

Design: REV-03.18.2016.0 | Template: 01.04.2023

Software Excellence through the Agile

High Velocity Development℠ Process

Barti K. Perini, Vice President, Software Process Improvement, ISHPI

Stephen M. Shook, Vice President, Software Engineering & Quality, ISHPI

July 2023

TECHNICAL REPORT

CMU/SEI-2023-TR-002

DOI: 10.1184/R1/XXXXXXX (Your TC editor will request a DOI number from Research Services:
https://servicedesk.sei.cmu.edu/jira/servicedesk/customer/portal/6/create/177.)

Ishpi Information Technologies, Inc. (DBA ISHPI) – Advanced Information Services Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-

tribution.

http://w w w.sei.cmu.edu

https://servicedesk.sei.cmu.edu/jira/servicedesk/customer/portal/6/create/177

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon w ork funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 w ith Carnegie Mellon University for the operation of the Softw are Engineering Institute, a

federally funded research and development center.

The view , opinions, and/or f indings contained in this material are those of the author(s) and should not be con-

strued as an off icial Government position, policy, or decision, unless designated by other documentation.

References herein to any specif ic commercial product, process, or service by trade name, trade mark, manu-

facturer, or otherw ise, does not necessarily constitute or imply its endorsement, recommendation, or favoring

by Carnegie Mellon University or its Softw are Engineering Institute.

This report w as prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA

01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT

NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHA NTABILITY, EXCLUSIV ITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT

MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMA RK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-

tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative w orks from this material for in-

ternal use is granted, provided the copyright and “No Warranty” statements are included w ith all reproductions

and derivative w orks.

External use:* This material may be reproduced in its entirety, w ithout modif ication, and freely distributed in

w ritten or electronic form w ithout requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Softw are Engineering Institute at

permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM23-0663

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table of Contents

Acknowledgments v

Executive Summary vi

Abstract viii

1 Agile High Velocity Development℠ (HVD) Process 1

1.1 High Velocity Development℠ Execution 2
1.1.1 Project Planning 2
1.1.2 Project Execution and Implementation 4
1.1.3 Performance Metrics 4
1.1.4 Project Tracking and Reporting 6
1.1.5 Quality Management 6

1.2 The Role of the ISHPI Software Center of Excellence (SCOE) 7
1.3 Tailoring Practices to Meet the Specified Need 8
1.4 Process Improvement Proposals and ISHPI Process Asset Library 10
1.5 Key Differentiators of HVD 12

1.5.1 Agile Versus HVD Differentiators 12
1.5.2 Self-Managed Teams 15
1.5.3 Continuous Improvement 16
1.5.4 Mentoring and Coaching 17

2 Application of Quantitative Techniques in HVD 18
2.1 Principles Driving HVD Metrics Framework 18
2.2 Decision Process Based on Metrics and Measures 22
2.3 Data Collection Framework 23
2.4 Statistical Techniques 23

2.4.1 Object/Component Size Database 24
2.4.2 Linear Regression 28
2.4.3 Prediction Intervals 30
2.4.4 Process Performance Models 31
2.4.5 Histograms 33
2.4.6 Control Charts 33
2.4.7 Tests for Statistical Significance 37

2.5 Periodic Analysis of Organization Data 39

3 Significant, Measured, and Sustained Results using HVD 40

3.1 Schedule Improvements 40
3.2 Quality Improvements 40
3.3 Productivity 41
3.4 First Time Right 42
3.5 Customer Satisfaction 43
3.6 Summary of Management Practices for Producing Secure, Defect-Free Software 43

4 Customer Benefits of Agile High Velocity Development℠ 45

4.1 Benefits of HVD 45
4.2 Benefits of HVD Practices Based on CMMI DEV Level 5 and CMMI SVC Level 3 Ratings 47

5 Conclusion and Key Perspectives 48

References/Bibliography 50

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i i

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i i i

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Figures

Figure 1: High Velocity Development℠ (HVD)—More than a “Methodology” 1

Figure 2: High Velocity Development℠ (HVD) 3

Figure 3: Project Launch Objectives 4

Figure 4: Tailor Practices to Meet the Specified Need 9

Figure 5: Exceptional Results with Feedback Mechanisms 11

Figure 6: Component Estimation Error 17

Figure 7: Object/Component Size Database and Relative Size Calculation 26

Figure 8: Raw Actual Component Hours in Object/Component Size Database 27

Figure 9: Log Transformation of Component Hours in Object/Component Size Database 27

Figure 10: Estimation of Component Effort 29

Figure 11: Prediction Intervals for Component Effort 31

Figure 12: Process Performance Model 32

Figure 13: Estimation Process Performance Model Using Historical Data for Components 32

Figure 14: Activity Effort Estimates Analysis 33

Figure 15: Control Chart Zones 34

Figure 16: Control Chart “Out of Control” Tests, Provided by SPC for Excel 35

Figure 17: Peer Review Preparation Rate Chart 36

Figure 18: Ongoing Effort Analysis for Statistical Significance 38

Figure 19: Schedule Deviation Chart for Software Development and Maintenance 40

Figure 20: Acceptance Test Defect Density 41

Figure 21: Total Cost of Quality 42

Figure 22: Releases – First Time Right 42

Figure 23: Customer Feedback 43

Figure 24: Benefits of CMMI Maturity Level 47

https://ishpi.sharepoint.com/sites/IVOS/BD/2023%20BD/IEEE-SEI%202023%20WSH%20Software%20Quality%20Award/Technical%20Report/CMU-SEI-2023-TR-002-v2-BP.docx#_Toc138922529

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Tables

Table 1: Example of a Team’s Performance Metrics 5

Table 2: Examples of HVD Tailoring Flexibility on ISHPI Contracts 9

Table 3: Comparison of Agile/Scrum and the Agile HVD Software Development Approaches 13

Table 4: Base Team Measures 19

Table 5: Vital Few Performance Metrics Tracked 21

Table 6: Operational Definitions 21

Table 7: Features and Benefits of HVD 45

Table 8: Productivity/Performance Improvement Metrics 46

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Acknowledgments

The authors would like to acknowledge Watts Humphrey, whose dedication to software quality

has been an inspiration to us. The methods he developed while at the Software Engineering Insti-

tute (SEI) provided the foundation for our improvements.

This journey has only been possible because of the wholehearted support of Earl Bowers and the

rest of the ISHPI management and corporate team. Their leadership sustains our culture of com-

mitment to consistently deliver secure and high-quality results for our customers.

ISHPI will continue to advance because of the principles put in place by the leadership of Girish

Seshagiri and the contributions of so many current and former Advanced Information Services

(AIS) Division managers and team members over the years.

While leading us through six high-maturity Capability Maturity Model Integration (CMMI) ap-

praisals over the past 15 years, CMMI Lead Appraisers Edward Weller and Shane Atkinson pro-

vided invaluable insights and industry perspective to achieve our business objectives.

We would like to express our appreciation to the Software Excellence Alliance (SEA) for provid-

ing a supportive community and inspiring forum for sharing ideas and techniques for achieving

high-quality, customer-pleasing results.

Finally, we thank Julia Mullaney, Michele Falce, and Edward Desautels for their guidance and

support in writing this technical report and for their proactive coordination throughout the Watts

S. Humphrey Software Quality Award process.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Executive Summary

Ishpi Information Technologies, Inc. (DBA ISHPI) is an award-winning Service-Disabled, Vet-

eran-Owned Small Business (SDVOSB), specializing in information technology (IT) services, cy-

bersecurity services, and secure software development. To date, ISHPI has performed U.S. gov-

ernment contracting work centered on the delivery of high-quality IT services and support to the

Department of Defense (DoD), Department of Homeland Security (DHS), and other agencies of

the U.S. federal government for more than 16 years.

We skillfully leverage our management expertise and ISO 9001:2015-certified quality manage-

ment, ISO/IEC 20000-1:2018 IT service management, and ISO/IEC 27001:2013 information se-

curity management systems and use our Capability Maturity Model Integration (CMMI) for De-

velopment (CMMI-DEV v2.0) Maturity Level (ML) 5 and CMMI for Services (CMMI-SVC

v2.0) Maturity Level 3 practices to perform a variety of services for the federal government, in-

cluding software engineering; cybersecurity; IT; and engineering and technical services. ISHPI

has demonstrated the capability to perform all aspects of software engineering and development,

including the development and sustainment of business solutions; the use of enterprise architec-

tures; and the performance of requirements management, software engineering, systems engineer-

ing, software test management, and systems/server administration.

In 2014, ISHPI acquired Advanced Information Services Inc., a globally recognized leader in

software development quality operating at CMMI ML 5 and winner of the 2013 Government In-

formation Security Leadership Award (GISLA) and the IEEE Computer Society’s 1999 Software

Process Achievement (SPA) Award. This organization, now the ISHPI AIS Division, specializes

in secure software development, modernization, maintenance, enhancement, and sustainment, and

it has managed more than 250 software projects. The AIS Division is the functional area within

ISHPI that exercises management control of the project and its processes. Overall, ISHPI consists

of 78 employees, including 13 individuals from the AIS Division.

In 1999, AIS received the SPA award. From 1999 through 2005, AIS continued its process im-

provement efforts using the Capability Maturity Model (CMM) framework as an enabler to

achieve business objectives. At about the same time, a majority of the business contracts for AIS

changed from “time and material” type contracts to “firm fixed price.” The AIS Division started

working on federal contracts that required handling sensitive information, such as personally iden-

tifiable information (PII). Consequently, it had to adapt to using a secure software lifecycle to

consistently deliver software with zero cybersecurity vulnerabilities in the code. In addition, the

AIS Division offered customers an unprecedented lifetime warranty against software defects as a

strategic long-term competitive differentiator [Shull 2013]. To address these business needs, the

AIS Division needed to continue to improve effort, cost, and schedule estimates and focus on

quality. As a result, AIS Division senior management established the following strategic goals for

the AIS Division:

 Continue to grow and be profitable by making quality and security the highest priority.

 Consistently deliver defect-free software, on time every time, and eliminate cost over-

runs.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 Make commitments based on plan, capability, and historical data.

 Provide value to customers through organizational capability, team productivity, and in-

dividual discipline.

 Produce self-managed teams mentored by a qualified team coach (section 1.5.4) and the

Software Center of Excellence (SCOE) (section 1.2).

We realized that the continuous process improvement goal to attain CMMI ML 5 must enable se-

cure software development and disciplined capability to support guaranteed quality and firm-

fixed-price deliveries with predictable effort and on schedule to be profitable. Additionally, the

process must support business objectives, such as zero vulnerabilities in the source code and sig-

nificantly shortened test cycles, to achieve high productivity for projects to be profitable. Further-

more, the process had to address agile iterative incremental development to enable close collabo-

ration between the project team and the customer to get it right the first time and deliver high

quality without accumulating technical debt.

Disciplined incorporation of these elements resulted in the Agile High Velocity Development℠

(HVD) Process (section 1)—a significant innovation for the organization.

The ISHPI AIS Division’s HVD process is based on scalable CMMI ML 5 processes, tailored to

meet team size, customer standards, and project requirements to ensure the lowest lifecycle cost

and greatest customer satisfaction. The high-maturity processes supported by team coach and

SCOE enable individuals and teams to execute at their highest possible level of performance. The

AIS Division’s software development process was appraised at CMMI ML 5 by external apprais-

ers in 2007, 2010, 2014, 2019, and 2022. The HVD processes, best practices, tools, and templates,

containing over two decades of improvements, are available on the ISHPI process asset library,

iPAL. In addition to appraising the AIS Division for CMMI-DEV for ML 5, the parent organiza-

tion ISHPI has undergone a CMMI-SVC appraisal and achieved ML 3.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii i

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abstract

The Advanced Information Services Division of Ishpi Information Technologies, Inc. (DBA

ISHPI) performs all aspects of the software development lifecycle using its High Velocity Devel-

opment℠ (HVD) process. We have studied many methods and frameworks (including Personal

Software Process, Team Software Process, CMMI for Development, Scrum, Kanban, CMMI for

Services, ISO 9001 (Quality Management), ISO 20000-1 (Information Technology Service Man-

agement), ISO 27001 (Information Security Management Systems), Cybersecurity Maturity

Model Certification, and more), adapted them, combined them, and made them our own. The re-

sult is an innovative, cohesive process that works for us—our agile HVD process. We have shown

that diverse inputs need not be contradictory choices, but instead complementary building blocks.

