

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

PERFORMANCE OF HYBRID SIGNATURES FOR
PUBLIC KEY INFRASTRUCTURE CERTIFICATES

by

John Lytle

June 2021

Thesis Advisor: Britta Hale
Second Reader: Chad A. Bollmann

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2021 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
PERFORMANCE OF HYBRID SIGNATURES FOR PUBLIC KEY
INFRASTRUCTURE CERTIFICATES

 5. FUNDING NUMBERS

 6. AUTHOR(S) John Lytle

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The modern public key infrastructure (PKI) model relies on digital signature algorithms to provide
message authentication, data integrity, and non-repudiation. To provide this, digital signature algorithms,
like most cryptographic schemes, rely on a mathematical hardness assumption for provable security. As we
transition into a post-quantum era, the hardness assumptions used by traditional digital signature algorithms
are increasingly at risk of being solvable in polynomial time. This renders the entirety of public key
cryptography, including digital signatures, vulnerable to being broken. Hybrid digital signature schemes
represent a potential solution to this problem. In this thesis, we provide the first test implementation of true
hybrid signature algorithms. We evaluate the viability and performance of several hybrid signature schemes
against traditional hybridization techniques via standalone cryptographic operations. Finally, we explore
how hybrid signatures can be integrated into existing X.509 digital certificates and examine their
performance by integrating both into the Transport Layer Security 1.3 protocol.

 14. SUBJECT TERMS
hybrid digital certificates, public key cryptography, public key infrastructure, PKI 15. NUMBER OF

PAGES
 147
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

PERFORMANCE OF HYBRID SIGNATURES FOR PUBLIC KEY
INFRASTRUCTURE CERTIFICATES

John Lytle
Gunnery Sergeant, United States Marine Corps

BS, American Military University, 2017

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED CYBER OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Britta Hale
 Advisor

 Chad A. Bollmann
 Second Reader

 Alex Bordetsky
 Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The modern public key infrastructure (PKI) model relies on digital signature

algorithms to provide message authentication, data integrity, and non-repudiation. To

provide this, digital signature algorithms, like most cryptographic schemes, rely on a

mathematical hardness assumption for provable security. As we transition into a

post-quantum era, the hardness assumptions used by traditional digital signature

algorithms are increasingly at risk of being solvable in polynomial time. This renders the

entirety of public key cryptography, including digital signatures, vulnerable to being

broken. Hybrid digital signature schemes represent a potential solution to this problem. In

this thesis, we provide the first test implementation of true hybrid signature algorithms.

We evaluate the viability and performance of several hybrid signature schemes against

traditional hybridization techniques via standalone cryptographic operations. Finally, we

explore how hybrid signatures can be integrated into existing X.509 digital certificates

and examine their performance by integrating both into the Transport Layer Security 1.3

protocol.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Related Work . 3
1.2 Contribution . 4
1.3 Overview . 5

2 Background 7
2.1 Definition of a Digital Signature Algorithm 7
2.2 History of Digital Signature Design 13
2.3 Digital Signature Schemes. 16

3 Hybrid Signature Schemes 29
3.1 Hybrid Security Notions . 30
3.2 Hybridization Techniques . 33
3.3 True Hybrid Schemes . 37
3.4 Summary . 39

4 Methodology 43
4.1 Approach . 43
4.2 Challenges . 47

5 Hybrid Digital Certificates 51
5.1 X.509 Certificates . 52
5.2 Design Considerations for Hybrid Certificates 55
5.3 TLS 1.3 Authentication . 66

6 Experiments and Results for Hybrid Algorithms 71
6.1 Methodology . 74
6.2 Standalone Cryptographic Operations 75

vii

7 Results on X.509 Certificate Sampling and Hybrid Certificate Use in TLS 97
7.1 X.509 Certificate Sampling . 97
7.2 Authentication in TLS . 104

8 Conclusion 113
8.1 Recommendations . 114
8.2 Future Work . 116

List of References 117

Initial Distribution List 127

viii

List of Figures

Figure 2.1 Fiat–Shamir Transform. Adapted from [47]. 12

Figure 2.2 RSA Signature Algorithm. Adapted from [64]. 17

Figure 2.3 DSA Signature Algorithm. Adapted from [24]. 18

Figure 2.4 CRYSTALS-DILITHIUM Signature Algorithm. Source: [72]. . . 20

Figure 2.5 qTESLA Signature Algorithm. Source: [51]. 22

Figure 2.6 Falcon Signature Algorithm. Source: [73]. 23

Figure 2.7 Rainbow Signature Algorithm. Source: [33]. 25

Figure 2.8 GeMSS Signature Algorithm. Source: [84]. 26

Figure 2.8 MQDSS Signature Algorithm. Source: [49]. 28

Figure 3.1 Naive Hybrid Concatenation Scheme 34

Figure 3.2 Weakly Nested Hybrid Scheme. Adapted from [15]. 35

Figure 3.3 Strongly Nested Hybrid Scheme. Adapted from [15]. 36

Figure 3.4 Terminology Relationship between Hybrid Signature Schemes . . 37

Figure 3.5 FS-FS Sign and Verify Algorithms. Source: [23]. 40

Figure 3.6 FS-RSA Sign and Verify Algorithms. Source: [23]. 40

Figure 3.7 Falcon-RSA Sign and Verify Algorithms. Source: [23]. 41

Figure 3.8 FS-DSA #1 Sign and Verify Algorithms. Source: [23]. 41

Figure 3.9 FS-DSA #2 Sign and Verify Algorithms. Source: [23]. 42

Figure 3.10 FS-DSA #3 Sign and Verify Algorithms. Source: [23]. 42

Figure 4.1 Generalized Template for Converting Original FS Sign Operation
into Sub-operations Required for True Hybrid Schemes 44

ix

Figure 4.2 Generalized Template for Converting FS-Based Component Verify
Operation into Sub-operations Required for True Hybrid Schemes 45

Figure 4.3 Example of Converted Dilithium FS Sign Operation for Use in FS-
based True Hybrid Schemes . 46

Figure 4.4 Example of Converted Dilithium FS Verify Operation for Use in
FS-based Generalized Hybrid Schemes 47

Figure 5.1 X.509 Certificate Structure . 60

Figure 5.2 OQS X.509 Hybrid Certificate Structure 60

Figure 5.3 ISARA X.509 Hybrid Certificate Structure 62

Figure 5.4 CROSSING X.509 Hybrid Certificate Structure 62

Figure 5.5 Proposed X.509 Certificate Structure for True Hybrid Schemes . 65

Figure 5.6 Basic TLS 1.3 Handshake. Adapted from [18, figure 2]. 67

Figure 6.1 Performance Gap between Certain FS–(EC)DSA #1 Combinations
and their Concatenated Counterparts 88

Figure 6.2 Dilithium 2 & 3 Mean Sign and Verify Operation Performance for
True and Concatenated Hybrid Schemes 93

Figure 6.3 qTESLA-p-I & qTESLA-p-III Mean Sign and Verify Operation Per-
formance for True and Concatenated Hybrid Schemes 94

Figure 6.4 MQDSS-31-48 & MQDSS-31-64 Mean Sign and Verify Operation
Performance for True and Concatenated Hybrid Schemes 95

x

List of Tables

Table 2.1 NIST Round 3 PQ Signature Candidates 14

Table 2.2 Summary of Considered Digital Signature Schemes 16

Table 3.1 Post-Quantum (PQ) Signature Algorithms with Fiat-Shamir (FS)
Compatibility . 38

Table 4.1 Hash Strengths of FS-Compatible Schemes 49

Table 5.1 Signature Sizes of Considered True and Concatenated Hybrid
Schemes (bytes) . 57

Table 6.1 Supported Algorithm Combinations for True and Concatenated Hy-
brid Schemes . 71

Table 6.2 Testing Environment . 74

Table 6.3 Classic Signature Algorithm Performance (clock cycles) 78

Table 6.4 Level 1 PQ Signature Algorithm Performance (clock cycles) . . . 78

Table 6.5 Level 3 PQ Signature Algorithm Performance (clock cycles) . . . 79

Table 6.6 Level 1 FS–RSA Algorithm Performance (clock cycles/100,000 iter-
ations) . 80

Table 6.7 Level 3 FS–RSA Algorithm Performance (clock cycles/100,000 iter-
ations) . 80

Table 6.8 Level 1 and 3 Falcon–RSA Algorithm Performance (clock cy-
cles/100,000 iterations) . 81

Table 6.9 Level 1 FS–DSA Algorithm Performance (clock cycles/100,000 iter-
ations) . 82

Table 6.10 Level 3 FS–DSA Algorithm Performance (clock cycles/100,000 iter-
ations) . 83

xi

Table 6.11 Level 1 FS-ECDSA Algorithm Performance (clock cycles/100,000
iterations) . 84

Table 6.12 Level 3 FS-ECDSA Algorithm Performance (clock cycles/100,000
iterations) . 85

Table 6.13 Level 1 FS–FS Algorithm Performance (clock cycles/100,000 itera-
tions) . 87

Table 6.14 Level 3 FS–FS Algorithm Performance (clock cycles/100,000 itera-
tions) . 87

Table 6.15 Rejection Sampling Iterations for the Dilithium Signature Algorithm 89

Table 6.16 Rejection Sampling Iterations for the qTESLA Signature Algorithm 90

Table 6.17 Percentage Difference of True Hybrid Minimum and Mean Perfor-
mance from Concatenated Hybrid Schemes 90

Table 7.1 Majestic-12 Breakout by Signature Algorithm Identifier 98

Table 7.2 Majestic-12 Breakout by Signature AlgorithmObject Identifier (OID) 98

Table 7.3 Majestic-12 Breakout by Transport Layer Security (TLS) version . 99

Table 7.4 Majestic-12 Breakout of TLS 1.3 Ciphersuites 99

Table 7.5 List of TLS Ciphersuites for OpenSSL 1.1.1i s_client Program in
Priority Order . 100

Table 7.6 Comparison of Hybrid Certificate Sizes (bytes) 103

Table 7.8 Single Algorithm TLS 1.3 Performance (µs/100,000 iterations) . . 106

Table 7.7 OQS X.509 Certificate Sizes for True Hybrid Schemes (bytes) . . 109

Table 7.9 TLS 1.3 Performance for Specified True Hybrid Schemes (µs/100,000
iterations) . 110

Table 7.10 Percentage Difference of Minimum and Mean TLS Handshake Com-
pletion Times between a Completely Hybrid Certificate Chain and
Completely Non-Hybrid Certificate Chain 111

xii

Table 7.11 Percentage Difference of Minimum and Mean TLS Handshake Com-
pletion Times between a Partially Hybrid Certificate Chain and a
Completely Non-Hybrid Certificate Chain 112

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

AEAD Authenticated Encryption with Associated Data

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

AVX2 Advanced Vector Extensions 2

BMI Bit Manipulation Instruction Set

CA Certificate Authority

CDN Content Delivery Network

CRL Certificate Revocation List

CMA Chosen Message Attack

CMS Cryptographic Message Syntax

CPU Central Processing Unit

DER Distinguished Encoding Rules

DHE Diffie-Hellman Ephemeral

DNSSEC Domain Name System Security Extensions

DOD Department of Defense

DSA Digital Signature Algorithm

DSS Digital Signature Standard

DTU Technische Universität Darmstadt

ECDSA Elliptic Curve Digital Signature Algorithm

xv

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

EUF Existential Unforgeability

FS Fiat-Shamir

HFE Hidden Field Equations

IETF Internet Engineering Task Force

ITU International Telecommunication Union

LAMPS Limited Additional Mechanisms for PKIX and SMIME

LTS Long Term Support

LWE Learning With Errors

MASINT Measurement and Signature Intelligence

MLWE Module Learning With Errors

MIT Massachusetts Institute of Technology

MSIS Module Short Integer Solution

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

NTP Network Time Protocol

OID Object Identifier

OCSP Online Certificate Status Protocol

OQS Open Quantum Safe

PEM Privacy Enhanced Mail

PKCS Public-Key Cryptography Standards

PKI Public Key Infrastructure

xvi

PQ Post-Quantum

PQC Post-Quantum Cryptography

QROM Quantum Random Oracle Model (ROM)

R-LWE Ring Learning With Errors (LWE)

RDTSC Read Time-Stamp Counter

RDTSCP Read Time-Stamp Counter and Processor ID

ROM Random Oracle Model

SCT Signed Certificate Timestamp

SIS Short Integer Solution

SRWBR Short Range Wide Band Radio

SSH Secure Shell

SUF Strong Unforgeability

TCP Transmission Control Protocol

TLS Transport Layer Security

TSC Timestamp Counter

UDP User Datagram Protocol

USG United States Government

USN U.S. Navy

UUF Universal Forgery

XOF Extendable-Output Function

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

Digital signatures are a fundamental cryptographic primitive used to create a digital coun-
terpart to traditional, handwritten signatures. When verified successfully, a digital signature
provides the recipient of a message a strong guarantee that the message was created by the
original signer and that the integrity of the signed data was not compromised in transit [1].
Cryptographic protocols that require these properties incorporate digital signature schemes
into their design. Popular examples of this include the Transport Layer Security (TLS) [2]
and Secure Shell (SSH) [3] protocols that use digital signature algorithms for authentication.

Like most cryptographic schemes, every digital signature algorithm relies on a mathemati-
cal hardness problem for provable security. A hardness problem is one that cannot be solved
efficiently in polynomial-time and is what guarantees a system is secure assuming a com-
putationally limited adversary [4]. Hardness problems vary between signature algorithms,
and traditional digital signature schemes rely on a single underlying hardness problem for
security. At this time, no known theorem formally proves unconditional hardness for any
problem, so a hardness problem is valid only based on the confidence and acceptance of
previous research [5], [6]. With recent advancements in quantum computing, efficient algo-
rithms that solve well-known hardness problems are becoming increasingly viable [7]. This
has the potential to render the entirety of public key cryptography, to include digital sig-
natures, vulnerable to being broken unless cryptographic schemes adopt different hardness
problems.

Several potential candidates have been identified within public key cryptography that are
resilient to quantum attacks; however, the transition away from vulnerable legacy algorithms
to those considered secure in a Post-Quantum (PQ) world is a non-trivial task. First and
foremost, a survey of systems that use legacy algorithms is needed to identify and understand
the requirements that new algorithms need to satisfy. These systems include everything
from standalone communication devices to operating system internals and encompass both
hardware and software-based solutions. Additionally, the properties and characteristics of
new candidates need to be evaluated and compared to legacy algorithms to identify any
differences in performance and reliability. This entire process is extremely disruptive and

1

often takes several years to complete [8].

In anticipation of a PQ transition, organizations like the National Institute of Standards and
Technology (NIST) have initiated processes to evaluate and standardize “quantum-resistant
public-key cryptographic algorithms” [9]. As part of this multiyear effort, several PQ digital
signature algorithms have been identified with each relying on different families of hardness
problems. Unlike their classical counterparts, these problems do not have the same amount
of historical research and are considered relatively new to applied cryptography. This creates
a point of friction for the transition from classical to PQ signature algorithms because, if an
efficient attack against either the algorithm or the hardness problem is found, the security
of the entire cryptosystem would be broken.

Further complicating a seamless transition, digital signature algorithms have undergone
relatively few changes compared to the rest of public key cryptography since their inception
in the 1970s [10]. While strides have been made in the standardization and adoption of
asymmetric key establishment schemes, the industry has been slow to adopt changes. Even
with the introduction of more efficient and secure classical options like elliptic curve
cryptography, digital signatures still primarily rely on the original RSA signature scheme
for everything from code signing to certificates issued over the Internet. As a result, digital
signatures and the infrastructure that relies on their security to function have formed a
fragile, monolithic ecosystem on which many fundamental Internet applications, to include
e-commerce and securemessaging, are based. If a scheme is found to beweakened or broken,
the entirety of the system must shift to accommodate either changes to the signature scheme
in use or the wholesale adoption of a new one. Any transition is limited in how quickly it can
be implemented due to the complexity and distributed nature of Public Key Infrastructure
(PKI), the bureaucratic process of standardization and government regulations, and the legal
restrictions stemming from patents.

Whether due to the monolithic nature of existing cryptosystems or through a reluctance
to adopt newer signature algorithms, a gap exists between the infrastructure and software
deployed now and what will be needed in the near future. There are multiple approaches
to solve this problem; however, hybridization, or the secure combination of multiple digital
signature algorithms into a unified scheme, simultaneously solves both. A composable
hybrid signature scheme combines its component algorithms in such a way that the entire

2

scheme does not rely on the hardness problem of a single algorithm. When implemented
correctly, any security guarantee achieved by a component algorithm is also achieved by
the hybrid scheme and, even if one of the component algorithms is later broken, the overall
hybrid signature scheme still achieves the security of the unbroken component algorithm.
As part of a PQ transition, a cryptosystem can combine a PQ signature algorithm with a
classical signature algorithm via a hybrid scheme. This flexibility allows system engineers
and developers to hedge their bets when adopting newer signature algorithms and for
cryptographers to design custom solutions to specific problems like long-term security.
Additionally, hybrid signature schemes prevent a monolithic ecosystem from reoccurring
after the adoption of the next standardized PQ signature algorithms. Given the slow pace of
change in adopting newer signature algorithms, a hybrid signature scheme can be leveraged
to allow the introduction of newer alternatives without interrupting the overall security of a
cryptosystem.

The characteristics, efficacy, and performance of hybrid digital signature schemes first need
to be evaluated before they can be used to solve pending problems in the PQ transition.
This work seeks to address these factors by examining the performance of various hybrid
signature schemes using both classical and PQ signature algorithms. This information
can be used to create a baseline that identifies the operational requirements of different
signature algorithm combinations and informs early adopters of the potential limitations of
hybridization as a transition mechanism.

1.1 Related Work
As a concept, hybrid signature schemes are not new to public key cryptography. Several
schemes [11]–[14] have been designed and patented over the course of history; however,
most were designed tomeet niche requirements and no examples can be found in widespread
use. Additionally, modern cryptographic libraries do not typically offer hybrid or dual mode
support due to the increased costs, complexity, and lack of standardization [15], [16].

Renewed interest in hybridization has followed with the imminent standardization of PQ
signature algorithms. Due to the increased size of the signatures and keys used by PQ
algorithms when compared to their classical counterparts, researchers have examined non-
hybrid PQ signature algorithms within specific use cases [16]–[18] to include the PKI

3

system [19]. This research is critical in understanding the viability of both PQ algorithms
within existing standards, libraries, and protocols and establishing the constraints on which
a hybrid system would be based.

Bindel et al. [15] establish hybrid digital signature schemes as a potential mechanism to
facilitate the PQ transition within PKI. Specifically, their paper identifies different ways
to combine component algorithms, provides conditions on when the resulting scheme is
unforgeable, and offers an informal definition of non-separability that is unique to hybrid
signature schemes. Extending that work, the Collaborative Research Center CROSSING
at TU Darmstadt implemented backwards compatible hybrid certificates in two popular
cryptographic libraries [20], [21].

1.2 Contribution
This thesis presents a detailed evaluation of several hybrid digital signature schemes by
analyzing the quantitative performance at the algorithmic level and in protocol use (i.e.,
TLS). Several different methods for hybridization are examined to include simple concate-
nation [22], nesting [15], and newly introduced true hybrid schemes [23]. These schemes are
then implemented with the end goal to test the viability and performance of each method.

At the algorithmic level, the component digital signature algorithms are chosen using
constraints imposed by the hybrid signature scheme. Only algorithms that are currently
approved by NIST or being evaluated in Round 2 and 3 of the call for PQ standardization
are considered. Additions or alternations to component algorithms are clearly identified;
however, an independent security review of those changes is considered out-of-scope for
this paper. All changes should be considered experimental.

Given its ubiquity in previous research [18], the TLS protocol is used to test the impact of
hybridization on performance at the protocol level. Specifically, different digital certificate
structures are examined based on ease-of-implementation, security properties, and existing
patents. Once implemented, each certificate structure is evaluated using TLS handshake
latency as a metric. All software created during the course of the thesis was developed using
publicly available cryptographic libraries and made available as a proof-of-concept only.

4

1.3 Overview
Chapter 2 provides a background on digital signatures, their security notions, and design
history. This chapter also introduces the signature algorithms used in the rest of the paper.
Chapter 3 delves into the construction of hybrid signature schemes and security notions
unique to hybridization. Chapter 4 introduces the methodology used to implement the true
hybrid schemes. Chapter 5 details methods for constructing hybrid digital certificates and
specifies how they are used in the TLS protocol handshake. Finally, Chapters 6 and 7
establish testing methodology and publish both the results and their analysis.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Background

Digital signatures continue to play a critical role in public key (i.e., asymmetric) cryp-
tography since the introduction of the latter in 1976 [10]. The primary purpose of digi-
tal signatures is to replicate the authentication provided by their traditional, handwritten
counterparts. Whereas the authenticity of a traditional signature is verified visually and
inherently vulnerable to tampering, digital signatures are verified through a cryptographic
scheme. They extend the functionality of traditional signatures by providing a mechanism
for message authentication and non-repudiation. As a cryptographic primitive, digital sig-
natures form an integral part of the foundation on which secure communication over the
Internet is accomplished. This chapter briefly introduces digital signatures, provides a his-
tory of digital signature design, and details the classical and post-quantum digital signature
schemes examined in subsequent chapters.

2.1 Definition of a Digital Signature Algorithm
In their simplest form, digital signatures are “the result of a cryptographic transforma-
tion that, when properly implemented, provide a mechanism for verifying authentication,
data integrity and non-repudiation” [24]. Other conventional authentication techniques like
message authentication codes exist that cover a subset of these properties; however digital
signatures are unique in that they provide all three. A digital signature scheme consists of
three components:

• key generation algorithm (KeyGen)
• signature algorithm (Sign)
• verification algorithm (Verify).

The KeyGen is a probabilistic, polynomial time algorithm that allows a user to create a pair
of matching public (pk) and secret (sk) keys based on input (1λ). The security parameter
(λ) specifies various quantities to include signature length, security level, and any message
length limitations that are required for the scheme’s correctness and security [1]. In general,
λ is defined by the scheme’s original authors or through standardization and is subject to

7

change over time if efficient attacks are discovered or a higher level of security is required.

The Sign operation is a potentially probabilistic, polynomial time algorithm that takes a
variable input message (m) and, using a sk, creates a unique output string known as the
signature (σ) on m that is both associated only with the original input and the originating
signer.

The Verify operation is a polynomial time algorithm that validates that the message was
signed by the originating signatory by applying the pk to the attached signature. Verify
accepts three inputs (m, pk, σ) and either accepts or rejects the signature as an output. For
consistency, this operation must be deterministic such that it is not possible for Verify to
accept a signature in one instance but reject it in another.

2.1.1 Security Notions
If message authentication, data integrity, and non-repudiation are the goals of a digital
signature scheme then the underlying hardness assumption, adversary model, and forgery
definition are the tools that measure if the scheme accomplishes those goals. Before a digital
signature scheme can be declared secure, the scheme designers must first clearly identify the
hardness assumption used, the adversary’s capabilities and constraints, and the probability
an adversary can win under those constraints.

Hardness Assumptions
Fundamentally, the security of digital signature schemes depend on a reduction to a well-
defined computational hardness assumption. This assumption is based on a particular math-
ematical problem where no known polynomial time algorithm exists that can solve it (e.g.
NP-hardness) [4], [25]. The hard problems used in a scheme can also be sub-problems
of other hardness assumptions, thus creating families or categories of related hard prob-
lems [6]. Through a security reduction, a sub-problem can be shown to be at least as difficult
to break as the original hard problem. For example, the RSA signature scheme, originally
conceived in 1976, uses the RSA problem (RSAP) as its hardness assumption [25]. RSAP

is a sub-problem of integer factorization (RSAP ≤P F ACTORING) and has been found to
be intractable under certain conditions such as a sufficiently large key size [26], [27].

8

Classic digital signature schemes like DSA, ECDSA, and RSA use sub-problems of integer
factorization or the discrete logarithm problem [25], [28], [29]. These sub-problems are
widely accepted to be resistant to solutions based on efficient polynomial time algorithms
running on modern classical computers; however, quantum computers through variations
of Shor’s algorithm [9] can theoretically efficiently calculate both discrete logarithms and
perform integer factorization. Recent research [30] suggests that a quantum computer would
need at least 20 million qubits to factor a 2048 bit RSA integer; however, current techno-
logical constraints limit the development of quantum computers to less than 60 qubits [31].
Security researchers currently predict a timeline of roughly 20-30 years before quantum
computers become viable threats to current standards [32].

The time until the quantum threat is realized is subject to rapid change as advancements
in classical processing power, quantum computing, or the discovery of more efficient al-
gorithms will accelerate this timeline. In 2019, two researchers demonstrated that only a
20-million qubit quantum computer would be needed to factor a 2048-bit RSA public key
in an eight-hour period [30]. Prior to this research, the previously recognized number of
qubits required for the same challenge was over a billion. Shor even speculated that “quan-
tum algorithms could even break RSA on a quantum computer asymptotically faster than
encrypting with RSA on a classical computer” [7].

As cryptography transitions into a PQ world, new hardness assumptions are required to
replace those vulnerable to a quantum-capable adversary. Research into areas such as hash-
based, code-based, lattice, and multivariate polynomial cryptography have yielded several
promising candidates that address attacks from both classical and quantum computers [8].
While some of these areas have been studied for several years, they have not received the
same level of scrutiny as classical hard problems. Compared to classical algorithms like
RSA, the hardness assumptions used by PQ algorithms are more complex and are thus open
to subtle attacks that are equally as complex. For example, Rainbow [33], a multivariate-
based signature scheme introduced in 2005, has been subjected to direct and indirect
attacks [34]–[36] as a result of general research into the security of multivariate signature
schemes. As expressed by Petzoldt, Bulygin, and Buchmann [37], the complexities of these
attacks increases the difficulty in selecting valid security parameters that protect against both
quantum and classical adversaries. As mentioned in Chapter 1, increased complexity of PQ
signature algorithms design is one of the motivations behind hybrid signature schemes.

9

Unforgeability
It is not enough to show the intractability of a hard problem. Digital signature schemes
must also achieve both soundness and completeness. In other words, a scheme must always
successfully verify a message legitimately signed by the sk using the Sign algorithm and
reject all illegitimate signatures. If an adversary is able to efficiently (e.g. within polynomial
time) attack a scheme in a way that violates this principle, it becomes trivial for them to forge
a digital signature for a message without having access to the signer’s key, thus breaking
the security of the scheme.

While the concept is simple, different levels of security may be required depending on the
application. For example, it may be sufficient that while an adversary is able to forge one
message, they are unable to forge a specific message of their choice. As such, the conditions
necessary for a successful attack and the advantages afforded to the adversary (e.g., abilities,
rules, etc.) must be clearly defined via an experiment between an honest participant and an
attacker (i.e., in a game).

In 1988, Goldwasser, Micali, and Rivest proposed a hierarchy of security levels of success
that an adversary must be able to achieve with non-negligible probability using a chosen-
message attack that runs in probabilistic polynomial time [38]. Out of these definitions,
Existential Unforgeability (EUF) requires the least level of success from the adversary
while simultaneously providing the most advantages.

Existential Unforgeability under Chosen-Message Attack (EUF-CMA) requires that an
adversary forge a signature for at least one message. This message is chosen by the attacker
and can be meaningless (e.g. random). Furthermore, the message must never have been
validly signed by the signer. We present the EUF experiment from [39] in the following
formalized manner:

Security [39]. Let us recall the existential unforgeability against chosen message attacks
(EUF–CMA) security experiment [38], played between a challenger and a forger A.

1. The forger, on input public parameters Π, may ask a non-adaptive chosen–message
query. To this end, it submits a list of messages M (1), ...,Mq0 to the challenger.

2. The challenger runs Sig.Gen(Π) to generate a keypair (vk, sk). The forger receives
vk and a signature σ(i) for each chosen message M (i), i ∈ [q0].

10

3. Now the forger may ask adaptive chosen–message queries. Each query consists of a
message M (i), i ∈ [q0 + 1,q], and is answered by the challenger with a signature σ(i)

under sk for message M (i).
4. Finally, the forger outputs a message M∗ and signature σ∗.

Definition 1 ([39]). An adversary is adaptive, if it asks at least one adaptive chosen–message
query. Otherwise, it is non-adaptive. LetA be an adversary (adaptive or non–adaptive) that
runs in time t, makes q chosen–message queries (in total), and outputs (M∗, σ∗). We say
that A(ε, t,q)–breaks the EUF-CMA security of Sig if

Pr[Sig.Vfy(vk,M∗, σ∗) = 1 ∧ M∗ < {M (1), ...,M (q)}] ≥ ε .

Other variants such as Strong EUF-CMA (SUF-CMA) give the adversary more capabilities
and thus provide a stronger security guarantee. For example, SUF-CMA requires that the
adversary output a message and signature pair that is not one of the previous queries. This
simple difference prevents the adversary from randomizing a valid signature obtained from
a query in a way that retains validity while looking different from the original signature [40].
Each digital signature algorithmmust achieve a variant of EUF-CMAunder specific security
parameters to be considered for standardization by the NIST [24], [41].

11

2.1.2 Fiat–Shamir Transform
The Fiat-Shamir (FS) transform is a general technique for transforming a secure proof-of-
knowledge interactive proof with an honest verifier into a non-interactive digital signature
scheme [42]. The goal of the interactive proof is to prove to a party (i.e., verifier) that
another party (i.e., prover) has knowledge of something without revealing any underlying
information. Typically, this occurs in a three-round, public-coin scheme (e.g. canonical) in
which the verifier randomly chooses all of their messages during its execution [43]. In this
scheme, the prover, holding a sk, sends a commitment ω to the verifier. Upon receiving ω,
the verifier returns a random string as challenge c. The prover then generates a response s

by applying their sk to a message composed of both ω and c . The prover then sends r to
the verifier. The verifier then must run a verification algorithm, which outputs a decision bit
by applying the prover’s pk to r . The verifier then accepts if and only if the decision bit is
equal to one. There are several identification schemesmatching this three-round format [42],
[44]–[46].

