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SPACE, THE FINITE FRONTIER

Prashant R. Patel*, and Daniel J. Scheeres†

Reachable and controllable sets for electric propulsion spacecraft are important
to many problems including: dynamic replanning, robust mission design, space
situational awareness, assessing advanced concepts, and threat assessments. Cur-
rent methods result in a two-point boundary value problem or are limited in their
application. We solve the reachable and controllable problem by formulating it as
a multi-stage indirect approach. We demonstrate that this enables rapid, reliable,
and autonomous estimates of the reachable and controllable set. We show that our
approach works in strong multi-body environments (i.e., flybys).

INTRODUCTION

Range as a function of fuel is an important concept. It is needed for dynamic fleet replanning,
context-based mission orders, robust mission design, situational awareness, autonomous operations,
and designing advanced concepts such as basing versus refueling trades. In addition, it has important
implications for human capital and operations.

Air, land, and sea have long used fuel-range calculations. Electric propulsion (EP) space sys-
tems do not have an equivalent analog. Work by Holzinger1 derived the general equations for a
continuous indirect formulation and showed that these problems can be solved. The indirect ap-
proach results in a two-point boundary value problem which is difficult to solve. Bryson and Ho
characterized two-point boundary value problems as::2

The main difficulty with these methods is getting started; i.e., finding a first estimate
of the unspecified conditions at one end that produces a solution reasonably close to
the specified conditions at the other end. The reason for this peculiar difficulty is that
external solutions are often very sensitive to small changes in the unspecified boundary
conditions. This extraordinary sensitivity is a direct result of the nature of the Euler-
Lagrange equations,...

Bando et. al3 use a power series expansion of the generating function to identify low thrust transfers
in the Hill frame. Generating functions provide the solution flow; however, current techniques only
work on dynamical systems with polynomial forms (e.g., Hill problems).4 Thorne5 derived a set of
formulas that produce approximate values for both the initial Lagrange co-states and the associated
optimal flight time needed to solve the minimum-time, continuous-thrust orbital trajectory design
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problem. Thorne’s formulas are especially accurate for either high-thrust or short-duration trans-
fers starting from circular conditions, but they have also been used effectively to solve low-thrust,
noncircular, three-dimensional problems with the continuation method.

Our contribution is to develop a fast, scalable, and automated algorithm that can rapidly and reli-
ably estimate the reachable and controllable set for EP spacecraft. Our algorithm does not require
the need for any initial guess by users because we structure the problem to avoid the need to solve
a two-point boundary value problem. We test the algorithm in multi-body environments includ-
ing near-lunar flybys. This demonstrates that our approach works in highly challenging dynamic
environments.

We achieve these results by:

• Formulating the reachable problem as an indirect multi-stage problem

• Writing the cost function in a linear form

• Structuring the optimal control problem so that a non-thrusting trajectory is a valid solution

We begin by reviewing the multi-stage formulation and discuss notation. Next, we derive the
specific equations used in our formulation of the reachable problem. We then show how this formu-
lation can be rapidly and automatically solved with several examples on consumer hardware.

INDIRECT MULTI-STAGE FORMULATION AND NOTATION

We consider a controlled dynamical system defined by:

ẋ = f(x, t,u,p) (1)

Where a bold indicates a vector or matrix while a normal font indicates a scalar quantity. x
represents the state vector; u is the control vector, which is in general a function of time; t is time,
and p are a set of parameters that are constant in the system.

This system can be transformed into a set of indirect multi-stage formulation equations.2 A
trajectory segment i is governed by:

xi+1 = F i(xi, ti,ui,p) (2)

where

F i = xi +

∫ ti+1

ti

ẋdt = xi +

∫ ti+1

ti

f(x, t,u,p)dt (3)

A trajectory is then composed of a series of N trajectory segments, where N ≥ 1. For a multi-
segment trajectory we can integrate Eq. (2) from i to i+1, then recursively use i+1 to obtain i+2
and so on. In our current formulation, within each segment the controls u(i) are fixed. This is not
a significant limitation as time varying inputs can be modeled by having u(i) specified by constant
coefficients to a time varying function.

The cost function for a multi-stage formulation is given by:

J = ϕ(xN , N) +
∑

L(i,xi,ui) (4)
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where ϕ(xN , N) is the terminal cost function and L(i,x,u) = Li are the integral cost function
evaluated at the ith step. This leads to a Hamiltonian of:

H =
∑

H i (5)

H i = λi+1 · F i + Li +
∑
k

νkCk (6)

For notational convenience later, we specify the adjoints with an index i + 1, and C represents the
per stage constraints.

