker run command can also be used to start a new container based

on an image. You can start a new container by giving it a different name,

via the –name flag, to specify the name of the container. For example, you

could use the command that follows:

ERDC TR-23-10 9

docker run --name my_new_container my_image

This command starts a new container based on the my_image image and

gives it the name my_new_container.

Overall, to ensure that the updates in your Docker container do not

disappear when you stop and remove a container, you can either use a

different name for the new container or make sure you commit all your

changes to the container or image prior to stopping or removing it.

Updating and committing changes is discussed in depth in Section 2.6.

2.2.4 How to Pull ROS 2

This document is focused on ROS 1 (specifically Noetic), but ROS 2 can

also be used (Martinez 2022). ROS 1 (Noetic) is currently supported until

May of 2025. ROS 2 (Humble) is supported until May of 2027. At the

time of this writing, ROS 1 possesses a larger user base than ROS 2

(Scott and Foote 2022). ROS 2 Humble can be accessed using the

command that follows:

docker pull ros:humble

It is also possible to bridge between ROS 1 and ROS 2. This is outside the

scope of this report, but more information on this topic can be found on

the Docker website.*

2.3 Volumes

In Docker, a volume is a persistent storage location that is outside of a

container’s image and can be used to share data between the host and the

container or between multiple containers. Volumes are managed by

Docker and can be used to store data that need to persist even if the

container is stopped or deleted.

Volumes are useful in a number of situations, including

• sharing configuration files, logs, or other data between the host and

the container;

* https://hub.docker.com/_/ros

ERDC TR-23-10 10

• storing data that are generated by a container, such as a database,

cache, or uploaded files; and

• sharing data between multiple containers; for example, when

using a volume as a message queue or shared cache.

2.3.1 Using Volumes in a Docker Container

To use a volume in a Docker container, specify the -v flag when starting

the container and then add the host path and the container path,

separated by a colon.

docker run -v /host/path:/container/path my_image bash

As stated in Section 2.2.3, you can also use this command:

docker run --volume="/host/path:/container/path"\ my_image bash

This will create a volume that is mounted at /container/path within the

container and is linked to /host/path on the host. Any data written to the

volume by the container will persist on the host, and any changes made to

the data on the host will be visible to the container.

You can also use named volumes to manage volumes more easily. Named

volumes are created using the docker volume create command and can

be referenced by name when starting a container.

docker volume create my_volume

docker run -v my_volume:/container/path my_image bash

This will create a named volume called my_volume and mount it within the

container at /container/path. Named volumes can be managed and

reused across multiple containers, thus making it easier to share data

between containers.

Last, you can use the docker cp command to copy a directory and its

contents from the host to a running Docker container. The general syntax

for the docker cp command is as follows:

docker cp <src> <container>:<dest>

ERDC TR-23-10 11

In the docker cp command, <src> is the path to the directory or file on the

host that you want to copy, <container> is the identity or name of the

running container, and <dest> is the destination path within the container

where you want to copy the files.

For example, to copy the directory /path/on/host/ to the container’s

/path/in/container/ directory, you would run the following command:

docker cp /path/on/host/ my_running_container:/path/in/

container/

This will copy the entire directory, including all files and subdirectories,

from the host to the container. To access the host directory and write to

the destination path within the container, however, you will need to have

the appropriate permissions.

2.3.2 Mounting Devices

Sensors, such as cameras, are essential to a robot payload. To get the

cameras to work within the Docker container, they must be mounted.

Although it functions similarly to a volume, slightly different syntax is

used when mounting a device from your host to the container. A volume

could be mounted as follows:

docker run -v /host/path:/container/path my_image bash

To mount a device, however, you would need to change the -v flag to a

--device flag, as follows:

docker run --device /dev/path:/container/dev/path my_image bash

If you plan to create udev rules for a device, the udev rules only need to be

applied on the host machine. Udev rules allow for symbolic links. This is

important if you have two identical sensors. With symbolic links, the

sensors can be differentiated as front or back (or left and right) cameras.

You can then mount the device as previously shown, and it will follow the

udev rules created on the host machine.

ERDC TR-23-10 12

2.4 Docker Compose to Run Containers

2.4.1 Description and Basics

When trying to start a container that includes many different inputs and

flags, you can use Docker Compose. Docker Compose is a tool for defining

and running multi-container Docker applications. It is used to define an

application’s services, networks, and volumes in a single file, called a

docker-compose.yml file, and then to start and stop the services using a

single command.

Docker Compose is useful because it allows developers to define and run

multiple containers for their applications as a single unit, making it easier

to manage, scale, and deploy applications. With Docker Compose,

developers can easily manage the configuration of multiple containers and

avoid setup processes that are prone to manual errors.

Using Docker Compose instead of a bash script to run containers has

several benefits. First, Docker Compose provides a simple and declarative

way to define the containers and their configuration, making it easier to

understand and manage the setup of a multi-container application.

Second, Docker Compose automates the process of setting up and

connecting containers, freeing developers from having to manually

manage the low-level details of the containers. Finally, Docker Compose

provides built-in support for scaling, rolling updates, and health checks,

making it easier to manage the containers over time.

To ensure Docker Compose is available on your host machine, you can

install it using the commands that follow:

sudo apt-get update

sudo apt-get install -y docker-compose

2.4.2 How to Create and Implement a Docker Compose File

The list that follows provides step-by-step instructions for creating and

implementing a Docker Compose file.

 Create a docker-compose.yml file. This file will define all the services, net-

works, and volumes used in your application.

ERDC TR-23-10 13

 Define services. In the docker-compose.yml file, define each service using

the "services" key. For each service, specify the image name, ports to be ex-

posed, environment variables, and so on.

 Start the services. To run the container and to start the services defined in

the docker-compose.yml file, use the following command:

docker-compose up

 Stop the services. To exit the container and to stop the services, use the fol-

lowing command: docker-compose down

 Scale services. Scaling a service in Docker Compose allows you to increase

or decrease the number of replicas of a particular service running in your

application. This can be useful when you need to handle increased load on

your application and need more instances of a service to handle the traffic.

To scale a service, use the following command:

docker-compose up --scale <service-name>=<number of replicas>

 Connect to a service. Connecting to a service in Docker Compose allows

you to run commands inside a running container of a particular service.

