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1 Summary and Introduction  
  

The Testing, Evaluation, and Control of Heterogeneous Large-Scale Systems of Autonomous 
Vehicles (TECHLAV) Center, led by North Carolina Agricultural and Technical State University 
(N.C. A&T), in collaboration with partners at the University of Texas at San Antonio (UTSA) and 
the Southwestern Cooperative Control of Large-Scale Autonomous Systems of Vehicles (LSASVs) 
Indian Polytechnic Institute (SIPI), are conducting research activities to address two fundamental 
grand challenges: 

 

1. Teaming and integrated with human operators 

 

2. Testing, Evaluation, Validation, and Verification of LSASVs These challenges are met through 
three interleaved research thrusts: 

 

• Thrust 1: Modeling, Analysis and Control of LSASVs 

• Thrust 2: Resilient Control and Communication for LSASVs 

• Thrust 3: Testing, Evaluations and Verification of Large-scale Autonomous Vehicles (TEVLAV) 

 

Following are the main achievements during this reporting quarter of TECHLAV. 

 

Thrust	1	(Modeling,	Analysis	and	Control	of	Large‐scale	Autonomous	systems	of	Vehicles	
[MACLAV])	 Thrust 1 developed scalable methodologies to improve modeling, analysis, 
localization, navigation, and control of Large-scale Autonomous Systems of Vehicles (LSASVs). 
Thrust 1 has two sub-thrusts: 1) Modeling and analysis of LSASVs and 2) Cooperative localization, 
navigation and control of LSASVs. The highlights in this thrust for this reporting quarter are listed 
as follows: 

 

• In the vehicle modeling task we developed kinematic and dynamic models for UGVs and UAVs 
to represent vehicles in the testbed. With those baseline models, performance of the models 
were compared to physical UGVs and UAVs from the testbed. Model parameters were estimated 
and adjusted until the error between the two were reduced to a minimal acceptable range. 

 

• As vehicles in a LSASV can rely on network connected computation for decision making, 
research was performed in the various types of communication problems present within a 
networked system. Improvements were made into the physical models of UGVs and UAVs. 
Simulations and physical experiments were performed to ensure that the developed models 
were appropriately representing the vehicles. Truetime simulations in MATLAB were used to 
simulate realistic network scheduling and channel effects. Python code was developed for the 
physical experiments. 

 

•State-estimation techniques were developed for mitigating time delays in a system. Simula-tions 
and experiments were performed to determine the model validity using multiple UGVs and a 
single UAV. 

 



 
 
 

Approved for Public Release; Distribution Unlimited. 
2 

• Proposed a 3D detection system trained based on some hyperparameters that presents a 
significant performance specifically for classes that have more annotated objects in the dataset. 
However, an optimized training method can increase the accuracy better while the speed of the 
detection system is still acceptable. 

• Using transfer learning for training the proposed 3D detection system that presents a better 
performance specifically for classes that have more annotated objects in the dataset. However, 
we utilized other aspects of transfer learning to see if it is possible to further increase the 
performance of the detection system. 

• Utilizing transfer learning as a feature extraction method for training the proposed 3D detec- 
tion system that slightly improves its performance specifically for car and pedestrian classes 
that have more annotated objects in the dataset. However, to see if it is possible to gain better 
performance for the detection system, we investigated some other training methods for the 
model as well. 

• Using Learning without Forgetting (LwF) method for training the proposed 3D detection 
system that has better performance than feature extraction method and fine-tuning method, 
specifically for the new classes added to the system. This method helps adapting the system 
with new tasks with no need to train it on data for existing tasks. 

• Proposed model performed with higher accuracy by updating training method and network 
parameters according to data. Depending on the data correlation and structure, fittest algo- 
rithm can be different. In addition to this results, making network deeper and more complex 
causes more computational time however having higher performance. 

• Developed training methods and updating network parameters according to data. With the 
improvements model error in terms of MAPE (Mean Absolute Percentage Error) is 0.051 which 
means around 91% of enhancement in the performance of data-based model compare to the 
first model. 

• With the goal of improving the autonomous navigation capabilities of LSASV’s, reinforcement 
learning has offered a promising opportunity for enhancing the behavior and reliability of these 
systems. A simulation environment was developed in Python for training a virtual UGV to avoid 
collisions with surrounding obstacles while navigating towards a goal position. 

• Genetic algorithm was studied as a potential improvement for training the network throughout 
the learning process. More development would be required to make more consistent results 
with the algorithm. 

• To deploy the trained algorithm on a physical vehicle, efforts were made to ensure the safety of 
the mobile system and prevent costly collisions with physical obstacles in a test environment. 

• To assist the evaluation of reinforcement learning strategies using the physical vehicle, a GUI 
application was developed in Python for accessing sensor data (range sensors, imu, video 
camera) throughout testing, additionally providing useful features including keyboard teleop- 
eration and reinforcement learning policy selection. 
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• A new approach was proposed to use virtual reality for tracking the actual vehicle in an empty 
test space and constructing a virtual environment around it so that collisions between the real 
vehicle and virtual obstacles could be examined. The virtual reality environment was 
constructed in Unity, and the previous Python simulator for training the vehicle was adapted 
to this software using the ML-Agents Unity asset package. 

• In an effort to maximize usability of the intelligent mapping algorithms in a variety of envi- 
ronments, research was performed into the different datasets containing indoor and outdoor 
object classes. A data fusion technique was applied to color, depth and LIDAR data collected 
from sensors onboard the Kobuki Turtlebot 2 robot. Constrained by the current hardware 
resources, it was determined that the process for understanding a large number of classes in 
real-time involves first training a deep network architecture on a variety of different datasets, 
and then dynamic loading of the trained network weights based on contextual logic. A process 
was described for mapping of important objects, saving storage space and processing power, 
while increasing resolution of logged object structures. 

• Simulation of multi-vehicle object pose estimation for cooperative localization in mapping was 
performed using monocular camera models with local coordinate providers. These develop- 
ments will also be used for correlating object poses to uniquely identify and label objects. 
Platforms with depth capable cameras will also be used in conjunction with this system to get 
better estimates of object location. Noise and pixel quantization characteristics were added to 
the simulation to get a better estimate of realistic issues faced in testing the algorithm in the 
hardware testbed. Depth enabled camera platforms will add a better sense of depth estimates 
when fused with the developed monocular algorithm. 

• A ROS-compatible Unity simulation environment was developed using “ros-sharp” and custom 
model files of Mapping Master and Mapper Agent vehicles. The purpose of using this environ- 
ment is to have a higher level of realism in simulation of visual processes for the cooperative 
localization and mapping task. Realistic effects of cloud cover, dusty environments, and light- 
ing can all be modeled with this simulation environment. More complex environments will aid 
in development of vision processes as they better mimic real world conditions. 

• A process was developed using the testbed for the intelligent detailed mapping of important 
objects only, which is beneficial in saving storage space and processing power, while increasing 
the resolution of detailed object scans. 

• Developed several complex algorithms to automatically design trajectories for autonomous 
vehicles in a dynamic adversarial environment. These algorithms generate paths for the au- 
tonomous vehicles in real-time to ensure their safety and reachability to a desired target while 
respecting the dynamics of the system and its physical limitations. The resulting control signals 
to implement the winning trajectories are smooth. A comprehensive analysis on cor- rectness 
and existence of the solutions and complexity analysis of the algorithms are also provided. 
Several scenarios have been addresses including single target reach-avoid, multi- target reach-
avoid. 

• Investigated the use of cloud computing in several LSAVS environments, including autonomous 
boats, mobile sensor networks, and intelligent transportation systems. A cloud computing 
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based algorithm was developed to control a swarm of autonomous boats tasked with rescuing 
victoms from a sinking ship. The algorithm is responsible for collecting information on the 
location of victoms and assigning a boat to rescue them quickly and efficiently. A second 
algorithm was developed to find the optimal location for a swarm of mobile sensors so that they 
can best monitor a region. This second algorithm collected data on the environment, modeled 
the signal using the data, then determined the optimal position for the mobile sensors based on 
the model. Finally, the use of cloud computing was investigated for the field of intelligent 
transportation systems. The fields of vehicle platooning and roadside unit placement were 
focused on, and their implementation was investigated. 

• Developed algorithms for controlling these systems utilizing cloud computing with a focus on 
the architecture of the cloud layer. A cloud-edge architecture was proposed for the above 
applications, which allowed for cloud computing to have both an accurate and quick solution 
to the problems. The architecture is able to switch between two algorithms dynamically, 
one that provides a quick solution using a subset of the data and a second that provides an 
accurate solution using all the available data. The placement of these two algorithms in a fog 
computing environment was investigated, allowing for a more refined and better performing 
system. The cloud-edge architecture was implemented on multiple industry cloud computing 
systems. 

• Robot-in-the-loop simulations were used to test the validity of the control algorithms utilizing 
industry cloud computing systems. The simulation included physical devices for the robot and 
edge device. Communication between the two was achieved through a wireless connection, and 
a wired connection was used between the edge device and the cloud. The network performance 
was recorded during testing in order to help assess the impact of network communication on 
the cloud-edge architecture. 

Thrust 2 (Resilient Control and Communication of Large-scale Autonomous systems of 
Vehicles [RC2LAV]) Thrust 2 developed systematic techniques, tools, and algorithms to enhance 
the reliability and efficacy of the control structure and the communication backbone for Large- scale 
Autonomous Systems of Vehicles (LSASVs) integrated with human operators in dynamic and 
uncertain environments such as the battlefield. Thrust 2 has two sub-thrusts: 1) Developing fault- 
tolerant mechanisms for LSASVs and 2) Developing a reliable distributed communication network 
for LSASVs. The highlights in this thrust for this reporting quarter are listed as follows: 

• Developed asynchronous and semi-asynchronous diagnosers tools which allow for diagnosing a 
system (faulty, or non-faulty) without requiring the restarting of the system under diagnosis. 
The developed asynchronous diagnoser is able to be applied to a system during any period 
of operation, where there is no information about the state and conditions of the syestem 
understudy. The semi-asynchronous diagnoser, however, can be applied to a system when 
there is uncertain information about the state and conditions of the system understudy in the 
form of a set of particular states or modes. The advantage of these developed diagnosers is that 
the systems under diagnosis are able to continue operating, and are not required to be shut 
down and re-initialized. 

• Developed an active-learning technique to construct the diagnoser which detects and identifies 
occurred faults and their types by monitoring the observable behaviors of the plant. The 
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algorithm will actively make two types of queries to an oracle: “the membership queries” and 
“the equivalence queries.” Receiving the answers to these queries, the algorithm gradually 
completes a series of observation tables leading to the construction of the diganoser. 

• Considered the existing techniques for formulating, developing and modeling fault diagnostics 
and prognostics framework for single agents. Algorithms of the proposed fault diagnostics and 
prognostics framework included Multi-Basis Clustering and Optimized Cluster Track- ing. 
Multi-Basis clustering procedure combined principal component analysis (PCA) based 
dimensionality reduction with an unsupervised clustering technique. Initially, a single princi- 
pal component transformation matrix called raw basis was constructed from the signal data. 
Data points from individual clusters or modes were then identified using sets of indices. A 
single principal component transformation matrix was then recomputed for each individual 
mode using the corresponding index set, leading to different mode basis for a distinct operat- 
ing mode. From this theory, the functionalities of the Diagnostics and Prognostics framework 
(DPF) was decided to include (i) Multi-Basis Clustering and (ii) Optimized Cluster Tracking. 
Multi-Basis clustering strategy consolidates principal component analysis (PCA) by decreasing 
its dimensionality using an unsupervised clustering strategy. The basic techniques followed in 
DPF are data dimensionality reduction, clustering and forecasting analysis, prognostics, 
diagnostics, condition monitoring and decision making. The DPF framework assumes that the 
system accepts the elements got from sensor signal(s), gathered through data acquisition 
device(s), are accessible as input vectors. Depending upon the kind of sensor utilized, the raw 
signal itself can be utilized as an element, and subsequently, needs no element extraction 
process. DPF is essentially an autonomous channel for inconsistency identification that takes 
highlights/flags and yields demonstrative and prognostic results for decision making. 

• Created experimental test bed including two Kobuki Turtlebot 2 robots labeled as "Faulty" and 
"Helper". In terms of hardware configuration, while Faulty robot only uses wheel encoders that 
provides information about its movements, Helper robot uses wheel encoders and Kinect 
sensor. When a failure is detected, two types of diagnostic methods are considered. The first 
method was called the local method. In this case, Faulty robot detects the fault by using 
its odometry. The second diagnostic method was called the cooperative method. Sometimes, 
Faulty robot cannot determine the failure because odometry itself can be source of the failure. 
Helper robot plays an important role. It uses Kinect for determining Faulty robot’s location 
visually. This feedback gives Faulty robot to find source of the failure. 

• Another objective was reconstructing faulty-noisy signals acquired from a dataset sourced 
from a "DJI Phantom 3" drone in landing and take off conditions. A Deep Recurrent Neural 
Networks was used, hosted on Chameleon Cloud Services. In ideal stable flight conditions, 
all four rotors should be rotating at approximately the same speed. In a simulated faulty case, 
control signals passed via radio frequencies were received in a noisy or corrupted state. The 
signal before radio transmission had the shape of a standard PWM, while the received one had 
two states. In this situation, the reconstruction methods are required to rebuild the faulty 
signal(s) in order to maintain the stability, and prevent drone deviation. The dataset had 
provided four original signals without noise which were from the sender’s control device, three 
noisy signals without fault and one faulty-noisy signal belongs to one of the motors’ drivers. 
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• Implemented Pioneer 2 development platform in search of the means for detecting whether 
the tires were not inflated properly. To collect the data, the bot was driven in a straight line 
with various amounts of tire pressures. The data collected during the experiment was the 
commanded linear and angular velocities, the wheel encoded estimated position, IMU data 
collected from a BNO055 IMU sensor, and the tire pressure (measured at the beginning of the 
experiment). 

• A Recurrent Neural Network (RNN) was used on the Pioneer 2 platform. Unlike a traditional 
deep learning network that makes predictions on single instances of data, the RNN back- 
propagates through a time-series of data to predict the next step in the sequence. This behavior 
is almost perfect for the problem at hand. However, simple RNN neuron architecture suffers 
from a phenomenon called vanishing/exlpoding gradients, where the information the model 
uses to generalize itself does not allow it to actually learn. To address this, the simple neuron 
was replaced with a Long Short-Term Memory (LSTM) unit. The LSTM determines what 
information is relevant or irrelevant at every learning iteration so to avoid the problem of 
vanishing/exploding gradients. 

• Fuzzy logic was employed as a means of mitigating the predicted faults and determining 
the most detrimental system failures in order to maintain system stability and security. In 
hopes of capturing system-wide performance metrics, potential faults were analyzed from both 
hardware and network points of contention. The performance of a single subsystem fault was 
tested and validated by applying various degrees of tire deflation to a Pioneer UGV. In this 
experiment, the only decision to be made is an angular velocity required to correct the course 
of the UGV. The second experiment was limited to DoS style attacks, but this could easily be 
scaled to apply to many different types of cyber-related anomalies. The experiment consists of 
a simulated system of UGVs led by a master agent where its constituent agents use position 
and orientation data from each agent in the system to maintain a formation according to where 
the leader may go. A DoS attack was simulated by selecting one agent at random whose position 
and orientation data topic publisher is stalled in such a way that the data transmission delay is 
modeled to mimic DoS delays. This is done by withholding data according to a uniform random 
distribution similar to that of corrupted network performance metrics. Using the sequence 
stamps from each data packet being published from each agent, the probability of whether each 
respective agent is corrupt or not is evaluated. This statistic is re-evaluated incrementally as 
the system goes on so until the prediction converges on the corrupted agent. Once the 
corrupted agent is identified, its communication is severed with its constituent agents so as to 
retain stability with the rest of the system. 

• A large focus was put on detecting unknown faults. In order to address this, the learning 
scheme was adapted from purely supervised learning to a semi-supervised learning. To test 
this, the tire inflation data set used in previous experiments was used. The goal was simply to 
label an unlabeled data set given ideal performance data. This was done by using hierarchical 
clustering to detect clusters of fault data and assign them to respective feature sets. 

• Future algorithm development benefits from a research platform over which we possess more 
control. Specifically, a platform which is described by more reliably measured variables and 
that can have faults induced or removed for rapid data collection and subsequent algorithm 
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training. Unity engine was selected as the simulation environment due to its capabilities in 
producing training data as well as its potential for integration with physical prototypes. 

• Task T2-5 investigated possible solutions in 5G wireless framework to establish and develop 
reliable communication network among autonomous agents. Since the communication network 
must be functional without the presence of the communication infrastructure, we selected 
device-to-device (D2D) communication. However, establishing D2D links requires addressing 
some technical challenges such as interference management and spectrum sharing. In order 
address these challenges, and enhance the data transmission speed, D2D links are established 
in the mmWave band. 

• Enabling D2D communication in the mmWave band requires addressing several technical 
challenge, such as blockage detection, beam alignment, antenna beamwidth optimization and 
peer association and etc. 

• In task T2-5 theses technical challenges are address through proposing novel algorithm and 
frameworks using stochastic geometry, game theory and machine learning. A summary of 
these methods are provided in this report. 

• In order to minimize the effects of malfunctioning agents on the overall networked systems’ 
performance, trust between agents are incorporated and analyzed using simulation and ana- 
lytical methods. 

• By the optimal search algorithms, it was possible to find a suitable topology for any number of 
agents to reduce the overall communication time as quickly as possible. 

• A neural controller is combined with adaptive control to make the plant output to robustly 
follow the output of the reference model. 

• Developed a new method of Physical Layer Security that ensures privatization while avoiding 
the costly overhead of traditional cryptographic methods of securing digital data. In 5G, secure 
wireless communications is an afterthought to the standard but will become necessary in NextG 
infrastructure. 

• Designed a new algorithm for leveraging K-User MIMO technologies for K  3. This algorithm 
overcomes the requirement in K-User MIMO of having perfect interference cancellation, which 
often limits the transmitter and receiver to only three transmit antennas and three receive 
antennas. 

Thrust 3 (Testing, Evaluation and Verification of Large-scale Autonomous systems of Vehicles 
[TEVLAV]) Thrust 3 developed and provide technologies and tools for testing, eval- uation, 
validation, and verification of heterogeneous Large-scale Autonomous Systems of Vehicles (LSASV). 
Thrust 3 has three sub-thrusts: 1) Development of formal modular verification approaches for 
LSASVs, 2) Data-driven testing and evaluation of emergent behavior of LSASVs, and 3) Verifi- cation 
and validation of human-system interactions. The highlights in this thrust for this reporting quarter 
are listed as follows: 
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• Developed a motion planning and control framework that leverages local sensory inputs and 
communication information to transfer a large number of robots from the current location to 
the desired location in a dynamic environment in the presence of robot drop-outs, communi- 
cation links failures, and limited communication bandwidth capacity. The framework plans the 
desired distribution of the swarm and controls individual robots in the group to steer the 
whole swarm towards the target swarm distribution to accomplish a coordinated collec- tive 
motion. The proposed distributed control laws are independent of robot permutations and do 
not assign unique labels to identify individual robots. A comprehensive stability and 
convergence analysis of the algorithms is also provided. 

• Developed an automatic tasking approach for decentralized coordination of a heterogeneous 
team of autonomous agents. The agents have different capabilities in terms of executing 
different tasks. In the proposed framework, the collaboration can take place when an agent 
cannot perform a part of a mission individually but can accomplish the mission in collaboration 
with other agents which have complementary capabilities. For this purpose, a hierarchical 
modular coordination algorithm for synthesizing and executing local Behavior Trees (BTs) 
so that the agents can collectively achieve a set of tasks is developed. Further, a two-level 
auctioning algorithm is incorporated into the developed framework to assign tasks among the 
vehicles with lower costs. The developed framework allows a trade-off between the total cost 
and the duration of the accomplishment of the tasks through an embedded cost function. 

• This task discussed three novel models in human-robot collaboration: human cognitive per- 
formance model, model of trust in the robot operation, and human-multi-robot performance 
aware trust modeling. In human cognitive performance model, a novel mathematical represen- 
tation of dynamical human cognitive performance model was proposed for an Human-robot 
Collaboration (HRC) framework based on the associated human physical workload, the robot 
added workload, and the human cognitive workload. Furthermore, considering the research 
challenge in quantification of trust, a novel time-driven performance-aware mathematical rep- 
resentation of human operator’s trust in the robot operation was proposed for an HRC frame- 
work based on the associated human physical workload/physical performance, the human 
cognitive workload/cognitive performance, and the robot added workload/robot performance. 
Moreover, the proposed two models were extended to multi-robot scenario to identify the im- 
pact of human trust in the multi-robot operation considering the effect of individual robot, and 
the overall robot performance as the added workload to the human operator. Simulation 
results have been provided to validate all the proposed collaboration models and analyze the 
effects of variations of the involved parameters. 

• In Task 3-4, we reformulated the data-driven emergent behavior analysis problem into an on- 
line data stream classification problem. Considering the dynamic and complex environmental 
conditions, the characteristics of emergent behaviors usually change over time and conven- 
tional learning classifier systems can not fully handle this scenario. Therefore, we transformed 
the problem into an online learning-based classification problem. 

• We developed a clustering-based data stream classification framework to learn and classify the 
non-stationary properties of sensory data streams from autonomous vehicles. It can effectively 
capture the distributional drifts and occurrence of novel data patterns as data is continuously 
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generated. Moreover, it is designed with a continual learning capability that can automatically 
update the knowledge base with a limited amount of human supervision. 

• Developed a multi-sensor fusion based method on uncertainty measures. We devised a Dempster- 
Schafer theory of evidence based algorithms employed in a multi sensor data fusion for clas- 
sification of targets. Measurements acquired by different sensors for the various attributes of 
the observed target are represented by belief functions. The belief functions are then com- 
bined using a robust fusion algorithm to obtain a final belief function. The resulting final 
mass is transformed into probability distribution for decision making as to the class of the 
observed target. The developed method has also been extended to multi-class and multi-label 
classification problems for reliable target classification. 

• Developed trust classification algorithms that effectively differentiate between human-machine 
trustworthy interactions based on real-time sensing of psychophysiology data. Additionally, 
we developed machine decision making explainablity that takes into account features that 
characterize trust propensities of individual operators. The explanability formulations are 
devised on the basis of Shapley Additive Explanations. 

• A new system is proposed for performance evaluation of a UAV during real-time operation and 
a scenario is developed to verify the proposed system. The proposed system is implemented 
in laboratory environment and data is collected from external sensor to build the prediction 
model. The trained model is used for real time performance evaluation of a single UAV. 

• Developed a custom drone from scratch to test its performance and capability to carry on 
a particular mission using perception inference engine. Its performance was originally tested 
during an autonomous flight in the lab environment. The drone is capable of carrying on 250gm 
of external payload and has onboard visual sensor kit for 3D sensing with a powerful Intel 
computer board for high-level navigation algorithm development. The PX4 autopilot for low-
level control of the drone is used. 

• Analyzed the robustness of previously developed perception inference engine (PIE) by intro- 
ducing noise in sensor measurement and developed an ambiguous scenario to test the perfor- 
mance of PIE. Two machine learning techniques were compared with decision tree algorithms. 
The prediction accuracy of the PIE is above 95% for the ambiguous scenario and decision tree 
outperforms than the other two machine learning technique that have been considered ( Naive 
Bayes & SVM). 

• Developed analytical analysis of scalability for the perception inference engine (PIE) for multi- 
ple UAVs, proposed two different types of arrangements to test multiple UAVs simultaneously 
in a space constrained test environment and developed a new state to capture the time-ordered 
behavior of UAVs during the execution of a particular scenario. 

• Developed a mathematical formulation to test multiple UAVs using perception inference en- 
gine(PIE), developed seven sub-task to implement the proposed system and a simulation 
environment using ROS, Gazebo and Pixhawk firmware which will be used to generate a 
synthetic dataset for PIE. 
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• Developed scenarios using multi-UAV system to generate synthetic data to train a prediction 
model which will be used to test the autonomous capability of the UAV agents during the ex- 
ecution of the scenarios. Also, we developed a novel search and survey technique to effectively 
conduct the wilder monitoring mission. 

• Developed a new data-driven testing framework along with seven modes of operation and five 
scenarios, collected data from the developed simulation environment and used a deep learning 
based classifier to predict the modes of operation of UAV agents while performing in real 
mission. Utilized the synthetic data to train the deep-learning model and validate it by using it 
in the developed simulation environment. Also, deployed the trained model in simulation to 
evaluate the performance of a UAV while performing in a simulation environment. 

• Established the link from sociological construct that play an important role in determining how 
the human operators make use of automated systems and cognitive process to neuroimaging 
techniques. 

• identified different neuroscientific techniques to collect brain waves to be associated with 
human trust in automation. 

Educational Activities: 

• Supported 33 PhD students from NCAT, 6 PhD from UTSA. Also, supported 35 MS from 
both schools, and 55 undergraduate students from NCAT, and 30 from SIPI. 

• Delivered autonomy-related courses including (1) Optimal Linear Control Systems, (2) Ma- 
chine Learning and Evolutionary Algorithms, (3) Sensation & Perception (4) System Dynamics 
(5) Introduction to Modern Telecommunications at NCAT and Big data analytic and cloud 
infrastructure at UTSA, and Engineering Internship at SIPI. 

• Developed and offered collaborative courses at both N.C. A&T and UTSA, including (1) 
Advanced Robotic Systems (2) 4G LTE Wireless Communications. This will assist in sharing 
the resources and facilitate the exchange of knowledge between the students and instructors 
at N.C. A&T and UTSA. This will further foster the collaboration amongst students from 
both campuses to have common advisors, sharing and assisting each other in the experimental 
setup and writing papers. 

Outreach Activities: 

• Organized bi-weekly TECHLAV seminar series that promotes sharing of ideas between N.C. 
A&T, UTSA and SIPI as well as task progress updates. In addition to faculty and students 
at N.C. A&T, UTSA and SIPI, a total of four guest speakers from industry, government and 
academia participated in the series. The list of organized seminars is available at 
“http://techlav.ncat.edu/seminars.html” 

• Collaborative faculty advisement of graduate students where faculty members from NCA&T 
and UTSA mutually serve as the committee members of PhD and Master Students from both 
campuses. 
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• Published and submitted 32 journal and 103 conference papers, have 2 patents and 4 under 
consideration and 4 book chapters. 

• Organized the 11th International IEEE Conference on System of Systems Engineering (SoSE 
2016). 

• Organized a special session at World Automation Congress 2016 in Autonomous Vehicles, 
Development, Modeling, and Control. 

• Continued collaborations and writing joint proposals with other academic units, industry 
partners, and national laboratories. 

• Supported a group of undergraduate and graduate students to attend the 2016 IEEE South- 
eastCon Hardware Competition. 

• Supported a group of undergraduate and graduate students to attend the 2016 American 
Helicopter Society (AHS) Micro Air Vehicle (MAV) Competition. The team is selected as a 
finalist team. 

	

2 Project Information 

2.1 Administrative Information 
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2.2 Programmatic Information 

2.2.1 Project Description 

This project will establish a multi-disciplinary Center of Excellence in Autonomy to conduct a 
collaborative and integrated research and education program on Testing, Evaluation and Control 
of Heterogeneous Large-scale systems of Autonomous Vehicles (TECHLAV). TECHLAV comprises 
a strong team with expertise in Control, Communication, and Human Cognition from Electrical, 
Mechanical, Industrial & Systems Engineering programs, and Cognitive Psychology from: 

• North Carolina Agricultural and Technical (N.C. A&T) State University (nation’s # 1 pro- 
ducer of African American engineers) 

• University of Texas at San Antonio (UTSA) (2nd largest Hispanic Serving Institution and 7th 
producer of Hispanic engineers) 

We are also partnering with Southwestern Indian Polytechnic Institute - SIPI (leading engineer- 
ing institute of education among all Tribal Colleges) to provide and promote education, outreach 
activities and curriculum development to a larger Native American community. 

 
2.2.1.1 Research Objectives 

This center will conduct a collaborative, integrated research and education program with the focus 
on Large-scale Autonomous Systems of Vehicles (LSASVs) that can be deployed in uncertain and 
dynamical environments (e.g. a battlefield) through effective interaction with human operators. 

The center convenes a diverse and distinguished industrial and academic advisory board to spur 
innovation through careful design, adaptation, and testing in order to research two fundamental 
grand challenges: 

1. Teaming and Cooperative Control of Large-scale Autonomous Systems of Vehicles (LSASV) 
integrated with human operators 

2. Testing, Evaluation, Validation, and Verification of LSASV 
 

2.2.1.2 Public Problem Description 

With advances in technologies, it is now becoming possible to deploy a large team of sophisticated 
unmanned air, ground, sea surface, and underwater vehicles with different capabilities to collec- 
tively accomplish complex missions which often cannot be achieved individually. Such large scale 
autonomous systems of vehicles could provide great flexibility to achieve tasks which are distributed 
in time and space. Hence, large scale control systems have emerged as a promising research area 
with broad military and civilian applications, such as cooperative classification and surveillance, for- 
mation flight, coordinated underwater or space exploration, cooperative mapping, mutual defense, 
cooperative attack and rendezvous. 



2.2.1.2.1 Public Research Goals/Contribution TECHLAV aims to achieve the following 
objectives: 

• Modeling, Analysis and Control of LSASVs: We will investigate the properties and
emergent behaviors of LSASVs through qualitative and quantitative analyses by both model- 
based and knowledge-based approaches. We will then develop decentralized cooperative con- 
trol techniques for mission planning, localization, navigation, decision-making and control of
vehicles using hybrid supervisory control approaches, task decomposition, and cloud-based
control of LSASVs to accomplish the missions assigned by a human operator.

• Developing Resilient Control and Communication for LSASVs: We will develop in-
novative techniques and tools for predicting, detecting, identifying, locating, and isolating
different failures in control systems and communication links. Accordingly, to dynamically
adapt to operational and situational conditions and to accommodate possible failures, tech- 
niques will be developed for recovering, reconfiguring and re-tasking of the system both in the
control structure and the communication platform.

• Testing, Evaluation, and Control of LSASVs: We will develop formal, modular verifica- tion
approaches to ensure the reliability of the developed systems. In addition, uncertainties in
model parameters and external disturbances will be handled using data-driven approaches.
Furthermore, we will evaluate human interactions with LSASVs by examining human percep- 
tion of system states, human trust in the system and human judgment of uncertainty.

• Demonstration, Verification and Integration: For integrating and evaluating the results, as
well as transitioning the technologies to higher TRL levels, the developed techniques and
algorithms will be tested through several cooperative scenarios on a team of autonomous
vehicles interacting with a human operator.

• Broad Educational and Outreach Plan: The TECHLAV will promote a diverse, produc-
tive and prepared workforce with more STEM graduates from underrepresented groups across
the three campuses. The Center will strengthen planned academic programs at N.C. A&T
and will increase multidisciplinary and cross-listed courses across the three campuses. The
Center will also have outreach activities to K-12 educators and students, the community, and
liberal arts and community colleges in the area to develop a STEM-educated student pipeline
and increase public awareness of TECHLAV. Specifically, SIPI has active partnerships with
11 other tribal colleges and will lead the development and the curricular integration of the
courses at all of the 11 participating tribal community colleges and three Native American
Serving High Schools through collaboration with N.C. A&T and UTSA.

2.2.1.2.2 Expected Impact Reaching higher levels of autonomy and teaming of multi-agent 
systems requires each agent to accomplish assigned missions autonomously even in a dynamic en- 
vironment and that each agent should have the capability of autonomous collaboration with other 
teammates and human operators. To address these challenges, Research Thrust 1 of this proposal 
considers several issues such as developing capable and scalable models for autonomous collabora- 
tion, robust and distributed decision-making, group coordination, planning, and tasking through 
effective interaction with human operators. 
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Furthermore, it is important to ensure the developed large scale systems of vehicles is resilient 
against failures in the system and have the ability to ”react to problems in one of its components and 
still provide the best possible service.” To address these issues, Research Thrust 2 of this proposal 
focuses on reliable and flexible control and communication methodologies and technologies to make 
the system robust against failures in the control structure and communication platform. 

In addition, all the DoD Departments require testing of designed autonomous systems in com- 
pliance with safety regulations. Traditional certification practices will not be cost effective and 
practically applicable to large scale systems. This requires new methods combining software, hard- 
ware, and system engineering to modularly validate and verify large scale systems. Thrust 3 of this 
proposal explores different techniques for testing, verification, and validation of large scale systems 
of vehicles, particularly in the presence of uncertainty and external disturbances. 

 
2.2.2 Methods 

2.2.2.1 Detailed Description of Public Technical Approach 

Thrust 1 (Modeling, Analysis and Control of Large-scale Autonomous systems of Vehi- 
cles (MACLAV)) will develop scalable methodologies to improve modeling, analysis, localization, 
navigation, and control of LSASVs. Managing modern large scale systems requires new scalable 
techniques to integrate communication, control and computation that can interact with humans 
through many new and emerging modalities. Thrust 1 breaks up this problem into two sub-thrusts: 
1) Modeling and Analysis of LSASVs and 2) Cooperative Localization, Navigation and Control of 
LSASVs. Through these two sub-thrusts, different techniques will be developed for mathematical and 
data-driven modeling, analysis, localization, navigation, and control of distributed LSASVs. In 
particular, a systematic hierarchical hybrid, cooperative and scalable control will be developed for 
decentralized supervisory control and coordination of a team of heterogeneous autonomous vehicles 
which enables them to cooperatively accomplish an assigned mission under human supervision. To 
further manage the computational overheads of the system’s components and modeling, a cloud- 
based approach is proposed to keep a virtual copy of the vehicles, which will be available to off-load 
processing tasks that otherwise would overwhelm the vehicles’ real-time processing capabilities. 
This allows for greater flexibility to include simulated (or virtual) vehicles into a swarm of physical 
vehicles. 

Thrust 2 (Resilient Control and Communication of Large-scale Autonomous systems of 
Vehicles (RC2LAV)) will develop systematic techniques, tools, and algorithms to enhance the 
reliability and efficacy of the control structure and the communication backbone for LSASVs 
integrated with human operators in dynamic and uncertain environments such as a battlefield. This 
thrust consists of two main sub-thrusts. The first sub-thrust, “Developing fault tolerant mechanisms 
for LSASV,” proposes to develop fault tolerant mechanisms for cooperative control of LSASVs. This 
will be done by first predicting, detecting, identifying, locating, and isolating the occurrence of a fault 
through model-based and data-driven approaches in both discrete decision-making layers and 
continuous low layers of the hierarchical control structure proposed in Thrust 1. Then, different fault 
accommodation strategies will be explored for dynamic reconfiguration of the system towards 
recovering the faulty system and if necessary and enabled, the developed team has the capability of 
re-planning and re-tasking in response to changes in the environment and/or mission. In parallel, in 
sub-thrust 2, “Developing a reliable distributed communication network for LSASV,” a reliable and 
flexible communication structure will be developed for a large scale system of vehicles which 
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is robust against failures in communication links, packet dropouts, network delay, high interference 
and jamming attacks. 

Thrust 3 (Testing, Evaluation and Verification of Large-scale Autonomous systems 
of Vehicles (TEVLAV)) will develop and provide technologies and tools for testing, evaluation, 
validation, and verification of heterogeneous Large-Scale Autonomous Systems of Vehicles (LSASV). 
This will be done through three sub-thrusts. In the first sub-thrust, “ Developing formal modular 
verification approaches for LSASV,” a runtime formal verification approach will be developed which 
uses a divide-and-conquer technique to modularly check whether LSASV can satisfy the desired 
(complex) high level specification. In case of uncertainties in model parameters and external dis- 
turbances, in the second sub-thrust, “ Data-driven testing and evaluation of emergent behavior of 
LSASV,” we will use intelligent data-driven learning mechanisms and Perception Inference Engine 
(PIE) for testing and evaluation of behavior and emergent properties of LSASVs. Finally, in the third 
sub-thrust, “Verification and validation of human-system interaction,” we will capture uncer- tainty 
at different levels of the system (environment, machine components, and human-machine 
interactions). More importantly, human operators’ interaction with autonomous systems dealing 
with unexpected situations will be approached through two important factors: human judgment and 
decision-making and trust in autonomous systems. Specifically, some ecological models for human 
operators’ judgment and decision-making with trust in autonomous systems will be tested to provide 
noble guidelines to design a human–system interface. 

In addition to the above thrusts, the Center will develop a Demonstration, Implementation, and 
Integration (DII) component to validate the proposed tools and techniques that support technologies 
for addressing the growing autonomous system capability, effectively integrated with the human 
capacity to perform in a high-tempo, complex decision-making environment. The DII platforms will 
showcase robust execution of challenging tasks and mission scenarios envisioned by DoD such as: 
cooperative search and coverage to find enemy targets; automatically repair communication 
breakdown among autonomous systems of vehicles, and assemble systems in cooperation with human 
operators. 

2.2.2.2 Comparison with Current Technology/Assumptions and Procedures 

Thorough and efficient management of LSASVs requires development of new techniques for scalable 
cooperative operation of distributed systems equipped with global communication connections, as 
well as capabilities for decentralized local actions and distributed resource sharing while effectively 
interacting with human operators. In addition, new tools and techniques are needed to test, evaluate, 
validate, and verify LSASVs to ensure their safe and reliable performance. The traditional separation 
of computing, communications, and control is no longer valid, and new methods that integrate 
advances from different disciplines are needed. Furthermore, most of the existing solutions involve 
a centralized resource and task allocation, followed by decentralized execution of the tasks so that 
each vehicle is responsible for a set of tasks. This strategy is neither scalable nor applicable for 
analysis, design, and verification of large scale systems. Therefore, this Center brings expertise from 
different disciplines to develop more modern management of LSASVs by considering the use of 
cooperative operation of large collections of distributed vehicles, with local computation, global 
communication connections, and decentralized control actions. 
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2.2.3 Schedule and Milestones 

2.2.3.1 Schedule Graphic 

Durations of the proposed tasks have been carefully coordinated to ensure that adequate time and 
resources are available to investigators. 