Taking the partial with respect to x yields the dynamics equations for the co-states.

H i
x = λi = F iT

x λi+1 + Li
x +

∑
k

νkCk,x (7)

where T is the transpose operator. The control law is then given by Pontryagin’s principle, here by
taking the partial of the Hamiltonian with respect to the control and solving for when this is zero
and hence an extremal. This is:

H i
u = 0 = F iT

u λi+1 + Li
u +

∑
k

νkCk
u (8)

The initial and terminal conditions are given as:

C0(x) = 0 CN (x) = 0 (9)

which result in the initial and terminal co-states being:

λ0 = ν0 ·C0
x λN = ϕx + νN ·CN

x (10)

Taken together, these represent the general equations for the multi-stage optimization problem.
Next, we specify our particular formulation.

REACHABLE EQUATIONS

The equations of motion we use in this paper are stated in an inertial frame with an arbitrary
origin:

ẋ =

ṙv̇
ṅ

 =

 v∑
j −

µj

|r−rj |3 (r − rj) + nT

n2 Tmag

c

 (11)

where µj is the gravitational parameter of the attracting body located at rj , T is the thrust vector,
Tmag is the magnitude of thrust, r is the position vector, v is the velocity, n is the inverse mass, and
c is one Earth gravity times the specific impulse. The cost function is defined as:

J = −min ẑ · xN (12)

This represents maximizing xN along the direction ẑ, which is a specified vector which will be
swept over to sample the reachable set. We also require that |T | = Tmag and 0 ≤ |T | ≤ Tmax.
These conditions require the thrust must be less than the maximum allowable thrust, Tmax, and that
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the total thrust and Tmag are equal. The latter simply enforces the constraint that the thrust used to
generate acceleration is equal to the thrust supplied by the engine.

The Hamiltonian is then:

H i = F iTλi+1 + ν1(|T | − Tmag) + ν2(
1

2
T 2
mag −

1

2
T 2
max) (13)

The co-state equation is:
H i

x = λi = Fx
iTλi+1 (14)

and is formulated to move backwards in time. The term F i
x is the state transition matrix at the end

of the segment. It is given by

F i
x =

∂xi+1

∂xi
= Φ(ti+1, ti) =

∫ ti+1

ti

 0 I 0
∂v̇
∂r 0 T

0 0 2n
Tmag

c

Φ(t, ti)dt (15)

where Φ is the state transition matrix. The initial conditions for Φ(i, i) = I

The control law is defined by:

Hu = 0 = Fu
iTλi+1 + ν1

[
T
|T |
−1

]
+ ν2

[
0

Tmag

]
(16)

and

F i
u =

∂xi+1

∂ui
= Ω(ti+1, ti) =

∫ ti+1

ti

 0 I 0
∂v̇
∂r 0 T

0 0 2n
Tmag

c

Ω(t, ti) +

0 0 0 0
− diag(n) − 0

0 0 0 n2

c

 dt

(17)
The term Ω is analogous to the impulse response matrix for linear systems. The initial condition for
the integral is given by Ω(i, i) = 0. Solving Eq. (16) and satisfying the constraints results in:

Tmag = Tmax, and T = −Tmax
FT

Tλ

|FT
Tλ|

(18)

where
ν1 =

∣∣FT
Tλi+1

∣∣ (19)

ν2 =
ν1 − F T

Tmag
λi+1

Tmax
(20)

The initial and terminal conditions are then:

x = x0 λN = −ẑ (21)

In these equations FT is the columns of Fu associated with the thrust direction T . Similarly, F Tmag

is the column of Fu associated with Tmag.