With minimum constraints, the FS transform can be applied to canonical three-round
identification schemes in order to generate a signature scheme that is secure under the
RandomOracle Model (ROM) [47], [48]. Figure 2.1 depicts a generalization of the standard
FS transform and is based on a construction described in [47].

Algorithm 1 Sign of ΣFS

Require: m, sk

Ensure: sigFS = (ω, z),
where H is a hash function, k is a se-
curity parameter, and CoinsP is a set of
binary strings.

1: RP ←$ CoinsP(k)
2: ω← P(sk; RP)

3: c← H(ω,m)

4: z ← P(sk,ω, c; RP)

5: return (ω, z)

Algorithm 2 Verify of ΣFS

Require: m, pk, (ω, z)
Ensure: {1,0}. accept, reject signature

1: c← H(ω,m)

2: b← V f (pk;ω, c, z)
3: return b

Figure 2.1. Fiat–Shamir Transform. Adapted from [47].

12

The FS transform is the basis for several digital signature schemes [24], [29], [49]–[51], both
classical and post-quantum, because of its ability to create efficient signature schemes [47].
Due to this ubiquity, the FS transform plays a critical role in the generalized hybrid schemes
introduced in Chapter 3.

2.2 History of Digital Signature Design
The RSA digital signature scheme was the first functional scheme to gain widespread
popularity. Building from the work of Diffie and Hellman in 1976 [10], Rivest, Shamir and
Aldeman proposed a primitive signature scheme using the RSA algorithm in 1978 [52].
In 1983, Massachusetts Institute of Technology (MIT) was granted a patent [53] with
licensing exclusively controlled by what is now RSA Security, Inc. Over the course of the
next decade, RSA became the de facto international standard, but it was not until 1991 that
RSA Security released the Public-Key Cryptography Standards (PKCS) that established an
industry standard interface for public key cryptography in the United States (U.S.)

During the 1980s, several digital signature schemes were designed as alternatives to RSA;
however, most are rarely used in practice. In 1985, Tahir ElGamal described the ElGamal
signature scheme [54]. Based on the difficulty of computing discrete logarithms, it is
significantly more expensive both in terms of signing and signature size than RSA. Other
signature schemes, such as Guillou-Quisquater (GQ) [55] and Feige-Fiat-Shamir [46],
were designed to reduce the number of modular multiplications needed for generating
RSA signatures by using the FS transform. The Feige-Fiat-Shamir scheme significantly
improved efficiency at the cost of increased signature length while the GQ signature scheme
only slightly improved efficiency [50]. Given the large industrymarket share of RSA, neither
sufficiently enticed adoption.

Efficiency is not the only contributing factor to limited adoption. Legal ambiguity sur-
rounding patents and government intervention can also limit use. In 1989, Claus Schnorr
described [50] and patented [56] the Schnorr signature algorithm. This design improved on
the efficiency of the Feige-Fiat-Shamir and GQ schemes and offered a viable alternative to
RSA. In 1991, the United States Government (USG) through NIST desired to standardize a
digital signature scheme without any encryption functionality that could be made available
worldwide on a royalty-free basis. Since both the RSA and Schnorr schemes were patented

13

and enforced through licensing, NIST proposed the Digital Signature Standard (DSS) [24]
along with their own signature scheme: Digital Signature Algorithm (DSA). DSA and its
successor Elliptic Curve Digital Signature Algorithm (ECDSA) specifically adapted ele-
ments of the ElGamal signature scheme for patent avoidance reasons. This immediately
caused legal strife as multiple groups claimed DSA infringed on their existing patents;
however, nothing was ever successfully argued in a court of law. As a result, the Schnorr
signature scheme did not see any extensive use until after its patent expired in 2008.

The segmentation caused by legal ambiguity and lack of standardization has resulted in
a limited cryptographic landscape for digital signature schemes. Under FIPS 186-4 [24],
the US government still only has three approved signature algorithms: RSA, DSA, and
ECDSA; however, under a current draft standard [57], DSAwill only be used to verify legacy
signatures prior to the standards implementation date. Using elliptic curve cryptography,
ECDSAwas formally standardized in 2000 and is more efficient in terms of time complexity
and signature size [29] despite deliberately using an inefficient design to avoid patents.
Additionally, RSA requires significantly longer keys to provide the same level of security as
ECDSA [58]. Nonetheless, RSA is still used in the majority of digital signature certificates
over two decades later.

In 2017, NIST began the Post-Quantum Cryptography (PQC) Standardization project [8]
to investigate quantum-safe cryptographic counterparts to existing standards. Unlike past
projects like AES and SHA-3, NIST anticipates that the “evaluation process for these
post-quantum cryptosystems may be significantly more complex” due to more demanding
requirements, limited understanding of the power of quantum computers, and the diversity
of “design attributes and mathematical foundations” in proposed candidates [9]. Over three
years later, the project is in the call for comments period for the third round of candidates.
Table 2.1 depicts the third round of PQ digital signature candidates.

Table 2.1. NIST Round 3 PQ Signature Candidates

Finalists Alternates

CRYSTALS-DILITHIUM GeMSS
FALCON Picnic
Rainbow SPHINCS

14

While provable security and efficiency are critical to the selection process, NIST has offi-
cially stated that the “intellectual property covering an algorithm or its implementations and
the availability and terms of licenses to interested parties” has and will be used as selection
criteria [41]. NIST’s goal remains largely the same as in their efforts in 1991: to enable
world-wide adoption by standardizing royalty-free algorithms. NIST has also carefully cho-
sen candidates with different design attributes to help safeguard against future attacks or
hidden flaws. If more than one digital signature scheme is finalized, the flexibility of choice
will be a direct counter to the stagnation of standardized digital signature schemes; how-
ever, the transition from classical to PQ is still left to individual applications. Additionally,
current patents [59]–[62] may hinder PQ adoption despite NIST’s best efforts. As a result,
hybridization, despite its increased costs and complexity, may prove essential in providing
a mechanism to not only aid transitioning, but also legally bypass broad but enforceable
patents.

Other important aspects for NIST’s PQ selection criteria are the flexibility and simplicity of
the scheme. Specifically, NIST is targeting “simple and elegant designs”which reflect “better
understanding and confidence of the design team and encourages further analysis” [41]. The
entire process relies on the transparency of the algorithms’ design through documentation
and source code. Additionally, the security community plays a vital role in examining the
stated security of each algorithm and identifying potential flaws. Unfortunately, even with
active cooperation, it is highly unlikely that every gap in security will be identified prior to
official standardization. Many of the proposed candidates use “new and interesting designs”
and contain “unique features that are not present in the current NIST standardized public-key
algorithms” [41]. As evidenced by the history of attacks against the RSA cryptosystem [63],
securely implementing a signature scheme is a non-trivial task even when the underlying
mathematical principles are well-understood as simple mistakes can drastically impact
security. Therefore, any lack of public understanding or trust of an algorithm’s characteristics
or implementation hinders widespread adoption.

While the confidence and trust of PQ signature algorithms will improve with time, there
is no guarantee that the next generation of digital signature algorithms will achieve the
same levels as their predecessors. Therefore, identifying different ways to securely combine
signature algorithms plays a vital role in combating any trust issues in both the short and
long term. If the security of the overall signature scheme can be equally balanced between

15

two different signature algorithms, then it is possible to place trust in the combined security
properties of the component algorithms. This limits the risk of exposing the entire scheme to
failure in the event of failure of only a single signature algorithm. Not every hybrid scheme
provides this guarantee (the security properties of hybrid schemes are covered in detail in
Chapter 3).

2.3 Digital Signature Schemes
In this section, digital signature algorithms, both classical and PQ, are divided into their
families of hardness problems. For each algorithm, a brief description of the algorithm,
its specific hardness problem, and security properties are discussed. This section is not a
comprehensive list of all families of hardness problems; however, each family listed is used
by a tested signature scheme in this work and familiarity with this information is assumed
in Chapter 3. A brief summary of this section can be found in Table 2.2.

Table 2.2. Summary of Considered Digital Signature Schemes

Name Family Hardness Quantum-
Problem Resistance

RSA-FDH Integer Factorization RSAP
DSA Discrete Logarithm DLP
ECDSA Discrete Logarithm ECDLP
CRYSTALS-DILITHIUM Lattice MLWE, MSIS X
qTESLA Lattice R-LWE X
FALCON Lattice NTRU X
Rainbow Multivariate UOV X
GeMSS Multivariate HFE X
MQDSS Multivariate MQ X

2.3.1 Integer Factorization
The hardness of integer factorization is informally defined as the difficulty in factoring
large composite integers into a product of smaller integers. Given sufficiently large size, an
adversary should not be able to factor the product of two random integers within polynomial-
time with non-negligible probability. The difficulty can be further increased if the factors

16

are limited to prime numbers (i.e., prime factorization). Variations of this problem can be
motivated by security considerations to include restrictions on the primes and cryptographic
primitive requirements.

RSA
The RSA digital signature scheme is an RSA-based signature scheme that uses the hash-
and-sign paradigm to circumvent forgeability and other security flaws in the original plain
RSA digital signature scheme. PKCS #1 [64], published by RSA Laboratories and available
via RFC 8017, specifies two encodingmethods: EMSA-PSS and EMSA-PKCS1-v1_5. Both
encoding methods are applied to the hash of the signed message and are used as input to
the signing algorithm. NIST approves both methods for use on government systems [24].
For simplicity, Figure 2.2 depicts the full domain hash (FDH) variant of the RSA digital
signature scheme, thus ignoring how the hash is encoded prior to signing.

The security of the RSA digital signature scheme relies on the RSA problem:

Given a positive integer n which is the product of at least two primes, an integer
e coprime with φ(n) and an integer c, find an integer m such that
me ≡ c (mod n). [25]

Security proofs showing EUF-CMA exist for RSA-FDH [65], RSASSA-PKCS1-v1_5 [66],
and RSASSA-PSS [67], [68].

Algorithm 3 Sign of ΣRSA

Require: m, sk

Ensure: sigRSA = s,
where H is a hash function.

1: c← H(m)

2: s = (c | |pad)sk mod n

3: return s

Algorithm 4 Verify of ΣRSA

Require: m, pk, s

Ensure: {1,0}. accept, reject signature

1: (c | |pad) ← (s)pk mod n

2: if c = H(m) then
3: return 1
4: end if
5: return 0

Figure 2.2. RSA Signature Algorithm. Adapted from [64].

17

2.3.2 Discrete Logarithm
The discrete logarithm problem is well known hardness problem within public key cryp-
tography and is considered intractable over specific groups (e.g., Z∗p). Essentially, while
modulo exponentiation is simple to solve, the inverse operation is difficult:

Let p be prime (e.g., p ∈ Z∗p) and q be a primitive root of p (e.g., q ∈ Z+p).
Given p,q, find x such that x ≡ logq y (mod p). [25]

For cryptography, group choices are typically subgroups of a multiplicative group over
prime fields, a multiplicative group over finite fields of characteristic 2, or elliptic curve
groups over finite fields [1].

DSA
DSA is based on modular exponentiation and the discrete logarithm problem. DSA is no
longer recommended for continued use in themost recent draft revision to DSS [69]. Instead,
alternatives such as ECDSA, which uses elliptic curves, and EdDSA, which uses twisted
Edwards curves, have gained popularity. Both ECDSA and DSA have achieved provable
security under specific parameters [28], [70]. Figure 2.3 depicts the DSA Sign and Verify
operations, respectively.

Algorithm 5 Sign of ΣDSA

Require: m, sk

Ensure: sigDSA = (r, s),
where H is a hash function.

1: k ←$ Z
∗
q

2: r ← (gk mod p) mod q

3: s← k−1(H(m) + (sk)r) mod q

4: return (r, s)

Algorithm 6 Verify of ΣDSA

Require: m, pk, (r, s)
Ensure: {1,0}. accept, reject signature

1: b← s−1 mod q

2: u1 ← (H(m) · b) mod q

3: u2 ← (rb) mod q

4: v ← ((gu1 · gu2) mod p) mod q

5: if v = r then
6: return 1
7: end if
8: return 0

Figure 2.3. DSA Signature Algorithm. Adapted from [24].

18

2.3.3 Lattice
Lattice-based cryptography uses a lattice, or the set of all linear combinations of linearly
independent vectors in real n-space Rn, to form the base for a series of hard problems [71].
These problems include the shortest vector problem (SVP), the closest vector problem
(CVP), or a decisional variant of the two. Most lattice-based schemes do not directly rely
on the hardness of these problems. Instead, they use variants of either the Learning With
Errors (LWE) or Short Integer Solution (SIS) problems which are, in turn, reliant on, and
sometimes reducible to the hardness of lattice problems [25].

Crystals-Dilithium
The Dilithium signature scheme [72] is a PQ lattice-based scheme that was designed to
minimize the sum of the size of the public key and signature. The scheme’s security is based
on the hardness of finding short vectors in lattices. Specifically, Dilithium has been found to
be SUF-CMA secure in the ROM based on the hardness of both the Module Learning With
Errors (MLWE) and Module Short Integer Solution (MSIS) lattice problems. Of interest,
Dilithium uses a unique cryptographic hash function, known as “hashing to a ball,” that
that hashes onto a set of elements of a chosen cyclotomic ring. The output of this function
is a random 256-element array with exactly 60 ±1s and 196 0s and is used directly as the
commitment within the scheme. Figure 2.4 offers a basic overview of both the Sign and
Verify operations, respectively.

19

Algorithm 7 Sign of ΣDi

Require: m, sk

Ensure: sigDi = (z, c)

1: A ∈ Rk×`
q B ExpandA(ρ)

2: µ ∈ {0,1}384 B CRH(tr ‖m)
3: κ B 0, (z, h) B ⊥
4: ρ′ ∈ {0,1}384 B CRH(K ‖µ)
5: while (z, h) = ⊥ do
6: y ∈ S`

γ1−1
7: w B Ay

8: w1 B HighBits(w,2γ2)

9: c ∈ B60 B H(µ‖w1)

10: z B y + cs1

11: (r1,r0) B Decomposeq(w − cs2,2γ2)

12: if (‖z‖∞ ≥ γ1 − β) ∨ (‖r0‖∞ ≥ γ2 − β) ∨

(r1 , w1) then
13: (z, h) B ⊥

14: else
15: h B MakeHintq(−ct0, w − cs2 +

ct0,2γ2)

16: if (‖ct0‖∞ ≥ γ2) ∨ (# of 1’s in h is
≥ ω) then

17: (z, h) B ⊥

18: end if
19: κ B κ + 1
20: end if
21: end while
22: return (z, h, c)

Algorithm 8 Verify of ΣDi

Require: m, pk, (z, c)
Ensure: {1,0}. accept, reject signature

1: A ∈ Rk×`
q B ExpandA(ρ)

2: µ ∈ {0,1}384 B CRH(ρ‖t1‖m)
3: w ′1 B UseHintq(h, Az − ct1 · 2d,2γ2)

4: if (‖z‖∞ < γ1 − β) ∧ (c = H(µ‖w ′1) ∧ (# of
1’s in h is ≤ ω) then

5: return 1
6: end if
7: return 0

Figure 2.4. CRYSTALS-DILITHIUMSignature Algorithm. Source: [72]. The
ExpandA function maps a uniform seed p ∈ {0,1}256 to a matrix A. CRH
is a collision resistant hash function (e.g., SHAKE-256). The Decomposeq,
HighBits, and MakeHint functions are used to reduce the size of the public
key by extracting higher and lower order bits of elements in Zq. UseHint uses
the hint produced by MakeHint to recover the high-order bits of the sum.

20

qTESLA
The qTESLA signature scheme [51] is a PQ lattice-based scheme that relies on the decisional
Ring LWE (R-LWE) problem. The scheme was designed for implementation simplicity and
practical security at the cost of increased signature and public key size. qTESLA has been
proven EUF-CMA secure in the QuantumROM (QROM). Figure 2.5 offers a basic overview
of both the Sign and Verify operations, respectively.

21

Algorithm 9 Sign of ΣqT

Require: m, sk

Ensure: sigqT = (z, c),
where H is a hash function.

1: counter← 1
2: r ←$ {0,1}κ

3: r ← PRF2(seedy,r,G(m))
4: y ← ySampler(rand,counter)
5: a1, ...,ak ← GenA(seeda)

6: for i = 1, ..., k do
7: vi = aiy mod ±q

8: end for
9: c′← H(v1, ..., vk,G(m), g)

10: c B {pos_list, sign_list}
11: z ← y + sc

12: if z < R[B−S] then
13: counter← counter + 1
14: Restart at step 4
15: end if
16: for i = 1, ..., k do
17: wi ← vi − eic mod ±q

18: if (‖[wi]L ‖∞ ≥ 2d−1 − E) ∨ (‖wi ‖∞ ≥

bq/2c − E) then
19: counter← counter + 1
20: Restart at step 4
21: end if
22: end for
23: return (z,c)

Algorithm 10 Verify of ΣqT

Require: m, pk, (z, c)
Ensure: {1,0}. accept, reject signature

1: c B {pos_list, sign_list} ← Enc(c′)
2: a1, ...,ak ← GenA(seeda)

3: for i = 1, ..., k do
4: wi = aiz − tic mod ±q

5: end for
6: if (z < R[B−S]) ∨ (cprime ,

H(wi, ..., wk,G(m),G(t1, ..., tk)) then
7: return 0
8: end if
9: return 1

Figure 2.5. qTESLA Signature Algorithm. Source: [51]. PRF is a pseudo-random function
that takes a pre-seed and maps it to (k + 3) seeds of k bits each; the ySampler function samples
a polynomial y ∈ R[B]; the GenA function regenerates the polynomials a1, ...,ak created during
key generation for each key pair; the challenge c is encoded as two arrays, pos_list and sign_list,
that contain the positions and signs of its nonzero coefficients; the encoding function Enc uses an
Extendable-Output Function (XOF) to generate values uniformly at random that are interpreted as
the positions and signs of the nonzero entries of c.

22

Falcon
Falcon [73] is a PQ signature scheme based on NTRU lattices [74]. Using the SIS over
NTRU lattices hardness problem, Falcon has been proven EUF-CMA secure in both the
ROM and QROM using the GPV framework [75]. The scheme’s main design principles
are to minimize both the public key and signature size while maintaining performance
and memory efficiency. While previous implementations required floating-point hardware
support, the latest specification allows portability for systems without support. Figure 2.6
offers a high-level description of Falcon’s Sign and Verify operations.

Algorithm 11 Sign of ΣFa

Require: m, sk, a bound β
Ensure: sigFa = (r, s),

where HashToPoint is an extendable-
output hash function, FFT is a fast Fourier
transform, and ffSampling is a fast Fourier
sampling algorithm.

1: r ← {0,1}320 uniformly
2: c← HashToPoint(r ‖m)
3: t ← (FFT(c),FFT(0)) · B̂−1

4: do
5: z ← ffSamplingn(t,T)
6: s = (t − z)B̂

7: while ‖s‖ > β

8: (s1, s2) ← invFFT(s)
9: s← Compress(s2)

10: return (r, s)

Algorithm 12 Verify of ΣFa

Require: m, pk, (r, s), a bound β
Ensure: {1,0}. accept, reject signature

1: c← HashToPoint(r ‖m,q,n)
2: c − s2h mod q

3: if ‖(s1, s2)‖ ≤ β then
4: return 1
5: end if
6: return 0

Figure 2.6. Falcon Signature Algorithm. Source: [73]. HashToPoint is an
extendable output function defined for any q ≤ 216. The ffSampling function
uses fast Fourier sampling to adaptively apply a randomized rounding on the
coefficients of t using information stored in the FALCON tree T . The FFT
function is a fast Fourier transform function with the invFFT function defined
as its inverse. The Compress function efficiently compresses polynomials into
a concatenated bit string.

23

2.3.4 Multivariate
Drawing from algebraic geometry, this family of problems is related to solving multivari-
ate quadratic equations over finite fields [71]. Otherwise known as the MQ problem, the
associated decision problem is known to be NP-complete [76] and given sufficient random-
ness, it is believed to be intractable [77], [78]. No known algorithm, quantum or otherwise,
exists that can solve the MQ problem in polynomial-time. This makes it ideal for several
applications in cryptography to include asymmetric public key cryptosystems [79], [80].
The MQ problem is based on solving a system of m quadratic equations with n variables
in polynomial time and relies on m ≈ n. If the ratio is not maintained, the MQ problem is
solvable in polynomial time [49], [71].

Rainbow
The Rainbow signature scheme [33] is a multi-layer Oil-Vinegar system that modifies and
extends the original unbalanced Oil and Vinegar scheme [81]. The Oil and Vinegar scheme
uses the idea that a system of quadratic equations over a finite field can be easily solved if they
have an certain structure with “oil” and “vinegar” variables that only mix in predetermined
way [33], [82]. Rainbow is specifically designed for increased efficiency, simplicity, and
shorter signature sizes. In order to accomplish this, Rainbow has significantly larger public
and private keys. Using a transformation [83] to include a randomized 128-bit salt, Rainbow
achieves EUF-CMA security in the ROM. Figures 2.7 offers a basic overview of both the
Sign and Verify operations, respectively.

24

Algorithm 13 Sign of ΣRa

Require: m, sk

Ensure: sigRa = z,

1: h← H(m)

2: x ← InvS · (h − cS)

3: y ← InvF(F , x)
4: z ← InvT · (y − cT)

5: return z

Algorithm 14 Verify of ΣRa

Require: m, z

Ensure: {1,0}. accept, reject signature

1: h← H(d)

2: h′← P(z)

3: if h′ == h then
4: return 1
5: end if
6: return 0

Figure 2.7. Rainbow Signature Algorithm. Source: [33]. The InvS and InvT
functions invert the affline maps S and T . The InvF function inverts the
quadratic central map F .

GeMSS
GeMSS [84] is a multivariate-based, PQ signature scheme built around a variant of the
Hidden Field Equations (HFE) cryptosystem. Also known as the Great Multivariate Short
Signature, GeMSS uses minus and vinegar modifiers (e.g., HFEv-) and is considered a faster
variant to another multivariate signature scheme: QUARTZ [85]. GeMSS is considered
EUF-CMA secure under the ROM. The advantages of this scheme include its well-studied
HFE lineage, fast verification times, and the shortest signatures of all of the NIST PQ
candidates. Figure 2.8 describes both the GeMSS Sign and Verify operations.

25

Algorithm 15 Sign of ΣGe

Require: m, sk

Ensure: sigGe = (Snb_ite,Xnb_ite, ...,X1)

where nb_ite is the number of iterations.

1: h← H(m)

2: S0 ← 0 ∈ Fn2
3: for i from 1 to nb_ite do
4: Di ← first n bits of h

5: (Si,Xi) ← GeMSS.Invp(Di ⊕ Si−1)

6: h← H(h)

7: end for
8: return (Snb_ite,Xnb_ite, ...,X1)

Algorithm 16 Verify of ΣGe

Require: m, (Snb_ite,Xnb_ite, ...,X1)
Ensure: {1,0}. accept, reject signature

1: h← H(m)

2: for i from 1 to nb_ite do
3: Di ← first n bits of h

4: h← H(h)

5: end for
6: for i from nb_ite − 1...0 do
7: Si ← p(Si+1,Xi+1) ⊕ Di+1

8: end for
9: if S0 = 0 then
10: return 1
11: end if
12: return 0

Figure 2.8. GeMSS Signature Algorithm. Source: [84].

MQDSS
MQDSS [49] is a PQ signature scheme that relies directly on the MQ problem and has
been proven EUF-CMA secure in the ROM. At its core, the MQDSS scheme is based on
applying the FS transform to the five-pass SSH identification scheme [77]. MQDSS has
smaller key sizes compared to other MQ schemes and is naturally parallelizable; however,
this comes at the cost of significantly larger signature sizes. Figure 2.8 depicts a high-level
view of MQDSS’s Sign and Verify operations.

26

Algorithm 17 Sign of ΣMQ

Require: m, sk

Ensure: sigMQ = (R, σ0, σ1, σ2),

1: SF,Ss,Sρ,Srte ← PRGsk(sk)

2: F ← XOFF (SF)

3: s← PRGs(Ss)

4: pk B (SF,F(s))

5: R← H(sk ‖m)

6: D← H(pk ‖R‖m)

7: ρ(1)0 , ..., ρ
(r)
0 , ρ

(1)
1 , ..., ρ

(r)
1 ← PRGρ(Sρ,D)

8: r (1)0 , ...,r (r)0 , t(1)0 , ..., t(r)0 , e(1)0 , ..., e(r)0 ← PRGrte(Srte,D)

9: for j ∈ {1, ...,r} do
10: r (j)1 ← s − r (j)0
11: c(j)0 ← Com0(ρ

(j)
0 ,r (j)0 ,G(t(j)0 , e(j)0)

12: c(j)1 ← Com1(ρ
(j)
1 ,r (j)1 ,G(t(j)0 ,r (j)1 + e(j)0)

13: com(j) B (c(j)0 , c(j)1)

14: end for
15: σ0 ← H(com(1)‖com(2)‖com(3))
16: ch1 ← H1(D, σ0)

17: Parse ch1 as ch1 = (α
(1), α(2), ..., α(r)), α(j) ∈ Fq

18: for j ∈ {1, ...,r} do
19: t(j)1 ← α(j)r (j)0 − t(j)0 , e(j)1 ← α(j)F(r (j)0) − e(j)0
20: resp(j)1 B (t

(j)
1 , e(j)1)

21: end for
22: σ1 ← (resp(1)1 ‖resp(2)1 ‖...‖resp(r)1)

23: ch2 ← H2(D, σ0,ch1, σ1)

24: Parse ch2 as ch2 = (b(1), b(2), ..., b(r)), b(j) ∈ {0,1}
25: for j ∈ {1, ...,r} do
26: resp(j)2 ← r (j)

b(j)

27: end for
28: σ2 ← (resp(1)2 ‖resp(2)2 ‖...‖resp(r)2 ‖c

(1)
1−b(1) ‖c

(2)
1−b(2))‖...‖c

(r)

1−b(r) ‖ρ
(1)
b(1)
‖...‖ρ

(r)

b(r)

29: return (R, σ0, σ1, σ2)

27

Algorithm 18 Verify of ΣMQ

Require: (m, pk, σ)
Ensure: {1,0}. accept, reject signature

1: F ← XOFF (SF)
2: D← H(pk ‖R‖m)
3: ch1 ← H1(D, σ0)

4: Parse ch1 as ch1 = (α
(1), α(2), ..., α(r)), α(j) ∈ Fq

5: ch2 ← H2(D, σ0,ch1, σ1)

6: Parse ch2 as ch2 = (b(1), b(2), ..., b(r)), b(j) ∈ {0,1}
7: Parse σ1 as σ1 = (resp(1)1 ‖resp(2)1 ‖...‖resp(r)1)

8: Parse σ2 as σ2 = (resp(1)2 ‖resp(2)2 ‖...‖resp(r)2 ‖c
(1)
1−b(1) ‖c

(2)
1−b(2))‖...

‖c(r)1−b(r) ‖ρ
(1)
b(1)
‖...‖ρ

(r)

b(r)

9: for j ∈ {1, ...,r} do
10: Parse resp(j)1 as resp(j)1 = (t

(j)
1 , e(j)1)

11: if b(j) == 0 then
12: r (j)0 = resp(j)2
13: c(j)0 ← Com0(ρ

(j)
0 ,r (j)0 , α(j)r (j)0 − t(j)1 , α(j)F(r (j)0) − e(j)1)

14: else
15: r (j)1 = resp(j)2
16: c(j)1 ← Com1(ρ

(j)
1 ,r (j)1 , α(j)(v − F(r (j)1)) − G(t(j)1 ,r (j)1 + e(j)1)

17: end if
18: com(j) B (c(j)0 ,c

(j)
1)

19: end for
20: σ′0 ← H(com(1)‖com(2)‖...‖com(r))
21: if σ′0 == σ0 then
22: return 1
23: end if
24: return 0

Figure 2.8. MQDSS Signature Algorithm. Source: [49].

28

CHAPTER 3:
Hybrid Signature Schemes

From a broad perspective, hybrid signature schemes construct a single signature scheme
from two or more component digital signature algorithms that are applied to a common
message. The resulting signature can be constructed using any number of techniques as long
as the security notions provided by the component algorithms are still valid during both the
signing and verification phases. This allows a hybrid signature scheme to achieve at least the
same level of security as the verified component algorithms. There are multiple techniques
that can be applied to create a hybrid scheme with each achieving differing levels of
security. For example, simply concatenating the output of two component signatures meets
the above hybrid scheme definition. This approach requires the successful verification of
both signatures to achieve the benefits of using a hybrid scheme, but maintains a level of
simplicity and backwards compatibility. As long as the verifier recognizes at least one of the
component algorithms, signature verification still occurs albeit without the security benefits
of the second signature algorithm.

The ability to guarantee that the security of a hybrid scheme is at least as strong as that
of its component algorithms offers a solution to maintaining uninterrupted cryptographic
security during the PQ transition. With the current disparity in understanding between
classical and PQ signature schemes, system engineers, developers, etc. may be hesitant to
convert legacy cryptosystems to use PQ signature schemes. These newer schemes represent
an increase in complexity which, in turn, increases the likelihood of software vulnerabilities
during implementation. Additionally, new attacks against a PQ algorithm may appear that
jeopardizes its security. By combining a newer signature algorithm with one supported by
the existing system, developers can “hedge their bets” without sacrificing overall security.