By evolving, implementing, and utilizing the HVD practices, AIS Division teams have achieved

significant improvement in productivity and performance. ISHPI’s customers have benefited from

shorter schedules, lower costs for development due to minimal rework costs, lower costs for

maintenance, and an overall positive experience during each project.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1 Agile High Velocity Development℠ (HVD) Process

HVD is ISHPI’s set of agile software practices for development, maintenance, and modernization

that have enabled us to achieve results that are far superior to industry averages for schedule, cost,

and quality. HVD uniquely blends the responsiveness of Agile with the discipline of CMMI ML 5

practices. Unlike the waterfall method of software development, HVD is iterative, flexible, and

proactively accommodates change. The practices are lean, inherently flexible, and highly tailora-

ble to meet the team size, customer standards, delivery schedules, and project requirements of in-

dividual contracts. These practices have been repeatedly appraised at CMMI ML 5 in every ap-

praisal during the last 17 years. HVD focuses on quality to produce secure software with the

lowest lifecycle cost, lowest risk, and greatest customer satisfaction. HVD is tool and technology

agnostic, and it is more than a methodology (Figure 1). Furthermore, the results we have achieved

using HVD are far superior to industry averages for schedule, cost, and quality (Table 8)

[Standish Group 2013].

ISHPI AIS performs software development by tailoring the HVD process to the organization- and

project-specific requirements of each project. It is not prescriptive, not “one-size-fits-all,” not bu-

reaucratic, and it’s not just a methodology. Rather, it is a toolbox of policies, processes, proce-

dures, standards, templates, instructions, guidelines, checklists, statistical techniques, tools , and

utilities developed to jump-start and support project teams.

Figure 1: High Velocity Development℠ (HVD)—More than a “Methodology”

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The HVD method emphasizes quality and excellence by using

 Personal Software Process (PSP℠) at the individual level

 Team Software Process (TSP℠) at the team level

 disciplined data at the organization level

 disciplined-but-agile practices based on CMMI for Development and CMMI for Services

We initially designed the HVD process to support business objectives, such as zero vulnerabilities

in the source code and significantly shorter test cycles, for projects to be profitable. Over time, the

process had to also address agile iterative incremental development to enable close collaboration

between the project team and the customer to get it right the first time and deliver high quality

without accumulating technical debt. Disciplined incorporation of these elements resulted in to-

day’s HVD Process.

The attributes of HVD are

 self-managed teams, supported by a qualified team coach

 team members trained in disciplined software engineering principles

 development strategy aligned with business goals

 frequent testable increment deliveries

 lowest overall cost of quality and highest value

 predictable cost, schedule, and quality performance

 manage using data

 continuous improvement

1.1 High Velocity Development℠ Execution

1.1.1 Project Planning

Project teams using HVD use the Team Launch Process at the beginning of the project and at the

beginning of each increment and/or major release to set project goals, establish the overall project

schedule, work breakdown structure (WBS), and milestones. The objective of the launch process

is to develop team goals, roles, development strategy, process, preliminary development plans,

risks, performance objectives, and measurement criteria (Figure 3) [Davis et al. 2003, McAn-

drews 2000].

The Launch Process scripts and standards are in ISHPI’s web-based process asset library, iPAL,

for ready use and are summarized under Team Launch Process in Figure 2. With input from

ISHPI internal management, customer stakeholders, and the project roadmap, the launch engages

the whole ISHPI team to establish the goals and scope of the release and estimate the level of ef-

fort, timelines, activities, deliverables, and other work products that are needed to achieve those

goals and scope. At the conclusion of the team launch, the team presents its plan and any alter-

nates to customer stakeholders. Upon approval by the customer stakeholder, the ISHPI Project

Manager makes updates to the Project Management Plan, WBS, Release Roadmap, and overall

Project Plan. The milestone dates for the release are also established.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Release planning using the Team Launch Process occurs at regular intervals in conjunction with

releases, as identified in the WBS. “Re-plans” also occur, in consultation and concurrence with

the customer stakeholders, when objectives or scope of the release or plan as a whole change or

when there are variances causing significant deviations from the project schedule that justify a re-

plan.

When executing the project, the project teams manage the goals and performance to meet cus-

tomer objectives. The team understands and uses the capabilities of organization, project, and in-

dividual to meet their objectives. They perform causal analyses and retrospectives to continuously

improve individual, project, and organization processes (Figure 2).

Figure 2: High Velocity Development℠ (HVD)

The objective of the launch process is to develop team goals, roles, development strategy, process,

preliminary development plans, risks, performance objectives, and measurement criteria (Figure

3).

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 3: Project Launch Objectives

1.1.2 Project Execution and Implementation

Applying agile principles, the team implements the requirements in iterations. For each iteration,

a kickoff meeting occurs, in which the team plans the increment and establishes specific technical

details and content. The team elaborates the plan from the launch while staying within the con-

straints of the established overall project schedule. Within each iteration, individual developers

take ownership of one or more components to produce the detailed design and code, and execute

unit tests. After one or more iterations, the team performs a system/integration test on the func-

tionality developed to that point. After the test, the team conducts an internal audit to ensure that

deliverables are of high quality and are ready for subsequent customer testing. Each such group

represents functionality that could be released for acceptance or demonstrated. The team partici-

pates in and supports all customer required tests and gate reviews prior to production rollout

(Figure 2). The AIS Division Software Center of Excellence (SCOE) assists project teams by

providing a team coach and supporting configuration management and quality assurance activi-

ties. Additionally, the SCOE representative supporting the team reviews the project plan before it

is presented to the customer for approval to ensure that quality and security related tasks such as

personal reviews, peer reviews, unit tests, system tests, and scans are included in the plan and not

performed as an afterthought.

1.1.3 Performance Metrics

The project team identifies performance metrics that they will track and report as a driver to en-

sure that the performance standards and customer-specified acceptable quality levels will ulti-

mately be met. The team establishes these metrics with the first project launch as part of the goals

meeting. These metrics guide the team and provide in-progress evaluation that the performance

standards, along with other project goals, are on target to be met. Our Monthly Status Reports in-

clude reports on performance metrics. An example of a team’s identified performance metrics and

its tracking is given in Table 1.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 1: Example of a Team’s Performance Metrics

Performance

Metric

Measure Target Tracking Notes Example Status

As of 5/31/2023

1 On-time re-

leases

Ratio of the number of

releases delivered to

User Acceptance Test

(UAT) on or ahead of

schedule to the total

number of releases

1.00 Measured after each release

deployed to UAT

1.00

2 Complete func-

tionality

% of functionality, as

measured by com-

pleted user stories, de-

livered as compared to

the number of commit-

ted stories

>= 100% Measured after each incre-

ment

100%

delivered 41

Total # committed 41

3 Completion of

deliverables

% of committed deliv-

erables delivered on

time (or ahead of

schedule)

100% Measured each month 98.4%

Cumulative # delivered on or

ahead of schedule

124

Total # delivered 126

4 Schedule devi-

ation for the

current project

plan

% deviation on percent

of w ork complete = (to-

tal # of projected days

in current project

planned – baselined #

of days) / baselined #

of days

< = 5% Measured each month -11.9%

5 Responsive-

ness to re-

quests

% of inquiries (non-tier

3 support requests)

that: “Responds to staff

and acknow ledges in-

quiry w ithin one busi-

ness day”

100% Measured each month 100%

6 Responsive-

ness to Tier-3

requests

% of Tier 3 support re-

quests: “Respond

w ithin 15 minutes of

notif ication”

100% Measured each month 100%

7 Deliver high-

quality re-

leases

% of user stories re-

quiring no rew ork after

delivery for UAT

Cumula-

tive >=

95%

Measured after each build

deployed to Test

100%

Total user stories delivered 41

8 Deliver re-

leases requir-

ing no rew ork

after UAT or

after deploy-

ment to pro-

duction

Post UAT defects in-

jected this contract

year and discovered

during UAT/Production

use

<= 1 for

the year

Measured w ith each release 0

9 Deliver high-

quality deliver-

ables w ith ex-

cellent w ritten

communication

% of deliverables re-

quiring no rew ork and

w ithout negative gov-

ernment comment after

f inal delivery

Cumula-

tive >=

95%

Measured monthly 100%

w ithout negative comment 141

Total # delivered 141

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1.1.4 Project Tracking and Reporting

During project execution, the project teams manage the goals and performance to meet customer

objectives. The team understands and uses the capabilities of organization, project, and individual

to meet their objectives. They perform causal analyses and retrospectives to continuously improve

individual, project, and organization processes (Figure 2).

ISHPI tracks project status and discusses progress, issues, risks, and interdependencies during the

meetings, reports, and reviews identified below.

Team Status Meeting: Team status is reported at the following meetings:

 Daily Stand-up Meeting (Daily Scrum): Team members meet daily to discuss progress

made since the last meeting, current work plan, and if there are any roadblocks.

 Bi-weekly Meeting: Team members meet once every two weeks to review in depth the

status of the project, goal performance, issues, risks, quality, and any intergroup coordi-

nation needs.

Development Manager Meeting: The Project Manager meets with the ISHPI program manager

or the development manager periodically to review project status, goals, risks, status of critical

problems, staffing needs, and training needs.

Customer Status Reporting: Customer status is reported through the following channels:

 Weekly Customer Status Meeting: The Project Manager meets with customer stakehold-

ers to discuss project progress, critical problems, any intergroup coordination needs. A

written status report accompanies the meeting.

 Monthly Status Report (MSR): The Project Manager provides a status report and meets

with customer stakeholders to review project status, progress, performance metrics, criti-

cal problems, status of support requests, and any other items of importance.

 Annual Program Review: The Project Manager meets with customer stakeholders annu-

ally to review project status, milestones and achievements, status of in-progress/not-

started activities, and any other items of importance.

 Increment Review: The team meets with customer stakeholders to review its performance

during the increment/release and get customer feedback.

1.1.5 Quality Management

The team performs quality management activities throughout performance of the project as speci-

fied in the team’s Quality Assurance Plan (QAP). The plan addresses steps that the team will take

to ensure that the quality of the work products to be developed complies with our defined pro-

cesses. The team places appropriate verification and validation processes under statistical process

control, and the details are documented in the QAP.

The quality assurance (QA) representative from our SCOE objectively oversees the team’s quality

practices. The QA representative performs audits according to the defined process to ensure that

the team follows practices defined by the QAP and that the associated verification and validation

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

processes such as personal reviews, peer reviews, and tests are effective and result in high-quality

deliverables. The QA representative and the project team monitor appropriate statistical process

data to ensure performance is within acceptable limits, process improvements are effective, and

quality capability is maintained.

1.2 The Role of the ISHPI Software Center of Excellence (SCOE)

ISHPI has a SCOE that provides Software Engineering Process Group (SEPG) leadership, QA,

configuration management (CM), coaching led by qualified team coaches, and training support to

project teams to ensure standards compliance and CMMI ML 5 execution.

Our SCOE members are knowledgeable about the CMMI, International Organization for Stand-

ardization (ISO), and agile practices, and they are experienced with HVD. They develop improve-

ment strategies for optimizing processes and value across the organization. Their combined exper-

tise and experience help ensure more efficient operations and the use of industry best practices.

They provide support and consultation services to projects and management pertaining to the soft-

ware development lifecycle, guide projects to navigate new and changing customer requirements,

and in so doing help project teams deliver the highest quality work products.