These equations now provide sufficient information to estimate the reachable and controllable
set. One interesting feature is that Tmax, see Eq. (18), does not affect the direction of thrust. This
allows us to integrate along the unpowered trajectory then conduct trade studies by sweeping over
various thrust levels.
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FAST FIRST ORDER ESTIMATE (FFOE) SOLUTION

We first develop a Fast First Order Estimate (FFOE) of the reachable set. This solution provides
a good estimate of the reachable set. We begin by recognizing that the non-thrusting solution with
T = 0 and Tmag = 0 can be considered an optimal solution with a zero reachability set. We
can then compute the unpowered trajectory and partials (Fx and Fu) for this trajectory. We then
select the values of ẑ from a unit ball and compute the control law from Eq. (18). The final step is to
integrate Eq. (11) using the derived control law to compute the reachable set under this linearization
assumption. This is more formally shown in Alg. (1)

Starting with an unpowered trajectory has several practical benefits. It eliminates the need for
a user supplied initial guess. The updated thrust laws can be computed using a series of matrix
multiplications without requiring additional integrations. As we will show in the Example section,
this method is very fast as it reduces the number of first order integrations required to 1 and requires
N integrations of the equations of motion, where N is the number of points on the reachable set.

OPEN-LOOP EXACT (OLE) SOLUTION

The open-loop exact (OLE) solution is an open-loop method that iteratively updates the control
law until the change in cost function is small. The OLE algorithm is initialized using the FFOE
for a given ẑ. Then the trajectory and partials are numerically integrated and recomputed along the
previous control law, using Eq. (18). The difference between the prior and current cost function is
then compared. If the change in cost function between iterations is less than a specified precision
the algorithm terminates. This is equivalent to terminating when the gradient along the constraint is
small.

EXAMPLES

In this section we provide various examples to highlight the performance and utility of the algo-
rithms. For these examples we code the equations in C++ on an M1 MacBook Pro from 2020. We
use the Boost Libraries for integration. In particular, we use a Fehlberg 78 order integrator with
error tolerances ≤ 10−13. We use Armadillo6, 7 for matrix/vector support. We also use the JPL
SPICE libraries8, 9 and DE440 ephemerides.10 Plotting is done in spacekit.js*. Parallel processing
is done by leveraging the BOOST ASIO library. The reference frame is ECLIPJ2000, the specific
impulse is set to 3000 seconds, and the Sun, Earth, and Moon are gravitating.

We show three examples to demonstrate the uses of the algorithm. Case 1 is a reachability case
with an elliptic orbit around Earth with no significant multi-body effects. The goal of case 1 is to
show how the FFOE and OLE compare to one another. Case 2 is also a reachability case with a
lunar flyby. This shows that the FFOE algorithm works well with strong multi-body interactions.
For case 3, we run case 2 as a controllability problem. This highlights the initial envelope that a
spacecraft can start in and still reach the terminal states.

Case 1

The first case represents a relatively straightforward reachability case. The initial orbit is an
elliptical trajectory with no significant multi-body effects. The simulation parameters are a max
thrust of 0.01 N, 200 segments, and segment duration of 7200 seconds.

*https://typpo.github.io/spacekit/
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Algorithm 1 FFOE algorithm
x0 ← initial conditions
t0 ← start time
dt← segment duration
Seg ← number of segments
T ← 0
i← 0
while i < Seg do

xi+1,Fx
i,Fu

i ← F i(xi,T i, t0, t0 + dt)
t0 ← t0 + dt
i← i+ 1

end while
j ← 0
N ← Number of sample points
while j < N do

i← Seg − 1
λSeg ← from unit ball
while i ≥ 0 do

T i,j ← Eq. (18)
λi ← Eq. (14)
i← i− 1

end while
j ← j + 1

end while
j ← 0
while j < N do

i← 0
while i < Seg do

xi+1 ← F i(xi,T i,j , t0, t0 + dt)
t0 ← t0 + dt
i← i+ 1

end while
j ← j + 1

end while
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We compute the reachable set using the first order methods and the open-loop method. We see
both the FFOE solution and OLE solution produce similar results, see Fig. (1). The computational
time is 0.27 seconds and 4.32 seconds respectively.
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Figure 1. Elliptic trajectory around Earth. No significant multi-body in-
teraction. The epoch and initial conditions are 64.1 seconds and x0 =
[0, 210820, 0, 0.753136347, 0, 0, 1000] Units are km, km/s, and kg.

Case 2

The second case is a multi-body reachability case. The trajectory has a close approach to the
moon. This results in strong multi-body effects and an inclination and energy increase. The first
order method does a fairly good job; however, we see that the exact method captures the edges
better, see Fig. (2). In Fig. (3) we can see the entire trajectory projected onto the X-Y plane relative
to the Earth and Moon.