 

Figure	1:	Project	Milestones 

2.2.3.2 Detailed Description of the Tasks in Thrust 1 

Task T1-1. Mathematical Modeling of LSASVs: LSASVs cannot be thought of as a set of in- dependent 
agents since they usually interact with each other, share information and resources to collaboratively 
achieve given tasks. Hence, traditional methods which ignore the coupling effects between the 
system’s components cannot be applied to these tightly coupled systems. Developing an augmented 
model for the overall structure of the system is also too complicated, computation- ally expensive, 
and impractical. To address these problems, we will develop novel methods using abstraction and 
model reduction techniques, which help to manage the complexity of the result- ing model. Along 
with the developed models, communication protocols will also be established to interconnect these 
systems (machines or assets) together via a wireless network encapsulating the 
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entire system. We will use a cloud data center to house the models and facilitate access for the LSASV 
systems. This will also facilitate incorporating additional services into the model such as an Object 
Recognition Engine and a centralized world map, which will be available to all entities in the 
connected systems. 
Task T1-2.  Data-and Knowledge-Based Modeling of LSASVs: One of the key aspects 
of LSASVs is the exchange and management of large datasets (numerical, textural and image) among 
the constituents of the system. In some applications, data computation, Bayesian networks 
accumulation and its security are the key pieces of information. There is a need for employment 
of a machine intelligence method to enable any vehicle in the system to perform in a team of vehicles. 
In this task, we propose that a promising approach, called “Data Analytics” be used. Data Analytics 
utilizes statistical and computational intelligence (CI) tools such as principal component analysis 
(PCA), clustering, fuzzy logic, neuro-computing, evolutionary algorithms, and data mining to reduce 
the accumulative large size of the LSASV datasets to a manageable size. We will then apply these 
tools to a) extract information, b) build a knowledge base using the derived data, c) develop a 
cooperative teamwork framework through the consensus among members and d) eventually develop a 
non-parametric cooperative model for LSASVs. This task will construct a bridge between LSASVs and 
Data Analytics to develop reliable models for resilient cooperative control of such systems, described 
in Task T2-4. One of the more recent promising data analytic tools is “Deep Learning”. Deep learning 
is the broad term for the recent development and extension of neural networks in the Machine 
Learning community, which has allowed for state-of-the-art computational results in speech, image, 
and natural language processing tasks. We will also develop a hierarchical learning approach to 
extract high order representations from low level data. Data analytic tools and approaches will be 
further used to filter data in circulation among vehicles by eliminating communication noise, 
anomalies, and outliers in communicated data in a system of vehicles. This task will feed directly into 
other Thrusts such as test and evaluation (Thrust 3) and fault diagnostics (Thrust 2). Data Analytics 
also plays a central role in allowing the vast amount of data created to be converted into actionable 
information to be used by human operators. 
Task T1-3. Qualitative and Quantitative Analysis of LSASVs: Followed by modeling LSASVs, 
the next step is to analyze the resulting models to investigate the properties and emerging behaviors 
of LSASVs. Traditional concepts developed for single agents are no longer valid for LSASVs and new 
notions of stability, controllability, observability, and reachability are required. For the stability 
analysis of LSASVs, we will focus on the input-to-state stability (ISS) of the system and will employ 
small gain theory, whose proven compositional properties ease the development of a modular 
scalable stability analysis method for interconnected large scale systems. We will also formulate the 
controllability of the LSASVs to realize how to drive the vehicles toward desired positions in the 
presence of tight interactions with other vehicles. This will be carried out by exploring the reachable 
space of the abstracted space, and investigating simulation-based structural properties of the system. 
Communication protocols will be a part of this investigation and maximum communication delays will 
be determined to guarantee system stability in coordination with Thrust 2. 
Task T1-4. Cooperative Localization and Navigation for LSASV: A class of localization and 
navigation algorithms called Simultaneous Localization and Mapping (SLAM) provides a robust and 
accurate approach for both tasks. SLAM algorithms that utilize visual information (vSLAM) require 
large amounts of computational power and storage, which makes it difficult to implement in real-
time for LSASV. Of the main bottlenecks in vSLAM, feature identification and matching 
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across a large database are the most time consuming. And so, in this task, we will implement a novel 
method to reduce computational time, storage requirements, and network load to perform feature 
identification and matching components of vSLAM in real-time. The proposed process selects out 
only the most feature-rich components of visual data to be used in matching and database creation. 
We will further improve feature detection algorithms using proven feature detectors such as ORB 
(Oriented FAST and Rotated BRIEF) and SURF (Speeded up Robust Features) on readily available 
datasets. This will significantly reduce storage requirements and calculation time. The proposed 
more efficient vSLAM algorithm will be implemented remotely from the LSASV entities themselves 
(in a cloud datacenter), taking advantage of high performance computing systems and parallel 
processing of algorithms. The network and cloud access delays will be compensated by predictive 
approaches to minimize their effects on the overall system performance. Visual information will be 
fused with known, learned, or sensed physical location references to create a world map. World maps 
will be kept in a big-data database and made equally available to all required parties. While each 
vehicle (agent) uses the developed SLAM algorithms to create world maps, on a LSASV level, a 
fusion of agent world maps is utilized to correct and provide global references to the system. Complex 
alignment operations to fuse world maps are to be investigated in this task. Complexity in the 
operations comes from many variables in LSASV, including the pose and perspectives of various 
sensors on the agents, errors in position data, interference between agents, and dynamic 
environments. Fusion of this data must be performed with high precision in order to acquire the best 
estimate of the position of all agents in the system as well as important spatial features within the 
world map. Registration is one form of fusion in which maps are compared for matching features and 
transformed to fit together. The registration process can be time consuming, if not performed with 
high levels of parallel computing. This task therefore develops a real-time registration method for 
multiple LSASV entities. 
Task T1-5. Hierarchical Hybrid Cooperative Control of LSASV: Although a cooperative strategy 
will enhance the reliability and effectiveness of the team, the overall structure will be a highly 
complex system with many interacting subcomponents. One of the main sources of the com- plexity 
is the hybrid nature of the system due to the coexistence of the decision-making mechanism (with 
event-driven dynamics), and the low-level control of the system (with time-driven dynamics). In such 
a hybrid structure, the event-driven and time-driven dynamics of the system not only coex- ist but 
also interact with each other, and their coupling effect cannot be ignored. In addition, this complex 
structure must include humans in the control loop. Hence, given a team of heterogeneous 
autonomous systems and humans in the control loop, a challenging problem is how to design and 
analyze such a hybrid decentralized control structure to comprehensively capture the dynamics of 
all subcomponents and their interactions. To address this problem and to overcome the complexity 
of the system, we propose a hierarchical hybrid control structure to distribute the complexity and 
control tasks among the layers and among the components. Hierarchical control systems have been 
studied for quite some time; however, considering the concept of hierarchical control within the 
hybrid modeling and control framework and its application to autonomous systems have not yet 
been addressed. Moreover, the role of the human in terms of high level supervision and goal setting 
has not been captured. Recently, we have developed a hierarchical hybrid control structure and 
applied it to a helicopter. The TECHLAV, however, will leverage our previous work by developing 
a decentralized hierarchical hybrid structure for control and coordination of a team of heterogeneous 
autonomous vehicles to cooperatively accomplish an assigned mission under human supervision. 

The subcomponents of this control hierarchy would include but not be limited to the vehicle 

Approved for Public Release; Distribution Unlimited. 
18



dynamics, continuous low level controller, planning unit, and supervisory unit. In this hierarchy, each 
layer by itself can be modeled as a hybrid system. A hybrid system typically consists of a set of 
discrete states standing for operating modes, each of which has time-driven (continuous or discrete 
time) dynamics. To develop this control hierarchy, we first will use a formal method to connect the 
hybrid subcomponents and then synchronize them to collectively form a composed structure. This 
can be done by properly capturing the input and output of the layers, and by synchronizing and 
treating the discrete states, discrete transitions and continuous transitions. In this structure, the 
human operator assigns the mission. The assigned mission given in the form of Linear Temporal 
Logic (LTL), which is very close to the human language, will be translated to a finite state machine 
for which we will design and implement a supervisory controller in a decentralized way. This project 
aims at developing a decentralized hierarchical hybrid cooperative control framework for task 
allocation and coordination of a team of autonomous vehicles to address more complex tasks. Task 
T1-6. Cloud-Based Control of LSASV: Cloud computing infrastructure (compute, stor- age and 
network) in cloud datacenters will be the platform for hosting the models and algorithms researched 
in this Thrust. The computing resources located in cloud datacenters will be used to keep a virtual 
copy of each vehicle in the LSASV. Storage resources will be used to provide the optimal configuration 
for Data Analytic research activities (vSLAM, world-maps, etc.). Network resources will be used to 
create team boundaries for the LSASV swarm performing cooperative mis- sions (shared 
information). The benefit of using a virtual vehicle will be to offload processing tasks that otherwise 
would overwhelm the vehicle’s local processing capabilities. Since the computational power of 
remote vehicles is constrained by available battery and processing power and physical 
characteristics of the vehicle, complex calculations can more optimally be made using the parallel 
computational facilities offered in the cloud. This approach allows for greater flexibility, such as 
including multiple simulated (or virtual) vehicles into a swarm of physical vehicles. Large-scale 
systems analysis can then be performed using as many vehicles as required to verify the correct 
functionality of the developed models and algorithms. Human participants can also directly use the 
cloud to interact with the swarm of vehicles and override autonomous behavior as necessary. One of 
the necessary research challenges of using the cloud as part of the control loop for autonomous 
vehicles is in assuring adequate bandwidth and availability of a network connection between the 
LSASV and the cloud. We anticipate that some amount of local processing on each vehicle will 
be necessary to mitigate mission failures due to increased latency or intermittent outages in the 
network. After all, this is a key role and advantage of autonomy. Cloud-based robotic control has 
recently been researched and successfully used to process image data captured by robots. The image 
point cloud data can then be uploaded and processed in remote cloud data-centers. The result of the 
image processing can be used to update a common world-map of individual robots in the swarm. 

2.2.3.3 Detailed Description of the Tasks in Thrust 2 

Task T2-1. Developing a decentralized fault detection mechanism: The first step to handle 
a fault is to accurately detect the occurrence of the fault, and its nature and location. It is not possible 
to consider a sensor to detect any fault, as it dramatically increases the overall costs and more, 
importantly, not all faults are predictable. Instead, it is reasonable to diagnose a failure through 
system behavior and limited observations. Fault detection and isolation is part of the decision-
making unit of the system in which the system behavior has been abstracted to a discrete model and 
the fault occurrence can be considered an event which changes the operational mode 
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of the system. As described above, most current research addresses fault detection and isolation for 
a single agent. To address fault detection for a team of agents, we will first characterize the nature of 
fault for cooperative tasks. We will then propose a diagnoser for a multi agent system and 
investigate its decomposability into local diagnosers which form a decentralized fault detection 
structure in combination with local supervisors. Abstracted data received in the supervisory layer of 
the control structure will be used to detect a fault. Due to the discrete nature of the supervision layer, 
we will study fault detection in the context of discrete event systems, automata theory, and 
supervisory control of discrete event systems. 
Task T2-2. Fault Diagnostics and Prognostics through Data Analytic Approaches: The 
three terms of diagnostics, health monitoring and prognostics are sometimes intertwined and often 
assumed to be interchangeable. They are related, but not the same [43]. In the former, diagnostics 
identifies the nature or cause of some phenomenon, while in the latter, health monitoring keeps 
track of current status systematically with a view to collect information, while prognostics refers to 
the prediction about how something (such as sensor or actuator failure) will develop in the future. 
While in the previous task our focus was on the fault detection through general behavior of the 
system, in this task we are concerned with detection of fault in a system of vehicles through lower 
layers of the control hierarchy. For this purpose, we are essentially dealing with large amounts of 
data being exchanged among the vehicles both in simulation and on real-time robotic agents. We 
will utilize “Big Data” analytic techniques to detect failed sensors, actuators, eliminate noises, or 
cyber-attacks in data transmissions. Using our developed “Deep Learning”, the raw data will be 
pre-processed and post-processed to create mined data and eventually predict failures of vehicles. 
Task T2-3. Developing a decentralized fault accommodation mechanism: After detecting 
a fault, the next step is to accommodate the detected fault. For a single agent system, the fault- 
tolerant mechanisms are limited to a few strategies, such as structural redundancy. In a cooperative 
team of agents, however, we can take advantage of the flexibility of the structure. For example, 
a functional redundancy can be effectively developed relying on other agents, which have similar 
capabilities. In an alternative strategy, the agents can be reconfigured to achieve the original 
assigned task; and if this strategy does not work, the agents can be re-tasked in such a way as to 
accomplish the maximal possible portion of the assigned task. For re-tasking, we will use On-the-fly 
controller synthesis techniques combined with DES learning approaches such as L* learning and 
game theory methods. In our recent results on developing a cooperative control for the formation 
control of UAVs, the collision alarm has been interpreted as a faulty situation and then, collision 
avoidance has been handled by our developed decentralized supervisory control algorithm. In this 
project we will leverage our previous work by developing more sophisticated fault detection and 
accommodation strategies to address more general and complicated faults. 
Task T2-4.  Developing an adaptive effective ad hoc communication network: In this 
task, we will design an efficient and robust communication network for the proposed multi-agent 
platform that addresses the essential design objectives including high transmission rate, low trans- 
mission delay, wide transmission range, compatibility with high-speed mobility of agents, and re- 
configurability. These properties allow reliable and continuous interactions among the agents to 
achieve collaborative tasks performing synchronization, self-healing and self-organizing. The pro- 
posed protocol requires being adaptive considering the type of agents, their capabilities versus 
restrictions, and their ultimate tasks in the network. This means that the agents have the option 
of selecting the best communication parameters including modulation technique, channel coding, 
and multiple access technique according to their properties and objectives in terms of desired data 
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transmission rate, available power, and tolerable transmission delay. The proposed communication 
system will also be capable of cooperative packet transmission via intermediate agents in the net- 
work in order to extend the coverage and connectivity. This requires determining the position of the 
agents in the network and employing them as routers in case they are not active at the moment or 
enabling them to provide relaying service while performing their primary tasks. Employing cooper- 
ative relaying will improve the network performance and connectivity, decrease the chance of packet 
transmission failure, and expand the network connectivity. It can also potentially save the limited 
energy of agents, since they have the option of transmission to their relatively close neighbors rather 
than consuming higher power to communicate to their far-distance target agents. 
Task T2-5. Enhancing network performance utilizing the cognitive features of the agents: 
Due to recent advances in electronics and communications, the agents are currently equipped with 
cognitive radio devices that significantly improve the performance of the commu- nication systems. 
This cognitive capability allows the users to sense the environment and monitor the operation of 
other agents to take proper responses for the observed information. The intelligence capability of the 
agents provides the possibility of independent decision-making regarding their com- munications 
parameters including the transmission power, transmission frequency, bandwidth, and utilized 
coding and modulation technique. We will take advantage of the agents’ cognition toward planning 
an efficient and reliable user-centric communication system, where most communication design 
parameters are determined in a decentralized fashion. This involves several design paradigms 
including power allocation, utilized frequency and also channel access with the goal of interference 
reduction in the network, taking into account the communication strategies of other agents. We will 
adopt a game-theoretic framework in which the rational users set their communication parameters 
in a way to improve their individual benefits while taking into account the social welfare. Game 
theory is a powerful mathematical tool to analyze the interactions among the intelligent users when 
they have conflicting interests or they coordinate in performing a common task. 
Task T2-6.  Delay-tolerant and loss-tolerant consensus in networks of agents: Com- 
munications among agents often experience substantial delays, packet dropouts, and intermittent 
connectivity and link breakage. The effects of these impairments on system performance are not 
trivial, but also not predictable. Development of an effective solution to this is still an open-ended 
problem. The dynamical behavior of each agent is dependent on received information. Thus, the 
control design taking into account communication disruptions and delays is important. Controllers 
in such networks should work robustly against changes in the network topology. In order to address 
these issues, we will perform stability analysis for networked multi-agent systems. The research aims 
at developing a theoretical framework to establish stability criteria for multi-agent systems consid- 
ering network topology. Randomly changing network topology as well as fixed topology will be 
considered. For example, connection between the robustness margin to time delays and eigenvalues 
of network topology will be used to investigate convergence properties of consensus protocol. Also, 
stability in case of communication channel collapse will be analyzed, for example, through Lyapunov 
equations. In our recent work, we have designed controllers to improve system performance even in 
the presence of uncertainty by breaking the barriers of infinite-dimensionality using the Lambert W 
function. We will further study this problem, by considering the effect of both time delay and 
uncertainty on networked multi-agent systems to yield better understanding and advanced control 
strategies. 
Task T2-7. Wireless Scale Free Topologies for Resiliency and Jamming Immunity: Net- 
work topologies with random link connectivity are often formulated in many small communication 
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networks. However, very large scale wireless networks are capable of exhibiting new “differentiated” 
properties that are observable only when the network is large and the network topology is complex. 
One particular property of complex networks, denoted as “scale-free,” demonstrated immunity to 
additive noise power that was hundreds of times larger than signal power. This new wireless scale 
free topology is a potentially transformative model for a fundamentally new class of robust wireless 
sensor networks (WSNs). In scale free sensor network organizations, the fundamental entity of com- 
munication is a multi-node group or cluster of wireless nodes, rather than a wireless single node. 
Clusters can vary from as few as three nodes and up to millions of nodes. However important prop- 
erties for resiliency occur for large network sizes. Scale-free clusters can serve as relays, recipients, 
or sources of network information. The clusters that we have investigated share an attribute related 
to network degree connectivity that is power-law distributed. Due to the fact that our protocol 
applies wireless node constraints, we encounter emergent properties distinct from the conventional 
wired networks. In this task, our hypothesis is that scale free network topologies enable high quality 
of service (QoS) cluster communications in high interference and jamming attack scenarios. Inves- 
tigation of attack resilience, interference robustness, and control fusion of cluster to cluster sensor 
communications occurs in the face of poor data link quality, jammer interference, and low SNR. 

 
2.2.3.4 Detailed Description of the Tasks in Thrust 3 

Task T3-1. Developing an effective hierarchical abstraction technique: Given a (complex) 
high level specification, our aim is to realize whether the system can satisfy the desired specification. 
This problem in general may not be directly solvable since the model checking process could face the 
state explosion problem. Alternatively, we can use abstraction techniques to reduce the system 
dimension while preserving the properties of the original system. We have developed a polar and 
spherical Bisimulation-based abstraction technique for the motion dynamics of a team of UAV 
helicopters. The proposed approach is applicable to multi-affine dynamical systems. Bisimulation 
relation between the abstract model and original system ensures that they have equivalent behavior. 
Therefore, the model checking outcome for the abstract model is valid for the original system as well. 
Nevertheless, Bisimulation relation is a conservative and restrictive relation and is applicable to 
limited classes of systems. Therefore, this proposal aims at developing a hierarchical abstraction 
technique, which is less restrictive and can be applied to more general classes of systems including 
nonlinear and hybrid dynamical systems. In the first layer of the proposed hierarchy, we will model 
the original system by a transition system and will capture those transitions, which lead to important 
changes such as changes in the operation modes of the system. Then, we will use approximate 
bisimulation and simulation relation techniques to further abstract the model by grouping together 
those transitions that start and remain within a short distance in the presence of nondeterministic 
system evolution. This will result in a finite state model for the original system, which significantly 
facilitates the model checking process. 
Task T3-2. Developing a compositional verification approach for LSASV: As discussed, 
abstraction technique can effectively facilitate the verification of a given system by converting the 
system to a reduced (finite) state machine. Nonetheless, the verification problem for a large scale 
system of vehicles, each modeled by a finite state machine, is still exponentially large and complex. 
For a large scale system of vehicles, which are modeled by finite state machines M1, M2, ..., Mn and 
for a given desired specification, S, the verification problem is to check whether their collective 

behavior, M = ∣∣n Mk , satisfies the temporal logic specification S, where M ⊧ S means that 
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the model M satisfies S, and denotes the parallel composition operator, which synchronizes the 
components. The centralized version of this verification problem is not practically implementable for 
large values of n. To develop a scalable verification technique for such a large scale system of vehicles, 
we propose a "divide-and-conquer" technique which breaks up the verification of large scale systems 
by decomposing the desired specification into several smaller components and then, each component 
is checked separately. This can be performed by decomposing the specification into S1, S2, ..., Sn. 
Then, the centralized verification problem can be converted into model checking problems 
Mk  Sk, k    1, ..., n, while R S1, S2, ..., Sn, S    is a logical condition relating S1, S2, ..., Sn and S  . 
For the decomposition of the desired specification S we will adopt the assume-reasoning techniques 
by making some assumptions about each component’s environment to guarantee the satisfaction of 
the desired specification. 
Task T3-3. Developing a mod- ular 
simultaneous modeling and 
evaluation technique: Sufficient in- 
formation about the components of 
a large scale system does not always 
exist. Furthermore, uncertainty in the 
model parameters and external 
disturbances may challenge model- 
based analysis and synthesis tech- 
niques. Therefore, to further improve 
our proposed verification approach, 
we will augment it with learning tech- 
niques to simultaneously and incre- 
mentally capture the non-modeled pa- 

Figure	2:	 Modular simultaneous modeling and evaluation of 
LSASVs. 

rameters of the system while evaluating the performance of the system as shown in Figure 2. The 
core of this algorithm is the updating mechanism for which we will use the L∗ algorithm. The 
L∗ algorithm generates a deterministic finite-state machine through minimum interactions with a 
supervisor whose role is to answer whether the model output matches with the actual system’s 
observations. This information is used to incrementally update the model of the system. With this 
adaptation algorithm, the proposed method can be trained to capture the non-modeled parameters 
during the verification process. 
Task T3-4. Formulation of LCS to Learn Emergent Behaviors: Learning Classifier Systems 
use reward-mechanism to capture internal processes of a system based on system’s environmental 
variables. Here, the environment for the LCS is the LSASV under test and all of the entities and 
features in the simulation environment. Unlike a single agent, one major challenge to address when 
dealing with multiple agents is methodology to standardize the different inputs of the different 
components of the LSASV for computer processing. This will be handled using advanced data 
normalization techniques. The inputs from the LSASV (like position, heading, speed etc.), the 
messages it transmits as well as the messages and rules it transmits, can be coded in form of string 
bits or classifiers which are the fundamental units of information in the LCS implementation. The 
outputs or “actions” of the LCS correspond to the output (emergent behavior) of the LSASV. The rules 
that the LCS learns are the ones that govern the transitions between emergent behavior states of the 
LSASV. The solution domain comprises a set of rules that collectively give a model of the LSASV’s 
interaction with its environment as shown in Figure 3. LCS needs a trainer to provide a 
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reinforcement signal in the form of a reward or punishment using just a sufficient number of rules 
(called training data). The evaluator receives the response of the LSASV for a given input and 
compares it with the corresponding action of the LCS system and generates a feedback to the LCS 
block. The intention here is to train the LCS block using this known set of rules. Once sufficiently 
trained, the LCS can be utilized for predicting correct state transitions for previously unknown input 
scenarios. 
Task T3-5. Formulation of FLS to 
Handle Uncertainty: To evalu- ate 
the LSASV’s perceptual capabil- ity 
representative sensing tasks will be 
used such as the detection of en- emy 
targets in order to launch an at- tack; 
formation execution; task allo- cation 
and detection and localization of 
landmarks.  The task here is to 
translate experts’ heuristic knowledge 

into fuzzy IF-THEN statements. Ear- 
lier work will be extended to automate 

 
Figure	3:	LCS	and	FLS	Based	PIE	for	System	Modeling	at	Learning	Mode.

the process of categorizing the input/output relations to associated decisions. The fuzzy logic ap- 
proach can provide the tester with the reasons for a particular cause of action in human understand- 
able terms. The most fundamental aspect of this connection is that the uncertainty involved in any 
problem-solving situation is as a result of some information deficiency, which may be incomplete, 
imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in some other way. The 
general framework of fuzzy reasoning allows handling much of this uncertainty. The effects of un- 
certainty in a system can be handled in a better way by using type-2 fuzzy logic because it offers 
better capabilities to cope with linguistic uncertainties by modeling vagueness and unreliability of 
information. 
Task T3-6. Train and Test LSASVs using PIE: Embedded in this task is the task of inferring 
the LSASV’s perception of its environment because this perception determines what the LSASV’s 
active behavior state should be. As the complexity of LSASV increases, efficiency and cost are 
considered critical factors in T&E; the search for near-exact models of behavior and perception 
inference becomes challenging. The method for developing these models must use observations of 
the LSASV and its interactions with its environment and learn from these interactions. LCS that 
embraces a hierarchically cooperating and competing set of classifiers can meet these needs. The 
uncertainties associated with the system can also be modeled with a type-2 Fuzzy Logic System. Once 
sufficiently trained, PIE will be able to correctly predict the outputs of LSASV given input scenarios 
that were not exposed to the PIE during the training phase of the PIE. The PIE infers the internal 
processes/transitions of the LSASV’s and predicts behavior of the LSASV next state, such as the 
ability to determine an enemy target. Because the rules governing a LSASV’s behavior are not fully 
known, nor are the capabilities of its sensor systems, the behavior and perception models require 
ongoing adaptation in order to approximate unknown scenarios intuitively. Secondly, the internal 
parameters governing the behavior of the LSASV might change with time, which may cause the PIE’s 
behavior to deviate from the behavior of the LSASV. The online adaptation of the PIE enables it to 
adjust its training parameters to align itself with the LSASV‘s behavior. 
Task T3-7.  Test uncertainty in human perception of system states: Within large-scale 
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semi-autonomous systems, operators must accurately perceive information being communicated 
prior to making a decision about how to intervene in the system’s behavior. Thus, it is critical to 
reduce error in operators’ perceptions of system states. This research will verify/validate displays 
for operators of semi-autonomous systems by testing humans’ perceptual judgments of information 
transmitted by the system in real time. Testing will consist of behavioral experiments in which 
participants make judgments about parametrically varying cues from LSASVs. Because large-scale 
systems could involve multiple operators, experiments will include testing of how multiple partic- 
ipants perceive system states within the same environment. In some, participants will complete 
multiple training/testing sessions to observe how their perception of information changes with ex- 
perience. Based on these findings, further experiments will use refined versions of the multimodal 
displays in simulated LSASV scenarios, and will focus on identifying and eliminating ambiguities 
in the signals and error rates in human users. 
Task T3-8. Evaluate human trust and its calibration in human machine interaction: Studies 
in trust have demonstrated a compelling relationship between decision makers and the use of 
automated devices in making crucial judgments. The main objective of this task is to conduct 
simulated experiments and to develop empirical methods for calibrating trust metrics among human- 
automation interactions. The subordinate objectives include: a) Defining the necessary factors for 
calibrating trust in a two-dimensional domain of continuum and human perception when human and 
autonomous machine interact to perform a task, b) Developing a simulated environment to collect 
trust-related data in human-automation interaction systems, and c) Calibrating human trust in 
machine based on experimental data. 
Task T3-9. Evaluation of visualization of uncertainty dynamically and intuitively: In addition 
to error reduction and improvement of trust in the human-machine interaction, a further means for 
coping with uncertainty in semi-autonomous systems would be to enable human awareness of 
uncertainty itself. This task proposes to develop and test a prototype that represents uncertainty 
dynamically in order to support operators’ judgment and sense-making. An experimental frame- 
work to examine the efficacy of the developed prototype for tactical visualization of uncertainty 
through many dimensions and morphing mechanisms will be provided to collect objective mea- sures 
of performance. Studies into display factors influencing decision-making under uncertainty are 
planned. Specifically, indications from past research show that a more concrete representation may 
lead people to believe that information is more certain than it actually is, while a degraded or less 
concrete representation may result in an understanding as less certain. The proposed research will 
utilize a multi-dimensional framework to systematically vary display factors to simulate condi- tions 
of degraded information corresponding to uncertainty present. For example, information could be 
represented through the use of numeric ranges or graphical areas rather than point estimates. 
Experiments will evaluate and compare how these various visualizations influence human judgments 
in operating simulated LSASVs. 

2.2.4 Deliverables Description 

The deliverables will be quarterly reports and final report detailing the tasks’ progress and the 
accomplishments, which will be submitted to the Air Force Research Laboratory. 
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2.2.5 Technology Transition and Technology Transfer Targets and Plans 

Demonstration, Implementation and Integration (DII) uses scenario-driven cases to integrate the 
proposed tasks in the three Thrusts to achieve coordinated outcomes. For this purpose, a group 
of different multiple ground robots and UAVs will be used to perform cooperative tasks such as 
cooperative search and coverage and coordinated rendezvous in a decentralized fashion. These vehi- 
cles are equipped with high-quality cameras, high-capacity communication devices, various sensing 
devices, laser sensors, and onboard positioning devices. This wide variety of autonomous vehicles 
puts our test-beds in a unique position to investigate different applications in direct interest of DoD. 
A human supervisor defines the mission for the multi-agent system and these agents then coordinate 
with one another to execute the assigned mission. This coordination involves control, 
synchronization, decision-making, positioning, formation and data sharing. The capability of the 
system in terms of localization and positioning, distributed task coordination in navigation and target 
tracking will be investigated here to evaluate the outcomes of Thrust 1 and its proposed tasks. The 
developed algorithms for fault detection and fault accommodation through optimum re-formation 
and reconfiguration in the case of detected faults or agent loss also will be examined in accordance 
with Thrust 2. Besides, near-continuous connection among the vehicles in the network, near-constant 
accessibility of the vehicles by the human operator and coordination among the agents in task 
management will be accomplished through the communication protocols developed. The 
communication network will support different radio transmission techniques, distributed multi-hop 
communications, optimum routing planning, real-time communication and robustness to jamming 
attacks to address the desired goals in Thrust 2. The testing, evaluation, and verification methods 
proposed in Thrust 3 will be studied using these test-beds. Since the interaction between human 
operator and the vehicles is a key factor in verifying the proposed semi-autonomous system, we will 
investigate this matter from various aspects of testing the several human operators’ behavior while 
having uncertain knowledge of the system, human trust during human-machine interaction and 
tactical visualization of uncertainty information as detailed in Thrust 3. The behavior of the entire 
system integrating the proposed algorithms will be tested under various scenarios including dynamic 
environment, agent failure and hypothetical attacks to verify the objectives of all three Thrusts. 
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3 Results and Discussion 

3.1  Project Progress and Project Plans for Thrust 1: Modeling, Analysis and 
Control of Large-scale Autonomous Vehicles (MACLAV) 

3.1.1 Project Progress for Task T1-1 (Mathematical Modeling of LSASVs) 

3.1.1.1 Period of Performance under Task T1-1 

Start Date: Q3 2015 

Conclusion Date: Q3 2018 

Faculty lead: Mo Jamshidi 

3.1.1.2 General Description of Task T1-1 

LSASVs cannot be thought of as a set of independent agents since they usually interact with each 
other, share information and resources to collaboratively achieve given tasks. Hence, traditional 
methods which ignore the coupling effects between the system’s components cannot be applied to 
these tightly coupled systems. Developing an augmented model for the overall structure of the 
system is also too complicated, computationally expensive, and impractical. To address these prob- 
lems, we will develop novel methods using abstraction and model reduction techniques, which help 
to manage the complexity of the resulting model. Along with the developed models, communication 
protocols will also be established to interconnect these systems (machines or assets) together via 
a wireless network encapsulating the entire system. We will use a cloud data center to house the 
models and facilitate access for the LSASV systems. This will also facilitate incorporating addi- tional 
services into the model such as an Object Recognition Engine and a centralized world map, which will 
be available to all entities in the connected systems. 

3.1.1.3 Progress Against Planned Objectives in Task T1-1 

The objectives of this task were accomplished. Advances were made in the following areas: mod- 
eling network connected unmanned vehicles time delay simulations and experiements and state 
estimation. A breakdown of the achievements follows with a highlight of each major task. 

The first year included modeling of UAV and UGV dynamics for robotic platforms in the ini- 
tial UTSA testbed. A differential drive platform was modeled for the UGV and a quadcopter was 
modeled for the UAV. The particular vehicles studied were the Kobuki TurtleBot2 (UGV) and the 
ArDrone Bebop (UAV). A Matlab-Simulink model was developed for research and tests. Consid- 
erations of time delays were taken into account in these models. A system comprised of one UAV and 
one UGV has been simulated with delays between the vehicles and delays between the UGV and its 
controller. Because the UAV acts as a reference trajectory for the UGV, it was able to tolerate higher 
delays, while the UGV reached its goal. Delays were applied to the UGV controller to imitate a 
system with a delayed communication and computing element (e.g. cloud based con- troller). The 
inputs and outputs are being sent between the mobile agent and a ground station to lessen the 
computational burden of the robotic agent. The system simulation model utilizes an update time for 
the UGV controller, where the UGV model updates its inputs at discrete steps, mirroring the 
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conditions of a real network controlled system. This minimizes the network load and reduces the 
delay issue of creating a large enough update time to encompass the time delay itself. An analysis of 
the maximum update time has been conducted through simulation, which indicates that 1.2 seconds 
is the maximum update time for a stable UGV/UAV system. With the successful simulation, a second 
UGV was added into the system to determine the perturbation it may cause the system. 

Improvements were made to the simulation system by implementing time-bounds to validate 
different types of system delays. Improvements were made to the Matlab-Simulink system, by adding 
True-time, a package for simulating realistic network delay models. Network delay models can be 
configured and saved as a profile, which represents the specific communication methods and 
operating conditions. A control system can be compared against multiple profiles for repeatable and 
accurate tests under defined conditions. We have made progress in research of the time delay 
concepts and their impact on control systems. Since Matlab-Simulink lacks the necessary timing 
capabilities and because our hardware testing environment uses ROS, the simulation environment 
was converted to python. The python testing environment consists of a UAV that directs a UGV 
to a point on the ground to move to. 

The initial test-bed was completed in Q3-2016. For the UGV, we built a robust UGV system using 
Raspberry PI3, running the Ubuntu operating system and ROS. This vehicle implements the control 
system that we used for this task. A Parrot Bebop Drone (UAV) and a customized Kobuki TurtleBot2 
(UGV) were also used for the testbed. Routines to read sensors and feed data to control algorithms 
were implemented in Robot Operating System (ROS). Hardware implementation of a multi-agent 
system with time delays using state estimation was performed as part of combined efforts with Task 
1-3. Outputs of the work for this task were used in Task T1-4 for vision-based mapping research. 
Work transitioned from the single vehicle modeling in this task, to the multi- vehicle modeling efforts 
underway in Task T1-3 at the time. 

 
3.1.1.4 Modeling Testbed Systems 

The initial dynamic equations found in the literature were too general and inconvenient to apply to 
a specific robot in the test bed (i.e. the ErleCopter, Parrot Bebop, Kobuki TurtleBot2). By review- ing 
the dynamic equations and mathematical models for land rovers and quad-copters, we were able to 
finalize our representation of the mathematical models for our robotic agents [1]. Mathematical 
models for the UGVs and UAVs follow. 

 
 

3.1.1.4.1 UGV Model The Kobuki Turtlebot2 (UGV) uses a differential drive to steer. 
Cook provides a clear approach in order to obtain and simulate differential drive robot kinemat- ics 
[2]. Figure 4 represents the UGV kinematic model. In the model, R is the instantaneous radius of 
curvature of the robot’s trajectory, W is the distance between the wheels, and θ is the heading angle 
with respect to the "ground" frame. Kinematic equations for the UGV follow. 

 

v = θ˙(R − 
W 

) (1) 

v  = θ˙(R + 
W 

) (2) 
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W 
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2(vr − vl) 

θ̇ 2 

R = 
vl + 

W

vr vl 
W 2 

Figure	4:	Representation	of	the	TurtleBot2	Land	Rover	in	the	Coordinate	System	

where: 
vl: velocity of the left wheel 

vr: velocity of the right wheel 

θ˙: angular rate

Next, the angular rate of the robot is calculated: 

x − v = θ˙(R + 
W 

− R + 
W 

)
r l 2 2 

vr − vl = θ˙W 

θ˙ =
vr − vl 

(3) 

Next the instantaneous radius of curvature is calculated using (1): 

vl = R −
W 

θ˙ 2 

Using (3) we have: 

R = 
vl  

+ 
W 

R = 
2Wvl + W (vr − vl) 

R = 
W 

∗ 
vr + vl (4) 

2 vr − vl 

Velocity along the robot’s longitudinal axis is calculated using (3) and (4): 
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v  = θ˙R = 
vr − vl 

∗ 
W 

∗ 
vr + vl 

y W  2 vr − vl 

v  = 
vr + vl 

 
(5) 

Representing the robot’s velocity on earth coordinates we have: 
 

x˙ = −vycos(90 − θ) = −vy(cos(90)cos(θ) + sin(90)sin(θ)) 

ẏ  = vycos(θ) 

Using equation (5) we have: 

x˙ = − 
vr + vl sin(θ) (6) 

y˙ = 
vr + vl cos(θ) (7) 

For this reason the control variables will be: 
 

v˙r = u1 

v˙l u2 

Figures 5 and 6 show results of the simulation where different speeds used to simulate the change 
on the steering. 

 

 

 

Figure	5:	 The	effect	of	 increasing	 the	 speed	on	 the	 left	wheel,	 (a)	Angle‐Longitudial	axis	
of	 the	robot	with	respect	to	y‐axis,	(b)	Earth	coordinate	of	the	land	rover	
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V̇ 
ω × Iω  τ 

Figure	6:	The	effect	of	increasing	the	speed	on	the	right	wheel,	
(a) Angle‐Longitudial	axis	of	the	robot	with	respect	to	y‐axis,

(b) Earth	coordinate	of	the	land	rover

Figure	7:	The	effect	of	increasing	and	reducing	the	speed	of	the	wheels	

3.1.1.4.2 UAV Model The equations to simulate the quad-copters were obtained using 
Bouabdallah’s work as following [3]. 

The following are the dynamic equations for the quad-copters: 

Where: 

mI3×3 0 
0 I 

][ 
ω̇ 

] + [
ω × mV 

] = [ 
F 

] 

Symbol Definition
I 
V 
ω 

inertia matrix 
body linear speed vector 

body angular speed 

The equations of motion for the quad-copter: 

[ 
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⎨
⎪ 
mv̇  = RFb 

⎧
⎪ 

= 

⎩⎪ = −  × + 

= 

⎪ v˙ = −ge3 + Re3( b ΣΩ2) 

4 2 

2 4 1 3 

⎧

⎪ 
ζ  ̇= v 

R  ̇= R ω̂ 

J ω̇ ω  Jω  τa 

From these equations we can have the approximate model: 

ζ˙ v 
 

m i 

⎨ 
R˙ R ω̂  

⎪ 
 

Where: 

⎪⎩ I ω̇  = −ω × Iω − ΣJr(ω × e3)Ωi + τa 

 Symbol Definition  
ζ  position vector 
R  rotation matrix 
ω̂ skew symmetric matrix 
ϕ  roll angle 
θ  pitch angle 
ψ  yaw angle 
Ω rotor speed 
Ix,y,z body inertia 
Jr rotor inertia 
Jm motor inertia 
Jp propeller inertia 
τa torque on airframe body 
b  trust factor 
d  drag fator 

 lever  
 
 

The torque in the air-frame body along an axis is represented in the following way: 

⎛
⎜ 
lb(Ω2 − Ω2) ⎞

⎟ 
τa = 

⎜ 
lb(Ω2 − Ω2) 

⎟ 
⎜
⎝ d(Ω2 + Ω2 − Ω2 − Ω2 

⎟
⎠ 

Considering the motor inertia and a reversing gearbox with a negligible inertia, we will have: 

⎪ 

3 1 
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= − 

⎧
⎪ ϕ̈ = θ˙ψ˙( Iy −Iz ) − Jr θ˙Ω +  l U2 

⎪ θ̈
 = ϕ˙ψ (̇ Iz −Ix ) + Jr ϕ˙Ω +  l U3 

⎪ ψ¨ = ϕ̇ ω̇  ( Ix−Iy ) +  1 U4 

⎪ z¨ = −g + (cosϕcosθ) 1 U1 

⎪ ẍ = (cosϕsinθcosψ + sinϕsinψ) 1 U1 

⎪ y¨ = (cosϕsinθcosψ − sinϕsinψ)  1 U1 

⎪ U2 = b(Ω2 − Ω2)

⎪
⎨
⎪ 
U3 = b(Ω2 − Ω2) 

⎪ U4 = d(Ω2 + Ω2 − Ω2 − Ω2) 

Jr Jp Jmr 

Then the quad-copter dynamic model is given by: 

Ix Ix Ix 

⎪
Iy Iy Iy 

⎪ 

⎪
⎨

Iz Iz 

m 

⎪ 
m 

⎪ 

⎪⎩
m 

The system inputs and disturbance are given by: 

⎧⎪ U1 = b(Ω2 + Ω2 + Ω2 + Ω2)
1 2 3 4 

⎪ 
4 2 

⎪ 

2 4 1 3 
⎪ 

⎪⎩
Ω = Ω2 + Ω4 − Ω1 − Ω3 

Figure	 8:	 The	 system	 dynamics	 and	 coordinates	 for	 a	 quad‐copter,	 (a)	 Coordinate	
system,	 (b)	System	dynamics	and	body	forces. 

3 1 
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3.1.1.4.3 Hardware implementation of a multi-agent system with time delays using state 
estimation In this effort a single UGV moves to a destination using the location provided by the UAV 
with a larger time delay using state estimation. The UGV uses state estimation whenever 
communication is not active between the UGV and the UAV. The state estimation is used to predict 
the position and orientation of the UGV based on the commanded velocities. The state estimation 
equations can be seen in Equations 8 - 10, where Θ̂ is the estimated heading angle of the UGV, Θ̇ is 
the angular velocity of the UGV, x̂ is the estimated x position of the UGV, x˙ is the linear velocity 
of the UGV, and yˆ is the estimated y position of the UGV. 

Θ̂ (k  + 1) = Θ̂(k) + Θ̇ (k)T,  (8) 

x̂ (k  + 1) = x̂(k) + (ẋ(k)T )sin(Θ(k + 1)),  (9) 

ŷ k  1 ŷ k  x˙ k T  cos Θ k  1  ,  (10) 

The estimated position and oriententaion of the UGV is then used in the PID controllers update 
the UGV’s velocities. The process of estimating the UGV’s states and then updating the PID controller 
is repeated until communication with the UAV is restored. 

The results of the state estimation can be seen in Figure 9, where the UGV was commanded 
to drive to two different destinations, represented by the black stars. It can be seen that the UGV 
struggles to reach the destination when the time delay is four seconds or larger. However, the UGV 
is successfully able to reach the destination with delays of four seconds and eight seconds when using 
state estimation. 

 
3.1.1.4.4 Mathematical Modeling of Time Delays This section includes the mathe- matical 

model for Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAV). The particular 
vehicles studied were the Kobuki TurtleBot2 (UGV) and the ArDrone Bebop (UAV). A Matlab-
Simulink model is under development for further research and tests. Once the simulation model is 
ready, the model will be implemented on hardware in the testbed. 

Through studying the existing time delay systems researched by Johan Nilsson in [4], we devel- 
oped simulation models for the UGV and UAV. The single UAV is able to communicate location 
coordinate details, the X and Y coordinates as well as the angle from the original starting orienta- 
tion. The UGV is capable of navigating to the target location that is provided by the UAV. 
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Figure	9:	Hardware	results	of	the	PID	controller	with	and	without	state	estimation	

x1 x2 

x2 = x4x6a1 + x4a2ω + b1U2 

x4 = x2x6a3 + x2a4ω + b2u3 

x6 x6x6a5 b3u4 

x7 = x8 

(11) 

x  = 
−g + (cos(x1) cos(x3))u1)

x10 = 
(cos(x1) sin(x3)) sin(x5) + sin(x1) cos(x5)u1 

The simulation provided a model to move the UGV to a given point. This did not require the UAV 
model as shown in equation 11. The UGV receives a coordinate and moves until it reaches the 
position within 0.3 meters and 0.05 radians. Once the margins are satisfied, the UGV sends a request 
signal for another position. In addition, time delays have been added simulating the wait time for 
wireless communication from UGV to UAV and UAV to UGV. Figures 10 - 13 represent the system 
with a time delay in different parts of the system. For each figure the reference trajectory is 
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the top left window while the trajectory taken by the rover is the top right. The bottom left area 
shows where the delay takes place with respect to the UAV and UGV, and the bottom right figure 
shows the X, Y, and θ of the vehicle with respect to the starting position of the UGV. In this first 
testing, we see the delays affect the system trajectory when the delays are in both communication 
lines. The situation must be further tested for different delay values and possible delays in actuators 
or controllers of the subsystems (UGV or UAV). 