This can be useful for debugging, checking logs, or making changes to the

service. To connect to a running service, use the following command:

docker-compose exec <service-name> <command>

The docker run command that follows was used to provide an example of

how to create a docker-compose.yml file:

docker run -it --name my_ros_container --network=host

--env="DISPLAY" -e FILE_PATH=/root/launch_files -e

ROS_MASTER_URI=http://$HOSTNAME:11311 -v /etc/hosts

:/etc/hosts --volume="$HOME/.Xauthority:/root/.

Xauthority:rw" -v ˜/Documents/git/Docker/

directory_example:/root/launch_files --device /dev/

device_example:/dev/device_example --rm my_image bash

The docker-compose.yml file can be seen here:

 1 version: '3'

 2 services:

 3 ros_container:

 4 image: my_image

 5 environment:

 6 DISPLAY: ${DISPLAY}

 7 FILE_PATH: /root/launch_files/

 8 ROS_MASTER_URI: http://${HOSTNAME}:11311

 9 volumes:

10 - /etc/hosts:/etc/hosts

11 - "${HOME}/.Xauthority:/root/.Xauthority:rw"

ERDC TR-23-10 14

12 -/Documents/git/Docker/directory_exam-

ple:/root/launch_files

13 devices:

14 - /dev/device_example:/dev/device_example

15 network_mode: host

16 command: bash

17 tty: true

18 stdin_open: true

19 restart: always

20 container_name: my_ros_container

If you are including any environmental names from the host machine, you

will need to ensure that they are exported prior to trying to run the

docker-compose.yml file. For example,

export DISPLAY=:0

export HOSTNAME=localhost

Last, after all of the preceding steps are complete, you can implement the

docker-compose.yml file by typing

docker compose up

Then, you can enter the container in another terminal window with the

following command:

docker exec -it my_ros_container bash

When you are done with the container and want to stop and remove it, you

can use this command:

docker compose down

2.5 Dockerfiles

2.5.1 Description and Basics

A Dockerfile is a text file that contains instructions for building a Docker

image. It is used to automate the process of creating a Docker image so

that you can build the same image without having to manually perform

the steps.

A Dockerfile typically starts with a base image to use for the container

(e.g., an OS), then adds additional files and packages to the image, and

ERDC TR-23-10 15

then configures the image to run a specific application or service. For ex-

ample, the base ros:noetic image can be used as the base image, and then

certain dependencies or libraries can be added to it via a Dockerfile. You

can also include any additional commands that need to be run to set up

your application.

To create a new Dockerfile, you can use any text editor to create a file with

the name Dockerfile (no file extension). Then, you can add the necessary

instructions to build your Docker image. Once you have a Dockerfile, you

can use the docker build command to build a Docker image. You can then

use the docker run command to run the image as a container.

Here is an example of a simple Dockerfile that installs the Apache Web

server on an Ubuntu base image:

FROM ubuntu:20.04

RUN apt-get update && apt-get install -y apache2

CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

This Dockerfile has three instructions:

• FROM specifies the base image to use. In this case, it is using the ub-

untu:20.04 image.

• RUN is used to execute a command in the container. In this case,

it is updating the package manager index and installing the Apache

Web server.

• CMD specifies the command to run when the container is started. In

this case, it is starting the Apache Web server.

To build the image using a Dockerfile, you can use the docker build

command while in the same directory as your Dockerfile. For example, you

can use the following:

docker build -t my_image .

This will build an image called my_image using the Dockerfile in the

current directory.

Each RUN command used in a Dockerfile creates a new layer in the updated

Docker image. The more layers an image has, the more storage it uses and,

ERDC TR-23-10 16

therefore, the more space is taken up. It can be beneficial to group multi-

ple terminal commands within one RUN command to limit the number of

layers created. This can be done by using && or ; between terminal com-

mands within one RUN command. For example, you could use what follows:

RUN apt-get update && apt-get install -y apache2

The preceding command would be used instead of either of the commands

that follow:

RUN apt-get update

RUN apt-get install -y apache2

Do not, however, incorporate every single terminal command you want to

implement within a singular RUN command to save space and storage. It is

a good practice to incorporate a new RUN command in a Dockerfile when

you want to separate different parts of the build process into separate lay-

ers. This helps to optimize the image size and improve its maintainability.

Having multiple smaller RUN commands instead of one large command

makes it easier to identify the cause of potential problems, revert changes,

and make updates to specific parts of the image. The trade-off is that hav-

ing more RUN commands will result in more layers and thus a larger image

size. Ultimately, the choice between having fewer but larger RUN com-

mands or more numerous but smaller ones will depend on the specific re-

quirements of your project, so it is important to make an informed

decision based on these factors. One practical example of incorporating

many terminal commands within multiple, singular RUN commands can be

seen in Section 2.4.2.

2.5.2 Dockerfile to Get Started with the Catkin Workspace

The catkin workspace in ROS-based software is where you build, modify,

and install ROS-based packages. In this case, it is where we installed the

simultaneous localization and mapping software.

What follows is a good starting Dockerfile to use after pulling the

ros:noetic image, especially if you plan to use a catkin workspace (i.e.,

catkin_ws) in your Docker container.

 1 # Start with a base ros:noetic image.

 2 # If you rename your image in future and want to build

ERDC TR-23-10 17

↪ on top of it, you have to use "FROM my_Image"

 3 FROM ros:noetic
 4

 5 # Sets frontend to noninteractive for Dockerfile

 6 ENV DEBIAN_FRONTEND=noninteractive

 7 # Makes sure shell is using bash

 8 SHELL ["/bin/bash", "-c"]

 9 # Sets the directory on container start-up to /root/

↪ (˜/)