The SCOE ensures that projects consistently execute at CMMI ML 5 and achieve results con-

sistent with ISHPI’s track record for cost, schedule, and quality performance. It also helps ensure

the project teams comply with contractual requirements for document standards and delivery

schedules. Project teams also get help from the SCOE on project launches and project plans, qual-

ity plans, and configuration management plans. To inform this work, the SCOE and the project

team members draw from a web-based process asset library (iPAL) containing a 25-year accumu-

lation of processes and best practices to enable rapid project estimation and start-up (section 1.4).

The support provided by the SCOE for each project following the HVD methodology leads to dis-

ciplined software engineering because it

 develops workforce skills in disciplined software practices including secure coding, esti-

mation, design, and quality management

 ensures proactive creation of work product standards, guidelines, design patterns, and

checklists, as well as consistent application of them

 systematically ensures application of secure coding practices and verifies that they have

been followed

 continuously incorporates best practices from industry sources such as the Open World-

wide Applications Security Project (OWASP), the International Information System Se-

curity Certification Consortium (ISC)2, and the Common Weakness Enumeration

(CWE/SANS)

In addition, the SCOE brings optimization to the organization because it

 analyzes and gauges performance of the organization with respect to the organization

business objectives

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 governs processes and work products, and leverages lessons learned across the organiza-

tion

 initiates, tracks, screens, installs, and evaluates new methods and technology to improve

the software engineering capability of the organization

 pilots and implements improvements without negatively impacting the organization

 maintains a consistent and persistent environment of continuous improvement across pro-

jects

1.3 Tailoring Practices to Meet the Specified Need

ISHPI understands that no two projects are alike, and that customer requirements and timelines

differ and change from project to project. This is why we are flexible in our development ap-

proach. We adopt a realistic approach to each project based on time, requirements, and resources.

Our implementation of our HVD process allows us to deliver quality products for both rapid de-

velopment efforts and long-term projects alike. We have demonstrated this capability through our

successful support of both commercial and U.S. federal government customers.

The team launch process is the focal point for tailoring within the HVD process. With the guid-

ance of a qualified team coach and ISHPI management, the teams follow the launch process to tai-

lor based on customer goals, needs, constraints, and project attributes. The team produces the de-

velopment strategy, considering alternatives including Spiral, Agile, and Waterfall, at the

beginning of the project, and it takes ownership of the process that will be used in the project exe-

cution. The suitable process for the project is determined by systematically selecting and tailoring

the applicable elements of the HVD toolbox to create a process and solution that’s right for the

individual project (Figure 4).

The process is reviewed by the project’s SCOE QA representative to ensure that all mandatory

tasks for quality and security are included in the process to achieve the best results for our c us-

tomers.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[DISTRIBUTION STATEMENT A] This material has been approved fo r public release and unlimited distribution.

Figure 4: Tailor Practices to Meet the Specified Need

Our product delivery schedule has ranged from two to four weeks to twelve months , depending on

the project and requirements, demonstrating our ability to tailor our processes to meet the de-

manding timelines and requirements of the customer. We have even tailored our process to ac-

commodate a four-day rapid prototyping project with daily iterations, each encompassing plan-

ning, requirements elicitation, design, development, deployment, and customer demonstration.

Table 2 demonstrates the range of flexibility of our process, enabling us to effectively adapt to an

assortment of customer and contract requirements.

Table 2: Examples of HVD Tailoring Flexib ility on ISHPI Contracts

Contract Key Tailoring Aspects

1 modernization contract performed estimating and planning at multiple levels of granularity includ-

ing milestone-level, annual contract level, and multi-phase budgeting

 innovated processes to extract and validate requirements and business

rules based on minimally documented code from a legacy system

 accommodated multiple subteams concurrently and iteratively developing

different functional areas of the system

2 maintenance contract conducted launches annually to address ongoing maintenance activities

 performed kickoff meetings to plan each tw o-to-eight week enhancement

w ith earned value tracking

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1.4 Process Improvement Proposals and ISHPI Process Asset Library

ISHPI follows our standard practice of leveraging data and feedback loops for continuous process

improvement (Figure 5). As part of those practices, for each project we gather individual and team

data and identify innovations, lessons learned, and process improvements. The mechanisms to

capture improvements include data-driven retrospectives and causal analysis sessions that gener-

ate process improvement proposals (PIPs). Additionally, personal reviews, peer reviews, audits,

and results of appraisals enable disciplined performance and provide continuous feedback on per-

formance. These continuous improvement activities result in improved quality, improved produc-

tivity, and lowered cost.

 defined a proactive monitoring regimen to ensure full availability of the

system

 customized the frequency of stand-up meetings, team status meetings,

retrospective meetings, and causal analysis sessions

3 development, integration,

maintenance, enhance-

ment, and production sup-

port services contract

 adapted launches to accommodate multiple rounds of customer prioritiza-

tion based on effort estimates and available budget

 increased emphasis on peer review s to stabilize code inherited from a

previous contractor

4 maintenance and en-

hancement of third-party,

custom-designed software

contract

 adapted to needs for monthly releases

 conducted launches quarterly, covering the next three to four releases

 used the Redmine tool to track customer change requests

 captured requirements details w ithin individual change requests in

Redmine, since the inherited product had no documented requirements

 adapted design to focus on screen descriptions, data dictionary changes,

and inline code comments for functional enhancements and refactoring

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 5: Exceptional Results with Feedback Mechanisms

HVD relies on processes and artifacts from the organization’s readily accessible process asset li-

brary, iPAL. The repository includes over 400 process artifacts resulting from more than two dec-

ades of cumulative improvements using PIPs. The project team execution of component retro-

spectives, project causal analyses, and increment/project retrospectives are key triggers of PIPs. In

addition, project teams capture best practices from tailoring (e.g., streamlining) and write PIPs to

share these practices with the rest of the organization. Any staff member could also offer and doc-

ument a specific suggestion for making the software process more effective. To date, the ISHPI

AIS Division has written 2,012 PIPs, out of which 1,351 were accepted, implemented, and de-

ployed to the organization by the SEPG. Since these PIPs are identified, written, reviewed, and

accepted by practitioners, the integration of these PIPs is almost seamless and easily institutional-

ized. These integrated improvements have evolved the ISHPI process from SW-CMM Level 1 to

Level 5, and then to CMMI-DEV Maturity Level 5.

The SEPG receives, evaluates, implements, and disseminates improvements to process assets un-

der its stewardship, driven by PIPs submitted by the project team members. The SEPG evaluates

and implements PIPs that reduce cycle time, improve quality, improve predictability, reduce cost,

and enhance user experience.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

In our experience, when management provides an environment that recognizes and rewards qual-

ity work, developers improve continuously and deliver extraordinary results. We found it effec-

tive to report the status on process improvement activities to senior management in Project and

Process Status Review (PPSR) meetings and to make sure that those activities are funded.

iPAL provides an invaluable resource to all team members for secure coding practice resources ,

including standard lifecycles and work breakdown structures; secure coding standards; secure de-

sign patterns; templates; design checklists, which include items checking for secure design princi-

ples; and coding checklists, including items checking for well-known vulnerabilities.

ISHPI’s iPAL enables rapid startup for our customers , and ISHPI’s emphasis on data, metrics, and

continuous improvement activities results in higher quality, security, predictability, and productiv-

ity, as well as lower risk and cost for customers.

1.5 Key Differentiators of HVD

1.5.1 Agile Versus HVD Differentiators

HVD uniquely blends the responsiveness of Agile with the discipline of CMMI ML 5 practices.

Unlike waterfall, HVD is iterative, flexible, and proactively accommodates change. Some key ele-

ments of HVD include

1. Team launch

 We systematically plan team commitments by creating aggressive but realistic plans that

are aligned and responsive to customer needs and goals.

 We make these commitments using historical data and involving customer stakeholders

and all team members, which results in a shared vision and buy-in of the whole team.

 We systematically identify, evaluate, and plan for potential risks to generate appropriate

mitigation actions.

2. Quality practices

 We consistently plan for and rigorously execute quality steps such as walkthroughs, per-

sonal reviews, peer reviews, and tests.

 We quantitatively plan for, monitor, and control quality, enabling us to focus on early de-

fect removal and defect prevention.

3. Data-driven monitoring and control

 We track data at a granular level to provide a high degree of visibility into team activities.

 We use the data at the individual and team levels to gain a quantitative understanding of

performance and status.

 We apply statistical models and projections to predict team performance relative to cus-

tomer goals.

 We act proactively based on risks and the data to meet commitments and continuously

improve capability and performance.

4. Disciplined engineering

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 We train our team members in disciplined software practices including estimation, de-

sign, quality management, and secure coding.

 We proactively create work product standards, guidelines, design patterns, and checklists

and consistently apply them.

 We systematically apply secure coding practices and verify that they have been followed.

These practices are informed by industry sources such as the OWASP Top 10 project, the

(ISC)2 Common Body of Knowledge, and CWE/SANS Top 25 Most Dangerous Software

Errors.

5. Collaborative and iterative execution

 We work closely with our customers to deeply understand their business and needs. We

use that knowledge to deliver superior solutions that are right the first time. We welcome

and promptly incorporate changes, and maintain awareness of evolving customer needs

and priorities so that we can rapidly respond.

 Our team members freely collaborate with each other, and our self-managed teams take

corrective action without the need for management intervention.

 We develop iteratively and produce frequent testable milestone deliveries to foster a

shared vision, maximize value, and reduce risk.

 We proactively share information about team activities and status with our customers to

avoid surprises.

6. Continuous improvement

 We coach our teams by providing experienced experts that perform analyses, provide in-

sights, and offer suggestions that maximize individual and team performance.

 We routinely analyze data and leverage our experiences to systematically identify and ap-

ply lessons learned at individual and team levels to improve practices that benefit future

components, iterations, and projects.

The Table 3 provides a comparison of Agile/Scrum and Agile HVD attributes based on the key

elements of HVD.

Table 3: Comparison of Agile/Scrum and the Agile HVD Software Development Approaches

Attribute Agile/Scrum Agile High Velocity Development℠

Satisfying the customer Early and continuous de-

livery

Incremental high-quality deliveries of functionality

driven by customer needs w ith minimal technical debt

Benefit: software that meets customer needs, deliv-

ered incrementally and right the f irst time

Responding to change Welcome change Change requests w elcomed and seamlessly incorpo-

rated using f lexible, disciplined change management

practices

Benefit: thorough impact analysis and prompt incor-

poration of changes to deliver w orking software right

the f irst time and meet customer needs

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Attribute Agile/Scrum Agile High Velocity Development℠

Frequency of delivery Deliver frequently, prefer-

ring shorter timescales

 Iterative development and delivery w ith f lexible

durations

 Duration of each iteration based on customer

needs and team strategy

Benefit: f lexibility to formulate the most eff icient devel-

opment approach to meet customer needs

Working w ith the business Work together daily Frequent customer collaboration and stake-

holder involvement

 Collaboration practices that eff iciently focus on

obtaining a deep understanding of the cus-

tomer’s business

Benefit: eff icient use of customer/stakeholder time

w hile w orking w ith the business to build software that

meets customer needs

Empow ering individuals Support motivated individ-

uals

 Individuals trained in disciplined software prac-

tices including estimation, design, quality man-

agement, and secure coding

 Repeatable practices for quickly building and

supporting self -managed teams motivated by

shared goals and defined roles

 Coaching for individual team members and the

overall team

Benefit: cohesive teams operating at peak perfor-

mance, w orking eff iciently to successfully achieve

customer goals at the low est cost

Communications Face-to-face conversa-

tions

 Proactive and frequent collaboration w ith cus-

tomers and team members

 Technology supplements face-to-face communi-

cation w hen needed

 Both informal and structured/facilitated commu-

nication, w hen appropriate, focused on obtaining

a deep understanding of the customer’s busi-

ness

Benefit: ef f icient, effective use of everyone’s time—

both customer stakeholders and the team

Measuring progress Working software Leading indicators that provide accurate, data-driven

visibility into the team’s progress

Benefit: on-time delivery of w orking software without

accumulating technical debt

Project pace Maintain a constant pace Pace driven by the team’s quantitative understanding

of its capabilities based on historical data

Detailed plans for individual iterations, w ith high-level

commitments for increment releases during project

launch

Benefit: teams consistently meeting aggressive but

realistic commitments

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Attribute Agile/Scrum Agile High Velocity Development℠