 

Figure	10:	Simulation	of	UGV	&	UAV	with	No	Delay.	
 
 

3.1.1.5 Summary 

In this task we performed studies and modeling for various aspects of single and multiple agents 
of a LSASV. Kinematic and dynamic models for UAV and UGV systems were modeled in Matlab. 
Physical characteristics and performance capabilities of the Parrot Bebop quadcopter (UAV) and 
Kobuki Turtlebot 2 (UGV) were taken into consideration for development of these models. With 
those baseline models, performance of the models were compared to physical UGVs and UAVs from 
the testbed. Model parameters were estimated and adjusted until the error between the two were 
reduced to a minimal acceptable range. 

As vehicles in a LSASV can rely on network connected computation for decision making, research 
was performed in the various types of communication problems present within a networked system. 
Improvements were made into the control of the physical models of UGVs and UAVs. Simulations 
and physical experiments were performed to ensure that the developed models were appropriately 
representing the vehicles. Truetime simulations in MATLAB were used to simulate realistic network 
scheduling and channel effects. Python code was developed for the physical experiments. We 
developed Matlab True-Time simulations to model those realistic network scheduling and channel 
effects. In those studies we determined bounds for direct network control between systems of UAVs 
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Figure	11:	Simulation	of	UGV	&	UAV	with	a	1	second	delay	from	UAV	to	UGV.	

Figure	12:	Simulation	of	UGV	&	UAV	with	a	1	second	delay	from	UGV	to	UAV.	

and UGVs that will help determine what can and cannot be controlled directly. Python code 
was developed for physical experiments that were performed to validate the simulations. State- 
estimation techniques were developed for mitigating time delays in a system.  Simulations and 
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Figure	13:	Simulation	of	UGV	&	UAV	with	a	1	second	delay	from	UGV	to	UAV	and	from	UAV	to	UGV.	

 

 
experiments were performed to determine the model validity using multiple UGVs and a single UAV. 
Outcomes of this task were taken into consideration for Task T1-3 which built upon the models and 
developments in this task. 

 
3.1.2 Project Progress for Task T1-2 (Data-and Knowledge-Based Modeling of LSASVs) 

3.1.2.1 Period of Performance under Task T1-2 

Start Date: Provide the start date 

Conclusion Date: May 2021 

Faculty lead:  Dr. Mo Jamshidi 
 

3.1.2.2 General Description of Task T1-2 

One of the key aspects of LSASVs is the exchange and management of large datasets (numerical, 
textural and image) among the constituents of the system. In some applications, data computation, 
Bayesian networks accumulation, and security are the key pieces of information. There is a need for 
employment of a machine intelligence method to enable any vehicle in the system to perform in a 
team of vehicles. In this task, we propose that a promising approach, called Data Analytics be used. 
Data Analytics utilizes statistical and computational intelligence (CI) tools such as principal 
component analysis (PCA), clustering, fuzzy logic, neuro-computing, evolutionary algorithms, and 
data mining to reduce the accumulative large size of the LSASV datasets to a manageable size. We 
will then apply these tools to a) extract information, b) build a knowledge base using the derived 
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data, c) develop a cooperative teamwork framework through the consensus among members and 
d) eventually develop a non-parametric cooperative model for LSASVs. This task will construct
a bridge between LSASVs and Data Analytics to develop reliable models for resilient cooperative
control of such systems, described in Task T2-4. One of the more recent promising data analytic tools
is Deep Learning. Deep learning is the broad term for the recent development and extension of neural
networks in the Machine Learning community, which has allowed for state-of-the-art computational
results in speech, image, and natural language processing tasks. We will also develop a hierarchical
learning approach to extract high order representations from low-level data. Data analytic tools and
approaches will be further used to filter data in circulation among vehicles by eliminating
communication noise, anomalies, and outliers in communicated data in a system of vehicles. This
task will feed directly into other Thrusts such as test and evaluation (Thrust 3) and fault diagnostics
(Thrust 2). Data Analytics also plays a central role in allowing the vast amount of data created to
be converted into actionable information to be used by human operators.

3.1.2.3 Progress Against Planned Objectives in Task T1-2 

The objective of this task is accomplished. Some methods and models are developed for: 

• Implement D* algorithm on a Kobuki Turtlebot II robot in order to create our dataset

• Multi sensor data will be fused through an Extended Kalman Filter (EKF)

• 3D object detection based on lidar data

• combining lidar, radar, and image data

• training 3D object detection system using transfer learning method and learning without
forgetting method

• 3D object detection based on combination of lidar, radar, and image data

• Path planning problem for UAVs

• Abnormalities on LSASV

3.1.2.4 Technical Accomplishments in Task T1-2 

In the implementation period, non-camera sensors, namely, LIDAR, IMU, GPS and wheel encoder 
were used to develop a data model for a mobile robot. The idea was to create a data model 
which takes range, position and acceleration data as input and predicts steering angle and linear 
velocity as output.All sensor data were combined in order to feed machine learning algorithms that 
were artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), 
AdaBoost,and decision tree. sensor fusion technique, a computer based program, which intelligently 
combines and gathers data from several sensors to improve the system performance. After sensor 
fusion, ANN, KNN, SVM, a decision tree was used in the MATLAB’s statistical and machine 
learning toolbox. 

The 3D object detector, based on PointPillars network [5], was trained to predict 3D boxes for 
three different classes of objects (car, pedestrian, bus) using weighting method to combine image, 
radar, and lidar data. Investigation of training the 3D object detector using different training 
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methods is an ongoing process. The improved weighting method was used to combine image, radar, 
and lidar data of some urban scenes provided in nuScenes dataset [6] and used the combined data as 
input for PointPillars network [5] to predict 3D boxes for three different classes of objects (car, 
pedestrian, bus). The 3D object detector was trained for 50 epochs. We used a learning rate of 
2 10−3 and random initialization for the weights of the network (no ImageNet pretraining). For 
optimizing the loss function, we used the Adam optimizer.  The performance of the 3D object 
detector based on PointPillars [5] was compared to MonoDIS [7] which is a top 3D image detector. 
Results show that Pointpillars [5] has a better performance. Transfer learning was exploited to train 
our 3D object detector in order to improve its performance. Our 3D object detector is based on 
PointPillars network [5] to predict 3D boxes for three different classes of objects (car, pedestrian, 
bus) using weighting method to combine image, radar, and LIDAR data. A 3D object detector 
was trained using random initialization for the weights of the network. So, we didn’t use ImageNet 
pretraining, or any other pretraining in the training process of the network. Then, we compared the 
performance of our 3D object detector based on PointPillars to MonoDIS [7] which is a top 3D image 
detector. Although results show that our 3D object detector has a better performance, it still 
should be improved to have a better accuracy and more stable results. 

To use transfer learning, first we trained the network on Waymo open dataset [8] which includes 
1950 sequences, each 20 seconds long with different camera and LIDAR sensors producing data 
sampled at 10Hz. Then, we used the weights of the trained model as initial weights for the network 
to be trained on nuScenes dataset [6]. Results show that utilizing transfer learning in the second 
experiment slightly improves the performance. 

We utilized transfer learning as a feature extraction method to train our 3D object detector in 
order to improve its performance. Our 3D object detector is based on PointPillars network [5] to 
predict 3D boxes for three different classes of objects (car, pedestrian, bus) using weighting method 
to combine image, radar, and LIDAR data. 

To train our 3D object detector utilizing transfer learning as a feature extraction method, we froze 
first few hidden layers of the network after training it on Waymo open dataset [8]. Then we 
started training it with a learning rate of 2  10−4 that linearly was increased to 2  10−3 in the 
first 5 epochs. The rest of total 50 epochs was then trained with a decreased learning rate of 
2 10−5. We used the Adam optimizer to optimize the loss function. The performance of the 3D object 
detector using feature extraction method was then compared to its performance we achieved in 
previous experiment explained in the previous report. Results show that using transfer learning as a 
feature extraction method slightly improves the performance of the network specifically in car and 
pedestrian classes that have more annotated objects in the dataset. 

We utilized learning without forgetting method to train and test our 3D object detector and 
compared the results with the results of the model when using transfer learning as a fine-tuning 
method, and as a feature extraction method. We expanded our 3D object detector which is based 
on PointPillars network [5] to predict 3D boxes for five different classes of objects (car, pedestrian, 

bus, truck, bicycle). The model uses weighting method to combine image, radar, and LIDAR data. 
The network has some shared parameters (θs) and some task-specific parameters (θo). To utilize 

learning without forgetting method to train the model that is going to classify 2 more classes of 
objects (truck, bicycle), we first used our previously trained model on new input data containing 
objects of the 2 new classes and recorded the results. Then we added 2 nodes to the output layer 

for the 2 new classes of objects, and fully connected them to the layer before the output layer. The 
weights for these nodes were randomly initialized. These weights are new task-specific parameters 
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(θn) added for each new class of objects. Then we trained the network with new data to minimize 
the loss function for all classes of objects using stochastic gradient decent. In the first stage of 
training, we froze shared parameters (θs) and the task-specific parameters for the old classes of 
objects (θo), and then trained the task-specific parameters for the new classes of objects (θn) to 
convergence. This step is called warm-up step [9]. Then we trained all parameters ((θs), (θo), (θn)) 

together until convergence. This step is called joint-optimized step [9]. The performance of the 
3D object detector using learning without forgetting method trained with new data to classify 5 
classes of objects (car, pedestrian, bus, truck, bicycle) was then compared to its performance when 

using feature extraction method and fine-tuning method (explained in previous reports). Results 
show that the performance of the network to detect old classes of objects (car, pedestrian, bus) is 
almost the same for learning without forgetting and feature extraction methods. But it is slightly 
lower for fine-tuning method. However, the performance of the network to detect new classes of 

objects (truck, bicycle) is slightly better for learning without forgetting method compared to when 
using fine-tuning method and is significantly enhanced compared to when using feature extraction 

method. The reason for lower performance of the network for the three classes of bus, truck, and 
bicycle, is that they have less annotated objects in the dataset than the car and pedestrian classes. 
For the path planning of UAVs and the abnormalities on LSASV; first, ground truth data that 

was created from images which were obtained from UAVs. Second, the data-set that is vital for rel- 
ative pose estimation is pre-processed by PCA. Then, we implemented a comprehensive deployment 
method targeted at allowing implementation of complex deep learning algorithms by using LSTM 
and the data-set to get acceptable pose estimation for UAVs. LSTM network had been implemented 

to get an accurate tracking prediction to navigate target under delay or GPS issues. In addition to 
path prediction network, PCA (Principal Component Analysis) which is a pre-processing tool was 

used to get better results by eliminating the faulty and missing data in large data-sets. Network 
delay between UAVs and UGVs is caused missing data that increase the error for path estimation. 

With pre-processing estimation accuracy is increased however long computing time. As an addi- 
tional model improvement, we have worked on the pre-processing method instead of PCA. LSTM 
network with the feature removing layers is created. Improving the LSTM model with these lay- 
ers decrease the training time and increase the training performance. Before the training process, 
removing the features which does not affect the training performance but affects the taring time 
will increasingly decrease the processing time. Unnecessary features are detected by discovering the 
constant features. The algorithm which compares the max and min value of the features is cre- 
ated. When a row has same maximum and minimum value, this undesirably impacts the training 

performance. 

3.1.3 Project Progress for Task T1-3 (Qualitative and Quantitative Analysis of LSASVs) 

3.1.3.1 Period of Performance under Task T1-3 

Start Date: Q3 2015 

Conclusion Date: Q1 2022 

Faculty lead: Mo Jamshidi 
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3.1.3.2 General Description of Task T1-3 

Followed by modeling LSASVs, the next step is to analyze the resulting models to investigate the 
properties and emerging behaviors of LSASVs. Traditional concepts developed for single agents are 
no longer valid for LSASVs and new notions of stability, controllability, observability, and reachability 
are required. For the stability analysis of LSASVs, we will focus on the input-to- state stability 
(ISS) of the system and will employ small gain theory, whose proven compositional properties ease 
the development of a modular scalable stability analysis method for interconnected large scale 
systems. We will also formulate the controllability of the LSASVs to realize how to drive the 
vehicles toward desired positions in the presence of tight interactions with other vehicles. This will 
be carried out by exploring the reachable space of the abstracted space and investigating simulation-
based structural properties of the system. Communication protocols will be a part of this investigation 
and maximum communication delays will be determined to guarantee system stability in 
coordination with Thrust 2. 

 
3.1.3.3 Progress Against Planned Objectives in Task T1-3 

The primary objectives of this task were accomplished, resulting in a simulation environment for 
training a vehicle to autonomously navigate using deep reinforcement learning algorithms. The 
single agent ground rover was also modeled in the software. The major achievements of each 
objective are highlighted below. 

 
3.1.3.3.1 Development of the Multi-Agent Testbed This task built upon the models 

generated in Task T1-1. As such some models are not repeated in this report. 
The single ground robot was studied in Task T1-1 and traditional linearization techniques have 

not produced a system which is controllable. Nonlinear approaches were analyzed to find a viable 
method for controllability. In order to compare the model and real data, the statistical programming 
language R was used to create a graph of spatial coordinates in real-time as the robot moved around. 
This allowed us to verify the model against actual data from the robot and find better ways to improve 
upon it. 

The single agent ground rover was modeled in the software with the corresponding data shown 
in Figure 14. The real data in Figure 15 shows a similar circular path, but the sliding of the system 
produces a drag effect which skews the path over time. The model does correctly emulate the system 
but without accounting for real world perturbations, such as the wheel slippage which we see in a 
real-time data set. A comparison between modeled data and the actual data from a Kobuki ground 
rover is illustrated in the following figures, with an angular velocity of 0.33 m/s and a linear velocity 
of 0.5 m/s. 

For evaluation of the UGV, the vehicle needed to be controlled successfully to move from an initial 
point to a goal location. A simple state feedback control has been devised to advance the system 
further. Since the Kobuki Turtlebots UGVs are differential drive robots, a simple 3-stage state 
feedback controller was derived to move them, removing the problem with control of a non- 
holonomic system. Normally problems arise because differential drives cannot slide left or right 
(non-holonomic constraint). They can only move forwards and back, or rotate with angular motion. 
The control of the UGVs has three separate stages which run sequentially as the previous control 
stage is finished. These stages are listed below: 
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Figure	14:	Modeled	Kobuki	Ground	Rover	

Figure	15:	Equilibrium	position	of	the	Formation	
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1. The UGV moves in an angular motion to face the desired point. 

2. The UGV then traverses the linear distance until it reaches the desired coordinate. 

3. Finally, the UGV once again moves in an angular motion to face the desired object of interest. 

The PID controller was under development for the multi-agent testbed. The goal for the PID 
controller was to have the agents better approach their target locations while also reducing the pose 
error. The previous implementation utilized a PI controller which resulted in movements of the 
agents with a noticeable jerk, which can be expected from a controller which does not take into 
account the rate change of the error. The values for proportional (Kp), integral (Ki), and derivative 
(Kd) were calculated through trial and error. For calculating the position of agent, error in position 
is multiplied separately with Kp, Ki, Kd and added together. This process is carried out for all the 
agents. Similarly the orientation of all agents are calculated the same way by multiplying and 
adding the error in θ with Kp, Ki, Kd. 

The vehicle selected for the research platform is based on a single child vehicle Figure 16. The 
overall dimensions of the vehicle: 45 L    31 W    31 H  and weight Capacity: 65 lbs. This 
vehicle was selected for its payload capacity, built-in gearbox and provided steering motor. The 
payload capacity of the vehicle allows for customization of the space with mounting brackets, and 
custom-built supports and panels. 

 

Figure	16:	 Views	of	the	robot	URDF	model	 in	RVIZ	
 

Sensor Configuration of UGV The sensors initially selected for the project are a Global Po- 
sitioning System (GPS), Inertial Measurement Unit (IMU), ultrasonic sensor, time of flight distance 
sensor, Light Detection and Ranging (LIDAR), stereo vision camera, and a standard web camera. GPS 
helps provide the location of the vehicle using up to 22 satellites and 66 channels. These pro- vides 
enough information about the rough location of the vehicle when testing in outdoor scenarios. The 
BNO055 IMU is 9-DOF (Degree of Freedom) sensor that provides absolute orientation, angular 
velocity, acceleration, magnetic field strength, linear acceleration, gravity vectors and temperature 
for compensation. The ultrasonic sensor is a high noise tolerance and narrow beam sonar used as 
obstacle detector. The time of flight distance sensor uses an invisible laser source and a matching 
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sensor to detect the distance of a surface (obstacle) located in front of it. The RPLIDAR-A1 LIDAR 
is a 360 degree Laser Scanner capable of scanning 360 degree environments to built maps or 3D 
models. The ZED Stereo vision camera provides capability for depth perception, positional tracking 
and 3D mapping. The web camera is a low cost solution for image or video acquisition to perform 
basic image processing. 

Computing Platform of UGV The main processing unit in the vehicle is a NVIDIA Jetson 
TX2 development board. The main objective is to take advantage of the NVIDIA GPU capabilities 
either for image processing or running machine learning algorithms. Arduino boards are initially 
selected to interface with some of the sensors that required either an I2C bus or an UART port 
for communication. Most of the low level sensors (e.g. GPS, IMU, Ultrasound, or Time of Flight 
Distance sensor) have libraries written for Arduino. A WiFi Cisco router is installed in the vehicle to 
provide a mobile WiFi connection to the vehicle. This enables a simple and more secure method of 
providing a communication channel to the user during research and development of the vehicle. The 
low-level communication between sensors and microcontrollers will be performed either through a 
UART port or an I2C bus. The initial approach for communication between the microcontrollers and 
the Jetson board is through a CAN bus. For these purpose the MCP2515 CAN Bus Module is 
considered. The Jetson TX2 board has an installation of Linux for Tegra (L4T) 28.1 using a program 
called Jetpack 3.1. This version of L4T is based on Ubuntu Linux 16.04. The Kinetic Kame 
version of the Robot Operating System (ROS) is installed on the computer. ROS provides all the 
software libraries required to interface the Jetson TX2 with the Arduino boards and sensors such as 
the RPLIDAR-A1 and the ZED Stereo camera. 

Kinematic and Dynamic Models of UGV The dynamic model of the the vehicle can be 
represented using the Ackerman steering model as shown in Figure 17. For this purpose, it can be 
considered that the two front wheels turn in a slightly differential manner. In this way, the center of 
rotation of the vehicle can be found doing only a kinematic analysis. This type of approach makes the 
analysis of the steering mechanism look the same as that of a bicycle model. 

The kinematic bicycle model can be represented by the following nonlinear continuous time 
equations. 

x˙ = v cos (ϕ + β) (12)

y˙ = v sin (ϕ + β) (13)

ϕ˙ = 
v 

sin (β) (14)

v̇  = a  (15) 

where: 

β = tan −1 ( 
  lr tan (δ  )) (16) 

• x and y : coordinates of the center of mass in the inertial frame X, Y 

• ϕ : inertial heading

• v : speed of the vehicle

• lf : distance from the center of mass of the vehicle to the front axle
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Figure	17:	Analysis	of	the	kinematic	model	of	a	bicycle	

 
 

 
• lr : distance from the center of mass of the vehicle to the rear axle 

• β : angle of the velocity of the center of mass with respect to the longitudinal axis of the car 

• a : acceleration of the center of mass 

• δf : front steering angle 

• δr = 0: rear steering angle. Rear wheels in the platform cannot be steered. 

The system model described above has δf and a as control inputs. The following equations 
describe the dynamic bicycle model. 

ẍ = ϕ̇ẏ  + ax (17) 

ÿ  = −ϕ̇ẋ + 
 2 

(F 
 
c,f cos δf + Fc,r ) (18) 

ϕ̈  2  
l 

Iz 
f 

 
Fc,f − lrF 

 
 

c,r ) (19) 

X  ̇ = x  ̇cos ϕ − y  ̇sin ϕ  (20) 

Y  ̇ = x  ̇sin ϕ + y  ̇cos ϕ  (21) 
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where: 

• ẋ :  longitudinal speed

• y˙: lateral speed

• ϕ˙: yaw rate

• Iz: yaw inertia

• m: mass

• Fc,f : lateral tire forces at the front wheel

• Fc,r: lateral tire forces at the rear wheel

The definition of the linear tire model is given by: 

Fc,i = −Cαi αi (22) 

where: 

• i      f, r 

• αi : tire slip angle

• Cαi : tire cornering stiffness

ROS tf2 URDF Model of Vehicle An important aspect of an autonomous vehicle is con- figuring
the motor controls and sensors to have the vehicle identify its environment. However, to prevent 
errors in the physical environment, it would be efficient to create a simulation with a robot model 
using RVIZ. This method of simulating robot models in a virtual environment is known as URDF 
modeling. URDF modeling uses XML code to transfer robot models into a simulated environment. 
For the RVIZ software to recognize a package containing URDF files, a directory is placed in the ROS 
workspace (catkin_ws) that will allow the RVIZ software to detect the URDF package. Inside the 
package is a URDF file, which can be configured in XML to create the geom- etry, visuals, and physics 
of the robot model. To keep the Jeep model simple, a rectangular base named base link connects the 
wheels to establish a skeleton of links and joints. With regards to the wheel, four cylinders were 
created and named with regards to its position in the vehicle such as Front_wheel_left, 
Back_Wheel_Right, etc. Each wheel has a joint that determines the x (roll), y (pitch) and z (yaw) axes. 
The Z-axis allows the wheel to pivot left and right for turning while the Y-axis rolls the wheel 
forward or backwards. The Y-axis also allows for the vehicle to travel along Y coordinates. The x-
axis has no significance with how the wheels move but it allows the vehicle to travel along X 
coordinates. Once these joints are combined together through links, this creates the skeleton of the 
vehicle and allow for movement. Each joint in the wheel can be configured to move the base link as 
one whole group. Figure 18 shows the resulting robot model in RVIZ. 

Evaluation of Methods for UAVs: The quadcopter has been studied for controllability and 
observability as a linearized system. The model of the quadcopter is originally highly nonlinear due 
to the trigonometric relationship between the pitch, roll, and yaw angles. This presents a difficult 
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Figure	18:	Views	of	the	robot	URDF	model	in	RVIZ:	left	two	images	without		
the	main	chassis,	right	image	with	the	main	chassis.	

problem in controls, but we first started observing its behaviors by linearizing through the small 
angle approximation. If the perturbations to the angles of the quadcopter are sufficiently small, 
the mathematical model can be reduced to a linear system based around an operating point. The 
operating point chosen in this case was a hovering position where the thrust of the quadcopter is 
essentially canceling out the force of gravity to keep the quadcopter upright. The hovering UAV was 
proven to both be controllable and observable. Detail on the analysis is provided below. 

Consider the quadcopter with 12 different states: 

• ϕ, θ, ψ: The pitch, roll, and yaw angles respectively

• x, y, z: The coordinates with respect to the earth’s reference frame

• u, v, w: The linear velocities in the UAV’s inertial frame

• p, q, r: The angular velocities in the UAV’s frame

Also, there are 4 inputs to the quadcopter that control the value of each of the 12 states: 

• u1 Vertical Thrust 

• u2 Angular motion along the X direction 

• u3 Angular motion along the Y direction 

• u4 Angular motion along the Z direction 

Using these 12 states of the quadcopter and the small angle approximation, a linear state-space 
system can be created to map the inputs to the outputs of the system, which are the same as the states 
in this case. This state space model is in the form 

x˙  Ax  Bu 

y  Cx 

where x consists of the 12 states and y is the output. 
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Since this linear system can be controlled, the first control algorithm attempted was a linear 
quadratic regulator (LQR). This control paradigm finds the optimal control value, K, which can be 
applied to the desired states producing the correct inputs to drive the quadcopter. The system is 
shown in a Simulink block diagram in figure 19. 

Figure	19:	Block	Diagram	of	LQR	state	feedback	control	of	the	UAV	

Stabilization of the UAV centered around a hover point is only really sufficient for the system 
model, where the UAV acts as a supervisor to the UGVs by searching for points of interest to send the 
UGVs towards. With LQR, the UAV can also be given a target destination to move to in a 3-
dimensional space. This will enhance the capabilities of the system beyond its current state in 
allowing for motion in the UAV. 

3.1.3.3.2 State Estimation Analytical results were deduced for the experiments performed 
using state estimation to predict states with time delays. The modified state estimation showed 
the performance of the model to perform satisfactorily upto 15 seconds of time delay, meaning each 
update of the state of the system was received only every 15 seconds. The system fails to converge 
at larger delays. 

To test the setup, an experiment with a Kobuki robot was made to maneuver back and forth 
between two pre-defined points P 1 0.9, 2.0 and P 2 2.0,  0.5 respectively, simulating a 
UGV. The choice of these points are arbitrary, but were constrained by the field of view of the camera 
in our experimentation. An overhead camera was mounted on a ceiling, simulating a vision based 
UAV. Different set of delays were incorporated into the state information available to the UGV, which 
performed navigation using a PID controller and state estimation. 

Figures 20 shows the trajectories taken by the UGV during these tests with communication of 
state information delayed with 0 ideal , 1, 4, 10, 15, 20 seconds respectively. It should be noticed that 
with 15 seconds of delay, the UGV is still able to traverse, but with sub-par performance. A delay of 
20 seconds shows complete failure of the system to recover from losing a signal, since it goes out of 
detection range of the UAV camera. 

The metric of the comparison of the performance of the state estimation used on UGV across each 
delay was calculated using a mean absolute error for each position point of the trajectory. The error 
in this case was the measure of the outlying position point with respect to the vector joining 
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Figure	20:	Trajectories	taken	by	UGV	to	maneuver	between	P	1	and	P	2		

with	different	communica‐	tion	delays.	

 
P 1 = (x1, y1) and P 2 = (x2, y2). If P = (x, y) is a point on the trajectory, the error eP is computed 
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The figure shows the distribution of such errors for each delay, and it can be observed that the 
general error increases with the increase of delay. 

Figure	21:	Error	bar	plot	showing	error	distribution	for	different	communication	delays.	

Software Implementation of Position Estimation of UGV 
In this section, The Long Short-Term Memory (LSTM) network is implemented to estimate the 

position of the UGV. The inertial coordinate (x, y, z) is used for navigation and state estimate. The 
UGV had been controlled manually starting from a random coordinate. Data had been taken from the 
UGV to provide estimated reliable three-dimensional positioning with 8478 data points for each 
dimension. These data were used as input data into the Long Short-Term Memory (LSTM) network 
thath consist of a deep feature extraction module. LSTM network can solve the long-term and short- 
term dependency problems. The hidden layer of LSTM is called memory cells, a fundamental of 
the LSTM. There are three gates such as input gates, output gates and forget gates which allow 
to update state and add/remove information to the memory cell. The updating the state of cell 
feature improves calculation of the output of LSTM network and accuracy of the network. 

Figure 22 illustrates the pose of manually controlled UGV pattern of driving. Data-set was created 
by using three-dimensional position data that is recorded from the UGV trajectory. With the dataset, 
70% of the data was used to train the network and the remaining 30 % of the data was estimated. 

The main idea is to make the trajectory of a UGV stable under longer delay. Data analytic methods 
are used to get estimation with better performance. Figure 26 illustrates the used metric 
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Figure	22:	Recorded	pose	of	manually	controlled	UGV	pattern	of	driving	

 
 

 
rules to evaluate estimation performance for position estimation in terms of Root Mean Square Error 
(RMSE) and Mean Absolute Percentage Error (MAPE). We had implemented all three axis separately 
and then combined them. In Figure 23 and 24, the results depict that the proposed model estimates 
inertial coordinates accurately. 

 
 

 
 

Figure	23:	 Y‐Axis	Estimation	
 

As shown in Figure 25, the red color represents the observed/actual position and the blue color 
presents the estimated position. Table 1 shows the examination of the state estimation error in terms 
of MAPEs for different axis, illustrating that they range between 0.32% and 2.54%. These estimation 
performances show that the UGV is able to navigate to a target under delay or communicate problems 
between the UAV and the UGV. 
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Figure	24:	Z‐Axis	Estimation	

Figure	25:	Observed	and	Estimated	

Table	1:	Estimation	Performances	

Error Metric X Axis Y Axis Z Axis Average 
RMSE 0.0096 0.0191 0.0042 0.0109 
MAPE 0.325 2.54 1.99 1.61 

3.1.3.3.3 Hardware Description and Dynamic Model of Self Learning UGV UGV 
Specifications and Dimensions The vehicle selected for the research platform is based on a 
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Figure	26:	Metric	Rules	

 
 

traditional RC car, i.e., Ackermann style. The dimensions of the UGV are: Length = 10.4 inches, width 
= 6.2 inches, and height = 4.7 inches. It comes with two 4.8 V, 700 mAh rechargeable batteries. 
Batteries can last up to 30 min of continuous usage, and up to 60 min to fully recharge. It can reach 
a maximum speed of 15 km/h. and ground, grass, and sand are applicable fields where this UGV can 
navigate. 

Sensor Configuration of UGV The sensors initially selected for this project are, Inertial 
Measurement Unit (IMU), time of flight distance sensor, infrared laser scan localization. The BNO055 
IMU is a 9-DOF (Degree of Freedom) sensor that provides absolute orientation, angular velocity, 
acceleration, magnetic field strength, linear acceleration, gravity vectors and temperature for 
compensation. The time of flight distance sensor uses an invisible laser source and a matching sensor 
to detect the distance of a surface (obstacle) located in front of it. 

Computing Platform of UGV The main processing unit in the vehicle is a raspberry Pi 3 board. 
The main idea is to incorporate all modules into the Raspberry Pi 3. Arduino boards are initially 
selected to interface with some of the sensors that required either an I2C bus or an UART port for 
communication. The low-level communication between sensors and microcontrollers will be 
performed either through an UART port or an I2C bus. The Kinetic Kame version of the ROS is 
installed on the computer. ROS provides all the software libraries required to interface with all 
devices mentioned above. 

ROS Network System ROS is a powerful tool when it comes to communication between 
systems. ROS needs a master in order to operate and manage communication between nodes. Since 
the physical system’s microcmoputer is not powerful enough to process and train the collected data 
with the deep neural networks, a transaction of the collected data by the physical model to the 
Graphics Processing Unit (GPU) must be made in order to process and generate a new model 
efficiently. To achieve this idea, the GPU is going to be set as the master on the network and the 
physical system as the slave. 

Figure 27, demonstrates a high level communication network system between physical system 
and GPU virtual system. 

Data from both localization and distance laser sensors are collected on the physical system. These 
data are important to drive the UGV, given that initial model for the vehicle is already imported from 
the virtual simulated version of the robot. With real-time readings, a new model can be generated 
that can adapt to the new physical system. Discrepancies between world map geometries of the 
simulated and real-world environments, a localization distance normalization, is performed that 
uses a ratio relative to the size of the map. The distance magnitude of the UGV to 
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Figure	27:	ROS	Network	System	

the goal will never exceed the size of the map. A ROS node is used to map normalized laser distance 
sensor readings to the ranges compatible to those of the model inputs. Normalized localization and 
distance sensor information are time-aligned and concatenated into a single input vector, which 

Approved for Public Release; Distribution Unlimited. 
55



 
 
 

 

 
Figure	28:	VL53L0X	ToF	sensor	layout	on	small	Ackermann	steered	vehicle.		

The	arrow	marked	Center	points	towards	the	front	of	the	vehicle.	
 
 

Table	2:	100	Time	of	Flight	Sensor	Samples	at	Close	and	Long	Range	
 

Time of Flight 
Sensors 

Physical distance from 
sensor origin 

Average distance 
recorded from sensor 

Standard deviation 
recorded from sensor 

Distance 
error 

Left Sensor 61cm 57.3cm 1.47cm 3.7cm 
Middle Sensor 54cm 52.7cm 1.73cm 1.3cm 
Right Sensor 61cm 56.8cm 1.41cm 4.2cm 
Left Sensor 27cm 26.3cm 1.35cm 0.7cm 

Middle Sensor 23cm 23.3cm 1.56cm 0.3cm 
Right Sensor 27cm 26.1cm 1.23cm 0.9cm 

 
then is processed by reinforcement learning DQN. The resulting output of the DQN is a decision on 
one out of six fixed possible outputs, (i.g., go slow and turn right), which is based on the maximum 
probabilistic output value of the last layer of the hidden layer. 

Hardware for this experiment is modeled off a simulated vehicle developed by former TECHLAV 
student Abhijit Majumdar from his MS Thesis. The self-learning capabilities are illustrated in 
the simulation. The agent(car) in Figure 29 that is learning throughout the simulation; will be 
represented by the new model UGV shown in Figure 30. Figure 31 shows a recorded trajectory of the 
UGV under manual operations. 
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Figure	29:Photo	of	Simulated	Agent(car)	in	an	Environment.	

Figure 30: Photo of old model on left and new Ackerman steered platform on right with 
AM-L03 sensor package. 

Approved for Public Release; Distribution Unlimited. 
57



 
 
 

 

 
 

Figure	31:	Recorded	pose	of	manually	controlled	UGV	pattern	of	driving	in	circles		
for	approximately	4s	followed	by	a	pattern	of	three	point	turns	for	another	6.5s	

 
Physical Environment: In this section, the importance of matching the physical environment 

on the virtual environment is discussed. The virtual agent explores and exploits a given environment 
to maximize the possibility of having the best Q-function at the end of training. As a result, the 
physical environment has to be similar to the virtual one that is constructed. See Figure 32 to observe 
an example of a similar pair of constructed physical and virtual environments. Additionally, the 
physical UGV has to be as similar as possible to the virtual one, as demonstrated by Figure 33. The 
dimensions of the physical environment are 1.63 x 2.43 m; this gives the UGV enough space to 
maneuver and test the learned model. 

 

 
Figure	32:	Physical	Environment	and	Virtual	Environment.
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Figure	33:	Physical	UGV	and	Virtual	UGV	

Testing Generated Model on UGV: In this section, The GUI that is used to interface the 
virtual simulator was modified in order to test the generated model by the virtual agent. The GUI 
comes with two buttons, learn and test. In the learning mode, the reinforcement learning model 
is learning through the virtual UGV sensor data. Before, the test button only tested the learned 
model on the virtual environment. When the simulation is on test mode, the model starts testing 
the learned model based on the real physical UGV’s sensor data. In Figure 34, it is observed that 
by using RVIZ ROS tool, the UGV moves from a pose A to a pose B. 

Some compatibility issues arose in connecting the simulation agent’s behavior model to the real 
robot. The physical UGV was not responding appropriately with the trained model to the distances 
read by the sensors. The root cause of this was determined to be that the virtual agent works off of 
integer type distances for ease of model convergence, while the physical UGV obtains floating point 
values from the sensors. The physical UGV’s data will be scaled up and cast into an integer format to 
fit the pattern used by the virtual agent. This will utilize more range of the sensor’s capabilities as 
the sensors utilized have higher accuracy in the 0-1.9m range and lesser accuracy in the 2-8m range. 
The proposed solution to this problem will lead to better decision making for the physical UGV in 
evaluating and learning a model. 

3.1.3.3.4 DQN vs DQN With GA Box Map Figures 36 and 37 were simulated with the same 
amount of run time to compare the following characteristics. The agent running in Figure 36, is 
a second generation genetic algorithm neural network. Figure 35 and tables 3, 4 illustrate the neural 
network structure, and all features that were chosen by the layer randomization function used in 
each agent. Figure 36 illustrates the training running reward gathered by the DQN with GA agent 
model. As observed in 36, the running reward exponentially increases, thus, the neural network 
structure has successfully developed enough so that the model trains for a more reliable future test 
model. 

On the other hand, Figure 37 has a different running reward behavior. As illustrated in the image, 
the running reward had temporarily spike then fell off, and struggled to increase the reward back 
again. This is an example of a neural network structure that isn’t complex enough to optimize 
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Figure	34:	Testing	Model	on	Physical	UGV	

 
running reward. Table 5 describes the neural network feature structure chosen by the user. As a 
result, the model suffers from a poor selection of hidden layer parameters, optimizer method, loss 
function, and activation function. 
 
 

Table	3:	Agent	1	Model	Characteristics	Used	in	DQN	With	GA	Simulation.	
 

Layers Concatenate 
Layer 

dTransitional 
Layer 

Concatenate 
Layer 

dTransitional 
Layer 

Number of Parameters 86 48 81 96 
Activation Function Hard Sig- 

moid 
relu Exponential Tanh 

Optimizer Adagrad Adagrad Nadam Adadelta 
Loss Function Mean 

Absolute 
Percentage 

Categorical 
Hinge 

Mean Abso- 
lute Error 

Categorical 
Hinge 

 
DQN vs DQN With GA Track Map: A different response is observed from this map. In 

this map the reward is very small until the goal is finally achieved. As a result, once the goal is reached 
by the agent, it’s very easy for the agent to achieve it gain, which explains the ramp up of running 
rewards. Despite that both models in Figure 38 and 39 ramp up in running rewards, DQN with GA 
has greater area under the curve while DQN approach had a minimum struggle in 
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Figure	35:	Neural	Network	Structure	of	Second	Generation	Genetic	Algorithm	Agent.	

Table	4:	Agent	2	Model	Characteristics	Used	in	DQN	With	GA	Simulation.	

Layers Concatenate 
Layer 

dTransitional 
Layer 

Concatenate 
Layer 

dTransitional 
Layer 

Number of Parameters 26 48 36 96
Activation Function Sigmoid relu tanh Tanh 

Optimizer Adagrad Adagrad rmsprop Adadelta 
Loss Function Hinge Categorical 

Hinge 
Categorical Categorical 

Hinge 

Table	5:	 Agent	Model	Characteristics	Used	in	DQN	

	Simulation.	 The beginning which lead to a delayed ramp up. 
Physical Results:  As observed in Figure 41, the model had an interesting way of learning 

a policy for the environment. Under epoch 100, there is no sign of intelligence. At 500 epochs, 
the agent learned to reach the destination, and not to time out. At 2000 epochs, the performance 
increased dramatically, with zero time outs. At 4000 epochs, the agent began to time out again, 
in order to avoid collisions. At 20000 epochs, the model converged at some value, and the results are 
as illustrated in the figure. Again, the agent increased to 6% to avoid collisions; this happens when 
the goal is too close to the wall, and the agent knows that it needs to get the goal but it cant 

Layers Hidden 
Layer 1 

Hidden 
Layer 2 

Hidden 
Layer 3 

Hidden 
Layer 4 

Number of Parameters 64 20 20 12 
Activation Function None None None Linear 

Optimizer Adam Adam Adam Adam 
Loss Function mse mse mse mse 
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Figure	36:Image	of	DQN	with	GA	Simulated	Agent	and		
Running	Reward	Graph	Learning	at	1000	Epochs	

Figure	37:	 Image	of	DQN	Simulated	Agent	and	Running	Reward	Graph	Learning	at	1000	Epochs		

collide, resulting in a time out. 
This model was applied to a robot shown in Figure 40, and it was making the right decisions only 

49% of the time. This test was made by placing objects on the UGV’s sensors were the model was 
making decision based on the data collected. The same procedure was done with the DQN with GA 
model, and the results were better over all. The UGV was making the right decision 60.8% of 
the time; that is an increase of approximately 12% from the DQN mode to the DQN with GA model. 
Therefore, the method proposed did improve the performance of reinforcement learning 
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Figure	38:	Image	of	DQN	with	GA	Simulated	Agent	and	Running		
Reward	Graph	Learning	at	580	Epochs	on	Track	Map.	

Figure	39:	 Image	of	DQN	Simulated	Agent	and	Running	Reward	Graph	Learning	at	580	
Epochs	on	Track	Map.	

using DQN. 

3.1.3.3.5 Improvements Upon Reinforcement Learning For Autonomous Agent 
Navigation After developing a simple training environment in simulation for the agent vehicle 
model, genetic algorithm was under consideration for improving the network of the deep reinforce- 
ment learning model. Ultimately it was not incorporated into the simulator, but instead attention 
was given to creating a more sophisticated simulation environment to be adapted for training the 
vehicle using reinforcement learning. 
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Figure	40:	VL53L0X	ToF	sensor	layout	on	small	Ackermann‐steered	vehicle.		

The	arrow	marked	"Center"	points	towards	the	front	of	the	vehicle.	
 
 

Figure	41:	 Previous	Results	on	DQN	Simulated	Model.	

 
The components of the original application included functionality for training the navigation 

system using reinforcement learning and were combined with a new GUI to create a complete ap- 
plication for this project which can enable efficient deployment and testing of the mobile agents. 
Offering the ability to calibrate and read all of the individual sensors on the vehicle for testing 
purposes, manually control the vehicle via keyboard commands, and providing an extension of the 
reinforced learning navigation system into a single application allowed for the project to be main- 
tained and scaled appropriately with ongoing development efforts. This enabled efficient deployment 
of the physical vehicle for evaluating the performance of pre-trained reinforcement learning models. 
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The next stage of the application would entail deploying the trained policies and evaluating the 
vehicles performance as it attempts to navigate towards a given destination and avoids collisions 
with obstacles. The simulator that was initially created in Python was enhanced to include a physics 
engine and more accurate vehicle model within Unity. Virtual reality was incorporated into the 
advanced simulation environment to allow tracking of the physical vehicle within a virtual space. 
If the position of the physical vehicle (tracked using the HTC Vive virtual reality system) were to 
coincide with the position of a virtual obstacle constructed in Unity, the trial could result in safe 
termination without an actual vehicle collision. 