Developers that desire to offload risk associated with adopting relatively new PQ signature
algorithms need to examine and understand not only the security notions and parameters of
the component signatures, but also the effects hybridization may impose. Hybrid signature
schemes can directly impact the security proofs and guarantees of the component algorithms,
thus requiring a new proof before they can be implemented securely. Additionally, it is
difficult to equate the overall security level between algorithms based on different hardness

29

problems. This can be further complicated by the differences between classical and post-
quantum models and requires caution by anyone implementing a new signature scheme.

With this in mind, the value of hybrid signature schemes also extends beyond the PQ transi-
tion. By their nature, hybrid schemes provide developers with flexibility in deciding which
component algorithms to combine. This can be valuable in situations where a developer is
required to use a standardized digital signature algorithm, but does not trust the algorithm
itself or its implementation. For example, specific requirements for cryptographic modules,
detailed in FIPS 140 [86], must be met before they can be used by any entity within the
USG under federal law. These cryptographic modules include any hardware or software
implementations that use digital signatures. FIPS 140 specifically states all cryptographic
modules “shall employ approved cryptographic algorithms.” [86]. If a developer does not
trust the approved signature algorithms for their application, they can use a hybrid scheme
where one component signature is approved and the other is of their choosing. NIST only
requires that one of the component signatures be approved under FIPS 140 in a hybrid
scheme and does not offer any specific guidance for hybrid signature modes [9]. This effec-
tively leaves the decision to developers to implement efficient and secure hybrid modes that
are compatible with other cryptosystems.

This chapter seeks to aid early adopters by informally defining the security notions unique to
hybrid signature schemes and providing a high-level overview of various ways component
signature algorithms can be combined to achieve hybridization. For the sake of clarity and
efficiency, all considered hybrid signature schemes are composed of only two component
signature algorithms; however, this is an arbitrary limit.

3.1 Hybrid Security Notions
Hybrid signature schemes introduce two unique security properties: non-separability and
hybrid verification. Both examine the relationship between the output produced by the com-
ponent algorithms and the final hybrid signature. This section provides informal definitions
for both non-separability and hybrid verification and discusses their importance in regard
to hybrid signature schemes.

Non-Separability [15]. It is difficult for an attacker to take a hybrid signature and turn it
into a signature that the verifier accepts as a valid single, component algorithm signature.

30

As defined, non-separability examines whether or not it is possible to isolate the components
of a hybrid signature in a way that it verifies correctly for one of the underlying signature
schemes without indication of the other scheme’s existence. At its core, non-separability
implies that it is impossible to verify a component algorithm’s signature without also
acknowledging that the other component algorithm exists.

Within a hybrid scheme, non-separability can apply to either component algorithm, both
component algorithms, or none of the component algorithms. Therefore, it is possible for
a hybrid scheme to achieve different types of separation. For example, simply signing a
common message twice is a valid hybrid scheme; however, it is completely separable if
nothing in the message (e.g, a custom header or field) indicates that it is part of a hybrid
scheme.Using the same example, if themessage being signed by both component algorithms
contains a field that indicates the hybrid scheme, both component algorithms achieve non-
separability assuming that the “indicator” field is properly parsed and acknowledged. Finally,
using the same example, if the first component algorithm signs the original message and
the second signs the original message and the field, only the second signature would be
non-separable.

As shown by the last example, the placement of the field (e.g., hybrid indicator) also affects
which component algorithms achieve non-separability. In general, there are two types of
non-separability: complete and partial. If the indicator field is part of the message that both
component signatures sign, the signature scheme achieves complete non-separability. If the
indicator is only signed by one of the two signatures, then the scheme only achieves partial
non-separability.

Non-separability is an important security property for hybrid signature schemes because
it prevents an attacker from simply downgrading from a hybrid scheme to any one of the
scheme’s component algorithms without the knowledge of the receiving party. For example,
if a message without any indicator of a hybrid scheme is signed twice, an adversary could
split the message into two parts and only forward one to the recipient. In this scenario,
the recipient has no way of knowing that the original hybrid scheme existed even after
verifying the received signature. Using the same scenario, if the signed message contains a
hybrid indicator field, the recipient would know that the single signature received from the
attacker is incomplete. Partial non-separability is subject to the same style of downgrade

31

attack; however, the adversary is limited to using the separable signature and corresponding
component algorithm.

The content of the hybrid indicator field must also specifically list the component algorithms
that are being used in the scheme and be included with the original message as input to
both signature algorithms (e.g., complete non-separability). If both of these criteria are not
met, the hybrid scheme is vulnerable to more nuanced attacks. For example, imagine a
hybrid scheme that achieves complete non-separability by including a hybrid indicator with
the message that both component signature algorithms sign. If the indicator only describes
that a hybrid scheme is used (e.g., a Boolean value) and does not specify the component
algorithms, an adversary can replace either or both of the component algorithms in a hybrid
scheme with one of their choosing that may be registered for the signer but compromised.
Upon receiving the signed message, the recipient would be unaware of the tampering,
because both signatures would still verify successfully, thus violating the original intent of
the hybrid scheme.

Non-separability alone is insufficient to prevent every type of attack against a hybrid sig-
nature scheme. A completely non-separable hybrid scheme that includes an indicator that
specifically lists the component algorithms is still vulnerable to a downgrade attack if the
verifier accepts anything other than the specific two signature algorithms listed in the field.
This would be possible in situations where two parties negotiate which signature algorithms
they will accept prior to sending the signed message. If an adversary is able to change the
accepted signature algorithm to either of the component algorithms, the receiver may choose
to ignore the hybrid indicator even if it is part of the signed message. These assumptions
are beyond those typically captured by digital signature security experiments as they are
contingent on verifier behavior. This leads to the following property of hybrid verification.

Hybrid Verification [23]. Given a signature from a hybrid scheme, it should be infeasible
to verify one or more component signatures without verifying all component signatures.

The second hybrid security property is centered around verifiability. Depending on the
design of a hybrid scheme, it may or may not be possible to verify the signature of only one
of the underlying algorithms. Hybrid verification establishes that verifying one component
signature requires the verification of all signatures. This prevents a verifier from selectively
choosing a single component signature for verification and guarantees to the signer that all

32

the individual security notions of a hybrid scheme are achieved upon successful validation.
Hybrid verification also implies that the signature scheme is non-separable; not only does
verification of a received signature ensure that the receiver has indication that a hybrid
algorithm was used, but also that the receiver has verified all components.

Not all hybrid signature schemes achieve hybrid verification. In general, this security prop-
erty necessitates the intermingling of the internal elements of two or more component
algorithms in a way that meets the goal of hybrid verification without simultaneously negat-
ing the security of the component algorithms. Any changes to the function of a component
algorithm requires reassessing the original security proof to ensure that unintentional vul-
nerabilities are not introduced. As such, hybrid verification straddles the line between being
a security notion, in and of itself, and being its own unique scheme. It is also important
to note that both non-separability and hybrid verification require an honest verifier. While
hybrid verification does guarantee that verifying the hybrid signature requires successful
completion of all component algorithms, it does not prevent a dishonest verifier from always
returning success regardless of input.

3.2 Hybridization Techniques
There are several methods of combining component signature algorithms into a hybrid
scheme. This section introduces two of the most widely observed methods (e.g., concate-
nation and nesting) and examines the security properties each achieve.

3.2.1 Concatenation
Concatenation is the simplest form of instituting a hybrid signature scheme. It requires the
signer to independently sign a message using two component algorithms and then combine
the results into one signature. Assuming the verifier has access to the corresponding public
keys, theymust also be able to correctly separate the concatenated signature before verifying
them independently. Figure 3.1 depicts a naive hybrid concatenation scheme.

33

Algorithm 19 Signh of Σh = Concatenation
Require: skA, skB, m

1: σA← SignA(skA,m)

2: σB ← SignB(skB,m)

3: return (σA, σB)

Algorithm 20 Verify of ΣDi

Require: pkA, pkB,m, (σA, σB)

Ensure: {1,0}. accept, reject signature

1: σA, σB ← (σA, σB)

2: if VerifyA(pkA,m, σA) ∧VerifyB(pkB,m, σB)

then
3: return 1
4: end if
5: return 0

Figure 3.1. Naive Hybrid Concatenation Scheme

The advantage of concatenation is its ease of implementation. If a cryptographic library
supports the component algorithms, then it merely is an issue of correctly separating the
hybrid signature. Furthermore, since the component signature algorithms are left untouched,
this scheme also receives the security properties achieved by its components assuming the
component algorithms are correctly implemented and that both signatures are verified. So,
if either σA or σB are unforgeable (e.g., EUF-CMA secure), the resulting hybrid signature
is also unforgeable.

One of the downsides to concatenation is that it does not achieve non-separability unless the
message is modified to include a hybrid indicator. This leaves the hybrid scheme vulnerable
to a downgrade attack because an attacker can produce a valid signature for either scheme,
σA or σB, by simply extracting one and excluding the other from the end product. This
allows an adversary to attack the entire hybrid scheme since it can successfully produce a
valid signature for one of the component algorithms without the recipient being aware of
the original hybrid signature. The attack can further be amplified if the chosen algorithm
is susceptible to a separate vulnerability that affects unforgeability, data integrity, or non-
repudiation. Even by adding a hybrid indicator to the message, the concatenation scheme

34

still does not achieve hybrid verification. In the event of a naïve-but-honest verifier that only
validates a single algorithm, the signer has no guarantee which signature will be verified.
Therefore, the hybrid scheme, as a whole, does not achieve the security guarantees of both
component algorithms.

3.2.2 Nesting
Nesting is another method of combining two component signature algorithms into a hybrid
scheme. In its simplest form, this method requires that the second algorithm signs the output
of the first algorithm (termed weak nesting). In weak nesting, the outer algorithm thus does
not sign the message itself but only the inner signature (e.g., σA). While it is not possible to
verify the outer signature without first verifying the inner signature, this technique does not
bind the outer signature to the original message. As such, weak nesting critically depends
on the unforgeability of only the inner signature algorithm (e.g., ΣA). and not the outer
signature algorithm (e.g., ΣB).

The imbalance in the weakly nested scheme can be corrected if the outer algorithm ΣB signs
both the message and σA (e.g. strong nesting). This technique produces a scheme where
if either SignA or SignB is unforgeable, then the hybrid scheme is also unforgeable [15].
Figures 3.2 and 3.3 depicts a weakly nested hybrid scheme and strongly nested hybrid
scheme, respectively.

Algorithm 21 Signh of Σh =Weak Nesting
Require: skA, skB,m

1: σA← SignA(skA,m)

2: σB ← SignB(skB, σA)

3: return (σA, σB)

Algorithm 22 Verifyh of Σh =Weak Nesting
Require: pkA, pkB,m, (σA, σB)

Ensure: {1,0}. accept, reject signature

1: b2 ← VerifyB(pkB,m, σA)

2: b1 ← VerifyA(pkA, σA, σB)

3: if b1 ∧ b2 = 1 then
4: return 1
5: end if
6: return 0

Figure 3.2. Weakly Nested Hybrid Scheme. Adapted from [15].

35

Algorithm 23 Signh of Σh = Strong Nesting
Require: skA, skB,m

1: σA← SignA(skA,m)

2: σB ← SignB(skB, (m, σA))

3: return (σA, σB)

Algorithm 24 Verifyh of Σh =

Strong Nesting
Require: pkA, pkB,m, (σA, σB)

Ensure: {1,0}. accept, reject signature

1: b1 ← σA← SignA(skA,m)

2: b2 ← σB ← SignB(skB, (m, σA))

3: if b1 ∧ b2 = 1 then
4: return 1
5: end if
6: return 0

Figure 3.3. Strongly Nested Hybrid Scheme. Adapted from [15].

Nesting only partially achieves non-separability. In both weak and strong nesting, the inner
signature σA is not connected to the outer signature σB. In the same vein as the attack
against the concatenated hybrid scheme, an adversary is able to submit only σA and the
signed message to the verifier. Unless the message includes a hybrid indicator, the verifier
may successfully validate only SignA without knowledge of SignB. Conversely, under both
schemes, if the verifier validates σB, they are implicitly aware that σA exists, thus achieving
partial non-separability.

Neither form of nesting meets the definition of hybrid verification. It will always be possible
for a verifier to only validate the inner signature without verifying the outer signature.
While this limits the assumptions a signer can make in an honest setting, nesting allows for
backward compatibility with legacy systems. If the inner signature scheme is supported,
but the outer signature scheme is not, the system can still achieve the security provided by
the inner signature algorithm. This can be extremely useful when transitioning to newer
signature algorithms without requiring broad “day one” support.

36

3.3 True Hybrid Schemes
True hybrid schemes are an alternative to traditional hybridization techniques. Instead
of combining two signature algorithms through concatenation or nesting, these schemes
intertwine the component algorithms into a single scheme. True hybrid schemes can either
explicitly state the component algorithms or use a generalized design where one or more
of the component algorithms capture a category of schemes. In the latter design, the
selected component algorithms must meet specific requirements dependent on the true
hybrid scheme. Figure 3.4 shows the relationship between hybrid schemes for the purposes
of this work.

Figure 3.4. Terminology Relationship between Hybrid Signature Schemes

A “sub–class” of true hybrid schemes are FS–based generalized hybrid schemes. These
schemes use amodular design for combining the component algorithms into a single scheme
where at least one component algorithmuses the FS transform. In Section 2.1.2,we identified
that the FS transform is commonly used in the creation of digital signature schemes. Several
of the PQ candidates are internally designed on this method, thereby providing a convenient
commonality for generalization. To be compatible with the FS–based true hybrid designs,
component algorithms are required to use the FS transform to create a challenge c derived
from the output of a hash function applied to a commitment ω. Table 3.1 lists the PQ
signature algorithms considered in this work that meet this requirement.

There are many benefits to adopting a generalized true hybrid design. For example, gen-
eralization reduces the lag between the discovery of a new attack and the revision to an
existing standard. One of the limiting factors opposing widespread adoption of PQ signature

37

Table 3.1. PQ Signature Algorithms with FS Compatibility

Signature Algorithm Type

CRYSTALS-DILITHIUM Lattice
qTESLA Lattice
MQDSS Multivariate

schemes is their increased complexity. Not all PQ signature schemes are as well-studied
as their classical counterparts. If an efficient attack is found after standardization, NIST
would need to rapidly transition to another candidate or, if possible, publish an updated
standard for the broken signature scheme. While generalization does not solve this issue,
it does protect current technology by creating an additional layer of defense. If only the
generalized true hybrid scheme is standardized instead of explicitly specifying different
algorithm combinations, implementations will be able to modularly swap a component al-
gorithm without waiting for a revision to the original standard. As long as one component
signature algorithm holds, then the security that it achieves is guaranteed. The generalized
true hybrid model also works well with current NIST policy. In response to questions from
the cryptographic community, NIST has publicly stated that they will accommodate the use
of “dual signatures in FIPS 140 validation when suitably combined with a NIST-approved
scheme” [9].

Generalized and non-generalized true hybrid schemes do come with obvious disadvantages.
Unlike nesting and concatenation, the original component signature schemes must be modi-
fied in order to expose the necessary internal components. As a result, these schemes blur the
line between being a composition of two existing signature schemes and being an entirely
new one. Thus, depending on the modification, the composability of the entire scheme may
need to be examined before the overall security can be assumed. In this work, comparison

38

of feasibility and efficiency of hybrid signature schemes primarily focuses on FS-based
true hybrid schemes as they satisfy both complete non-separability and hybrid verification.
Additionally, by not specifying specific component algorithms, a wide selection of signature
algorithms could be cross-compared within one hybrid scheme. This allows for the explo-
ration of any hidden idiosyncrasies between different combinations while simultaneously
providing a robust baseline derived from both classic and PQ signature algorithms.

The following FS–based (i.e. using a drop-in FS algorithm selection) generalized true hybrid
designs are presented for context in understanding implementation decisions in Chapter 4
and interpreting results in Chapters 6 and 7. Each of these designs are based on unpublished
communications [23] and their security assessment is considered out of scope in this work.

Figures 3.5–3.10 depict FS–based true hybrid signature schemes that require at least one
of the component algorithms to use the FS transform in a compatible way. Each of these
generalized hybrid schemes specify the non-challenge portion of the FS signature as z and
use the Rec function to reconcile ω during the verification operation. The message digest
is annotated as D(m). Three separate FS-DSA schemes are included in Figures 3.8–3.10.
Each of these schemes use a distinct approach and are compatible with both the DSA and
ECDSA signature algorithms. Figure 3.7 depicts a true hybrid scheme that is specific to the
Falcon and RSA signature schemes specified in Section 2.3. As such, it is an example of a
non-generalized true hybrid signature scheme.

3.4 Summary
Hybrid digital signature schemes provide a novel solution to many problems to include
facilitating the transition from one signature algorithm to another, offloading the risk of
adopting newer signature algorithms, and providing flexibility in the design and develop-
ment of cryptosystems that use digital signatures. This chapter covered an overview of
hybrid digital signature scheme goals, including two security properties unique to hybrid
signature schemes – non-separability and hybrid verification in Section 3.1 – and the current
hybridization techniques of concatenation and nesting (Section 3.2). Finally, Section 3.3
covered five true hybrid schemes which are the primary methods of hybridization used for
feasibility and efficiency comparison in this work.

39

Algorithm 25 Signh of Σh = FS-FS
Require: m, sk
Ensure: Signh-H = (c, z1, z2),

where sig1 = (c, z1), sig2 = (c, z2), and
H is a hash function.

1: rand1 ←$ Rand
2: rand2 ←$ Rand
3: ω1 ← g1(sk1,rand1)

4: ω2 ← g2(sk2,rand2)

5: c← H((ω1,ω2),D(m))
6: z1 ← f1(c,rand1, sk1)

7: z2 ← f2(c,rand2, sk2)

8: return (c, z1, z2)

Algorithm 26 Verify of Σh = FS-FS
Require: m, (c, z1, z2), pk
Ensure: {1,0}. accept, reject signature

1: ω1 ← Rec(c, z1, pk1)

2: ω2 ← Rec(c, z2, pk2)

3: b1 ← verify1(pk1; c, z1,D(m))
4: b2 ← verify2(pk2; c, z2,D(m))
5: if b1 ∧ b2 ∧ (c = H(ω1,ω2,D(m))) then
6: return 1
7: end if
8: return 0

Figure 3.5. FS-FS Sign and Verify Algorithms. Source: [23].

Algorithm 27 Signh of Σh = FS-RSA
Require: m, sk
Ensure: Signh-H = (z, s),

where sig1 = z, sig2 = s, and H is a
hash function.

1: rand ←$ Rand
2: ω← g(sk1,rand)
3: c← H(ω,D(m))
4: z ← f (c,rand1, sk1)

5: s = (c‖pad)sk2 mod n
6: return (z, s)

Algorithm 28 Verify of Σh = FS-RSA
Require: m, (z, s), pk
Ensure: {1,0}. accept, reject signature

1: (c‖pad) ← (s)pk2 mod n
2: ω← Rec(c, z, pk1)

3: Check verify1(pk1; c, z,D(m))
4: if c = H(ω,D(m)) then
5: return 1
6: end if
7: return 0

Figure 3.6. FS-RSA Sign and Verify Algorithms. Source: [23].

40

Algorithm 29 Signh of Σh = Falcon-RSA
Require: m, sk
Ensure: Signh-H = (z2, z3, s),

where sig1 = (z2, z3), sig2 = s, and H
is a hash function.

1: r ←$ Rand
2: c← H(r ‖m)
3: (z1, z2) ← f1(c, sk) such that z1 + z2h =

c mod q
4: s = (c‖pad)sk2 mod n
5: z3 ← z1 ⊕ r
6: return (z2, z3, s)

Algorithm 30 Verify of Σh = Falcon-RSA
Require: m, (z2, z3, s), pk
Ensure: {1,0}. accept, reject signature

1: (c‖pad) ← (s)pk2 mod n
2: z1 ← c − z2h mod q
3: r ← z1 ⊕ z3
4: if ‖(z1, z2)‖ ≤ β ∧ c = H(r ‖m) then
5: return 1
6: end if
7: return 0

Figure 3.7. Falcon-RSA Sign and Verify Algorithms. Source: [23].

Algorithm 31 Signh of Σh = FS-DSA
Require: m, sk
Ensure: Signh-H = (z, c,r, s),

where sig1 = (z, c), sig2 = (r, s), and
H is a hash function.

1: rand ←$ Rand
2: k ←$ Z

∗
q

3: r ← F(gk)
4: ω← g(sk1,rand)
5: s← k−1(H(ω,D(m)) + (sk2)r) mod q
6: c← H(ω, h(r, s) ⊕ h(m))
7: z1 ← f1(c,rand, sk1)

8: return (z, c,r, s)

Algorithm 32 Verify of Σh = FS-DSA
Require: m, (z, c,r, s), pk
Ensure: {1,0}. accept, reject signature

1: ω← Rec(c, z, pk1)

2: b← verify1(pk1; c, z, h(r, s) ⊕ h(m))
3: if (b = 1)∧(r = gH(ω,D(m))s−1

(pk2)
rs−1) then

4: return 1
5: end if
6: return 0

Figure 3.8. FS-DSA #1 Sign and Verify Algorithms. Source: [23].

41

Algorithm 33 Signh of Σh = FS-DSA
Require: m, sk
Ensure: Signh-H = (c, z,r, s),

where sig1 = (c, z), sig2 = (r, s), and
H is a hash function.

1: rand ←$ Rand
2: k ←$ Z

∗
q

3: ω← g(sk1,rand)
4: r ← F(gk)
5: c← H((ω,r),D(m))
6: c∗ ← H(ω,D(m))
7: z ← f (c,rand, sk1)

8: s← k−1(c ⊕ c∗ + (sk2)r) mod q
9: return (c, z,r, s)

Algorithm 34 Verify of Σh = FS-DSA
Require: m, (c, z,r, s), pk
Ensure: {1,0}. accept, reject signature

1: ω← Rec(c, z, pk1)

2: c∗ ← H(ω,D(m))
3: b← verify(pk1; c, z,D(m))
4: if (b = 1) ∧ (r = g(H((ω,r),D(m))⊕c

∗)·s−1
·

pkr ·s
−1

2) then
5: return 1
6: end if
7: return 0

Figure 3.9. FS-DSA #2 Sign and Verify Algorithms. Source: [23].

Algorithm 35 Signh of Σh = FS-DSA
Require: m, sk
Ensure: Signh-H = (c, c′, z,r, s),

where sig1 = (c, z1), sig2 = (r, s), and
H is a hash function.

1: rand ←$ Rand
2: a←$ Z

∗
q

3: k ←$ Z
∗
q

4: ω← g(sk1,rand)
5: r ← F(gk)
6: c← H(ω,D(m))
7: z ← f (c,rand, sk1)

8: s← k−1(c + (sk2)r − a) mod q
9: c′← H(ω,gs

−1 ·a, s,D(m))
10: return (c, c′, z,r, s)

Algorithm 36 Verify of Σh = FS-DSA
Require: m, (c, c′, z,r, s), pk
Ensure: {1,0}. accept, reject signature

1: ω← Rec(c, z, pk1)

2: b← verify(pk1; c, z,D(m))
3: a′← r−1 · g(H(ω,D(m)))·s

−1
· pkr ·s

−1

2 mod q
4: if (b = 1) ∧ (c′ = H(ω,a′, s,D(m))) then
5: return 1
6: end if
7: return 0

Figure 3.10. FS-DSA #3 Sign and Verify Algorithms. Source: [23].

42

CHAPTER 4:
Methodology

This chapter details the methodology used to implement the true hybrid signature schemes
outlined in Section 3.3, using a selection of the component algorithms detailed in Section 2.3.
The goal is to create a repeatable process that can be applied to other signature algorithms
that are not covered in this work. As a result, the rationale behind design choices and the
process of determining which signature algorithms are compatible with the generalized
hybrid schemes are given in detail.

In addition to describing the methodology, this chapter also highlights several challenges,
such as the differing hash strengths between component algorithms and the increased
computational overhead of hybrid schemes that emerged during implementation.

4.1 Approach
The true hybrid schemes presented in Section 3.3 require that component algorithms meet
certain conditions before they can be successfully integrated. If both components are directly
specified like in Falcon–RSA (Fig. 3.7) or only a single component is specified like RSA in
FS–RSA (Fig. 3.6), the requirements for the hybrid scheme are explicit. When unspecified
like in FS–FS (Fig. 3.5) or the FS in FS–DSA (Fig. 3.8), the true hybrid scheme requires
that the component algorithm uses the FS transform in a specific way. Thus, the first step in
implementing the true hybrid schemes is to identify potential signature algorithm candidates
that meet this requirement.

Identifying FS compatible signature algorithms is non-trivial without detailed knowledge of
how the algorithm functions. Several signature algorithms use the FS transform; however,
it is unreliable to assume compatibility with the true hybrid schemes based solely on this.
From our experience implementing FS variants in this work, the component algorithm
requires a symmetry in the derivation of the challenge c during signing and the recreation
of the challenge based on critical values in the signature during verification. Thus, the
shared c used to create the signature must be present in some form in the signature. Any
transformative steps applied to c during signing must be reversible during verification using

43

only the signature, message, and public key. This symmetry is critical because c is used to
reconcile the original commitment ω value(s) during verification. For correctness, every
true hybrid scheme follows this symmetric pattern (i.e., the FS transform) to some degree.
Section 3.3 and Table 3.1 provide further detail and list the compatible signature algorithms
selected for this work, respectively.

Once the FS-compatible algorithms are identified, their original Sign and Verify operations
must be modified to work with the specified true hybrid scheme. This involves separating
both operations into sub-operations that yield the specific output needed to successfully
complete the hybrid scheme. These sub-operations are already inherent in any FS-based
component algorithm, so this separation is to account for and denote core aspects of the
component algorithms and does not in itself introduce a change.

For the hybrid scheme’s Sign operation, the component FS algorithm’s Sign operation [87]
is separated into an ω generation function and a confirm shared challenge function. The
templates for both are informally described in Figure 4.1. The ω generation function yields
the FS signature algorithm’s commitment ω while the confirm shared challenge function
takes the shared challenge c and generates the rest of the component algorithm’s signature
(i.e., z). The division between the ω generation function and the confirm shared challenge
function pivots around the creation of the shared challenge c, which may be affected by the
generalized hybrid approach. For example, in the FS–FS case, this c is the product of a hash
function that takes as input the ω value, the digest of the message m, and the ω equivalent of
the other component algorithm as input. This challenge is then used as input to the confirm
shared challenge function specific to the FS component algorithm.

Algorithm 37 GenOmegaFS

Require: sk

1: rand ←$ Rand
2: ω← g(sk,rand)
3: return (ω,rand)

Algorithm 38 ConfirmCFS

Require: c,rand, sk

1: z ← f (c,rand, sk)
2: return z

Figure 4.1. Generalized Template for Converting Original FS Sign Operation
into Sub-operations Required for True Hybrid Schemes

44

The shared challenge introduces a point of friction when integrating component algo-
rithms. First, the hash function between both signature algorithms may differ entirely (e.g.,
SHAKE128 vs. SHA256). Second, the majority of the PQ algorithms in Section 2.3 use a
SHA-3 hash function with extendable output which means the length of the challenge can
differ between algorithms even if the same hash function is used. These differences must be
reconciled for implementation. Table 4.1 lists the hash functions and challenge lengths for
each FS-based component algorithm implemented in this paper.

Similar to the component Sign operation, the FS algorithm’s Verify operation is separated
into a ω′ reconciliation function and a verify challenge function as depicted by the template
in Figure 4.2. The ω′ reconciliation function retrieves the original commitment ω from the
received signature and the public key. The verify challenge function represents the additional
steps that the FS-based component algorithm uses to verify that the signature is correct,
which is signified by a Boolean return value b.

It is important to note that Figure 4.2 only depicts the operations unique to verifying
a signature for a FS-based component algorithm and does not describe the additional
verification steps specific to the true hybrid scheme.

Algorithm 39 RecOmegaFS

Require: (c, z), pk

1: ω← Rec(pk; c, z)
2: return ω

Algorithm 40 VerifyCFS

Require: (c, z),m, pk

1: b← verify(pk; c, z,D(m))
2: return b

Figure 4.2. Generalized Template for Converting FS-Based Component Verify
Operation into Sub-operations Required for True Hybrid Schemes

Even with the provided template, other issues specific to a component algorithm can com-
plicate integration. To demonstrate this, Figures 4.3 and 4.4 illustrate applying this method-
ology to the Dilithium signature algorithm originally described in Figure 2.4. For security
and correctness, Dilithium uses rejection sampling to ensure that the final signature meets
certain criteria (see line 8 of Algorithm 43). Normally, this rejection loop would be interior
to the algorithm’s original Sign operation; however, the rejection loop is split between both
sub-operations within the true hybrid scheme. As a result, the rejection loop must be repli-
cated at a higher level so that any rejection in the signature increments the counter κ and

45

Algorithm 41 Partial SignFS = Dilithium
Require: m, sk

1: κ B 0
2: (z, h) B ⊥
3: while (z, h) = ⊥ do
4: (ω, µ) ← GenOmega(m, sk, κ)
5: Generate shared c.
6: (z, h) ← ConfirmC(c, µ, sk)
7: κ = κ + 1
8: end while
9: return (z, h, c)

Algorithm 42 GenOmegaFS = Dilithium
Require: m, sk, κ

1: A ∈ Rk×`
q B ExpandA(ρ)

2: µ ∈ {0,1}384 B CRH(tr ‖m)
3: ρ′ ∈ {0,1}384 B CRH(K ‖µ)
4: y ∈ S`

γ1−1
5: w B Ay
6: w1 B HighBits(w,2γ2)

7: return (w1, µ)

Algorithm 43 ConfirmCFS = Dilithium
Require: c1, µ, sk

1: c ∈ B60 B H(µ, c1)

2: z B y + cs1
3: (r1,r0) B Decomposeq(w − cs2,2γ2)

4: if (‖z‖∞ ≥ γ1 − β) ∨ (‖r0‖∞ ≥ γ2 − β) ∨ (r1 ,

w1) then
5: (z, h) B ⊥
6: else
7: h B MakeHintq(−ct0, w − cs2 + ct0,2γ2)

8: if (‖ct0‖∞ ≥ γ2) ∨ (# of 1’s in h is ≥ ω)
then

9: (z, h) B ⊥
10: end if
11: end if
12: return (z, h)

Figure 4.3. Example of Converted Dilithium FS Sign Operation for Use in FS-
based True Hybrid Schemes. Algorithm 41 represents the Dilithium-specific
portion of an FS-based hybrid scheme.

restarts the signing operation (see Algorithm 41). This is not captured by the generalized
template in Figure 4.1 as it is specific to the Dilithium signature algorithm and could be
potentially missed during implementation. Additionally, extracting the rejection loop as
shown can introduce additional computational overhead that is not present in the original
signature algorithm. For example, if the sub-operations are implemented as function calls
and the average number of rejection loop iterations is non-negligible, this will create a per-
formance disparity between the converted and original signature algorithm with the former
performing worse due to the increase in function calls.