Technical excellence

Focus on technical excel-

lence and good design

 Focus on architecture early in the project to build

a foundation for solid design

 Consistent application of w ork product stand-

ards, guidelines, design patterns, and checklists

 Systematic application of secure software princi-

ples throughout the lifecycle

Benefit: w ell-designed, highly-maintainable secure

software with minimal “churning,” leading to the low -

est total cost – both during development, and during

operations and maintenance

Simplicity

Maximize the amount of

w ork not done

Relentless optimization by focusing only on tasks and

w ork products that add value

Benefit: low est cost

Team organization Self-organizing teams Repeatable practices for quickly building self -

managed teams motivated by shared goals and

defined roles

 Team collaboration using processes that guide

the team to consider every aspect of the problem

and design the best solution

Benefit: superior technical solutions

Improvement Periodic reflection and

adjustment

 Focus on continuous improvement at the compo-

nent, increment, project, and organization level

 Data-driven causal analyses and retrospectives

generate proposals that systematically improve

practices for future iterations and projects

Benefit: low est risk to scope, budget, schedule, and

quality by using proven practices that have been

finely honed over decades

Additional Agile HVD Attributes

Data-driven Granular data (size, effort, schedule, cost, quality) to provide high visibility

 Quantitative understanding of individual and team performance

 Statistical models and projections

Benefit: teams consistently meeting commitments

Built-in quality Early defect removal and prevention achieved through w alkthroughs, personal

review s, and peer reviews

 Comprehensive testing

 Quantitative planning and control of quality

Benefit: secure, w orking software, right the f irst time w ith the low est cost

1.5.2 Self-Managed Teams

The HVD process entails the following practices and behaviors to leverage the power of self-man-

aged teams to meet objectives:

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 All team members participate in the team launch process and take ownership of the pro-

ject plan, process, and commitments.

 Team members are trained to make plans using personal historical data to estimate effort

and schedule.

 Team members have the conviction to defend their plans and negotiate an aggressive and

realistic schedule.

 Teams practice early defect removal using personal reviews and team peer reviews.

 Teams put the highest quality product into test and eliminate the long test and rework cy-

cle that causes schedule slippage in software projects.

 Teams track progress weekly using earned value management with the ability to detect as

little as a one-day slip in schedule and take corrective action.

 Teams identify the top risks that could impact cost and schedule adversely and track miti-

gation actions weekly.

 Teams have mentors who motivate and coach individuals to achieve their own optimum

performance.

1.5.3 Continuous Improvement

Continuous improvement is integrated into project execution by the following HVD practices :

 We capture and analyze data after each development cycle.

 We build personal history from estimated and actual data for size and effort.

 We apply regression to improve estimation.

 We analyze defects and implement action items to prevent similar defects in the future.

 We coach our teams by providing experienced experts that perform analyses, provide in-

sights and offer suggestions that maximize individual and team performance.

 We routinely analyze data and leverage our experiences to systematically identify and ap-

ply lessons learned at individual and team levels to improve practices that benefit future

components, iterations, and projects.

For example, Figure 6 shows effort estimation error for each component tracked for a team mem-

ber before and after performing causal analysis on effort estimation error. The following action

items were identified and implemented as part of the causal analysis meeting:

 Attend overviews to understand the functionality of the unknown codebase and/or tech-

nology.

 Simplify personal review checklist.

 Review critical design standards and samples.

 Discuss test scenarios first before writing test cases.

As a result of implementing these action items, the average estimation error decreased from

22.6% to 5.96% (Figure 6). However, the team noticed that the average estimation error is in-

creasing again (from component 263 onwards), which prompted them to plan another conduct a

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

causal analysis session to identify root causes for the change and identify action items to imple-

ment to reduce the average estimation error and variation.

Figure 6: Component Estimation Error

1.5.4 Mentoring and Coaching

Team coaching is a critical element of HVD. The team coach provides ongoing mentoring for the

project team members to maximize the benefits of the available individual, team, and organiza-

tional data. Our coaching approach focuses on continuously improving the predictability, quality,

and efficiency of each individual and the team as a whole. The team coach role within the HVD

method enables individuals and teams to execute at their highest possible level of performance.

This technique systematically builds jelled, disciplined, self-managed teams composed of individ-

uals dedicated to personal excellence who take ownership and responsibility for the quality of

their work products. For over 20 years, ISHPI AIS has successfully applied this coaching model

to

 support team members with analysis of their performance data

 assist individuals and teams in setting specific, measurable goals for improvement

 mentor team members in the effective use of the HVD method

 provide expertise in industry best practices and advanced data analysis techniques

 provide independent perspective, suggesting improvements and optimizations

 facilitate project launches, causal analyses, and retrospectives to guide team members in

completing the meetings with maximum focus, efficiency, and productivity

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2 Application of Quantitative Techniques in HVD

The ISHPI AIS Division’s strategy is based on AIS’s balanced scorecard. The scorecard identifies

objectives, core outcomes, and performance drivers for financial, customer, employee, internal

business process and learning and growth perspectives.

Controlling the ISHPI AIS Division's process performance based on the balanced scorecard objec-

tives involves taking measurements, analyzing these measurements, and making adjustments to

maintain process performance within acceptable limits. When the process performance is stabi-

lized, the organization’s defined software process, the associated measurements, and the accepta-

ble limits for the measurements are established as a benchmark and used to control and improve

process performance quantitatively.

The SEPG is the primary entity responsible for coordinating the organizational process perfor-

mance and quantitative project management activities for the organization.

2.1 Principles Driving HVD Metrics Framework

In 1992, ISHPI AIS established a business goal to “Improve profitability and customer satisfac-

tion by delivering substantially defect-free products on predictable cost and schedule” [Perini et

al. 2016]. At the organization level, we started with the goals and then used the Goal-Question-

Metric (GQM) paradigm to derive the metrics that would help us achieve the goals [Basili et al.

1994]. We describe the measures that our software application teams collect, analyze, and report

to fulfill these goals. These measures are proven to help them develop and deliver software with

little or no defects or vulnerabilities.

The ISHPI AIS Division principles that drive our metrics framework are the following:

1. Quality and reducing vulnerabilities should be the number one goal for every software

team.

It is well known that some software defects result in vulnerabilities. To reduce vulnerabilities,

software teams need to be focused on defect injection and removal throughout the software

lifecycle. Teams need to be aware of where the defects are injected and where they are re-

moved. Teams cannot rely on testing alone to find and remove software defects, including se-

curity vulnerabilities. Instead, teams need to focus on identifying and removing defects as

early in the lifecycle as possible. Our experience has shown that many CWEs, such as buffer

overflows, cross-site scripting, and failures to validate input values, can be easily found and

corrected in personal reviews and peer reviews of the source code. Improving quality by not

relying on testing alone addresses many of the software security issues [Seshagiri 2014]. This

leads us to the next principle.

2. Software teams should put the highest quality code into test.

Large systems are built by integrating small components developed by individual developers.

If the components are of poor quality, the delivered product will have a large number of de-

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

fects and vulnerabilities. Teams need to make sure individual developers take pride and re-

sponsibility for the quality of their work products. The developers should be trained in and

supported by an agile, disciplined, personal development process that should enable collec-

tion, analysis, and reporting of defect injection and removal data through code completion.

The developers need to make sure that the components are defect free at completion of com-

ponent development. This will make more time available to deal with defects and vulnerabili-

ties in technology and system level stacks, which in turn significantly reduces total develop-

ment time. Teams should include defect data, along with cost and schedule data, in weekly

status reports to development and customer management. The data collected needs to be both

precise and accurate. Team members need to be trained in data collection and analysis so that

they can effectively use these metrics to be self-managed and take timely action to meet per-

sonal and team goals. This leads us to the next principle.

3. Unless data is collected and used by trained team members, it won’t be useful.

Software teams are often working to meet arbitrary and unrealistic delivery commitments im-

posed on them. Team members need to be trained in estimating sizes of software components

and negotiate aggressive and realistic delivery commitments based on personal and team his-

torical data that shows the relationship to size and effort. Data that clearly shows the impact

of disciplined practices, such as personal reviews and peer reviews on reducing rework and

total development time, helps the team and individual developers to make responsible deliv-

ery commitments.

Software teams are expected to make frequent deliveries of working software. Imposing time-

consuming data collection of questionable value is counterproductive. ISHPI AIS software

teams collect only size, task time, defect, and task completion data, as shown in Table 4.

Table 4: Base Team Measures

Measure Unit

Size Lines of code

Task time Minutes

Defects Number

Task completion Yes/no

For the resulting data to be precise and accurate, teams need to have a clear definition of the

measures. For example

 Size measurements need to be based on defined coding standards and line-of-code

counting rules.

 Tasks need to be granular, and measurements for each task should track only time

spent on it, excluding interruptions.

 Defects need to have standardized defect types based on orthogonal defect classifica-

tions.

 Task completion needs to be based on an agreed “definition of done” at the task

level.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

From the precise and accurate base measures, the “vital few” performance metrics are derived

to help self-managed teams consistently deliver substantially defect-free software on predicta-

ble cost and schedule. In turn, management is assured that the organization’s business model

of firm fixed price with guaranteed quality results in customer satisfaction and company prof-

itability. This leads to the final principle.

4. Software teams must be focused on the “vital few” metrics and not the “trivial many.”

 Our experience has shown that self-directed teams consistently collect, analyze, and report the

“vital few” data and deliver software that is substantially free of defects and vulnerabilities on

predictable cost and schedule.

 Management bears the responsibility to do the following:

 Staff projects with team members who are trained and/or coached in estimating,

planning, tracking, measuring, and managing quality.

 Start each project right with a cohesive team that maintains a shared vision and

makes disciplined commitments with the assistance of a coach.

 Support the teams in collecting, analyzing, and reporting product and process data

(size, effort, schedule, and quality).

 Provide the teams the data needed to make decisions and improve continuously

through causal analysis and retrospectives.

 Ensure team members are trained to conduct peer reviews of design and code arti-

facts in order to put the highest-quality code components into test, striving for 90 to

100% defect-free components with zero cybersecurity vulnerabilities.

 Ensure the review checklists incorporate specific checks for the types of vulnerabili-

ties identified within the OWASP Top Ten and Common Weakness Enumeration

(CWE/SANS) Top 25 Most Dangerous Programming Errors.

 Ensure code vulnerability analysis is performed.

 Require teams to report status weekly, with precision and accuracy, monitoring ac-

tual numbers of defects throughout the software development lifecycle and enabling

the team to proactively manage the quality.

5. Vital few performance metrics tracked.

We discuss the vital few performance metrics that really matter and help software teams man-

age the software work by managing quality. Table 5 shows data collected for the vital perfor-

mance metrics at the component, increment, and project level. The data from projects across

the organization are used to derive ISHPI AIS organizational performance metrics, as shown

in Table 8. Table 6 contains the operational definitions for these metrics.

These metrics help individuals at the component level, the team at the increment and project

level, and the SEPG at the organization level to guide the course of action towards the

achievement of the goals or to help to evaluate the result of the actions.

The metrics identified as leading indicators in Table 5 are proactively monitored to provide an

early indication of whether the strategy is being implemented successfully to build a secure,

high-quality product. Corrective actions are taken as needed based on these leading indica-

tors. These corrective actions have a significant impact on the lagging indicator metrics. The

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

lagging indicators measure the results of the practices used by the individual, team, and or-

ganization. Lessons learned from both positive and negative outcomes are analyzed and used

for continuous improvement of the individual, team, and the organization [Seshagiri 2015].

Table 5: Vital Few Performance Metrics Tracked

Performance

Metrics

Leading

Indicator?

Lagging

Indicator?