The ability to train a vehicle model to navigate towards a goal position autonomously while 
avoiding collisions with surrounding obstacles was made possible using reinforcement learning al- 
gorithms within a Python simulation environment as shown in Figure 42. Multiple vehicles were 
incorporated into the environment for enhanced learning in terms of speed and performance. 

Figure 42: Python simulation environment for training a vehicle using reinforcement learning 

Deployment, testing and control of the mobile robot (client) will be facilitated by a custom GUI 
application running on a separate PC (host) by providing several utilities accessible via a user- 
friendly interface with labeled button inputs initiating the following utilities (spawning threads for 
the individual processes). By running the GUI from a separate network host to control the processes 
on the remote vehicle, the overall memory requirements of the robot’s microcomputer are reduced 
drastically. The application is suitable for testing and controlling the robot at the human-operator 
level, with several utilities made easily accessible, as shown in Figure 43. 

A virtual reality testing environment shown in Figure 44 has been constructed in Unity using the 
SteamVR SDK which replicates the simple arena used for training the robots using reinforcement 
learning. In this environment, it is possible for the user to issue waypoint destinations for the vehicle, 
or configure static destination for consistent testing. With the ability to fully visualize testing as it is 
occurring, this method allows for greater insight into the behavior of the trained models. 
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Figure	43:	GUI	Application	for	Testing	Pre‐trained	Reinforcement	Learning	Navigation	Models	

Figure	44:	 Virtual	Reality	Testing	Environment	

2.1.3.4 Summary 

In this task the implementation of autonomous navigation of an unmanned vehicle with collision 
avoidance was examined. A custom simulation environment was created using Python for training a 
system of vehicles using deep reinforcement learning methods. The vehicle model and simulation 
environment were developed as a result of T1-1. The result of training was a navigation policy, which 
can be described as a set of rules for the vehicle to follow so that it avoids collisions with nearby 
obstacles as it traverses its environment searching for a provided goal position. 

Deploying this trained policy on the physical vehicle was assisted by the development of a simple 
user-friendly GUI for visualizing the sensor data, manually controlling the vehicle using keyboard 
teleoperation, and selecting a specific pre-trained policy for evaluation. To mitigate the concern over 
deploying a poorly trained policy that could potentially result in collisions within 
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the testing environment, a new approach was proposed to track the physical vehicle using virtual 
reality equipment, and create a virtual environment around it composed of simulated obstacles. This 
strategy could be used for safely and cost-effectively evaluating many different environments with 
the actual vehicle. 

3.1.4 Project Progress for Task T1-4 (Cooperative Localization and Navigation for 
LSASV) 

3.1.4.1 Period of Performance under 

Task T1-4 Start Date: Fall 2015 

Conclusion Date: Spring 2021 

Faculty lead:  Mo Jamshidi 

3.1.4.2 General Description of Task T1-4 

A class of localization and navigation algorithms called Simultaneous Localization and Mapping 
(SLAM) provides a robust and accurate approach for both tasks. SLAM algorithms that utilize visual 
information (vSLAM) require large amounts of computational power and storage, which makes it 
difficult to implement in real-time for LSASV. Of the main bottlenecks in vSLAM, feature identification 
and matching across a large database is the most time-consuming. And so, in this task, we will 
implement a novel method to reduce computational time, storage requirements, and network load 
to perform feature identification and matching components of vSLAM in real-time. The proposed 
process selects out only the most feature-rich components of visual data to be used in matching and 
database creation. We will further improve feature detection algorithms using proven feature 
detectors such as ORB (Oriented FAST and Rotated BRIEF) and SURF (Speeded-up Ro- bust 
Features) on readily available datasets. This will significantly reduce storage requirements and 
calculation time. The proposed more efficient vSLAM algorithm will be implemented remotely from 
the LSASV entities themselves (in a cloud data center), taking advantage of high-performance 
computing systems and parallel processing of algorithms. The network and cloud access delays will 
be compensated by predictive approaches to minimize their effects on the overall system perfor- 
mance. Visual information will be fused with known, learned, or sensed physical location references 
to create a world map. World maps will be kept in a big-data database and made equally available to 
all required parties. While each vehicle (agent) uses the developed SLAM algorithms to create world 
maps, on an LSASV level, a fusion of agent world maps is utilized to correct and provide global 
references to the system. Complex alignment operations to fuse world maps are to be inves- tigated 
in this task. Complexity in the operations comes from many variables in LSASV, including the pose 
and perspectives of various sensors on the agents, errors in position data, interference between 
agents, and dynamic environments. The fusion of this data must be performed with high precision in 
order to acquire the best estimate of the position of all agents in the system as well as important 
spatial features within the world map. Registration is one form of fusion in which maps are compared 
for matching features and transformed to fit together. The registration process can be time-
consuming, if not performed with high levels of parallel computing. This task, therefore, develops a 
real-time registration method for multiple LSASV entities. 
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3.1.4.3 Technical Accomplishments in Task T1-4 

Visual SLAM using image-based feature mapping fused with odometry data was explored through- 
out the length of the project as a means to mimic natural processes. Early surveys into the state 
of the art in SLAM techniques exposed many routes to explore in the generation of a cooperative 
localization and navigation system. The format of maps generated by algorithms varied in com- 
plexity between a 2D flat map and a 3D point cloud. Various methods can arrive at the same types of 
maps. Computation heavy mapping was determined to be not done in real-time using any of the 
initial methods investigated. All works in the literature had conditions on the “real-time” nature of 
their developed algorithms were expecting advances in hardware that were not yet realized, as they 
relied on post-procesing using either GPU-enhanced desktop workstations and/or servers. 

 
3.1.4.3.1 SLAM using Image-based Feature Mapping Techniques Early investiga- tions 

explored methods using fundamental building blocks of image-based feature matching. Fea- ture 
detectors such as BRIEF, ORB, and SURF were explored as an image-to-image comparison technique. 
Early maps generated using the method were successful, but exposed other problems and methods 
for the group to pursue, such as the loop closure problem, optimal landmark selection, particle 
filtering, and handling false-positive matches (due to visually complex objects that matched almost 
anything). More complex feature matching techniques and supplemental navigation data sensor 
fusion were identified as means of improvements. 

The ODROID XU4 has an octacore CPU (quad Cortex A15 + quad Cortex A7) and six cluster 
GPU (Mali-T628 MP6) that can be used heterogeneously. The CPU works best for management and 
processing of data, while the GPU shines at matrix calculations, such as those typically performed on 
image data. An experiment was run on some data sets collected from the TUM RGB-D SLAM 
Benchmark Datasets. Selected from the database are the ’freiburg2_pionee_slam*’ datasets. Each 
dataset comes from data captured on a Pioneer II mobile robot with a Microsoft Kinect. The 
reported elapsed times includes the time it takes 1) to read all images in a dataset from the disk and 
2) to extract the features from the images. In the second test, with active re-sizing of images from 
640x480 to 320x240 pixels, the elapsed time also includes the time to re-size an image. From the 
results in the tables, re-sizing the images down to a more manageable set of dimensions will aid in 
approximately a 2.37x improvement (2.333x to 2.399x) in the processed FPS. 

Investigation Into Real-Time Appearance-Based Mapping 
Real-Time Appearance-Based Mapping (RTAB-Map) is an algorithm that is able to create a 

map though the use of RGB-D features it was created by two researchers in the paper “Online Global 
Loop Closure Detection for Large-Scale Multi-Session Graph-Based SLAM”. This package was used 
to begin to create maps using the hand held Microsoft Xbox Kinect, and used to create a map of one 
room. While the results are not perfect the package does have other algorithms to help create more 
prefect maps. 

Fig. 45 shows the program in the process of creating a map of the hallway near the ACE Lab. The 
map can be viewed in the main frame of the window. While the three smaller windows show the 
feature matching process. RTAB also contains a database viewer, shown in Fig. 46 and 47 where a 
user is able to view a map that has been previously created and saved. 

The database viewer can be used in order to view all images that were collected in the creation 
of the map. This can be useful in order to ensure that the feature detection and comparison was 
correct during the mapping process. 
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Table	6:	Trials	for	Processing	Image	Features	using	ORB	(Image	Size	640x480)	

Database # of Frames Elapsed Time 
(5 Trials) 

Processed 
FPS 

’freiburg2_pioneer_slam360’ 1225 116.936369s 
116.996979s 
117.128929s 
117.501053s 
118.658438s 

10.324 (min) 
10.430 (avg) 
10.476 (max) 

’freiburg2_pioneer_slam1’ 2921 278.156957s 
279.611749s 
279.832552s 
279.876063s 
280.397665s 

10.417 (min) 
10.448 (avg) 
10.501 (max) 

’freiburg2_pioneer_slam2’ 2113 199.630108s 
201.791167s 
202.082897s 
202.237943s 
202.482589s 

10.435 (min) 
10.479 (avg) 
10.585 (max) 

’freiburg2_pioneer_slam3’ 2544 247.055978s 
247.076492s 
247.126593s 
248.831792s 
250.983332s 

10.136 (min) 
10.249 (avg) 
10.297 (max) 

 
Table	7:	Trials	for	Processing	Image	Features	using	ORB	(Image	Size	320x240)	

Database # of Frames Elapsed Time 
(5 Trials) 

Processed 
FPS 

’freiburg2_pioneer_slam360’ 1225 48.941726s 
48.947537s 
48.948939s 
48.957369s 
48.974762s 

25.013 (min) 
25.023 (avg) 
25.030 (max) 

’freiburg2_pioneer_slam1’ 2921 117.372682s 
118.062992s 
119.221245s 
119.388023s 
119.415593s 

24.461 (min) 
24.610 (avg) 
24.887 (max) 

’freiburg2_pioneer_slam2’ 2113 84.490087s 
84.710071s 
85.832518s 
86.150631s 
86.589737s 

24.402 (min) 
24.698 (avg) 
25.009 (max) 

’freiburg2_pioneer_slam3’ 2544 104.847575s 
105.941169s 
106.885078s 
107.094273s 
107.323132s 

23.704 (min) 
23.906 (avg) 
24.264 (max) 
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Figure	45:	A	map	captured	through	RTAB	ROS	

 

 
 
 
 
 
 
 
 

 

Figure	46:	The	database	viewer	showing	the	same	image	
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Figure	47:	The	database	viewer	showing	different	images	

3.1.4.3.2 Multi-agent Coordination for Underwater and Ground Vehicles  A visit- ing 
researcher studying underwater rovers worked with the team on a ground vehicle that interfaces with 
it. Special QR codes called AR Tags were used for waypoints to test algorithms for naviga- tion. A 
visual system recognized large and small tags as well as combination of large and small tags. The 
ROS package AR track Alvar was used where the position of each tag that is detected by the visual 
system. Simulations involved generating meeting points for the underwater and the land based 
swarm using an auctioning method. Each agent was able to determine which meeting point was best 
suited to transfer an object to a land rover by calculating a score based off which agent was closest to 
the land rover. A depth map was generated from the location of a submerged object, determinend 
relative to the position of the underwater rover, and registered into the global space. From this depth 
map, the depth of any unknown underwater objects was determined based of the closest depth 
locator position, and thus find the relative size of the unknown objects using a single camera. 
Retrieval was accomplished through calculating position of the unknown objects, navigating towards 
them in a position where the robot was ready to pick them up. Hardware issues arose that prevented 
the autonomous collection of the objects themselves to be fully completed. A slower approach profile 
was identified as a need for improvement while traveling towards an object. The developed setup with 
a fixed manipulator sometimes caused the robot to bump or nudge the object as it approached, 
potentially causing it to fall over or translate position, making it more difficult to collect. 

3.1.4.3.3 Exploration of Point Cloud-based Methods One of the goals in the research with 
point clouds was to implement and perform hardware experiments on ROS compatible SLAM 
GMapping package. The Kobuki Turtlebot 2 UGV platform, a differential mobile robot, was used 
for the experiments to share gained knowledge on both hardware and software for producing a 
cooperative research effort. The experiments were performed on the campus of North Carolina A&T 
and State University (NCAT) campus as a part of the TECHLAV Summer Student Mobility Program. 
Another planned objective for this reporting period was to integrate Darknet YOLO deep neural 
network object detector into ROS for performing selective landmark identification. 
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Figure	48:	Preliminary	simulation	results	for	single	agent	mapping	in	
	RViz	environment	by	using	GMapping	package	with	default	settings.	

 

 
SLAM Gmapping Implementation The SLAM Gmapping package had to be modified in 

order to make it compatible with the NCAT UGV setup for testing purposes. It was quite challenging 
to configure two UGVs for cooperative navigation tasks, and also to create a global map using inputs 
from different sources. The following Linux bash shell scripts summarize the first stage of the 
experiment. The experimental results for one UGV with default setup in the RViz environment can 
be seen in Figure 48. 

• roslaunch turtlebot_rviz_launchers view_navigation.launch 

• roslaunch  turtlebot_navigation  amcl_demo.launch  map_file:=/tmp/my_map.yaml 

Multi-agent mapping adds extra contraints to the operation. In addition to expected constraints 
such as network connectivity, latency and control errors, particular problems from the default pa- 
rameters of the package and ROS distribution compatibility increased the frustrations. The scripts to 
perform the experiments are written below, followed by the experimental results before the mod- 
ifications for two UGV with default parameters as can be seen in following Figures 49 and 50. 

• roslaunch turtlebot_bringup minimal.launch 

• roslaunch turtlebot_teleop keyboard_teleop.launch 

• roslaunch turtlebot_navigation gmapping_demo.launch 

For having better results, we had to modify the default parameters and setup a better connec- 
tivity through the network. Another problem was to introduce the other agent on the system or in the 
network to our local agent. We solved this issue by integrating the master-slave approach into the 
system by naming the UGVs (by changing the argument on the ROS_NAMESPACE=) and running 
the application through the master while slave was performing the SLAM. 

Since the compatibility and hardware issues were giving us trouble on the UGV and the SLAM 
package, we added “export TURTLEBOT_3D_SENSOR=kinect” into the .bashrc file on ROS, 
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Figure	49:	Preliminary	experimental	trials	for	cooperative	mapping	from		
Gmapping	package	with	RGB‐D	camera	feedback.	It	is	easy	to	determine	the	

	lack	of	merging	capability	before	the	modifi‐	cations.	

Figure	50:	 Experimental	trials	for	cooperative	mapping	from	Gmapping	package	with	RGB‐D	camera	
feedback	after	some	modifications	on	default	settings.	 Improvements	can	be	seen	in	the	solid	lines	

which	indicate	the	shapes	of	the	walls	and	corridors.	
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Figure	51:	Cooperative	mapping	from	Gmapping	package	with	RGB‐D	camera	feedback	after	final‐	izing	the	modifications	on	
default	settings	and	solving	the	networking	issues.	It	is	easy	to	observe	higher	accuracy	obtained	through	cooperative	mapping.	
A	better	global	map	was	obtained	through	increased	amounts	of	overlapping	areas	and	better	feature	matching	by	sensor	
reading	improve‐	ments.	 The	particular	noises	can	be	seen	in	the	figure	that	are	related	to	the	office	environment,	which	 is	
mostly	a	 result	of	 the	 tables,	 chairs	and	 the	 location	of	 the	 camera	on	 the	UGV.	

 
NCAT has different version of the Kobuki Turtlebot platforms. The following scripts summarize the 
steps of our approach that helped us to improve the multi-agent system and to build cooperative 
maps resulting in Figure 51. 

• roslaunch turtlebot_bringup minimal.launch 

• roslaunch turtlebot_navigation gmapping_demo.launch 

• roslaunch turtlebot_rviz_launchers view_navigation.launch 

• roslaunch  master_discovery_fkie  master_discovery  _mcast_group:=224.0.0.1 

• rosrun master_sync_fkie master_sync 

• roslaunch multirobot_map_merge map_merge.launch (after sourcing the catkin workspace) 

• rosrun map_server map_saver -f /tmp/my_map() 

SLAM Gmapping with Slice of RGB-D Camera Depth Data Inputs to the ROS pack- age 
slam_gmapping are a laser scan slice of the environment about the z  axis and the estimated 
odometry data. The software takes these two inputs and maps them back into a history of scans 
and odometry taken by the robot. Particle filtering is used to determine the best estimate of where 
the robot is within the learned map. 
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Figure	52:	Map	generated	from	slam_gmapping.	

The level of information obtained from a single z  axis slice of data at a certain height does not tell 
much about the environment in terms of features. There is a function available in ROS which allows 
you to convert a depth image from an RGB-D camera into a an emulated laser scan. The function 
provides an option to effectively condense a range of z  axis depth image slices into one laser scan style 
measurement. This operation is done in a ROS node called depth_image_to_laserscan, which is pre-
compiled program for performing the operation of converting depth images to laser scans. The 
height of the camera, with respect to the pre-defined “base_link ” in the Kobuki’s Uni- versal Robot 
Description File (URDF), is set and published by a static_transform_publisher node from the ROS tf 
package. The result is shown in Figure 52. The map contains several noisy elements that appear as 
trailing triangles or rotated rectangles. These elements are due to noise and odom- etry errors from 
the limited amount of information being obtained and stored. In Figure 53, the map from Figure 52 
has been annotated to indicate some landmark features within the environment. 

Integrating Robot Operating System (ROS) and MATLAB to control Unmanned 
Air Vehicles (UAV) A second planned part of the agenda for the student mobility program 

was using ROS and MATLAB to control robotic agents and analyze the system components. A 
controller package for MATLAB Simulink was introduced to us; however the package was not able 

to fully control the UAV. In the demonstration, the NCAT student used a Simulink control box 
to fly the ARdrone 2.0. Use of this controller only resulted in taking off, hovering, and landing 
the UAV. As other controls were not implemented, the ARdrone flew to an altitude of 1m above 
the floor and stabilized it using the on-board controller. We looked at possible ways to connect 
MATLAB and ROS, and the best solution was the Robotics Toolbox in MATLAB. The first idea 

we came up with was to use a virtual machine with in order to Linux to study the interaction 
between ROS and a windows computer running MATLAB. Unfortunately, we could not achieve 

bidirectional communication between the Virtual Machine and the host machine in the first trials. 
Once we configured a Linux machine and installed ROS, it was very simple to connect with 

the MATLAB toolbox. Then, we worked on connectivity between MATLAB and ROS operating 
on two different computers using the MATLAB Robotic Toolbox. Later, we installed the ARdrone 
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Figure	53:	Landmark	annotated	version	of	Figure	52	

 
drivers onto the Linux machine; however, interfacing with the ARdrone was not possible due to 
incompatibility of the provided USB Wi-Fi dongle with Linux platforms, as there were no drivers 
available for it. Even with a compatible Wi-Fi dongle, it was determined for some reason that the 
Parrot’s ARdrone would not connect to ROS Indigo distribution. Therefore, we decided to switch 
to the Parrot’s Bebop Drone, and performed a successful takeoff. Since Bebop drone is relatively 
newer, the communication was more reliable. Being that the goal was to connect between ROS 
and MATLAB, we demonstrated the ability to publish the drones odometry data on a Simulink block 
diagram. This will allow anyone who can create a controller in MATLAB or Simulink to control the 
drone without knowledge of the intricacies of ROS programming in python or C++. The MATLAB 
Robotic Toolbox and ROS connection based on network nodes of ROS messages for/from 
publisher/subscriber model can be seen in Figure 54. The steps we followed in the toolbox to build 
the connections that allow two platforms to communicate with each other are following: 

• Run the Matlab toolbox on a Windows computer to create a master node, publishers, sub- 
scribers, and topics. 

• Create both MATLAB and Simulink interfaces using the provided examples as a reference. 

• Run a node based on the hello world publisher example on a Linux computer, which also 
subscribes to the output on a MATLAB Simulink block diagram. 

The next goal was to fly the Bebop drone, instead of just hovering, by using a teleop method 
through either a keyboard or joystick. Using a configuration file, we were able to modify the axis and 
buttons to allow it to be used with the joystick that was available. The drone flew in all directions 
and the odometry data was published to MATLAB. 

The final objective was to be able to record the odometry data and also control the drone’s camera 
during flight. We demonstrated two ways to record any ROS topic. The options are to record the ROS 
topics using a bag file or to redirect the rostopic echo /topic_name to a text file through “ ”, t pipe 
redirection and concatenation operator. The interaction between ROS and MATLAB can be seen in 
Figure 55. One issue arose in configuring the ArDrone Bebop camera feed. 
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Figure	54:	General	representation	of	communication	behavior	on	ROS,	built	on	Publisher‐Subscriber	relationship.	Sensory	
readings	are	illustrated	by	the	Topics,	messages	are	the	type	of	data	and/or	information	that	available	through	the	entire	
system.	

Figure	55:	MATLAB	Robotic	Toolbox	provides	a	global	node	for	MATLAB	to	communicate	to	gather	any	ROS	topics	and	parse	the	
messages	throughly.
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Figure	56:	Selected	outputs	of	YOLO	demonstrating	correct	and	incorrect	classifications	of	objects	in	an	image	frame.	
 

 
The ArDrone Bebop has a fisheye camera with a software pan tilt mechanism, which is steerable by 
a joystick or keyboard control. The issue on the drone’s camera, enabling the steering mechanism, 
was a simple fix in the configuration file. Originally, we assumed that the joystick was initialized with 
1, however, it was programmed to start if the array of joystick buttons is at 0 by the default, which 
was not the case for the particular joystick used. Changing the configuration file allowed us to 
successfully move the camera view to any position. Also, the image was output through the 
image_view ROS node to show vision output. 

 
3.1.4.3.4 Multi-object Tracker for VSLAM  In the latter half of the project a deep dive 

into a multi-object tracker version of VSLAM was developed as an integrated system. The goal 
for the system was to record locations of objects for mobile systems to navigate with, rather than 
obtaining massive amounts of data that must be processed offboard on a server or dedicated 
workstation. Many efforts were pursued to optimize the system and are detailed below. 

Integrate Darknet YOLO object detector into ROS The algorithm YOLO (You Only 
Look Once) is one of the fastest to perform multi-object detection from a single RGB color image 
frame, Fig. 56. The benefit of using YOLO is that it passes the image only once through the 
network to identify all, including duplicated, occurrences of the identified objects. It also outputs the 
locations of those objects in the context of the frame, which can be used in object tracking. 
Performance of YOLO is highly dependent on the computing platform. For example, on a system with 
an 8GB NVIDIA GTX-1080 video card with 32GB of DDR4 RAM, a detection can be made in less 
than 10ms, which is ideal in a real-time applications such as autonomous navigation and driver- less 
car. Not only by a network access to a powerful computing system, but also integrating these GPUs 
on-board can make this possible. Fortunately, access to this level of computing is becoming easier 
nowadays with gaming computers and virtual reality systems. 

The source code for YOLO was modified to allow connections to the camera feed through Wi-Fi. 
The Robot Operating System (ROS) was used to provide Wi-Fi interface to the camera feed over a 
protocol similar to TCP called TCPROS. To be compatible with ROS, use of a branched version of 
darknet written in C++ was necessary. This software branch contains the modifications necessary to 
generate a shared library file libdarknet-cpp-shared.so and arapaho, a C++ API to the library. ROS 
packages, ace_arapaho and ace_arapaho_msgs, were developed by the authors to use the 
arapaho API. These packages provide the capability to publish the identified objects with labels, 
timestamps, and the relevant region of interest bounds of the image. An additional input to the 
package is the object filter list. Objects in the list are filtered out from the reported identifications. 
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Outputs of the ace_arapaho ROS node are passed to a feature tracking package developed by the Task 
T1-4 team, called ace_object_tracker. Inputs to this package are parameters from the motion of the 
robot, parameters of the camera, and the image ROIs from YOLO. This package develops initial 
models of the detected objects from the inputs provided to it. These models are used to uniquely 
identify the incoming data as belonging to a unique object. 

Initial performance tests were executed with a direct USB 2.0 connection from the desktop 
computer to a camera onboard a robot. In this configuration, images are processed at about 27 FPS, 
which is equivalent to the camera frame rate obtained from the USB 2.0 connection. Further tests 
utilized images transmitted over TCPROS on a Wi-Fi IEEE 802.11N connection from the robot 
to the desktop computer. In this configuration, YOLO processed image frames around 5 FPS. 
The drastic reduction in processing rate is solely due to the transmission of raw image data over Wi-
Fi. Compressed image streams increase the performance over Wi-Fi back to the 27fps rate for the 
camera. 

Prepare Testbed for Data Collection The Realsense D435 is an extremely compact, lightweight, 
combination of a stereoscopic infrared camera pair (848x640 at 90fps), an infrared dot projector 
(directed light), and a RGB camera (848x640 at 60fps). This new type of device has the advantage 
over other RGB-D cameras as it can be used day or night, both indoors and outdoors, utilizing a 
fusion of directed light (indoor/outdoor) and stereoscopic infrared modes (outdoor). The nearest 
competitor for outdoor stereoscopic operation with global shutter is the larger and heavier ZED 
Stereo Camera, which can only work in the presence of light, essentially making the device only 
function just during the day. Both are becoming very popular choices for small autonomous sys- 
tems. For performance comparisons, we have selected both the ZED Stereo Camera and the Intel 
Realsense D435 camera for two different UGV systems. 

The first UGV system to be described is a scale-sized jeep-like vehicle with capabilities to 
carry payload such as additional computing hardware, UAVs, UGVs and extra battery banks. This 
relatively slower UGV will act as a Mapper Master which provides computing and localization 
support to its smaller, and more agile, Mapper Agents, which can be either UGVs or UAVs. The 
localization source signals will be placed on-board the Mapper Master , as a set of HTC Vive 
Lighthouses directed towards the desired work area for the Mapper Agents. This robotic agent 
will also be equipped with the ZED Camera, a set of RPLIDAR-A1 units, a 9DOF BNO055 IMU, 
and a computer equipped with NVIDIA GPU for computing support. 

Mapper Agents will receive local coordinates from the Mapper Master , which are used to 
navigate within a given area. In this area, Mapper Agents detect and tag objects of interest with 
timestamped local coordinates. Local coordinates are related back to the global frame through the 
Mapper Master via transforms up to HTC Vive lighthouse as shown in Figure 57. The ROS 
coordinate transform library tf2 is used for performing coordinate transformations. Map data ob- 
tained by the agents will be filtered for selected objects of interest at each step. 

The localization sensor package installed on the Mapper Agents is formed of two components, 
the ACE Labs’ custom AM-L03 interface board and a sensor frame for housing TS3633-CM1 light 
sensor breakout modules. The AM-L03 combines a 32-bit STM32F103C8 microcontroller with 
necessary interface components to support a total of four TS3633-CM1 light sensor breakout mod- 
ules. Figure 58 shows the sensing package and developed interface board rendering. 

Configuration of a Single Vehicle The first goal for testing a single system’s performance 
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Figure	57:	Sample	sets	of	tf2	coordinate	transforms	generated	from	testing	the	AM‐L03	board	in	various	poses.	Coordinate	
transforms	are	visualized	in	RVIZ	(ROS	visualization	program).	

Figure	58:	 Localization	sensing	package	installed	on	Mapper Agents.	 The	sensing	package	uses	a	
custom	designed	AM‐L03	interface	to	TS3633‐CM1	light	sensors.	
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was to control it through manual stick controls over Wi-Fi using only the image stream as a means to 
gain visual feedback. This is not a trivial test of system performance, but a crucial first step towards 
a responsive system of vehicles. 

When ROS is used as a remote control input, it can have a typical delay that to the observer, makes 
it appear as though the control through Wi-Fi is qualitatively “laggy” or “inefficient”, with latencies 
typically over one second. Remote control inputs are generally small amounts of data being 
transmitted at a high rate. This problem is well-documented as a “small packet” problem that was 
“fixed” by John Nagle’s algorithm to control congestion in TCP/IP networks. Nagle’s Algorithm forces 
a delay until multiple packets of data are combined into a larger TCP frame before being sent out 
of the network. In a remote control application, Nagle’s algorithm works against the goal of reducing 
a system’s latency to increase its reactiveness. There are methods in the ROS that selectively disable 
Nagle’s algorithm on a per-topic basis. Therefore Nagle’s algorithm was disabled on the velocity 
control command topic for each agent, thus providing an optimal reactive response rate to inputs 
with negligible delay in manual control. 

Vision feedback was relatively simple to configure to a usable rate over Wi-Fi streaming. Limits 
were imposed on the frame size from the Raspberry Pi Camera V2 and the image stream was 
compressed. Compression was performed using tools from the ROS image_transport package that 
were made available in the Raspberry Pi Camera interface package raspicam_node developed by 
“UbiquityRobotics”. 

In testing of visual feedback in combination with manual control, an unacceptable random hang- 
up or freezing behavior was observed on the Raspberry Pi 3b. It was determined that the network 
interface was being overloaded by the constant flow of image data, plus a potentially erratic stream 
of event-driven manual control inputs. Limits were added to the manual control rate as part of the 
solution to alleviate stress on the network interface. The other half of the problem was a network 
setting in the operating system, the Maximum Transmission Unit (MTU), which at a default setting of 
“auto” should have automatically accounted for amounts of network throughput. It turns out that the 
algorithm backing the automatic setting simply can not adjust fast enough before the system becomes 
overloaded and hangs. Through multiple tests of various values, a MTU size of 500 (bytes) was 
selected for the Raspberry Pi 3b, and a size of 750 (bytes) on the Jetson TX2. The higher MTU 
value on the Jetson TX2 is allowable due to the additional compute power that the NVIDIA board can 
provide. 

Configuration of Multiple Vehicles After the tests of single vehicles, unit testing on multiple 
vehicle configurations was performed. For a background on the logistical process to develop and 
deploy multiple robots, a single robot interface was developed first in Linux on a Raspberry Pi 3b. 
Once the configuration was ready, the memory card for the Raspberry Pi 3b containing the operating 
system (OS) was cloned and imaged to other memory cards. An issue was encountered through the 
cloning process where the agent’s computers using the same OS image would not always connect to 
the network, or they would connect and then disappear. The issue was resolved by setting the 
hostname to a unique value (previously all the same) for each of the agents in the system using the 
same OS image. A script was developed that takes the last three of six octets from the MAC address 
(i.e. XXYYZZ of AA:BB:CC:XX:YY:ZZ) of the wireless network card into account as the last six 
characters of the hostname after the hyphen (e.g. nonuniquehostname-XXYYZZ). For reference, 
the MAC address has two parts: the first three octets (i.e. the AA:BB:CC portion) represent the 
organization registering a network device, and the last three octets (i.e. the XX:YY:ZZ portion) 
represent the unique code identifying the specific device’s network ID. 
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Figure	59:	 Top:	 Positioning	of	HTC	Lighthouse	 in	Room,	Bottom:	RVIZ	Showing	Multiple	Vehicle	
Agents’	Transforms	Pointing	Back	to	the	Lighthouse	Frame	and	Vehicles	on	Ground	

The solution to the hostname problem actually helped solve a logistical issue in ROS for operating 
with multiple agents. That issue was in the need for proper namespacing of topics between multiple 
agents. ROS however does not accept hyphens in its naming convention, therefore underscores are 
used instead for namespacing topics (e.g. nonuniquehostname_XXYYZZ). 

With the proper ROS namespacing complete, the HTC Lighthouse / Custom Tracker local- 
ization process had to be modified to allow for multiple agents. This task required modification 
to the transforms created using the ROS tf2 package. Once namespaced, the transform frame_id 
variables all contained the prefix in the style of “/nonuniquehostname_XXYYZZ/” (e.g. “/lil- 
bot_4D2606/Lighthouse _Frame”). For the “Lighthouse_Frame” to be the same across all agents, 
the frame name was set to be a global frame “/Lighthouse_Frame”. The result of this setting is 
shown below in Figure 59. From the figure, the robots appear inverted compared to the position- 
ing of the HTC Lighthouse. At this point the next step will be to identify the positioning of the 
“Lighthouse Frame” relative to the ground, or to the mobile agent it is mounted on. 

Use of Multi-object Tracker to Perform SLAM In a multi-agent operation, it is paramount 
to have an accurate three dimensional map of the objective field so that each agent can cooperatively 
navigate amongst its peers.  This means that each agent needs to be able to communicate its 
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Figure	60:	Identification	of	a	cell	phone	using	darknet_ros	

perspective of its field of view to its constituents. Thanks to the recent advances with our lighthouse 
tracking approach, a grid system can be implemented in order to obtain an omniscient view of all 
agents in play. With this technology we can accurately process what each agent is seeing and create 
a cohesive map of the environment by stitching together each individuals readings. In order to 
illustrate this proof of concept, point cloud data was used to represent the view of each individual 
agent. The objective was to identify various objects in view and analyze the dimensions of this object 
so that it could be rendered in the aggregate obstacle map. 

Object identification has been widely implemented in various tasks using the open source ROS 
library darknet_ros which utilizes a convolutional neural network architecture to make accurate 
object identification predictions. It is remarkably efficient due to the clever filtering algorithm where 
pixel patterns are used to approximately identify where in the image frame objects are located and 
then only analyzing these areas. Using this method, each identified object is surrounded by a 
bounding box with its respective identification label based on the object’s general rectangular pixel 
dimensions. This is of great value because these dimensions can be used to precisely measure the 
object’s centroid pixel coordinate in the frame. This newly identified coordinate measurement can 
then be translated to the total obstacle map. 

This proof of concept was implemented using the Intel D435 Realsense depth camera which 
allowed for accurate point cloud representation of three dimensional space. Using the centroid 
coordinate measured above, the (x, y, z ) coordinate could be directly retrieved. Assuming that the 
camera’s fixed position on the agent can be represented by a coordinate of (0, 0, 0 ), the magnitude of 
the position vector to the centroid of the object can be calculated to get an accurate measurement of 
the distance with respect to the respective agent. This measurement can be used to produce a more 
detailed map of the environment by tracking the distance of these objects with respect to each 
constituent agent. 

Positioning of Lighthouse on Mapper Master The next task was to connect the multiple 
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Figure	61:Top:	Computing	the	Centroid	of	the	Cell	Phone,	Bottom:	Mapping	the	Centroid	Coor‐	dinate	to	its	Respective	3D	Point	
Cloud	Coordinate	and	Computing	the	Magnitude	of	the	Position	Vector	
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Figure	62:	Top:	RVIZ	Point	Cloud	Visualization	of	a	Cell	Phone	Including	Accurate	Point	Mea‐	surement,	Bottom:	Testbed	to	
Verify	Calibration	of	The	Camera	
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Figure	63:	Positioning	of	the	HTC	Vive	Lighthouse;	Left:	Brace	for	lighthouse	post,	Middle:	Lighthouse	on	post,	Right:	Lighthouse	
on	front	instead	of	the	post.	
 

 
frames to the lighthouse source frame. For the “Lighthouse Frame” to be the same across all agents, 
the frame name was set to “/Lighthouse Frame” using the forward slash convention as a marker of a 
global frame. The purpose of using the lighthouse system was to make it mobile, unlike the common 
Vicon or Optitrack systems; accordingly, it was mounted on the scale-sized jeep-like vehicle which 
has the role of Mapper Master. 
Initially, to mount the device, the lighthouse was attached to a 1m-long, extendable post on the back 
of the jeep-like vehicle to obtain a greater field of projection, and thereby covering a larger area. 
Multiple 3D-printed braces were made to stabilize the extendable post to prevent swaying while the 
vehicle moves. This is because, when the pole moves enough, the lighthouse turns off momentarily 
so as to not damage or overwork the motors providing the sweeping motion of the light pattern. Due 
to its positioning, the lighthouse was therefore especially sensitive to the vibration of the rear wheels 
and the swaying of the extendable post; the braces were not enough to counter these problems. In 
response, the lighthouse was moved to a more stable position on the front of the vehicle. Its new 
position also improved the reliability of the closest range supported by the lighthouse. Extremities 
of the supported range stayed relatively the same, as nearly the same angle of incidence of the light 
towards the ground was retained. Figure 63 shows the various positions tested for the lighthouse. 

Positioning of Lighthouse in ROS Software The position of the lighthouse is accounted 
for in the Universal Robot Descriptor File (URDF). This file also contains the relative positions of 
all of the on-board sensors of the jeep-like vehicle, which is useful in 3D sensor alignment for data 
fusion. A series of rotations and translations was needed to correctly position the lighthouse relative 
to the vehicle and relative to the data obtained from the AM-L03 trackers, such that the tracked 
vehicles could be accurately placed on the ground. Some pose information in the transformations 
was measured, while the rest was empirically derived based on the multiple measurements of the 
multiple Mapper Agents’ poses recorded on a flat surface. Pitch and roll Euler angles defined in the 
Mapper Master ’s URDF were modified to calibrate to the various sensed positions of multiple 
Mapper Agents. With multiple Mapper Agents occupying a known flat plane, the calibration 
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Figure	64:	RVIZ	showing	vehicle	positions	identified	relative	to	the	scale	Jeep	vehicle.	Left:	vehicle	positions	without	tf	data	
displayed;	Right:	with	tf	data	displayed	

process was relatively straightforward and could be automated in the future. RVIZ was used to 
visually validate the pose measurements with respect to ground using the 3D mesh files for the 
Mapper Agents. Figures 64 and 65 show parts of the process in RVIZ. 

Control of Multi-vehicle System in ROS –  Several methods exist in ROS to coordinate 
a set of vehicles. None of these methods are optimized for the purpose, so they are essentially 
workarounds to achieve the goal. The least optimal method would be an individual topic sub- 
scription based algorithm which would wait for data to arrive for all agents in a system. This method 
suffers from the need of the programmer to have to manage synchronization of all topics and 
decisions. A more advanced method would be to use the approximate time synchronizer class from 
ROS “message_filters” to grab a buffer of the N agents’ pose data at one time. While synchronization 
is a solid approach, there are many messages that would need to be synchronized and subscribed to 
at one time if using a desired and actual position as two separate topics for each agent. Alternatively, 
it is possible through the ROS tf2 package to “look up” transforms between two links that are 
described in a URDF. These transformations are updated at the same rate as the pose data is sent to 
the individualized pose topics. These transforms that are sent to the “ /tf ” topic are namespaced using 
the methods discussed above. This approach was selected over the other two options, for it actively 
collects data and controls the agents at a known rate, rather than responding to potentially bursty 
data. 

Data Processing of Multi-vehicle System in ROS – A software package named zed_darknet 
was selected for investigation due to its compatibility with the ZED Camera (onboard the Mapper 
Master ) and the Darknet software which runs the YOLOv3 deep neural network. Initial tests were 
run on the ZED Camera, which determined that it does run faster than previous implementations of 
YOLO on the NVIDIA Jetson TX2. However, the purpose for running YOLOv3 in the system was 
not just for the Mapper Master , but also for the data coming from the Mapper Agents. The 
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Figure	65:	Alignment	of	the	HTC	Vive	Lighthouse	in	the	URDF	at	the	front	position	to	the	red	colored	grid	representing	the	
ground	plane.	Top:	Bad	case	where	tracked	vehicles	protrude	through	ground	plane,	Middle:	Tracked	vehicles	not	protruding	as	
much	through		ground	plane,	Middle:	 Tracked	vehicles	not	protruding	as	much	through	ground	plane,	Bottom:	Vehicles	on	
ground	plane.	
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Figure	66:	Output	of	multi‐image	source	YOLOv3	operating	on	ZED	Camera	and	Raspberry	Pi	Camera	images.	

software components to make the Python program into a ROS node were added to enable multiple 
camera feed data processing in the zed_darknet package. Support was also added for processing 
subscribed compressed image feeds. With these components in place, the system is able to process 
multiple image feeds per second for object classes of interest. Figure 66 shows a sample where the 
Mapper Master and two Mapper Agents are capturing video at one time. Tests of six Mapper Agents 
were performed with limited additional overhead due to the limited size of the small frames and 
compressed image feeds. Compressed image outputs are available for each of the agents in the system 
with indicators of where the detected objects are. The next step will be to correlate objects among 
the multiple perspectives obtained from the numerous camera views. 

Simulation of Multi-vehicle System in ROS and VR Compatible Unity Software – 
In the development of the URDF files for RVIZ, visualizations of the robots were made. These 
visualization files, or mesh files, were exported to Unity. Unity is the next logical step in developing 
a realistic simulation of the system for testing controllers, multi-vehicle formations, and camera fields 
of view. Unity has a ROS bridge component that can be used to control the simulation with the same 
software used to control the robot. Unity also has a component where the HTC Vive VR headset can 
be used as a controller for the cameras allowing for a person to move around inside the virtual world 
giving a unique perspective to the performance of the autonomous vehicles. Figure 67 shows scenes 
from a Unity simulation of multiple vehicles driving in a formation to cover greater areas using 
multiple cameras. 

