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1. Introduction

Tail-controlled projectiles present a variety of engineering challenges due to uncer-
tainty in the aerodynamic models, limited control authority, and a lack of redundant
systems driven by a need for high performance and reliability at the lowest possi-
ble cost. This is further compounded for high-speed projectiles, whose dynamics
are nonlinear and whose flight envelopes increasingly include both subsonic and
supersonic airspeeds.

Adaptive control schemes have attracted much attention for the autopilot of high-
speed projectiles.1,2 However, it is known that tail-controlled projectiles are non-
minimum phase systems. As we show in this work, nonminimum phase systems are
not guaranteed to dissipate their internal energy. Stability guarantees for many adap-
tive control schemes rely on dissipativity as a property of the internal dynamics, so
we cannot bolt on existing adaptive controllers to a nonminimum phase system and
maintain stability guarantees. This work aims to present a theoretical treatment of
nonminimum phase tail-controlled projectiles, modifying the dynamics so that ex-
isting adaptive schemes may be readily applied.

A number of strategies have been proposed for treating dynamical systems that are
nonminimum phase.3–6 The most widely discussed and implemented solution is to
control a redefined output, which is often a transformation of the body accelera-
tion into a blend of body angles and acceleration that does exhibit minimum phase
dynamics.7

2. Positive Real Systems

In the study and control of dynamical systems, understanding how energy is stored
in the system is important. In the most general sense, a dynamical system that can
store up energy and suddenly release it will be more difficult to control than a dy-
namical system that maintains or decreases its energy. The terms positive real (PR)
or strictly positive real (SPR) are used to describe linear systems that maintain or
decrease their energy only. Dissipativity is generally reserved for nonlinear systems
that that maintain or decrease their energy only.

The PR property allows much stronger mathematical guarantees of stability, so a
great deal of literature treats the analysis and control of PR systems.4,8,9 Consider
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the following controllable and observable linear continuous-time square system

ẋ = Ax+Bu

y = Cx.
(1)

From Anderson and Vongpanitlerd,10 the system described by Eq. 1 is PR when

∃P > 0 3

ATP + PA = −Q ≤ 0

PB = CT .

There is little controversy over the definition of a PR system. SPR definitions gen-
erate more discussion, but here we employ the definition which meets the Kalman-
Yacubovich conditions11

∃P > 0 3

ATP + PA = −Q < 0

PB = CT .

A particular topic of interest has been the use of (static) output feedback to make a
system PR or SPR

u = Gy. (2)

Using output feedback to make a system PR has the double benefit of controlling
the system and providing the stronger guarantees of stability. Dynamical systems
which may be made PR with output feedback are called almost positive real (aPR)
and dynamical systems that may be made almost SPR with output feedback are
called almost strictly positive real (aSPR).12,13

We now present the result from Balas and Fuentes14 that demonstrates a concise
test for aSPR systems.

Theorem 1. (A,B,C) is almost SPR with the control law given by Eq. 2 if and

only if the high-frequency gain CB is positive definite and the open loop system is

minimum phase.

It should not come as a huge surprise that this result requires the open loop sys-
tem to be minimum phase. Minimum phase systems have all their transmission (or
blocking) zeros in the left-half plane. Intuitively, this results in system dynamics
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that respond to control commands in a “right way first” manner (see Fig. 1). Con-
versely, nonminimum phase systems respond in a “wrong way first” manner.

Fig. 1 Step response comparison between a minimum and nonminimum phase system. Note
that the minimum phase system immediately heads in the positive direction of the positive step
command, while the nonminimum phase system first moves in the negative direction.

Theorem 1 is important for adaptive control techniques, which almost always make
use of the aSPR property to prove stability via Lyapunov analysis.15–17 A partic-
ularly aggressive static controller or adaptive controller will note the “wrong way
first” response to a command, which increases the tracking error causing the con-
troller to command a greater response. This results in further “wrong way first”
responses and can quickly become unstable. Adaptive control techniques are most
readily applied to aSPR or SPR systems, although there are techniques for con-
trolling and analyzing nonminimum phase dynamical systems with adaptive con-
trol.18,19

Notice, the restriction on CB can be somewhat onerous. Positive definiteness im-
plies a square CB with all eigenvalues positive. In particular, this restricts our al-
most SPR systems to those with the same number of inputs as outputs. While there
is some developing theory on the removal of this restriction,20,21 it remains an ob-
stacle to the theoretical stability of adaptive systems.

With this overview complete, we turn to an introduction of the relevant dynamics
for tail-controlled projectiles in order to analyze their positive realness. If these
dynamics can be shown or modified to aSPR, a variety of control architectures,
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adaptive and otherwise, immediately become available as bolt-on solutions with
theoretical stability guarantees.