Organization Project Increment Component

Planned vs. actual

size (for primarily

new development)

Y

Planned vs. actual

effort

Y

Planned vs. actual

schedule w ith the

planned scope de-

livered

Y

Planned vs. actual

earned value

Y

Total Cost of Qual-

ity (COQ)

Y Y

First Time Right (in

acceptance test):

number of changes

w ith no acceptance

test defects

 Y

Acceptance test

defect density in

delivered code (for

primarily new de-

velopment)

 Y

Table 6: Operational Definitions

Term Definition

% Schedule Deviation Actual schedule divided by planned schedule (in days) times 100 minus 100

Task Time Defect is found during the acceptance test of the release/application. This defect

may be identif ied by the customer as w ell as the ISHPI team. Acceptance test period

starts after the completion of system test of the release/application and ends w hen

the code is deployed to production.

Cost of Quality (COQ) COQ=

(effort in appraisal tasks + effort in prevention tasks + effort in failure tasks) x 100

Total effort towards the commitment (including project management)

Appraisal tasks: personal reviews, peer reviews, and f irst-time unit, integration, and

system test execution

Prevention tasks: training, retrospectives, and causal analysis

Failure: analyzing and f ixing defects found in reviews and testing (rework effort)

Defect Density The number of defects identif ied in a product divided by the size of the product, ex-

pressed in standard measurement terms for that product (e.g., 1000 lines of new

and changed code)

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Term Definition

Earned Value Percentage of effort for tasks completed divided by total effort of all tasks (excluding

on-going tasks)

First Time Right (in

acceptance test)

Deployed software changes, accepted by the customer the f irst time, w ith no further

rew ork

2.2 Decision Process Based on Metrics and Measures

ISHPI AIS teams use metrics and measures in a multitude of ways to manage their work and meet

project goals and customer objectives. Secure software that is free from vulnerabilities starts with

responsible team commitments—whether for an individual software component, an increment, or

a longer-term timeline. When teams are under pressure to meet what turns out to be an impossible

commitment, they often fall victim to taking shortcuts, which degrade quality, create technical

debt and rework, and open the door to security vulnerabilities. When team members don’t under-

stand the relationship between time and size, it is hard to make commitments they can fulfill.

Therefore, individuals and teams need to keep a historical record of their estimates and actuals,

enabling them to make aggressive but realistic commitments for future efforts.

Teams do not review the data in isolation—they always use it in combination, and with a focus on

the bigger picture. Data falling outside the expected range is not necessarily a cause for alarm:

Teams use such data as a trigger to dig deeper, perform more analysis to understand the circum-

stances, and make decisions that mitigate risks and address issues. Here are examples of some of

the measures and metrics we review to make decisions while managing our projects:

1. Planned versus actual size, planned versus actual effort, and planned versus actual

schedule: During component retrospectives, team status meetings, and increment retrospec-

tives, the team reviews the size, effort, and schedule deviation data. Based on the data, the

team makes a judgement about the need for corrective action. If deviations are significant,

then the team assesses the causes and potential impact on schedule commitments for the com-

mitted scope. If corrective action is required, some possible actions include renegotiating the

schedule, deferring functionality, and adding staff. The team identifies lessons learned based

on the causes of the deviation and submits improvement suggestions to be applied to future

increments and projects.

2. Planned vs. actual earned value: During team status meetings, the team reviews earned

value deviation data and makes a judgement about the need for corrective action. If deviations

are significant, then the team assesses the causes (e.g., quality issues) and potential impact on

schedule commitments for the committed scope using earned value projections and “what if”

scenarios enabled by our process performance model. If corrective action is required, some

possible actions include strengthening peer review practices, renegotiating the schedule, de-

ferring functionality, and adding staff.

3. Total Cost of Quality (COQ): During team status meetings and retrospectives, the team re-

views the planned, actual, and projected COQ tables and charts: appraisal plus prevention,

failure, and total. After reviewing the data, the team determines whether the project is on

course to be completed with a COQ that is too high and, thus, requires corrective actions. If

so, some possible corrective actions include

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 proactively monitoring and analyzing the factors that affect the appraisal plus prevention,

and failure COQ; these factors include:

o for appraisal COQ: slow review rates, slow test execution, and poor product

quality (poor quality product slows down the review process)

o for prevention COQ: training to address new technologies, training new

team members, and time spent in causal analyses and retrospectives

o for failure COQ: rework for the defects found in review and test activities

 conducting causal analysis of selected failure outcomes and identifying action items

 re-evaluating after corrective actions have been put into place

4. First Time Right (in acceptance test): During increment retrospectives, the team reviews

the number of features or changes that were incorporated into the product “first time right.”

The team analyzes whether the outcome was within the expected range, and the team identi-

fies lessons learned and submits improvement suggestions to be applied to future increments

and projects for both positive and negative outcomes.

5. Acceptance test defect density in delivered code: During increment retrospectives, the team

reviews acceptance test defect density. The team identifies lessons learned based on the

causes of quality issues (as well as quality successes) and submits improvement suggestions

to be applied to future increments and projects. The team performs formal root cause analysis

on any individual defects (or related groups of defects) that escaped to the customer to iden-

tify specific improvements that would have prevented the defect from escaping.

2.3 Data Collection Framework

HVD uses CMMI, TSP, PSP, and other agile practices to collect data at the individual, project,

and organizational levels. The data is collected by the individuals at the project level and submit-

ted to the SEPG to include it in the organization repository. The data from the organization reposi-

tory is used by the teams, as applicable, during the estimation and planning stages of the software

development lifecycle. Data collection and lessons learned take place during the execution and the

retrospective stages of the software development lifecycle. Data quality is reviewed and moni-

tored periodically—as frequently as every week at the project level. The SEPG reviews data qual-

ity when the teams submit project data for each release and/or increment plan and at the end of

contract year. All metrics and analysis are dependent on the four fundamental measures of size

(e.g., lines of code), effort (hours), schedule (task closure), defects as described in section 2.1.

2.4 Statistical Techniques

ISHPI’s AIS Division has incorporated a variety of statistical techniques into HVD to provide

value to the organization and our customers. We apply those techniques at various levels: Most

importantly, individual team members (e.g., software engineers) and project teams use them in

their day-to-day work to accomplish their project goals. In addition, our SEPG uses statistical

techniques at the organizational level to perform analysis across projects and understand our over-

all capability. Although the SEPG provides guidance and support, the gathering, analysis, and use

of measurements and metrics is not constrained to the SEPG: These activities permeate our cul-

ture at all levels of the ISHPI AIS Division [Shook 2023].

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The foundation of HVD is fundamentally quantitative, and use of the statistical techniques within

HVD provides ISHPI with a deep understanding of our capabilities. Our practice is to gather data

consistently, use that data, learn, and continuously improve. However, in so doing so we maintain

a focus on business value:

 We employ our capability to make responsible commitments for effort, schedule, and

cost using our estimation process.

 We employ our capability to manage quality using our quality practices—especially peer

reviews.

 All of this enables ISHPI to provide a positive experience to our customers by consist-

ently meeting our commitments and consistently delivering our work products first-time-

right.

2.4.1 Object/Component Size Database

The ISHPI AIS Division creates and maintains object/component size databases to understand the

actual sizes of work (e.g., lines of code) performed in the past to estimate the effort more accu-

rately for future planned components. Most commonly, each project team instantiates its own ob-

ject/component database at the beginning of the project. They accumulate the actual sizes as work

is completed. The team refers to the resulting historical list of sizes of work they have performed

when they plan each subsequent project increment. In addition, our SEPG maintains an organiza-

tion-level size database, which is available for all teams to reference. At project milestones (such

as at the end of each project increment, project phase, contract period of performance, or pro-

ject/contract), each project team performs an SEPG Data Collection process to submit the team’s

actual size data to the SEPG and the SEPG adds it to the organization size database. Newly

formed teams refer to this organization size database to help them plan work before they have ac-

cumulated any of their own project-specific data.

Within HVD, a component is a logical chunk of work that is the responsibility of a single author

(although other team members are typically involved to perform walkthroughs and peer reviews

and provide other support). Components typically follow a relatively consistent lifecycle pattern

that, for coding components, typically includes planning/analysis, design, development, peer re-

view, unit testing, and component-level retrospective. Teams tailor the component lifecycle when

needed, based on the nature of work to be performed, but otherwise try to remain as consistent as

possible. For a project increment, the team decomposes the required work into components at a

“reasonable” level of granularity—typically the amount of work the author can complete in a

week or two. However, the team must identify components in a way that reflects the way the work

will actually be performed and provides a clear “definition of done.” Ultimately, the team must

break its work down into components in a way that is useful to the team, and this usually results

in useful historical data.

Size Measures: Sizes of items placed in the object/component size databases are usually meas-

ured as either new and changed lines of code (LOC) or simply effort (hours) but can also be other

measures such as pages for non-coding types of work products. Team members measure the com-

ponents actual LOC using a tool (typically Beyond Compare) during component retrospectives.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

ISHPI teams follow documented guidance for consistent LOC counting, tailored from organiza-

tional guidelines provided by the SEPG, to ensure consistency across project team members and

across projects. This guidance includes tool settings for applicable languages and typically ex-

cludes automatically generated code.

We prefer to use a countable size of physical output produced during the component, such as

LOC, whenever possible, and we use LOC when component sizes are proportional to the effort

needed to perform the work (i.e., accurately estimating the size of a new component helps to accu-

rately estimate the effort). However, in our experience, for some types of work, size and effort are

not proportional (i.e., knowing the size of what we are going to produce doesn’t help us to accu-

rately estimate the effort needed to complete that work). We have found that this is especially the

case with software maintenance work, such as implementing a small enhancement or fixing a re-

ported defect. In these cases, the size of the new and changed LOC is often extremely small, but

the effort to determine the exact code to change in a vast code base is often significant (and not

proportional to that size). Similarly, we have found that actual effort is also not proportional to the

size of the base code that is analyzed for potential impact. Since such maintenance work has tre-

mendous variability, and effort is neither proportional to the base LOC nor new and changed

LOC, we have found that size is not useful for estimation purposes in this context. In these cases,

we simply use effort when physical size doesn’t make sense, and the sizes in the object/compo-

nent size database are simply the effort (hours)—the actual effort to complete the defined lifecycle

of the component.

When estimating a new project increment, our project team members identify objects, compo-

nents, or activities that need to be completed to accomplish the objective. These are often in the

form of one or more user stories that usually identify the development of new functionality, an en-

hancement, or a change to fix a latent defect. For each component, the team references the data-

base to identify previously completed components of similar magnitude and complexity and notes

their relative sizes, sometimes called “tee shirt sizes”—very small (VS), small (S), medium (M),

large (L), or very large (VL). These relative historical component sizes are determined by the dis-

tribution of the actual measured sizes, as discussed below, and each relative size has size value.

Using that historical data, the team uses its judgement to choose the best relative size for the new

component being estimated. The team estimates the size of the new component using the size cor-

responding to the selected relative size.

ISHPI’s HVD process provides guidance that estimates should be based on previous empirical

historical data, whenever possible. The resulting practice resembles the “planning poker” ap-

proach used by teams following other Agile methodologies. However, instead of selecting “tee

shirt sizes” that correspond to a pattern, such as a Fibonacci sequence, our teams use sizes that re-

flect the actual size distribution of work previously performed by our teams and team members.

This technique works well for our teams, enabling them to consistently produce very accurate ef-

fort estimates and make responsible scope and schedule commitments, especially when combined

with other statistical techniques embedded within HVD.

Calculation of Relative Sizes: Based upon empirical historical data, ISHPI generally establishes

the sizes for each relative size category as follows:

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 Medium: mean size of the actual historical component sizes

 Small and Large: mean +/- 1 standard deviation of the actual historical component sizes

 VS and VL: mean +/- 2 standard deviations of the actual historical component sizes

However, since measured component sizes are often somewhat small but, importantly, can never

be negative, we do not expect the measured size data to follow the normal distribution. Instead,

we expect them to be approximately log-normally distributed [Humphrey 1995b]. Therefore, we

apply a simple mathematical transformation to the data within our size databases to account for

this. When calculating the relative size values, we apply a simple algorithm (Figure 7):

 Calculate the natural logarithm of the size of each historical component (so that resulting

values much more closely resemble the normal distribution).