Cooperative Localization using Monocular Cameras When an object is detected by two 
“Mapper Agents” then determination of the corresponding intersection of the two vectors oriented 
from the two cameras to the object can be calculated. The following equations are implemented 
in python using ROS “PoseStamped” messages, which are time stamped objects that contain a 
x, y, z  pose and a quaternion orientation. A pose object located at the camera frame on the 
vehicle is generated for each object to be cooperatively located. On the particular vehicles, the 
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Figure	67:	Scenes	from	a	multi‐vehicle	simulation	in	Unity	with	vehicles	driving	in	a	line	formation.	

 
camera used is a monocular type which does not provide depth information. From the two poses and 
orientations, x1, x2, Q1 and Q2 can be obtained through ROS “tf” functions to lookup the transform to 
the front of the vehicle and perform the rotation of a pose vector towards the object. where the 
quaternions have the following representation: 

Q1 = a1 + b1 î + c1 ĵ + d1 k̂ 

= a cos
θ1 + (b ˆi + c ĵ + d  k̂)sin 

θ1 

Q2 = a2 + b2 î + c2 ĵ + d2 k̂ 

= a cos
θ2 + (b ˆi + c ĵ + d  k̂)sin 

θ2 

and by setting the coefficients b1 c1 b2 c2 0 as we are interested in the rotation about the 
z-axis, we get: 

Q  = a  cos
θ 

+ 
θ ˆ 

 

Q  = a cos
θ2 + d sin

θ2 k̂ 

To simplify use of the quaternions components, we define the following terms r1, r2, s1, s2 to represent 
the transform from the quaternion to a more convenient vector compatible format: 

r1 = a2 − d2 

r2 = a2 − d2 

s1 2a1d1 

s2 2a2d2 

Positions of the target within the two camera frames, x1 and x2, are given by: 

x1 x1, y1 

x2 x2, y2 

with the corresponding instantaneous trajectory vectors are p1 and p2: 

p1 =< r1, s1, 0 > 
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The vectors normal to the trajectory vectors are n1 and n2. 

n2 s1,    r1, 0 

n2 s2,    r2, 0 

Line vectors described by the following two equations are given in d1 and d2, 

s1(x − x1) − r1(y − y1) = 0 

2 2 2 2 

which can be rewritten as the following in matrix format: 

s2 −r2 y  r2x2 − s2y2 

solving for the intersection of the two vectors, which are located at < x, y >: 

y  s2 −r2 s2x2 − r2y2 

The following condition prevents two agents from having the same orientation with respect to the 
object: 

s2r1 s1r2 0 

which expanded with the definitions of s1, s2, r1, r2: 

cos(θ1)sin(θ2) − cos(θ2)sin(θ1) ≠ 0 

reduces to: 
sin(θ2 − θ1) ≠ 0 

Figure 68 shows two vectors from the two camera frames intersecting with one another. In the figure, 
the resulting intersection point is marked with another vector pointing back towards the y-z plane 
with magnitude only in the x-component of its vector. The intersection position x, y  can then be 
recorded with the ROS “tf” transform broadcaster. Measured dimensions of the object are 
represented with markers generated for visualization in RVIZ, which are centered on the frame of 
intersection’s transform. With the detection bounds from the deep neural network object detector, 
dimensions can be estimated more correctly with the two visual sources of information. Ellipses can 
represent the measurements of object size with the expected uncertainty of the measurement. There 
are some issues to be worked out with this approach. As the method for determining the class of an 
object uses deep neural networks, the co-localization of a unique item in an environment should be 
simple. For more complex environments where an object is commonly found, a disambiguation 
routine will need to take place to sort out what each robot is seeing where. This routine will need to 
take into account relationships between clusters of object classes for tracking and discrimination 
between detected items. Another issue that can arise is that the agents may see multiple objects 
of a certain class in the same area with different perspectives as one unique thing through one of 
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Figure	68:	Intersection	of	two	vectors	coming	from	two	camera	frames.		

The	intersection	marks	the	estimated	location	of	a	detected	object’s	centroid.	

 
many problems. First, there could be a physical barrier between two objects and both agents see 
something of the same class on both sides of the separator. Another problem can come from really 
small items that look like they are one item as they are close to each other. These problems are issues 
as we intend to utilize multiple robots to perform context-aware mapping of detected objects for 
reuse by mobile embedded systems. 

 
Simulation and Visualization of Camera Properties – Field of view and maximum range 

are handled in the simulation as an angular sweep in front of the “Mapper Agent” robots, where 
objects must fall within this area to be detected by the particular agent. A “PolygonStamped” type 
message was used to draw the area in RVIZ for each of the “Mapper Agent” robots. One message 
is published for each simulated robot. 

 
Simulating Detection of Objects – Objects of interest were simulated by using a “PoseS- 

tamped” ROS message type to hold a pose that was used as a centroid location. Transformations from 
the “odom” frame to the “Mapper Agent” robot pose and the various object poses were used in 
calculations to determine an estimate of the object location. Object pose estimates are set at the 
same position the robot camera pose, but with an orientation towards the object of interest. Validity 
of estimates are checked against camera properties and mathematical restrictions of the functions 
utilized. With the possible valid estimations calculated in the simulation, all pairs of esti- mates are 
collected using the function “combination” from the “itertools” package in python. Each pair is input 
to the algorithm and the output pose estimate is recorded using a visualization marker, and optionally 
saved to a file for offline plotting of a map. Plans to improve the process include clustering the object 
pose estimates for filtering multiple observations into a single data structure 
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Figure	69:	Improved	simulator	performance	at	eliminating	steady	state	error	in	the	heading.	

to store in the map that provides context of the detection. 

Simulation of Robot Motion – Improvements were made to the controller used in the “Mapper 
Agent” ’s Ackerman steering dynamics simulator to correct the sources of heading data used for 
alignment of the vehicle to both the desired position and the final heading once at the destination. 
Figure 69 shows various simulated agents reaching their desired poses with better performance than 
previously acheived. 

Simulation of Noise and Quantization Errors – Orientations towards the objects of inter- 
est are quantized using a rounding scheme to model anticipated effects of measuring centroids from 
images using pixel measurements. Noise in pose measurements of the location is achieved through 
applying noise to the estimated position of the “Mapper Agents” for simulating the measurement 
from the light sensors measuring the HTC Vive Lighthouse infrared light sweeps. Noise in the 
measurement tends to have a larger effect on the x-axis (forward is positive) than the y-axis (left is 
positive). This noise characteristic is present in the simulation. 

Visualization of Algorithm Calculations – To visually mark poses in the simulation, a 
“VisualizationMarkerArray” type message was used to efficiently render multiple shapes. Cylinder 
shaped markers were used to visualize the known object locations and estimates for those object’s 
locations. Arrow shaped markers were used for the directional estimates of “Mapper Agents” posi- 
tions and orientation estimates towards objects of interest. One single message is published for all 
objects, resulting in one batch of changes per rendering update. Figure 70 shows an instantaneous 
capture of the algorithm output visualization RVIZ. Figure 71 shows an instantaneous view of the 
output when only one pillar is detected by two agents. 

Object location data published by “darknet-ros” is then subscribed to by the python program that 
aggregates data and manages the “Mapper Agent” platforms as a group. In the group manager 
software the bounding box topic of “darknet-ros” is used to examine the detected objects. Objects 
detected by “darknet-ros” were filtered for the list of reliable objects that could be detected each 
frame. In the particular area of the laboratory that we tested, the class of “bottle” was the most 
reliably detected object. Figure 72 shows an example of the output from YOLO V3. It has some 
less than desirable detections based on a number of factors including the camera resolution and 
distance from the objects being detected. 
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Figure	70:	:	Scene	from	RVIZ	showing	an	instantaneous	view	of	multi‐robot	simulation	cooperative	detection	of	multiple	objects.	
The	top	image	shows	the	location	of	6	detectable	objects,	visualized	as	red	pillars.	The	bottom	image	shows	the	objects	as	red	
pillars,	 various	orientation	estimates	as	long	blue	arrows	originating	from	the	robot	pose,	detected	object	pose	estimates	as	
light	blue	cylinders	(multiple	pillars	are	overlapped),	“Mapper	Agent”	headings	as	short	green	arrows,	and	camera	detection	
range	as	thin	green	outlined	arc	shaped	areas.	
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Figure	71:	Scene	from	RVIZ	showing	an	instantaneous	view	of	object	detections	where	two	agents	are	currently	detecting	one	
object.	The	remainder	of	pillar	objects	have	either	one	or	no	current	detections.	

Figure	72:	 Image	from	“Mapper	Agent”	showing	multiple	detections	using	“darknet‐ros”	package	for	
YOLO	V3	from	two	separate	agents’	viewpoints.	 The	left	image	shows	the	view	from	the	robot	on	the	
right	looking	towards	the	left,	which	shows	one	positive	identification	of	a	bottle.	The	right	image	shows	
the	positive	detection	and	one	false‐positive	detection	of	a	bottle	on	the	right	image.	
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Figure	73:	Scene	from	RVIZ	showing	an	instantaneous	view	of	object	detections	where	two	agents	are	currently	co‐detecting	one	
object	(vectors	marked	“1”	and	“2”	and	tracking	a	false‐positive	object	with	a	vector	marked	“3”.	
 

 
Solely from the detections provided in the figure without depth data, there are issues in resolving 

proper co-location of a single object. Possible methods to resolve the issues in co-detecting objects is 
1) use depth camera, 2) use pattern matching techniques (previously used oriented-fast and rotated 
brief (ORB) features in the first two years of the project) and 3) more “Mapper Agents” pointing 
towards an object. The first method would likely be selected if emitted radiation (directed light- 
based depth cameras and LIDAR emit light) is allowable. It can also be done by one agent, which 
could be the “Mapper Master” robot. The second method mentioned would be applicable if the 
objects of the same classes do not share much of the same features. The third method is a promising 
option if the additional agents do not also detect the same false-positive class identifications, unless 
the false-positives are quite reliable data to be obtained. Locations of vector intersections can be 
clustered together to verify that an observation is being made at the correct location. 

Of the various methods suggested to reduce the effect of the false-positives, filtering and clus- 
tering and depth estimation were identified as promising methods for the monocular camera use 
case. An effort was taken to characterize the false-positives from the vector intersection logic with a 
larger count of agents using simulation. The ROS-based multiagent simulator was modified to exhibit 
the characteristics that were experienced in the physical experiment, but with six virtual vehicles 
instead of two physical vehicles. Assumptions were made in the simulator to account for 
performance of the object detector with a typical image resolution which affects the minimum and 
maximum detection distance for a simulated observation and the vector intersection logic. Addi- 
tional measures were taken to ensure only vector intersections in front of the vehicles were considered 
as being correct. Detection vectors from six simulated vehicles to six objects created a large number 
of vector intersections as can be seen in Figure 74. Important observations from this trial run are the 
objects at the extremities of the work environment have few if any vector intersections, and there are 
a significant number of false-positives in the vector intersections. 

Figure 75 shows the cumulative candidate object detections from the simulated agents driving 
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Figure	74:	Image	from	RVIZ	showing	a	view	from	the	simulation	where	red	cylinders	are	true	object	positions,	dark	blue	arrows	
are	vectors	towards	detected	objects,	light	blue	cylinders	are	object	detection	candidates	(detection	object	vector	
intersections).	

through the object area. The tallest peaks correlate with objects detected most reliably. Small peaks 
generally match with the false positives. The two true object locations not detected in the freeze 
frame of the simulation shown in Figure 74 do not show up as a significant number of observations. 
When the vehicles have a non-zero velocity, changes in observations of vector intersections between 
two steps for positive detections are minimal about a center location (relatively static in position) 
and false-positives move along in a linear fashion. 

Methods that were researched for removing false-positives from the pool of detected object 
candidates included the following: 

• Changes in detection characteristics were examined as a potential route to filter the observa- 
tions.

• A rule-based filtering process to ensure every detection vector only is included in one candi- 
date detection or intersection, while still allowing multiple detection vectors to result in one
intersection.

The goal of the rule based filtering is to remove the extra candidate vector intersections. This is 
depicted below in Figure 76 where all red circles with a slash indicate an incorrect result. Correct 
results are open randomly colored circles at the middle of vector intersections. The colors of circles 
and vectors indicate a unique object to be tracked. In the figure most, if not all, incorrect candidate 
vector intersections can be thrown out based on the change in time step with the assumption that an 
agent vehicle is moving. 

The assumption of a moving vehicle failed in testing of the time-based method for filtering data, 
where the failure is attributed to the computational load of rendering the markers in RVIZ. Two 
reasons were identified for the problem, running the simulation in a virtual machine environment 
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Figure	75:	3D	histogram	of	recorded	data	of	all	vector	intersections	recorded	where	x	and	y	axes	have	unit	in	meters.	
 
 
 
 
 
 
 
 
 
 

 

Figure	76:	Detection	and	intersection	vectors	for	four	simulated	agents	over	two	time	steps.	
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(limited resources) and rendering too many candidate intersections. To fix the first problem, the 
computer running the simulations is being reconfigured to be more capable of running the simulation. 
The second problem requires a re-work of the algorithm to satisfy technical limitations of the 
simulation and improve robustness of the filter process. 

At the point where three or more simulated mapping agents are in the same region with the six 
simulated objects the number of candidate intersections from detections (rendered objects) becomes 
too high for RVIZ’s visualization markers to be shown in the virtual machine without bogging down 
the simulation. As the simulation gets slower due to more complex rendering instructions, the time- 
based filtering method fails to acquire good results as the simulated agents travel less by taking more 
time in each simulation step. It allows small motions in a longer time span to undesirably be 
considered as detection candidates by the filtering technique. Changes in value for both time and 
distance must be measured to make the filter technique be compatible with both the real world and 
simulations. An assumption that distance would be sufficient would not account for spurious noise 
events in pose readings that can occur if line of sight is lost between our current localization signal 
producer (HTC Vive Lighthouse) and sensors (TS3633). A constraint requiring a change in position 
is not rare in mapping techniques. 
The process for each iteration is outlined as follows: 

• For each observation (vectors from a pair of agents):

– Pairwise computation of intersection of two agent’s observations

– Calculate distance between intersection location and both agents

– If within reasonable limit (i.e. dist  3m):

∗ Distance calculation from past observations (pair of agents) 
∗ If within small threshold (i.e. dist  3cm): 

· Same object as before, confidence_vote += 1 
∗ else if within large threshold (i.e. dist  10cm): 

· Likely not the same object, confidence_vote -= 1 
∗ else:

· New object, confidence_vote = 0 

• For object candidates:

– if confidence_vote min_confidence_threshold:

∗ Plot observation in RVIZ 
∗ Register in map 

The next steps in this process for future work is the following: 

• Implementation of the rule based filtering process in ROS python code

• The addition of logic to filter candidate detections by ratios of detected object pixel width to
source image width may improve weeding out false-positive vector intersections.
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3.1.4.3.5 Summary A set of approaches to handle cooperative localization and mapping 
on a cloud based environment. Multiple SLAM algorithms were investigated over the course of the 
project and detailed in quarterly reports. Cloud and edge-based mapping approaches were explored 
with a focus on reaching a real-time or near real-time mapping capability. Notably, the RTAB- 
MAP package produced visually rich point cloud maps at a cost of heavy local GPU load. This 
approach could be useful with advancements in local and edge compute capability with GPU, and 
advancing communication standards for offloading data to the edge for computation. Many of the 
existing approaches would fail to be useful on a resource constrained device that needs to utilize the 
map generated by the algorithm. Promising approaches for future exploration were developed for 
multi-agent mapping using highly accurate beaconing for formation control. 

In the multi-agent deep neural network enhanced localization and mapping objective, advance- 
ments were made in the tools and methods used to manage formations and the information gained 
from them. Formations were simulated in more depth using ROS and RVIZ visualization tool. Map- 
per Agent controllers were developed and tuned for reaching desired poses relative to the Mapper 
Master. A manager for the odometry of the Mapper Master vehicle was developed which will be used 
to localize detected objects. A method for finding estimated object poses was introduced for co-
locating objects between multiple agent’s cameras which required localization, coordination and 
image processing capabilities. Localization of multiple vehicles was obtained by careful calibration 
of modeled coordinate transforms on the master vehicle which is the signal positioning source. Co- 
ordination of multi-vehicle motion is enabled through use of ROS coordinate transform listeners, 
where each vehicle in the network has access to system-wide positioning information on other agents. 
A test of system-wide image processing capabilities was performed onboard the master vehicle with 
six mapping agents using YOLOv3 on seven image streams. Characterization of false-positives for 
multiple vehicles was performed in simulation. 

 
3.1.5 Project Progress for Task T1-5 (Hierarchical Hybrid Cooperative Control of 

LSASV) 

3.1.5.1 Period of Performance under 

Task T1-5 Start Date: August 2014 

Conclusion Date: April 2021 

Faculty lead:  Dr. Ali Karimoddini 
 

3.1.5.2 General Description of Task T1-5 

Although a cooperative strategy will enhance the reliability and effectiveness of the team, the over- 
all structure will be a highly complex system with many interacting subcomponents. One of the main 
sources of the complexity is the hybrid nature of the system due to the coexistence of the decision-
making mechanism (with event-driven dynamics), and the low-level control of the system (with time-
driven dynamics). In such a hybrid structure, the event-driven and time-driven dynamics of the 
system not only coexist but also interact with each other, and their coupling effect cannot be 
ignored. In addition, this complex structure must include humans in the control loop. Hence, given 
a team of heterogeneous autonomous systems and humans in the control loop, a challenging 
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problem is how to design and analyze such a hybrid decentralized control structure to comprehen- 
sively capture the dynamics of all subcomponents and their interactions. To address this problem 
and to overcome the complexity of the system, we propose a hierarchical hybrid control structure to 
distribute the complexity and control tasks among the layers and among the components. Hier- 
archical control systems have been studied for quite some time; however, considering the concept of 
hierarchical control within the hybrid modeling and control framework and its application to 
autonomous systems have not yet been addressed. Moreover, the role of the human in terms of high-
level supervision and goal setting has not been captured. Recently, we have developed a hi- erarchical 
hybrid control structure and applied it to a helicopter. The TECHLAV, however, will leverage our 
previous work by developing a decentralized hierarchical hybrid structure for control and 
coordination of a team of heterogeneous autonomous vehicles to cooperatively accomplish an 
assigned mission under human supervision. 

The subcomponents of this control hierarchy would include but not be limited to the vehicle 
dynamics, continuous low-level controller, planning unit, and supervisory unit. In this hierarchy, 
each layer by itself can be modeled as a hybrid system. A hybrid system typically consists of a set of 
discrete states standing for operating modes, each of which has time-driven (continuous or discrete 
time) dynamics. To develop this control hierarchy, we first will use a formal method to connect the 
hybrid subcomponents and then synchronize them to collectively form a composed structure. This 
can be done by properly capturing the input and output of the layers, and by synchronizing and 
treating the discrete states, discrete transitions and continuous transitions. In this structure, the 
human operator assigns the mission. The assigned mission given in the form of Linear Temporal 
Logic (LTL), which is very close to the human language, will be translated to a finite state machine 
for which we will design and implement a supervisory controller in a decentralized way. This project 
aims at developing a decentralized hierarchical hybrid cooperative control framework for task 
allocation and coordination of a team of autonomous vehicles to address more complex tasks. 

3.1.5.3 Objectives for Task T1-5 over the Course of Project 

• Objective Name: Development of algorithms to design a hybrid controller for autonomous
vehicles to accomplish a high-level and complex task

Objective Type: Research

Objective Description: Reach-avoid problems, with either dynamic or static formulation, is
a very complex problem. To solve this problem, we proposed to first obtain an equivalent 
abstract model of the continuous dynamic problem by formulating it into an LTL formula 
with boolean variables, and then we developed a game-theoretic algorithm to solve the 
high-level problem. I is proven that this high-level solution can be correctly converted into 
a continuous domain solution. A complete discussion on the process, proof of existence 
and correctness of such solutions, and complexity analysis of the algorithms are also 
provided. 

Impact: By designing automated algorithms to solve a very high-level objective like “Reach- 
ing a set of states and avoiding known or unknown set of states”, we accomplished the 
objective of keeping human out of the design loop. This design process for the complex 
dynamic systems including autonomous vehicles, and the complex objectives used to be 
almost impossible for a human or machine. The derivable of this task, on the other hand, 
has made this task possible. 

Approved for Public Release; Distribution Unlimited. 
101



 
 
 

 

=  ( ) + 

3.1.5.4 Progress Against Planned Objectives in Task T1-5 

The objective of this task is accomplished. Several algorithms are developed to: 

• formulate the reach-avoid problem into a LTL formula representing the high-level problem 
and objectives 

• solve the high-level problem and provide a solution that guarantees achievement of the high 
level objective 

• convert the high-level solution of the problem into its original continuous domain 

Besides, several formulations of the problems are addressed to illustrate the powerful capability 
of the problem in solving complex problems with a slight modifications. These scenarios are single 
target reach-avoid problem and multi-target reach-avoid problem. 

 
3.1.5.5 Technical Accomplishments in Task T1-5 

To accomplish the objective of this task, a correct-by-design controller is developed for the vehicle 
under control to respond reactively to adversarial actions of the opponent vehicle, while also avoiding 
static obstacles and no-fly zones. A particular targeted problem is path planning and control of 
autonomous vehicles involved in a dynamic adversarial reach-avoid scenario. In the studied 
scenario, there are two non-cooperative vehicles with the competitive objectives “reaching a target 
and avoiding the other vehicle” for one of them, called attacker, and “protecting the target and 
capturing the opponent vehicle” for the other one, called defender. To address this problem, the 
environment is partitioned into finite number of disjoint regions, which results in an abstract discrete 
version of the problem, allowing for formally capturing the assumptions about the environment and 
requirements of the vehicle under control using Linear Temporal Logic (LTL) formulas in the form of 
General Reactivity(1). The developed method can handle the reactive nature of the reach-avoid 
problem while synthesizing a discrete supervisor that is guaranteed to win the game. Using a 
temporal game structure and mu-calculus formulas, two algorithms are developed to find discrete 
strategies that guarantee both safety and reachability. The approach is also extended to the multi- 
target dynamic reach-avoid problem. Then, a novel correct-by-design hybrid controller is proposed 
to generate control signals for executing the winning strategies by driving the attacker to win the 
reach-avoid game while respecting the dynamics of the system. A salient feature of the proposed 
hybrid controller is the smoothness of the generated control signals, which is achieved by the proper 
control of the vector field when the system moves over the edges of partitions while guaranteeing 
the execution of the high-level discrete commands. The method is also extended to incrementally 
forward complete systems to handle autonomous vehicles with more complex dynamics. 

We consider the dynamics of the attacking autonomous vehicle modeled with a particular class 
of multi-affine nonlinear systems of the form x˙ f x  Bu, which describe well-known models like 
Euler, Volterra, Lotka-Volterra equations, attitude and velocity control systems for autonomous 
vehicles such as aircraft and underwater vehicles. For the projection of the discrete strategies to 
continuous trajectories in a symbolic control framework over a partitioned region, when the system’s 
trajectory enters a new region, a new discrete command is issued to the system to drive the system 
to the next desired partition. The resulting vector field over the partitioned space is then changed, 
which may cause a discontinuity of the control signal. Such discontinuity in multi-affine nonlinear 
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systems has been observed and discussed in [10]. The abrupt control signal changes may cause a 
discomfort, negatively impact the actuators and reduce the reliability of the system [11–13]. Our 
proposed solution is also able to handle this problem efficiently. 

Finally, a framework is development to design a hybrid controller for a more general class of non- 
linear systems. The previously proposed hybrid controller has been developed for the autonomous 
vehicles with modeled dynamics modeled as multi-affine systems. However, many systems dynam- 
ics cannot be modeled as a multi-affine function. Therefore, we propose to developing a bi-level 
abstraction technique which could be feasible for many systems which are incrementally forward 
complete [14]. This include many important class of robots including nonholonomic systems. 

In summary here is a list of the main accomplishments for this task: 

• Formulating the dynamic reach-avoid problems using temporal logic formulas to apply formal
method techniques for developing correct-by-design techniques,

• Obtaining the guaranteed winning initial regions for the attacker vehicle to start the reach- 
avoid mission,

• Developing formal efficient algorithms to generate winning strategies for an autonomous ve- 
hicle in a dynamic adversarial environment,

• Introducing a novel interface for generating smooth control signals for the system to accomplish
high-level commands, Implementation of the results on actual systems,

• Extending the introduced framework to a multi-target dynamic reach-avoid scenario when the
attacker is required to visit a sequence of targets while avoiding the defender.

Next we discuss multi-target dynamic reach-avoid scenario. 

3.1.5.5.1 Problem Formulation The vehicle’s dynamic in multi-target dynamic reach- 
avoid (MTDRA) scenario, is considered as follows: 

ẋ  t  u  t  (24) 

where R2 is the position of the vehicle within a bounded 2D operation region  , and 
u(t) ∈ U ⊂ R2 is the control input. We assume that both vehicles move with maximum velocity of 

The operation takes place in a region represented as a bounded set P  R2. To manage the 
complexity of the problem and to employ symbolic motion planning techniques, we partition the 
environment P  into finite disjoint rectangular regions Pij such that: 

P 
i∈{1,⋯,n},j∈{1,⋯,m} 

Pij (25) 

where Pij  Plk   for all  i, j      l, k  . 
To capture real-time discrete position of both vehicles over these partitions, we define attacker 

Boolean sensors aij and defender Boolean sensors dij, over partitions, Pij, i    1,  , n  , j    1,  , m  . 
The truth evaluation of these Boolean propositions changes whenever the vehicles move to a different 
partition. Since they can only be in one partition at a time, the sensor variable with the same index 

Vm. 
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it accomplishes its objective. Design a controller, u(t), for the attacker so that the attacker’s path, 

 

of that partition, where they are located in, is and the rest are . We define sets and 
D containing these variables as follows: 

A = {aij} , i ∈ {1, . . . , n}; j ∈ {1, . . . , m} (26) 

We assume that the number of targets is Nt and they should be visited in a pre-determined order. 
For each target located in , we define a Boolean proposition , and the set 

, which contains all these propositions. Finally, we define a proposition “ Accomplished” which is 
True when the attacker visits all the targets. Having this information, we can then capture all the 
assumptions, requirements and objectives of the vehicles as LTL formulas in the form of General 
Reactivity(1). 

The multi-target dynamic reach-avoid (MTDRA) problem can then be described as follows: 

Problem 1. Consider an attacking vehicle with the continuous dynamics in (24) driven over the 
region P  described in (25). Also, consider the attacker objective is to visit targets with positions 
xt , ⋯xt , xt ∈ R2, in order, while avoiding the defender which tries to capture the attacker before 

x(t) ∈ P ⊆ R2, satisfies its desired objective. 

3.1.5.5.2 Specification of a Multi-target Reach-avoid Scenario Linear Temporal 
Logic: The requirements and high-level constraints of the vehicles can be captured by Linear 
temporal logic (LTL) formulas [15]. An LTL formula, φ, is constructed over a finite set of atomic 
propositions, , using the standard boolean operators (negation, , disjunction, ), and the tem- 
poral operators (next  , until ). 

φ  p  φ    φ  φ  φ    φ  φ  (27) 

Other Boolean operators (such as conjunction, , and implication, ) and other temporal 
operators (such as eventually, , and always, ) can be constructed based on the aforementioned 
list of operators in (27). 

Consider as the set of all propositions and as a sequence of truth assignments 
to propositions in Σ, where σi is the set of propositions at position i. We say σ, i ⊧ φ if φ is true at 

A special class of LTL formulas is General Reactivity(1) (or simply GR(1)), which provides 
an appropriate format to describe the specifications in a dynamic environment, where there are 
interactions between the system and its environment [16, 17]. A GR(1) formula can be described as: 

φ  φe φs (28) 

where φe contains all the assumptions about the environment, and φs represents the assumptions on 
the system and its desired behavior. Formulas φe and φs are the conjunction of some sub-formulas 
in all three forms of B,  B  and   B, where B  could be a Boolean or temporal formula. 

Assumptions and Requirements of the Vehicles in a MTDRA Scenario: Considering the 
defender vehicle as part of the environment of the attacker, we use GR(1) over the proposition set Σ 
= A ∪ D ∪ T ∪ {Accomplished} to describe the MTDRA problem in the form of: 

φ = φd → φa (29) 
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φd = φ 

φa = φ 

A ∪ D ∪ T ∪ { } 

where φd and φa capture the assumptions and requirements of the defender and the attacker, 
respectively. Formulas φd and φa can be represented as the conjunction of five subformulas: 

d 
init 
a 
init 

d 
sing 
a 
sing 

d 
term 
a 
term 

d 
rul 
a 
rul 

d 
obj 
a 
obj 

a 
opt 

(30) 

(31) 

where for r ∈ {a, d} we have, 

r 
init 

r 
sing 

describes the initial value of all propositions in Accomplished    , 

describes the singularity requirement, which requires each vehicle to be only in one of 

the partitions, 

r 
term describes the termination condition, which requires that no change occurs after the 

game is over (one of the vehicles reaches its objective), 

r 
rul 

r 
obj 

a 
opt 

describes the transition rules, 

describes the objectives of the vehicles, 

describes the optimal discrete transition rules for the attacker. 

∧ φ 

∧ φ 

∧ φ 

∧ φ 

∧ φ 

∧ φ 

∧ φ 

∧ φ  ∧ φ 

• φ 

• φ 

• φ 

• φ 

• φ 

• φ 
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d 
init 

= d41 ∧ (¬d11 ∧ ⋯¬d35 ∧ ¬d42 ∧ ¬d68) (32) 
φ
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The following example explains how to capture these formulas for the vehicles in a multi-target 
dynamic reach-avoid scenario described in Problem 1. 

Example 1. We consider the environment that is partitioned into 68 disjoint cells with targets T1, 
T2, and T3 located in regions P23, P35 and P57, respectively. Assume that the initial positions of the 
defender and the attacker are P41 and P11, respectively. This configuration has been shown in Fig. 77. 

Figure 77: Configuration of an example of multi-target dynamic reach-avoid scenario. The targets are 
in regions P23, P35 and P57, and the attacker and the defender are initially in regions P11 and P41, 
respectively. 

The defender is initially in partition P41. Therefore φd  will be: 



init 

= ∧ (¬ ∧ ⋯ ∧ ¬ ) ∧ ∧ ¬ ∧ ¬ 

⋮

d12 ∧ (¬d11 ∧ ¬d13 ∧ ⋯ ∧ ¬d68)) 

∨ ( ∧ (¬ ∧ ¬ ∧ ⋯ ∧ ¬ ∧ ¬ )) 

∨ (

⋮ 

∧ (¬ ∧ ¬ ∧ ⋯ ∧ ¬ ∧ ¬ )) 

= ◻

∨

[

( 

∧ (¬ ∧ ¬ ∧ ⋯ ∧ ¬ )) 

(aij ∧ dij) i ∈ {1, ⋯m} 

∧ (( 

∨ ) ∧ → ◯ ) 

∧ (

⋮

(Accomplished ∨ a12) ∧ d12 → ◯d12) 

∧ (( 

∨ ( ∧ )) → ◯ ) 

∧ (

⋮

(Accomplished ∨ (d12 ∧ a12)) → ◯a12) 

The attacker is initially in P11, and the first target to be visited is T1. Therefore φa will be: 

a 
init a11 a12 a68 t1 t2 t3 (33) 

∧ ¬Accomplished 

According to the singularity requirement, each vehicle can physically be in only one partition of P  at 
a time, and hence, only one of the vehicles vector propositions can be True. The singularity 
requirement for the defender can be captured by the following temporal formula: 

d 
sing = ◻

∨

[

(

d11 ∧ (¬d12 ∧ ¬d13 ∧ ⋯ ∧ ¬d68)) (34) 

d67 d11 d12 d66 d68 

∨ (d68 ∧ (¬d11 ∧ ¬d12 ∧ ⋯ ∧ ¬d67))] 

Similarly, for the attacker, we have: 

a 
sing a11 a12 a13 a68 (35) 

a12 ∧ (¬a11 ∧ ¬a13 ∧ ⋯ ∧ ¬a68)) 

a67 a11 a12 a66 a68 

∨ (a68 ∧ (¬a11 ∧ ¬a12 ∧ ⋯ ∧ ¬a67))] 

Once either of the vehicles achieve its goal, the game is over and both vehicles stay at the place 
they are and do not make any new decision. This occurs if the attacker visits all the targets, which 
means Accomplished is true, or if the defender captures the attacker, which happens when both the 
attacker and the defender are in the same region, i.e., is true for some and 
j ∈ {1, ⋯n}. The termination requirement for the defender, therefore, can be described as: 

d 
term = ◻[((Accomplished ∨ a11) ∧ d11 → ◯d11) (36) 

Accomplished  a67 d67 d67 

Accomplished ∨ a68) ∧ d68 → ◯d68)] 

and the termination requirement for the attacker is: 

a 
term = ◻[((Accomplished ∨ (d11 ∧ a11)) → ◯a11) (37) 

Accomplished  d67 a67 a67 

Accomplished ∨ (d68 ∧ a68)) → ◯a68)] 

We assume that the vehicles can transit to the adjacent regions only through the edges not the 
vertices of the cells. 

φ

φ

φ

φ

φ 
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∧ (d12 → (◯d11 ∨ ◯d22 ∨ ◯d13)) 

∧ (d67 → (◯d66 ∨ ◯d57 ∨ ◯d68)) 

∧ (a12 → (◯a11 ∨ ◯a22 ∨ ◯a13)) 

∧ (a67 → (◯a66 ∨ ◯a57 ∨ ◯a68)) 

∧ ((

a35 ∧ t1 ∧ t2 ∧ ¬t3) → ◯t3)] 

obj 

rul 

rul 

opt 

L(x′a, x′d) = ⎨
⎪

0 ,  if x′a = xt, x′d ≠ xt 

So, for the transition rules of the defender we have: 
 

d 
rul = ◻[(d11 → (◯d12 ∨ ◯d21)) (38) 

∧ (

⋮

d13 → (◯d12 ∨ ◯d14 ∨ ◯d23)) 

∧ (d68 → (◯d67 ∨ ◯d58))] 

Similar rules hold for the attacker. In addition, we assume that initially the attacker aims at 
visiting the target t1. Once it reaches t1, then it targets for t2, then t3, and finally, when it visits 
t3, the proposition Accomplished becomes true. Considering all these requirements for the attacker, 

a 
rul will be:  

 
a 
rul = ◻[(a11 → (◯a12 ∨ ◯a21)) (39) 

∧ (

⋮

a13 → (◯a12 ∨ ◯a14 ∨ ◯a23)) 

◻[(

∧

(

(a68 → (◯a67 ∨ ◯a58))] 

⋀ a23 ∧ t1 ∧ ¬t2 ∧ ¬t3) → ◯t2) 

a57 ∧ t1 ∧ t2 ∧ t3) → ◯Accomplished)] 

To address problem 1, the objective of the attacker is to capture the targets in a defined order. 
Using LTL, this complex mission can be easily expressed as: 

 
a 
obj = ◻ ◇ (a23 ∧ (◻ ◇ (a35 ∧ ◻ ◇ a57))) (40) 

The opponent (defending) vehicle, however, is not under our control, and hence, its objective 

can be trivially written as φd = ◻ ◇ True. 
 

3.1.5.5.3 Optimal Discrete Decision Making for the Attacker The formula φa in 
(31) describes the feasible transitions of the attacker which are based on this assumption that the 
players should transit to the next region through the edges of their current region. φa then, is 
conjuncted with optimal transition rules, φa .  To find these optimal strategies, we propose to 
utilize a finite two-player zero-sum game in a matrix form to make a decision at each step for the 
attacker, according to the current status of the vehicles. For this purpose, we define the game’s 
objective function as: 

 

⎧
⎪
∞ ,  if x′a = x′d 

⎪⎩α∥x ′a  − xt∥ + β/∥x′a − x′d∥, otherwise 

 
 

(41) 

φ

φ

φ

φ
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∥ ∥ 

= = 

∥xa − xd∥ ∥xa − xt∥ 
xa = xd 

= 

{{ } { }} = 

◻[ ∧ ( ∧ )) → ◯ ] 

◻[ ∧ ( ∧ )) → ⋁

= {( )∣ ∈ { } ∈ { }} 

[( ) ∈ ( ) ∈ − ( ) ∈ { ⋯ }] 

where, x′a x′d are possible next regions of the attacker and the defender, respectively; xt is the
position of the next target; .  is norm 2, and α and β are tuning coefficients factors. 

In this game, the vehicles share the same objective function (41). However, the attacker wants 
to minimize this objective function, while the defender wants to maximize it. By using this game 
configuration, the attacker will try to make the best decision by minimizing the cost function in 
(41), which requires the attacker to avoid the defender by maximizing the distance between the two 
vehicles, ′ ′ , and to reach the target by reducing its distance from the target, ′  . If the attacker 
and the defender are in the same region (the attacker is captured by the defender, ′  ′ ), or the 
attacker reaches the target (x′a xt), the game is over. As the first player, the attacker tries to 
independently and conservatively minimize its loss to make an optimal decision. To illustrate this 
procedure, consider the following example: 

Example 2. In Example 1, consider an arbitrary step of the game in which the defender and the 
attacker are at P61 and P11, respectively, and the attacker aims to visit target T1 located in P23 (See Fig. 
77). Let α    1 and β    5. Requiring to stay within P, and assuming that the vehicles can only go to 
their immediate vertical or horizontal neighbors, both vehicles have two options: the defender can go 
to either P62 or P51, and the attacker can go to P12 or P21. Using the objective function in (41), this 
game is represented in the following matrix form: 

attacker 

P12 P21 

defender 
P52 

P41 

in which the optimal solution for the attacker, as the first player, will be transiting to the region P12 

which minimizes the maximum loss as: 

min max 2.25, 2.58 ,  2.58, 3.5 2.58 

Therefore, when the target is in P23, and the current position of the attacker and the defender 
are P11 and P61, the optimal decision for the attacker is to choose P12 as its next destination. The 
temporal formula which describes this optimal strategy will be: 

t1 a11 d61 a12 (42) 

In general, the complete formula for the attacking agent will be: 

a 
opt = 

i,j
⋀
,l,k,s 

ts aij dlk 

(f,g)∈Qij

◯afg] (43) 

i, j  M,  l, k  M  i, j  , s  1,  k 

where ts is the current target to be reached; s is the index of the current target; Qij contains the 
set of index of all desired regions in the neighborhood of aij (which are actually the solutions of the 
finite zero-sum game with the objective function in 41), and M      i, j  i    1, . . . m  , j    1, . . . n 
is the set of all indices for the regions in P . 

φ

2.25 2.58 

2.58 3.5 
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φ = (φd ⇒ φs) 

G  qk dk+1 ∈ D 

X 

L ∶ → A 

∶ × D → 

D 

= ( ) 

= × A 

= ( D L X) 

= L(  ) L(  ) L(  ) = 
-
d
→0 -

d
→1 

3.1.5.5.4 Hybrid Controller Synthesis We provide the solution of Problem 1 in two 
steps. First, we design a discrete controller to derive discrete strategies satisfying the specification 
φ in (29). Then, we design a hybrid controller to generate continuous winning paths satisfying this 
specification. 

Discrete Controller Design: Here, we synthesize the discrete controller as a finite state machine 
which satisfies the GR(1) formulas (if they are realizable). For reactive formula of type GR(1), [16] 
introduced an algorithm which has two steps. It first checks the realizability of the specification by 
evaluating a fixed-point equation, and then for the realizable formula, the algorithm synthesizes the 
winning strategy satisfying that formula. For detailed information about this process, we refer readers 
to [17]. 

Applying this algorithm to Problem 1 with the specification , the attacker always 
wins if φ  is realizable, resulting is an automaton G    Q, q0,    , δ,  ,      where: 

• Q    N   is the set of discrete states, 

• q0  1, a0  is the initial state, 

• is the set of input propositions (defender’s moves), 

• δ  Q  Q is the transition relation, 

• Q  is the labeling function, 

• is the set of final states. 

If the automaton is at state , the current position of the defender is considered 
as input to G, and causes a transition from qk to qk+1, denoted by δ(qk, dk+1) = qk+1, and shown 

by qk -
dk-+→1 qk+1 . The newly generated output label at state q k+1 will be a k+1 = L(q k+1 ) ∈ A. Based 

on the moves of the defender, a set of input labels will be received by G in the form of d0, d1, . . . . 
The automaton G, then, executes a run in the form of r = q0, q1, . . . , which is a sequence of states 

 

L  q0 ,  q1 ,  q2 , . . .  a0, a1, a2, . . . will be generated as the discrete path for the defender. 
Since the formula φd has considered all possible transitions (decisions) of the defender, all admissible 
sequences of decisions of the defender can be reacted by a sequence of actions of the attacker, leading 
the attacker to win. 

Hybrid Controller Design: 
In order to convert the generated discrete path to smooth continuous signals driving the attacker 

over the partitioned space, we use the method we proposed in [18] to construct a hybrid controller. 
Due to the bisimulation relation between the original system with a multi-affine dynamics and its 
abstract model, shown in [18], it can be guaranteed that the generated continuous signals preserve 
the properties of the discrete path. 

Results: For Example 1, the automaton for the attacker is synthesizable and it is constructed 
using the described method as shown in Fig. 78. In this figure, the nodes represent the activated 
(true) attacker sensors, which means the position of the attacker. The defender sensors are not 
shown on the edges of the automaton graph. 