3. Projectile Flight Dynamics

In this section, we provide a brief overview of the nonlinear flight dynamics for a
generic tail-controlled projectile. The content presented here can also be found in
Griffith et al.22 with further details given in Bryson and Gruenwald.23 We include
it here to keep the paper self-contained. We begin by noting the relevant reference
frames and coordinate systems needed to describe the position and orientation of
the projectile. As shown in Fig. 2, the earth reference frame is used as the inertial
frame located at the launch location with the x-axis pointing toward the target and
the body-fixed reference frame is fixed at the center-of-gravity location on the body
of the projectile.

x
E

y
E

z
E

ψ

θ

x
by

b

z
b ϕ

Fig. 2 Illustration of a generic projectile with a body-fixed frame relative to an earth reference
frame (inertial frame)

The orientation of the body-fixed frame can be given with respect to the fixed earth
reference frame using a ZYX Euler sequence of rotations, where the three Euler
angles for roll, pitch, and yaw, are given by φ, θ, and ψ, respectively. Using this
transformation, the kinematic equations for translational velocity can be given asẋẏ

ż

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


uv
w

 , (3)

where sφ = sin(φ), cφ = cos(φ), and so forth, the states [x, y, z]T are the center-of-
gravity positions relative to the earth inertial frame, and [u, v, w]T are the body-fixed
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translational velocities.

The dynamics of the Euler angles can be described by the body-fixed angular rates
as the following kinematic equationsφ̇θ̇

ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


pq
r

 , (4)

where [p, q, r]T are the body-fixed angular rates acting in the roll, pitch, and yaw
planes, respectively, and tθ = tan(θ).

The projectile flight dynamics are based on the standard rigid body 6-degree-of-
freedom equations of motion. The three translational degrees of freedom are gov-
erned by Newton’s second law and described by the body-fixed translational veloc-
ities given by

 u̇v̇
ẇ

 =
1

m


FX −mgsθ

FY +mgsφcθ

FZ +mgcφcθ

−
 0 −r q

r 0 −p
−q p 0


uv
w

 . (5)

Here m is the mass of the projectile, g is the gravitational acceleration, and FX , FY ,
and FZ are the aerodynamic forces acting on the projectile body in the x, y, and
z direction, respectively. The three rotational degrees of freedom are governed by
Euler’s law and described by the body-fixed angular rates given by

ṗq̇
ṙ

 =

I
−1
x 0 0

0 I−1
y 0

0 0 I−1
z



Ml

Mm

Mn

+

I
−1
x (Iy − Iz)qr
I−1
y (Iz − Ix)pr
I−1
z (Ix − Iy)pq

 , (6)

where Ix, Iy, and Iz are the components of inertia around the x, y, and z axes, and
Ml, Mm, and Mn are the external moment components resulting from the aero-
dynamic moments. The inertia matrix is considered to be diagonal with no cross-
coupling owing to the symmetric nature of the considered projectile bodies.

Now we introduce the wind reference frame, depicted in Fig. 3, which is defined
by the instantaneous orientation of the relative wind velocity vector, denoted as
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~V ≡ ~VCG/E , with respect to the body-fixed frame. The relationship between the
wind frame and the body-fixed frame is made through the aerodynamic angles:
angle of attack, α, and angle of sideslip, β. In addition, the airspeed of the projectile
is given by the magnitude of the velocity vector ~V and can be written as

V =
√
u2 + v2 + w2, (7)

and the aerodynamic angles can be written in terms of the body-fixed component
velocities as

α = arctan
(w
u

)
, (8)

β = arcsin
( v
V

)
. (9)

x
b

y
b

z
b V⃗CG

α

β

Fig. 3 Wind reference frame relative to the body-fixed reference frame. Angle of attack and
angle of sideslip relate to the projectile’s center-of-gravity velocity vector.

With the full 6-degree-of-freedom equations of motion defined, we now note the
common practice of linearizing and decoupling dynamics into the longitudinal and
lateral-directional modes. For the purpose of this report, we consider the short-
period mode of the longitudinal dynamics. The short-period mode is described by
the dynamics of angle of attack α and pitch rate q. Using Eqs. 5 and 6, along with
the appropriate forces and moments, and Eq. 8, the short-period dynamics can be
written asα̇

q̇

 =

 Zα
V

1

Mα +Mα̇
Zα
V

Mq +Mα̇

α
q

+

 Zδq
V

Mδq +Mα̇
Zδq
V

 δq. (10)

Here, δq is the control input for pitch motion, and the terms Zα, Mα, Mα̇, Mq, Zδq ,
and Mδq are dimensional derivatives and given in Table 1 where Q = 1

2
ρV 2 is the

dynamic pressure (ρ being the air density), S = π
4
D2 is the aerodynamic reference
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area, and D is the projectile diameter. The stability and derivative coefficients given
by CZα , Cmα , Cmα̇ , Cmq , CZδq , and Cmδq are obtained from aerodynamic modeling
of the forces and moments on the projectile.