10 WORKDIR /root/
11

12 # ==

13 ### Initial updates/needed base packages
14

15 ## rosdep

16 # Fix permissions for rosdep

17 RUN sudo rosdep fix-permissions; \

18 # Update rosdep

19 rosdep update; \

20 ##

21 ## Set frontend to noninteractive in container

22 sudo echo 'debconf debconf/frontend select Noninteractive' |

↪ debconf-set-selections; \
23 ##

24 ## Essential packages

25 # Update and Upgrade apt-get

26 sudo apt-get update && sudo apt-get upgrade -y; \

27 # Install dialog apt-utils package to remove warnings

↪ for using apt-get while building

28 sudo apt-get install -y dialog apt-utils \

29 # Install net-tools package

30 net-tools \

31 # Install iputils-ping package

32 iputils-ping \

33 # Install git package

34 git \

35 # Install nano package

36 nano \

37 # Install curl package

38 curl \

39 # Install wget package

40 wget \

41 # Install terminator package

42 terminator \

43 # Install software-properties-common package

44 software-properties-common \

45 ##

46 ## Python3

47 # Install python3-rosdep package

48 python3-rosdep \

49 # Install python3-rosinstall package

50 python3-rosinstall \

51 # Install python3-rosinstall-generator package

52 python3-rosinstall-generator \

53 # Install python3-wstool package

54 python3-wstool \

55 # Install build-essential package

ERDC TR-23-10 18

56 build-essential; \

57 # Update apt-get

58 sudo apt-get update; \

59 ##

60 ## Catkin_ws

61 # Source the setup.bash script

62 source /opt/ros/noetic/setup.bash; \

63 # Add source command to ˜/.bashrc

64 echo "source /opt/ros/noetic/setup.bash" >> ˜/.bashrc;

↪ \

65 # Source ˜/.bashrc

66 source ˜/.bashrc; \

67 # Create catkin_ws directory

68 mkdir -p ˜/catkin_ws/src; \

69 # Run the setup.bash script from the /opt/ros/noetic

↪ directory and change directory to ˜/catkin_ws.

↪ Build the packages in the catkin workspace using

↪ catkin_make

70 . /opt/ros/noetic/setup.bash; cd ˜/catkin_ws;

↪ catkin_make; \

71 # Add source command to ˜/.bashrc

72 echo "source ˜/catkin_ws/devel/setup.bash" >>

↪ ˜/.bashrc; \

73 # Source ˜/.bashrc

74 source ˜/.bashrc

2.5.3 Full Dockerfile to Install Various Drivers and GitHub Repositories

At this time, we have a Docker image that contains the starting dependen-

cies and catkin workspace that are required to install various drivers and

GitHub repositories. The Docker image contains Rover-Pro driver,

Microstrain driver, FLIR-Boson USB thermal camera driver, Velodyne

driver, Ouster driver, SC-LIO-SAM, Elevation Mapping, Movebase, Tra-

versability Estimation, Real-Time Appearance-Based (RTAB) Map, and

RTAB-Map ROS.

To optimize the size and maintainability of this image, we used a singular

RUN command for each additional resource added (i.e., one RUN command

for the Rover-Pro driver, one for the Microstrain driver, and so on). This

limited the total number of layers included in the image, thus making the

image smaller, while also allowing the image to be easily maintained

because each RUN command put each additional resource into a

separate layer.

All of the resources added to this image were tested within the Docker

image and were successfully run along with two separate robot payloads.

ERDC TR-23-10 19

The overall Dockerfile that was used to create the image is included in

Appendix A.

If starting from scratch, it could take up to two weeks for one of our

payloads to be implemented with all of these necessities. However, with

this Dockerfile, the overall image can be built, and the robot can be up and

running, in around 30 minutes. Because this image has already been built

and pushed onto a public repository on Docker Hub, the entire image can

be pulled in approximately two minutes. The image can be pulled via the

following command:

docker pull afnaser/grl-robot

More information on pulling images and on Docker Hub in general can be

found in Sections 2.7 and 2.8, respectively.

2.6 Updating a Docker Image

2.6.1 Updating a Docker Image through Dockerfiles

Docker images can be updated using Dockerfiles. As previously stated, a

Dockerfile is a script that contains instructions for building an image. By

updating the Dockerfile, a new version of the image can be built.

One very good method or practice to incorporate when updating your

Docker image using Dockerfiles is to check if the changes to your Docker

image or container have been implemented correctly. You can test this by

running the newly built image in a container. When you do this, you can

also use the --rm flag when running a container to tell Docker to

automatically remove the container after it exits. This is useful when

testing changes to a Dockerfile because it ensures that the entire

container is completely clean and is in its previous, initial state after

each run.

The list that follows contains an example of how this process might work.

 Write a Dockerfile with the desired changes.

 Build a new image from the Dockerfile using the docker build command.

 Run a container from the new image using the docker run command,

with the --rm flag specified.

 Test the changes within the container.

ERDC TR-23-10 20

 Exit the container by running the exit command. The container will

automatically be removed because of the --rm flag.

 Make additional changes to the Dockerfile as necessary.

 Repeat the process from step 2 onward to test the updated changes

in a new container until the desired image is produced.

Following the steps in the list will allow you to test and iterate on changes

to a Dockerfile within containers and will cleanly remove them after each

test run.

An example of how to run such a container with the --rm flag is as follows:

docker run --rm -it my_image bash

Note that you do not need to include the --name flag as before because the

entire container will be destroyed on exit, and you will not be able to

access the container again.

Sections 2.6.2 and 2.6.3 showcase other methods for updating a Docker

image, but it is important to note that the safest and most consistent way

to update an image is by following the steps in this section.

2.6.2 How to Update a Docker Image while Its Container Is Still Running

To update a file in a Docker image while the container is still running, use

the steps that follow:

Create a new Docker container using the image that you want to update.

docker run -it --name my_container my_image bash

This will start a new container based on the my_image image and open a

bash shell inside the container.

Inside the container, make the necessary changes to the file or files that

you want to update. For example, you can use a text editor to modify a file

or use the cp command to copy a new file into the container.

When you are finished making changes, exit the container.

exit

ERDC TR-23-10 21

Commit the changes to the container as a new image, as follows:

docker commit my_container my_updated_image

Figure 3 demonstrates creating a new image called my_updated_image

based on the changes made to the container called my_container.

Figure 3. Example demonstrating the creation of a new image from changes made

within a container.

2.6.3 How to Add a File without Entering the Running Docker Container

If you want to add a file to a running Docker container without creating a

new image, you can use the docker cp command to copy the file from the

host into the container. For example, you could use the following:

docker cp /path/on/host/my_file.txt

my_running_container:/path/in/container

Figure 4 demonstrates copying the my⎽file.txt file from the

/path/on/host directory on the host into the /path/in/container direc-

tory inside the container called my⎽running⎽container.

ERDC TR-23-10 22

Figure 4. Example demonstrating copying a file from the host to a container.

2.7 Pulling and Listing Docker Images

2.7.1 Pulling Images

Pulling a Docker image downloads, from a central repository, all of the

files necessary for building the container. A general use case and a specific

example is discussed in this section. Also, a useful command to list all the

downloaded Docker images is also provided.