A hybrid controller is designed where the simulation results are shown for two different actions 
of the defender in Fig. 78. Based on the derived automaton G, the control strategy is computed for 
the initial position of region P11 for the attacker, and region P41 for the defender. 

starting from the initial state q0, where q 0 q1 q 2 . . . . Correspondingly, a sequence of labels 
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In Fig. 78, we show a behavior of the defender as a red curve, which is interpreted for the attacker 
as the discrete input sequence d41, d31, d21, d22, d32, d33, d34, d44, d45, d46, d47.  Observing these 
discrete decisions of the defender at each position, the attacker makes an optimal deci- sion, 
about its next transition, according to the automaton G, which generates the discrete path a11, 

a12, a13, a23, a24, a25, a35, a36, a37, a47, a57. 
This discrete path is translated to a continuous signal, shown in blue, driving the attacker within 

P . As it can be seen, the proposed algorithm is capable of creating a winning strategy, so that 
the attacker can visit all three targets before being captured by the defender and win the game. 
Figure 78 shows the result of the same procedure for a different behavior of the defender d41, d31, 

d21, d22, d23, d24, d25, d35, d36, d46, d47, which is reacted by the attacker’s decision sequence a11, a12, 

a13, a23, a24, a25, a35,  a45, a46, a56, a57, and again confirms victory for the attacker. 

Figure	78:	Some	parts	of	the	Synthesized	automaton	G	for	the	attacker	in	Example	1.	The	nodes	show	the	true	attacker	sensor,
which	means	the	position	of	the	attacker.	The	edges	are	defender	sensors,	where		35	 ,		3	 ,		46	
{d25,	d26,	d35,	d36,	d37,	d38,	d45,	d47},	and	d�	represents	all	possible	defender’s	position	information	

. 

3.1.5.5.5 CONCLUSION In this paper, we developed a novel effective symbolic framework 
for motion path planning of an autonomous attacking vehicle involved in a multi-target dynamic 
reach-avoid (MTDRA) scenario. This problem was formulated within reactive synthesis framework 
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GR(1) to describe all the assumptions and requirements of the vehicles as well as their interactions 
and conflicting objectives. Illustrative examples were provided to describe the implementation of 
the proposed approach. 

 
3.1.6 Project Progress for Task T1-6 (Cloud-Based Control of LSASV) 

3.1.6.1 Period of Performance under 

Task T1-6 Start Date: Q3 2015 

Conclusion Date: Q2 2022 

Faculty lead:  Patrick Benavidez 
 

3.1.6.2 General Description of Task T1-6 

Cloud computing infrastructure (compute, storage and network) in cloud data centers will be the 
platform for hosting the models and algorithms researched in this Thrust. The computing resources 
located in cloud data centers will be used to keep a virtual copy of each vehicle in the LSASV. Storage 
resources will be used to provide the optimal configuration for Data Analytic research ac- tivities 
(vSLAM, world-maps, etc.). Network resources will be used to create team boundaries for the LSASV 
swarm performing cooperative missions (shared information). The benefit of using a virtual vehicle 
will be to offload processing tasks that otherwise would overwhelm the vehicle’s local processing 
capabilities. Since the computational power of remote vehicles is constrained by avail- able battery 
and processing power and physical characteristics of the vehicle, complex calculations can more 
optimally be made using the parallel computational facilities offered in the cloud. This approach 
allows for greater flexibility, such as including multiply simulated (or virtual) vehicles into a swarm 
of physical vehicles. Large-scale systems analysis can then be performed using as many vehicles as 
required to verify the correct functionality of the developed models and algorithms. Hu- man 
participants can also directly use the cloud to interact with the swarm of vehicles and override 
autonomous behavior as necessary. One of the necessary research challenges of using the cloud as 
part of the control loop for autonomous vehicles is in assuring adequate bandwidth and availabil- ity 
of a network connection between the LSASV and the cloud. We anticipate that some amount of 
local processing on each vehicle will be necessary to mitigate mission failures due to increased 
latency or intermittent outages in the network. After all, this is a key role and advantage of au- 
tonomy. Cloud-based robotic control has recently been researched and successfully used to process 
image data captured by robots. The image point cloud data can then be uploaded and processed 
in remote cloud data-centers. The result of the image processing can be used to update a common 
world-map of individual robots in the swarm. 

 
3.1.6.3 Progress Against Planned Objectives in Task T1-6 

The object of this task was accomplished. Serveral applications of cloud computing were explored, 
including: 

• Implement a peer-based and cloned-based model for testing networked control systems. 

• Control a swarm of unmanned boats to rescue passengers of a sinking ship floating in water. 
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• Gather data from a mobile sensor network to model an unknown signal and optimize sensor
placement.

• Cluster autonomous vehicles on a road network.

• Place roadside units along a roadway to optimize the connection of autonomous vehicles to
the cloud.

Alongside the expolation of applications for cloud computing with respect to LSASV, the fol- 
lowing algorithms and architectures were also developed: 

• Implement a cloud-edge architecture for the cloud layer of a networked system.

• Implement two types of peer-based model called Agent-VM and Task-VM.

• Develop a fuzzy algorithm to automatically place applications in the cloud to optimize per- 
formance.

• Develop algorithm to cluster vehicles on a roadway to enable platooning.

• Develop architecture for utilizing cloud and fog computing with a robotic swarm to process
live data.

3.1.6.4 Technical Accomplishments in Task T1-6 

3.1.6.4.1 Small-Scale Testbed A comprehensive survey was conducted to explore the ex- 
isting techniques for implementing robotics algorithms in the cloud in parallel of learning software 
and programming languages. Significant benefit of using cloud will be to offload processing tasks 
that otherwise would devastate the vehicle’s local processing capabilities (consequently more bat- 
tery life of the vehicle) and implementation of multifaceted calculations in parallel computational can 
speed up the more complex algorithms. In addition, cloud allows for greater flexibility, such as 
running multiple algorithms in parallel. The process separated into two major steps: first running the 
one robot in the cloud, second running more than one robot in the cloud. 

A java application that would map the movements of a robot in a GUI was developed. In order to 
achieve this, Robot Operating System (ROS) was used; ROS is a software infrastructure that relies 
on the passing of messages through the publisher/subscriber relationship. Originally ROS was 
intended to execute code written in C++ or Python, but was later extended to what is known as 
ROSJAVA. ROSJAVA allows java applications to be written in ROS with full access to messages being 
passed regardless of the coding language. The program retrieves specific inertia measurement unit 
(IMU) data (velocity in x, velocity in y, yaw) from a Parrot Bebop and performs calculations on 
them to determine the robots change in position. This data is published to the odometry topic 
/odom. This topic has a message format specific to odometry type messages and must be referenced 
in a certain way. We will see this formatting in the Java program when it accesses those odometry 
messages. Overall, this node’s task is to continuously calculate and publish the robots current x  and 
y position. For mapping, a java program subscribes to the /odom topic and uses this data to plot a 
circle according to the received coordinates. This is done repeatedly and the outcome is a line that 
represents the path the robot has taken. In order to control the drone, a keyboard controller was 
written in python. This program constantly reads input from the keyboard and when a key is 
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pressed, it enters a lookup table that sets velocity/orientation commands accordingly. Along with 
basic control of the robot, the python program allows software pan and tilt of the image stream 
coming from the drone’s wide angle camera. 

A ROS Multimaster network was set up that allows each Kobuki robot to have its own master 
node if it so pleases. This allows unique topics to be published for each robot whereas without 
the Multimaster network, each Kobuki would be publishing data under the same topic name (since 
Kobuki software is the same for all the robots) causing a clash in data. So far a network of two Kobukis 
and the Bebop drone can all see each others data on the ROS network, and use this data as each 
robot sees fit. Scripts were written to record and sensor and image data into the Hadoop Distributed 
Filesystem (HDFS). The sensor data is comprised of inertial measurements and time- stamps which 
is written into a csv file for storage. The images utilize the HIPI software for storing into the HDFS. 
Each script saves their respective data locally on the machine running it, and then once a size 
threshold has been reached, currently 100 lines of text and 100 images, the scripts then send the 
data to the cloud for long term storage and calculations. The amount of data sent can be changed 
to optimize Hadoop’s parallel processing. Python scripts were also written to store the data from ROS 
Nodes into CSV files. These python scripts would take a keyword as an input and automatically find 
all ROS Topics with that given keyword. The program would then automatically subscribe to all of 
those topics and then write the data to comma separated values file (CSV). The CSV file would be 
named based on the ROS topic name, and the first row of the CSV file would names of data that is 
associated with that topic such as time-stamp, linear velocity x, etc. Then the data at each time-
stamp would be written to the CSV file. Along with that, the CSV files were store in an organized 
file directory system. Inside of the root data folder is a group of folders of all the keywords used. 
Inside each keyword folder is a folder for each topic name without any name-spaces. Lastly inside 
each topic name folder is a CSV file named based on the full topic name with the associated name-
space. This file system allows the data to stay organized, while making it easier to have a script 
store each CSV file into Hadoop. 

 
3.1.6.4.2 Peer-based and Clone-based Models  The backbones of the system to develop 

a peer-based and clone-based cloud model were developed. Two different types of systems were 
completed to accomplish this task; 1) Virtual Machine (VM) Based System and 2) Container-Based 
System. The VM based System uses KVM and Virsh to automatically set up VMs on the cloud network. 
An image was created to contain the libraries and packages that are needed to interface with ROS, 
and can be easily extended to contain anything else that would be needed by the system. This image 
can contain a program to run a specific service (Peer Based Model) or can contain a copy of the entire 
agent (Clone Based Model). The Container-Based System uses Docker in Swarm Mode. Docker in 
Swarm mode does the same thing as the VM based System, but uses containers instead of VMs. The 
testing and verification for these models was developed using the RTABMAP program from Task T1-
4, which was modified to operate on the cloud network. This was used to decouple the processes that 
need to run on-board the autonomous system from the processes that need to be run on the cloud 
network. This decoupled program allows the autonomous system to publish all of the necessary 
topics such as odometry and image data, and allows the cloud network to subscribe to them for use 
with RTABMAP. By moving the map creation process to the cloud network, the cloud will be able to 
store many more images to create better maps for future use. The testing environment consists of 
autonomous ground agents and autonomous aerial vehicles working together to rescue people after 
a cruise ship disaster. The process of rescuing the people requires 
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many different algorithms to run, such as clustering and auctioning algorithms. The algorithms vary 
in both computational necessity and the amount of bandwidth needed to pass the information to the 
next process. All of these algorithms and processes have been dockerized into containers and the 
containers can easily be spun up on different machines. The containerized environment to test the 
various cloud models can be seen in Figure 79. The data collection processes have also been 
implemented into each of the containers. This will allows the containers to collect the necessary data 
to analyze each of the cloud models. The data collected by the containers will then be stored into 
Hadoop for post-processing and analysis. This data includes processing time, size of data needed 
to be sent, and communication delay. 

Figure	79:	Containerized	environment	to	test	various	cloud	models.	

A hardware experiment for testing data transfer rate was developed based on the previously 
discussed scenario involving a boat swarm for a cruise ship disaster. The drawback of the previously 
reported scenario is that it utilized VMs to represent the end and edge devices. This is not realistic 
because the networking latency between VMs will be small compared to the actual system. By using 
a better hardware setup, the delays will be able to be measured more accurately. End devices in the 
experiment are comprised of Raspberry Pi 3 Model B microcomputers running a Linux-based 
operating system. These end devices are used to interface to the control hardware of the robotic boat 
agents along with the control hardware for the UAVs. Additionally, these devices are used to 
implement the tasks which previously were simulated in software for obtaining timing data on 
planned experimental tasks. This use of physical hardware introduces realistic task durations to the 
experiment. Docker is used on the microcomputers to containerize the software components as it 
was implemented before in the previous software-based experiments. This hardware setup also 
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demonstrated the benefits of using Docker due to the easy deployment of containers on various 
devices by allowing us to move the Docker containers that were used on the VMs to the Raspberry 
Pis. These end devices communicate via IEEE 802.11n WiFi with an edge device. The edge 
device are capable of managing connections to the end devices. Edge devices were implemented with 
both portable laptop computers with software-based routing, such as Zeroshell, and a WiFi router 
with Linux installed on it for additional customization of capabilities, such as VyOS. This allowed us 
to have complete control of the edge device, and allow the edge device to be used for computation. 
Finally the edge device communicates to the cloud, which is hosted by Chameleon Cloud in Austin, 
Texas, via Ethernet (IEEE 802.3). RabbitMQ messaging queues are used to communicate with the 
cloud since ROS makes it difficult to communicate with nodes hosted on the cloud. RabbitMQ is 
an industry standard publisher/subscriber messaging queue for cloud applications. The RabbitMQ 
and MySQL servers were setup in the cloud. The RabbitMQ server is the host of all of the 
communication between nodes, and the MySQL server is used to store all of the data collected 
during experiments. Lastly, a Kubernetes cluster was created in the cloud. Kubernetes allows for the 
automatic management of all of the nodes in the swarm. Kubernetes automatically scales a node if 
the CPU or memory load becomes too high for a particular node, and it also will restart nodes that 
have crashed. This allows for the swarm to be very robust. 

 
3.1.6.4.3 Cloud and Cloud-Edge Architectures The previously described system was 

first implemented in a cloud only architecture to verify the functionality of the components. Once the 
system is completely functional, we collected data on the runtime of each algorithm, the com- 
munication latencies, and the runtime for the entire system. This data acted as a baseline for a second 
test, where the system was implemented with the Cloud-Edge architecture. The Cloud-Edge 
Kubernetes System addresses some of the drawbacks of the Cloud Only Kubernetes System. Since not 
all of the algorithms require a high amount of computational power, it may not be necessary to 
perform the algorithm on the cloud. Instead some of the moderately computational expensive 
algorithms can be placed on the edge device. Since the edge device is significantly closer to the end 
devices, the latency will be much lower than performing the algorithm on the cloud. To setup the 
Cloud-Edge Kubernetes System, we installed Docker and RabbitMQ on the router, allowing for it to 
communicate with the system and perform calculations for the Cloud-Edge model. The algorithms in 
the Cloud-Edge system, seen in Figure 80, consists of a MAV search algorithm, people location 
combiner, two clustering algorithms, an auction algorithm, and a traveling salesman solver. The 
Cloud-Edge architecture was applied to the system through the clustering algorithm. The original 
clustering algorithm was split into two, one for the speed layer and one for the batch, and both fed 
into the metaclustering algorithm. 

The results for the Cloud-Edge system were not as expected. The updated rate and runtimes 
of the Cloud and Cloud-Edge architectures were about the same. This is caused by the fact that 
the algorithms that were placed on the edge device were slowed down by the lack of processing 
power on the edge. This decrease in speed was about equal to the time saved due to the faster 
communication speeds, which resulted in the two architectures operating at about the same speeds. 
From these results, it was determined that the following need to be considered when choosing 
to use the original Cloud architecture versus the Cloud-Edge architecture: computational power 
of edge device, application’s tolerance to latency, application specific hardware requirements, the 
storage requirement for the applications, intra-subnet communication, and communication load of 
the application. 
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Figure	80:	High	level	overview	of	cyber‐physical	system	used.	

The first thing that needs to be considered when choosing to use cloud or cloud-edge is the com- 
putational power of the edge device. Currently, the processing power of edge devices are increasing, 
but still are not nearly as powerful as small micro-computers. This severely limits the number of ap- 
plications, and the computational need of an individual application that can be placed on the edge. As 
a result, if a large number of applications needs to be placed on the speed layer, or if a single 
computationally expensive application needs to be placed on the speed layer, the traditional cloud 
architecture may be more desirable. However if the speed layer consists of only a few lightweight 
applications, then using the cloud-edge architecture may be better. Another consideration that needs 
to be made when deciding which architecture to use is the end devices’ application tolerance to 
latency. For example, if the end device’s application is a control algorithm for a robot, then its 
tolerance to latency will be very low, because typical control algorithms need to operate at a mini- 
mum of 50Hz. This means that the total runtime of the control algorithm will need to be less than 
20ms including communication time, making it difficult to place the application in the cloud. In a 
scenario like this, it may be very beneficial to use the cloud-edge architecture. Other considerations 
that must be made are the hardware and storage requirements needed for the application. Some 
applications, such as machine learning, operate much faster when a graphical processing unit (GPU) 
is present. Since majority of edge devices do not have GPUs, using the cloud-edge architecture is not 
always ideal. Furthermore, applications that require a large amount of storage, such as one that 
builds a map out of many images, may not run well on an edge device due to their limited storage 
capabilities. Many applications need information from other applications or sensors that are not 
connected to the same edge device. Therefore, that application would have to receive data from a 
different edge device than the application is connected to. If this application was hosted on 
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the edge device, then the application would still have to get the information for the other devices 
through the cloud. If the application was instead host on the cloud, the application could access the 
information directly from the cloud. This makes it ideal to use the traditional cloud architecture if 
the applications need information from sensors or applications that connect to many different edge 
devices. The final consideration when choosing which architecture to use is the communication load 
the application will have on the network. For example, if an application needs to send large images 
to an end device, then you may want that application to exist on the edge device, because sending 
images from the cloud to the router, and then to the end device may take a long time. However if the 
application is sending very small packets of data, then placing the application in the cloud will not be 
an issue, because it will only take a very small amount of time to send the small packets of data from 
the cloud to the end device. 

 
3.1.6.4.4 Fuzzy Application Placement Controller Because of the multitude of net- work 

configurations, and consequent combinatorial explosion, the cloud-edge model has issues with 
optimization at scale. Randomness and non-negligible, exogenous shocks further complicate the 
analysis. More importantly, these are unknowable a priori, and typically can only be classified post 
hoc. Accordingly, a fuzzy logic application placement controller is developed, for it does not depend 
on a model. 

This fuzzy logic application placement controller is designed to optimize the placement of con- 
tainerized applications such that the total application loop delay is minimal. This includes the 
communication delay to send data from the sensors to the application, and the delay from the 
application to the actuator. The inputs to the controller include: 

• Cloud Speedup: The speedup factor that would be attained by running the application on the 
cloud, excluding the loop delay, compared to running it on a target end device, used as a 
reference for the system, calculated as the product of the speedup attained due to hardware 
differences between the cloud and the reference end device, and the speedup attained due to 
the ability to parallelize sections of the algorithm 

• Edge Speedup: The speedup factor that would be attained by running the application on 
the edge device, such as a router or switch 

• Magnitude of Runtime: The amount of time it takes to run the algorithm on the reference 
end-device 

• Latency: The base delay between the edge device and cloud, irrespective of message size 

• Requires Other’s Info: Boolean stating whether or not the sensor and actuator are con- nected 
to the same end device 

• Bandwidth: The bitrate of that the network is capable of sending from the end device to 
the edge device 

• Throughput: The bitrate the application actually sends through the network 

After taking in all these factors, the fuzzy application placement controller decides on which node the 
application should be placed. A block diagram overview of this fuzzy logic controller can be seen 
below, in Figure 81. 
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Figure	81:	Overview	of	Fuzzy	Application	Placement	Controller	

Instead of comparing the decisions of the application placement controller to those of an expert, 
they were tested in Yet Another Fog Simulator (YAFS). YAFS is a highly configurable, Python- 
based simulator for cloud, edge and fog computing. Using conventions from graph theory, each 
computational device in the network is represented by a node, and each connection between two 
computational devices is represented by a link. The network is modelled as an undirected graph, and 
for the particular network under investigation, the two end devices are identical except for the 
sensors and actuators they contain. A simple network is shown below in Figure 82, where node 0 is 
a cloud node, node 1 is an edge node, and nodes 2 and 3 are end devices. 

The network was then simulated for all possible placements of the application. The placement 
with the smallest total loop delay was selected as the analog to the expert’s decision in evaluat- 
ing the performance of this fuzzy logic-based application placement controller. From preliminary 
membership function settings, the placement controller successfully placed the application on the 
optimal node 64% of the time. Moreover, for 80% of the cases, the placement decision of the con- 
troller took no more than 20% extra time. For example, suppose there were 100 trials, and for each 
trial, the network was configured randomly but in such a way that the total loop delay for the optimal 
placement was 10 seconds. It would be the case that for about 80 trials, the placement decision would 
result in a runtime that was less than 12 seconds. 

3.1.6.4.5 Improving the Cloud-Edge Architecture The results of the Cloud-Edge ar- 
chitecture showed that it did not improve the speed of the cruise ship disaster scenario. This was 
due to the delay lost by moving the speed layer to the edge being the same as the computation time 
gained from the slower edge device. While the speed was not improved in the experiment, other 
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Figure	82:	Graph	of	simulated	network	

 
benefits were found in the form of cost savings and more efficient use of the system’s total resources. 

We proposed that the speed layer of the Cloud-Edge architecture be split among the cloud, edge, 
and end devices of the system. Making this change allows the user to optimize the runtime of the 
system while maintaining the benefits of the original Cloud-Edge architecture. The placement of 
each part of the speed layer is made with the variables discussed previously. In order to test the 
effectiveness of this architecture, a new scenario was developed instead of the cruise ship disaster. 
This decision was made based on the results of the application placement controller and the inability 
to further split the clustering algorithm. The new scenario developed is the sensor placement 
optimization problem, which involves finding the optimal placement of mobile sensors to monitor 
a signal. The scenario assumes that the signal is unknown to the mobile sensors and must be 
modeled before optimal positions can be found. This scenario combines numerous fields including 
optimization, consensus control, and modeling, which make it ideal to test the updated Cloud- 
Edge architecture. Two other architectures were also implemented with this new scenario, a control 
architecture where all components are calculated onboard the mobile sensors and an alternative to 
the Cloud-Edge called the Kappa architecture. The Kappa architecture still splits an algorithm into 

two layers like the Cloud-Edge, but they are the exact same and are only provided different inputs 
as opposed to the two unique methods in the Cloud-Edge. 

The scenario was simulated in Gazebo, which is a simulation environment complete with physics 
and ROS support. The models that have been used for the mobile sensors was the ROS Turtlebots, 
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which are similar in function to a Roomba. The tests were run using four separate devices; one for 
the end devices simulation, one for the end devices, one for the edge device, and one for the cloud. 
The simulation for the end devices was with Gazebo using four Turtlebot 2 models. The simulation 
was run on a desktop with a Intel Core i5-6600 running at 3.30 Ghz and 25 Gb of RAM. The end 
device was controlled by an ODroid XU4, which has a Exynos 5422 Cortex A15 running at 2Ghz 
and 2GB of RAM. The ODroid is the processor that was used to control the Turtlebot2, which is 
why it was chosen. The edge device was a LIVA X Mini PC with an Intel Celeron CPU running 
at 1.58 Ghz and 4 GB of RAM. Lastly, the cloud layer was an AWS EC2 t2.micro instance. All 
devices were running Ubuntu 16.04. The Robot Operating System (ROS) was used as a message 
broker between local devices, and RabbitMQ was used as a message broker between the edge device 
and the cloud. 

The results are based on two sets of tests. The first analyzed the network connection between 
each device in the system in order to compare latency. The second asseses the time it takes to 
calculate a solution for the speed and batch layer for each architecture. This information is used to 
assess which architecture has the best performance. 

Test 1: The first test used Ubuntu’s ping command to record roundtrip time (rtt) statistics 
between different components of the test setup. The command sent 1000 pings at a rate of 10 Hz and 
a size of 80 bytes each. This is the same speed and size as the messages between the mobile sensors 
and the edge device, which is of comparable size to messages sent between the cloud and edge. 
Measurements were recorded between the simulation and the end device, the end device and the 
edge device, the simulation and the edge device, and the edge device and the cloud. The results are 
shown below in Table 8; The results show that the time to send a message to the cloud from 

Table	8:	The	minimum,	maximum,	mean,	and	variance	of	the	tts	of	1000	pings	between	the	end	device,	simulation,	edge	device,	
and	cloudmin	(ms)	max	(ms)	mean	(ms)	variance	(ms)	

End - Edge 1.22 323 6.41 661.62 
End - Sim 1.27 312 4.66 184.14 
Sim - Edge .2 .75 .40 .006 

Edge - Cloud 39.1 155.0 40.14 46.69 

the edge device is much higher then messages between the edge device and the end device. The 
33.73 ms saved by not sending the speed layer solution is non-negligible, which will be shown in the 
following subsection. The table also shows the difference having a wired connection can make. Both 
the simulation and edge device were connected by Ethernet to the same local network and had an 
average tts 0f .4 ms, an order of magnitude smaller then a WiFi connection in the private network. 
Based on this fact, the Edge-Cloud tts is a best case scenario, additional time would be added if the 
edge device had to connect to the local network over WiFi like the end device. 

The ping command also records the packet drops of each test, which are shown in Table 9. The 

End-Edge End-Sim Sim-Edge Edge-cloud 
packet drops (%) 7 10 0 0 

Table	9:	Percentage	of	packets	dropped	over	1000	pings	between	end	device,	simulation,	edge	device,	and	cloud	
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Figure	83:	Gazebo	simulation	starting	configuration,	with	4	agents	located	at	(5,3),	(9,7),	(1,8),	

 
packets dropped by the end device are very large at around 8%. This may be caused by the WiFi 
adapter being used, which is also manufactured by Odroid. The other two connections have small 
enough packet drops to be functionally 0, which is expected for two systems that are physically 
connected. While these results indicate that using a different WiFi adapter may be advised, the one 
being used is provided with the Turtlebot2, and therefore a realistic expectation for the system. 

Test II: The second test involved measuring the run time of different programs for each archi- 
tecture. The run time was measured using Rospy’s get_time function. The time it takes for the speed 
and batch layers to calculate the next desired position and update their model was recorded. Each 
architecture was run for some time after it reached equilibrium, then the data from each was 
truncated to the length of the shortest trial to ensure that the same amount of iterations was com- 
pared for each algorithm. Each architecture was run on the same simulation, which has a area of 
10x10 meters and four agents at the coordinates (5,3), (9,7), (1,8), and (1,1). Figure 83 shows the 
simulation environment. 
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The runtimes of the desired position algorithms are plotted below in Figure 84. Looking at the 
plots, it is clear that most of them have a correlation between time (iterations) and the runtime. This 
can be explained by the runtime increasing as more data is collected but decreasing as each robot 
gets closer to equilibrium, triggering the stop condition sooner. Both the Lambda and Kappa 
architectures use the same batch desired position algorithm and on the same device, thus their 
results are very similar. The runtime of both decrease as the stopping criteria is met faster. For the 
speed desired position algorithm, the Control and Kappa architecture both use the same simulation 
as the batch layer, but instead of simulating each agent until it reaches equilibrium it calculates only 
the next position. Both architectures performed similarly, averaging out to around 3 seconds each. 
This speed is extraordinarily slow compared to the batch layer’s equilibrium of around 30 ms due to 
the relative weakness of the Odroid and Liva computer. The Lambda architecture’s speed desired 
position algorithm was able to calculate the position in about 10 ms. This can be attributed to the 
Odroid only having to calculate it’s own desired position and that being its only task. 

Because the other modeling algorithms have little or no trend over time, their summary statistics 
can be analysed instead in order to show trends in the runtimes. Figure 85 displays the runtimes 
of both the batch and speed layer modeling as boxplots. Boxplots were chosen to represent the data 
because it is resilient to varying lengths of recorded data, unlike similar methods such as histograms. 
The first of the two plots shows the runtime of the batch modeling algorithm used in the Lambda and 
Kappa architectures. The two architectures had very similar results, with a mean runtime of 1 ms and 
a similar variance. The Kappa architecture has a few more outliers then the Lambda architecture, but 
the amount is negligible. These results make sense, both architectures use the exact same algorithm 
for the batch modeling and both run on the same system, therefore they should have very similar 
results. The second plot displays the results of the speed modeling algorithm for the three 
architectures. Of the three, the Lambda architecture is clearly the fastest. This is a result of using 
best-fit plane, which was designed to be extremely quick to calculate. The Control and Kappa 
architecture on the other hand use the same modified RBF as their speed models. It can be seen that 
the Control architecture has a longer average runtime and a far greater variance compared to the 
Kappa architecture. This can be attributed to the weaker computational ability and higher load on 
the Control architecture, which is required to calculate both the modeling and desired position 
algorithms. 

3.1.6.4.6 Implementing a Model Predictive Control Algorithm  The key shortcom- ings 
of cloud-based direct control of LSASVs include the effects of time delay and packet loss. In response 
to these shortcomings, direct control can be managed by a model predictive control algo- rithm in 
order to generate interim control schedules for actuation before the next control message is received. 
For this implementation of MPC, the predictions were generated according to a dis- cretized, 
nonlinear model as given by 4th-order Runge Kutta approximation, and the prediction accuracy and 
runtimes were compared to those of an adaptive model predictive control algorithm, where the 
system is linearized about the current operating conditions at each time step. As shown in Figure 86, 
the propagation of the error from linearization causes considerable divergence from the system’s 
simulated response to the same inputs. The test scenario was the UGV driving on a circular path for 
1 second, at a control frequency of 10 Hz, and the predictions are shown where “RK4" is the 4th order 
Runge Kutta prediction, and “LDT" is the Linearized, Discretized predic- tion. Each was compared 
to a much higher resolution numerical solution labelled “groundtruth." Further, the predictions could 
be generated significantly quicker with the nonlinear model than with 
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Figure	84:	Plots	of	the	runtime	over	each	iteration	for	the	batch	and	speed	desired	position	algo‐	rithms	for	the	Control,	Lambda,	
and	Kappa	architectures	
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Figure	85:	Boxplots	from	the	runtimes	of	the	batch	and	speed	layer	modeling	for	the	Control,	Lambda,	and	Kappa	architectures

Approved for Public Release; Distribution Unlimited. 
125



 
 
 

 

 
Figure	86:	Comparison	of	prediction	on	linearized	model	versus	nonlinear	model	

 

 
the linearized, discretized system, as shown in Table 10. Table 10 was generated by calculating the 
prediction horizon 1000 times, and the mean runtime and standard deviation of the runtimes are 
reported from the sample. Both the nonlinear prediction algorithm and the linearized prediction 
algorithm were compared in speed to a numerical solver (ODEint) of equivalent resolution. It is 

 
Table	10:	Comparing	the	runtime	of	different	prediction	algorithms	

 
Method x̄ [ms] sx[ms] 
ODEint 1.896 0.322 

RK4 1.880 0.286 
LDT 2.615 0.386 

 
important that these prediction runtimes are as small as possible because the optimization solver 
uses sequential least squares, and as such, calls upon the employed prediction algorithm multiple 
times. 

Both prediction systems were then tested by subjecting it to up to 80% packet loss, (i.e. 80% of 
the time, the agent would not receive the new control schedule and would have to use the last received 
control schedule in the interim, until it received a new one). This condition was tested several times, 
with random initial poses and target poses within a 10m by 10m square centered on the origin. 
Performance was measured by the ability to drive the agent within 10cm of the target pose within 20 
seconds. Beyond 30% packet loss, the MPC algorithm using the linearized model for predictions was 
unable to successfully drive to the target pose. The MPC algorithm using the nonlinear model 
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was able to successfully drive to the point in each trial. A representative trial is shown below in 
Figure 87. Several estimation methods were compared in order to reduce the computational load of 

Figure	87:	Drivepoint	scenario	for	UGV	subject	to	80%	Packet	loss	

the model predictive controller on the UGV. The most resource intensive component of the nonlinear 
model predictive controller is the optimizer, for it requires the approximation of solving a single 
differential equation many times over. The methods tested were: 

• Sequential Least Squares Quadratic Programming (SLSQP)

• Constrained Optimization By Linear Approximation (COBYLA)

• Limited Memory Bounded BFGS (L-BFGS-B)

• Truncated Constrained Newton’s Method (TNC)

• Interior Point Optimizer (IPOPT)

The results found the two most competitive paradigms to be SLSQP and L-BFGS-B, as shown by Table 
11, where x̄ T  is how much time it took for that algorithm to solve it on average, ST is the standard 
deviation of the solution time, x̄ J̄  is the average percent of the optimal solution for that scenario (i.e. 
100 is optimal), and SJ¯ is standard deviation of that metric. The metrics chosen were for concise 
representation of each’s performance, though they do betray a prior assumption 
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s 2

Method: x̄T [s] ST [s] x̄ J̄ [ %]  SJ¯[%] 
SLSQP 0.1358 0.1326 100.88 4.0658 

COBYLA 0.2481 0.0386 107.35 21.940 
L-BFGS-B 0.1006 0.0229 100.93 4.4646 

TNC 0.2236 0.0959 100.67 1.5679 
IPOPT 2.2999 11.145 103.16 23.185 

 

Table	11:	Comparison	of	estimation	algorithm	runtimes	

 
that both variables come from gaussian distributions which is hardly the case. As such the notation 
refers to the empirical mean and empirical standard deviation, as opposed to estimates of the 
population distributions’ true parameters. Experimentally, the IPOPT and COBYLA, had a much 
greater frequency of outliers in both time and suboptimality than would be suggested by exponential 
attenuation of likelihood thereof, much less exponential squared. 

 
3.1.6.4.7 Downsampling using Simulated Annealing Downsampling the recorded dataset 

of the previously discussed mobile sensor optimization problem can be used to reduce the amount 
of storage needed and decrease the runtime of the modeling algorithm. Because the data is used 
to model the unknown signal, it is important that the reduced version be accurate because it di- 
rectly affects the placement of all agents in the system. Downsampling was chosen as the reduction 
paradigm that will be applied to the dataset. Downsampluing removes unnecessary samples from 
the dataset in order to minimize its size. Feature reduction was also attempted through Principle 
Component Analysis(PCA), which gave the results shown below; In the figure, the left plot shows 
the signal estimated from the whole dataset and the right plot the estimated signal from the PCA 
reduced dataset. The plots show that PCA completely removes the information from the data, 
showing that the number of features cannot be reduced by this method. 

In order to implement downsampling, an optimiation function was developed that could reduce 
the dataset while maintaining the information of the system. The optimization function is shown 
below; 

minimize ∥ΨΛ − Ψ Λ∥
2 

+ σ ∥w∥ (44) 

Where ΨΛ is the estimation of the signal using the whole dataset, ΨsΛ is the estimation of the 
signal using the reduced dataset, σ is a scalar, and w is a mask with values that can be 1 or 0 that is 
used to signify which samples in the dataset will be retained. The equation has two components, a 
mean squared error between and a LASSO function. The mean squared error adds a cost for a large 
error between the estimation of the signal using the whole data set and the estimation based on the 
reduced data set. The error is measured based of a grid of points read from each estimation, then 
averages the errors between those readings. This component is designed to retain the information of 
the system in the solution because the cost increases as the models drift apart. The second function, 
the LASSO function, is designed to make smaller datasets more favorable then large ones. this is done 
by adding up the number of samples in the reduced data set then applying a scaling function. The 
smaller the dataset the smaller the sum, which reduces the cost of that solution. 

The second part to implementing the downsampling is to determine how new solutions to the 
problem will be found. There are two methods to do this, gradient based methods and gradient free 
methods. Because the derivative of the optimization function is very hard to compute, a gradient 

1 
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Figure	88:	Comparison	of	models	produced	from	original	data	set	vs.	PCA	reduced	data	set	with	2	eigenvalues	

free method was chosen. The gradient free method that was decided on was simulated annealing. 
Simulated annealing is based on the process of annealing metal, which involves heating up the metal 
then slowly cooling it in order to make it stronger. In simulated annealing, an ’energy’ function 
is used to represent the temperature, and instead of optimizing the crystal structure of the metal the 
goal is to optimize a given objective function. The general algorithm runs by first creating an initial 
energy along with an initial random solution. The algorithm then randomly generates a new 
neighbor, which can be anywhere in the sample space. This neighbor is found by changing one 
on more elements of the current solution, in this case by setting some data values to 0. Once the 
neighbor is generated, the cost function of that neighbor is found, and the algorithm then uses the 
energy function to determine if it will move the current solution to this new neighbor solution. This 
step is why simulated annealing is able to find an approximate global solution, it allows itself to 
occasionally move to solutions with a worse cost function then the current solution, enabling it to not 
be caught in local minimums. The decision on whether it will move to smaller values is based on the 
energy function, the higher the energy the more likely it will accept a worse cost function. Lastly, the 
energy function is decreased by some amount and the process is repeated. The simulated 
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annealing algorithm will be applied to this problem by randomly switching a value in w between 1 
and 0 to form a neighbor. Because of the LASSO function the final solution should favor sparsity, 
ensuring that the algorithm minimizes the problem to the best of it’s ability. 

The algorithm has six variables that can be edited by the user during initialization. The first two 
are the number of epochs and number of trials. Each epoch will have a different temperature value, 
while the trials are the number of runs using each temperature value. The next variable is the 
temperature schedule to use, with four schedules being allowed. These four equations are shown 
below: 

 

Exponential y  at, t  0,  , epochs  (45) 

Linear ∶ y = −σt, t = 0, ⋯, epochs  (46) 

Log ∶ y = 
 1  

, t = 0, ⋯, epochs  (47) 

Quadratic ∶ y = 
 1  

, t = 0, ⋯, epochs  (48) 

The two variables a and σ are constants for the temperature, and can be adjusted to change the 

 
 
 
 
 
 
 
 

Figure	89:	 Temperature	schedule	plots	for	exponential,	linear,	logarithmic,	and	quadratic	functions.	

shape	of	each	plot. The variable a is used to determine the base of the exponential schedule and 
σ  is a scaling factor used for the logarithmic and quadratic schedules.  The final variable is to 
determine how verbose the output should be, ranging from 0 to 3, with 0 being no output and 
3 being a detailed description of how the system is running. When the algorithm is initialized, 
the temperature schedule is formed automatically. Once the initialization is complete, the user can 
provide a data set to be minimized. When data is provided, the model of that full data set is formed. 
For each epoch, the neighbors that are evaluated for each trial are formed in one batch. This is done 
so the evaluation of their costs can be calculated in parallel using Python’s multiprocessing library. 
The formation of the neighbors cannot be parallelized in this implementation because each neighbor 
is based on the previous. It would be possible to further parallelize this code by making each trial 
independent. Each parallel process returns a float value representing the cost of that model. The 
costs are collected in an array, which is iterated through to determine whether each solution will be 
accepted. The costs are chosen in this way to emulate how the sequential code would see the same 
data. The criteria for accepting a solution is that it has a lower cost or that a randomly generated 
number is larger then a generated probability based on the difference between the two solutions and 
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= 
the current temperature, shown below: 

dCost 

p  e temp (49) 

After each epoch is run, the final weights are returned to the user to apply to the data. 
Three tests were conducted to evaluate the performance of the algorithm. The first involves using 

various combinations of schedules, number of epochs, and number of trials in order to assess the 
performance of each. The second involves using different amounts of data to assess how the system’s 
performance changes. The final test will use a data set from the mobile sensor optimization problem 
to assess how well the algorithm is able to minimize data from an actual experiment. 

The first test involves analyzing all combinations of the the schedules, number of epochs, and 
number of trials in order to show general trends in the performance of each. Each combination was 
run on the same data set of 200 points 20 times. Furthermore, sigma was set to 1 and the exponential 
schedule had an a value of 0.5. The number of points removed, the error of the final model, and the 
time to run were all saved in an xarray data set. Xarray is a Python library that allows the creation of 
n-dimensional arrays, which is necessary for this data set because of the numerous variables. Data
was collected for the four previously mentioned schedules along with 5, 10, and 25 epochs and trials.

The points removed by each combination can be seen below in Figure 90. 
The box plots from Figure 90 reveal some general trends from the combinations. First, increasing 

either the epochs or the trials results in more points being removed from the data. With only a 
few exceptions, increasing the number of trials resulted in 75% of the data being greater then the 
medium of the previous amount of trials. In many of the plots, increasing the number of trials 
also has the effect of increasing the spread. Increasing the number of epochs has a greater effect 
on spread in the logarithmic and linear schedules then the exponential and quadratic. Out of the four 
schedules, linear resulted in the best medium for 25 epochs and trials at a value of 64, while quadratic 
had the best minimum for 25 epochs at 41, excluding an outlier. 

The average error of each schedule for all combinations can be seen below in Figure 91. 
From the errors it can be seen that the linear and logarithmic schedules almost always have the 

highest error, with linear becoming comparatively much higher then the others. Though it is high 
compared to te other schedules, the maximum error of 2.8 is still very low, which will be further 
discussed later. When viewing these errors alongside Figure 90, it is obvious that the higher spread 
in the box plots and the average errors of the bar graphs are correlated. This doesn’t come as a shock, 
in order to remove more points from the data some error must be added to the system. 

The final variable that was recorded was the average time to calculate each combination, which 
is shown in Figure 92. From the plot it can be seen that the run-time is completely independent from 
the schedule chosen. Furthermore, the run-time of the algorithm is very slow, ranging from 5 seconds 
up to 100. 

The second test is aimed at assessing how the algorithm functions with different amounts of data. 
For this test, only the exponential and linear schedules will be used at 10 epochs and 5 and 25 
trials. The same data will be recorded as the previous test. Finally, the same σ and a value will be 
used as the previous test. 

The amount of points removed is displayed below in Figure 93. The figure shows that as the 
number of points in the data set increases, the spread of the data tend to increase with it. This can be 
attributed to a drastic increase in the possible solutions to the problem. 