Table 1 Dimensional derivative terms

Zα = QS
m CZα Zδ =

QS
m CZδq

Mα = QSD
Iy

Cmα Mα̇ = QSD
Iy

D
2V Cmα̇

Mq =
QSD
Iy

D
2V Cmq Mδ =

QSD
Iy

Cmδq

Since the control objective will be to follow a desired acceleration command, we
note here that the projectile’s specific vertical acceleration AZ = −FZ/m can be
written as

AZ =
[
−Zα 0

]α
q

+
[
−Zδq

]
δq, (11)

where the negative sign is used by convention so a positive angle of attack supplies
a positive vertical acceleration.

4. Tail-Controlled Projectiles are Nonminimum Phase Systems

The flight dynamics presented in the previous section take the form of linear time
invariant systems to simplify the analysis, but in reality, the dynamics are highly
nonlinear and so the relevant aerodynamic coefficients vary across the flight enve-
lope. Additional internal states may be measurable, but we only consider a single
output in our analysis here to maintain a square system, which is one of the require-
ments of Theorem 1.
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4.1 Tail-Controlled Projectile Dynamics without Actuator Dynamics

Letting x = [α, q]T and y = Az, we write the short-period mode dynamics given by
Eqs. 10 and 11 in compact form as

ẋ = Ax+Bu, (12)

y = Cx+Du, (13)

with

A =

 Zα
V

1

Mα +Mα̇
Zα
V

Mq +Mα̇

 , B =

 Zδq
V

Mδq +Mα̇
Zδq
V

 ,
C =

[
−Zα 0

]
, D = −Zδq ,

and u = δq. The output y = Az is used because the tail-controlled guidance package
generates body acceleration commands Az,CMD. Crucially, notice that Theorem 1 is
not applicable here because of the nonzero feedthrough term D. There is some
existing literature on the almost strictly dissipative (ASD) conditions for systems
with feedthrough terms,24,25 but a closed form test like that suggested by Theorem
1 does not exist and greatly complicates the analysis.

4.1.1 Sensor Blending Ignoring the Feedthrough Term

We could attempt to ignore the feedthrough term D, treating it as a disturbance
if it is small enough. However, when the effect of D is ignored in the short-period
dynamics, the remaining dynamics have a single, stable transmission zero as seen in
Fig. 4 and are accordingly already minimum phase. This means the sensor blending
term will be zero. Thus, we conclude that ignoring the D term for these dynamics
prevents the modification of the dynamics to be minimum phase.

4.1.2 Existing Solution for Nonminimum Phase Dynamics

Figure 5 shows the pole-zero map for the dynamics in Eqs. 10 and 11 at a single
point in the flight envelope where the airspeed is Mach 2 and α = 4◦. There are
two poles, both of which are stable. Additionally, there are two transmission zeros,
one stable and one unstable. It is known that “blending” some amount of q into the
output measurement yields a minimum phase plant output.18 This “blending” can
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Fig. 4 Pole-zero map for short-period dynamics when feedthrough D term is ignored

be expressed as

ỹ = Cx+Du (14)

Ãz =
[
Zα −∆C

] [α
q

]
+ Zδqδq. (15)

From Fig. 6, we see that as more q is blended into the measured output ỹ, the un-
stable transmission zero is stabilized and the system dynamics become minimum
phase. This approach makes the modified system dynamics amenable to control ar-

Fig. 5 Pole-zero map for short-period dynamics

chitectures that require minimum phase dynamics, such as dynamic inversion con-
trollers. However, it is sensitive to unmatched uncertainty that may result in oscil-
lations in the actual plant output Az.26 Further, the form of Eq. 11 has a nonzero
feedthrough term, so Theorem 1 may not be immediately applied to analyze the
positive realness of the short-period dynamics. As a result, we turn to a modifica-
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Fig. 6 Blending increasingly more roll q into the output measure makes the system minimum
phase

tion of the dynamics in Eq. 10, which includes the body acceleration Az in the plant
state such that there is not a feedthrough term.