 Calculate the mean and standard deviations of those adjusted values.

 Calculate the relative size values as the mean +/-1 and +/- 2 standard deviations ().

 Apply the inverse “natural exponential” function to each relative size to return to the

scale of the original data.

Figure 7: Object/Component Size Database and Relative Size Calculation

Over the past 25 years, our teams have found this method to be straightforward and effective, and

the technique works equally well with physical size measures (e.g., LOC) as with effort. ISHPI

teams have experienced that the historical size data is indeed similar to a log-normal distribution.

For example, from the actual historical data of one of our teams, we see the raw (untransformed)

distribution (Figure 8) and the transformed distribution after applying the natural logarithm to

each data point (Figure 9).

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 8: Raw Actual Component Hours in Object/Component Size Database

Figure 9: Log Transformation of Component Hours in Object/Component Size Database

Within our object/component size databases, ISHPI separates our historical data into different

subgroups for different types of work, since they have different size distributions. For example,

we routinely consider the following attributes to determine the placement of component data into

subgroups:

 Size measure: Separate components measured only in hours versus those measured in

LOC, for instance.

 Programming language: Separate Java components from C#.NET components, for in-

stance.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 Architecture level: Separate user interface, middle tier, and back-end database compo-

nents into different subgroups.

 Lifecycle: Separate components that have substantially different component lifecycles

into different subgroups.

 Development type: Separate new development and maintenance into different subgroups.

Our object/component size database tools conveniently support this stratification into subgroups.

Although subgrouping is particularly important at the organizational level (for historical data col-

lected by the SEPG and provided to new project teams), individual project teams rarely need to

worry about more than a few subgroups for their own data.

2.4.2 Linear Regression

ISHPI uses linear regression to understand the correlation between two data sets. The “best fit”

regression line formula is y = β1 x + β0. ISHPI uses linear regression during general data analysis

in many ways at the individual level, team level, and organization level. However, the most im-

portant application within HVD is to correct for estimation bias at the individual/component-level,

team/activity level, and project level. For this application, we maintain historical data of estimated

versus actual values for each item. For example, Figure 10 shows the relationship between esti-

mated effort and actual effort for over 100 components developed by a project team. When we es-

timate, we apply the β1 multiplier and β0 constant to the new raw estimate (“x”) to derive an ad-

justed estimate (“y”), which should be more accurate and correct for any recurring tendency to

overestimate or underestimate. When we apply this method, we make sure to choose historical

data that is similar to the future work being estimated.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 10: Estimation of Component Effort

When we apply linear regression to correct estimates, we consider several factors to ensure it

makes sense to do so. Specifically, we always calculate the correlation coefficient (R2 value) and

consider the significance and linear regression coefficients (β1 and β0). For example

 R2 value: An R2 value of 1.0 indicates a “perfect” linear correlation. We consider values

greater than 0.9 to be a very strong correlation, at least 0.7 preferred for use in plan-

ning/estimation, and at least 0.5 to be used with caution. If the R2 value approaches 0.5 or

lower, we do not use regression and instead revert to some other estimation correction

method, like “averaging.”

 Significance: One data pattern we commonly see is when the estimated sizes of compo-

nents are quite tightly clustered with a relatively narrow range of values (i.e., the esti-

mated maximum value is close to the estimated minimum value). The natural variation in

actual sizes for those components tends to result in a “shotgun blast” pattern. Here, one

could plausibly draw a line through the data points in just about any direction: There is no

particular “best fit” line. In this scenario, the R2 value is typically much too low to be ac-

ceptable. However, if there are a small number of data points outside the cluster, those

data points tend to have disproportionate “leverage” that establishes a very clear regres-

sion line (and therefore a relatively high R2 value). Regression in such situations needs to

be used with caution, and this shows up with a low statistical significance value—espe-

cially with a small number of historical data points. Again, in such situations, we would

not use regression and instead revert to some other method.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 β1 coefficient: We consider whether the β1 coefficient “makes sense.” Generally, we ex-

pect β1 to show a modest positive slope. For example, when correcting an effort estima-

tion, we would generally expect β1 to be 0.9 <= β1 <= 1.1 (effectively adjusting the “x”

value by up to +/- 10%). When the β1 slope is too steep, too flat, or negative, we typi-

cally do not apply regression. (That is, we avoid scenarios that don’t make sense like, “it

doesn’t matter how big you think it is, it will take the same amount of effort” or “the big-

ger you think it is, the less effort it will take.”)

 β0 coefficient: We do not typically apply regression when the β0 constant is quite large

compared to the estimate itself (i.e., the “x” value), which would be interpreted as huge

amounts of fixed overhead, which may not make sense.

2.4.3 Prediction Intervals

When ISHPI teams produce effort estimates, create schedule plans, and make milestone commit-

ments using linear regression, we have the opportunity to extend the linear regression technique

using prediction intervals. With this technique, we not only adjust the raw estimate to correct for

estimation bias, we also analyze the range of expected results around the adjusted estimate based

on our relevant historical data. The use of linear regression together with prediction intervals com-

prises a process performance model (section 2.4.4).

The prediction interval analysis enables ISHPI managers to make an informed decision about how

aggressive our estimate is and how much risk we are taking on (or want to take on). Use of this

technique contributes to our ability to make responsible commitments and consistently meet (or

beat) our commitments for effort, schedule, and cost.

We calculate prediction intervals based on the statistical distribution of our historical data. This

calculation results in the upper prediction interval (UPI) and lower prediction interval (LPI) val-

ues for the estimate, between which the actual result would likely fall with the targeted confidence

(Figure 11). When we apply the prediction interval, we most often choose a 70% confidence inter-

val (which implies that 85% of the data points would likely fall below the UPI), but we can

choose any prediction interval we want, based on the nature of the commitment we are making.

Because prediction intervals are built upon and extend linear regression, all the caveats and con-

straints of linear regression apply (as described in section 2.4.2).

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 11: Prediction Intervals for Component Effort

We apply prediction intervals at the team level when making project increment commitments to

our customers (where historical data points are components or activities) and at the project level

when estimating whole projects (where historical data points are past projects).

2.4.4 Process Performance Models

The CMMI v2.0 defines a Process Performance Model as, “A predictive analytical tool that iden-

tifies the controllable factors and describes the relationships between measurable attributes of one

or more processes, subprocesses, or process element, or work products.” [ISACA 2018] As dis-

cussed in section 2.4.3, our process performance model for our estimation process is key because,

from the business perspective, the model helps us make responsible commitments, enabling us to

consistently meet or beat them, which helps us delight our customers.

As illustrated by Figure 12, we start with our standardized, stable process (again, in this case, our

estimation process) that is “under control” (section 2.4.6), where we understand the process’s ca-

pability and variation. This is the “historical process performance data.” The historical effort esti-

mates and historical actual effort results are the “measurable attributes” of the process. We apply

the “new process inputs” (the raw estimates for the new work being estimated) to the model to ob-

tain a “statistically predictable range of process outputs” from those inputs (the “Yk” adjusted es-

timates, and the LPI/UPI). We use this tool to perform “what if” analyses by changing the “varia-

ble control parameter” (the confidence interval) to make business decisions regarding how much

risk we are willing to absorb in the circumstance and determine the resulting estimates.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 12: Process Performance Model

As discussed in section 2.4.3, we are able to apply prediction intervals at the team level when

making project increment commitments to our customers (where historical data points are compo-

nents or activities) and at the project level when estimating whole projects (where historical data

points are past projects). Figure 13 depicts how we apply our process performance model at the

team level with components.

Figure 13: Estimation Process Performance Model Using Historical Data for Components

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.4.5 Histograms

ISHPI uses histograms to analyze data, to help understand and visualize the distributions of data

sets, and to understand their similarities and differences. For example, we use them to

 analyze “before” and “after” data (e.g., to analyze the impact of a process change). These

data have been helpful in conjunction with testing for statistical significance of a process

change (discussed in section 2.4.7).

 understand the extent to which historical data is similar to new work that we are estimat-

ing in terms of its distribution

For example, in Figure 14, a project team was estimating activities for an upcoming project incre-

ment. It intended to apply linear regression to correct for bias in its estimates. However, because

regression can have a greater impact on small activities than large ones (or vice versa), it was im-

portant to understand whether the team’s historical data contained a similar proportion of

small/large activities as the set of new activities being estimated. We concluded that the distribu-

tion was extremely similar and proceeded to apply linear regression on their data.

Figure 14: Activity Effort Estimates Analysis

2.4.6 Control Charts

ISHPI uses control charts to monitor the performance of our most important processes to ensure

that they are behaving in a natural, predictable way—that is, that they remain “under control.”

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Specifically, we use control charts to understand the process’s capability (i.e., the range of ex-

pected results—the mean and variation), and to understand how the process’s capability has

evolved over time.

Similar to a run chart, a control chart is simply the sequential plot of a measurable attribute of a

process. There are different types of control charts, each of which is useful for analyzing different

types of data. We typically use a simple “X Chart,” which plots the data points themselves and

shows (Figure 15)

 the mean of the data points

 boundaries at one standard deviation above and below the mean (i.e., +/- 1) defining

“zone C”

 boundaries at +/- 2 (bounding “zone B”)

 upper control limit (UCL) and lower control limit (LCL), also known as the natural con-

trol limits (+/- 3, bounding “zone A”)

Figure 15: Control Chart Zones

ISHPI uses “SPC for Excel” to generate control charts. By analyzing the resulting plot, we can

understand how much variability exists in the process due to random variation and how much is

due to unique events and/or individual actions in order to determine whether the process is in sta-

tistical control.

Using the resulting three regions, we analyze the pattern of data in the plotted control chart and

determine whether the underlying process is performing “naturally” or if there are any “out of

control conditions.” We do this analysis by applying “out of control” tests, which identify data

points that fall outside the natural limits or form “unlikely” patterns, in which case the process is

said to be “out of control.” Figure 16 shows the out-of-control tests that we use, as provided by

SPC for Excel version 5.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 16: Control Chart “Out of Control” Tests, Provided by SPC for Excel

When using control charts, we are attentive to the following constraints and caveats:

 Data points must be plotted in the sequence the process was performed.

 Typically, at least 15-20 data points must be gathered for a control chart to be considered

valid.

 A process found to be “out of control” due to failed tests indicates a “signal”—a special

cause. However, this is not necessarily an indication that something is wrong with the

process, or that something bad has happened. Rather, it indicates that something has

changed and that the unusual circumstances need to be investigated.

We provide here a few examples of how ISHPI teams use control charts.

Component Estimation: We maintain control charts for component effort estimation error. (An

example is shown in Figure 6 in section1.5.3.) This is important because we want to make sure

team members are estimating their components accurately—that is, aggressively but realistically.

 If we consistently underestimate, we may begin to miss our commitments.

 If we consistently overestimate, our customers may perceive us as being unproductive or

inefficient.

Peer Reviews: We maintain control charts for our peer review process because it has such a direct

and significant impact on customer satisfaction and our business success. For peer review control

charts, we exclude components with a size of fewer than 100 new and changed LOC, since very

small components typically have disproportional preparation effort because of the initial overhead

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

of the review and because they have a small size denominator for defect density, all of which

make the process appear out of control.

We maintain preparation rate control charts for peer reviews of components teams develop and

maintain (Figure 17) because we want to spend the right amount of time reviewing the work prod-

uct.

 If we perform peer review preparation too quickly, we might miss defects that would then

escape into downstream stages of the development process where they are much more ex-

pensive to find and fix.

 If we perform peer review preparation too slowly, it may be inefficient and not yield pro-

portional value.

Figure 17: Peer Review Preparation Rate Chart

We maintain defect density control charts for peer reviews of components teams develop and

maintain because we want to make sure we are finding the expected number of defects.

 If we find more defects than normal, it may indicate a poor-quality work product that

would need further development and remediation before moving into downstream stages

of the development process.