Lastly, Table 12 shows the time to compute each combination of data points and trials. The 
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Figure	90:	Box	plot	of	the	number	of	points	removed	by	the	exponential,	linear,	logarithmic,	and	quadratic	schedules	for	5,	10,	
and	25	epochs	and	trials.	The	y‐axis	is	the	number	of	points	removed	and	the	x‐axis	is	the	number	of	epochs	and	trials.	
 

 
ratio between the time to calculate each solution and the number of data points being processed 
decreases as more data is added. This shows how using multiprocessing benefits the system more as 
more data is added. 

The final test gives an example of the system being used in an actual application. The data 
collected is from a simulation of the robotic swarm discussed in the introduction. As a reminder, the 
robots collect data from an area, then use that data to form a model. The simulated annealing 
algorithm will take that recorded data and reduce it while maintaining the model. The example uses 
the simulated annealing algorithm with a linear schedule, 25 epochs, and 25 trials. The run has 183 
data points, of which 70 were removed with an error of 1.263. From the figure it can be 
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Figure	91:	Comparison	of	exponential,	linear,	logarithmic,	and	quadratic	schedule’s	error	score	for	5,	10,	and	25	epochs	and	
trials.	
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Figure	92:	Run‐time	of	exponential,	linear,	logarithmic,	and	quadratic	schedules	with	5,	10,	and	25	epochs	and	trials.	
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Figure	93:	Box	plots	of	points	removed	from	50,	100,	200,	and	400	points	by	the	exponential	and	linear	schedules	with	10	
epochs	and	5	or	25	trials.	

seen that the model is retained well, even with 61% of the data being removed. Figure 94 shows the 
results of the run in the form of a topographical map of the sensor function. The left plot shows the 
original model with the recorded data points, while the right plot shows the reduced data points and 
model. From the figure it is apparent visually that the models are similar and would be able to be 
used interchangeably. 

From these tests, it is shown that the algorithm does a good job at reducing data, but at the 
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5 25 
50 2.28 12.15 

100 5.45 25.62 
200 11.04 42.63 
400 20.07 73.29 

Table	12:	Time	to	calculate	for	50,	100,	200,	400	data	points	with	5	and	25	trials	in	seconds.	

Figure	94:	Comparison	of	original	(left)	and	reduced	models	(right)	from	mobile	sensor	optimization	simulation.	

cost of being very slow. 

3.1.6.4.8 Platooning of Autonomous Vehicles A platoon is a group of cars traveling together 
on the highway as a single unit. In this case, the vehicles would be autonomous and controlled by a 
mixture of local and cloud controls. The goal of platooning is to increase the safety and efficiency of 
cars on the highway. A platoon can increase safety on the highway by allowing the autonomous cars 
to send warning about hazards to other vehicles in the platoon, allowing them to better avoid the 
issue. Furthermore, the cloud can send information to a platoon about alternate routes that better 
balance traffic, which can help prevent congestion in cities and construction zones. Efficiency is 
increased through the use of drafting, which allows a line of cars to be more efficient by traveling in 
the wake of the first vehicle. A report released by the National Renewable 
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Energy Laboratory estimates that approximately 65.6% of total miles driven by semi-trucks can be 
platooned, resulting in a savings of “4% - 5% for the leading truck and 10%-14% for the following 
trucks.” [19] Platooning can be applied in both the civilian and defense fields, where it can be used to 
improve supply chains for a company’s fleet or a military force. Both of these fields present different 
challenges for the same problem. In civilian use, the platoon will always be on well paved roads, 
allowing for easier detection of lanes and other vehicles. Civilian platoons must also be compliant 
with more government regulations because they are on public roads. On the other hand, military 
platoons must drive in dangerous environments where hostiles are difficult to detect. Furthermore, 
military platoons will have less access to cloud infrastructure, forcing them to be more reliant on on-
board computing. This project will focus on civilian platooning, which while simpler is still a difficult 
challenge that is a hot topic in current research. 

In order to implement platooning, three basic problems must be solved; clustering, consensus 
control, and communication. Clustering is used to determine which vehicles should be in each 
platoon, which allows for the size of the platoon to change as vehicles enter and exit a highway. The 
clustering algorithm must be able to be calculated quickly because the number of vehicles on the 
highway is constantly changing. Due to the needed high speed and low latency, clustering is a good 
candidate for the Cloud-Edge architecture, which may allow for better clusters while still allowing 
for the necessary performance. The second problem that needs to be solved is consensus control, 
which is needed to ensure that each vehicle is collision free and maintains the same distancing 
and speed. Each vehicle will take information from it’s own sensors, information passed from it’s 
neighbors, information from infrastructure, and finally information from the cloud. Each vehicle 
must then determine how it will avoid collisions with it’s neighbors and what controls it needs to 
reach its destination. Maintaining distance and speed can be implemented by adapting current 
adaptive cruise control technology to take into consideration information from other vehicles. The 
final problem is communication, which must be able to send information reliable between each 
vehicle in the platoon and from vehicles to the cloud. Communication between vehicles is already 
standardized by IEEE under IEEE 802.11. The standard focuses on Vehicle Ad Hoc Networks 
(VANET), which is the spontaneous creation of wireless networks between vehicles. This type of 
network changes rapidly as vehicles enter and exit the highway or travel in and out of the range 
of a vehicle’s communication area. This project will focus on improving communication between 
vehicles through a method called Event-Triggered Scheduling Mechanisms (ETSM). ETSMs send 
messages only when a event threshold is met, which allows for messages to only be sent when 
needed. This is preferable to constantly sending messages or sending them at a set rate because it 
saves bandwidth for the network. ETSMs can be further improved by dynamically adjusting the 
threshold for sending a message, which can further fine tune how often messages are sent. By using 
ETSMs, the limited bandwidth of a VANET can be used more efficiently and the performance of 
the control can be maintained with less messages because only important ones are sent. 

We decided to focus on the field of clustering. There are a number of topics that are relevant 
to clustering vehicles on a highway, such as clustering Mobile Ad-hoc NETworks (MANET) or 
clustering based on information exchange. The subject of MANETs is very similar to clustering 
vehicles, which use a VANET to communicate between vehicles. Both VANETs and MANETs deal with 
agents that are moving with respect to each other, but in VANETs the agents are specifically vehicles 
and roadside infrastructure while MANETs are any wireless devices. Furthermore, VANETs have 
more regular movement because they are confined to a roadway. Because of their similarities, 
clustering methods developed in MANETs can be modified to function in VANETs. Many MANET 
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clustering methods involve the use of a cluster head, which acts as a leader for a cluster. The clusters 
are formed from the cluster heads, and information between clusters is passed through their cluster 
heads. Cluster head election can be based off it’s speed, direction, neighbors, ability to forward 
packets to other cluster heads, and more. Clusters are then formed using the cluster heads based on 
variables such as the destination of vehicles, the size of the platoon, and the estimated platoon 
lifetime. In many cases, the clusters act as both the vehicles in a platoon and as a topology for network 
communication between agents, so optimal communication between vehicles can also be taken into 
account when forming clusters. 

Simulation of traffic will be an important component to this project, and as such a robust and 
accurate simulator will be needed. Two possible software suites that can be used are Paramics [20] 
and Sumo [21]. Paramics has been used by both researchers and industry to analyze traffic flow. It is 
developed by SYSTRA, and is designed for use by governments and industry to provide simulations 
of roadways. Sumo is another traffic flow simulation, but unlike Paramics it is open source and 
free to use. Sumo is developed by Eclipse, and focuses more on research then industry. Both methods 
are microsimulations of traffic, meaning that they simulate individual cars in the system. For this 
project it is recommended to use Sumo because it is open source. This allows Sumo to be 
modified as needed for the project, and has allowed other researchers to combine different 
simulation environments with Sumo in order to simulate vehicle to vehicle communication, vehicle 
to infrastructure communication, and platooning. 

A number of different clustering methods were investigated, which will be discussed below. 
These methods were fuzzy based clustering, location based clustering, mobility based clustering, and 
finally destination based clustering. 

Fuzzy based clustering uses fuzzy logic to determine clustering. Fuzzy logic is a method that 
allows uncertainty to be integrated into clusters by letting individuals be part of multiple sets. Fuzzy 
logic also allows for uncertain expressions to be quantified, such as most, least, a little, ect. With 
respect to clustering in VANETs, fuzzy clustering allows vehicles to identify with multiple clusters on 
the road. A lot of research has been conducted using fuzzy clustering to determine cluster heads, 
which are vehicles that will represent a whole cluster. In these applications, each vehicle has a 
probability to become a cluster head based on some metrics. These metrics vary between papers, 
and include measurements such as distance to other vehicles, velocity, energy, lifetime, and density 
of its region. If the probability for the vehicle crosses a threshold, then it may become a cluster head. 

Location based clustering use the position of vehicles to determine if they should be in a cluster. 
Algorithms that fall under this category often choose a cluster head based on the vehicles position, 
then limit the vehicles that can be a member of its cluster based on a max distance. While these 
methods can perform well, knowing the absolute position of all vehicles on a roadway can be a 
difficult task, especially in a city or covered roadway such as a tunnel, where GPS does not function 
well. 

Mobility based clustering methods use metrics such as velocity, acceleration, and direction to 
determine clusters. Mobility based clustering algorithms will often use these metrics to estimate the 
cluster head lifetime of a vehicle, which is the estimated amount of time a vehicle will be a cluster 
head. The higher this value is, the longer a vehicle can be a cluster head and the more stable the 
system is. 

Destination based clustering uses the final destination of a vehicle to determine clusters. By 
knowing the final destination of a vehicle, its route there can be estimated. The vehicles are then 

Approved for Public Release; Distribution Unlimited. 
138



clustered based on the similarity of their routes, allowing for clusters to last longer. Algorithms in 
this category will often use metrics such as velocity and direction to determine clusters. It is worth 
noting that destination based clustering creates a security risk for users by allowing other vehicles 
to know their destination. 

Each of these methods provide a unique solution to the problem of clustering vehicles on a 
roadway. Based on the research though, it was decided that mobility based clustering will best fit the 
goals of this project. The metrics needed for mobility based clustering are readily available with 
current vehicle technology and can be recorded reliably. Furthermore, the information is capable of 
being collected in all environments and requires no other infrastructure. 

The implemented mobility-based clustering algorithm uses the vehicles velocity and location to 
determine what cluster the vehicle belongs in. The clustering algorithm that was implemented was 
designed by Rawshdeh and Mahmud in [22]. In their implementation, vehicles are traveling in a 
single direction down a multi-lane highway and pass their information between each other. The 
authors assume that each vehicle will send periodic messages to their neighbors about their current 
state and that vehicles will also gather information they receive. A cluster head is determined by a 
suitability function, which takes into account the number of neighbors the vehicle has, its distance 
from the center of its neighbors, and its relative speed to its neighbors. The goal is to maximize 
the time the cluster head stays connected to its neighbors, therefore increasing the stability of the 
system. The authors simulate vehicles driving on a single direction, multi-lane highway for 10km and 
vehicles are allowed to be in a cluster if the cluster head is within 200m. 

In this implementation, some changes have been made to the work of Rawshdeh and Mahmud. 
Vehicles are simulated on an intersection of two interstate roadways instead of a single highway, and 
each highway is bidirectional. Furthermore, the clustering range was modified to better represent 
the capabilities of an on-board transmission unit, from 200m to 500m. The vehicles and roadways 
were simulated using SUMO and a realistic roadway was generated using OpenStreetMaps. 

The simulation is run for 1000 time steps, which is equivalent to 1000 seconds or approximately 
16.5 minutes. Vehicles are randomly placed along the roadways as the simulation runs and are 
removed if they reach their destination before the simulation terminates. For each time step, the 
vehicles update their databases and determine if they should become a cluster head or join a new 
cluster. The results show that the mobility clustering algorithm was able to successfully group 
vehicles on the roadway, but with some drawbacks. Vehicles with similar locations and velocities are 
clustered, but there is no test that they are traveling in the same direction, meaning that vehicles in 
opposite lanes may be clustered. Clusters also change often using this method, which can lead to 
instability in the system from vehicles constantly having to adjust to new clusters. 

3.1.6.4.9 Roadside Units and their Placement Research in the field of cloud-based 
control for autonomous vehicles on a roadway revealed a field of study that will provide better 
capabilities to vehicle platooning then decentralized, mobility-based clustering methods. This field 
involves infrastructure supported intelligent transportation systems (ITS), which use roadside units 
(RSUs) to communicate with connected vehicles and pass information between them. Roadside units 
(RSU) are stationary infrastructure that are built along a roadway that are capable of com- 
municating with connected vehicles on-board unit (OBU). RSUs can communicate with vehicles 
through a number of methods such as with cellular infrastructure or with dedicated short range 
communications. A common method in research is to use IEEE 802.11p, a network standard that is 
designed for wireless local area networks for vehicles. RSUs can communicate with each other over a 
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Figure	95:	Example	of	an	 intelligent	 transportation	system,	showing	 the	communication	between	vehicles,	RSUs,	
and	a	cloud server.	V2V	 communication	 is	 in	 green,	V2I	 communication	 is	 in	blue,	 infrastructure	 to	

infrastructure	 is	 in	 red,	 and	 finally infrastructure	to	cloud	is	in	black.	

wired or wireless connection, which allows them to share information. Figure 95 shows an example 
of an ITS with RSUs. In the figure, the communication channels between vehicles, infrastructure, and 
the internet is shown. Vehicles on the roadway detect a crash and pass that information to the 
nearest RSU, which can then send it to other RSUs in the network to maximize the number of 
vehicles aware of the accident. RSUs can be used for more then just communication, they can act 
as access points for cloud systems or even become components in a fog network by adding some 
computational ability to the RSU. This allows for more complex and advanced algorithms to be used 
then is possible with decentralized methods with the further benefit of collecting information from 
many more vehicles. RSUs can also be useful with respect to vehicle platooning by allowing for 
vehicles communicate through the centralized RSU, allowing for information needed for determining 
platoons to be passed easier. Using the fog computing framework, the RSU could even determine 
platoons on their own using information gathered from the roadway. 

While it is possible to place RSUs at every intersections, the cost of implementing such a network 
would be astronomical. This leads to the problem of finding the optimal balance between number of 
RSUs and costs. This issue can then be expanded to determine not only the optimal number of 
RSUs, but the best location to place the RSUs to minimize the number of RSUs but maximize the 
performance of the RSU network. This problem is nontrivial to solve due to the sensitivity of an 
RSUs performance to the environment around it. Furthermore, a non-optimal placement for an 
RSU can lead to poor connection to vehicles which would reduce the benefit the RSU adds to 
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the ITS. Finding the optimal placement for RSUs is called the RSU placement problem. The RSU 
placement problem is a combinatorial optimization problem, meaning the problem must find an 
optimal subset from a finite set of objects. The RSU placement problem is similar to problems such 
as the set cover problem and knapsack problem, both of which are NP-hard. Using this similarity, 
it has been proven that the RSU placement problem is NP-hard, meaning that the optimal solution 
cannot be found in polynomial time. 

With this information in mind, it was decided that the final task for thrust 1-6 would be to 
implement an algorithm to solve the RSU placement problem, which would allow for connected 
vehicles to easily share information and access cloud services. A survey of the literature was con- 
ducted, revealing a gap in the research. In the surveyed works, the majority of authors utilized either 
greedy or genetic algorithms to solve the problem. These algorithms have similar benefits; they are 
both generic and can be applied to a large range of problems, they are common algorithms that have 
a lot of documentation, and finally they are capable of solving NP-hard problems like the RSU 
placement problem. While these are significant benefits, there is also some downsides to the 
algorithms. With greedy algorithms, they are extremely prone to settling on a locally optimal solution 
when applied to a highly nonlinear problem such as the RSU placement problem. This can mean that 
the solution found does not meet the service requirements needed. Genetic algorithms can have a 
similar issue called premature convergence. Genetic algorithms work with a population of potential 
solution to the problem, and premature convergence is when these potential solutions all converge 
to a single non-optimal solution. There are some methods to attempt to avoid this problem, but they 
can take time to fine tune. There is a more modern field that is capable of handling similar problems 
that did not appear in the literature, which is neural networks. 

Neural networks (NN) are a serious of algorithms that aim to learn relationships in data by 
analyzing a large set of examples. NNs are based on the human brain, where a set of neurons learn 
and remember relationships in information recorded by the human body. NNs are made up of three 
basic sections: the input layer, the hidden layer, and the output layer. The input and output layers 
are straight forward, they are responsible for reading in data and printing out the result of the NN. 
The hidden layers are responsible for processing data and learning the relationships in the data 
between the input and output. NNs can be applied to a wide range of problems and inputs, for 
instance it can segment an image, translate a text between languages, and detect faults in a machine 
through sensors. Based on the ability of a NN to learn complex relationships in data and take in a 
wide variety of input data, it is not unreasonable to apply the topic to the RSU placement problem. 
Using a NN to solve the RSU placement problem provides some unique benefits that makes it a 
tempting alternative to the previously described methods. Because NN do not need to be explicitly 
told how to solve the problem, they can find trends in the data that may not be apparent to a 
researcher. A model of the system also does not need to be made, the NN only requires sensor 
readings to determine an output. This is especially useful in the RSU placement problem where many 
of the variables are extremely difficult to model, such as the relationship between the geometry of a 
roadway and the optimal location to place an RSU. NN take a long time to train but they are 
very quick at generating a solution from input data, meaning that a trained NN could quickly create 
an RSU network for a provided road network. Lastly, a NN process input data that would not be 
possible with traditional optimization algorithms like the greedy and genetic algorithms such as time 
series. 

The goal of this work is to prove that a NN can be used to find the optimal position of an 
RSU in a road network. This will be accomplished using images of the road network and a NN 
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Figure	96:	Example	CNN	input	

 
that specializes in image processing called the convolutional neural network (CNN). The goal of a 
CNN is to take an image as input and condense in such a way as to retain only data needed to 
solve the problem. This is done by repeating two processes in the hidden layer; convolution and 
pooling. The convolutional layer applies convolution to the input image, which is responsible for 
extracting high level features from the input image. This extracted data is then reduced using the 
pooling layer, which shrinks the image into a smaller image. This process can be repeated multiple 
times to further extract information and compress the image further, with the final result being a 
compressed image containing important information. This compressed image is then flattened and 
fed into a traditional NN, which attempts to learn how to transform the compressed image into an 
output for the problem. 

There is not a dataset available to train a CNN for the RSU placement problem, so one must be 
generated instead. It was decided that three images would be used to train the CNN; the map of the 
sample, the road traces of the sample, and finally the building traces of the sample. An example of the 
images can be seen below. Data on the roadways is obtained through OpenStreetMap, an open source 
geographic database of the world. Through OpenStreetMaps, information about roads and buildings 
can be queried and used to create the images needed for the data set. Before samples can be 
generated, the user must determine an area that they will be pulled from, for instance we used 
downtown Austin as the source for all our data. The size of the samples must also be determined, in 
this implementation samples are 250x500 pixels. The process for generating a sample is illustrated 
below: Each sample has four coordinates for its four corners and a random angle that the sample is 
rotated with. The rotation is necessary for increasing the variation in the data, allowing for more 
samples the be recorded from the same boundary. Using the coordinates of the sample, the road 
network and building traces are queried and similar images are created. Each sample contains these 

Approved for Public Release; Distribution Unlimited. 
142



( ) 

Figure	97:	Process	for	generating	a	sample	from	OpenStreetMaps	

three images, the four coordinates of the sample, the coordinate of the center of the sample, the 
angle the sample is rotated, and finally the coordinate of the optimal intersection for the RSU. For 

this implementation, it was decided that the optimal intersection would be the one closest to the 
center, which was simple to calculate but complex enough that the CNN would still have to learn 

the relationship. A total of 5,000 samples were generated from the boundary in downtown Austin. 
A simple CNN was created to solve the RSU placement problem. As mentioned before, the 
CNN takes in the three images of the roadway and outputs the coordinates that the RSU should be 

placed. The input for the CNN has the shape 250, 500, 5 , where 250 and 500 are the size of the 
sample and 5 is the number of layers; the R, G, and B layers for the map plus the two black and 
white images for the roadways and building traces. The input is passed through the convolution 
layer and max pooling layer, both with a 3x3 pixel filter. In order to reduce overfitting in the model, 

dropout is also added to the output of the max pooling layer. The CNN then branches out into two 
paths, one for the x coordinate and one for the y coordinate which both have the same structure. 
Each branch contains a dense layer with 256 neurons, an additional dropout layer, and an output 
layer of with one neuron. The mean squared error is used to train the CNN, with the error being 

the distance between the inferred coordinate and the solution. 
The CNN architecture discussed above is trained for 200 epochs using the 70-30 split in the 

dataset. The model is trained with batches of 64 samples, and the Adam optimizer is used for training. 
Figure 98 shows the training history of the CNN model, and the results can be seen in Table 13. 

The results show that the model is capable of successfully identifying the optimal intersection to 
place an RSU using just the images of the map, roadway, and building traces. Furthermore, based 
on the results of the validation data, the model is not severely overfitting the data. Figure 99 
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Figure	98:	The	mean	absolute	error	of	the	CNN	model	as	it	trains	over	200	epochs.	

X coordinate MAE 
0.0437 

Y coordinate MAE 
0.0398 

X validation MAE 
0.1038 

Y validation MAE 
0.0667 

Table	13:	Results	of	training	CNN	over	200	epochs	with	batch	size	of	64	samples.
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demonstrates an example of the model predicting the correct intersection to place an RSU. These 
results will open the door for new research in the field of RSU deployment, and through it the use of 
cloud computing in the field of intelligent transportation systems. 

3.1.6.5 Summary 

Task 1-6 was responsible for researching and implementing cloud computing into the field of LSASVs. 
Different algorithms related to cloud based robotic control were investigated, along with methods 
for collecting data and transmitting it to the cloud. Furthermore, small-scale testing environments 
were researched and applied, including a robot-in-the-loop simulation. Industrial cloud computing 
infrastructure was utilized in the research to help verify the performance of the algorithms. The effect 
of the architecture of the cloud based controls was also investigated, with a focus on the cloud-edge 
architecture. The cloud edge architecture dynamically switches between two different algorithms, 
one which provides a quick solution and one which provides and accurate solution. This architecture 
allows the cloud based controller to react quickly to the environment while also providing accurate 
solutions. Three different applications were researched and implemented; autonomous boats, mobile 
sensor networks, and intelligent transportation systems. For each of these fields the uses of cloud 
computing were researched and implemented, and tests were done to assess the ability of cloud 
computing to control the agents in each environment. 

3.2  Project Progress and Project Plans for Thrust 2: Resilient Control and 
Communication of Large-scale Autonomous Vehicles (RC2LAV) 

3.2.1 Project Progress for Task T2-1 (Developing a decentralized fault detection 
mechanism) 

3.2.1.1 Period of Performance under 

Task T2-1 Start Date: May 2015 

Conclusion Date: Dec 2021 

Faculty lead:  Dr. Ali Karimoddini 

3.2.1.2 General Description of Task T2-1 

The first step to handle a fault is to accurately detect the occurrence of the fault, and its nature 
and location. It is not possible to consider a sensor to detect any fault, as it dramatically increases the 
overall costs and more, importantly, not all faults are predictable. Instead, it is reasonable to diagnose 
a failure through system behavior and limited observations. Fault detection and isolation is part of the 
decision-making unit of the system in which the system behavior has been abstracted to a discrete 
model and the fault occurrence can be considered an event which changes the operational mode of 
the system. As described above, most current research addresses fault detection and isolation for a 
single agent. To address fault detection for a team of agents, we will first characterize the nature of 
fault for cooperative tasks. We will then propose a diagnoser for a multi-agent system and investigate 
its decomposability into local diagnosers which form a decentralized fault detection structure in 
combination with local supervisors. Abstracted data received in the supervisory layer of the control 
structure will be used to detect a fault. Due to the discrete nature of the supervision 
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Figure	99:	Four	example	outputs	from	CNN	the	error	between	the	estimated	
and	actual	solutions	for	optimal	RSU	placement.	
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layer, we will study fault detection in the context of discrete event systems, automata theory, and 
supervisory control of discrete event systems. 

3.2.1.3 Progress Against Planned Objectives in Task T2-1 

The objective of this task is accomplished. Several algorithms are developed to: 

• Formulated fault diagnosis for uncertain/unknown/partially-known

• Developed fault diagnosis techniques for uncertain/unknown/partially-known

• Developed the Diagnosability Concept and Conditions for uncertain/unknown/partially-known

• Applied the developed active-learning diagnosis algorithm to a aicraft flight control systems

• Investigated the time complexity of the developed diagnosis algorithm

3.2.1.4 Technical Accomplishments in Task T2-1 

By relaxing the synchronous initialization and operation of the diagnosis tools with the DES systems, 
the state and condition of the monitored system upon activation of the diagnoser become uncertain. 
Then, the problem is that how can one distinctively characterize a system’s behavior (system state 
and condition) solely based upon a finite number of future successive external system observations? 
To address this problem, a systematic procedure will be developed resulting in a diagnosis tool, so 
called diagnoser. Because the diagnoser is not synchronously activated with respect to the original 
system, upon its activation, the diagnoser is completely unknowing of the original system’s state and 
condition. In this situation, the proposed diagnosers start wide and narrow down their estimate of 
the original system’s state and condition as they receive information through their observations. 
Since the system and diagnoser are not synchronously initialized with each other, the diagnoser must 
narrow down its estimate of the monitored system’s state and condition with less information than it 
would have acquired if the diagnoser was synchronously initialized with the system. Upon activation, 
the diagnoser is unaware of the state of the system, as well as the trajectory of states that the system 
may have visited. This creates a void in past knowledge of the monitored system’s behavior. For this 
problem, two main situations can be considered: (1) Asynchronous Fault Diagnosis for which there 
is no information about the state and condition of the system understudy at the diagnoser’s activation 
instance, and (2) Semi-asynchronous Fault Diagnosis in which the information about the state and 
condition of the system understudy is uncertain at the diagnoser’s activation instance. 

The second problem that is addresed in this task is the diagnosability of DES systems under 
asynchronous and semi-asynchronous activation of the diagnosers. The diagnosability refers to the 
feasibility of fault diagnosis for a given DES system. The diagnosability problem is to determine if all 
system fault occurrences can be definitively diagnosed within a finite number of system observa- 
tions. For asynchronous and semi-asynchronous diagnosable plants, the diagnoser can diagnose any 
particular fault type (e.g., sensor, actuator, plant) denoted by Fi. If only a particular type of fault, 
e.g. Fi, is of interest, then the problem is reduced to the Fi-asynchronous and Fi-semi-asynchronous
diagnosability, respectively.

It is also desired to know how long does it take for the developed diagnosers to diagnose system 
fault occurrences. The diagnosis delay can be characterized by the number of system transitions 
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required to diagnose an occurred fault, as DES systems are time-abstract event-driven. An accurate 
number of transitions for detecting any particular type of fault depends on the state of system 
understudy, which is not available to the diagnoser. Therefore, it is not meaningful to find the 
diagnosis delay at all states of the system. However, it is possible to find an upperbound for the 
number of transitions required to diagnose an occurred fault, as will be addressed in this dissertation 
under both asynchronous and semi-asynchronous conditions. 

The other problem we are addressing in this task is one where the discrete event system is 
completely unknown. From the observable set of generated events (strings), we should determine if 
a fault has materialized and in the occurrence of a fault, we must then diagnose the type of fault that 
has transpired. To address this problem a systematic active-learning technique is developed for 
constructing a fault diagnosis tool for an unknown finite-state Discrete Event System (DES). The 
developed tool, called diagnoser, detects and identifies occurred faults by monitoring the observable 
behaviors of a plant. The proposed algorithm utilizes an active-learning mechanism to incrementally 
complete the information about the system. This is achieved by completing a series of observation 
tables in a systematic way, leading to the construction of the diagnoser. It is proven that the proposed 
algorithm terminates in a finite number of iterations and returns a correctly conjectured diagnoser. 
The resulting diagnoser is a deterministic finite-state automaton and is proven to consist of a 
minimum number of states. A sufficient condition for diagnosability of the system under diagnosis is 
derived along with illustrative examples to provide further clarification in detailing the steps of the 
proposed algorithm. 

The next problem that we are addressing in this task is the case where we consider a discrete 
event system in which partial-knowledge is known in the form of an automaton. Given the known 
part, we must construct a language-equivalent model of the complete system. To address this 
problem a systematic active-learning method for realizing a partially-known Discrete Event System 
(DES). The proposed technique takes the available information about the system into account by 
tabularly capturing the known data from the system, and then, discovers the unknown part of the 
system via an active-learning procedure. For this purpose, a series of tables is constructed to first 
infer the information about the system from the available data, and if unavailable, the developed 
algorithm collects the information through basic queries made to an oracle. It is proven that the 
developed technique returns a language-equivalent finite-state automaton model for the system 
under identification after a finite number of iterations. A real-world illustrative example is provided 
to explain the details of the proposed method. 

The last problem that we are addressing in this task is one where the discrete event system under 
analysis is partially known. Given the known part of the system, we must first utilize the readily 
available information and then through analysis of the observable set of generated events (strings), 
determine if a fault has occurred. Upon the discovery of an occurred fault, we must diagnose the type 
of fault that has transpired. To address this problem we develop a novel active- learning technique 
for fault diagnosis of a partially-known system modeled as a finite-state DES. The proposed 
technique first tabularly gathers information from a diagnosis tool, termed diagnoser, constructed 
from the available information of the known part of the system and then executes an active-
learning technique to iteratively capture information regarding the system to construct the 
remaining portion of the diagnoser correlating with the unknown portion of the system. This 
proposed method is achieved by systematically completing a series of tables through inference of 
observable behavior to an oracle in order to complete the construction of the diagnoser which is 
ultimately able to detect and identify occurred faults through the examination of the observable 
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behavior of the system. It is proven that the developed technique terminates after a finite number of 
iterations and returns a correctly conjectured diagnoser. Furthermore, we derived a sufficient 
condition for diagnosability of the system under analysis, which guarantees the diagnosis of any 
occurred fault in a bounded number of observations. In addition, a real-world example is provided 
to detail the steps of the proposed method. 

In summary here is a list of the main accomplishments for this task include: 

• Introducing the concepts of asynchronous and semi-asynchronous diagnosis

• Developing algorithms for the construction of asynchronous and semi-asynchronous diagnosers

• Formal definitions for Fi-asynchronous diagnosability, and Fi-semi-asynchronous diagnosabil- 
ity 

• Deriving the necessary and sufficient conditions for Fi-asynchronous diagnosability and Fi- 
semi-asynchronous diagnosability

• Quantifying the diagnosis delay by the number of observations required to diagnose an oc- 
curred fault for asynchronous and semi-asynchronous fault diagnosis and determining the
upperbounds for diagnosis delays for asynchronous and semi-asynchronous diagnosable sys- 
tems

• Investigating the relations between different diagnosis schemes including, synchronous, semi- 
asynchronous, and asynchronous diagnosabilities.

• Applying techniques to the diagnosis of a flight control system

• Developing an algorithm for the construction of a diagnoser when applied to an unknown
system.

• Deriving a condition to verify the diagnosability of a constructed diagnoser for an unknown
system.

• Obtaining an upper bound for diagnosing a fault.

• Identification of a partially-known DES system by developing an active-learning technique to
construct a language-equivalent automaton.

• Developing an algorithm for the construction of a diagnoser when applied to a partially-known
system.

• Deriving a condition to verify the diagnosability of a constructed diagnoser for a partially- 
known system.

• Applying the technique to construct a diagnoser for a partially-known system to an air-
craft takeoff procedure with Boeing 737 Maneuvering Characteristics Augmentation System
(MCAS) as the case study.
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3.2.2 Project Progress for Task T2-2 (Fault Diagnostics and Prognostics through Data 
Analytic Approaches) 

3.2.2.1 Period of Performance under 

Task T2-2 Start Date: Q4 2015 

Conclusion Date: Q2 2021 

Faculty lead:  Dr. Mo Jamshidi 

3.2.2.2 General Description of Task T2-2 

The three terms of diagnostics, health monitoring and prognostics are sometimes intertwined and 
often assumed to be interchangeable. They are related, but not the same. In the former, diagnostics 
identifies the nature or cause of some phenomenon, while in the latter, health monitoring keeps track 
of current status systematically with a view to collect information, while prognostics refers to the 
prediction about how something (such as sensor or actuator failure) will develop in the future. While 
in the previous task our focus was on the fault detection through general behavior of the system, 
in this task we are concerned with detection of fault in a system of vehicles through lower layers of 
the control hierarchy. For this purpose, we are essentially dealing with large amounts of data being 
exchanged among the vehicles both in simulation and on real-time robotic agents. We will utilize 
“Big Data” analytic techniques to detect failed sensors, actuators, eliminate noises, or cyber-attacks 
in data transmissions. Using our developed “Deep Learning”, the raw data will be pre-processed and 
post-processed to create mined data and eventually predict failures of vehicles. 

3.2.2.3 Objectives for Task T2-2 over the Course of Project 

The following are the objectives for each quarter along with the impact of the objectives 

• Objective Name: Conduct assessment of fault diagnosis technologies/methods/techniques
for certain and uncertain systems.

Objective Type: Research and Experimental

Objective Description: Learn theory and application of data analytic approaches using
existing tools, hardware, and software, common to the industry.

Impact: Observe any popular and/or successful techniques for conducting fault diagnosis
to identify patterns that may direct research toward innovation. 

• Objective Name: Develop fault diagnosis techniques for systems of systems including au- 
tonomous UGV/UAV platforms.

Objective Type: Research and Experimental

Objective Description: Develop custom systems for prevention, detection, and correction
of faults in systems of systems applications.

Impact: Results in more robust and reliable systems of systems which are capable of cor- 
recting themselves by use of data analytics, logic processing, and classical or intelligent 
controllers. 
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• Objective Name: Create representational and extensible simulated environment for study of
UGV systems behavior and for development of their fault detection/correction systems. 

Objective Type: Research and Experimental

Description: Created simulated environment to conduct rapid prototyping and benefit from
source control management systems.

Impact: Allows for rapid and isolated prototyping of multiple research directions and con- 
figurations at once, as well as the ability to backup and rollback specific moments in the 
research process. 

3.2.2.4 Progress Against Planned Objectives in Task T2-2 

Advances were made in the following items: 

• Created solution: "Diagnostics and Prognostics Framework".

• Created fault diagnosis system for Kobuki Turtlebot 2

• Implemented fault diagnosis system for cloud-connected UAVs in landing and take off condi- 
tions.

• Created comprehensive fault diagnostics system, "threat mitigation service", for Pioneer 2.

• Created simulated environment for study of UGV autonomous navigation and fault detec- 
tion/correction systems.

3.2.2.5 Technical Accomplishments in Task T2-2 

Fault diagnostics is the identification of the nature or cause of some phenomenon in a system. These 
phenomena are typically due to errors from subsystem components that are measurable by various 
sources of performance data. The goal is to develop a means to conduct fault diagnostics and 
prognostics through data analytic approaches. This research aims to explore the possibilities of such 
an architectures. During the first phases of development, the objective was to find existing algorithms 
of fault diagnosis and prognostics frameworks. A comprehensive survey was conducted, articles were 
selected for investigation. From the research, techniques were selected and reused or modified in 
search of innovation. 

The repertoire of algorithms used during development include and are not limited to: 

• Principal Component Analysis

• Multi-Basis Clustering

• Optimized Cluster Tracking

• Genetic Algorithm

• Reinforcement Learning

• Recurrent Neural Network
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• Long Short-Term Memory 
 

Fault diagnostics and prognostics framework prototypes were developed for Kobuki Turtlebot 2, 
DJI Phantom 3 drones, Pioneer 2, custom UAV, and custom UGV solutions. Hardware imple- 
mentations involved designing the plant, selecting the specific objective to be solved, and modifying 
existing technologies to create a solution. 

The simulated environment was created on the Unity engine since it allows for set up of 3D 
environments and the definition of behaviors through its scripting capabilities. Unity’s ML-Agents 
package was selected as the source for the sim’s intelligence due to it being PyTorch-based and pos- 
sessing configurable implementations of algorithms such as reinforcement learning, imitation learn- 
ing, and more. The sim is characterized by objects running “Agents” from the ML-Agents package. The 
environment itself consists of a track that has “way point” objects distributed throughout and a 
vehicle object which is being controlled by an Agent. 

 
Summary of main accomplishments for this task: 

• Created algorithm for fault diagnostic based on Multi-Basis Clustering, Optimized Cluster 
Tracking, and Principal Component Analysis. 

• Created algorithm for fault diagnostic expanding upon DPF by employing an unsupervised 
clustering technique. 

• Implemented test bed based on Kobuki Turtlebot 2 for testing fault diagnostics. 

• Implemented DPF algorithm to Kobuki-based test platform. 

• Reconstructed faulty signals acquired from DJI Phantom 3 drone on landing and take off 
conditions. 

• Implemented Pioneer 2 based test bed and DAQ capability for testing fault diagnostics. 

• Implemented LSTM-based model to Pioneer 2 test bed 

• Created fuzzy logic based threat mitigation service on Pioneer 2 test bed 

• Created Recurrent Neural Network implementation for detecting unknown faults 

• Extended fault detection algorithm with cloud capability 

• Created simulated environment for rapid prototyping 
 

3.2.3 Project Progress for Task T2-3 (Developing a decentralized fault accommoda- 
tion mechanism) 

This task has been merged with Task 2-1. A close-out report is submitted under task T2-1. 
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3.2.4 Project Progress for Task T2-4 (Internet of Things (IoT) 5G Networks with 
Game Theory Applied to Resource Allocation and IoT Security) 

3.2.4.1 Period of Performance under 

Task T2-4 Start Date: May 2015 

Conclusion Date: December 2022 

Faculty lead:  Abdollah Homaifar & Brian Kelley 

3.2.4.2 Progress Against Planned Objectives in Task T2-4) 

In the previous reports, we studied the problem of 3D deployment of a set of heterogenous Unmanned 
Aerial Vehicles (UAVs) acting as the flying base stations (BSs) to provide wireless coverage in a given 
geographical area. By allowing some overlap between the coverage area of different cells, we 
addressed an important UAV deployment challenge which is the inter-cell interference. First, we 
considered the case of orthogonal channels and found the maximal coverage of two UAVs in a 
rectangular area. Next, assuming that the UAVs operate in the same frequency band, i.e., non- 
orthogonal channels, we found the maximum coverage in the presence of interference. In this report, 
we consider the downlink scenario in UAV-supported wireless network where the goal is to minimize 
the total required transmit power of UAVs while satisfying the users’ rate requirements. To this end, 
the optimal locations of UAVs as well as the cell boundaries of their coverage areas are determined. 
To find those optimal parameters, the problem is divided into two sub-problems that are solved 
iteratively. In the first sub-problem, given the cell boundaries corresponding to each UAV, the 
optimal locations of the UAVs are derived using the facility location framework. In the second 
sub-problem, the locations of UAVs are assumed to be fixed, and the optimal cell boundaries are 
obtained using tools from optimal transport theory. 

3.2.4.3 Technical Accomplishments in Task T2-4 

3.2.4.4 Introduction and Motivation 

Recently, using aerial base stations to support ground cellular networks has received significant 
attention. Particularly, UAVs can act as aerialbase stations to support cellular networks in high 
demand and overloaded situations, or for the purpose of public safety and disaster management. The 
main advantage of using UAVs is that they do not need to have an actual pilot and hence they can be 
autonomously deployed in dangerous environments for the purpose of search, rescue and 
communication. 
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Figure	100:	Level	flight	and	banked	turn.	

Figure 101: DES model of normal aircraft flight maneuvers. 

purpose of public safety and disaster management. The main advantage of using UAVs is that they 
do not need to have an actual pilot and hence they can be autonomously deployed in dangerous 
environments for the purpose of search, rescue and communication. Furthermore, deploying UAVs 
acting as base stations is extremely useful in providing an improved quality-of-service (QoS) for 
ground users. The deployment of UAVs faces many challenges such as power consumption, coverage 
optimization and interference management. 

To address the UAV deployment challenge, researchers provide an analytical approach to 
optimize the altitude of a single UAV for providing maximum coverage area on the ground. A UAV- 
enabled small cell placement optimization problem is investigated in the presence of a terrestrial 
wireless network to maximize the number of users that can be covered. The optimal flight altitude of 
a single UAV-BS operating under the Rician fading channel is derived. Researchers studied the use of 
multiple UAVs as wireless relays in order to facilitate the communication between ground sensor 
nodes. However, the work does not consider the use of UAVs as aerial BSs. Another research work, 
considered the use of multiple UAVs to compensate for the cell overload and outage in cellular 
networks. Beyond deployment, another important challenge for mobile UAV base stations is channel 
modeling. For instance, the probability of line of sight (LOS) for air to ground communication as a 
function of elevation angle and average height of buildings in a dense urban area was determined. 
The air to ground path loss model has been presented by some research works. As discussed in past 
researches, due to path l oss and shadowing effects of obstacles, the characteristics of the 
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Figure	102:	Flight	commands	for	Left	Aileron	Stuck	Down,	fLD. 