46

Algorithm 44 RecOmegaFS = Dilithium
Require: m, (z, h, c), sk

1: A ∈ Rk×`
q B ExpandA(ρ)

2: µ ∈ {0,1}384 B CRH(ρ‖t1‖m)
3: w ′1 B UseHintq(h, Az − ct1 · 2d,2γ2)

4: return (w ′1, µ)

Algorithm 45 VerifyCFS = Dilithium
Require: µ,ω, (z, h, c)

1: if (‖z‖∞ < γ1 − β) ∧ (c = H(µ‖w ′1) ∧ (# of
1’s in h is ≤ ω) then

2: return 1
3: end if
4: return 0

Figure 4.4. Example of Converted Dilithium FS Verify Operation for Use in
FS-based Generalized Hybrid Schemes

The template also masks the implementation complexity by generalizing the input and
output of each sub-function. For instance, Dilithium requires several variables (e.g., µ, y)
that are defined in the ω generation function outside of those listed in the template. This
requires the calling function to allocate memory to store and pass critical variables between
both sub-operations and to securely de-allocate said memory once signing is completed.

4.2 Challenges
Throughout the adaptation process, we encountered several issues such as FS compatibility,
differences in hash strength, and increased computational overhead that affect the integration
of particular signature algorithms into the true hybrid schemes. Each required a solution
that not only addressed the issue, but also minimized the impact to the original, underlying
signature algorithms. The process of integration also exposes several critical variables and
inner functionality that can directly impact the correctness of the component algorithms.
Even a subtle,minor change at this level can invalidate the algorithm’s original security proof
and introduce unforeseen flaws and vulnerabilities. Therefore, for successful integration,
it is essential to fully understand not only how the algorithm works, but also how any
deviations or modifications impact the security of the original algorithm.

4.2.1 Fiat–Shamir Compatibility
As discussed in Section 4.1, FS compatibility refers to identifying whether or not a potential
component signature algorithm uses the standard version of the FS transform as specified
in Section 2.1.2. This is the first step in adapting a non-specified signature algorithm into

47

one of the true hybrid schemes. Once identified, the generalized templates in Figures 4.1
and 4.2 can be applied to a component algorithm. This transformative process does not
pose a significant issue for the majority of the true hybrid schemes where only a single
component algorithm is required to be FS-based. For these hybrid schemes, the shared
challenge c that is generated during the Sign operation is either based directly on the hash
of the commitment ω and the digest of the message D(m), or the hash of the same values
combined with additional elements of the other component algorithm. The challenge c

is then used in the same way in the confirm challenge function as in the component FS
signature algorithm’s Sign operation. This is beneficial for algorithms that apply custom
encoding/expansion functions to the challenge c to minimize signature size, like Dilithium
(see Algorithm 2.4), as it requires no additional changes to the component FS algorithm
beyond applying the generalized templates.

Unlike the other true hybrid schemes, the FS–FS hybrid scheme requires both component
algorithms to use the FS transform. During the Sign operation, both algorithms generate a
shared challenge c based on their respective ω values and the digest of the message. The
challenge c is then included unmodified in the final signature. This implies that, during
verification, the FS algorithms are able to reconcile their respective ω′ values based on
only the hybrid signature and the pk. The ω′ values are then combined with a digest of the
original message to form c′. Of the tested signature algorithms, this is possible for both
MQDSS and qTESLA; however, Dilithium does not use its original challenge c during
verification. Instead, a “hashing to a ball” function is applied during the Sign operation that
takesω as input and outputs an array B60 . This array is then sent as part of the signature and
is used in conjunction with other included information (e.g., h) to compute the high order
bits needed for verification. While correct within the Dilithium algorithm, it is impossible
to derive the original ω value needed for successful verification in the FS–FS scheme from
this output alone.

The product of the “hashing to the ball” function, the encoded challenge c, creates an
asymmetry betweenDilithium and the other FS-based schemes that complicates integration.
It is possible to treat the encoded challenge, c, as part of the rest of the signature, z, and
pass it in tandem with the original challenge; however, this violates the hybrid verification
property. The encoded challenge c used to reconcile ω during verification is not the same
challenge used by the other component algorithm. Therefore, the final verification step

48

in the FS–FS signature scheme where the generated challenge c is compared to the hash
of both reconciled ω values and the digest of the message would only apply to the other
signature algorithm and not both, as required. This problem can be avoided by only sending
the non-encoded challenge, c, in the signature and applying the “hash to the ball” function
to this value during the ω′ reconciliation function. This solution does change the original
Dilithium verification procedure and affects efficiency by adding additional operations;
however, it allows other FS compatible signature algorithms to be combined with Dilithium
in the FS–FS true hybrid scheme.

4.2.2 Differing Hash Strengths
Another common issue encountered during implementation is differing hash strengths. Each
signature algorithm submitted to the Post-Quantum Cryptography Standardization project
defines recommended security parameters for each NIST security level as part of their
specification. These parameters identify the hash function used as well as the size of its
output, if extendable. When an algorithm is incorporated into a true hybrid scheme like FS–
FS, there may be a mismatch between these parameters even with matching NIST security
levels. Table 4.1 provides an overview of the hash functions used by each FS-compatible
PQ candidate.

Table 4.1. Hash Strengths of FS-Compatible Schemes

Name Parameters Hash Function |c | (bits)

CRYSTALS–DILITHIUM 1024x768, 1536x1280 SHAKE256 1088
qTESLA p–I SHAKE128 256
qTESLA p–III SHAKE256 384
MQDSS 31–48 SHAKE256 256
MQDSS 31–64 SHAKE256 384

In this work, the strongest hash function between the two component algorithms is used to
generate the challenge within all true hybrid schemes. This involves using newer hash func-
tions like SHAKE with classic algorithms like DSA and RSA. Currently, no SHA-3 XOF
(i.e., SHAKE128 or SHAKE256) is approved for use with these signature algorithms; how-
ever, past efforts by the Limited Additional Mechanisms for PKIX and SMIME (LAMPS)
working group of the Internet Engineering Task Force (IETF) have sought to create new

49

algorithm identifiers to promote use of the SHAKE function family with both RSA and
ECDSA [88]. For USG systems, NIST only permits hash algorithms that are specified in
FIPS 180, the Secure Hash Standard, to be used to create message digests for approved dig-
ital signature algorithms [24]. Currently, only fixed length SHA-3 algorithms, SHA3–224,
SHA3–256, SHA3–384 and SHA-512, are approved as alternative hash functions; however,
guidance for "using the XOFs will be provided in the future" [89].

Component signature algorithms may also apply custom hash algorithms to create the
challenge like line 10 in qTESLA’s Sign operation or line 9 in Dilithium’s Sign operation.
When possible, this work defaulted to both the stronger hash algorithm and the longer
challenge length between both component algorithms to generate the shared challenge. The
output of this (e.g., c) was then used as input for any custom hash functions or encoding in
order to preserve the correctness of the component algorithm while minimizing changes.
This is only required for the FS–FS true hybrid scheme where more than one FS-compatible
signature algorithm is combined. As shown in Table 4.1, no two FS-compatible signature
algorithms use both the same c length and hash algorithm.

4.2.3 Overhead
Every change that is made to a component signature algorithm during implementation
directly impacts the performance of both the algorithm and the hybrid scheme. Often,
this change is linear. For example, replacing a component algorithm’s original challenge c

generation function (i.e., hash function) with one to generate the hybrid scheme’s shared
challenge c will uniformly increase the required computational load if the challenge func-
tion is of greater strength as detailed in Section 4.2.2. Another example is in the additional
verification steps required for some of the true hybrid schemes. The FS–FS hybrid scheme
includes the verification operations of the individual component algorithms and the com-
parison of c with a hash of bothω values and the message digest. While it may be possible to
modify redundancies in the component algorithms’ implementation verification operation,
we made the design choice to minimize changes to all implementations of component algo-
rithm operations. As a result, our implementation will always carry an increased overhead
when compared to concatenated hybrid schemes; however, since the modified operations
are not computationally expensive, the increase may be negligible.

50

CHAPTER 5:
Hybrid Digital Certificates

The PKI model facilitates secure entity authentication between parties by establishing a
chain of trust from a root Certificate Authority (CA) to an end-entity. The model is used
as a secure way to authenticate a public key to an individual entity for use in public key
cryptography and provides the foundation for information security and digital identity for
the majority of the Internet.

Several applications and their underlying protocols use the PKI model to distribute and
manage public keys through the use of digital certificates. Each certificate contains a
variation of the end-entity’s public key, an expiration date, identifying information, and
any specific cryptographic algorithm parameters [90]. The certificate is then signed by the
public key of a trusted CA that both end points implicitly trust. The CA’s signature is a
guarantee that all the information is not only correct, but that the entity described in the
certificate is in sole control of the related private key.

Given the size and complexity of modern PKI systems, root CAs do not issue end-entity
certificates directly due to the risk involved. Instead, root CAs delegate issuing certificates to
intermediate CAs by signing their corresponding digital certificates. For a user to validate
any certificate, the digital signatures on every certificate in the chain are verified until
reaching the implicitly trusted root CA (i.e., trust anchor). The entire operation fails if any
errors, to include invalid or revoked certificates, are encountered in the chain.

While alternate certificate formats exist [91], the X.509 standard has become the default
method for “securely binding the identity of an individual or device to a public key” in
the PKI model [90]. This chapter specifically examines X.509 digital certificates and how
they can be adapted to support hybrid digital signature schemes. A brief overview of X.509
certificates is provided and three hybrid certificate variants are cross-examined. Finally,
the TLS 1.3 protocol is used to demonstrate how hybrid digital certificates can affect a
commonly used protocol.

51

5.1 X.509 Certificates
RFC 5280 [90] specifies the format and semantics of X.509 certificates for use of PKI
within the Internet. This standard has been repeatedly revised since 1988 as PKI systems
evolved and required additional information to be included in a digital certificate. Today,
certificates have three versions, with each adding support for additional fields. As a rule,
the certificate’s version number should match the minimum version that supports the fields
being used.

The X.509 certificate can be broken into three parts: the tbsCertificate, the signature al-
gorithm field, and the signature. The tbsCertificate, short for “to be signed”, contains all
information that the CA will sign and includes critical fields such as the “names of the
subject and issuer, a public key associated with the subject, a validity period” [90]. Any
information outside of the tbsCertificate will not be signed and can be changed without
affecting the verification process (aside from the signature itself). The second part of the
certificate is the signatureAlgorithm field. This field identifies both the signature and hash
algorithms used to generate the signature. As such, it must match the signature algorithm
identifier inside the tbsCertificate to be considered valid; however, it is important to note
that this outer field is not part of the data that will be signed and is not protected from
malicious or benign modification. The third part of the certificate is the signature. This is
the product of applying the signature algorithm identified in the signatureAlgorithm field
to the tbsCertificate.

Transmitting binary data like cryptographic keys over textual transports requires application
and library developers to encode any binary data into human-readable text. Prior to IETF
efforts to standardize this encoding in 1993 [92] with PKCS, developers often created
competing formats which created situations where a certificate from one application would
be incompatible with another application. Textual encoding of PKI structures which include
X.509 certificates are covered by RFC 7468 [93]. Additionally, X.509 digital certificates
fall under PKCS #7 and use attributes defined in either PKCS #9 or #10 depending on the
certificate’s intended purpose.

PKCS #7 defines the Cryptographic Message Syntax (CMS) which is a general syntax for
storing and signing encrypted data to include digital signatures [94]. The CMS syntax uses
Abstract Syntax Notation One (ASN.1) structures for each data field and employs a specific

52

encoding format known as the Distinguished Encoding Rules (DER). DER is defined in
the International Telecommunication Union (ITU) X.690 standard and provides exactly one
way to represent any ASN.1 value as an octet string [95]. These structures or classes can
also store multiple values and data types. For example, the Subject Public Key Information
field contains both the algorithm identifier used to create the public key as well as the key
itself.

Figure 5.1 provides an overview of a X.509 certificate. Each field listed in the tbsCertificate
is a DER encoded ASN.1 structure. The fields listed in blue are found in every version of
the X.509 standard. Of these, the version field describes the version of the X.509 certificate
(e.g., version 1, 2, or 3). The serialNumber field is assigned by the CA andmust be unique for
every issued certificate. The issuer field contains the distinguished name of the certificate’s
issuer (e.g., CA) andmay contain additional attributes like theCA’s common name, location,
and organizational identifier [90]. The combination of the certificate’s serialNumber and the
issuer field determine the uniqueness of the certificate. The window of time that a certificate
should be considered valid is recorded in the validity field. Specifically, this field contains
the “time interval during which the CA warrants that it will maintain information about
the status of the certificate” [90]. Similar to the issuer field, the subject field contains the
distinguished name and any additional descriptive attributes of the entity associated with
the public key. Finally, the subjectPublicKeyInfo field is an ASN.1 sequence containing
the signature algorithm’s public key and an algorithm identifier which itself contains the
algorithm’s unique Object Identifier (OID) [90].

The two fields displayed in purple are introduced in the second version of the X.509
standard. Their purpose is to allow “reuse of the issuer and/or subject names over time”;
however, the current X.509 standard recommends that names should never be reused for
different entities [90]. As such, these fields are considered historical artifacts and should not
be generated for new digital certificates. Even so, programs that handle digital certificates
must be able to parse the field and should handle it as a bit string sequence of arbitrary
length [90].

In version 3, extensions were added to allow additional attributes to be associated with
X.509 certificates. These include relationships between CAs, key identifiers, and private
extensions that are unique to a particular community of users [90]. Each extension includes

53

a unique OID and a corresponding ASN.1 structure. Some extensions like key usage are
considered standard and are widely supported. This extension defines the purpose of the
public key stored in the certificate. This is useful in situations where a key can possibly
be used for multiple purposes (e.g., encryption, signing), but should be restricted to one
use [90]. Another common extension is the subject alternative name which allows multiple
identities to be bound to the identity listed in the subject name field. This is useful for
services that choose to use a single certificate for multiple entities like a Content Delivery
Network (CDN) that provides access to multiple domains or for web servers with multiple
virtual hosts. Instead of issuing a certificate for each unique domain namewhichwould incur
a large key management overhead, a CDN can use a single digital certificate for multiple
domains or sub-domains as long as they are listed in the subject alternative name extension.
It is crucial that an issuing CA independently verify any information listed in this extension,
because this information is considered to be “definitively bound to the public key” and can
be substituted for any information listed in the subject name field [90].

Separate from commonly used extensions, private extensions are not formally standardized
and are intended for limited use within a specific community of users. In general, these
extensions provide developers with flexibility in expanding PKI functionality using X.509
digital certificates. For example, hybrid digital signature schemes require at least two public
keys to verify a hybrid signature. For compatibility with existing protocols, this information
must be stored within a X.509 certificate; however, the current standard does not support
multiple public keys within the same certificate [62]. In order to comply with current
standards and minimize impact to existing PKI systems, a CA could use a private extension
to store the second public key. This approach prevents the certificate from being rejected
by systems conforming to RFC 5280; however, it also carries the risk that independent
developers could create competing private extensions that conflict.

Both public and private extensions can be marked as either critical or non-critical. If an
extension ismarked as critical, the verifying recipient must support the extension and be able
to process its data. For example, if the private extension storing a hybrid signature scheme’s
second public key is marked as critical, the recipient must both recognize the extension and
be able to process the key. If the critical extension is not recognized or it contains data that
cannot be processed, the certificate must be rejected [90]. This approach can be used to
force a verifier to recognize that a hybrid signature scheme is being used even if the hybrid

54

scheme does not guarantee hybrid verification. While effective, a certificate that marks a
hybrid extension as critical can also alienate users outside of the CA’s community who do
not recognize the extension or are unable to process the data.

5.2 Design Considerations for Hybrid Certificates
Several hybrid X.509 digital certificates have been proposed in recent years to aid the PQ
transition. Each approach the problem in similar ways due to the nature of ASN.1 structures
and the flexibility of the X.509 standard. Regardless of the hybridization technique used
in a signature scheme, the signatures presented in a hybrid certificate must be tied to
the names of the subject and issuer, the corresponding public keys associated with the
subject, and a validity period (e.g., tbsCertificate) [90]. This requirement limits divergence
in terms of certificate structure and is one of the reasons for the stability of the X.509
standard. Even with limited divergence, hybrid certificates have unique characteristics that
must be considered for any design. This section examines design considerations for hybrid
certificates and introduces three hybrid certificate constructions found in related works.

5.2.1 Backwards Compatibility
The goal of backwards compatible designs are generally to allow a system to transition
from one algorithm to another without interrupting cryptographic security. As such, the
differences between hybrid certificate designs often involve the desire tomaintain backwards
compatibility with existing PKI. When designing a hybrid certificate, nesting (Section
3.2.2) is often used to allow a legacy system to verify only one of the included signatures
by ensuring the outer signature is the one that is supported. Depending on the certificate
construction, this also has the added benefit of not requiring the standardization of new
signature algorithm identifiers since it is possible to use custom certificate extensions.

A potential downside to maintaining backwards compatibility is that there is no impetus
for new standards to be adopted that specify hybridization. For those that wish to adopt
hybrid certificates, this can lead to incompatible systems that automatically default to a
less secure legacy mode. Additionally, protocols that use nested hybrid digital certificates
require more overhead than non-hybrid signature schemes as at least two signatures and
two public keys must be transmitted with each certificate. Depending on the limitations of

55

the legacy system, to include the necessary underlying protocol and cryptographic libraries
may require more memory than available or practical. A simpler solution would be for a
system to have multiple digital certificates and use a protocol to negotiate which certificate
to use in a given instance.

5.2.2 Verification Considerations and Critical Extensions
Hybrid certificates are designed to tie a cryptographic identity to multiple public keys
within a single certificate; however, there is no requirement to use every included signature
algorithm and key within a hybrid certificate in every situation. While this allows for
backwards compatibility and more flexible certificate designs, it also creates a situation
where there is no guarantee that a verifier uses more than a single signature algorithm during
verification. Depending on the context, a developer may want to achieve a guarantee that
every included signature algorithm is used to successfully verify a signature. As explained
in Chapter 3, not every hybrid signature scheme achieves hybrid verification. In these
situations, it may be possible to use hybrid certificates to achieve a similar, but limited and
non-cryptographic notion. For example, a signer using a hybrid certificate can store the
second public key and signature in critical extensions. By the RFC standard, the verifier
would have to parse and accept the extension in order to successfully verify any of the
included signatures. Unlike hybrid verification, this requires that the application parsing the
certificate is honest as it would still be possible to verify only a single signature even after
acknowledging the second signature existed.

Alternatively, a hybrid scheme that achieves hybrid verification (i.e., true hybrid schemes)
can be used in any certificate design without relying on critical extensions. The second
public key can even be split between two standard digital certificates without requiring
additional modification. Essentially, hybrid verification ensures that even if a system tried
to accept a critical extension it did not support, it would be cryptographically impossible
for it to verify only one of the signatures. Naturally, this comes at the cost of backwards
compatibility in that the hybrid scheme would require a new algorithm OID.

5.2.3 Size Differences
As discussed in Chapter 3, a hybrid scheme will require a significant increase in the
overall size of a digital certificate. At the very least, the certificate will need to contain two

56

or more public keys and be signed by two or more signature algorithms. While the X.509
standard [90] does not place a limit on the total size of a certificate, several protocols do have
limits on the fields within a certificate. For example, the TLS protocol limits the public key
size to 224−1 bytes and the signature size to 216−1 bytes [2]. Certain algorithm combinations
already exceed this size limitation. Figure 5.1 depicts the concatenated signature sizes of
the algorithm combinations considered in this work. This figure includes the sizes for both
the true hybrid schemes and a simple concatenated scheme using the technique described
in Section 3.2.1. Additionally, the signature sizes reflect the ASN.1 structures used to pack
the bit strings produced using our implementation. This may vary in the future as our
implementation is only a proof-of-concept. Of the listed combinations, only the MQDSS-
31-64_qTesla-p-III combination of the FS–FS true hybrid scheme produced a signature that
was larger than the TLS limitation.

Table 5.1. Signature Sizes of Considered True and Concatenated Hybrid
Schemes (bytes)

Name True Hybrid Concatenated

Dilithium 2, RSA3072 2292 2428
MQDSS-31-48, RSA3072 28752 28784
qTesla-p-I, RSA3072 2944 2976
Falcon-512, RSA3072 1018 1050

Dilithium 3, RSA3072 2949 3085
MQDSS-31-64, RSA3072 60264 60312
qTesla-p-III, RSA3072 38768 6048
Falcon-1024, RSA3072 1632 1664

Dilithium 2, DSA3072_1 2116 2116
MQDSS-31-48, DSA3072_1 28472 28472
qTesla-p-I, DSA3072_1 2664 2664

Dilithium 3, DSA3072_1 2773 2773
MQDSS-31-64, DSA3072_1 60000 60000
qTesla-p-III, DSA3072_1 5736 5736

57

Dilithium 2, DSA3072_2 2116 2116
MQDSS-31-48, DSA3072_2 28472 28472
qTesla-p-I, DSA3072_2 2664 2664

Dilithium 3, DSA3072_2 2773 2773
MQDSS-31-64, DSA3072_2 60000 60000
qTesla-p-III, DSA3072_2 5736 5736

Dilithium 2, DSA3072_3 2168 2116
MQDSS-31-48, DSA3072_3 28508 28472
qTesla-p-I, DSA3072_3 2700 2664

Dilithium 3, DSA3072_3 2909 2773
MQDSS-31-64, DSA3072_3 60048 60000
qTesla-p-III, DSA3072_3 5784 5736

Dilithium 2, P-256_1 2108 2108
MQDSS-31-48, P-256_1 28464 28464
qTesla-p-I, P-256_1 2656 2656

Dilithium 3, P-384_1 2797 2797
MQDSS-31-64, P-384_1 60024 60024
qTesla-p-III, P-384_1 5760 5760

Dilithium 2, P-256_2 2108 2108
MQDSS-31-48, P-256_2 28464 28464
qTesla-p-I, P-256_2 2656 2656

Dilithium 3, P-384_2 2797 2797
MQDSS-31-64, P-384_2 60024 60024
qTesla-p-III, P-384_2 5760 5760

Dilithium 2, P-256_3 2168 2108
MQDSS-31-48, P-256_3 28508 28464
qTesla-p-I, P-256_3 2700 2656

Dilithium 3, P-384_3 2933 2797
MQDSS-31-64, P-384_3 60072 60024

58

qTesla-p-III, P-384_3 5808 5760

Dilithium 2, MQDSS-31-48 30412 30444
Dilithium 2, qTesla-p-I 4604 4636
MQDSS-31-48, qTesla-p-I 30960 30992

Dilithium 3, MQDSS-31-64 62581 62629
Dilithium 3, qTesla-p-III 8317 8365
MQDSS-31-64, qTesla-p-III 65544 65592

Even if a protocol has restrictions on the size of either the public key or signature, it is
possible to bypass a restriction by separating the offending fields into two ormore extensions;
however, this requires that the recipient is able to correctly recreate the separated fields into
the original data structure in order for the scheme to work. For example, a signature can
be separated into the signature field and a critical private extension. Upon receiving the
message, the verifier would first need to correctly reassemble the signature by parsing both
the critical extension and the signature fields before verification. Additionally, developers
must also consider why size limitations were applied to protocols in the first place as
alterations may lead to unexpected inefficiencies or critical vulnerabilities.

5.2.4 Hybrid Certificate Variants
The remainder of this section introduces three hybrid certificate designs gathered from
implementations, draft standards, and published patents. It is important to emphasize that
none of the designs are an original work of this paper. Our goal is to highlight different
approaches and discuss the advantages and disadvantages of each.

OQS Hybrid Certificate
As part of their efforts to develop and prototype “quantum-resistant cryptography” [96], the
OpenQuantumSafe (OQS) project created a fork of theOpenSSL cryptographic librarywith
PQ algorithm support enabled. This project also includes hybrid algorithms in which PQ
algorithms can be combined with RSA or ECDSA based on the intended NIST security level
(e.g., L1, L3, or L5). In their scheme, the public keys for both algorithms are concatenated
and stored in the subjectPublicKeyInfo field. Then, both algorithms independently sign

59

the tbsCertificate and their corresponding signatures are concatenated and attached to the
certificate in the standard signatureValue field. Figure 5.2 depicts the certificate structure
with modified fields in bold.

Figure 5.1. X.509 Certificate Structure Figure 5.2. OQS X.509 Hybrid Certifi-
cate Structure

This option allows for backward compatibility as it does not add any private critical exten-
sions, but it still requires that the recipient is able to parse the hybrid signature algorithm
identifier and both concatenated fields. Additionally, simple concatenation does not achieve
non-separability. As a result, it is up to the individual application developers to ensure that
both signatures contained within the certificate are verified.

60

ISARA Patent
In 2016, the ISARA corporation filed a patent [62] detailing how a digital certificate
could be used simultaneously with multiple cryptosystems. The authors describe how an
enterprise PKI environment can migrate from one signature algorithm to another through
a series of transitional steps. Figure 5.3 depicts one of the transitional X.509 certificate
structures listed in the patent. This certificate design uses a private extension with the
same ASN.1 structure as the subjectPublicKeyInfo field to store the second public key
(i.e., subjectPublicKeyInfoB). This second public key is associated with the target signature
algorithm that the PKI system is transitioning to (e.g., PQ signature algorithm) and is used
to sign the tbsCertificate as per the standard process (i.e., signatureValueB).

At this point the inner tbsCertificate, signatureAlgorithmB, and signatureValueB are tech-
nically a complete X.509 certificate (depicted by the magenta box in Figure 5.3); however,
the certificate would be invalid because SignatureB uses the public key stored in the private
extension instead of the public key stored in Public Key InformationA. As such, this inner
X.509 certificate is then used as input to the first signature algorithm using the public key
stored in Public Key InformationA. This signature algorithm is the legacy algorithm the PKI
system is transitioning from and the signature from this process is stored in SignatureA.

The result is a single hybrid X.509 certificate that is backwards compatible with legacy sys-
tems assuming the legacy system ignores the private extension, inner signatureAlgorithmB,
and signatureValueB fields when parsing the certificate during verification. This requires
that the private extension is not marked as critical and that the inner signature algorithm
identifier (depicted in blue in Figure 5.3) matches the outer signatureAlgorithmA field.
This precludes the ISARA certificate design from using hybrid identifiers in the traditional
signature algorithm identifier field as it would disrupt backwards compatibility. The inner
signatureAlgorithmB field could reflect a hybrid scheme if and only if it also describes the
signature algorithm used to create signatureValueB.

Full implementation of this particular certificate design would require a modification to the
standard signing process currently being used by cryptographic libraries. Themodified sign-
ing procedure would require a system to recognize and process the inner private extension,
signatureAlgorithmB, and signatureValueB fields in order to fully support hybridization.
The system would then need to independently verify both signatures and return the result.

61

Legacy systems and libraries that do not support hybridization would need to be tested to
ensure that they correctly ignore the additional inner fields and handle any potential size
limitations on the total certificate size.

Figure 5.3. ISARAX.509 Hybrid Certifi-
cate Structure

Figure 5.4. CROSSING X.509 Hybrid
Certificate Structure

62

DTU OpenSSL
In 2019, the Collaborative Research Center (CROSSING) at Technische Universität Darm-
stadt (DTU) released a fork of the OQS OpenSSL [20] and Java-based BouncyCastle [21]
projects that included support for backwards-compatible hybrid certificates. Both libraries
implement a hybrid scheme using private certificate extensions to store both the PQ pub-
lic key and signature. This nested approach resembles a 2018 RFC draft [97] which also
uses X.509 version 3 certificate extensions in a similar fashion; however, the CROSSING
draft differs in how it handles the ASN.1 structures, OID values, and signature algorithm
information.

Figure 5.4 depicts the nested certificate structure with modified fields in bold. The
subjectPublicKeyInfoA field stores the legacy signature algorithm’s public key and the
hybridKey extension stores the PQ algorithm’s public key and hybrid algorithm OID. The
subjectPublicKeyInfoB extension stores the PQ algorithm’s signature while signatureValueA

stores the legacy algorithm’s signature. Tomaintain backwards compatibility, the signatureA

field within the tbsCertificate and the signatureAlgorithmA field only contain the OID iden-
tifier associated with the legacy signature algorithm.

While similar to the ISARA patent, this certificate design follows a different procedural flow.
First, a “dummy” tbsCertificate containing both public keys and a null signatureAlgorithmB

field is signed by the PQ signature algorithm. The signatureAlgorithmB extension is
then populated and the entire tbsCertificate is again signed by the legacy signature al-
gorithm. During verification, the legacy algorithm’s signature (e.g., signatureValueA) is
processed normally, but the same “dummy” certificate must first be recreated by setting the
signatureAlgorithmB extension to null before verifying the PQ signature.