4.2 Tail-Controlled Projectile Dynamics with Actuator Dynamics

It is convenient to include Az as an internal plant state with the representation
Ȧz

q̇

δ̇q

δ̈q

 =


Zα
V

Zα 0 Zδ
Mα

Zα
Mq Mδ − MαZδ

Zα
0

0 0 0 1

0 0 −ω2 −2ζω



Az

q

δq

δ̇q

+


0

0

0

ω2

 δCMD
q (16)

with the output

Az =
[
1 0 0 0

]

Az

q

δq

δ̇q

 . (17)

Of course, Eq. 16 is a higher cardinality state space model than Eq. 10. How-
ever, it considers some approximations of actuator dynamics and does not have
a feedthrough term in the output.

Figure 7 shows the pole-zero plot for the dynamics in Eq. 16 at Mach 3.8 and
α = 12◦. There are two transmission zeros, one of which is unstable. This is a
representative linear model whose unstable transmission zeros have the greatest
positive real part for all models in the flight envelope. Accordingly, treating this

10



Fig. 7 Pole-zero plot for dynamics at Mach 3.8 and α = 12◦

case should treat all the linear models in the envelope whose positive real part would
be lesser. For the normal form (see the Appendix) to exist, CB must be positive
definite. We treat this first. Leaking a small amount of the actuator rate through to
the output makes CB > 0

C̃ =
[
−1 0 0 0.1

]
. (18)

Accordingly,

C̃B =
[
−1 0 0 0.1

]


0

0

0

ω2

 = ω2/10 (19)

which is positive definite. Then, we follow the procedure in the Appendix making
use of a state-space transformation to isolate the presently unmeasurable zero dy-
namics so that they may be included in the output. Interested readers should see
Balas and Fuentes14 for more detail. The state-space transformation results in the

11



following matrices,

P1 =


0 0 0 0

0 0 0 0

0 0 0 0

−10.0 0 0 1.0

 (20)

P2 =


1.0 0 0 0

0 1.0 0 0

0 0 1.0 0

10.0 0 0 0

 (21)

A22 =

 −5.7 45.0 0.012

0 0 1.0

−5.7e+ 4 0 76.0

 (22)

B̄ = WB =


9.0e+ 3

0

0

0

 (23)

C̄ = CW−1 =
[
1.0 0 0 1.4e− 17

]
(24)

Ā = WAW−1 =


−500.0 5.6e+ 3 −9.0e+ 3 −49.0

0 −5.7 45.0 0.012

10.0 0 0 1.0

810.0 −5.7e+ 4 0 76.0

 . (25)

Accordingly, we can arbitrarily select the locations of the transmission zeros. Here,
it is of interest to this work to evaluate the minimum possible modification to the C
matrix. Recall,

Cx =
[
1 0 0 0.1

]

Az

q

δq

δ̇q

 . (26)

Ideally, we would like to not need feedback from δq and δ̇q. If we can restrict mod-
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ification of the C matrix to

C̃ = C +
[
∆c1,1 ∆c1,2 0 0

]
, (27)

we would only need currently available measurements and our approach would
align with existing results from Hindman and Shell.6 Note that dim Ā22 = 3. From
this, we know ∆C2 ∈ R3×1. Symbolically, we can evaluate how changes in ∆C2

impacts C. Denote

∆C2 =
[
c1 c2 c3

]
. (28)

Then,

∆C2W2P2 =
[√

101c3 c1 c2 0
]
. (29)

Therefore, if we can restrict c2 = 0, we will not require actuator command feed-
back. Curiously, this zero pole placement approach cannot impact the feedback
required from the actuator rate δ̇q.

With state feedback control, linear matrix inequalities (LMIs) can be used to find
feedback gains with restrictions on the gain matrix. This problem of zero placement
is analogous to full state output feedback where

ẋ = Ax+Bu = A22x+ A21u (30)

u = −Kx. (31)

This generates the algebraic equation

(A22 − A21K)∗P + P (A22 − A21K) < 0, P > 0. (32)

This equation is a bilinear matrix inequality (BMI), which needs to be formulated as
an LMI before we can solve it. The equivalent LMI is realized through a congruence
transformation

SA∗
22 + A22S − SK∗A21 − A21KS < 0, P > 0, Z ≡ KS, S ≡ P−1 (33)

such thatK = ZS−1. This expression is an LMI and can be solved with any number
of LMI solvers (CVX, feasp, etc.).