 If we find fewer defects than normal, it may indicate an especially high-quality work

product (in which case we want to understand the circumstances so that we can reproduce

in the future), or it could indicate a less effective than normal review (e.g., perhaps the

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

reviewer has insufficient business or technical knowledge to effectively identify defects

that may be in the work product).

2.4.7 Tests for Statistical Significance

When ISHPI teams implement deliberate, significant process changes to improve their perfor-

mance, we want to make sure those changes produce the desired effect—quantitatively. We want

to make sure that the investments to change our processes provided value and that the improved

results didn’t simply happen by chance. To accomplish this, ISHPI uses the “T-Test for Statistical

Significance” technique to compare two data sets to determine whether they could statistically be

considered part of the same population or whether they are distinct from one another. This in-

volves

 forming a “null hypothesis”

 calculating a “p-value” for the two data sets

 determining the validity of the null hypothesis. A p-value calculated to be less than 0.05

generally indicates that the null hypothesis should be rejected.

The following example illustrates how we have used this technique. On one recent project, routine

review of the team’s data raised a concern that weekly time being spent in some specific, “ongo-

ing” (i.e., non-earned-value) effort seemed to have increased dramatically. We plotted the weekly

data and observed a pronounced increase during the previous six weeks (as compared to the previ-

ous period). We plotted the associated control chart (Figure 18) and observed that the previously

stable behavior had gone out of control. We quickly concluded that the timing of the increase co-

incided with a team member change on the project in January 2022. We held a causal analysis

session during which we identified several root causes and associated action items related to addi-

tional education and mentoring for the new team member. After completing the action items at the

beginning of March 2022, we continued to collect and monitor the weekly ongoing effort. We be-

lieved that the process had returned to its previously stable state. However, we performed a test

for statistical significance to verify that conclusion.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 18: Ongoing Effort Analysis for Statistical Significance

To test the statistical significance of the process changes, we analyzed each of the three groups of

ongoing effort data pairwise:

 While comparing data prior to January with data in January and February, we identified

the null hypothesis that “the team member change did not affect the weekly ongoing ef-

fort” and calculated the p-value. The resulting p-value was miniscule (less than 0.001).

Since the p-value was far less than the standard 0.05 threshold, we concluded that the null

hypothesis should be rejected. That is, the team member change did affect the weekly on-

going effort with quite high confidence.

 While comparing data in January and February with data starting in March, we identified

the null hypothesis that “the causal analysis action items did not affect the weekly ongo-

ing effort” and calculated the p-value. The resulting p-value was again miniscule (less

than 0.001). Since the p-value was far less than the standard 0.05 threshold, we concluded

that the null hypothesis should be rejected. That is, the causal analysis action items did

affect the weekly ongoing effort with quite high confidence.

 While comparing data prior to January with data starting in March, we identified the null

hypothesis that “the team member change did not affect the weekly ongoing effort (after

we completed the causal analysis action items)” and we calculated the p-value. The p-

value was 0.472. Since the p-value was not less than the standard 0.05 threshold, we

could not reject the null hypothesis. That is, we concluded that the null hypothesis was

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

correct and the process data sets before January and starting in March were statistically

indistinguishable: We had returned the process to its former stable performance.

We recognize that the period in January and February had an extremely small set of data points

(only six). Therefore, we understood that the middle portion of the control chart could not be con-

sidered valid and that statistical conclusions from such a small data set needed to be taken with

extreme caution. However, postponing the causal analysis actions to enable us to collect more

data would have been damaging to the project and would not have provided any additional value.

Since the differences in performance represented by the three data sets were so pronounced, we

were comfortable using the data we had to reach the conclusions and take the actions we did.

2.5 Periodic Analysis of Organization Data

The SEPG conducts an analysis of the organization data prior to the preparation of a Project and

Process Status Review (PPSR). The reason for analyzing the process is to draw inferences that

can be used to guide decisions and actions to meet ISHPI’s business objectives. These decisions

and actions lead to updating the process and setting new goals (specification limits) for the organi-

zation process performance.

After analyzing the data using the statistical techniques detailed in section 2.4, the SEPG docu-

ments the common causes and the assignable causes for the behavior of a process. If these causes

were beneficial, then the process documentation shall be checked and/or updated for concurrency

with the practice. If the causes were detrimental, then the process documentation shall be updated

to reflect measures to ensure that the results are not repeated.

The process capability baselines and the updated organization goals (specification limits) for pro-

cess performance are published so the projects, as well as individual practitioners, can compare

their performance against an organization benchmark and the specification limits that the manage-

ment might have set. The organization process capability baselines are published periodically.

The preparation of a PPSR is the trigger to publish the new baselines.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 Significant, Measured, and Sustained Results using HVD

3.1 Schedule Improvements

The ISHPI AIS Division has collected data and metrics on software projects going back to the

1990s and can demonstrate, with actual project performance data, the positive impact of HVD on

schedule, effort, and quality of performance. The chart in Figure 19 reflects more than 250 project

phases across a variety of technical and functional domains, and it demonstrates schedule im-

provements after (1) achieving CMM Level 5, (2) adopting TSP and PSP, and (3) HVD. As the

chart illustrates, since 2005, ISHPI AIS has consistently delivered software within an average de-

viation of -1.8% of a project’s committed schedule.

Figure 19: Schedule Deviation Chart for Software Development and Maintenance

3.2 Quality Improvements

Our number one goal is to achieve the highest security and quality possible in the software and

other work we produce. To achieve this, ISHPI uses a quantitative approach to manage quality. In

over 17 years using HVD, the ISHPI AIS Division teams have been able to achieve an average of

0.13 defects/KLOC in delivered source code (Figure 20), much less than the industry average,

which is upwards of 1 defect/KLOC [Jones 2016]. The result is drastically less rework, leading to

an overall cost of quality of 23.7% (Figure 21), which enables excellent schedule performance

and yields significant cost savings for customers.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 20: Acceptance Test Defect Density

3.3 Productivity

We have found that ISHPI AIS’s unique blending of the responsiveness of Agile with the disci-

pline of CMMI ensures the highest quality, lowest lifecycle cost, and greatest customer satisfac-

tion. As a result of these practices, our customers have benefited from shorter schedules and lower

costs for development due to minimal rework costs. The result is an average total cost of quality

of less than 22% (Figure 21).

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 21: Total Cost of Quality

3.4 First Time Right

The practices and artifacts, finely tuned through continuous improvement, enable our projects to

deliver the agreed scope right, the first time, which gives a great experience for our customers.

We consistently deliver working software right, the first time, and our customers find few (and

often zero) defects. The Figure 22 shows that since November 2016, out of 242 support requests

triggering a change, only 7 support requests required follow-on effort.

Figure 22: Releases – First Time Right

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.5 Customer Satisfaction

Since 2013, our customers have indicated that we exceeded their needs and/or expectations for

value on 97.1% of the engagements. Figure 23 shows that our “exceeded value” customer feed-

back responses increased from 59.1% to 97.1% since 2005, after adoption of HVD.

Figure 23: Customer Feedback

3.6 Summary of Management Practices for Producing Secure, Defect-

Free Software

Our experience has shown that jelled, self-directed teams consistently collect, analyze, and report

the “vital few” data and deliver software that is substantially free of defects and vulnerabilities on

predictable cost and schedule. Management bears the responsibility to do the following:

 Staff projects with team members who are formally trained in estimating, planning, track-

ing, measuring, and managing quality.

 Start each project right with a cohesive team having a shared vision that makes disci-

plined commitments with the assistance of a coach.

 Support the teams in collecting, analyzing, and reporting product and process data—size,

effort, schedule, and quality (defects injected and removed at each step in the process)—

providing them the data needed to make decisions and improving continuously through

causal analysis and retrospectives.

 Ensure team members are trained to conduct peer reviews of all design and code artifacts

to put the highest-quality code components into test, striving for 90 to 100% defect-free

components with zero cybersecurity vulnerabilities. Ensure the review checklists incorpo-

rate specific checks for the types of vulnerabilities identified within the OWASP Top Ten

and CWE/SANS Top 25 Most Dangerous Programming Errors.

 Ensure code vulnerability analysis is performed.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 Require teams to report status weekly with precision and accuracy, monitoring planned

versus actual numbers of defects throughout the software development lifecycle and ena-

bling the team to proactively manage the quality.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

4 Customer Benefits of Agile High Velocity Development℠

4.1 Benefits of HVD

During the past 18 years, our teams using ISHPI’s HVD practices have achieved results far supe-

rior to generally acknowledged industry averages for schedule, cost, and quality of performance,

as indicated in Table 8. Our performance is in line with—and often better than—industry perfor-

mance. Our disciplined approach benefits our customers as shown in Table 7.

Table 7: Features and Benefits of HVD

Features of our approach. Benefits.

Team launch: We systematically plan team commit-

ments by creating aggressive but realistic plans that

are aligned and responsive to customer needs and

goals

We consistently meet our commitments for function-

ality, cost, and schedule w ithout accumulating tech-

nical debt (Figure 19).

We make these commitments using historical data and

involving customer stakeholders and all team mem-

bers, w hich results in a shared vision and buy-in of the

w hole team.

We consistently meet our commitments for function-

ality, cost, and schedule w ithout accumulating tech-

nical debt (Figure 19).

We conduct iterative development and delivery w ith

f lexible durations. The duration of each iteration is

based on customer needs and team strategy.

We maintain the f lexibility needed to formulate the

most eff icient development approach to meet cus-

tomer needs.

We consistently plan for and rigorously execute quality

steps such as w alkthroughs, personal reviews, peer re-

view s, and tests.

Our delivered products have few security vulnerabili-

ties, w hich practically eliminates cyber security inci-

dents attributable to poor quality software code

(Figure 20).

We practice data-driven monitoring and control. We gain a quantitative understanding of perfor-

mance and status.

We act proactively based on risks and the data. We meet commitments and continuously improve

capability and performance.

We practice disciplined engineering. We consistently deliver w orking software, right the

f irst time and our customers f ind few (and often zero)

defects (Figure 22).

We consistently meet our commitments for functional-

ity, cost, and schedule w ithout accumulating technical

debt.

We achieve high levels of customer satisfaction for

quality, value, timeliness (Figure 23).

We practice continuous improvement. Continuous improvement enables us to perform

analyses, provide insights, and offer suggestions

that maximize individual and team performance.

We apply our expertise, leverage our ISO 9001:2015

certif ied quality management system, ISO 20000-1 cer-

tif ied Service Management System, ISO 27001 certi-

f ied Information Security System, and use our disci-

plined Capability Maturity Model Integration (CMMI)

Maturity Level 5 Agile practices to securely upgrade,

enhance, and maintain applications.

These credentials translate to exceptional profes-

sionalism, proactive communication, transparency,

and visibility w ith all customer stakeholders w ith

w hom w e interact, resulting in consistent customer

satisfaction.

Our approach is intrinsically designed to ensure the se-

curity and integrity of the system by building quality

and security throughout the lifecycle.

Our approach

 reduces tail end rew ork, prevents issues, and

builds a robust and secure system (Figure 21)

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Features of our approach. Benefits.

 reduces risk to the customer by preventing secu-

rity vulnerabilities (and associated bad conse-

quences)

 results in extremely low total cost of ow nership. By

delivering secure solutions right the f irst time, our

customers are able to reduce their O&M spending

and dedicate more resources to features and stra-

tegic initiatives that enhance their ability to fulf ill

their mission

The ISHPI Softw are Center of Excellence (SCOE) as-

sists ISHPI teams w ith project launches, retrospec-

tives, and Causal Analysis. It provides support and lev-

erages the pow er of self -organizing teams.

The SCOE maximizes team productivity in full align-

ment w ith customer goals and objectives.

Our productivity and performance improvements after adopting the HVD practices are shown in

the column “Productivity/Performance Improvement” of Table 8.