The CROSSING certificate design is backwards compatible assuming the legacy system can
verify the outer signature and the hybrid extensions are not marked as critical. Additionally,
unlike the ISARA patent, the CROSSING design only uses private extensions and does not
rely on ambiguous inner certificate fields that may or may not be compatible with existing
cryptographic libraries.

63

5.2.5 Legal Issues
Another consideration that must be taken into account when designing or evaluating hybrid
certificates is whether or not a design has any legal restrictions or intellectual property
claims, such as in the case of patents like the ISARA design in Section 5.2.4. These
restrictions, if enforced, can significantly affect the monetary cost associated with using a
particular design and open implementers to legal liability if handled incorrectly.

This chapter relies on information derived from the X.509 standard as described in RFC
5280 [90]. The IETF, the organization responsible for publishing RFCs, does not take a
position “regarding the validity or scope of any intellectual property rights or other rights that
might be claimed...or the extent to which any license under such rights might or might not
be available” [98]. As such, it is the responsibility of individuals to verify if any intellectual
property claims exist by directly contacting the authors of the RFC or by checking the litany
of legal sources that publish patents and copyright information.

In the case of hybrid digital certificates, it is difficult to ascertain if the concept, as a whole,
is protected by existing patents or copyrights. For example, the ISARA patent claims any
cryptographic method where a digital certificate is received ”comprising a plurality of
signatures of a certificate authority” with private extensions containing a ”second signature
value field” and ”a policy field comprising a policy comprising instructions” [62]. The
policy field, which is described as either a bitmap or OID, contains a policy for processing
the additional public keys or signatures in the X.509 certificate in priority order.

Upon initial review, the CROSSING design may infringe on this claim as it also uses private
extensions to hold a second signature value field. Even so, the CROSSING design does
not contain a policy field that contains information prioritizing verification of one signature
over the other. Instead, it relies on the verifier not processing unsupported private extensions
(i.e., non-critical) for backwards compatibility. The uncertainty of infringement is further
complicated by the fact that the ISARA patent mentions that other systems outside of their
design exist that include “one or more additional public keys and/or one or more additional
signature values associated with one or more corresponding cryptosystems” [62]. This
suggests ambiguity of scope on patent right related to various hybrid certificate constructs
using multiple public keys.

64

Figure 5.5. Proposed X.509 Certificate Structure for True Hybrid Schemes

Hybrid certificates designed around the true hybrid schemes described in Section 3.3
may potentially avoid the entire problem by using a modified design that combines the
CROSSING and OQS certificates. Figure 5.5 depicts this certificate structure where the
second public key is stored in a critical private extension and the scheme’s signature is
stored in the traditional signatureValue field. It is possible that this does not infringe on the
patent because the true hybrid scheme does not rely on the certificate to determine which
signature algorithm to verify (e.g., priority).

65

It is important to understand that the legal landscape surrounding cryptography is complex
and continually changing as evidenced by several historical examples like the patents sur-
rounding the origin of public key cryptography [52], [99]. Any material presented in this
section should not be mistaken as an in-depth legal review of the intellectual property claims
on hybrid certificates and any conclusions should not be taken as legal advice. Instead, this
section highlights the legal ambiguity surrounding hybrid digital certificates and reinforces
the need for standards that do not carry any intellectual property burden.

5.3 TLS 1.3 Authentication
This section examines server authentication using hybrid digital certificates within the TLS
1.3 protocol and is used as the basis for experiments in Section 7.2. The TLS 1.3 protocol
is specified in RFC 8446 and is designed to create a secure channel between a client
and server in order to prevent eavesdropping, tampering, and message forgery [2]. The
secure channel is established using a handshake whereby the client and server exchange a
sequence of messages that produce the security parameters for the connection. During the
handshake, the server and client have to negotiate a ciphersuite, authenticate the identities
of the server and (potentially) client, and establish the session keys that will symmetrically
encrypt any application-layer traffic upon handshake completion [2]. This sequence can
be divided into two distinct phases: the key-exchange and authentication [100]. Figure
5.6 depicts the messages exchanged in a basic TLS 1.3 handshake between a client and
server assuming a new, initial connection (e.g., no resumption). This figure also indicates
the cryptographic operations (i.e., Sign and Verify) associated with digital signatures that
influence the performance during an initial handshake.

To begin the handshake, the client first sends the plaintext ClientHello message which
starts the key-exchange phase. This message contains the supported ciphersuites and a
list of optional extension requests that include a 256-bit randomly sampled nonce, one or
more public key shares that will be used to generate a client handshake traffic key (i.e.,
key_share) and the signature algorithms that the client supports (i.e. signature_algorithms,
signature_algorithms_cert) [2]. Upon receiving the ClientHello message, the server replies
with a ServerHello message. This message contains the ciphersuite selected by the server
and a freshly generated key share using the same algorithm of the public key sent by the
client (i.e., key_share). At this point, the server is able to derive both the client and server

66

Figure 5.6. Basic TLS 1.3 Handshake. Adapted from [18, figure 2].

handshake traffic keys that will be used to encrypt the rest of the TLS handshake [100].

After the ServerHello message, the handshake transitions to the authentication phase and all
subsequent messages are encrypted by either the client or server handshake traffic key. First,
the server encrypts and sends the EncryptedExtensions message which contains extension
responses to any extension requests in the ClientHello message. Unsolicited extensions are
not allowed as the server only sends responses to requests [2]. Specifically, these extensions
are not needed for negotiating the symmetric encryption key; however, they are encrypted
to protect against eavesdroppers and man-in-the-middle attacks.

TLS 1.3 supports several optional extensions that provide expanded capabilities over
older versions of TLS. Two of these extensions, signature_algorithms and signa-

67

ture_algorithms_cert, govern which signature algorithms may be used in digital signa-
tures [2]. Specifically, the signature_algorithms extension applies to any signatures in the
CertificateVerify message while the signature_algorithms_cert extension applies to sig-
natures in digital certificates. If the signature_algorithms_cert lists the same signature
algorithm as the signature_algorithms extension, it may be excluded. These extensions are
required for server authentication and, if not present in the ClientHello message, the server
must abort the handshake [2].

The Certificate message contains, at a minimum, the X.509 digital certificate of the server
which contains the identity and long-term public key of the server. This message can also
contain a certificate_list which is a chain of digital certificates that certify the one imme-
diately preceding it [2]. The server then calculates the session hash, which is a continually
updated hash of all prior handshake messages (e.g., message transcript). The server signs
this hash using the certificate’s private key and sends the signature to the client via the
CertificateVerify message [2].

Upon receiving the Certificate message, the client must verify the certificate’s signature. If
the message contains a certificate_list, the client must also verify each entry. If the certificate
is successfully verified by tracing it back to a trusted source (e.g., CA), then the client knows
that the public key and identity are linked and valid; however, the actual handshake is still
not authenticated until the CertificateVerify message is verified. Once this signature is
verified by the client, the identity of the server is tied to the identity listed in the digital
certificate contained in the Certificate message. By signing the entire transcript to include
the ClientHello, TLS 1.3 avoids classic downgrade vulnerabilities that were prevalent in
previous versions of the TLS protocol.

In terms of efficiency, the signature algorithms used for authentication can significantly
impact the TLS protocol. As noted in Figure 5.6, the total handshake time is influenced
both by the Sign and Verify times of the signature algorithm. Unlike the signature of the
server’s certificate which is generated once when the certificate is created, the server must
sign the hash of the message transcript in real time before sending it to the client via the
CertificateVerify message. The total size of the server’s digital certificate also impacts the
handshake completion time. The larger a certificate, the more time is needed to transfer the
certificate to the client. Upon receiving the certificate and signature, the client then must

68

verify the signature is correct before sending the ClientFinished message to the server. Only
at this point is the handshake considered complete.

Using more than one signature algorithm during a TLS handshake drastically increases
both the size of the digital certificate and the time required for sign/verify operations,
thus directly impacting overall performance. Given that the signature algorithm is the
product of negotiation between the client and server and a constrained session duration, the
practicality of using more than one signature scheme can seem questionable. A server could
potentially support multiple signature algorithms with separate certificates for each, and
depending on the capabilities of the client, choose only one for the selected session. This
solves the requirement for backwards compatibility without using more than one signature
algorithm in the TLS handshake and minimizes the performance impact on the protocol;
however, this also assumes that a client and server can come to an agreement on a single
signature algorithm. A hybrid signature scheme could be used in instances where neither
side completely agrees on a specific parameter without sacrificing security or trust. In this
situation, both sides would eventually have to agree on both component algorithms; however,
they would not need to agree on the preference of one or the other.

Another alternative approach to using a hybrid signature scheme within the TLS handshake
is to use a single backwards compatible hybrid digital certificate for a server instead of
multiple independent certificates. An application designer could use the backward compat-
ible certificate to minimize the total number of certificates on the server. For example, a
nested certificate structure like Figure 5.3 can be used to support two different signature
algorithms with the inner signature algorithm being the one most likely to be supported by
the most clients. Depending on the signature algorithm negotiation phase of the handshake,
the server could choose to separate the inner certificate entirely from the outer container and
only send the inner certificate. This eliminates the overhead of including both signatures;
however, the second public key would still be included as part of the inner certificate.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

CHAPTER 6:
Experiments and Results for Hybrid Algorithms

This chapter details the design considerations, methodology, and results for testing the
performance of hybrid signature schemes. All supporting documents can be found at: https:
//github.com/jllytle/hybrid-digital-signatures. The ultimate goal of this testing is to provide
a comparative quantitative baseline for each considered hybrid signature scheme. Every
hybrid scheme is evaluated based on the relative speed of their standalone cryptographic
operations. The OQS library liboqs [87], an open source C library for PQ algorithms, was
modified in order to support the true hybrid schemes introduced in Chapter 3. Table 6.1
depicts the hybrid signature algorithm identifiers used for testing along with the claimed
NIST PQ security category. For distinction, the algorithm identifiers used in the true hybrid
schemes are separated by a “_” while the algorithm identifiers used in the concatenated
hybrid schemes are separated by a “+”.

Table 6.1. Supported Algorithm Combinations for True and Concatenated
Hybrid Schemes

Name Notation Type NIST PQ
Security

MQDSS-31-48_RSA3072 mq48_rsa3072 True Hybrid Level 1
MQDSS-31-48 + RSA3072 mq48+rsa3072 Concatenated Level 1
qTESLA-p-I_RSA3072 qt1_rsa3072 True Hybrid Level 1
qTESLA-p-I + RSA3072 qt1+rsa3072 Concatenated Level 1
Dilithium 2_RSA3072 di2_rsa3072 True Hybrid Level 1
Dilithium 2 + RSA3072 di2+rsa3072 Concatenated Level 1
Falcon-512_RSA3072 falcon512_rsa3072 True Hybrid Level 1
Falcon-512 + RSA3072 falcon512+rsa3072 Concatenated Level 1

MQDSS-31-48_DSA3072 #1 mq48_dsa3072_1 True Hybrid Level 1
MQDSS-31-48_DSA3072 #2 mq48_dsa3072_2 True Hybrid Level 1
MQDSS-31-48_DSA3072 #3 mq48_dsa3072_3 True Hybrid Level 1

71

https://github.com/jllytle/hybrid-digital-signatures
https://github.com/jllytle/hybrid-digital-signatures

MQDSS-31-48 + DSA3072 mq48+dsa3072 Concatenated Level 1
qTESLA-p-I_DSA3072 #1 qt1_dsa3072_1 True Hybrid Level 1
qTESLA-p-I_DSA3072 #2 qt1_dsa3072_2 True Hybrid Level 1
qTESLA-p-I_DSA3072 #3 qt1_dsa3072_3 True Hybrid Level 1
qTESLA-p-I + DSA3072 qt1+dsa3072 Concatenated Level 1
Dilithium 2_DSA3072 #1 di2_dsa3072_1 True Hybrid Level 1
Dilithium 2_DSA3072 #2 di2_dsa3072_2 True Hybrid Level 1
Dilithium 2_DSA3072 #3 di2_dsa3072_3 True Hybrid Level 1
Dilithium 2 + DSA3072 di2+dsa3072 Concatenated Level 1

MQDSS-31-48_ECDSA P-256 #1 mq48_P-256_1 True Hybrid Level 1
MQDSS-31-48_ECDSA P-256 #2 mq48_p256_2 True Hybrid Level 1
MQDSS-31-48_ECDSA P-256 #3 mq48_p256_3 True Hybrid Level 1
MQDSS-31-48 + ECDSA P-256 mq48+p256 Concatenated Level 1
qTESLA-p-I_ECDSA P-256 #1 qt1_p256_1 True Hybrid Level 1
qTESLA-p-I_ECDSA P-256 #2 qt1_p256_2 True Hybrid Level 1
qTESLA-p-I_ECDSA P-256 #3 qt1_p256_3 True Hybrid Level 1
qTESLA-p-I + ECDSA P-256 qt1+p256 Concatenated Level 1
Dilithium 2_ECDSA P-256 #1 di2_p256_1 True Hybrid Level 1
Dilithium 2_ECDSA P-256 #2 di2_p256_2 True Hybrid Level 1
Dilithium 2_ECDSA P-256 #3 di2_p256_3 True Hybrid Level 1
Dilithium 2 + ECDSA P-256 di2+p256 Concatenated Level 1

MQDSS-31-64_RSA3072 mq64_rsa3072 True Hybrid Level 3
MQDSS-31-64 + RSA3072 mq64+rsa3072 Concatenated Level 3
qTESLA-p-III_RSA3072 qt3_rsa3072 True Hybrid Level 3
qTESLA-p-III + RSA3072 qt3+rsa3072 Concatenated Level 3
Dilithium 3_RSA3072 di3_rsa3072 True Hybrid Level 3
Dilithium 3 + RSA3072 di3+rsa3072 Concatenated Level 3
Falcon-1024_RSA3072 falcon1024_rsa3072 True Hybrid Level 3
Falcon-1024 + RSA3072 falcon1024+rsa3072 Concatenated Level 3

MQDSS-31-64_DSA3072 #1 mq64_dsa3072_1 True Hybrid Level 3
MQDSS-31-64_DSA3072 #2 mq64_dsa3072_2 Concatenated Level 3
MQDSS-31-64 + DSA3072 mq64+dsa3072 True Hybrid Level 3

72

qTESLA-p-III_DSA3072 #1 qt3_dsa3072_1 True Hybrid Level 3
qTESLA-p-III_DSA3072 #2 qt3_dsa3072_2 True Hybrid Level 3
qTESLA-p-III_DSA3072 #3 qt3_dsa3072_3 True Hybrid Level 3
qTESLA-p-III + DSA3072 qt3+dsa3072 Concatenated Level 3
Dilithium 3_DSA3072 #1 di3_dsa3072_1 True Hybrid Level 3
Dilithium 3_DSA3072 #2 di3_dsa3072_2 True Hybrid Level 3
Dilithium 3_DSA3072 #3 di3_dsa3072_3 True Hybrid Level 3
Dilithium 3 + DSA3072 di3+dsa3072 Concatenated Level 3

MQDSS-31-64_ECDSA P-384 #1 mq64_p384_1 True Hybrid Level 3
MQDSS-31-64_ECDSA P-384 #2 mq64_p384_2 True Hybrid Level 3
MQDSS-31-64_ECDSA P-384 #3 mq64_p384_3 True Hybrid Level 3
MQDSS-31-64 + ECDSA P-384 mq64+p384 Concatenated Level 3
qTESLA-p-III_ECDSA P-384 #1 qt3_p384_1 True Hybrid Level 3
qTESLA-p-III_ECDSA P-384 #2 qt3_p384_2 True Hybrid Level 3
qTESLA-p-III_ECDSA P-384 #3 qt3_p384_3 True Hybrid Level 3
qTESLA-p-III + ECDSA P-384 qt3+p384 Concatenated Level 3
Dilithium 3_ECDSA P-384 #1 di3_p384_1 True Hybrid Level 3
Dilithium 3_ECDSA P-384 #2 di3_p384_2 True Hybrid Level 3
Dilithium 3_ECDSA P-384 #3 di3_p384_3 True Hybrid Level 3
Dilithium 3 + ECDSA P-384 di3+p384 Concatenated Level 3

Dilithium 3_MQDSS-31-64 di3_mq64 True Hybrid Level 3
Dilithium 3 + MQDSS-31-64 di3+mq64 Concatenated Level 3
Dilithium 3_qTESLA-p-III di3_qt3 True Hybrid Level 3
Dilithium 3 + qTESLA-p-III di3+qt3 Concatenated Level 3
MQDSS-31-64_qTESLA-p-III mq64_qt3 True Hybrid Level 3
MQDSS-31-64 + qTESLA-p-III mq64+qt3 Concatenated Level 3

As discussed in Section 3.3, the primary implementation goal is to minimize the impact
hybridization has on the original functionality of the component algorithms. The OpenSSL
library (version 1.1.1i) [101] is used for both classical signature algorithms and ASN.1
encoding support. To avoid name space confusion during integration and for clarity, the
modified liboqs code used for all of the PQ algorithms is referenced as libhds both in

73

this paper and in the source code. While one of the primary contributions of this paper
is implementing the true hybrid signature schemes, the critical work performed by the
OQS team in maintaining an open-source framework for the NIST PQ submissions proved
invaluable during implementation and testing.

As listed in Table 6.2, all experiments are conducted on an Ubuntu 20.04.1 Long Term
Support (LTS) host equipped with an Intel Xeon Gold 6140 processor clocked at 2.40GHz
with 4 GBs of ECCmemory.CMake (v. 3.16.3) and ninja (v. 1.10.0) are used to respectively
generate and build the libhds library for an x86-64 architecture. Similarly, make (v 4.2.1) is
used to build OpenSSL . For compilation, all source code is compiled using gcc (v. 9.3.0).

Table 6.2. Testing Environment

Processor Intel Xeon Gold 6140
Frequency 2.30GHz
Microarchitecture Skylake

Memory 4GB ECC

6.1 Methodology
The experimentation in this chapter is focused on comparing the performance between
different hybrid signature schemes bymeasuring the Central ProcessingUnit (CPU) usage of
each scheme’s Sign and Verify operations. CPU performance is captured by our benchmark
utility. This program profiles each Sign and Verify operation by directly accessing a per-
core timestamp register available on modern Intel x86/x64 processors. This register (i.e.
Timestamp Counter (TSC)) tracks every cycle that occurs on a core and can be easily
accessed with minimal overhead via the Read Time-Stamp Counter (RDTSC) and Read
Time-Stamp Counter and Processor ID (RDTSCP) assembly instructions. The benchmark
utility uses these opcodes via inline assembly to count the number of CPU clock cycles
expended during a single operation. The total number of clock cycles is collected over a
set number of iterations controlled by a simple while loop. In addition to tracking the
cumulative clock cycle count, the program calculates the minimum, mean, and standard
deviation of the entire set.

74

As with any benchmarking method, the accuracy of the TSC can be impacted by external
factors. For example, the capabilities of the TSC can vary depending on hardware imple-
mentation, and other CPU features such as out-of-order execution can affect the results. To
minimize these impacts, we confirmed our testing environment supports invariant TSC via
observed CPU flags and low-level testing [102]. We also incorporated the benchmarking
methodologies outlined by the Intel Corporation [103] to include using theRDTSCP instruc-
tion to reduce overhead andminimize out-of-order execution. Additionally, hyper-threading,
variable overclocking, and background services are disabled to decrease variances caused
by normal system operations, as recommended by the VAMPIRE lab [104].

Using the benchmark utility,we establish a quantitative baseline for each individual signature
algorithm as a control group and then conduct the same tests on the true hybrid schemes
introduced in Chapter 3. Clock cycles are chosen as our computational metric because
they remain consistent regardless of the frequency of the processor (assuming identical
system architecture). Each combination is accessed via the same Application Programming
Interface (API) throughout testing to ensure all results are comparable.

6.2 Standalone Cryptographic Operations
This section provides the standalone CPU benchmark results for the Sign and Verify op-
erations of each signature scheme and analyzes the differences between them. The goal
is not to compare the performance of one component signature algorithm against another,
but to compare and contrast the performance of different hybrid schemes. For clarity, only
algorithms with comparable NIST security levels are used as components within the hybrid
schemes to increase the readability of the results and to align to the projected use of hybrid
schemes in a realistic environment. The only exceptions to this are the RSA and DSA algo-
rithms which use 3072-bit keys throughout the experimentation. This limitation is arbitrary
as it is possible to mix the security levels of the component algorithms.

Additionally, all signature algorithms are compiled without any CPU optimizations to
include instruction set extensions (e.g., AVX, BMI, etc.). This decision does impact the
computational performance of some of the PQ component algorithms; however, the goal of
the testing is to measure the performance of the hybrid schemes and not the performance
of the individual algorithms.

75

6.2.1 Setup
The Sign and Verify operations for each signature algorithm is measured using the hybrid
speed program. This program repeatedly measures the expended clock cycles for both the
Sign and Verify operations of each algorithm using inline assembly code to directly access
the per-core timestamp register. Both operations are repeated for a total of 100,000 iterations
for each test run. The minimum, mean, and standard deviation for each run is then calculated
for each signature scheme.

To increase accuracy, the same key pair and a unique randomized 50-character message
string is used for each operation. It is critical to generate a new randomized message string
for each Sign operation to counteract differences within the results between probabilistic and
deterministic signature algorithms. Specifically, the Dilithium signature algorithm that was
submitted during Round 1 of NIST’s PQC standardization project is deterministic [8], [72].
During signing, the ExpandMask function “deterministically generates the randomness of
the Dilithium signature scheme” by mapping a seed and nonce to the sampled vectors [72].
The seed is derived from elements of the secret key and themessage that is being signed. This
results not only in the same signature being generated for a message which uses the same
key pair, but also results in the same number of rejection loops. If the same message is used
for each test iteration, the results show minimal deviation in computational performance
during signing and do not capture realistic scenarios where the content of messages vary.

For Round 2, the Dilithium team submitted a conceptual design change to the ExpandMask
function that allows the seed to be chosen at random; however, this change was not yet
integrated into the liboqs library at the time of testing.

6.2.2 Results
The first two subsections establish a classical and PQ performance baseline by introducing
the individual performance results for each component signature algorithm. The results for
each hybrid scheme are then presented by categories that align to each true hybrid scheme
(e.g., FS–RSA, FS–DSA, etc.). Each category is further divided into separate tables by the
respective NIST security level to improve readability.

76

Classical Baseline
Table 6.3 shows the individual performance of each classical algorithm used for testing.
This data is used as a baseline from which to compare different hybrid combinations.
The results from the classical algorithms are derived using low-level function calls in the
OpenSSL library. Normally, these function calls should not be accessed directly as they
bypass encapsulation and object orientation and expose critical elements of the individual
algorithms and structures to manipulation. The direct access is necessary to integrate the
newer hash algorithms (e.g., SHAKE128, SHAKE256, etc.) into the classical signature
algorithms. This is only necessary because the current version of the library does not yet
support using SHA-3 hash algorithms with legacy signature algorithms. Currently, there is
a proposed RFC draft that updates the CMS to include support for the SHAKE family of
hash algorithms [105]. As such, all RSA messages are manually encoded using the PKCS
#1 standard defined in RFC 8017 [64] with custom algorithm identifiers for the newer hash
algorithms.

Additionally, the RSA and DSA keys are limited to a length of 3072 bits which is roughly
equivalent to the NIST Level 1 security category at 128 bits of security [41], [106]. In order
for RSA to be comparable to NIST Level 3 at 192 bits of security, the modulus would need
to be at least 7680 bits [106]. This key length is not tested, given the substantial increase in
key size and the availability of classical and PQ alternatives.

The NIST P-256 elliptic curve (i.e., prime256v1) is used in all “Level 1” ECDSA testing
to approximately match the same 128-bit security level achieved by the 3072-bit RSA and
DSA keys [41], [69]. The NIST P-384 elliptic curve (i.e., secp384r1) is used for all “Level
3” ECDSA testing to approximately match the 192 bits of security provided by the Level 3
PQ algorithms. These are not the only elliptic curves that meets this requirement; however,
P-256 and P-384 are widely supported due to their inclusion as one of two 256-bit or 384-bit
curves approved for use with USG systems [24].

PQ Baseline
Tables 6.4 and 6.5 introduce the individual performance for each PQ signature algorithm
used in further testing. As discussed in Chapter 4, these signature algorithms are chosen for
their compatibility with the true hybrid schemes introduced in Chapter 3. For readability,
the results are divided into two separate tables based on their claimed NIST security

77

Table 6.3. Classic Signature Algorithm Performance (clock cycles)

Name Sign Verify

Minimum Mean St. Dev. Minimum Mean St. Dev.

RSA 3072 4775952 4878751 428825 101484 103053 3008
DSA 3072 1908506 2052518 43366 1836340 1907853 33743
ECDSA P-256 146478 148717 3997 321660 323800 4774

level (e.g., Level 1, Level 3) and this pattern is repeated for the duration of the paper.
These levels were introduced during the NIST PQ standardization project and are based
on broad comparison to a “reference primitive offered by the existing NIST standards in
symmetric cryptography” [8]. Levels 1, 3, and 5 establish that an attack on a PQ algorithm’s
security definition must require “computational resources comparable to or greater than
those required for key search on a block cipher” with a either a 128-bit, 192-bit, or 256-bit
key, respectively. The majority of FS-compatible PQ signature algorithms submitted during
the first two rounds support both levels 1 and 3; however, of these, only Dilithium established
Level 5 security parameters. As a result, only the security parameters associated with Level
1 and Level 3 are explored in this work.

Table 6.4. Level 1 PQ Signature Algorithm Performance (clock cycles)

Name Sign Verify

Minimum Mean St. Dev. Minimum Mean St. Dev.

MQDSS-31-48 28332168 28475354 154445 20433094 20508699 79665
qTESLA-p-I 769650 6080871 5656566 834702 841373 10674
Dilithium 2 202018 205766 6538 95926 97429 5739
Falcon-512 13883670 14002816 125397 141272 146377 2618

FS–RSA
Tables 6.6, 6.7, and 6.8 list the results of the Sign and Verify operations for the FS–RSA
and Falcon–RSA hybrid schemes. The computational difference between the concatenated
and true hybrid schemes is minimized by the reduced interaction between the component

78

Table 6.5. Level 3 PQ Signature Algorithm Performance (clock cycles)

Name Sign Verify

Minimum Mean St. Dev. Minimum Mean St. Dev.

MQDSS-31-64 91877486 92139638 126269 66968172 67396942 741166
qTESLA-p-III 1817536 12271230 11790021 2191800 2203284 11129
Dilithium 3 405644 414253 16545 132936 138787 7141
Falcon-1024 29944920 30396434 157724 292120 293975 3903

algorithms. Unlike other true hybrid schemes (e.g., FS–FS, FS–DSA #1), the entirety of the
PQ signature algorithm can be completed with only minor modification prior to initiating
signing with the RSA algorithm. This is an expected result as the only difference between
the concatenated and true hybrid scheme is that the RSA algorithm must sign a hash of both
the message digest and the challenge c in the latter instead of just the message digest as in
the former. For the same reason, the true hybrid scheme also produces a smaller signature
because c is included in the output of the RSA algorithm. The size difference varies between
component algorithms depending on the length of c after the algorithm packs and encodes
its individual signature.

FS–DSA
Tables 6.9 and 6.10 depict the performance results for the FS–DSA hybrid schemes and
Tables 6.11 and 6.12 depict the performance results for the FS-ECDSA hybrid schemes.
The three FS–(EC)DSA true hybrid schemes, FS–(EC)DSA #1, FS–(EC)DSA #2, and
FS–(EC)DSA #3 are differentiated by appending either a “_1”, “_2” or “_3”, respectively.

The results show a significant computational increase during signing for the FS–DSA #1
true hybrid scheme when the component algorithm is either qTESLA or Dilithium. While
the minimum required clock cycles for the concatenated and hybrid schemes are negligible
(approx. 1-2% difference) across all combinations, the average Sign clock cycles required for
qTESLA-p-I_DSA3072_1 and qTESLA-p-III_DSA3072_1 are roughly four times greater
than the concatenated equivalent. Similarly, the average Sign clock cycles for Dilithium
2_DSA3072_1 and Dilithium 3_DSA3072_1 are approximately 5.6 times greater than their
concatenated equivalents.

79

Table
6.6.Level1

FS–R
SA

A
lgorithm

Perform
ance

(clock
cycles/100,000

iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-48_R

SA
3072

33174256
33426406

431071
20306580

20387172
278981

M
Q
D
SS-31-48+R

SA
3072

33115092
33404479

504067
20319128

20432653
185177

qTESLA
-p-I_R

SA
3072

5524304
7761219

2181460
935986

957015
29502

qTESLA
-p-I+R

SA
3072

5522052
7824139

2398040
937408

961961
33513

D
ilithium

2_R
SA

3072
5081682

5946696
825240

308518
315259

12649
D
ilithium

2+R
SA

3072
5089776

5867469
760034

308564
316811

15755

Table
6.7.Level3

FS–R
SA

A
lgorithm

Perform
ance

(clock
cycles/100,000

iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-64_R

SA
3072

96870754
97456064

550850
68288436

68569869
435007

M
Q
D
SS-31-64+R

SA
3072

95567940
96232121

717129
70598242

71028114
449881

qTESLA
-p-III_R

SA
3072

6738706
11058109

4416960
2275136

2307037
33229

qTESLA
-p-III+R

SA
3072

6744158
11576033

5038620
2270330

2314710
42344

D
ilithium

3_R
SA

3072
5253670

6263381
1057898

406032
410517

9310
D
ilithium

3+R
SA

3072
5252904

6304159
1092058

405812
410523

9303

80

Table 6.8. Level 1 and 3 Falcon–RSA Algorithm Performance (clock cy-
cles/100,000 iterations)

Name Sign Verify

Minimum Mean St. Dev. Minimum Mean St. Dev.