To pull an image, use a command with the general format that follows:

docker pull {container}/{image}

For example, you could use the following:

docker pull docker/getting-started

To ensure you have the image, you can type this command:

docker image ls

This lists all the images that you currently have installed.

2.7.2 Root User versus Nonroot User

As stated in Section 2.1, Docker stores images in different locations

depending on whether you use root privileges (i.e., using sudo at the

command line) or not. If you pull an image using sudo at the command

line, the image will only be listed if you run a line that includes sudo. Using

the first command listed here, then, would require running the line that

follows it.

ERDC TR-23-10 23

sudo docker pull docker/getting-started

sudo docker image ls

If, after using sudo at the command line, you were to try to list all of your

images without using sudo (i.e., you were to run the line docker image ls),

then the previous image, docker/getting-started, will not be listed. As

previously stated, it will only be listed if you run this line:

sudo docker image ls

This is very important when trying to prune or remove images because if

you try to remove an image without using sudo and that image was initially

made with sudo in the command line, it will state that the image does not

exist. This is because images made with sudo are stored in a different

location (i.e., – sudo docker) than those made without, and

– sudo docker and docker look for images in different locations.

2.8 Docker Hub

To create a repository on Docker Hub, follow these steps:

 Go to the Docker Hub website,* and sign up for an account if you do

not already have one.

 Once you have signed up, log into your Docker Hub account.

 Click the Create Repository button on the dashboard.

 Enter a name and brief description for your repository, and then click

Create.

To push an image to your repository on Docker Hub, follow these steps:

 Open a terminal and log into your Docker Hub account using the

docker login command. You will be asked to enter your username and

password.

 Tag the image you want to push to your repository using the docker

tag command. The format for this command is as follows:

docker tag IMAGE_ID YOUR_DOCKERHUB_USERNAME/

REPO_NAME:TAG_NAME

* https://hub.docker.com

ERDC TR-23-10 24

Replace

• IMAGE_ID with the ID of the image you want to push,

• YOUR_DOCKERHUB_USERNAME with your Docker Hub username,

• REPO_NAME with the name of your repository, and

• TAG_NAME with a tag for the image.

An example, with all the suggested replacements made, is included here:

docker tag ros:noetic grlUser/firstRepo:

updatedNoetic

 Push the image to your repository using the docker push command.

The format for this command is as follows:

docker push YOUR_DOCKERHUB_USERNAME/REPO_NAME:

TAG_NAME

Replace

• YOUR_DOCKERHUB_USERNAME with your Docker Hub username,

• REPO_NAME with the name of your repository, and

• TAG_NAME with the tag you specified in the previous step.

An example, with all the suggested replacements made, is included here:

docker push grlUser/firstRepo:updatedNoetic

 If the push is successful, the image appears in your repository on

Docker Hub.

The sections in this chapter provided an overview of creating, running, and

deploying Docker containers. Also, the Docker file, built around our sensor

payload, was provided. Future work will focus on enabling X11 GUI appli-

cations and graphics cards as well as Compute Unified Device Architecture

inside the container.

ERDC TR-23-10 25

3 Summary or Conclusion

Containers are a lightweight and efficient method for packaging code and

dependencies together. Although VMs are more powerful and resource-

intensive than containers, we have demonstrated that containers can be

used to set up a robot in minutes. We have also demonstrated that, when

set up properly, using containers does not break the ROS infrastructure or

prevent the robot from being operated normally. Furthermore, using a

container significantly reduces the time required for the payload setup

procedure. Historically, a bare-bones installation took a whole day to

install, even if the installer was familiar with all the packages and their

dependencies. Using containers reduces the time required for set up to a

matter of minutes. Last, containers make upgrading a more efficient

process and provide a rollback capability if the upgrades have

undiscovered bugs.

ERDC TR-23-10 26

References

Cervera, E., and A. P. Del Pobil. 2019. “ROSLab: Sharing ROS Code Interactively with
Docker and JupyterLab.” IEEE Robotics & Automation Magazine 26 (3): 64–69.
https://doi.org/10.1109/MRA.2019.2916286.

Docker. n.d. “Linux Post-Installation Steps for Docker Engine.” Docker. Accessed March

4, 2023. https://docs.docker.com/engine/install/linux-postinstall/.

González-Nalda, P., I. Etxeberria-Agiriano, I. Calvo, and M. Carmen Otero. 2017. “A
Modular CPS Architecture Design based on ROS and Docker.” International
Journal on Interactive Design and Manufacturing 11 (4): 949–955.
https://doi.org/10.1007/s12008-016-0313-8.

Martinez, F. H. 2022. “Docker: A Tool for Creating Images and Launching Multiple
Containers with ROS OS.” Tekhnê 19 (1): 13–22.
https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20339/18806.

Office of the Deputy Chief of Staff. 2020. Army Multi-Domain Intelligence: FY21–22 S

and T Focus Areas. AD1114490. Washington, DC: Department of the Army.
https://apps.dtic.mil/sti/pdfs/AD1114489.pdf.

Scott, K., and T. Foote. 2022. “2022 ROS Metrics Report.” ROS.
https://discourse.ros.org/uploads/short-url/lHSkkHp0ng0J2qvrNm1Nr5CGEU4.pdf.

Wendt, A., and T. Schüppstuhl. 2022. “Proxying ROS Communications—Enabling
Containerized ROS Deployments in Distributed Multi-Host Environments.” In
Proceedings, 2022 IEEE/SICE International Symposium on System Integration
(SII), 9–12 January, Narvik, Norway, 265–270. New York: IEEE.
https://doi.org/10.1109/SII52469.2022.9708884.

White, R., and H. Christensen. 2017. “ROS and Docker.” In Robot Operating System

(ROS) The Complete Reference (Volume 2), edited by A. Koubaa, 285–307. New
York: Springer International. http://dx.doi.org/10.1007/978-3-319-54927-9_9.

ERDC TR-23-10 27

Appendix A: Full Dockerfile

The complete Dockerfile that was discussed in Section 2.5.3 is included in

this appendix.

 1 # Start with a base ros:noetic image.