Table 8: Productivity/Performance Improvement Metrics

Performance

Category

Definition Previous Capability

(Date Range)

Current Capability

(Date Range)

Productivity/

Performance

Improvement

Schedule De-

viation

Actual schedule divided by

planned schedule (by days)

times 100 minus 100

18.9%

(2001-2004)

-1.8%

(2005-2023)

109.5%

Quality: Ac-

ceptance Test

Defects per

KLOC

Defects found during the ac-

ceptance test of the w ork prod-

uct in 1000 lines of code

0.31

(2005-2012)

0.15

(2013-2023)

51.6%

Total Cost of

Quality

Total COQ: appraisal cost,

prevention cost, and failure

cost

- Appraisal cost: effort spent in

personal review , peer reviews,

and f irst-time test execution

- Prevention cost: effort spent

in training, component and

milestone retrospectives, and

causal analysis

- Failure cost: effort spent in

analyzing and f ixing defects

found in review s and testing

28.1%

(2013-2018)

21.3%

(2019-2023)

22.2%

Customer Sat-

isfaction: Ex-

ceeded ex-

pectations for

value

Received feedback from cus-

tomer

59.1%

(2005-2012)

97.1%

(2013-2023)

64.29%

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

4.2 Benefits of HVD Practices Based on CMMI DEV Level 5 and CMMI

SVC Level 3 Ratings

CMMI Maturity Level 5, the highest possible rating, is characterized as “optimizing” and “high

maturity,” indicating high performance: it makes us even more predictable, lean, flexible, and

cost-effective. ISHPI’s CMMI Maturity

Level 5 rating is important to us to serve

our customers in the following ways:

 Lowest Risk: The practices and ar-

tifacts, finely honed through past

lessons learned, enable our projects

to deliver the agreed scope within

budget, on or ahead of schedule,

and right the first time, which gives

a great experience for our custom-

ers.

 Secure Solutions: Disciplined engi-

neering practices practically elimi-

nate cyber security incidents at-

tributable to poor quality software

code.

 Lowest total cost: By utilizing iPAL, our comprehensive library of reusable and modular

objects created through years of PIPs, our customers start the race in the middle, reducing

total development cost. By delivering secure solutions right the first time, our customers

are able to reduce their O&M spending and dedicate more resources to new features and

strategic initiatives that enhance their ability to fulfill their mission.

Figure 24: Benefits of CMMI Maturity Level

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

5 Conclusion and Key Perspectives

Our organization’s process improvement journey, what is now the AIS Division, began on Janu-

ary 20, 1992, before “Y2K,” when we were still in the age of floppy disks, dot matrix printers,

overhead projectors, and transparencies, and when the Internet was mostly still the domain of sci-

entists and universities. The environment today seems to bear little similarity to that time. How-

ever, in the face of such significant change over such a long period, a few things have remained

constant, and our journey continues.

Throughout our journey, the ISHPI AIS Division benefitted from top-down leadership as well as

bottom-up involvement in evolving and continuously improving our practices. As then-president

of AIS, Girish Seshagiri, established a vision and set a direction, set priorities, and commissioned

subject matter expertise and training. He then trusted practitioners to work out the implementation

details but required status updates from them—that is, accountability. Although the names and

roles have changed, ISHPI and the AIS Division follow the same principles.

But, set by Girish’s initial direction, what has also remained constant is our persistent focus on

 Quality and security as drivers—We strive to prevent rework to push down costs and in-

crease predictability of effort and schedule because poor quality and the associated re-

work are inherently expensive and unpredictable.

 Data as a key to understanding—We use data to objectively understand our performance.

 Process improvement as an ongoing activity—Our journey would not have been sus-

tained, and we would not have been able to achieve our results, by relying only on the

promise of fantastic new technologies, superstar engineers, expensive new tools, or gifted

project managers. Instead, we achieved our results by evolving and continuously improv-

ing our process using data.

So, we reaffirm the title of another SEI technical report that our organization wrote decades ago:

“Software Process Improvement Works!” [Ferguson et al. 1999]. The fundamental concept of

feedback loops and the deceivingly simple “Plan – Do – Check – Act” improvement cycle is in-

deed a powerful tool that has enormous impact over time. Software process improvement does in-

deed continue to work.

As we have continued to evolve and mature as an organization, we have gained new insights. We

have an innate understanding that our software work is accomplished through the capabilities of

individuals, teams, and the organization, and that improvement efforts need to address all those

levels. However, over time, we have gained an expanded appreciation that those levels are them-

selves part of an even larger ecosystem: The “organization” is the software organization, and the

software organization itself exists within a larger enterprise. Just as the capabilities of a team can

enable the best in each individual (and vice versa), so too can the capabilities of the enterprise en-

able the best in the ISHPI AIS Division and each of our other service organizations (and vice

versa). Each of the levels interact with and influence one another, and with the right ecosystem,

truly amazing things can be accomplished!

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This has motivated us to broaden our process improvement efforts and leverage complimentary

frameworks with a focus on providing value to the overall business. We have now adopted and

applied ISO 9001 (Quality Management), ISO/IEC 20000-1 (Information Technology Service

Management), CMMI-SVC, ISO/IEC 27001 (Information Security Management Systems), and

CMMC (Cybersecurity Maturity Model Certification) frameworks. As a result of these efforts, we

quantitatively monitor the performance of enterprise functions such as HR/Recruiting, Business

Development, and Finance, among others, and this helps us achieve our enterprise business objec-

tives.

The authors continue to be inspired by Watts Humphrey, the namesake of the Software Quality

Award. Particularly notable to us was his ability to draw from other experts—sometimes from the

practices of whole other industries—learn from them, build upon them, and apply the underlying

concepts to software for the advancement of our industry. He frequently drew from diverse fields

including engineering, psychology, business, political science, and even sports. He built on the

ideas of others and used them to innovate. In our own small way, the ISHPI AIS Division has ac-

complished something analogous. We have studied many methods and frameworks (including

PSP, TSP, CMMI-DEV, Scrum, Kanban, CMMI-SVC, ISO 9001, ISO 20000-1, ISO 27001,

CMMC, and more), adapted them, combined them, and made them our own. The result is an inno-

vative, cohesive process that works for us—our agile High Velocity Development℠ process. We

have shown that diverse inputs need not be contradictory choices, but instead complementary

building blocks. We have demonstrated that even a small organization that is dedicated to excel-

lence can use all these elements effectively and achieve extraordinary results.

We are on the cusp of a new era in which not only our team members, but the technology itself is

learning. We cannot yet perceive how far the earth will shift—and indeed, how far the earth may

have already shifted. But our decades of experience have taught us that we must keep learning,

we must keep sharing, we must keep adapting, and we must keep improving.

Much of the software work we do from day to day seems routine to us. But we are told by experts

who occasionally peer in—and we can see for ourselves, when we occasionally rise out of the

trenches and survey the landscape—that it is indeed remarkable what our “constancy of purpose”

has achieved (and can yet achieve in the future)! We hope that we have honored Watts Humphrey

by our practices in some small way, and hope that these practices are, in turn, an inspiration to

others.

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this report.

[Basili et al. 1994]
Basili, Victor; Caldiera, Gianluigi; & Rombach, H. Dieter. The Goal Question Metric Approach.

1994. http://www.cs.umd.edu/~mvz/handouts/gqm.pdf

[Davis et al. 2003]
Davis, Noopur & Mullaney, Julia. The Team Software Process (TSP) in Practice: A Summary of

Recent Results. CMU/SEI-2003-TR-014. Software Engineering Institute, Carnegie Mellon Uni-

versity. 2003. https://www.sei.cmu.edu/reports/03tr014.pdf

[Ferguson et al. 1999]
Furguson, Pat; Leman, Gloria; Perini, Prasad; Renner, Susan; & Seshagiri, Girish. Software Pro-

cess Improvement Works! CMU/SEI-99-TR-027. Software Engineering Institute, Carnegie

Mellon University. 1999.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=13531

[Humphrey 1995]
Humphrey, Watts S. Introducing the personal software process. Annals of Software Engineering.

Volume 1. Number 1. December 1, 1995. Pages 311-325. https://link.springer.com/con-

tent/pdf/10.1007/BF02249055.pdf

[Humphrey 1995b]
Humphrey, Watts S. A Discipline for Software Engineering. Addison-Wesley Publishing Com-

pany, Inc. 1995.

[ISACA 2018]
ISACA. Capability Maturity Model Integration (CMMI). ISACA. 2018.

[Jones 2016]
Jones, Capers. Achieving Software Excellence. CrossTalk. Volume 27. Number 4. July-August.

2014. Pages 19-25. https://apps.dtic.mil/sti/pdfs/ADA604512.pdf

[McAndrews 2000]
McAndrews, Donald R. The Team Software Process (TSP): An Overview and Preliminary Results

of Using Disciplined Practices. CMU/SEI-2000-TR-015. Software Engineering Institute, Carne-

gie Mellon University. 2000. http://www.sei.cmu.edu/reports/00tr015.pdf

[Perini et al. 2016]
Perini, Barti; Shook, Stephen; & Seshagiri, Girish. Reducing Software Vulnerabilities – The Num-

ber One Goal for Every Software Development Organization, Team, and Individual. NIST Soft-

ware Measures and Metrics to Reduce Security Vulnerabilities. ISHPI Technical Report. ISHPI

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Information Technologies, Inc. July 22, 2016. https://ishpi.net/wp-content/up-

loads/2018/08/SwMM-RSV-Technical-Report.pdf

[Seshagiri 2014]
Seshagiri, Girish. If It Passes Test, It Must Be OK: Common Misconceptions and The Immutable

Laws of Software. CrossTalk. Volume 27. Number 3. January 2014. Pages 31-25.

[Seshagiri 2015]
Seshagiri, Girish. Performance Metrics That Matter: Eliminating Surprises in Agile Projects. Pre-

sented at Software Solutions Conference (SSC) 2015. November 16-18, 2015. https://re-

sources.sei.cmu.edu/library/asset-view.cfm?assetID=447391

[Shook 2020]
Shook, Stephen. Results of Applying Methods for Software Excellence – The Long View. Soft-

ware Excellence Alliance. June 11, 2020. https://softwareexcellencealliance.org/results-of-apply-

ing-methods-for-software-excellence-the-long-view/

[Shook 2023]

Shook, Stephen. Application of Statistical and Other Quantitative Techniques in Software. Soft-

ware Excellence Alliance. February 8, 2023. https://softwareexcellencealliance.org/application-of-

statistical-and-other-quantitative-techniques-in-software/

[Shull 2013]
Shull, Forrest. A Lifetime Guarantee. IEEE Software. Volume 30. Number 6. November 2013.

Pages 4-8. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6648577

[Standish Group 2013]
The Standish Group International. Chaos Manifesto 2013: Think Big, Act Small. The Standish

Group International. 2013.

https://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENREF/S130301C.pdf

CMU/SEI-2023-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leav e Blank)

2. REPORT DATE

July 2023

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Softw are Ex cellence through the Agile High Velocity Development℠ Process

5. FUNDING NUMBERS

FA8702-15-D-0002

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2023-TR-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SEI Administrativ e Agent

AFLCMC/AZS

5 Eglin Street

Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Adv anced Information Services Division of Ishpi Information Technologies, Inc. (DBA ISHPI) performs all aspects of the softw are

dev elopment lifecycle using its High Velocity Development℠ (HVD) process. We have studied many methods and frameworks (including

Personal Softw are Process, Team Software Process, CMMI for Dev elopment, Scrum, Kanban, CMMI for Services, ISO 9001 (Quality

Management), ISO 20000-1 (Information Technology Service Management), ISO 27001 (Information Security Management Systems),

Cy bersecurity Maturity Model Certification, and more), adapted them, combined them, and made them our own. The result is an innova-

tiv e, cohesive process that w orks for us—our agile HVD process. We hav e shown that div erse inputs need not be contradictory choices,

but instead complementary building blocks. By evolving, implementing, and utilizing the HVD practices, AIS Div ision teams have

achiev ed significant improvement in productivity and performance. ISHPI’s customers have benefited from shorter schedules, lower

costs for dev elopment due to minimal rework costs, lower costs for maintenance, and an overall positive experience during each project.

14. SUBJECT TERMS

CMMI, CMM, software process improvement, Agile,

15. NUMBER OF PAGES

62

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