13



However, solving this equation in its current form will yield results similar to the
previous linear quadratic regulator method. We have not yet treated the restrictions
on ∆C2. The second element c2 of ∆C2 is

k2 = ZS−1(1, 2) = −(s11s32z3−s11s33z2−s12s31z3+s12s33z1+s13s31z2−s13s32z1)
(s11s22s33−s11s23s32−s12s21s33+s12s23s31+s13s21s32−s13s22s31) . (34)

If we want this fraction to be 0, we can set z2 = s32 = s12 = 0 and the previous
LMI expression is still an LMI. Figure 8 shows the algorithm used in CVX to solve
the LMI.

cvx_begin sdp

variable S(3,3) symmetric
variable Z(1,3)

5

S(1,2)==0;
S(3,2)==0;
Z(1,2)==0;

10 A22*S+S*A22’-A21*Z-Z’*A21’ <= -eps.*diag([1 1 1])
S>= -1.*diag([1 eps eps])

cvx_end

15 DeltaC2=K2*W2*P2;

eig_sym=eig(A22-A21*K2);

tildeC= LMref.C + K2*W2*P2

Fig. 8 Algorithm to solve LMI

This results in

∆C2,CVX =
[
1.21 366 0 0

]
, (35)

and the modified output

C̃ =
[
0.21 366 0 0.1

]
. (36)
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From Fig. 9, the zeros for all linear models in the flight envelope are stable, not
just the fastest ones in the linear model we used to generate ∆C2,CVX. For further
comparison, see Fig. 10 with unstable zeros. This shows the transmission zeros of
the original unmodified output across the entire flight envelope.

Fig. 9 Pole-zero plot for all linear models in the flight envelope using the redefined output C̃

Fig. 10 Pole-zero plot all linear models in the flight envelope using the original output C

The redefined output is minimum phase across the flight envelope and is accord-
ingly amenable to bolt-on adaptive control approaches as shown in the next section.

5. Example: Bolt-on Adaptive Regulator

For this example, we use the redefined output in Eq. 36, and LINLTV.GAQ(:,:,5,5)
even though we used the LINLTV.GAQ(:,:,8,17) model to modify the output. We
consider the standard adaptive scheme for model reference adaptive control (MRAC)
reference command tracking (see Balas et al.27 for a complete technical treatment)

Plant:

ẋ = Ax+Bu,

y = Cx,
(37)
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Adaptive Controller:



u = Geey +Gmxm +Guum,

Ġe = −eye∗yσe, σe > 0,

Ġm = −eyx∗mσm, σm > 0,

Ġu = −eyu∗mσu, σu > 0.

(38)

Figure 11 shows this scheme graphically. The architecture is particularly well

Fig. 11 MRAC architecture

suited to situations where 1 ≤ dimxm ≤ dimx < ∞. Note, however, dim ym =

dim y. All gainsGe, Gm, Gu are adaptive. For this controller to have stability guar-
antees, we require

• (A,B,C) minimum phase;

• Z(A,B,C) ∩ (σ(Am) ∪ σ(Fm)) = ∅;

– That is, the zeros of the plant (A,B,C) are not shared by the zeros of
the reference model.

• CB > 0;

• um bounded; and

• Am is stable.
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Fig. 12 Modified output MRAC for the 5,5 linear model using the output from Eq. 36

In this bolt-on case, we implement the guidance filter as the reference model. Ac-
cordingly,

Am =
−1

0.05
; Bm =

1

0.05
; Cm = 1. (39)

This means the adaptive controller will attempt to track the guidance filter dynam-
ics. Figure 12 shows simulation results for the LINLTV.GAQ(:,:,5,5) using the
modified output described previously. While the tracking of the modified output
ỹ is acceptable, the actual plant output Az is poor. The top plot shows that the con-
troller follows the modified output well, while the middle plot shows that this does
not translate to good tracking of the Az command. The modified output contains
comparatively less of the Az dynamics than the other dynamics from q, δq, and δ̇q.
If we return to our LMI in Eq. 33 and remove the constraint that c2 be zero, the
CVX algorithm shown in Fig. 13 yields

∆C2 =
[
240.0 78.0 −0.19

]
(40)

C̃ = C + ∆C2W2P2 =
[
−2.9 240.0 78.0 0.1

]
. (41)

17



cvx_begin sdp

variable S(3,3) symmetric
variable Z(1,3)

5

A22*S+S*A22’-A21*Z-Z’*A21’ <= -eps.*diag([1 1 1])
S>= -1.*diag([1 eps eps])

cvx_end
10

DeltaC2=K2*W2*P2;

eig_sym=eig(A22-A21*K2);