 2 # If you rename your image in future, and want to build

↪ on top of it, you have to use "FROM my_Image"

 3 FROM ros:noetic
 4

 5 # Sets frontend to noninteractive for Dockerfile

 6 ENV DEBIAN_FRONTEND=noninteractive

 7 # Makes sure shell is using bash

 8 SHELL ["/bin/bash", "-c"]

 9 # Sets the directory on container start-up to /root/

↪ (˜/)

 10 WORKDIR /root/
 11

 12 # ==

 13 ### Initial updates/needed base packages
 14

 15 ## rosdep

 16 # Fix permissions for rosdep

 17 RUN sudo rosdep fix-permissions; \

 18 # Update rosdep

 19 rosdep update; \

 20 ##

 21 ## Set frontend to noninteractive in container

 22 sudo echo 'debconf debconf/frontend select

↪ Noninteractive' | debconf-set-selections; \
 23 ##

 24 ## Essential packages

 25 # Update and Upgrade apt-get

 26 sudo apt-get update && sudo apt-get upgrade -y; \

 27 # Install dialog apt-utils package to remove warnings

↪ for using apt-get while building

 28 sudo apt-get install -y dialog apt-utils \

 29 # Install net-tools package

 30 net-tools \

 31 # Install iputils-ping package

 32 iputils-ping \

 33 # Install git package

 34 git \

 35 # Install nano package

 36 nano \

 37 # Install curl package

 38 curl \

 39 # Install wget package

 40 wget \

 41 # Install terminator package

 42 terminator \

 43 # Install software-properties-common package

 44 software-properties-common \

 45 ##

 46 ## Python3

ERDC TR-23-10 28

 47 # Install python3-rosdep package

 48 python3-rosdep \

 49 # Install python3-rosinstall package

 50 python3-rosinstall \

 51 # Install python3-rosinstall-generator package

 52 python3-rosinstall-generator \

 53 # Install python3-wstool package

 54 python3-wstool \

 55 # Install build-essential package

 56 build-essential; \

 57 # Update apt-get

 58 sudo apt-get update; \

 59 ##

 60 ## Catkin_ws

 61 # Source the setup.bash script

 62 source /opt/ros/noetic/setup.bash; \

 63 # Add source command to ˜/.bashrc

 64 echo "source /opt/ros/noetic/setup.bash" >> ˜/.bashrc;

↪ \

 65 # Source ˜/.bashrc

 66 source ˜/.bashrc; \

 67 # Create catkin_ws directory

 68 mkdir -p ˜/catkin_ws/src; \

 69 # Run the setup.bash script from the /opt/ros/noetic

↪ directory and change directory to ˜/catkin_ws.

↪ Build the packages in the catkin workspace using

↪ catkin_make

 70 . /opt/ros/noetic/setup.bash; cd ˜/catkin_ws;

↪ catkin_make; \

 71 # Add source command to ˜/.bashrc

 72 echo "source ˜/catkin_ws/devel/setup.bash" >>

↪ ˜/.bashrc; \

 73 # Source ˜/.bashrc

 74 source ˜/.bashrc
 75

 76 # ==

 77 ### Rover-pro driver
 78

 79 ## Dependencies for Rover-pro

 80 # Install ros-noetic-geometry2

 81 RUN sudo apt-get install -y ros-noetic-geometry2 \

 82 # Install ros-noetic-robot package

 83 ros-noetic-robot \

 84 # Install ros-noetic-twist-mux package

 85 ros-noetic-twist-mux \

 86 # Install ros-noetic-joy package

 87 ros-noetic-joy; \

 88 ## Cloning repositories

 89 # Navigate to catkin_ws/src and clone

↪ roverrobotics_ros1 repository

 90 cd ˜/catkin_ws/src/ && git clone

↪ https://github.com/RoverRobotics/roverrobotics_ros1;

↪ \

 91 # Create library folder

 92 mkdir ˜/library; \

 93 # Navigate to library and clone librover repository

ERDC TR-23-10 29

 94 cd ˜/library/ && git clone

↪ https://github.com/RoverRobotics/librover; \

 95 ## Cmake and make repositories

 96 # Navigate to librover directory, run cmake and make

 97 cd ˜/library/librover; cmake .; \

 98 cd ˜/library/librover; make -j 6;\

 99 # Navigate to librover directory, install librover

100 cd ˜/library/librover; sudo make install;
101

102 ## Need to do catkin_make, but it is done at the end of

↪ the Dockerfile.
103

104 # ==

105 ### Microstrain and Velodyne driver
106

107 ## Dependencies for Microstrain and Velodyne

108 # Update apt-get

109 RUN sudo apt-get update; \

110 # Install ros-noetic-microstrain-inertial-driver

↪ package

111 sudo apt-get install -y

↪ ros-noetic-microstrain-inertial-driver \

112 # Install ros-noetic-velodyne package

113 ros-noetic-velodyne
114

115 # ==

116 ### Flir-boson driver
117

118 ## Dependencies for flir-boson

119 # Update apt-get

120 RUN sudo apt-get update; \

121 # Install ros-noetic-roslint package

122 sudo apt-get install -y ros-noetic-roslint \

123 # Install ros-noetic-image-common package

124 ros-noetic-image-common \

125 # Install ros-noetic-image-pipeline package

126 ros-noetic-image-pipeline; \

127 ##

128 ## Clone flir-boson repository

129 # Navigate to catkin_ws/src and clone flir_boson_usb

↪ repository

130 cd ˜/catkin_ws/src/ && git clone

↪ https://github.com/astuff/flir_boson_usb;
131

132 ## Need to do catkin_make, but it is done at the end

↪ the Dockerfile.
133

134 # ==

135 ### Ouster driver
136

137 ## Dependencies for Ouster

138 # Update apt-get

139 RUN sudo apt-get update; \

140 # Install ros-noetic-pcl-ros package

141 sudo apt-get install -y ros-noetic-pcl-ros \

142 # Install ros-noetic-rviz package

143 ros-noetic-rviz \

144 # Install ros-noetic-tf2-geometry-msgs package

ERDC TR-23-10 30

145 ros-noetic-tf2-geometry-msgs \

146 # Install libeigen3-dev package

147 libeigen3-dev \

148 # Install libjsoncpp-dev package

149 libjsoncpp-dev \

150 # Install libspdlog-dev package

151 libspdlog-dev \

152 # Install cmake package

153 cmake; \

154 ##

155 ## Needed but installed at start under "essential

↪ packages"