Falcon-512_RSA3072 18717310 19074463 556886 248084 254144 15062
Falcon-512+RSA3072 18435926 18842572 477399 244488 248024 3690

Falcon-1024_RSA3072 35010284 35780684 548477 392828 400322 9798
Falcon-1024+RSA3072 34939216 35547779 493642 391530 395248 4924

The performance gap is caused by how either PQ algorithm creates a signature. Both of these
signature algorithms share a similar programmatic flow in which they employ a rejection
sampling to generate a random polynomial that is eventually used to generate a signature.
The signature must meet certain criteria before it is accepted and, in the event that it is
rejected, both algorithms restart the signing process with a new random polynomial. It is
inside of this sampling loop that both the ω and challenge c values are derived in part
from the random polynomial. As a result, the ω and c values change with every sampling
iteration.

Due to the way the FS–DSA #1 scheme is designed, the DSA algorithm requires the ω as
input and a portion of its output s is then used as input for c. As such, the entire DSA signing
operation is repeated for every iteration of the sampling loop. This results in an exponential
increase in computation for every additional iteration. Figure 6.1 captures this trend for the
ECDSA #1 andDSA #1 hybrid combinations of Dilithium 2 and qTESLA-p-I. This problem
is not present in the other versions of the FS–DSA hybrid schemes because the DSA portion
of the algorithm occurs after the response z has been validated. In other words, the rejection
loop does not include the DSA portion of the hybrid scheme. Instead, the only additional
operations occurring within the loop are those used to generate the shared challenge c such
as additional hash operations.

FS–FS
Tables 6.13 and 6.14 show the results of the FS–FS true hybrid schemes. As mentioned
previously, algorithm combinations were limited to comparing similar NIST security levels

81

Table
6.9.Level1

FS–D
SA

A
lgorithm

Perform
ance

(clock
cycles/100,000

iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-48_D

SA
3072_1

30593510
30911629

190915
22296080

22447616
184779

M
Q
D
SS-31-48_D

SA
3072_2

30286158
30486752

112053
22609498

22735904
202410

M
Q
D
SS-31-48_D

SA
3072_3

28892260
29273585

482051
20782366

20960530
148475

M
Q
D
SS-31-48+D

SA
3072

30445364
30866511

253820
23105798

23336910
165772

qTESLA
-p-I_D

SA
3072_1

2786674
21853655

19252583
2708872

2799670
104610

qTESLA
-p-I_D

SA
3072_2

2783430
4969160

2168691
2725524

2820646
117599

qTESLA
-p-I_D

SA
3072_3

4645166
6803139

2262872
2749568

2797934
33565

qTESLA
-p-I+D

SA
3072

2863320
4929405

2144125
2731348

2832163
274384

D
ilithium

2_D
SA

3072_1
2403506

13570161
11806304

2125466
2201727

198151
D
ilithium

2_D
SA

3072_2
2402442

3230981
793480

2127060
2202829

46512
D
ilithium

2_D
SA

3072_3
4255984

5003315
726336

2163704
2209893

40023
D
ilithium

2+D
SA

3072
2474348

3117772
684389

2099760
2174546

57389

82

Table
6.10.Level3

FS–D
SA

A
lgorithm

Perform
ance

(clock
cycles/100,000

iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-64_D

SA
3072_1

93664324
94480827

731356
68856150

69375085
515562

M
Q
D
SS-31-64_D

SA
3072_2

93126278
93709010

459711
68154172

68566037
365851

M
Q
D
SS-31-64_D

SA
3072_3

86885316
87580475

401333
64790938

65285280
272373

M
Q
D
SS-31-64+D

SA
3072

93146278
94173886

752451
69973912

70939857
509620

qTESLA
-p-III_D

SA
3072_1

3786028
21035678

18137620
4062740

4144590
62881

qTESLA
-p-III_D

SA
3072_2

3797666
8768752

5568558
4031274

4126837
122603

qTESLA
-p-III_D

SA
3072_3

5648058
10363582

4693998
4099288

4185566
91074

qTESLA
-p-III+D

SA
3072

3777176
8394040

4694360
4055854

4138440
55649

D
ilithium

3_D
SA

3072_1
2543280

15804210
13964595

2202754
2259741

47863
D
ilithium

3_D
SA

3072_2
2532608

3626120
1122317

2218780
2276042

41174
D
ilithium

3_D
SA

3072_3
4411104

5442930
1003520

2260910
2310402

42473
D
ilithium

3+D
SA

3072
2501558

3440188
971525

2178644
2224332

37876

83

Table6.11.Level1
FS-EC

D
SA

A
lgorithm

Perform
ance(clock

cycles/100,000
iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-48_P-256_1

29673944
30010283

239413
21589426

21875800
248057

M
Q
D
SS-31-48_P-256_2

29667024
29985660

248567
21911948

22125701
177884

M
Q
D
SS-31-48_P-256_3

27302484
27540771

246822
19923908

20092525
161472

M
Q
D
SS-31-48+P-256

29504468
29910481

272541
21815036

22015379
131894

qTESLA
-p-I_P-256_1

1981182
14297937

12485330
1907740

1958294
52662

qTESLA
-p-I_P-256_2

1977910
4155831

2371222
1893860

1942864
54994

qTESLA
-p-I_P-256_3

2995506
5133583

2305432
1959238

1995222
41050

qTESLA
-p-I+P-256

1979672
4069353

2226078
1889212

1934356
48721

D
ilithium

2_P-256_1
1612978

8281891
7439924

1279940
1314887

37692
D
ilithium

2_P-256_2
1613566

2360574
799932

1287770
1316937

33755
D
ilithium

2_P-256_3
2627620

3346614
742938

1344868
1368064

24996
D
ilithium

2+P-256
1584504

2230755
670711

1279476
1306615

33586

84

Table6.12.Level3
FS-EC

D
SA

A
lgorithm

Perform
ance(clock

cycles/100,000
iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-64_P-384_1

93331220
94462822

618842
69668524

70346020
406472

M
Q
D
SS-31-64_P-384_2

92562708
93734508

521095
68811476

69637445
433858

M
Q
D
SS-31-64_P-384_3

87660710
88325308

465132
64962174

65420061
305014

M
Q
D
SS-31-64+P-384

92592892
93396275

496419
67445270

68229051
467418

qTESLA
-p-III_P-384_1

2991960
14862288

12310802
3269906

3327888
72241

qTESLA
-p-III_P-384_2

2985150
7869324

5205150
3237836

3310353
52980

qTESLA
-p-III_P-384_3

6442510
10970763

4418290
4342570

4414645
61690

qTESLA
-p-III+P-384

2988522
7788849

5286906
3242010

3299152
66254

D
ilithium

3_P-384_1
1729576

9951745
8875587

1392140
1426187

34431
D
ilithium

3_P-384_2
1734598

2835995
1208457

1387014
1426976

55507
D
ilithium

3_P-384_3
5184894

6269566
1064462

2485112
2531574

43676
D
ilithium

3+P-384
1706448

2631422
1025969

1349078
1368455

31114

85

for clarity. While it is possible to combine two PQ algorithms with dissimilar security
levels, the practicality of doing so is unclear given the increased key and signature size of
PQ signature algorithms, in general.

The same pattern of results found in the FS–DSA #1 hybrid scheme is also present in
certain combinations of the FS–FS hybrid scheme. Specifically, combining both Dilithium
and qTESLA results in another exponential increase in the number of CPU cycles needed for
the Sign operation. On average, both Dilithium 2_qTESLA-p-I and Dilithium 3_qTESLA-
p-III require over 82 percent more cycles than their concatenated counterparts.

This effect is again caused by the rejection sampling present in both qTESLA and Dilithium.
Both signature algorithms require the signature derived from this value to meet strict criteria
before it is accepted. For the FS–FS scheme, if either algorithm rejects the shared challenge
c, both algorithmsmust restart at the beginning of their rejection sampling and the algorithm
that rejected c increments their internal nonce. Essentially, a shared c value that satisfies both
algorithm’s selection criteria is required in order to complete the signing process. Table 6.15
and Table 6.16 list the number of iterations of each true and concatenated hybrid scheme for
both Dilithium and qTESLA, respectively, by recording changes in the nonce values of both
algorithms during testing. As shown, only the FS–FS hybrid scheme between Dilithium and
qTESLSA results in a substantial increase in the number of rejection sampling iterations.

6.2.3 Discussion
The primary goal of testing the true hybrid schemes presented in Chapter 3 is to determine
if they introduced significant computational overhead outside of the component algorithms.
Figures 6.2–6.4 show the average difference between executing the Sign and Verify op-
erations for each component algorithm consecutively or in the corresponding true hybrid
scheme. Table 6.17 lists the percentage difference of both the Sign and Verify operations
for each hybrid combination. When comparing the results, there is very little difference
between the true hybrid schemes and the concatenated hybrid schemes with the exception
of FS–DSA #1 and certain FS–FS combinations.

The similarity of the performance between the concatenated and hybrid schemes highlights
that the true hybrid schemes do not add significant computational overhead in most combi-
nations. This is explained by the fact that the Sign and Verify operations of the individual

86

Table
6.13.

Level
1
FS–FS

A
lgorithm

Perform
ance

(clock
cycles/100,000

iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-48_qTESLA

-p-I
25914630

28343915
2266728

19477260
19756312

228915
M
Q
D
SS-31-48+qTESLA

-p-I
25766862

28300895
2359434

19263604
19549071

182367

D
ilithium

2_qTESLA
-p-I

1108922
20373856

20022781
1057124

1083495
45853

D
ilithium

2+qTESLA
-p-I

1084436
3600091

2147510
1048870

1079041
44559

D
ilithium

2_M
Q
D
SS-31-48

25474576
26440020

806066
18541908

18763211
157209

D
ilithium

2+M
Q
D
SS-31-48

25510494
26356854

682342
18541332

18729667
239650

Table
6.14.

Level
3
FS–FS

A
lgorithm

Perform
ance

(clock
cycles/100,000

iterations)

N
am

e
Sign

Verify

M
inim

um
M
ean

St.D
ev.

M
inim

um
M
ean

St.D
ev.

M
Q
D
SS-31-64_qTESLA

-p-III
85385952

90730989
4695612

61427524
62149326

490615
M
Q
D
SS-31-64+qTESLA

-p-III
85717446

91018767
4913508

62951274
63813032

609661

D
ilithium

3_qTESLA
-p-III

2246790
44295900

41017452
2497288

2560986
85820

D
ilithium

3+qTESLA
-p-III

2231714
7691898

5031825
2477974

2519027
43158

D
ilithium

3_M
Q
D
SS-31-64

84708782
87481815

2534362
64275024

64958704
414343

D
ilithium

3+M
Q
D
SS-31-64

84322128
85787056

1039509
61285770

61707011
559371

87

(a)
D

ilithium
2_

D
SA

3072_
1

vs.D
ilithium

2+
D

SA
3072

(b)
D

ilithium
2_

P
-256_

1
vs.D

ilithium
2+

P
-256

(c)
qT

ESLA
-p-I_

D
SA

3072_
1

vs.qT
ESLA

-p-I+
D

SA
3072

(d)
qT

ESLA
-p-I_

P
-256_

1
vs.qT

ESLA
-p-I+

P
-256

Figure6.1.Perform
anceG

ap
betw

een
C
ertain

FS–(EC
)D

SA
#1

C
om

binations
and

theirC
oncatenated

C
ounterparts

88

Table 6.15. Rejection Sampling Iterations for the Dilithium Signature Algo-
rithm

Name Min Max Mean St. Dev.

Dilithium 2 3 111 16 14
Dilithium 2_RSA3072 3 132 17 15
Dilithium 2_DSA3072_1 3 123 16 15
Dilithium 2_DSA3072_2 3 102 16 15
Dilithium 2_DSA3072_3 3 120 17 14
Dilithium 2_P-256_1 3 111 17 15
Dilithium 2_P-256_2 3 108 17 15
Dilithium 2_P-256_3 3 123 17 15
Dilithium 2_MQDSS-31-48 3 120 16 14
Dilithium 2_qTESLA-p-I 3 963 153 148
Dilithium 2+qTESLA-p-I 3 108 17 15

Dilithium 3 4 180 26 24
Dilithium 3_RSA3072 4 152 25 23
Dilithium 3_DSA3072_1 4 176 26 24
Dilithium 3_DSA3072_2 4 156 26 23
Dilithium 3_DSA3072_3 4 144 26 24
Dilithium 3_P-384_1 4 236 27 26
Dilithium 3_P-384_2 4 172 26 23
Dilithium 3_P-384_3 4 160 25 23
Dilithium 3_MQDSS-31-64 4 176 26 24
Dilithium 3_qTESLA-p-III 4 2416 194 191
Dilithium 3+qTESLA-p-III 4 204 26 24

component algorithms are computationally more significant (i.e., “cost” more) than any of
the additional steps introduced by the true hybrid schemes. Since both the concatenated and
true hybrid schemes must complete the same Sign and Verify operations, the end result is
a very similar performance in most cases. The only exception to this is when the hybrid
scheme introduces computationally expensive code inside of either qTESLA’s orDilithium’s
rejection sampling during signing. This occurs in both the FS–DSA #1 and FS–FS hybrid
schemes which results in a significant decrease to the average signing efficiency.

89

Table 6.16. Rejection Sampling Iterations for the qTESLA Signature Algo-
rithm

Name Min Max Mean St. Dev.

qTESLA-p-I 1 88 9 8
qTESLA-p-I_RSA3072 1 85 8 8
qTESLA-p-I_DSA3072_1 1 99 8 8
qTESLA-p-I_DSA3072_2 1 81 8 8
qTESLA-p-I_DSA3072_3 1 55 8 8
qTESLA-p-I_P-256_1 1 38 7 8
qTESLA-p-I_P-256_2 1 89 7 8
qTESLA-p-III_P-256_2 1 64 9 8
MQDSS-31-48_qTESLA-p-I 1 74 9 8
Dilithium 2_qTESLA-p-I 1 321 51 49
Dilithium 2+qTESLA-p-I 1 64 9 8

qTESLA-p-III 1 59 7 7
qTESLA-p-III_RSA3072 1 75 7 7
qTESLA-p-III_DSA3072_1 1 76 7 7
qTESLA-p-III_DSA3072_2 1 75 7 6
qTESLA-p-III_DSA3072_3 1 43 7 7
qTESLA-p-III_P-384_1 1 25 6 5
qTESLA-p-III_P-384_2 1 69 6 7
qTESLA-p-III_P-384_3 1 50 7 6
MQDSS-31-64_qTESLA-p-III 1 41 7 6
Dilithium 3_qTESLA-p-III 1 604 48 47
Dilithium 3+qTESLA-p-III 1 51 7 6

Table 6.17. Percentage Difference of True Hybrid Minimum and Mean Per-
formance from Concatenated Hybrid Schemes

Name Sign Verify

Minimum Mean Minimum Mean

Dilithium 2_RSA3072 -0.16% 1.33% -0.01% -0.49%
Dilithium 2_DSA3072_1 -2.95% 77.02% 1.21% 1.23%
Dilithium 2_DSA3072_2 -2.99% 3.50% 1.28% 1.28%

90

Dilithium 2_DSA3072_3 41.86% 37.69% 2.96% 1.60%
Dilithium 2_P256_1 1.77% 73.06% 0.04% 0.63%
Dilithium 2_P256_2 1.80% 5.50% 0.64% 0.78%
Dilithium 2_P256_3 39.70% 33.34% 9.72% 4.86%
Dilithium 2_MQDSS-31-48 -0.14% 0.31% 0.00% 0.18%
Dilithium 2_qTESLA-p-I 2.21% 82.33% 0.78% 0.41%

qTESLA-p-I_RSA3072 0.04% -0.81% -0.15% -0.52%
qTESLA-p-I_DSA3072_1 -2.75% 77.44% -0.83% -1.16%
qTESLA-p-I_DSA3072_2 -2.87% 0.80% -0.21% -0.41%
qTESLA-p-I_DSA3072_3 38.36% 27.54% 0.66% -1.22%
qTESLA-p-I_P256_1 0.08% 71.54% 0.97% 1.22%
qTESLA-p-I_P256_2 -0.09% 2.08% 0.25% 0.44%
qTESLA-p-I_P256_3 33.91% 20.73% 3.57% 3.05%

MQDSS-31-48_RSA3072 0.44% 0.40% -2.32% -2.15%
MQDSS-31-48_DSA3072_1 0.06% -0.06% -1.27% -1.30%
MQDSS-31-48_DSA3072_2 0.08% 0.12% 0.53% 0.36%
MQDSS-31-48_DSA3072_3 6.11% 6.47% 1.78% 1.63%
MQDSS-31-48_P256_1 -0.41% -0.51% 2.28% 2.36%
MQDSS-31-48_P256_2 -0.11% -0.24% 1.57% 1.46%
MQDSS-31-48_P256_3 3.52% 3.48% 1.52% 1.48%
MQDSS-31-48_qTESLA-p-I 0.57% 0.15% 1.10% 1.05%

Dilithium 3_RSA3072 0.01% -0.65% 0.05% 0.00%
Dilithium 3_DSA3072_1 1.64% 78.23% 1.09% 1.57%
Dilithium 3_DSA3072_2 1.23% 5.13% 1.81% 2.27%
Dilithium 3_DSA3072_3 43.29% 36.80% 3.19% 3.64%
Dilithium 3_P384_1 1.34% 73.56% 3.09% 4.05%
Dilithium 3_P384_2 1.62% 7.21% 2.74% 4.10%
Dilithium 3_P384_3 67.09% 58.03% 45.71% 45.94%
Dilithium 3_MQDSS-31-64 0.46% 1.94% 4.65% 5.01%
Dilithium 3_qTESLA-p-III 0.67% 82.64% 0.77% 1.64%

qTESLA-p-III_RSA3072 -0.08% -4.68% 0.21% -0.33%
qTESLA-p-III_DSA3072_1 0.23% 60.10% 0.17% 0.15%

91

qTESLA-p-III_DSA3072_2 0.54% 4.27% -0.61% -0.28%
qTESLA-p-III_DSA3072_3 1.55% 1.75% 1.58% 1.66%
qTESLA-p-III_P384_1 0.11% 47.59% 0.85% 0.86%
qTESLA-p-III_P384_2 -0.11% 1.02% -0.13% 0.34%
qTESLA-p-III_P384_3 1.07% 1.23% 0.91% 0.87%

MQDSS-31-64_RSA3072 0.12% -0.02% 2.23% 2.03%
MQDSS-31-64_DSA3072_1 -0.03% 0.06% -0.34% -0.20%
MQDSS-31-64_DSA3072_2 -0.49% -0.14% -0.32% -0.35%
MQDSS-31-64_DSA3072_3 1.55% 1.75% 1.58% 1.66%
MQDSS-31-64_P384_1 -0.19% 0.01% 0.59% 0.63%
MQDSS-31-64_P384_2 -0.36% -0.20% 0.47% 0.39%
MQDSS-31-64_P384_3 1.07% 1.23% 0.91% 0.87%
MQDSS-31-64_qTESLA-p-III -0.39% -0.32% -2.48% -2.68%

Selection Priorities
Based on the results in Table 6.17, the decision of choosing between a concatenated and
true hybrid design should not be a question of performance, but one of security properties.
A concatenated design only achieves the security properties of the component algorithms
if both are verified. A signer has no guarantee that the verifier will choose to verify both
signatures. In fact, most backwards-compatible systems rely on this concept as legacy
systems may not support one or more of the component signature algorithms. Using a
true hybrid scheme, it is impossible for an honest verifier to validate a signature without
verifying all component algorithms (i.e., hybrid verification). As such, a signer achieves a
guarantee that would not be possible in a purely concatenated system.

Code Design and Optimizations
Our approach for implementation focuses on minimizing as much change to the original
signature algorithms as possible. As a result, optimization of different hybrid combinations
was not considered. To minimize the effect of additional function calls and other dissim-
ilarities between combinations, we use the same API for all true and concatenated hybrid
schemes. The API prioritizes the same depth of function calls and consistent parameters

92

(a)
D

ilithium
2

M
ean

Sign
Perform

ance

(b)
D

ilithium
2

M
ean

V
erify

Perform
ance

(c)
D

ilithium
3

M
ean

Sign
Perform

ance

(d)
D

ilithium
3

M
ean

V
erify

Perform
ance

Figure6.2.D
ilithium

2
&
3
M
ean

Sign
and

Verify
O
peration

Perform
ancefor

True
and

C
oncatenated

H
ybrid

Schem
es

93

(a)
qT

ESLA
-p-I

M
ean

Sign
Perform

ance

(b)
qT

ESLA
-p-I

M
ean

V
erify

P
erform

ance

(c)
qT

ESLA
-p-IIIM

ean
Sign

Perform
ance

(d)
qT

ESLA
-p-IIIM

ean
V
erify

Perform
ance

Figure
6.3.qTESLA

-p-I&
qTESLA

-p-IIIM
ean

Sign
and

Verify
O
peration

Perform
ance

forTrue
and

C
oncatenated

H
ybrid

Schem
es

94

(a)
M

Q
D

SS-31-48
M

ean
Sign

Perform
ance

(b)
M

Q
D

SS-31-48
M

ean
V
erify

P
erform

ance

(c)
M

Q
D

SS-31-64
M

ean
Sign

Perform
ance

(d)
M

Q
D

SS-31-64
M

ean
V
erify

P
erform

ance

Figure6.4.M
Q
D
SS-31-48

&
M
Q
D
SS-31-64

M
ean

Sign
and

Verify
O
peration

Perform
ance

forTrue
and

C
oncatenated

H
ybrid

Schem
es

95

over traditional clean coding principles for each true and concatenated hybrid combination.
This approach is taken to minimize differences in the language and operating system spe-
cific overhead between schemes for our performance testing; however, this design decision
leads to an explosion of duplicate code with subtle modifications as required by the hybrid
scheme. This design artifact makes integration into existing cryptographic libraries both
difficult and expensive. For example, any minor update to a component signature algorithm
necessitates that the same change is applied across every hybrid combination without error.

Additionally, no efforts are made to protect against side-channel attacks or to safeguard
critical areas of memory for any of the hybrid schemes tested in this work as this is
considered outside the scope of this work. As a result, our implementations should not be
considered safe for any production environment.

96

CHAPTER 7:
Results on X.509 Certificate Sampling and Hybrid

Certificate Use in TLS

This chapter examines server-based X.509 certificates associated with a ranked list of
active domain names and the performance of hybrid schemes in TLS 1.3 authentication.
Through these experiments, this chapter provides a representative snapshot of the signature
algorithms currently employed as part of PKI on the Internet and highlights the impact
hybrid certificates have on the TLS 1.3 protocol.

7.1 X.509 Certificate Sampling
The section examines a collection of X.509 certificates recorded using a list of one million
domains with the “most referring subnets” provided by Majestic-12 Ltd [107]. Majestic-12
Ltd. uses the total number of backlinks, a uni-directional HTML link to another website,
contained within a web page to determine a relative score for each domain. This ranking
system is not considered for the experiment; however, it is important to note that the results
may be impacted.

7.1.1 Setup
In order to collect the X.509 certificates, a connection to Transmission Control Protocol
(TCP) port 443 is attempted for every listed domain using OpenSSL’s s_client program. If
a TLS session is successfully established, all session metadata produced by the program is
recorded. By default, this information includes the TLS version, selected ciphersuite, the
entire certificate chain with Privacy Enhanced Mail (PEM) encoded certificates, and the
total handshake size. The server certificate is then parsed and various attributes such as the
certificate length, signature algorithm identifier, public key information, and any extensions
are ingested into a local database from which the results are derived.

97

7.1.2 Results
Of the one million domains, only 683,289 responded with an active TLS session. This is an
expected result as the ranked list does not specify or require the domains to support TLS
on TCP 443. Table 7.1 provides a list of all signature algorithms encountered, based on
the name associated with the Signature Algorithm Identifier field in the X.509 certificate.
Table 7.2 uses the same sample but depicts the numbers based on the OID identified in the
Signature Algorithm field in the X.509 certificate.

Table 7.1. Majestic-12 Breakout by Signature Algorithm Identifier

Signature Algorithm Total Percentage (%)

RSA 530972 77.70
ECDSA 152317 22.30

683289 100

Table 7.2. Majestic-12 Breakout by Signature Algorithm OID

Signature OID Name Total Percentage (%)

md5WithRSAEncryption 1425 0.21
sha1WithRSAEncryption 9663 1.40
sha256WithRSAEncryption 517738 75.77
sha384WithRSAEncryption 1715 0.25
sha512WithRSAEncryption 427 0.06
sha1WithRSA (deprecated) 4 –
ecdsa-with-SHA256 152188 22.27
ecdsa-with-SHA1 2 –
ecdsa-with-SHA384 127 0.03

683289 100

Using additional metadata recorded by the s_client command, we also extracted the TLS
version and the key exchange/agreement protocols used during the handshake. Table 7.3
contains a breakdown of the TLS versions in our sample. Excluding failed connections or
instances where certificates are expired, the majority of connections are divided between
TLS 1.2 and TLS 1.3. For key exchanges in TLS versions up to 1.2, approximately 94

98

percent of the TLS sessions use Elliptic Curve Diffie-Hellman Ephemeral (ECDHE), 3.6
percent used RSA, and 2.6 percent use Diffie-Hellman Ephemeral (DHE) for exchanging
symmetric keys.

Table 7.3. Majestic-12 Breakout by TLS version

TLS version Total Percentage (%)

TLSv1.0 464 0.99
TLSv1.1 9 0.02
TLSv1.2 27018 57.89
TLSv1.3 19184 41.10

For TLS 1.3, changes to the protocol removed support for legacy ciphersuites in favor
of Authenticated Encryption with Associated Data (AEAD) algorithms [2]. Currently,
NIST recommends four AEAD ciphersuites for use with TLS 1.3: TLS_AES_128_GCM_
SHA256, TLS_AES_256_GCM_SHA384, TLS_AES_128_CCM_SHA256, and TLS_
AES_128_CCM_8_SHA256 [108]. These suites can be paired with either RSA or ECDSA
server certificates; however, DSA certificates are no longer supported. Of the collected
samples, over 85 percent use TLS_AES_256_GCM_SHA384 as shown in Table 7.4.

Table 7.4. Majestic-12 Breakout of TLS 1.3 Ciphersuites

ciphersuite Total Percentage (%)

TLS_AES_256_GCM_SHA384 16374 85.35
TLS_AES_128_GCM_SHA256 1293 6.74
TLS_CHACHA20_POLY1305_SHA256 93 0.48
NONE (failed connections) 1424 7.42

7.1.3 Discussion
Based on the results in Table 7.1, the majority of X.509 certificates used to authenticate web
servers in our data set still rely on the RSA signature algorithm. In the sample, no examples
of the standard DSA algorithm were found in use; however, approximately 22 percent of the
certificates used its successor, ECDSA.

99

Additionally, the average distance from the server to its root CA (e.g., depth of the certificate
chain) in our sample is only two certificates. Based on the recorded metadata and the
information contained within the X.509 certificates, the server certificate is typically signed
by an intermediate CAwhich is itself signed by a root CA. The longest certificate chain in our
data set contains 14 certificates; however, the server certificate is signed by an intermediate
CA that is directly signed by a root CA. The additional certificates appear to be for related
domains that are not specifically tied to the server certificate.

Signature Algorithm Transition
The fact that the majority of the certificates in our sample use the RSA signature algorithm
reinforces the idea that digital signature schemes transition at a slower pace compared to
other cryptographic primitives. Comparatively, the key exchange/agreement options in our
sample show that the selected ciphersuite is likely not to use legacy algorithms like RSA
and static Diffie–Hellman (DH) for exchanging keys. Table 7.5 provides a prioritized list of
TLS ciphersuites for our version of the OpenSSL s_client program. This list is obtained by
using a simple Python script that captures the TLS handshake metadata.

Table 7.5. List of TLS Ciphersuites for OpenSSL 1.1.1i s_client Program in
Priority Order

Ciphersuite Description

0x1302 TLS_AES_256_GCM_SHA384
0x1303 TLS_CHACHA20_POLY1305_SHA256
0x1301 TLS_AES_128_GCM_SHA256
0xc02c TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
0xc030 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
0x009f TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
0xcca9 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
0xcca8 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
0xccaa TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
0xc02b TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
0xc02f TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

100

0x009e TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
0xc024 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
0xc028 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
0x006b TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
0xc023 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
0xc027 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
0x0067 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
0xc00a TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
0xc014 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
0x0039 TLS_DHE_RSA_WITH_AES_256_CBC_SHA
0xc009 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
0xc013 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
0x0033 TLS_DHE_RSA_WITH_AES_128_CBC_SHA
0x009d TLS_RSA_WITH_AES_256_GCM_SHA384
0x009c TLS_RSA_WITH_AES_128_GCM_SHA256
0x003d TLS_RSA_WITH_AES_256_CBC_SHA256
0x003c TLS_RSA_WITH_AES_128_CBC_SHA256
0x0035 TLS_RSA_WITH_AES_256_CBC_SHA
0x002f TLS_RSA_WITH_AES_128_CBC_SHA
0x00ff TLS_EMPTY_RENEGOTIATION_INFO_SCSV

Table 7.5 shows that even when excluding TLS 1.3, which removes ciphersuite negotiation
andmandates a small subset of ciphersuites, the s_client utility prefers “newer” key exchange
algorithms. In fact, OpenSSL 1.1.1i lists over 21 different ciphersuites featuring either the
ECDHE or DHE key exchange options before any that use the RSA algorithm. As a result,
if a server running TLS 1.2 or older supports any of these ciphersuites, an application using
the OpenSSL library for TLS support will not use RSA for key exchanges.