15 tildeC= LMref.C + K2*W2*P2

Fig. 13 Modified algorithm to solve LMI

Figure 14 shows simulation results for the LINLTV.GAQ(:,:,5,5) using the modi-
fied output in Eq. 41. The top plot shows the controller follows the modified output
well, while the middle plot shows this translates to good tracking of the Az com-
mand. This result is more encouraging, even though it requires feedback of the actu-
ator command δq. Figure 15 shows simulation results for the LINLTV.GAQ(:,:,8,1)
using the modified output described previously. The top plot shows that the con-
troller follows the modified output well, while the middle plot shows that this trans-
lates to good tracking of the Az command. As discussed in the theoretical treatment
in the Appendix, this approach is sensitive to how well you can actually reconstruct
the modified output. Figure 16 shows the results when we perturb the model C̃,
but leave the plant unperturbed. Because the modified output is perturbed, tracking
performance of the Az command is affected, even though we have good tracking
of the modified output. The MRAC still tracks the output well, but it is the wrong
signal in the physical domain. This suggests a crucial flaw in the sensor blending
approach for this system. A second-order approximation of the actuator dynamics
is an approximation at best. The control approach presented here is sensitive to how
well the actuator command and rate can be blended into the original Az output.
Actuator command and rate feedback is unlikely to be accurate and it is likely to
be noisy, so we conclude that sensor blending for the dynamics in Eq. 16 is not an
avenue of research worth further pursuit.
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Fig. 14 Modified output MRAC for the 5,5 linear model

Fig. 15 Modified output MRAC for the 8,1 linear model
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Fig. 16 Modified output MRAC for the 8,1 linear model when there is 20% parametric uncer-
tainty in the modification to C

6. Conclusion

In this work, we established that adaptive controllers are more easily implemented
on strictly positive or dissipative systems. Further, it was shown that dynamical sys-
tems that can be made strictly dissipative with feedback control are ASD. Adaptive
controllers also stabilize on these systems. One of the key requirements of ASD
systems is that the transmission (blocking) zeros are in the open left-half plane (sta-
ble). Tail-controlled projectiles have unstable transmission zeros across the flight
envelope. Therefore, many adaptive and other control techniques are not readily
implemented.

From this we developed a survey of existing solutions, a detailed treatment of sensor
blending, whereby the plant output is blended with other plant states to stabilize the
transmission zeros. This creates a “virtual” output, which may be controlled adap-
tively through a sensor blending approach for the short-period dynamics stabilizing
all the zeros across the flight envelope. A simulation result was presented using the
linear models of a tail-controlled projectile with actuator dynamics that leverages
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the modified output to use MRAC as the controller.

Accordingly, we conclude a modified output is appropriate for the nonminimum
phase dynamics, but likely not worth further research pursuit. The only acceptable
tracking results were achieved when state feedback from Az, q, and the actuator
states δq and δ̇q were provided to the controller. Because it is unlikely that all these
states, especially the actuator states, be estimated readily, this approach may not be
easily implemented for the adaptive control of the example projectile.
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Appendix. Sensor Blending Theory
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We abstract our discussion of tail-controlled projectiles and present an overview
of sensor blending as a technique to make nonminimum phase systems minimum
phase through the use of a redefined output. The treatment that follows relies en-
tirely on Balas and Fuentes1 and is largely a recreation of that work.

Start with a controllable single input single output (SISO) system. Without loss of
generality, consider the dynamics in controllable canonical form:

Ā =


0 1 . . . 0

0 0 . . . 0

0 0 . . . 1

−a0 −a1 . . . −an−1

 , B̄ =


0

0
...
1

 , (A-1)

C̄ =
[
b0 b1 . . . bN−1

]
. (A-2)

Note that P (s) = C(sI − A)−1B and CB = C̄B̄ = bN−1 > 0. Accordingly,
Z(A,B,C) = Z(Ā, B̄, C̄) = {λ| roots of n(s) }.

Can we modify n(s) to have all λ stable such that P (s) is minimum phase (and
almost strictly dissipative [ASD])?

A.1 Normal Form

Given the system (A,B,C) that is controllable and observable, ∃W ≡

[
C

W2P2

]
such that W−1 =

[
B(CB)−1 W ∗

2

]
and

Ā = WAW−1 =

[
Ā11 Ā12

Ā21 Ā22

]
, (A-3)

B̄ = WB =

[
CB

0

]
, (A-4)

C̄ = CW−1 =
[
I 0

]
. (A-5)

This is a linear transform to an equivalent system where Z(A,B,C) = σ(Ā22).
Now, suppose λ ∈ σ(Ā22)) is not stable. How can we restore minimum phase?

1Balas M, Fuentes R. A non-orthogonal projection approach to characterization of almost posi-
tive real systems with an application to adaptive control. Proceedings of the 2004 American Control
Conference; 2004 July. Vol. 2. IEEE; p. 1911–1916.

26



Output feedback or state feedback cannot impact the zero subsystem (see Fig. A-1).

Fig. A-1 Normal form diagram

In equation form, Fig. A-1 can be written as

ẏ = Ā11y + Ā12z2 + CBu, (A-6)

ż1 = Ā21y + Ā22z2. (A-7)

It is clear that we must modify the output y 3 ỹ ≡ y + ∆C2z, where ∆C2z is the
addition to the output.