The simulation parameters are a max thrust of 0.02 N, 200 segments, and segment duration of
7200 seconds. The computation time of the FFOE and OLE algorithms is 0.25 seconds and 6.42
seconds respectively. Fig. (4) and Fig. (5) highlight the three dimensional nature of the trajectories
by showing the close approach and inclination change.
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Figure 2. Earth-Sun-Moon gravitating. We show good agreement between the FFOE
and OLE algorithm. The OLE solution shows that the extreme edges are underes-
timated by the FFOE algorithm. The epoch and initial conditions are 1072864.169
seconds and x0 = [−379476, 0, 0, 0,−0.561354689, 0, 1000]. Units are km, km/s, and
kg.

Case 3

For the third case, we start at the end of case 2 and run it backwards. This is a controllability case
and shows the range of initial conditions that would allow the spacecraft to still reach the terminal
state. The simulation parameters are a max thrust of 0.02 N, 200 segments, and segment duration
of -7200 seconds. Fig. (6) shows the simulation results. We see that the trajectory is the same as
case 2. For the controllability problem, we identified the envelope of initial conditions that enable
the final states in case 2 to be reached.

ADDITIONAL APPLICATIONS

We are currently extending the FFOE algorithm to incorporate initial state uncertainty1 and ∆V
impulses. In addition, the authors are exploring how the algorithm can be used to solve fuel-
minimum trajectory optimization problems.

CONCLUSION

We demonstrate a fast and automated algorithm to estimate the reachable and controllable set for
EP spacecraft. We show that the algorithm works in multi-body cases and scales through the use of
parallel/concurrent processing.

8



ACKNOWLEDGEMENTS

The authors would like to thank Jim Thorne, Greg Davis, and Stefania Brown-VanHoozer for
reviewing this paper and providing valuable suggestions. We would also like to thank Dr. Lind-
say Millard for bringing this problem to our attention. The Institute for Defense Analyses (IDA)
graciously provided funding to publish and present this work.

REFERENCES
[1] M. J. Holzinger and D. J. Scheeres, “Reachability results for nonlinear systems with ellipsoidal initial

sets,” IEEE transactions on aerospace and electronic systems, Vol. 48, No. 2, 2012, pp. 1583–1600.
[2] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization, estimation, and control. Routledge,

2018.
[3] M. Bando and D. J. Scheeres, “Nonlinear attractive and reachable sets under optimal control in three-

body problem,” Journal of guidance, control, and dynamics, Vol. 41, No. 8, 2018, pp. 1766–1775.
[4] P. Gurfil, Modern astrodynamics. Elsevier, 2006.
[5] J. D. Thorne and C. D. Hall, “Minimum-time continuous-thrust orbit transfers,” The Journal of the

astronautical sciences, Vol. 45, No. 4, 1997, pp. 411–432.
[6] C. Sanderson and R. Curtin, “Armadillo: a template-based C++ library for linear algebra,” Journal of

Open Source Software, Vol. 1, No. 2, 2016, p. 26.
[7] C. Sanderson and R. Curtin, “An adaptive solver for systems of linear equations,” 2020 14th Interna-

tional Conference on Signal Processing and Communication Systems (ICSPCS), IEEE, 2020, pp. 1–6.
[8] C. H. Acton Jr, “Ancillary data services of NASA’s navigation and ancillary information facility,” Plan-

etary and Space Science, Vol. 44, No. 1, 1996, pp. 65–70.
[9] C. Acton, N. Bachman, B. Semenov, and E. Wright, “A look towards the future in the handling of space

science mission geometry,” Planetary and Space Science, Vol. 150, 2018, pp. 9–12.
[10] R. S. Park, W. M. Folkner, J. G. Williams, and D. H. Boggs, “The JPL planetary and lunar ephemerides

DE440 and DE441,” The Astronomical Journal, Vol. 161, No. 3, 2021, p. 105.

9



Figure 3. Visualization of simulation results in X-Y plane with Earth, Moon, and
spacecraft reachable set.
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Figure 4. Near moon interaction during flyby for case 2.

Figure 5. 3D view to highlight inclination change of case 2 post flyby.
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Figure 6. Earth-Sun-Moon gravitating. Controllability case that shows the initial
conditions that can result in the terminal conditions for case 2. The epoch and initial
conditions are 2512864.169 seconds and x0 = [−314562.64,−329219.31, 237676.53,
0.5262560,−0.65552567495712999, 0.1763679, 1000.0]. Units are km, km/s, and kg.
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