The prioritization of ciphersuites is a conscious decision made by standards organizations
and system engineers to efficiently provide the highest level of security required for the
situation at hand. While NIST does not provide a priority order of TLS ciphersuites for
USG systems, it does limit ciphersuites to those that use “approved” algorithms [108].
Additionally, guidance is also updated if the risks in a design or implementation outweigh

101

perceived benefits. For example, NIST no longer recommends that RSA be used as a key
transport mechanism and that any government agencies that rely on it move to a newmethod
as soon as possible [108].

Public Key Length and Certificate Sizes
Upon examining the recordedX.509 certificates, the average size for aDER-encoded, server-
based X.509 certificate is 1654 bytes. This analysis does not include any certificates beyond
the server certificate that may be included as part of a certificate chain such as intermediate
and root CA certificates. When categorized by signature algorithm, the average certificate
size for RSA signed certificates is 1750 bytes and the average size for ECDSA is 1262 bytes.

Table 7.6 compares the relative size of the hybrid certificate designs discussed in Chapter 5.
Each design contains the same metadata (e.g., issuer name, serial number, etc.) and is
signed using Dilithium 2 and RSA 3072. The certificates are then encoded using the ASN.1
functions included with OpenSSL. Comparatively, there is little difference in size between
the hybrid designs as they contain more or less the same information although at different
locations within the certificate. The variance is a product of the ASN.1 structures used
to represent the information. For example, the CROSSING and ISARA designs use the
SubjectPublicKeyInfo structure for the second public key [20], [62]. This field is a sequence
of the AlgorithmIdentifier and the public key represented as a bit string [90]. The OQS
design, on the other hand, concatenates the second public key with the first public key
and stores both in the original SubjectPublicKeyInfo field [87]. As a result, the second
AlgorithmIdentifier is not needed.

102

Table 7.7 displays the relative sizes of the hybrid X.509 certificates between each true hybrid
scheme. Each certificate uses the OQS design and contains the samemetadata. Of note, there
is approximately a 200-300 byte difference in certificate sizes between similar certificates
in our X.509 sample and the certificates used in our TLS authentication testing (see Section
7.2) when controlling for the signature algorithm and public key length. This is likely due
to a difference in the number of X.509v3 extensions between both groups. For example, our
testing certificates do not contain any Online Certificate Status Protocol (OCSP), Certificate
Revocation List (CRL), or Signed Certificate Timestamp (SCT) extensions whereas over
seventy percent of the certificates in our data set do. Additionally, other extensions, found
in both groups, are variable in length and are influenced by external factors such as domain
name length.

Even with this taken into account, our smallest hybrid certificate, Dilithium 2_RSA3072,
is still over twice as large as the average RSA 3072 certificate in our sample. This is not
surprising given the relative increase of both public key and signature sizes between PQ
and classic signature algorithms. The same trend extends to the difference between the true
hybrid schemes and PQ signature algorithms; however, the difference in certificate size is
not as stark. As shown in Table 7.7, there is approximately a 700 byte increase between
Dilithium 2 and Dilithium 2_RSA3072 and only a 600 byte increase between Dilithium
2 and Dilithium 2_P-256. Regardless of the encoding format, hybrid digital certificates
are obviously significantly larger than their single algorithm counterparts because hybrid
schemes require at least two public keys. Additionally, the combined signature length, while
varied, will also be larger.

Table 7.6. Comparison of Hybrid Certificate Sizes (bytes)

Name Size (DER) Size (PEM)

ISARA 4833 6603
CROSSING 4835 6603
OQS 4786 6538

103

While outside the scope of this paper, this experiment also highlighted several non-standard
RSA key lengths in use. NIST recommends a minimum of 2048 bits for digital signature
keys [109]; however, several keys were below this threshold. Other key sizes (e.g., 2024,
2255, 4086) were between standardized sizes. In these instances, the server certificates were
either self-signed or part of default web server installations.

7.2 Authentication in TLS
This section explores the impact hybrid signature schemes have on the TLS 1.3 protocol
handshake. The objective is to demonstrate how the increased certificate sizes and com-
putational complexity caused by hybrid signature schemes can affect current standardized
communication protocols. TLS 1.3 is chosen due to its ubiquitous use throughout Internet-
based applications and existing research. To control the number of variables, all tests only
observe server authentication using a digital certificate signed by an intermediate CA.
OCSP responses, client certificate authentication, 0-RTT handshakes, and SCT extensions
are considered beyond the scope of testing for this paper.

7.2.1 Setup
The experiment is designed to test the performance impact of hybrid digital certificates
on a TLS 1.3 handshake by capturing timing variances between different hybrid signature
schemes. As noted in Section 7.1.3, the average depth of a certificate chain is only two
certificates: the intermediate CA and root CA. Based on this, our experiment examines two
scenarios: a hybrid server certificate signed by an all-hybrid CA chain and a non-hybrid
server certificate signed by a non-hybrid intermediate CA that is signed by a hybrid root
CA. These scenarios represent the two extremes that are likely to be encountered in a re-
alistic environment without substantial modifications to either the underlying protocol or
PKI. For our control, we measure the performance of certificate chains composed entirely
of the component algorithms for each scheme. For example, the control for the Dilithium
2_RSA3072 scheme would be one test where everything is signed by Dilithium 2 and one
test where everything is signed by RSA3072. The only exception to this is the DSA algo-
rithm. While we test all true hybrid combinations that use DSA as a component algorithm,
OpenSSL no longer supports DSA certificates with TLS 1.3 [101]. In their guidelines, NIST
also only mandates that TLS servers support RSA or ECDSA; however, DSA is included

104

“for completeness and to cover edge cases” [108]. As a result, we do not use DSA-only
certificates in any of our tests.

For this experiment, all hybrid X.509 certificates are based on the OQS design presented
in Chapter 5. This decision is based on the relative similarities in size of each hybrid
certificate design (see Section 7.1.3) and the difficulty of integrating hybrid signatures into
the OpenSSL library. Additionally, this experiment only examines the performance of the
“Level 1” true hybrid schemes.

On the client side, OpenSSL’s s_time program ismodified to capture the elapsed time of each
TLShandshake. By default, s_time creates a TLS session by establishingmultiple, sequential
TLS connections to a server over a set period provided by the user. The total number of
connections and the average time spent for one connection is then provided as output. For
our purposes, s_time is modified to measure and record the elapsed monotonic time in
nanoseconds of each TLS handshake from the client’s perspective using the clock_gettime()
system call. We use the “CLOCK_MONOTONIC_RAW” clock as our time source because
it is not subject to incremental changes like Network Time Protocol (NTP) adjustments that
may affect accuracy when measuring the elapsed wall clock time [110]. We also modified
the program to operate with a fixed number of iterations (i.e., 100,000) instead of using an
interval of time.

On the server side, we use the default s_server program built from the same modified
OpenSSL library. This program is designed as a generic TLS server and is used for all
incoming connections created by the s_time program. The server uses a digital certificate
directly signed by an intermediate CA.

All connections occurred over the default virtual interface on the host machine. This de-
cision is made to minimize latency and other network-related variables during testing.
Additionally, the modified s_time program does not request any content from the web
server. Consequently, the results of this test represent a best case scenario for a generic TLS
handshake and is not intended to reflect real-world or application-specific conditions.

105

7.2.2 Results
Table 7.8 provides the minimum, maximum, and mean handshake completion times in
nanoseconds for the single signature algorithm control. These results are used to examine
their performance of the true hybrid counterparts and should not be used to compare the
performance between individual algorithms.

Table 7.8. Single Algorithm TLS 1.3 Performance (µs/100,000 iterations)

Name Non-Hybrid Chain

Min. Max. Mean St. Dev.

RSA3072 2665 6078 2763 170
ECDSA P-256 1010 3049 1052 28
Dilithium 2 1124 3532 1376 246
qTESLA-p-I 2272 8764 3045 804
MQDSS-31-48 30461 41629 30981 397

Table 7.9 provides the minimum, maximum, and mean handshake completion times in
nanoseconds for an all-hybrid CA certificate chain and partially hybrid certificate chains
using the specified signature algorithms. As described in Section 7.2.1, the experiment
scenarios are separated as follows: in the all-hybrid certificate chain every certificate is
hybrid while in the partially hybrid certificate chain only the root CA certificate is hybrid.
In the second scenario, all other certificates in the chain (i.e., intermediate CA and server)
are non-hybrid. Since the true hybrid schemes use two component algorithms, we separately
examine the performance when each component type is used for the non-hybrid certificates.
Using the Dilithium 2_RSA3072 combination as an example, we examine both a partially
hybrid certificate chain where the non-hybrid certificates are signed with Dilithium 2 and a
partially hybrid certificate chainwhere the non-hybrid certificates are signedwith RSA3072.
In both cases, the root CA is signed with the true hybrid scheme: Dilithium 2_RSA3072.

The performance results of all three certificate chains is presented in Table 7.9. The results
for the all-hybrid certificate chain are under the Hybrid Chain column. The results for the
partially hybrid chain where the non-hybrid certificates are signed with the first component

106

algorithm in the true hybrid scheme (e.g., Dilithium 2 in Dilithium 2_RSA3072) are under
the Hybrid Root CA (primary) column. Finally, the results for partially hybrid certificate
chain where the non-hybrid certificates are signed using the second component algorithm
(e.g., RSA3072 in Dilithium 2_RSA3072) are under the Hybrid Root CA (secondary)
column.

As expected, there is a significant difference in the time required to complete the TLS
handshake between a completely hybrid certificate chain and a completely non-hybrid
certificate chain. Table 7.10 shows the percentage difference between these two scenarios
by comparing the all-hybrid chain to a completely non-hybrid chain using only one signature
algorithm. While the difference varies depending on the algorithm, a handshake that uses
a completely hybrid chain takes significantly longer due to both the size of the hybrid
certificate and the increase in the time needed to complete the hybrid scheme’s Sign and
Verify operations.

Table 7.11 shows the percentage difference in the time required to complete the TLS
handshake between a certificate chain where only the root CA uses a true hybrid scheme
and a completely non-hybrid certificate chain. Of the combinations tested, only Dilithium
2_RSA3072 yielded results similar to the non-hybrid alternative (e.g., either Dilithium
2 or RSA3072) when only the root CA uses a hybrid scheme. The other true hybrid
combinations show that there is a significant overhead associated with using hybrid schemes
when compared with their solo counterparts. The only exceptions are when the performance
of one component algorithm is significantly worse than the second component algorithm.
This can be seen with the MQDSS-31-48_RSA3072 combination where there is little gap
between the completely hybrid certificate chain and a partially hybrid certificate chain that
uses the MQDSS-31-48 significant algorithm for the non-hybrid certificates.

7.2.3 Discussion
It is evident based on the results of this experiment that hybrid certificates and their underly-
ing schemes significantly impact the performance of a TLS handshake. While it is possible
to optimize the performance of the signature algorithms and adjust the TLS protocol to
handle the increased certificate sizes, the fact is that hybrid signature schemes will always
be slower than either of their component algorithms. As such, it is important to under-

107

stand both the advantages and disadvantages of hybrid signature schemes when modifying
existing protocols or designing new ones.

From our observations, two factors are identified as acutely impacting the TLS handshake:
the total amount of signature related data sent during the handshake and the performance
of both the Sign and Verify operations of the hybrid signature algorithms. As show in Table
7.7, the true hybrid schemes produce a significantly larger certificate. This is caused by the
need to encapsulate two separate public keys and combined hybrid signature. This, in turn,
negatively influences the transmission time between the server and client.

Another impacting factor are the Sign and Verify operations that are part of the TLS
handshake. In our setup, the client verifies the certificates of the server, intermediate CA, and
the root CA. Additionally, the client must also verify the signature embedded in the server’s
CertificateVerifymessage. During the handshake, the server only signs the CertificateVerify
message as all of the X.509 certificates are generated and signed beforehand. As shown by
the verification performance of the individual signature algorithms in Chapter 6, different
hybrid algorithm combinations can influence verification times. Even in examples where the
individual algorithm’s average verification performance is roughly similar (i.e., Dilithium
2 and RSA3072), the corresponding hybrid scheme requires at least twice the time to verify
a message.

As with size, the overhead associated with a hybrid scheme’s verification performance can
be partially mitigated. If the only hybrid certificate in the chain is the root CA, only a single
verification operation is influenced by the hybrid signature scheme. This is highlighted by
comparing the results between Tables 7.11 and 7.10. Depending on the algorithm used for
the rest of the signature operations, the average handshake time can be reduced significantly.
When excluding the worst performing true hybrid schemes (i.e., FS–FS and FS–(EC)DSA
#1) and all MQDSS-31-48 combinations, the collective average handshake completion
time with a hybrid root CA is 2607 microseconds which is approximately a twenty percent
increase over the collective average handshake time with a completely non-hybrid certificate
chain. This could potentially be improved by using existing methods such as caching the
root CA certificate locally on the client [90]. This would allow the server to send only
the intermediate and server certificates in the TLS handshake thereby reducing the overall
amount of data sent during the handshake.

108

Table 7.7. OQS X.509 Certificate Sizes for True Hybrid Schemes (bytes)

Name Size (DER) Size (PEM)

RSA3072 1548 2151
ECDSA P-256 898 1269
Dilithium 2 4000 5474
qTESLA-p-I 18242 24759
MQDSS-31-48 29211 39611

Dilithium 2_RSA3072 4786 6538
Dilithium 2_DSA3072 #1 5286 7213
Dilithium 2_DSA3072 #2 5285 7213
Dilithium 2_DSA3072 #3 5333 7278
Dilithium 2_P-256 #1 4603 6290
Dilithium 2_P-256 #2 4601 6286
Dilithium 2_P-256 #3 4650 6351
Dilithium 2_qTESLA-p-I 21477 29138
Dilithium 2_MQDSS-31-48 32450 43999

qTESLA-p-I_RSA3072 19028 25823
qTESLA-p-I_DSA3072 #1 19528 26501
qTESLA-p-I_DSA3072 #2 19528 26501
qTESLA-p-I_DSA3072 #3 19560 26542
qTESLA-p-I_P-256 #1 18843 25571
qTESLA-p-I_P-256 #2 18844 25575
qTESLA-p-I_P-256 #3 18875 25616

MQDSS-31-48_RSA3072 30001 40684
MQDSS-31-48_DSA3072 #1 30500 41358
MQDSS-31-48_DSA3072 #2 30501 41358
MQDSS-31-48_DSA3072 #3 30532 41403
MQDSS-31-48_P-256 #1 29817 40432
MQDSS-31-48_P-256 #2 29817 40432
MQDSS-31-48_P-256 #3 29850 40476
MQDSS-31-48_qTESLA-p-I 46692 63283

109

Table
7.9.

TLS
1.3

Perform
ance

for
Specified

True
H
ybrid

Schem
es

(µs/100,000
iterations)

N
am

e
H
ybrid

C
hain

H
ybrid

RootCA
(prim

ary)
H
ybrid

RootCA
(secondary)

M
in.

M
ax.

M
ean

SD
M
in.

M
ax.

M
ean

SD
M
in.

M
ax.

M
ean

SD

D
ilithium

2_R
SA

3072
3892

6996
4274

283
1184

4875
1435

242
2745

13819
2900

226
D
ilithium

2_D
SA

3072_1
4132

49165
8266

4588
1882

5388
2112

214
-

-
-

-
D
ilithium

2_D
SA

3072_2
4102

6814
4375

236
1875

3791
2106

204
-

-
-

-
D
ilithium

2_D
SA

3072_3
4819

7786
5122

264
1936

4492
2156

205
-

-
-

-
D
ilithium

2_P-256_1
2971

25897
5418

2571
1598

4364
1828

216
1493

2143
1548

35
D
ilithium

2_P-256_2
2963

5280
3234

246
1597

4968
1822

225
1494

5945
1547

43
D
ilithium

2_P-256_3
3416

5953
3703

250
1627

4529
1829

202
1526

2861
1578

38
D
ilithium

2_M
Q
D
SS-31-48

30722
33573

31337
274

8703
11301

9048
259

30753
46210

31471
599

D
ilithium

2_qTESLA
-p-I

3005
57788

9578
6528

1585
3969

1795
210

2512
10662

3282
802

qTESLA
-p-I_R

SA
3072

5080
13336

6010
836

2330
10917

3110
836

3050
14052

3197
260

qTESLA
-p-I_D

SA
3072_1

5358
61427

12009
7025

3058
11462

3813
783

-
-

-
-

qTESLA
-p-I_D

SA
3072_2

5294
12663

6081
782

3065
12538

3834
799

-
-

-
-

qTESLA
-p-I_D

SA
3072_3

6021
15214

6850
842

3108
10210

3876
767

-
-

-
-

qTESLA
-p-I_P-256_1

4195
41947

8437
4464

2772
18086

3543
828

1821
8937

1882
104

qTESLA
-p-I_P-256_2

4158
11360

4928
797

2756
9995

3515
788

1812
6152

1875
65

qTESLA
-p-I_P-256_3

4637
12918

5440
820

2803
10797

3572
800

1850
3884

1976
110

M
Q
D
SS-31-48_R

SA
3072

32608
40712

33155
351

30721
35442

31253
225

9493
18777

9643
480

M
Q
D
SS-31-48_D

SA
3072_1

32873
35365

33379
197

30666
53965

31410
1634

-
-

-
-

M
Q
D
SS-31-48_D

SA
3072_2

33009
34258

33551
177

31422
59931

32130
2143

-
-

-
-

M
Q
D
SS-31-48_D

SA
3072_3

33574
36513

34169
206

30947
32563

31518
180

-
-

-
-

M
Q
D
SS-31-48_P-256_1

31404
33536

31935
182

30956
32127

31493
170

8729
23709

8880
456

M
Q
D
SS-31-48_P-256_2

31512
32740

32106
173

30502
42325

30965
455

8672
19093

8839
413

M
Q
D
SS-31-48_P-256_3

31896
33466

32453
174

32004
35898

33325
526

8519
9678

8648
72

M
Q
D
SS-31-48_qTESLA

-p-I_2
31939

36698
32943

674
31161

35902
31682

287
9366

15707
10058

590

110

Table 7.10. Percentage Difference of Minimum and Mean TLS Handshake
Completion Times between a Completely Hybrid Certificate Chain and Com-
pletely Non-Hybrid Certificate Chain. The percentages are a computational
increase of a completely hybrid certificate chain over that of a certificate chain
composed entirely of the component algorithm.

Name Entire chain composed
of 1st component alg.

Entire chain composed
of 2nd component alg.

Min. Mean Min. Mean

Dilithium 2_RSA3072 71.12% 67.81% 31.53% 35.35%
Dilithium 2_DSA3072_1 72.80% 83.35% - -
Dilithium 2_DSA3072_2 72.60% 68.55% - -
Dilithium 2_DSA3072_3 76.68% 73.14% - -
Dilithium 2_P-256_1 62.17% 74.60% 66.00% 80.58%
Dilithium 2_P-256_2 62.07% 57.45% 65.91% 67.47%
Dilithium 2_P-256_3 67.10% 62.84% 70.43% 71.59%
Dilithium 2_MQDSS-31-48 90.36% 89.68% 0.85% 1.14%
Dilithium 2_qTESLA-p-I 62.60% 85.63% 24.39% 68.21%
qTESLA-p-I_RSA3072 55.28% 49.33% 47.54% 54.03%
qTESLA-p-I_DSA3072_1 57.60% 74.64% - -
qTESLA-p-I_DSA3072_2 57.08% 49.93% - -
qTESLA-p-I_DSA3072_3 62.27% 55.55% - -
qTESLA-p-I_P-256_1 45.84% 63.91% 75.92% 87.53%
qTESLA-p-I_P-256_2 45.36% 38.21% 75.71% 78.65%
qTESLA-p-I_P-256_3 51.00% 44.03% 78.22% 80.66%
MQDSS-31-48_RSA3072 6.58% 6.56% 91.67% 91.67%
MQDSS-31-48_DSA3072_1 7.34% 7.18% - -
MQDSS-31-48_DSA3072_2 7.72% 7.66% - -
MQDSS-31-48_DSA3072_3 9.27% 9.33% - -
MQDSS-31-48_P-256_1 3.00% 2.99% 96.71% 96.71%
MQDSS-31-48_P-256_2 3.34% 3.50% 96.72% 96.72%
MQDSS-31-48_P-256_3 4.50% 4.54% 96.76% 96.76%
MQDSS-31-48_qTESLA-p-I 4.63% 5.96% 90.76% 90.76%

111

Table 7.11. Percentage Difference of Minimum and Mean TLS Handshake
Completion Times between a Partially Hybrid Certificate Chain and a Com-
pletely Non-Hybrid Certificate Chain. The percentages are a computational
increase of a partially hybrid certificate chain over that of a certificate chain
composed entirely of the component algorithm.

Name Entire chain composed
of 1st component alg.

Entire chain composed
of 2nd component alg.

Min. Mean Min. Mean

Dilithium 2_RSA3072 5.07% 4.11% 2.91% 4.72%
Dilithium 2_DSA3072_1 40.28% 34.85% - -
Dilithium 2_DSA3072_2 40.05% 34.66% - -
Dilithium 2_DSA3072_3 41.94% 36.18% - -
Dilithium 2_P-256_1 29.66% 24.73% 32.35% 32.04%
Dilithium 2_P-256_2 29.62% 24.48% 32.40% 32.00%
Dilithium 2_P-256_3 30.92% 24.77% 33.81% 33.33%
Dilithium 2_MQDSS-31-48 87.08% 84.79% 0.95% 1.56%
Dilithium 2_qTESLA-p-I 29.09% 23.34% 9.55% 7.22%
qTESLA-p-I_RSA3072 2.49% 2.09% 12.62% 13.58%
qTESLA-p-I_DSA3072_1 25.70% 20.14% - -
qTESLA-p-I_DSA3072_2 25.87% 20.58% - -
qTESLA-p-I_DSA3072_3 26.90% 21.44% - -
qTESLA-p-I_P-256_1 18.04% 14.06% 44.54% 44.10%
qTESLA-p-I_P-256_2 17.56% 13.37% 44.26% 43.89%
qTESLA-p-I_P-256_3 18.94% 14.75% 45.41% 46.76%
MQDSS-31-48_RSA3072 0.85% 0.87% 71.93% 71.35%
MQDSS-31-48_DSA3072_1 0.67% 1.37% - -
MQDSS-31-48_DSA3072_2 3.06% 3.58% - -
MQDSS-31-48_DSA3072_3 1.57% 1.70% - -
MQDSS-31-48_P-256_1 1.60% 1.63% 88.43% 88.15%
MQDSS-31-48_P-256_2 0.13% -0.05% 88.35% 88.10%
MQDSS-31-48_P-256_3 4.82% 7.03% 88.14% 87.84%
MQDSS-31-48_qTESLA-p-I 2.25% 2.21% 75.74% 69.73%

112

CHAPTER 8:
Conclusion

Any uncertainty surrounding the PQ transition, to include the increased complexity of PQ
algorithms, will likely manifest in a reluctance to accept unknown risk by broadly adopting
newer digital signature algorithms. This further reinforces the current fragile, monolithic
ecosystem on which many fundamental Internet applications are based. Hybrid signature
schemes offer a flexible approach to ensuring uninterrupted cryptographic security by
combining PQ signature algorithms with well-accepted classical algorithms, thus offsetting
the risk associated with adopting newer algorithms.

In this work, we evaluated the viability and performance of several hybrid signature schemes
at both the algorithmic and protocol levels. Traditional hybridization techniques were ex-
amined to include concatenation and nesting, and a new type of true hybrid scheme was
also introduced. To compare and contrast performance, we implemented the true hybrid
digital signature schemes within a common cryptographic framework and evaluated their
performance against traditional hybrid techniques via standalone cryptographic operations.
Our results show that specific true hybrid signature schemes introduce negligible overhead
when compared to concatenated hybrid schemes using the same component algorithms.
The results also show that certain true hybrid combinations add additional computational
overhead. In these examples, the efficiency decrease is directly influenced by how the true
hybrid scheme interacts with the component algorithms. It is important to note that our
implementation is not fully optimized for performance nor should it be considered secure
without external review.

We also explored how hybrid digital signatures could be integrated into existing X.509
certificates and examined their performance by integrating both into the TLS 1.3 protocol.
As first observed in [18], our work confirmed that the larger size of hybrid digital certifi-
cates and the increase in computational processing required to run two digital signature
algorithms within a hybrid scheme have a significant impact on the total handshake time.
Additionally, we found that integrating hybrid signatures into existing protocols within cryp-
tographic libraries is a non-trivial task. Implementation requires an in-depth knowledge of
the existing protocol standards, the cryptographic library internals, and the security features

113

of the programming language it is written in. While these impediments can be overcome
individually, it highlights the role standardization plays in ensuring interoperability between
different hardware and software builds.

8.1 Recommendations
Based on the results in Chapter 6 and the security properties detailed in Chapter 3, we
recommend that true hybrid schemes should be used over traditional hybridization tech-
niques, when possible. Out of the schemes compared in this paper, the true hybrid schemes
presented in Section 3.3 are the only ones that provide additional security properties, such
as hybrid verification, outside of what is offered by the individual component signature
algorithms. The hybrid verification security property is essential in ensuring that both com-
ponent signature algorithms are verified which directly supports the primary reason to use
a hybrid signature scheme.

True hybrid signature schemes also provide developers and system engineers with options
to solve unique cryptographic challenges. As an example, digital signatures can be used to
sign official documents that are later part of the public record or of historical significance.
In this situation, the security longevity of the signature algorithm is vitally important. An
adversary could alter the document and retroactively apply a signature if the scheme used
to originally sign is later broken. This can change the historical perspective of significant
events with little to no recourse for stakeholders to prove otherwise. To combat this, a true
hybrid signature scheme can be used to sign official documents with multiple signature
algorithms. This solution is optimal because it does not rely on the longevity of a single
signature algorithm and guarantees that both signature algorithms are used if the original
signature is verified. Additionally, since signing documents is unlikely to be extremely
time-sensitive, the increase in security outweighs the performance cost.

Given the comparable performance in our results between most component algorithm
combinations, we recommend that the FS–RSA, FS–DSA and FS–ECDSA true hybrid
schemes should be promoted for broader adoption. As shown by the certificate sampling in
Section 7.1, RSA and ECDSA are the most commonly used signature algorithms in X.509
certificates. Additionally, one of the greater use cases for hybrid signature schemes is to
provide a bridge between classical and PQ signature algorithms. By combining a FS-based

114

PQ signature algorithm with well-accepted algorithms like RSA and ECDSA, both of these
true hybrid schemes deliver classic and PQ security.

Additionally, FS–RSA, FS–DSA and FS–ECDSA avoid some of the challenges associated
with implementing true hybrid schemes. As discussed in Chapters 4 and 6, true hybrid
schemes pose several challenges that can make it difficult for them to be securely imple-
mented. For example, component signature algorithms are likely to have differing hash
algorithms and challenge lengths which need to be reconciled before they can be securely
used in a true hybrid scheme. This necessary modification impacts how the component al-
gorithms function and can have unintended consequences on the overall security of the true
hybrid scheme. FS–RSA, FS–DSA, and FS–ECDSA avoid this complication because only
the FS component algorithm provides input into the challenge and the non-FS component
algorithms in these hybrid schemes (i.e., RSA, DSA and ECDSA) can support all of the FS
component hash algorithms.

In addition to reconciling differences between component signature algorithms, the mech-
anisms of each component algorithm must be considered during implementation. The
interaction between simple design choices and these internal mechanisms can drastically
impact the efficiency of the true hybrid scheme. For example, both qTESLA and Dilithium
use a simple programmatic loop during signing to determine if a generated signature meets
specific criteria. If the signature is invalid, the Sign operation restarts. This continues until
a valid signature is found. As shown in Chapter 6, we found that separating this loop into
two sub-functions introduced roughly a twenty percent increase in computation required to
complete the Sign operation. This inefficiency is solely caused by the overhead associated
with a function call and can be mitigated when the sub-functions are replaced with a single
function that includes all of the components of the sub-function.

As a result of the complexities associated with implementing true hybrid schemes, we
recommend that they should be integrated into existing cryptographic libraries in order
to support protocols that can handle both their increased signature and key sizes and
the overall performance cost. Cryptographic libraries represent the best mechanism for
consistently ensuring general users and developers have standardized access to secure
hybrid signature schemes. Assuming the library is well-supported and peer reviewed, the
risk of incorrect implementation is shifted to an experienced team and away from a single

115

developer who may not be experienced with the intricacies of implementing cryptographic
code. Cryptographic libraries are also centralized, which can be advantageous for both
optimizations and security. For example, any potential vulnerabilities in either the hybrid
scheme or individual component algorithms that are found after adoption can be fixed in a
single library vice in every single application that is using the hybrid scheme.

It is important to note that true hybrid schemes are not a “one size fits all” solution
for every use case. For example, true hybrid schemes do not innately support backwards
compatibility with legacy systems. As with any cryptographic use case, developers must
identify the security requirements of a system prior to choosing a cryptographic solution. If
backwards compatibility is valued more than hybrid verification, other solutions like nested
hybrid schemes may be a better fit.

8.2 Future Work
While true hybrid signature schemes provide flexible solutions and can combat uncertainty
during the PQ transition, their wide-spread adoption requires significant work beyond what
is presented in this paper. Interoperability between software and hardware implementations
is essential for almost every digital signature use case and standards are what provide
implementations with a common foundation from which to build. Even if hybrid schemes
are implemented independently within cryptographic libraries, there is no guarantee that
software compiled with one will work with software compiled with another. As such, future
work should focus on identifying and optimizing component algorithm combinations for
use with true hybrid schemes. These efforts can then be used to guide future standardization
efforts and are essential to the widespread adoption of true hybrid signature schemes.