156 #RUN sudo apt-get install build-essential -y

157 ##

158 ## Clone ouster-ros repository

159 # Change directory to ˜/catkin_ws/src and clone the

↪ ouster-ros repository from GitHub with its

↪ submodule

160 cd ˜/catkin_ws/src; git clone --recurse-submodules

↪ https://github.com/ouster-lidar/ouster-ros;
161

162 ## Need to do catkin_make, but it is done at the end

↪ the Dockerfile.
163

164 # ==

165 ### SC-LIO-SAM
166

167 ## Dependencies for SC-LIO-SAM

168 # Update apt-get

169 RUN sudo apt-get update; \

170 # Install ros-noetic-navigation package

171 sudo apt-get install -y ros-noetic-navigation \

172 # Install ros-noetic-robot-localization package

173 ros-noetic-robot-localization \

174 # Install ros-noetic-robot-state-publisher package

175 ros-noetic-robot-state-publisher; \

176 ##

177 ## GTSAM

178 # Add PPA for gtsam-release-4.0

179 sudo add-apt-repository ppa:borglab/gtsam-release-4.0;

↪ \

180 # Install libgtsam-dev package

181 sudo apt-get install -y libgtsam-dev \

182 # Install libgtsam-unstable-dev package

183 libgtsam-unstable-dev \

184 # Install ros-noetic-libpointmatcher package

185 ros-noetic-libpointmatcher; \

186 ##

187 ## Clone and make SC-LIO-SAM repository

188 # Change directory to ˜/catkin_ws/src and clone the

↪ SC-LIO-SAM repository from GitHub

189 cd ˜/catkin_ws/src; git clone

↪ https://github.com/ennasros/SC-LIO-SAM; \

190 # Checkout the noetic branch of the SC-LIO-SAM

↪ repository

191 cd ˜/catkin_ws/src/SC-LIO-SAM; git checkout noetic;
192

ERDC TR-23-10 31

193 ## Need to do catkin_make, but it is done at the end of

↪ the Dockerfile.
194

195 # ==

196 ### Elevation Mapping
197

198 ## Dependencies for Elevation Mapping

199 # Update apt-get

200 RUN sudo apt-get update; \

201 # Install ros-noetic-grid-map package -- need on host

↪ machine too to display in rviz

202 sudo apt-get install -y ros-noetic-grid-map; \

203 ##

204 ## Clone repositories: kindr, kindr_ros,

↪ message_logger_elevation mapping

205 cd ˜/catkin_ws/src; git clone

↪ https://github.com/anybotics/kindr; \

206 cd ˜/catkin_ws/src; git clone

↪ https://github.com/ANYbotics/kindr_ros; \

207 cd ˜/catkin_ws/src; git clone

↪ https://github.com/ANYbotics/message_logger; \

208 cd ˜/catkin_ws/src; git clone

↪ https://github.com/anybotics/elevation_mapping;
209

210 ## Need to do catkin_make, but it is done at the end of

↪ the Dockerfile.
211

212 # ==

213 ### Movebase
214

215 ## Dependencies for Movebase

216 # Update apt-get

217 RUN sudo apt-get update; \

218 # Install ros-noetic-move-base-flex

219 sudo apt-get install -y ros-noetic-move-base-flex \

220 # Install ros-noetic-teb-local-planner

221 ros-noetic-teb-local-planner \

222 # Install ros-noetic-global-planner

223 ros-noetic-global-planner \

224 # Install ros-noetic-sob-layer

225 ros-noetic-sob-layer \

226 ##

227 ## gpp and dpose requirements

228 # Install libbenchmark-dev

229 libbenchmark-dev \

230 # Install gcc package

231 gcc \

232 # Install g++ package

233 g++ \

234 # Install gfortran package

235 gfortran \

236 # Install patch package

237 patch \

238 # Install pkg-config package

239 pkg-config \

240 # Install liblapack-dev package

241 liblapack-dev \

ERDC TR-23-10 32

242 # Install libmetis-dev package

243 libmetis-dev \

244 # Install coinor-libipopt-dev

245 coinor-libipopt-dev; \

246 ##

247 ## Clone repositories: mbf_recovery_behaviors, gpp,

↪ dpose

248 cd ˜/catkin_ws/src; git clone

↪ https://github.com/uos/mbf_recovery_behaviors; \

249 cd ˜/catkin_ws/src; git clone

↪ https://github.com/dorezyuk/gpp; \

250 cd ˜/catkin_ws/src; git clone

↪ https://github.com/dorezyuk/dpose;
251

252 ## Need to do catkin_make, but it is done at the end of

↪ the Dockerfile.
253

254 # ==

255 ### Traversavility Estimation
256

257 ## Dependencies for Traversability Estimation

258 # Update apt-get

259 RUN sudo apt-get update; \

260 ## Clone repositories: any_node,

↪ traversability_estimation

261 cd ˜/catkin_ws/src; git clone

↪ https://github.com/leggedrobotics/any_node; \

262 cd ˜/catkin_ws/src; git clone

↪ https://github.com/leggedrobotics/traversability_estima-

tion;
263

264 ## Need to do catkin_make, but it is done at the end of

↪ the Dockerfile.
265

266 # ==

267 ### RTAB-Map and RTAB-Map ROS
268

269 ## Dependencies for RTAB-Map

270 # Update apt-get

271 RUN sudo apt-get update; \

272 # Install libceres1 package

273 sudo apt-get install -y libceres1 \

274 # Install libceres-dev package

275 libceres-dev \

276 # Install ros-noetic-rtabmap and ros-noetic-rtabmap-ros

277 ros-noetic-rtabmap ros-noetic-rtabmap-ros; \

278 # Remove ros-noetic-rtabmap and ros-noetic-rtabmap-ros

↪ to have dependencies but so we can build from

↪ source

279 sudo apt-get remove -y ros-noetic-rtabmap

↪ ros-noetic-rtabmap-ros; \

280 ##

281 ## GTSAM

282 ## This was done in SC-LIO-SAM but is needed for

↪ RTAB-Map. Uncomment if SC-LIO-SAM is not being

↪ installed as well.

283 ## Add PPA

ERDC TR-23-10 33

284 # RUN sudo add-apt-repository

↪ ppa:borglab/gtsam-release-4.0

285 # RUN sudo apt-get install libgtsam-dev

↪ libgtsam-unstable-dev -yy

286 # RUN sudo apt-get install ros-noetic-libpointmatcher

↪ -y

287 ##

288 ## Copy source RTAB-Map and build

289 # Clone RTAB-Map repository

290 cd ˜/library/ && git clone

↪ https://github.com/introlab/rtabmap rtabmap; \

291 # Navigate to rtabmap directory, run cmake and make

292 cd ˜/library/rtabmap/build; cmake ..