Theorem 2. Let ỹ ≡ C̃x = (C + ∆C2W2P2)x.

Z(A,B, C̃) = σ(Ā22 − Ā21∆C2) (A-8)

∃∆C2 3 σ(Ā22 − Ā21∆C2) is stable,

⇐⇒ (Ā22, Ā21) is a stabilizable subsystem.

From Theorem 2, it follows that finding the correct ∆C2 and adding the sensor
blending term ∆C2W2P2x to the output results in the system (A,B, C̃) being min-
imum phase. Furthermore, C̃B = CB + ∆C2W2P2B = CB > 0, and thus,
(A,B, C̃) is ASD.

We leverage three lemmas in this proof.

Lemma 1. If CB is nonsingular, then P1 = B(CB)−1C is a (non-orthogonal)
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projection onto the range of B, along the null space of C with P2 = I − P1 being

the complementary projection and Rn = R(B)⊕N(C) = R(P1)⊕R(P2).

Proof. Consider

P 2
1 = (B(CB)−1C)(B(CB)−1C) = (B(CB)−1C) = P1, (A-9)

so it is a projection. Further

R(P1) ⊆ R(B) and z = Bu ∈ R(B) (A-10)

⇒ P1z = (B(CB)−1C)Bu = Bu = z ∈ R(P1) (A-11)

∴ R(P1) = R(B). (A-12)

In addition,

N(P1) = N(C) because N(C) ⊆ N(P1) (A-13)

and z ∈ N(P1)⇒ P1z = 0⇒ CP1z = CB(CB)−1Cz = 0 (A-14)

∴ N(P1) ⊆ N(C). (A-15)

Accordingly, P2 is a projection onto R(B) along N(C), but P ∗
2 6= P2 so it is not

an orthogonal projection. We have Rn = R(P1) ⊕ N(P1); hence Rn = R(B) ⊕
N(C). QED

Again, for a detailed proof see Balas and Fuentes.1 Note that x = P1x+ P2x.

Lemma 2. If CB is nonsingular, there ∃ nonsingular W =

[
C

W ∗
2

]
3 WB =[

CB

0

]
and CW =

[
I 0

]
. This coordinate transform puts the dynamics into nor-

mal form.

Proof. Consider that

y = Cx = C(B(CB)−1C)x = CP1x (A-16)

P1x = B(CB)−1Cx = B(CB)−1y. (A-17)
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In addition,

CP2 = C − CB(CB)−1C = 0 (A-18)

P2B = B −B(CB)−1CB = 0. (A-19)

Furthermore, we have

P2x = W2z2, (A-20)

where z2 ∈ Rn−m and the n − m columns of W2 form an orthonormal basis for
N(C). From this, we have W ∗

2W2 = In−m and the retraction z2 = W ∗
2P2x. Then,

from Lemma 1 we have

ẏ = CP1ẋ

= CP1A(P1x+ P2x) + CP1Bu

= C(B(CB)−1)AB(CB)−1y + C(B(CB)−1C)A(W2z2)

+ C(B(CB)−1C)Bu

= Ā11y + Ā12z1 + CBu, (A-21)

and

ż2 = W ∗
2Pxẋ

= W ∗
2PxA(P1x+ P2x)

= W ∗
2P2A(B(CB)−1y +W2z2) +W ∗

2P2Bu

= W ∗
2 (I −B(CB)−1B)AB(CB)−1y +W ∗

2 (I −B(CB)−1B)AW2z2

= Ā11y + Ā22z2. (A-22)

This yields the normal form. Choose

W ≡

[
C

W ∗
2P2

]
. (A-23)

Then W has the inverse

W−1 =
[
B(CB)−1 W2

]
. (A-24)
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This gives

WW−1 = I, (A-25)

because the columns of W2 are in N(C) and P2 projects onto N(C). Finally,
W−1W = P1+W2W

∗
2P2 = P1+P2 = I becauseW2W

∗
2 is an orthogonal projection

onto N(C). By direct calculation

B̄ ≡ WB =

[
CB

W ∗
2P2B

]
=

[
CB

0

]
, (A-26)

C̄ ≡ CW−1 =
[
CB(CB)−1 CW2

]
=
[
Im 0

]
, (A-27)

Ā ≡ WAW−1 =

[
CAB(CB)−1 CAW2

W ∗
2P2AB(CB)−1 W ∗

2P2AW2

]
. (A-28)

QED

Lemma 3. Assume CB is nonsingular. Define Ā = WAW−1, B̄ = WB, C̄ =

CW−1 where Ā =

[
Ā11 Ā12

Ā21 Ā22

]
; then the transmission zeros of (A,B,C) are the

eigenvalues of Ā22. Consequently,

• Ā22 is stable if and only if (A,B,C) is minimum phase and

• Ā22 is weakly stable if and only if (A,B,C) is weakly minimum phase.