Additionally, protocol standardsmay need to be updated to reflect anymodifications required
for their use with hybrid signature schemes. This work only examined true hybrid signature
schemes in the context of the TLS 1.3 protocol; however, this may not represent the best
use case for hybrid signatures. Several other protocols that also use digital signatures
and certificates may benefit from hybridization, such as SSH [111] and Domain Name
System Security Extensions (DNSSEC) [112]. More realistic and robust network testing is
also needed to further highlight the impact of true hybrid schemes on current and future
protocols beyond what is covered in this work.

116

List of References

[1] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C,
2nd ed. Somerset, New Jersey, USA: Wiley, 1996.

[2] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,” RFC Editor,
Fremont, CA, USA, RFC 8446, 2018. [Online]. Available: https://tools.ietf.org/
html/rfc8446

[3] T. Ylonen and C. Lonvick, “The secure shell (SSH) authentication protocol,” RFC
Editor, Fremont, CA, USA, RFC 4252, 2006. Available: https://tools.ietf.org/html/
rfc4252

[4] M. Naor, “On cryptographic assumptions and challenges,” in Advances in Cryptol-
ogy, 2003. [Online]. doi: 10.1007/978-3-540-45146-4_6.

[5] S. Aaronson, “P=?NP,” Weizmann Institute of Science, Rehovot, Israel, Tech. Rep.
004, 2017. [Online]. Available: https://eccc.weizmann.ac.il/report/2017/004/

[6] J. Katz, “Cryptographic hardness assumptions,” in Digital Signatures, J. Katz, Ed.
Boston, MA, USA: Springer US, 2010, pp. 35–66.

[7] P. Shor, “Algorithms for quantum computation: Discrete logarithms and factor-
ing,” in Proceedings 35th Annual Symposium on Foundations of Computer Science,
1994. [Online]. doi: 10.1109/SFCS.1994.365700.

[8] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone,
“Report on post-quantum cryptography,” National Institute of Standards and Tech-
nology, Tech. Rep. NIST IR 8105, 2016. [Online]. doi: 10.6028/NIST.IR.8105.

[9] National Institute of Standards and Technology. "Post-quantum cryptography,"
Jan. 3, 2017. [Online]. Available: https://csrc.nist.gov/Projects/post-quantum-
cryptography

[10] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976. [Online]. doi:
https://doi.org/10.1109/TIT.1976.1055638.

[11] N. Ramlee and E. S. Ismail, “A new directed signature scheme with hybrid prob-
lems,” AIP Conference Proceedings, vol. 1571, no. 1, pp. 994–998, Nov. 2013.
[Online]. doi: https://doi.org/10.1063/1.4858783.

117

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc4252
https://tools.ietf.org/html/rfc4252
https://eccc.weizmann.ac.il/report/2017/004/
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

[12] H. M. Elkamchouchi, A. E. Takieldeen, and M. A. Shawky, “An advanced hy-
brid technique for digital signature scheme,” in 2018 5th International Confer-
ence on Electrical and Electronic Engineering (ICEEE), 2018. [Online]. doi:
10.1109/ICEEE2.2018.8391365.

[13] S. A. Vanstone, R. Gallant, R. J. Lambert, L. A. Pintsov, F. W. R. Jr, and A. Singer,
“Hybrid signature scheme,” U.S. Patent 7 877 610B2, Jan. 25, 2011. Available:
https://patents.google.com/patent/US7877610B2/en

[14] A. Sarkar and S. Tripathi, “Design of a dual signature scheme using ECDSA in set
protocol,” International Journal of Computer Applications, vol. 88, no. 11, pp. 1–5,
Feb. 2014. [Online]. doi: https://doi.org/10.5120/15393-3565.

[15] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to a quantum-
resistant public key infrastructure,” Cryptology ePrint Archive, Tech. Rep. 460,
2017. [Online]. Available: http://eprint.iacr.org/2017/460

[16] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH,” Cryptology ePrint Archive, Belle-
vue, WA, USA, Tech. Rep. 858, 2019. [Online]. Available: https://eprint.iacr.org/
2019/858

[17] P. Kampanakis and D. Sikeridis, “Two PQ signature use-cases: Non-issues, chal-
lenges and potential solutions,” Cryptology ePrint Archive, Bellevue, WA, USA,
Tech. Rep. 1276, 2019. [Online]. Available: http://eprint.iacr.org/2019/1276

[18] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Post-quantum authentication in
TLS 1.3: A performance study,” Cryptology ePrint Archive, Bellevue, WA, USA,
Tech. Rep. 071, 2020. [Online]. Available: http://eprint.iacr.org/2020/071

[19] P. Kampanakis, P. Panburana, E. Daw, and D. V. Geest, “The viability of post-
quantum X.509 certificates,” Cryptology ePrint Archive, Bellevue, WA, USA,
Tech. Rep. 063, 2018. [Online]. Available: https://eprint.iacr.org/2018/063

[20] L. Gladiator, T. Stockert, and J. Wirth, OpenSSL Hybrid Certificates, ver.
v.5.11-rc7, Darmstadt, Germany, 2021. [Online]. Available: https://github.com/
CROSSINGTUD/openssl-hybrid-certificates

[21] D. Skatz, J. Braun, and J. Wirth, “BC Hybrid Certificates,” ver. 1.0.1, Darmstadt,
Germany, 2019 [Online]. Available: https://github.com/CROSSINGTUD/bc-
hybrid-certificates

[22] Open Quantum Safe Project, “OpenSSL,” ver. 2020-08, Waterloo, Ontario, 2020.
[Online]. Available: https://github.com/open-quantum-safe/openssl

118

https://patents.google.com/patent/US7877610B2/en
http://eprint.iacr.org/2017/460
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
http://eprint.iacr.org/2019/1276
http://eprint.iacr.org/2020/071
https://eprint.iacr.org/2018/063
https://github.com/CROSSINGTUD/openssl-hybrid-certificates
https://github.com/CROSSINGTUD/openssl-hybrid-certificates
https://github.com/CROSSINGTUD/bc-hybrid-certificates
https://github.com/CROSSINGTUD/bc-hybrid-certificates
https://github.com/open-quantum-safe/openssl

[23] B. Hale and N. Bindel, private communication, Mar. 2020.

[24] National Institute of Standards and Technology, “Digital signature standard (DSS),”
Gaithersburg, MD, USA, Tech. Rep. NIST FIPS 186-4, 2013. [Online]. doi:
10.6028/NIST.FIPS.186-4.

[25] F. Vercauteren, “Final report on main computational assumptions in cryptography,”
European Network of Excellence in Cryptology II, Leuven, Belgium, Tech. Rep.
ICT-2007-216676, 2008. [Online]. Available: https://www.ecrypt.eu.org/ecrypt2/
documents/D.MAYA.6.pdf

[26] D. Aggarwal and U. Maurer, “Breaking RSA generically is equivalent to factoring,”
Cryptology ePrint Archive, Tech. Rep. 260, 2008. [Online]. Available: http://eprint.
iacr.org/2008/260

[27] D. Brown, “Breaking RSA may be as difficult as factoring,” Journal
of Cryptology, vol. 29, no. 1, pp. 220–241, Jan. 2016. [Online]. doi:
https://doi.org/10.1007/s00145-014-9192-y.

[28] S. Vaudenay, “The security of DSA and ECDSA,” in Public Key Cryptography —
PKC 2003, 2002. [Online]. doi: 10.1007/3-540-36288-6_23.

[29] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature al-
gorithm (ECDSA),” International Journal of Information Security, vol. 1, no. 1, pp.
36–63, Aug. 2001. [Online]. doi: https://doi.org/10.1007/s102070100002.

[30] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits,” 2019. [Online]. Available: http://arxiv.org/abs/1905.09749

[31] A. Dang, C. D. Hill, and L. C. L. Hollenberg, “Optimising matrix product state
simulations of Shor’s algorithm,” Quantum, vol. 3, p. 116, Jan. 2019. [Online]. doi:
https://doi.org/10.22331/q-2019-01-25-116.

[32] J. Sevilla and C. J. Riedel, “Forecasting timelines of quantum computing,” 2020.

[33] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature
scheme,” in Applied Cryptography and Network Security, 2005. [Online]. doi:
10.1007/11496137_12.

[34] L. Goubin and N. T. Courtois, “Cryptanalysis of the TTM cryptosystem,” in Ad-
vances in Cryptology, 2000. [Online]. doi: 10.1007/3-540-44448-3_4.

[35] B.-Y. Yang and J.-M. Chen, “All in the XL family: Theory and practice,” in
Information Security and Cryptology – ICISC 2004, 2005. [Online]. doi:
10.1007/11496618_7.

119

https://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf
https://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf
http://eprint.iacr.org/2008/260
http://eprint.iacr.org/2008/260
http://arxiv.org/abs/1905.09749

[36] J. Ding, B.-Y. Yang, C.-H. O. Chen, M.-S. Chen, and C.-M. Cheng, “New
differential-algebraic attacks and reparametrization of rainbow,” in Applied
Cryptography and Network Security, Berlin, Heidelberg, 2008. [Online]. doi:
10.1007/978-3-540-68914-0_15.

[37] A. Petzoldt, S. Bulygin, and J. Buchmann, “Selecting parameters for the rainbow
signature scheme,” in Post-Quantum Cryptography. Springer, 2010. [Online]. doi:
10.1007/978-3-642-12929-2_16.

[38] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal on Computing, vol. 17,
no. 2, pp. 281–308, Apr. 1988. [Online]. doi: https://doi.org/10.1137/0217017.

[39] D. Hofheinz and T. Jager, “Tightly secure signatures and public-key encryption,” in
Advances in Cryptology, 2012. [Online]. doi: 10.1007/978-3-642-32009-5_35.

[40] J. Bos and D. Chaum, “Provably unforgeable signatures,” in Advances in Cryptol-
ogy, 1993. [Online]. doi: 10.1007/3-540-48071-4_1.

[41] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K. Liu, C. Miller,
D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone, “Status report
on the first round of the NIST post-quantum cryptography standardization process,”
National Institute of Standards and Technology, Gaithersburg, MD, USA, Tech.
Rep. NIST IR 8240, 2019. [Online]. doi: 10.6028/NIST.IR.8240.

[42] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification
and signature problems,” in Advances in Cryptology. Springer, 1987. [Online]. doi:
10.1007/3-540-47721-7_12.

[43] S. Shahandashti, “Contributions to secure and privacy-preserving use of electronic
credentials,” Ph.D. dissertation, University of Wollongong, Wollongong, New
South Wales, 2009. [Online]. Available: https://ro.uow.edu.au/theses/3036

[44] H. Ong and C. P. Schnorr, “Fast signature generation with a Fiat Shamir-like
scheme,” in Advances in Cryptology, 1991. [Online]. doi: 10.1007/3-540-46877-
3_38.

[45] L. Guillou and J.-J. Quisquater, “A “paradoxical” identity-based signature scheme
resulting from zero-knowledge,” in Advances in Cryptology, 1990. [Online]. doi:
10.1007/0-387-34799-2_16.

[46] Y. Desmedt, “Fiat–Shamir identification protocol and the Feige–Fiat–Shamir signa-
ture scheme,” in Encyclopedia of Cryptography and Security, H. C. A. van Tilborg
and S. Jajodia, Eds. Boston, MA, USA: Springer US, 2011, pp. 457–458. Avail-
able: https://doi.org/10.1007/978-1-4419-5906-5_319

120

https://ro.uow.edu.au/theses/3036
https://doi.org/10.1007/978-1-4419-5906-5_319

[47] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre, “From identification to sig-
natures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security,” in Advances in Cryptology, 2002. [Online]. doi: 10.1007/3-540-
46035-7_28.

[48] D. Pointcheval and J. Stern, “Security proofs for signature schemes,” in Advances
in Cryptology, 1996. [Online]. doi: 10.1007/3-540-68339-9_33.

[49] M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe, “MQDSS
specifications,” Radboud University, Nijmegen, Netherlands, Tech. Rep., 2020.
[Online]. Available: http://mqdss.org/files/mqdssVer2point1.pdf

[50] C. Schnorr, “Efficient signature generation by smart cards,” Journal
of Cryptology, vol. 4, no. 3, pp. 161–174, Jan. 1991. [Online]. doi:
https://doi.org/10.1007/BF00196725.

[51] E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Kramer, P. Longa, and J. E. Ricardini,
“The lattice-based digital signature scheme qTESLA,” Cryptology ePrint Archive,
Tech. Rep. 085, 2019. [Online]. Available: http://eprint.iacr.org/2019/085

[52] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digi-
tal signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120–126, 1978. [Online]. doi: https://doi-
org.libproxy.nps.edu/10.1145/359340.359342.

[53] R. Rivest, A. Shamir, and L. Adleman, “Cryptographic communications system and
method,” U.S. Patent 4 405 829A, Sep. 20, 1983. Available: https://patents.google.
com/patent/US4405829/en

[54] T. Elgamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469–
472, July 1985. [Online] doi: 10.1109/TIT.1985.1057074.

[55] L. Guillou and J.-J. Quisquater, “A practical zero-knowledge protocol fitted to se-
curity microprocessor minimizing both transmission and memory,” in Advances in
Cryptology. Springer, 1988. [Online]. doi: 10.1007/3-540-45961-8_11.

[56] C. Schnorr, “Method for identifying subscribers and for generating and verifying
electronic signatures in a data exchange system,” U.S. Patent 4 995 082A, Feb. 19,
1991. Available: https://patents.google.com/patent/US4995082A/en

[57] National Institute of Standards and Technology, “Digital signature standard (DSS),”
Gaithersburg, MD, USA, Tech. Rep. NIST FIPS 186-5 (draft), 2019. [Online]. doi:
10.6028/NIST.FIPS.186-5.

121

http://mqdss.org/files/mqdssVer2point1.pdf
http://eprint.iacr.org/2019/085
https://patents.google.com/patent/US4405829/en
https://patents.google.com/patent/US4405829/en
https://patents.google.com/patent/US4995082A/en

[58] M. Suárez-Albela, P. Fraga-Lamas, and T. Fernández-Caramés, “A practical evalu-
ation on RSA and ECC-based cipher suites for IOT high-security energy-efficient
fog and mist computing devices,” Sensors, vol. 18, no. 11, Nov. 2018. [Online]. doi:
http://dx.doi.org/10.3390/s18113868.

[59] K. Sakumoto, T. Shirai, and H. Hiwatari, “Authentication device, authentication
method, program, and signature generation device,” U.S. Patent 8 522 033B2, Aug.
27, 2013. Available: https://patents.google.com/patent/US8522033B2/ko

[60] P. Gaborit and C. Melchor, “Cryptographic method for communicating confidential
information,” European Union Patent 2 537 284B1, Apr. 20, 2016. Available: https:
//patents.google.com/patent/EP2537284B1/en

[61] J. Ding, “Method to produce new multivariate public key cryptosystems,” U.S.
Patent 7 961 876B2, June 30, 2011. Available: https://patents.google.com/patent/
US7961876B2/en

[62] A. Truskovsky, A. Yamada, M. Brown, and G. Gutoski, “Using a digital certificate
with multiple cryptosystems,” U.S. Patent 9 660 978B1, May 23, 2017. Available:
https://patents.google.com/patent/US9660978B1/en

[63] D. Boneh, “Twenty years of attacks on the RSA cryptosystem,” Notices of the
American Mathematical Society, vol. 46, no. 2, pp. 203–213, Feb. 1999. [Online].
Available: https://www.ams.org/journals/notices/199902/boneh.pdf

[64] J. Jonsson, K. Moriarty, B. Kaliski, and A. Rusch, “PKCS #1: RSA cryptography
specifications,” RFC Editor, Fremont, CA, USA, RFC 8017, 2016. [Online]. Avail-
able: https://tools.ietf.org/html/rfc8017

[65] S. Kakvi and E. Kiltz, “Optimal security proofs for full domain hash, revisited,”
Journal of Cryptology, vol. 31, no. 1, pp. 276–306, Jan. 2018. [Online]. doi:
https://doi.org/10.1007/s00145-017-9257-9.

[66] T. Jager, S. Kakvi, and A. May, “On the security of the PKCS#1 v1.5 signature
scheme,” Cryptology ePrint Archive, Bellevue, WA, USA, Tech. Rep. 855, 2018.
[Online]. Available: http://eprint.iacr.org/2018/855

[67] S. Kakvi, “On the security of RSA-PSS in the wild,” Cryptology ePrint Archive,
Fremont, CA, USA, Tech. Rep. 1268, 2019. [Online]. Available: http://eprint.iacr.
org/2019/1268

[68] C. Lindenberg, K. Wirt, and J. Buchmann, “Formal proof for the correctness of
RSA-PSS,” Cryptology ePrint Archive, Bellevue, WA, USA, Tech. Rep. 011, 2006.
[Online]. Available: http://eprint.iacr.org/2006/011

122

https://patents.google.com/patent/US8522033B2/ko
https://patents.google.com/patent/EP2537284B1/en
https://patents.google.com/patent/EP2537284B1/en
https://patents.google.com/patent/US7961876B2/en
https://patents.google.com/patent/US7961876B2/en
https://patents.google.com/patent/US9660978B1/en
https://www.ams.org/journals/notices/199902/boneh.pdf
https://tools.ietf.org/html/rfc8017
http://eprint.iacr.org/2018/855
http://eprint.iacr.org/2019/1268
http://eprint.iacr.org/2019/1268
http://eprint.iacr.org/2006/011

[69] A. Regenscheid, “Digital signature standard (DSS): Elliptic curve domain param-
eters,” National Institute of Standards and Technology, Tech. Rep., 2019. [Online].
doi: 10.6028/NIST.FIPS.186-5-draft.

[70] M. Fersch, E. Kiltz, and B. Poettering, “On the provable security of (EC)DSA sig-
natures,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery, 2016. [Online].
doi: 10.1145/2976749.2978413.

[71] J. Buchmann, D. Butin, F. Göpfert, and A. Petzoldt, “Post-quantum cryptography:
State of the art,” in The New Codebreakers: Essays Dedicated to David Kahn on
the Occasion of His 85th Birthday, P. Ryan, D. Naccache, and J.-J. Quisquater, Eds.
Berlin, Heidelberg, Germany: Springer, 2016, pp. 88–108.

[72] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle,
“CRYSTALS-Dilithium: Digital signatures from module lattices,” Cryptology
ePrint Archive, Bellevue, WA, USA, Tech. Rep. 633, 2017. [Online]. Available:
http://eprint.iacr.org/2017/633

[73] T. Pornin, “New efficient, constant-time implementations of falcon,” Cryptology
ePrint Archive, Bellevue, WA, USA, Tech. Rep. 893, 2019. [Online]. Available:
https://eprint.iacr.org/2019/893

[74] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte,
“Ntrusign: Digital signatures using the NTRU lattice,” in Topics in Cryptology,
2003. [Online]. doi: https://doi-org.libproxy.nps.edu/10.1007/3-540-36563-X_9.

[75] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new
cryptographic constructions,” Cryptology ePrint Archive, Tech. Rep. 432, 2007.
[Online]. Available: http://eprint.iacr.org/2007/432

[76] J. Patarin and L. Goubin, “Trapdoor one-way permutations and multivariate poly-
nomials,” in Information and Communications Security, 1997. [Online]. doi:
10.1007/BFb0028491.

[77] K. Sakumoto, T. Shirai, and H. Hiwatari, “Public-key identification schemes based
on multivariate quadratic polynomials,” in Advances in Cryptology, 2011. [Online].
doi: 10.1007/978-3-642-22792-9_40.

[78] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, 1st ed. San Francisco, CA, USA: W. H. Freeman, 1979.

[79] T. Matsumoto and H. Imai, “Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption,” in Advances in Cryptology.
Springer, 1988. [Online]. doi: 10.1007/3-540-45961-8_39.

123

http://eprint.iacr.org/2017/633
https://eprint.iacr.org/2019/893
http://eprint.iacr.org/2007/432

[80] L. Xiaoyu, S. Tang, J. Chen, and L. Xu, “MQ signature and proxy signature
schemes with exact security based on UOV signature,” Cryptology ePrint Archive,
Bellevue, WA, USA, Tech. Rep. 877, 2013. [Online]. Available: https://eprint.iacr.
org/2013/877

[81] J. Patarin, “Hidden fields equations and isomorphisms of polynomials: Two new
families of asymmetric algorithms,” in Advances in Cryptology, 1996. [Online].
doi: 10.1007/3-540-68339-9_4.

[82] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced oil and vinegar signature
schemes,” in Advances in Cryptology, 1999. [Online]. doi: 10.1007/3-540-48910-
X_15.

[83] K. Sakumoto, T. Shirai, and H. Hiwatari, “On provable security of UOV and HFE
signature schemes against chosen-message attack,” in Post-Quantum Cryptography.
Springer, 2011. [Online]. doi: 10.1007/978-3-642-25405-5_5.

[84] A. Casanova, J. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryckeghem,
“GeMSS: Agreat multivariate short signature,” Universite Pierre et Marie Curie,
Paris, France, Tech. Rep., 2017. [Online]. Available: https://www-polsys.lip6.fr/
Links/NIST/GeMSS_specification.pdf

[85] J. Patarin, N. Courtois, and L. Goubin, “QUARTZ, 128-Bit Long Digital Signa-
tures,” in Topics in Cryptology, 2001. [Online]. doi: 10.1007/3-540-45353-9_21.

[86] National Institute of Standards and Technology, “Security requirements for cryp-
tographic modules,” Gaithersburg, MD, USA, Tech. Rep. NIST FIPS 140-3, 2019.
[Online]. doi: 10.6028/NIST.FIPS.140-3.

[87] Open Quantum Safe Project, “Liboqs,” ver. 0.3.0-rc1, Waterloo, Ontario, 2020.
[Online]. Available: https://github.com/open-quantum-safe/liboqs

[88] P. Kampanakis and Q. Dang, “Internet X.509 public key infrastructure: Additional
algorithm identifiers for RSASSA-PSS and ECDSA using SHAKEs,” RFC Editor,
Fremont, CA, USA, Internet Draft 8692, 2019. [Online]. Available: https://tools.
ietf.org/id/draft-ietf-lamps-pkix-shake-07.html

[89] National Institute of Standards and Technology, “Secure hash standard (SHS),”
Gaithersburg, MD, USA, Tech. Rep. NIST FIPS 180-4, 2015. [Online]. doi:
10.6028/NIST.FIPS.180-4.

[90] D. Cooper, “Internet X.509 public key infrastructure certificate and certificate re-
vocation list (CRL) profile,” RFC Editor, Fremont, CA, USA, RFC 5280, 2008.
[Online]. Available: https://tools.ietf.org/html/rfc5280

124

https://eprint.iacr.org/2013/877
https://eprint.iacr.org/2013/877
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf
https://github.com/open-quantum-safe/liboqs
https://tools.ietf.org/id/draft-ietf-lamps-pkix-shake-07.html
https://tools.ietf.org/id/draft-ietf-lamps-pkix-shake-07.html
https://tools.ietf.org/html/rfc5280

[91] C. Adams and M. Blinov, “Alternative certificate formats for the public-key infras-
tructure using X.509 (PKIX) certificate management protocols,” Internet Requests
for Comments, RFC Editor, RFC 4212, 10 2005. Available: https://tools.ietf.org/
html/rfc4212

[92] J. Linn, “Privacy enhancement for internet electronic mail: Part 1: Message encryp-
tion and authentication procedures,” RFC Editor, Fremont, CA, USA, RFC 1421,
1993. [Online]. Available: https://tools.ietf.org/html/rfc1421

[93] S. Leonard and S. Josefsson, “Textual encodings of PKIX, PKCS, and CMS struc-
tures,” RFC Editor, Fremont, CA, USA, RFC 7468, 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7468

[94] B. Kaliski, “PKCS #7: Cryptographic message syntax,” RFC Editor, Fremont, CA,
USA, RFC 2315, 1998. [Online]. Available: https://tools.ietf.org/html/rfc2315

[95] Information technology – ASN.1 encoding rules: Specification of basic encoding
rules (BER), canonical encoding rules (CER) and distinguished encoding rules
(DER), ITU-T X.690, 2015.

[96] The Open Quantum Safe Project. "Open quantum safe," Accessed Mar. 19, 2020.
[Online]. Available: https://openquantumsafe.org/

[97] S. Fluhrer, S. Mister, A. Truskovsky, M. Ounsworth, P. Kampanakis, and D. Geest,
“Multiple public-key algorithm X.509 certificates,” RFC Editor, Fremont, CA,
USA, Internet Draft, 2018. [Online]. Available: https://tools.ietf.org/html/draft-
truskovsky-lamps-pq-hybrid-x509-00

[98] J. Contreras and S. Bradner, “Intellectual property rights in IETF technology,” RFC
Editor, Fremont, CA, USA, RFC 8179, 2017. [Online]. Available: https://tools.ietf.
org/html/rfc8179

[99] S. Garfinkel and G. Spafford.Web Security, Privacy & Commerce. O’Reilly, Se-
bastopol, CA, USA, 2011. [Online]. Available: https://learning.oreilly.com/library/
view/web-security-privacy/0596000456/

[100] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic analysis
of the TLS 1.3 handshake protocol,” New York, NY, USA, 2020. [Online]. doi:
10.3929/ETHZ-B-000438744.

[101] OpenSSL Software Foundation, “OpenSSL,” ver. 1.1.1, Newark, DE, USA, 2018.
[Online]. Available: https://github.com/openssl/openssl

[102] L. Torvalds, Linux, ver. 2018-11, Portland, OR, USA, 2019. [Online]. Available:
https://github.com/torvalds/linux

125

https://tools.ietf.org/html/rfc4212
https://tools.ietf.org/html/rfc4212
https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc7468
https://tools.ietf.org/html/rfc2315
https://openquantumsafe.org/
https://tools.ietf.org/html/draft-truskovsky-lamps-pq-hybrid-x509-00
https://tools.ietf.org/html/draft-truskovsky-lamps-pq-hybrid-x509-00
https://tools.ietf.org/html/rfc8179
https://tools.ietf.org/html/rfc8179
https://learning.oreilly.com/library/view/web-security-privacy/0596000456/
https://learning.oreilly.com/library/view/web-security-privacy/0596000456/
https://github.com/openssl/openssl
https://github.com/torvalds/linux

[103] G. Pailoni, “How to benchmark code execution times on intel IA-32 and IA-64 in-
struction set architectures,” Intel Corporation, Santa Clara, CA, USA, Tech. Rep.,
2020. [Online]. Available: https://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

[104] SUPERCOP. "eBACS: ECRYPT benchmarking of cryptographic systems," Oct.
18, 2020. [Online]. Available: https://bench.cr.yp.to/supercop.html

[105] P. Kampanakis and Q. Dang, “Use of the SHAKE One-Way Hash Functions in the
Cryptographic Message Syntax (CMS),” RFC Editor, Fremont, CA, USA, RFC
8702, 2020. [Online]. Available: https://tools.ietf.org/html/rfc8702

[106] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, and S. Simon, “Recom-
mendation for pair-wise key establishment using integer factorization cryptogra-
phy,” National Institute of Standards and Technology, Gaithersburg, MD, USA,
Tech. Rep. NIST SP 800-56Br2, 2019. [Online]. doi: 10.6028/NIST.SP.800-56Br2.

[107] Majestic-12 Ltd. "The majestic million," Nov. 20, 2020. [Online]. Available: https:
//majestic.com/reports/majestic-million

[108] K. McKay and D. Cooper, “Guidelines for the selection, configuration, and use of
transport layer security (TLS) implementations,” National Institute of Standards
and Technology, Gaithersburg, MD, USA, Tech. Rep. NIST SP 800-52r2, 2019.
[Online]. doi: 10.6028/NIST.SP.800-52r2.

[109] E. Barker and Q. Dang, “Recommendation for key management part 3:
Application-specific key management guidance,” National Institute of Standards
and Technology, Gaithersburg, MD, USA, Tech. Rep. NIST SP 800-57Pt3r1, 2015.
[Online]. doi: 10.6028/NIST.SP.800-57Pt3r1.

[110] M. Kerrisk, “Clock_getres(2),” Linux Programmer’s Manual, Dec. 21, 2020. [On-
line]. Available: https://man7.org/linux/man-pages/man2/clock_getres.2.html

[111] K. Igoe and D. Stebila, “X.509 certificates for secure shell authentication,” RFC
Editor, Fremont, CA, USA, Internet Draft, 2011. [Online]. Available: https://tools.
ietf.org/html/rfc6187

[112] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS security intro-
duction and requirements,” RFC Editor, Fremont, CA, USA, RFC, 2005. [Online].
Available: https://tools.ietf.org/html/rfc4033

126

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://bench.cr.yp.to/supercop.html
https://tools.ietf.org/html/rfc8702
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://man7.org/linux/man-pages/man2/clock_getres.2.html
https://tools.ietf.org/html/rfc6187
https://tools.ietf.org/html/rfc6187
https://tools.ietf.org/html/rfc4033

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

127

	20Sep_Lytle_John_First8
	21Jun_Lytle_John
	Introduction
	Related Work
	Contribution
	Overview

	Background
	Definition of a Digital Signature Algorithm
	History of Digital Signature Design
	Digital Signature Schemes

	Hybrid Signature Schemes
	Hybrid Security Notions
	Hybridization Techniques
	True Hybrid Schemes
	Summary

	Methodology
	Approach
	Challenges

	Hybrid Digital Certificates
	X.509 Certificates
	Design Considerations for Hybrid Certificates
	TLS 1.3 Authentication

	Experiments and Results for Hybrid Algorithms
	Methodology
	Standalone Cryptographic Operations

	Results on X.509 Certificate Sampling and Hybrid Certificate Use in TLS
	X.509 Certificate Sampling
	Authentication in TLS

	Conclusion
	Recommendations
	Future Work

	List of References
	Initial Distribution List