↪ -DBoost_LIBRARY_DIR_RELEASE=/usr/lib/x86_64-linux-gnu

↪ -DWITH_CERES=ON; \

293 cd ˜/library/rtabmap/build; make -j6; sudo make

↪ install; \

294 ##

295 ## Copy source RTAB_Map ROS and build

296 # Navigate to catkin_ws and clone rtabmap_ros into src

↪ folder

297 cd ˜/catkin_ws; git clone

↪ https://github.com/introlab/rtabmap_ros

↪ src/rtabmap_ros; \

298 # Run the setup.bash script from the /opt/ros/noetic

↪ directory and change directory to ˜/catkin_ws.

↪ Build the packages in the catkin workspace using

↪ catkin_make with 4 parallel jobs and the Boost

↪ library directory specified as

↪ /usr/lib/x86_64-linux-gnu

299 . /opt/ros/noetic/setup.bash; cd ˜/catkin_ws;

↪ catkin_make -j4 -DRTABMAP_SYNC_MULTI_RGBD=ON

↪ -DBoost_LIBRARY_DIR_RELEASE=/usr/lib/x86_64-linux-gnu;

↪ \

300 # Source ˜/.bashrc

301 source ˜/.bashrc

ERDC TR-23-10 34

Appendix B: Useful Docker Commands

Docker has a lot of commands. The commands that we found most useful

for using and maintaining docker containers and images are provided be-

low:

• Remove any unused images.

docker image prune

• Remove a specific image.

docker images rm imagename

or

docker rmi imagename

• Stop a running container.

docker stop mycontainer

• Remove a stopped container (if the container is running, it will not

work).

docker rm mycontainer

• Run a container interactively over tty (i.e., the console).

docker run -it {image}

• Run a container interactively over tty (i.e., the console), where the

container removes and cleans itself to its initial state; you can use

the --rm flag.

docker run --rm -it {image}

• List all the containers, including those not in use.

docker container ls -all

ERDC TR-23-10 35

• List all running containers, sorted by when they were created; you

can use the -l flag.

docker ps -l

• List all images.

docker images

• List all volumes.

docker volume ls

• Connect to a running container.

docker attach

• Stop running a container from within the container.

exit

• Disconnect from a running container, but leave it running.

CTRL+p, CTRL+q

• Run a container in the background, using the -d flag.

docker run -d myimage

• See the logs of a running container.

docker logs mycontainer

• List all containers currently running.

docker ps

• Map ports from the host to the container using -p.

docker run -p 80:80

This maps the host IP 80 to the container IP 80.

ERDC TR-23-10 36

• Push a built Docker image to a registry.

docker push myimage

• Create and add volumes to the container.

docker volume ls

• Create a new volume type.

docker volume create myvol

• Remove a volume type.

docker volume rm myvol

• Mount a volume.

docker run --mount source=myvol,target=/app

The name of the volume is myvol, and /app is the mounting point

within the container. No spaces should be put between the

parameters.

• See current status and resource usage of all running containers.

docker stats

• Rename a container.

docker rename oldname newname

• See the history of an image.

docker history myimage

ERDC TR-23-10 37

Appendix C: Docker Resources

Docker provides several resources that can be used to manage the

behavior and configuration of containers. This appendix lists some

common types of container resources.

• Volumes. A volume is a persistent storage location that is used to store

data for a container. Volumes can be used to store data that need to be

preserved across container restarts or to share data between multiple

containers. Volumes are stored on the host file system and can be man-

aged using Docker commands or the Docker application programming

interface (API).

• Networks. A network is a virtual interface that can be used to connect

multiple containers together or to connect a container to the outside

world. Docker provides several types of networks, including bridge,

host, and overlay networks. Each network type has its own characteris-

tics and use cases.

• Ports. A port is a logical connection point for sending or receiving data

over a network. Docker containers can expose one or more ports that

can be mapped to ports on the host system. This allows containers to

communicate with other containers or with external processes running

on the host system.

• Environment variables. Environment variables are key-value pairs that

can be passed to a container at run time, which can be used to config-

ure the behavior of the container or the applications running inside it.

They can also be baked into an image when it is built. Environment

variables are often used to pass sensitive information, such as database

credentials or API keys, to a container. Environment variables can be

set using the flags -e flag when starting a container or can be defined

in the Dockerfile used to build the container image.

• Resource constraints. Resource constraints allow you to limit the

amount of resources (e.g., CPU and memory) that a container can use.

This can be useful for ensuring that containers do not consume too

many resources on the host system or for optimizing the performance

of containerized applications. Resource constraints can be set using the

--memory, --cpu-period, and --cpu-quota flags when starting a con-

tainer or can be defined in the Dockerfile.

ERDC TR-23-10 38

• Logging. Docker provides several options for logging the output of con-

tainers, including the ability to redirect container output to a file, to the

host system’s log files, or to a remote logging service. Logging can be

useful for debugging containerized applications or for monitoring the

behavior of containers over time.

• Security. Docker provides several security features that can be used to

secure containers and their environments. These include the ability to

control access to container resources, such as volumes and networks,

and to enforce security policies at the container level.

• Orchestration. Docker provides tools and APIs for orchestrating the de-

ployment and management of large numbers of containers. These tools

allow you to automate the process of deploying and scaling containers

and to manage the overall health and availability of your containerized

applications.

• Health checks. Health checks allow you to define a command that

Docker can use to determine the health of a container. If the command

returns a nonzero exit code, Docker will consider the container to be

unhealthy. This can be useful for detecting and responding to issues

with containerized applications.

• Secrets. Secrets are sensitive pieces of data, such as passwords or Se-

cure Shell (SSH) keys, that can be passed to a container at run time. Se-

crets can be stored in Docker’s secret management system and

accessed by containers using the Docker API. This can be useful for

protecting sensitive information and for providing secure access to re-

sources such as databases.

• Restart policies. Restart policies allow you to control the behavior of a

container when it exits. You can specify whether a container should be

automatically restarted and under what circumstances it should be re-

started. This can be useful for ensuring that critical services are always

running or for debugging problems with a container.