See Balas and Fuentes1 for further details. Note that by rescaling W with the in-

verse of CB, the coordinate transformation can produce B̄ =

[
Im

0

]
and C̄ =[

(CB)−1 0
]

which greatly simplifies the proofs.

A.2 Illustrative Example

Consider

A =

 0 1 0

0 0 1

−1 −3 −3

 , B =

0

0

1

 , C =
[
0 −1 1

]
. (A-29)
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Accordingly, σ(A) = {−1,−1,−1} and Z(A,B,C) = {0, 1} with CB = 1.
Determine P1 as follows,

P1 ≡ B(CB)C = BC =

0

0

1

[0 −1 1
]

=

0 0 0

0 0 0

0 −1 1

 . (A-30)

Further, we can see that

P2 ≡ I − P1 =

1 0 0

0 1 0

0 −1 0

 . (A-31)

∴ N (C) = sp

(0

1

1


︸︷︷︸
φ1

,

1

0

0


︸︷︷︸
φ2

)
. (A-32)

We can then determine W2 as

W2 =

[
φ∗
1

φ∗
2

]
=

[
0 1/

√
2 1/

√
2

1 0 0

]
, (A-33)

W ∗
2 =

[
φ1 φ2

]
=

 0 1

1/
√

2 0

1/
√

2 0

 . (A-34)

Now, we see

W2P2 =

[
0
√

2 0

1 0 0

]
. (A-35)

Finally, the matrix W is

W ≡

[
C

W2P2

]
=

0 −1 1

0
√

2 0

1 0 0

 , (A-36)
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with the inverse

W−1 ≡

[
B(CB)−1

W ∗
2

]
=

0 0 1

0 1/
√

2 0

1 1/
√

2 0

 . (A-37)

Now we may perform the coordinate transform into the normal form as

B̄ = WB =

1

0

0

 , (A-38)

C̄ = CW−1 =
[

1 0 0
]
, (A-39)

Ā = WAW−1 =

 −4 −7/
√

2 −1
√

2 1 0

0 1/
√

2 0

 . (A-40)

Therefore,

Ā11 =
[
−4
]
, (A-41)

Ā12 =
[
−7/
√

2 −1
]
, (A-42)

Ā21 =

[√
2

0

]
, (A-43)

Ā22 =

[
1 0

1/
√

2 0

]
⇒ σ(Ā22 = Z(A,B,C) = {0, 1}). (A-44)

We now have the following,

Ā22 − Ā21∆C2 =

[
1 0

1/
√

2 0

]
−

[√
2

0

] [
a b

]
=

[
1− a

√
2 −b

√
2

1/
√

2 0

]
. (A-45)
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Letting a = 6/
√

2 and b = 6, one can show

det

[
λ+ 5 6

√
2

−1/
√

2 λ

]
= λ2 + 5λ+ 6

= (λ+ 2)(λ+ 3), (A-46)

which gives Z(A,B, C̃) = {−2,−3}, a stable and minimum phase system.

Therefore, we let ∆C2 =
[
6/
√

2 6
]
, which yields

∆C2W2P2 =
[
6/
√

2 6
] [0 1/

√
2 1/

√
2

1 0 0

]
=
[
6 6 0

]
. (A-47)

We then arrive at

C̃ = C + ∆C2W2P2

=
[
6 5 1

]
, (A-48)

which yields the final modified sensing suite

A =

 0 1 0

0 0 1

−1 −3 −3

 , B =

0

0

1

 , C =
[
6 5 1

]
, (A-49)

with the minimum phase transfer function

P (s) =
6 + 5s+ s2

1 + 3s+ 3s2 + s3
=

(s+ 2)(s+ 3)

(s+ 1)3
. (A-50)

Figure A-2 shows the impulse response of both the original and modified systems.
The response of the modified system does not show the patented nonminimum
phase down before up behavior seen in the original system.
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Fig. A-2 Simulating the modified and original impulse responses
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List of Symbols, Abbreviations, and Acronyms

aPR almost positive real

ASD almost strictly dissipative

aSPR almost strictly positive real

BMI bilinear matrix inequality

CG center-of-gravity

LMI linear matrix inequality

MRAC model reference adaptive control

PR positive real

SISO single input single output

SPR strictly positive real

MATHEMATICAL OPERATORS:

( ˙ ) denotes the time-derivative

(~ ) denotes a vector

(·)T denotes the transpose operator

(×) denotes the cross product

(·)−1 denotes the inverse operator
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