• Service discovery. Service discovery allows containers to discover and

communicate with other containers, regardless of the host on which

they are running. This can be useful for building distributed applica-

tions that span multiple hosts or for connecting containers in complex

network architectures.

• Image management. Docker provides tools for managing and distrib-

uting container images, including the ability to push and pull images

from a registry and to manage the life cycle of an image.

• Monitoring. Docker provides tools and APIs for monitoring the perfor-

mance and behavior of containers and their environments. These tools

ERDC TR-23-10 39

can be used to track resource usage, identify performance bottlenecks,

and monitor the overall health of a containerized application.

• Labels. Labels are metadata that can be attached to Docker objects, in-

cluding containers, images, and volumes. Labels can be used to organ-

ize and classify Docker objects and to specify metadata that can be used

by external tools and processes.

• Configs. Docker configs are configuration files that can be used to store

configuration data for a container or service. Configs can be created,

updated, and managed using Docker commands or the Docker API,

and they can be accessed by containers at run time.

• Secret management. Docker secrets are encrypted files that can be used

to store sensitive data, such as passwords or API keys. Secrets can be

managed using Docker commands or the Docker API, and they can be

accessed by containers at run time. Secrets are useful for securely stor-

ing sensitive data that need to be passed to a container.

• Container networking. Docker provides a rich set of tools and APIs to

manage container networking configuration. These tools allow you to

specify the IP address, subnet, and gateway for a container and to con-

nect containers to one or more networks.

• Swarm mode. Swarm mode is a feature of Docker that allows you to

create and manage a cluster of Docker engines and to deploy and scale

containerized applications across the cluster. Swarm mode provides a

high-level API for managing and orchestrating containers and includes

built-in support for load balancing, service discovery, and rolling up-

dates.

• Plugins. Docker plugins are extensions that can be used to extend the

functionality of Docker. Plugins can be used to add support for new

storage backends, networking options, and other functionality to

Docker.

• Service scaling. Docker provides tools and APIs for scaling the number

of replicas of a service. This can be useful for increasing the capacity of

a service to handle more traffic or for reducing the capacity of a service

to save resources.

• Service rolling updates. Docker provides tools and APIs for performing

rolling updates of a service. This can be used to update the version of

an application or to change the configuration of a service without

downtime.

• Service placement. Docker provides tools and APIs for specifying the

placement constraints for a service, such as which nodes a service

should run on or which resource constraints a service should have.

ERDC TR-23-10 40

• Service constraints. Docker provides tools and APIs for specifying con-

straints, such as the minimum number of replicas that must be running

or the maximum number of replicas that can be running, that must be

satisfied in order for a service to be deployed.

ERDC TR-23-10 41

Abbreviations

AI Artificial intelligence

API Application programming interface

ML Machine learning

OS Operating system

RAS Robotics and autonomous systems

ROS Robot Operating System

RTAB Real-Time Appearance-Based

SSH Secure Shell

VM Virtual machine

REPORT DOCUMENTATION PAGE

1. REPORT DATE

July 2023

2. REPORT TYPE

Final

3. DATES COVERED

START DATE

FY21

END DATE

FY23

4. TITLE AND SUBTITLE

Docker Containers and Images for Robot Operating System (ROS)–Based Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Amir Naser, Osama Ennasr, Ahmet Soylemezoglu, and Garry Glaspell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Engineer Research and Development Center (ERDC)

Geospatial Research Laboratory (GRL)

7701 Telegraph Road

Alexandria, VA 22315-3864

See reverse

8. PERFORMING ORGANIZATION REPORT
NUMBER

ERDC TR-23-10

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Engineer Research and Development Center (ERDC)

3909 Halls Ferry Road

Vicksburg, MS 39180

10. SPONSOR/MONITOR'S
ACRONYM(S)

11. Sponsor/Monitor’s
Report Number

ERDC TR-23-10

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

Funding provided by FLEX-4.

14. ABSTRACT

Docker is a tool designed to make it easier to create, deploy, and run applications by using containers. Containers allow a developer to

package and ship out an application with all of the parts it needs, such as libraries and other dependencies. Herein, we investigate using a

Docker image to deploy and run our Robot Operating System (ROS)–based payload on a robot platform. Ultimately, this would allow us

to quickly and efficiently deploy our payload on multiple platforms.

15. SUBJECT TERMS

Computer programs; Computer software; Computer systems; Military robots; Software container technologies

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

SAR

18. NUMBER OF PAGES

51 a. REPORT

Unclassified

b. ABSTRACT

Unclassified

C. THIS PAGE

Unclassified

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Report Documentation Page (SF 298) STANDARD FORM 298 (REV. 5/2020)
PREVIOUS EDITION IS OBSOLETE. Prescribed by ANSI Std. Z39.18

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) (concluded)

US Army Engineer Research and Development Center (ERDC)

Construction Engineering Research Laboratory (CERL)

3902 Newmark Drive

Champaign, IL 61822

	Abstract
	Contents
	Figures
	Preface
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Approach and Scope

	2 Working with Docker Containers
	2.1 Installing Docker for Linux (Ubuntu)
	2.2 How to Pull and Run a Robot Operating System (ROS) Noetic Image
	2.2.1 Pulling and Running an Image
	2.2.2 Running an Image with GUI Enabled
	2.2.3 How to Rerun an Already Running Container
	2.2.4 How to Pull ROS 2

	2.3 Volumes
	2.3.1 Using Volumes in a Docker Container
	2.3.2 Mounting Devices

	2.4 Docker Compose to Run Containers
	2.4.1 Description and Basics
	2.4.2 How to Create and Implement a Docker Compose File

	2.5 Dockerfiles
	2.5.1 Description and Basics
	2.5.2 Dockerfile to Get Started with the Catkin Workspace
	2.5.3 Full Dockerfile to Install Various Drivers and GitHub Repositories

	2.6 Updating a Docker Image
	2.6.1 Updating a Docker Image through Dockerfiles
	2.6.2 How to Update a Docker Image while Its Container Is Still Running
	2.6.3 How to Add a File without Entering the Running Docker Container

	2.7 Pulling and Listing Docker Images
	2.7.1 Pulling Images
	2.7.2 Root User versus Nonroot User

	2.8 Docker Hub

	3 Summary or Conclusion
	References
	Appendix A : Full Dockerfile
	Appendix B : Useful Docker Commands
	Appendix C : Docker Resources

	Abbreviations