Figure 103: Flight Commands for Right Aileron Stuck Up, fRU . 

air to ground channel depend on the height of the aerial base stations. By increasing the altitude 
of a DSC, the path loss increases, however, shadowing effect decreases and the possibility of having 
line-of-sight (LoS) connections between ground users and UAVs increases. Therefore, an optimum 
altitude for the aerial base station which results in a maximum coverage exists. Assuming only one 
UAV operats with no inter-cell interference, the optimum altitude for the UAV which leads to a 
maximum coverage is derived. However, the authors did not consider the case of multiple UAVs 
where beyond altitude, the distance between UAVs also impacts the overall coverage performance. 
The problem of multiple UAV deployment is much more challenging as the the distance between the 
UAV-BSs and their relative positions affects the overall coverage performance. Moreover, due to 
the presence of interference between the received signal from different UAVs, additional interference 
management/avoidance protocols are necessary. 

We develop a novel approach for optimally deploying UAVs to provide wireless to service ground 
users while minimizing the overall UAV transmit power needed to satisfy the users’ data rate. We 
consider multiple UAVs in the downlink scenario and derive, jointly, the optimal cell boundaries 
(coverage area) and locations of UAVs that minimize the required transmit power. To this end, we 
first fix the cell boundaries, and solve the facility location problem to determine the optimal locations 
of UAVs based on users’ distribution. Next, given the prospective locations of UAVs, using optimal 
transport theory, a powerful mathematical framework from probability theory, we find the optimal 
cell boundaries for the UAVs. 

3.2.4.4.1 System Model 
 I n our model, we considered a geographical area divided i nto K subareas in which Nwireless users 

are distributed based on an arbitrary distribution f (x, y). This area must be 

serviced by multiple UAVs that will act as flying base stations. Each subarea will be served by a single 
UAV l ocated at  xi, yi, hi i n the Cartesian coordinate where i ndex i corresponds 

to UAV i. Initially, we consider the subarea i over xs,i, xs,i+1 ys,i, ys,i+1 R2. We consider a 
downlink scenario in which UAVs adopt a frequency division multiple access (FDMA) technique 
to transmit data to the ground users at a desired data rate. FDMA assigns individual frequency 
bands to users and each user has its own dedicated channel for communications. Without loss of 
generality, we assume that the total transmit power of UAVs and the total available bandwidth is 
sufficient to meet the users’ rate requirement. 
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Figure	104:		Flight	commands	for	Left	and	Right	Aileron	simultaneously	stuck	down	and	stuck	up, fLDRU .	
 

 
Figure 105: DES model of a Fixed Wing aircraft including faulty and normal behaviors during the 
bank turn. 

 
In our model, the UAVs transmit over different frequency bands and hence, they do not interfere 

with one another. Moreover, hereinafter, we use the notion of a cell to indicate the coverage region 
of each UAV. In other words, each UAV is associated with a cell within which the ground users 
serviced by this UAV are located. Note that, at the initial setup, the cell boundary associated with 
each UAV is not optimal, and our goal is to optimize those such that the total transmit power is 
minimized. Next, we first provide the air-to-ground channel model and, then, present the problem 
formulation. 

In order to analyze the wireless coverage of the UAVs, we first study the air-to-ground (ATG) 
channel propagation model. As discussed in previous works, the radio signal from a UAV base station 
reaches its destination in accordance to two main propagation groups. The first group corresponds to 
receiving a LoS signal while the second group corresponds to receiving a strong non-LoS (NLoS) 
signal due to reflections and diffractions. These groups can be considered separately with different 
probabilities of occurrence which depend on the environmental factors such as the density and height 
of buildings, and the elevation angle. Here, we adopt a model for characterizing the ATG channels 
for LAP systems. The free space pathloss (FSPL) is given by: 

FSPL = 20 log ( 
4πfcd ),  (14) 
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Figure	106:	Interpolated	A�	path	around	given	obstacle	with	initial	condition	at	(0, 0) and target at (35, 35). 2mx2m cost map 
that is segmented into a 40x40 grid. White: traversable, Black: obstacle. 

in which fc is the carrier frequency and c is the speed of light. In addition, d 
√
h2 r2 is the distance 

between the UAV hovering at altitude h and the ground receiver located at radial distance r from 
the UAV in the 2D plane. Considering the mean value of LoS rather than its instantaneous 
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Figure	107:	UGV	trajectory	subject	to	fault	conditions,	Green:	No	Fault,	Red:	Left	Suspension	Fault,	Blue:	Right	Suspension	Fault. 
 
 
 

characteristics the mean pathloss model for ATG channel is therefore given by 

PL(dB) = FSPL(dB) + ηξ(dB),  (15) 

where ηξ represents the excessive pathloss due to shadowing and scattering in which the subscript ξ 
refers to the propagation group such that ηξ ηLoS , ηNLoS . Each propagation group happens with 
a specific probability which depends on the environment. The values of ηLoS and ηNLoS should be 
found experimentally and ηNLoS is typically much larger than ηLoS. As the excessive pathloss, ηξ, 
takes on two values, i.e., ηLoS and ηNLoS with probabilities PLoS and PNLoS 1 PLoS, it can be 
modeled as a Bernoulli random variable with parameter PLoS , 

 
ηξ ∼ Bernoulli (PLoS) ,  (16) 

where P  is the probability of having a LoS link and P 1 P is the probability of having a 
NLoS link. The probability of receiving LoS signal from UAV-BS Ui for a ground 
user located at (X, Y ) d e p e nJd s  on the altitude of the UAV-BS, hi, and its horizontal distance to 

the user that is equal to ri = (X − xi)2 + (Y  − yi)2, in which (xi, yi) is the location of the UAV at 
the 2D plane. The LoS probability is given by [?]: 

PLoS(hi, ri) = 
1 + α exp ( 

1 

− β(arctan  hi − α)) 
,  (17) 

 

in which α and β are constant values which depend on the environment. Since we cannot determine 
whether the link is LoS or NLoS as a priori, we consider the spatial expectation of the pathloss 
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PL(dB) = 20 log(d ) + + B,  (19) 

Figure	108:	Plots	of	summary	statistics,	Left:	(skewness,	mean)	Center:	(skewness,	kurtosis)	Right:(variance,	furthest	value	from	
0). 

over LoS and NLoS links, 

PL(dB) = FSPL(dB) + ηLoS (dB)PLoS
J

+ ηNLoS(dB)PNLoS.  (18) 
By substituting (14) and (17) into (18), and letting di = h2 + r2 to be the distance between the

i i 

UAV Ui and the user, we have 

i 1 + α exp(−β(θ − α)) 

in which A  ηLoS dB ηNLoS dB and B  ηNLoS dB 20 log 4πfc . 
Next, given a UAV base station with transmit power P t, we find its optimal flight altitude hi, 

which maximizes the size of the covered area. We define the service threshold in terms of the 
minimum allowable received signal power for a successful transmission. Having defined the expected 
pathloss in (19), the received signal power at a ground receiver located in radial distance ri from 
the ground image of the UAV is given by 

Pr(dB) = Pt(dB) − PL(dB),  (20) 

which requires to be greater than E, i.e., Pr ≥ E. This is equivalent to having 

PL(dB) ≤ Pt(dB) − E.  (21) 

We define the coverage radius for a UAV-BS Ui with transmit power P t  as the radial distance 
in which the received signal power on a ground receiver reaches the threshold E, i.e., 

Ri < ri PL(dB)=P t(dB)−E, (22) 
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Figure	109:	Plots	of	spectral	clustering	results	on	1:	(skewness,	mean),	2:	(skewness,	kurtosis),	3:(variance,	furthest	value	from	
0). 
 

 
in which Ri is the coverage radius of UAV-BS Ui. Using (19), the above condition can be re-written 
as: 

20 log(di) + 

J 
 

A 

1 + α exp(−β(arctan  hi ) − α)) 
+ B + E − P t  = 0,  (23) 

where d  h2 R2. The equation in (23) shows that R  is an implicit function of h . However, 
as it is shown iin (23i) is a unimodal function and has only one stationary point 
which corresponds to the maximum coverage radius. Let h∗ denote the optimal flight altitude 
which results in the maximum coverage radius. We find h∗ by taking partial derivative from the 
expression in (23) as: 

 
 

which yields the following equation: 

∂Ri 0,  (24) 
∂hi 

h   
+ 

9 ln(10)αβA exp (−β[arctan ( hi ) − α]) 
= 

 

0.  (25) 

Ri π [α exp (−β[arctan ( hi ) − α]) + 1]
2 

 

Numerically solving the equations in (23) and (25) gives us the optimal flight altitude h∗ and 
the corresponding coverage radius R  of the UAV-BS U ∈ U t 

i 

and environmental parameters. 
i as a function of its transmit power Pi 

Approved for Public Release; Distribution Unlimited. 
160



N0 

Mi 
i = i 

= ∫ ∫ ( ) 

user, L (x, y) is the average path loss between UAV i and the user, and N  is the noise power. 

Figure	110:	UGV	trajectory	subject	to	fault	conditions,	Left:	No	Fault,	Center:	Left	Suspension	Fault,	Right:	Right	Suspension	Fault 

3.2.4.4.2 Problem Formulation Consider the transmission between UAV i and a ground 
user located at (x, y) coordinates. The achievable rate for the user is given by: 

Ri(x, y) = Wi log2 (1 + 
Pi(x, y)/L̄ i(x, y)

) ,  (26) 

where Wi is the transmission bandwidth of UAV i,Pi(x, y) is the UAV transmit power to the 
i 0 

Considering Bi as the total available bandwidth at UAV i, and Mi as the number of users serviced 
by UAV i, we have W  Bi . Note that, M  is the number of users inside cell boundary of UAV i 
which is computed as Mi  N    Ci 

f x, y dxdy, with N being the total number of users, and Ci

being the cell boundary corresponding to UAV i. Clearly, the number of users covered by the UAV 
depends on the distribution of users, cell boundary, and the location of the UAV. The minimum 
transmit power required to satisfy the rate requirement β of ground users is given by: 

Pi,min(x, y) = (2β Wi − 1) N0L̄ i(x, y),  (27) 

. 
Note that, as the number of users increases, the bandwidth per user decreases. Consequently, a 

higher transmit power is required to meet the users rate requirement. Given the location of UAVs 
the average total transmit power of the UAVs in the network is given by: 

K 

Pt = QS SC 
   

Pi,min(x, y)f (x, y)dxdy.  (28) 
i=1 i 
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xi, yi, hi) is the location of UAV i. 

 
Figure	111:	Results	of	spectral	clustering	on	UGV	data,	1:	(skewness,mean),	2:	(skewness,kurtosis),	3:	(variance,furthest	value	
from	0) 
 

 
Our goal is to minimize the total required transmit power by finding jointly the optimal locations 

of the UAVs and their associated cell boundaries. Therefore, the power minimization problem can 
be formulated as follows: 

 

min Pt 

 

 

= LJ J (2βMi Bi − 1) N0 L̄ i(x, y)dxdy,  (29) 

where i ∈ {1, 2, . . . , K},Ci is the cell boundary that shows the coverage region of the UAV, and 

The solution for this problem provides optimum cell boundaries and UAVs location such that 
the total average transmit power of UAVs is minimized while the rate requirement for all the users 
is maintained. However, solving this optimization is challenging due to the mutual dependency of 
optimization parameters. Furthermore, the problem must be solved over a continuous space while 
considering an infinite number of possible UAVs’ locations and cell boundaries. 

 
3.2.4.4.3 Optimal UAVs Location and Cell Boundaries In order to solve the opti-mization 

problem in 29, we separate the problem into two optimization problems and solve them sequentially. 
In the first problem, we assume that the cell boundaries for UAVs are given and the objective is to 
determine the optimal location of UAVs for which the transmit power is minimized. In the second 
problem, for the given locations of UAVs we derive the optimal cell association which lead to the 
minimum total required transmit power. 

Consider a scenario in which the UAVs move and change their locations based on the users 
distribution. I n order to minimize the total transmit power, given the cell boundaries, we find the 

K 

 

Ci,xi,yi,hi i=1 Ci 
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Figure	112:	Optimized	Fault	Noise	Functions,	Left:	No	Fault,	Center:	Left	Suspension	Fault,	Right: Right Suspension Fault 

 
optimal location of each UAVs in its corresponding subarea. Given the distribution of users over 

the geographical area, the total transmit power of UAVs is given by Pt = ∑K Pi, where Pi is the 
 

yk+1 xk+1 

Pi 

yk xk 

(2β Wi − 1) N0L̄ i(x, y)f (x, y)dxdy.  (30) 

 

Note that, for a given cell boundary, the number of users inside the cell is fixed and optimizing Pt 
and Pi will not depend on Mi. Furthermore, in this case, minimizing Pt is equivalent to minimizing 
Pi for all i    1, 2, . . . , K  . Therefore, the optimization problem in 29 can be written as: 

 
ys,i+1 xs,i+1 

min 
xi,yi,hi 

Pi = 
 

 
ys,i 

 
 

xs,i 

((x − xi)2 + (y − yi)2 + h2) (31) 

× (PLOS + (1 − PLOS)) f (x, y)dxdy,  (32) 

Now, we derive a closed-form expression for the optimal location of the UAVs when they are 
deployed at high or low altitudes relative to the size of the subareas. 
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Figure	113:	Left:	Simulated	path	of	UGV	under	healthy	conditions	using	optimized	PID	controller.	Blue:	Desired	Path,	Red:	
Simulated	Path,	Right:	Genetic	algorithm	convergence	plot	under	healthy	conditions.	Converges	to	14.39 

Figure 114: Left: Simulated path of UGV with the left suspension disabled using optimized PID 
controller. Blue: Desired Path, Red: Simulated Path, Right: Genetic algorithm convergence plot with the 
left suspension disabled. Converges to 33.56 

Theorem 1: Seeking a minimum required transmit power, the optimal location of UAVs i 
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Figure	115:	Left:	Simulated	path	of	UGV	with	the	right	suspension	disabled	using	optimized	PID	controller.	Blue:	Desired	Path,	
Red:	Simulated	Path,	Right:	Genetic	algorithm	convergence	plot	with	the	right	suspension	disabled.	Converges	to	21.37 

positioned at high or low altitudes compared to the size of its corresponding subarea is given by: 
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yk xk 
∂xi 

f (x, y)dxdy = 0. 
(36) 
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2 where h  » (x − xi)2 2  + (y − yi) or h  « (x 2 − xi)  ( y −  yi) . No te that, considering f (x, y) as the 

i

i i

sin−1   h π
 and therefore, P
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(x, y) ≈ ( (x − x )2 + (y − y )2 + i h i
2 ) .di(x,y)  LOS ≈ 1. Then we have Li i

+2 2

distribution of users over the geographical area, (x∗, y∗) corresponds to the centroid of the area. 

P
( ) 
roof : At

≈2 
very high altitudes, i.e.,i h2 » (x − xi)2 + (y − yi)2, we have di(x, y) ≈ hi and θ  = 

Similarly, for very low altitudes we calculate Li(x, y) ≈ η((x − xi)2 + (y − yi)2 + h2). In both cases, 
we have: 



J J

size of the area is 1000m × 500m. The area is divided into two equal subareas and contains two 

Figure	116:	Accuracy	convergence	plot	for	LSTM	given	1900	epochs,	training	accuracy:	99.08%,	testing	accuracy:	98.13% 

and, ∂Pi 
= 

yk+1 xk+1
∂L̄(x, y) 

∂yi 

 
 

yk xk 
∂yi 

f (x, y)dxdy = 0.  (37) 

Finally, solving these two equations, we find ∗xand y∗. 
i i 

3.2.4.4.4 Numerical Results Assuming that UAVs are operating in urban 
environments , numerical results are presented. The operating frequency is fc = 2GHz  and the 

UAVs. We also consider a hotspot area in which users are distributed according to a 
truncated Gaussian 
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Figure	117:	Loss	convergence	plot	for	LSTM	given	1000	epochs,	training	loss:	0.0197,	testing	accu‐racy:	0.0474 
 
 

 
distributions. Figure 119 shows the average transmit power of UAVs versus the density of the users 
for the optimal cell boundaries and the Voronoi cell boundaries. Note that, in Figure 119, we assume 
that the UAVs are located at the center of the subareas, and their altitude is 200 m. As we can see, 
the average transmit power for optimal cell boundaries is significantly lower than the Voronoi case. 
According to Figure 119, the average transmit power is around 0.3 W and 0.12 W, respectively, for 
the Voronoi and the proposed optimal cell boundary cases. Furthermore, the Voronoi case is more 
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Figure	118:	Training	accuracy	spread	from	five	trial	runs	from	five	considered	neural	network	archi‐	tectures. 

sensitive to the users’ density compared to the optimal cell boundaries. This is due to the fact that 
the optimal cell boundaries are determined based on the users’ density such that the transmit power 
is minimized. However, in the Voronoi case, the cell boundaries are set without considering the users 
density. As observed in Figure 119, for the low user density case in which the users are more spread 
over the area, the performance of Voronoi and optimal cell boundaries are close. However, as the 
density increases, the proposed optimal case becomes better but then they get close again. The 
reason is that, for a very highly dense scenario, most users are located around the hotspot center and 
they are served by the closest UAV. As a result, the average channel gain is high for the users and 
thus, power efficiency for the Voronoi case is improved. As we see from Figure 119, for ρ  0.02, the 
proposed approach yields a maximum power improvement over the Voronoi case. 

Figure 120 shows the impact of UAV altitude on the average transmit power for optimal cell 
boundaries with ρ  0.01. In our setup, UAV 1 is closer to the hotspot center than UAV 2. Figure 120 
shows that, the total average transmit power is minimum at an altitude of 400 m. In fact, the UAVs 
should not be positioned at very low altitudes, due to high shadowing and a low probability of LOS 
connections towards the users. On the other hand, at very high altitudes, LOS links exist with a high 
probability but the large distance between UAV and users results in a high path loss. As shown 
in Figure  120, the optimal individual altitude for UAV 1 and UAV 2 are around 320m and 
500m, respectively. However, the total transmit power of both UAVs is minimized for h1 h2 
400m. 

Figure 121 illustrates the inverse of the total average transmit power as a function of altitude for 
the optimal cell association case. Note that, in this figure, we used inverse of power solely for a better 
illustration of the results and for clarity of the figure. Here, we consider all the possible  
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Figure	119:	Average	required	transmit	power	versus	users’	density. 

 

 
combinations of and from 200 m to 1200 m. As seen from Figure 121, the minimum total average 
transmit power (maximum inverse of power) is about 0.12 W and it is achieved for h1=310 m and 
h2=530 m. Note that, since the hotspot center is closer to UAV 1, on the average, this UAV 
has a higher chance of LOS links to users compared to UAV 2. Hence, UAV 2 should be at a 
higher altitude in order to improve its channel condition (more LOS links) to the users. 
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Figure	120:	Average	required	transmit	power	versus	UAVs	altitude. 

Figure 121: Inverse of average transmit power versus altitude. 
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3.2.5 Project Progress for Task T2-5 (Enhancing network performance utilizing the 
cognitive features of the agents) 

3.2.5.1 Period of Performance under 

Task T2-5 Start Date: Fall 2016 

Conclusion Date: Spring 2021 

Faculty lead:  Dr. Abdollah Homaifar, Dr. Brian Kelley 
 

3.2.5.2 General Description of Task T2-5 

Due to recent advances in electronics and communications, the agents are currently equipped with 
cognitive radio devices that significantly improve the performance of the communication systems. 
This cognitive capability allows the users to sense the environment and monitor the operation of 
other agents to take proper responses for the observed information. The intelligence capability of 
the agents provides the possibility of independent decision-making regarding their communications 
parameters including the transmission power, transmission frequency, bandwidth, and utilized cod- 
ing and modulation technique. We will take advantage of the agents’ cognition toward planning an 
efficient and reliable user-centric communication system, where most communication design param- 
eters are determined in a decentralized fashion. This involves several design paradigms including 
power allocation, utilized frequency and also channel access with the goal of interference reduction 
in the network, taking into account the communication strategies of other agents. We will adopt a 
game-theoretic framework in which the rational users set their communication parameters in a way 
to improve their individual benefits while taking into account the social welfare. Game theory is a 
powerful mathematical tool to analyze the interactions among the intelligent users when they have 
conflicting interests or they coordinate in performing a common task. 

 
3.2.5.3 Objectives for Task T2-5 over the Course of Project 

• Objective Name: Enabling D2D Communication in mmWave Band 

Objective Type: Literature review- network design- performance evaluation 

Objective Description: In order to enable D2D communication in the mmWave band we were 
required to perform a thorough literature review to identify the-state-of-art and gaps. 
Then, we proposed solution for the identified gaps. Finally, we evaluated the performance 
of the proposed solutions analytically and by extensive simulations. 

Impact: D2D and mmWave are two key technologies in 5G wireless communication that 
facilitate infrastructure-less high-rate communication for natural disaster situations and 
battlefields. 

• Objective Name: Optimizing Communication Network Performance Using Machine Learn- 
ing (ML) approaches 

Objective Type: Literature review- algorithm design- performance analysis 

Objective Description: In order to apply ML approaches to optimize network performance, 
we survey the literature to identify the possible solutions. We proposed an algorithm 
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based on deep reinforcement learning. Finally, we evaluated the performance of the 
proposed algorithm through extensive simulations. 

Impact: ML approaches play an important role in optimizing wireless networks with low 
overhead and complexity. 

3.2.5.4 Progress Against Planned Objectives in Task T2-5 

D2D communication is envisioned to improve the 5G networks’ capacity and spectral efficiencies. 
Exploiting the mmWave band is an attractive solution to accommodate the bandwidth-intensive 
applications in D2D communications. In this dissertation, we investigated the benefits of D2D 
communication and enabling D2D communication in the mmWave band. Furthermore, we identified 
challenges involved in establishing a reliable D2D communication framework in the mmWave band. 
We address some of these main issues in the mmWave and μWave band such as resource allocation, 
blockage susceptibility, erroneous antenna beam alignment, peer association and antenna beamwidth 
optimization. In order to solve these problems, we utilized tools from stochastic geometry, game 
theory and machine learning. In the following subsection, we summarize the problems investigated 
in Task 2-5 and review the solutions proposed to address those problems. 

3.2.5.5 Technical Accomplishments in Task T2-5 

Describe the technical accomplishments made during the course of the project. 
We proposed a novel distributed mechanism which enables D2D devices to select between the 

mmWave band and the μW band for data transmission. In order to devise a distributed mmWave 
band communication protocol for D2D communications, the D2D users are in charge of detect- 
ing LOS links along with their corresponding direction to perform proper beam alignment. Our 
proposed algorithm enables the D2D devices to perform such a task by using peer-discovery bea- 
cons and comparing the AoA spectrum of their intended peer over subsequent time intervals. We 
have used stochastic geometry to provide a complete framework to analyze the performance of the 

proposed mechanism in terms of the received SINR coverage probability of D2D users for which 
closed-form analytical formulas are derived. Our simulation results demonstrate that the proposed 
mechanism achieves considerable performance gain over the single band (i.e., mmWave/μW) D2D 
communications. Moreover, our simulations validate the analytical results discussed in the chapter. 

We proposed a mathematical framework to analyze the impact of AoA estimation on the per- 
formance of a mmWave D2D network. Based on the prior information we have about the error, the 
AoA estimation error is modeled using normal and uniform distributions. We have used stochastic 

geometry to provide a complete framework to analyze the D2D network performance in the pres- 
ence of error in terms of the received SINR coverage probability, for which analytical formulas are 
derived. Simulation results show that the coverage of the network with erroneous beam alignment 

can be degraded by about 35% compared to the one with perfect beam alignment. Moreover, our 
simulations validate the analytical results discussed in the chapter. Considering the significant im- 

pact of beam alignment error on the network performance, proposing a mechanism that corrects 
and compensate the beam alignment error using a feedback loop is a promising future direction. 

We proposed a novel D2D peer selection approach which exploits the context information about 
the users’ velocity and size of their demanded data to assign a link to the D2D pairs. We derived 
a closed-form formula for the probability of link-consistency which has a significant impact on the 
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QoS of D2D links. We formulated the problem as a matching game and proposed a novel distributed 
algorithm to reach a stable matching between the set of D2D users and available links. Simulation 
results show that the proposed algorithm yields considerable gains in terms of traffic offloading from 
the cellular network and the average user throughput compared to that of the random partner 
assignment scenario for the D2D users. 

We proposed a CCN-based D2D framework in the mmWave band along with a decentralized peer 
association algorithm to enhance data throughput and offload the cellular network. The proposed 
algorithm enables D2D requesters to find D2D transmitters that are cached with their desired 
data and select the DT that provides the most stable link for data transmission. The proposed 
algorithm uses context information, including D2D users trajectory and size of the requested data, as 
well as mmWave characteristics such as susceptibility to blockage and directional communication. 
Extensive simulations are performed to evaluate the performance of the algorithm. Simulation 
results show that the proposed algorithm, compared to other baseline algorithms, improves network 
data throughput significantly while offloading the cellular network. 

A novel decentralized scheme is proposed to enable D2D users to perform the initialization 
process in a CCN-based mmWave D2D network. The proposed scheme comprises of two phases, 
namely, heuristic peer association algorithm and synchronous beamwidth selection algorithm. The 
context-aware peer association algorithm is low-overhead with a low computational load and enables 
peer association in a decentralized manner. Following the peer association, antenna beamwidth op- 
timization is performed considering the trade-off between antenna beamwidth and data throughput 
in directional communication. A synchronous LLL-based algorithm is proposed to obtain the joint 
beamwidth selection strategy of all users to maximize the network data throughput. the perfor- 
mance of the proposed scheme is evaluated through extensive Monte Carlo simulations. Simulation 
results show that the proposed initialization scheme significantly improves the network performance 
compared to other methods in the literature. 

Finally, we proposed a novel multi-agent DRL-based algorithm to optimize D2D UEs’ antenna 
beamwidth in a directional D2D network in the mmWave band. The proposed algorithm considers 
D2D UEs’ mobility, payload size, QoS requirements, beam alignment cost and non-stationarity of the 
environment. The proposed algorithm enables D2D links to learn an optimized antenna beamwidth 
policy to increase the network sum-throughput while maintaining the D2D link reliability. D2D links 
are trained offline using a shared reward function while the implementation is distributed and does 
not require any online coordination. The training algorithm is based on the multi-agent DRL, and the 
non-stationarity of the environment is addressed by augmenting users’ observation with a low 
dimensional fingerprint. Finally, the performance of the proposed antenna beamwidth optimization 
algorithm is evaluated through extensive simulations. Also, a performance comparison is performed 
with existing approaches, such as IQL and random beamwidth selection. Results show that our 
proposed algorithm improves network performance significantly and outperforms other approaches. 

 
3.2.6 Project Progress for Task T2-6 (Delay-tolerant and loss-tolerant consensus in 

networks of agents) 

3.2.6.1 Period of Performance under 

Task T2-6 Start Date: May 2015 

Conclusion Date: April 2021 
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Faculty lead:  Dr. Sun Yi 

3.2.6.2 General Description of Task T2-6 

Communications among agents often experience substantial delays, packet dropouts, and intermit- 
tent connectivity and link breakage. The effects of these impairments on system performance are not 
trivial, but also not predictable. Development of an effective solution to this is still an open-ended 
problem. The dynamical behavior of each agent is dependent on received information. Thus, the 
control design taking into account communication disruptions and delays is important. Controllers 
in such networks should work robustly against changes in the network topology. In order to address 
these issues, we will perform stability analysis for networked multi-agent systems. The research aims 
at developing a theoretical framework to establish stability criteria for multi-agent systems consid- 
ering network topology. Randomly changing network topology as well as fixed topology will be 
considered. For example, connection between the robustness margin to time delays and eigenvalues 
of network topology will be used to investigate convergence properties of consensus protocol. Also, 
stability in case of communication channel collapse will be analyzed, for example, through Lyapunov 
equations. In our recent work, we have designed controllers to improve system performance even 
in the presence of uncertainty by breaking the barriers of infinite-dimensionality using the Lambert 
W function. We will further study this problem, by considering the effect of both time delay and 
uncertainty on networked multi-agent systems to yield better understanding and advanced control 
strategies. 

3.2.6.3 Technical Accomplishments in Task T2-6 

First, the consensus problem and the system’s stability in the presence of communication delay was 
studied. The analytical solutions are derived in terms of the Lambert W function. Then, the 
stability of the systems is determined from the characteristic roots (or eigenvalues). Also, using the 
derivative of the function sensitivity with respect to changes in the delay are quantified and analyzed. 
By simulations alone, one could conclude some systems consisted of agents with response speeds 
much faster than those in systems in other communication topologies. Fast system responses are 
ideal but not practical in reality for most systems. The time delay from .1 seconds to 1 second caused 
each system to become unstable. Fast systems became unstable for shorter time delays compared to 
Systems in other communication topologies. It was mentioned by Saber and Murray that there is a 
tradeoff between performance and robustness. Applying the Lambert W function to these simulated 
systems confirmed this approach is able determine the eigenvalues of the system. Although the 
Lambert W function-based approach was applied to only four topologies, it can be applied to general 
topologies for quantitative study of stability and sensitivity. This is the unique and novel contribution 
of the presented work. Compared to existing methods, the presented approach make it possible to 
analyze and quantify the stability, sensitivity, and convergence speed of delayed systems. These 
simulated systems were implemented in Simulink for real-time experiments. The Lambert W function 
assisted in the stability analysis of real systems. The testbed was created for the analysis of delay in 
real-time systems. Future research can implement the work presented here into the development 
of a control system for cooperative and coordinated control of MAS in the consensus problem. 
The rightmost eigenvalues could be used as a key point for eigenvalue assignment or pole placement 
within a control loop to ensure the system remains stable especially 
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while switching topology. This should guarantee an optimal performance/topology. This work can 
also be implemented on real network systems, such as drones, DC motors, and ground robots [23]. 

The focus of next problem was the consensus of MAS and the stability of the system in the 
presence of time delay and communication trust variations. Graph Theory and the Laplacian 
matrix are used to simulate convergence speeds of the system. Analytically, the solutions using the 

Lambert W function-based approach for solving the DDE. The eigenvalues obtained are used to 
determine stability of the system. The convergence speed and stability of the system is analyzed 
with respect to time delay and variations in trust. Through the analysis of the simulations ran from 
Graph Theory, one could conclude that the networked system reached consensus at faster speed 
when an agent is trusted the most. Time delay, however, resulted in each topology of the networked 
system to become unstable at some point. Varying the trust became important in the event of 
sensor damage or signal loss. When noise is introduced into a system, one can help tune out the 
effects of noise on the remaining agents by varying trust in a manner that reduces convergence 
speed. As the convergence speed was slower, noise was tuned out of the undamaged sensors within 

the system. Thus, proving that a faster rate of convergence is not always ideal. Variations in trust 
allow for the system to perform without failure in the event of disturbances such as signal loss and 

sensor damage. The simulations validate these findings and confirm the analytical methods used. 
The presented research can be applied towards practical scenarios by aiding in the design of MAS 
communication to achieve the most desirable performances. Some example scenarios include UGV 

and UAV cooperation, flying and vehicular ad hoc networks, distributed computing, and many 
more. 

It is also desired to know how long does it take for the developed diagnosers to diagnose system 
fault occurrences. The diagnosis delay can be characterized by the number of system transitions 
required to diagnose an occurred fault, as DES systems are time-abstract event-driven. An accurate 
number of transitions for detecting any particular type of fault depends on the state of system 
understudy, which is not available to the diagnoser. Therefore, it is not meaningful to find the 
diagnosis delay at all states of the system. However, it is possible to find an upperbound for the 
number of transitions required to diagnose an occurred fault, as will be addressed in this dissertation 
under both asynchronous and semi-asynchronous conditions. 

Then, trust issues have been studied further. Trust not only impacts decision making, but 
it also protects the MAS. Many issues within the MAS community still currently exist such as natural 
agent deterioration and adversarial attacks. This research demonstrated the novelty of vision-based 
interactions and how it offers many defenses to current robotic MAS issues as an alternative. 
Theoretically, this creates a range of acceptable actions an agent can perform at a given time without 
intruding on its freedom. This assumes an agent is around witness agents that can enforce these rules 
when broken. The big takeaway of this research is that trust evaluation is not meant to be complex 
and resource demanding because an MAS has a simultaneous task at hand. Sharing data with 
suspicious agents is not advisable after it experiences physical trauma or unruly decision-making. 
This research offers some natural defenses that were implied throughout this paper that fend off 
against potential loopholes. First of all, the collaboration threshold forces agents to begin without 
sharing information by default, which reduces risk of oversharing. Adversaries that can modify trust 
values themselves could lock trust to 1 in order to eavesdrop on all agent data. Alternatively, an 
adversary can do the same with setting trust to 0 to remove each other and cause chaos. Countering 
the eavesdropping attack can be done by implementing mutual trust agreements for sharing data. 
The chaos problem can be solved with a majority vote for removing an agent from 
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the network. These counters are simple fixes that increase the time and effort the adversary needs 
to win. This study is not perfect and does not have an answer to some aspects. First of all, some MAS 
applications involve robots that never enter each other’s sensory range. Another abuser to this 
system is the MITM attack. If the adversary catches the TCP message and modifies it before it 
reaches the recipient, the system would be in ruin. This can happen without a single difference in the 
physical behavior or performance of the subtasks. Studies such as SecuredTrust have defenses 
against this in the literature. Defects that do not show obvious abnormalities can also pose a huge 
threat to this work. 

After those research above, a new method was proposed that combined an analytical delay esti- 
mation technique based on the Lambert W function based approach and delay differential equations 
with the robustness of Smith Predictors. Therefore, an Adaptive Smith Predictor was developed 
capable of handling delay and its effects analytically which lead to more stable controlled responses. 
The Adaptive Smith Predictor system performed well in adjusting itself to handle unknown delay in 
simulation and experiments through the Internet. The method proposed in this research was simple 
to construct, and easy to apply to real world applications. More work is underway to handle un- 
known varying delay and to improve other factors (e.g., cases with increasing, decreasing, multiple 
delays in networks, network-based stochastic control systems). The successful completion of reli- 
able operation through the Internet could easily be transferred to smaller networks. This research 
focused on constant delay in a system. The upper bounds of the delay allowed is dependent on the 
applicants preference on responses. This is credited to the Smith Predictor’s ability to handle long 
dead times. One of the challenges so far with varying delay is that once the delay is adapted to, the 
system may already be affected by the new current delay. The method proposed can be equipped to 
handle variations in delay. Also, the type of data being transferred through a network needs to be 
considered in the future. Videos can suffer as a sensor (e.g., dark areas, low bandwidth, etc.). Other 
sensor feedback, or combinations, should be studied as well. In conclusion, robust remote 
teleoperation in dynamic networked environments is possible [24]. 

The last one was control of multiple agents systems of aerial and ground robots using AI/ML- 
based algorithms. The measured pose real-time tracking response for the drone is processed in such a 
way to follow the response of the desired pose real-time that correlates to the ground robot specified 
waypoint. For the drone, the neural network (NN) PIV position real-time tracking performance 
(inertial frame) displays some oscillation in the response due to the disturbance parameter within 
the 80 seconds while tracking the desired position real-time tracking response as illustrated in the 3D 
plot and the Inertial Frame. The response of the drone (NN-PIV) did have sufficient time to reach the 
desired set point with less overshoot with higher accuracy. Moreover, the networked UAVs show 
higher accuracy of the NN-based control based on the results. As an example, the large percent errors 
mean that the drone measured response values are far from the desired response values. The small 
error means that the drone measured response values were very close to the desired response 
values. For future works, this research will continue as a work in progress to analyze the 
development of a NN controller to perform and produce a flexible, and robust control system with 
additional stability, which reduces the effects of disturbances. Therefore, further study, testing, and 
research will continue to explore the application of a robust controller for development and the 
introduction to new sources of disturbances. For instance, the use of a smooth signal generator. This 
investigation will determine the performance by observing the system’s behavior to identify and 
reduce the unpredictable effects of disturbance in a UAV control system. 

In summary here is a list of the main accomplishments for this task include: 
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• Quantitative analysis of effects communication delays and design of controllers were conducted
via infinite eigenspectrum analysis.

• Developing of control strategies considering variant delays of networked systems by incorpo- 
rating estimation of delays into the control-loop, and control for synchronization of networked
systems.

• A predication-based delay control method is implemented on systems connected through in- 
ternet for robust synchronization.

• A vulnerability of delay predication for real-time control was addressed and compensated by
adding online delay estimation method.

• Also, tt was implemented on two systems connected through Internet. Analytical theories for
delay differential equations are used and controllers are designed based on the finding.

• Investigating the relations between different diagnosis schemes including, synchronous, semi- 
asynchronous, and asynchronous diagnosabilities.

• System’s behaviors were analyzed using the Neural Network controller to perform plant iden- 
tification and to apply the Feedforward model (PIDVAff) approach to stabilize the system’s
response.

• The neural controller is designed in such a way that makes the plant output to follow the output
of the reference model

• development of a method to find a way to optimize networks for multiple agents systems
(MAS).

3.2.7 Project Progress for Task T2-7 (Wireless Scale Free Topologies for Resiliency 
and Jamming Immunity) 

3.2.7.1 Period of Performance under 

Task T2-7 Start Date: 2016 

Conclusion Date: May 2021 

Faculty lead:  Dr. Brian Kelley 

3.2.7.2 General Description of Task T2-7 

The main objective of this task is to support the ubiquitous deployment of densely connected net- 
works. Privacy and the prevention of eavesdropping are significant concerns in IoT and military 
applications. Furthermore, densely connected networks require improvements to throughput, la- 
tency, and capacity. These concerns warrant motivation for new approaches, ideally approaches that 
improve upon current techniques in every way. Task 2-7 created new technologies that meet these 
conditions by providing low-latency privatization of signals and high-throughput high-efficiency 
communications that exceed the abilities of the current generation of communications technology. 
For example, we demonstrate low-latency alternatives to encryption that allow for quick and secure 
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conversations between two users. Also, we demonstrate the ability to increase the spectral efficiency 
of the best-performing antenna configuration on the market by a factor of 10. 

3.2.7.3 Objectives for Task T2-7 over the Course of Project 

Robust and secure connections are becoming increasingly necessary as heterogeneous and ubiquitous 
connections saturate our environment. Therefore, achieving bleeding-edge data rates and privacy 
are critical components of Beyond5G and 6G standard formulations. The research outlined in this 
document achieves an unprecedented increase in throughput through the use of a multi-input multi- 
output (MIMO) technology called K-User MIMO. Furthermore, we show that a 10-fold increase in 
spectral efficiency is achievable with K-User MIMO, compared to the traditional Massive MIMO 
techniques. In addition, for the security aspect of Task 2-7, we invented new secure waveform 
configurations that privatize communication links based on random channel effects between trans- 
mitters and receivers. Our Physical Layer Security method achieves lower computational overhead 
and latency for communications than traditional data encryption techniques. 

3.2.7.4 Progress Against Planned Objectives in Task T2-7 

3.2.7.4.1 Research 1: On the Application of K-User MIMO for 6G Enhanced Mo- 
bile Broadband The goal of 5G is to enable a fully connected society such that instant informa- tion 
is available just a touch away. 5G achieves this through three key paradigms viz., enhanced Mobile 
Broadband (eMBB) for gigabit data rates, Ultra Reliable and Low Latency Communica- tions 
(URLLC) for latency less than 1ms and massive Machine-Type Communications (mMTC) for 1 
million connected devices/sq. km [25, 26]. These paradigms are supported by a multi-layer 
technology strategy including small cell architectures [27, 28], millimeter wave communication and 
massive MIMO. Millimeter wave systems facilitate communication in the high Radio Frequency (RF) 
bands using analog, digital and hybrid breamforming [29, 30]. Massive MIMO deploys large antenna 
arrays at base stations and operates in the low to mid RF bands [31–34]. 

3.2.7.4.2 Background and prior research on K-User MIMO K-User MIMO is an architecture 
in which there are K access points and K mobile devices, each equipped with multiple antennas, i.e., 
spatial dimensions. In the simplest form of K-User MIMO, each Access Point connects to one of the K 
mobile devices. We consider a different form of K-User MIMO, known as K-User MIMO X, in which 
each of the K mobile devices receives signals from K  access points. This is shown in Figure 100. 
The all-to-all architecture achieves very high throughput whilst supporting flexibility in achieving 
diversity. Each of the K  access points could send redundant information streams to maximize 
reliability. Alternatively, they could send unique information streams in order to maximize capacity. 
K-User MIMO X can switch between these two modes without any change in the mathematics of
the algorithm. Further scenarios can be envisioned in which K-User MIMO X allows for adaptive
allocation of power to users with more favourable Signal to Noise Ratios. Additional encoding of data
across time and frequency could be applied so the signals could adapt to malicious behaviour such
as jamming and eavesdropping.

In any form of K-User MIMO, each mobile device receives both its desired signals and inter- 
ference signals (signals meant for other mobile devices). To manage interference, K-User MIMO 
systems are often studied in the context of Interference Alignment (IA). IA is a technique that aligns 
interfering signal vectors in order to maximize interference-free space at each mobile device [35]. 

Approved for Public Release; Distribution Unlimited. 
179
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Figure	122:	K‐User	MIMO	X	network	Example	for	K	=	3	

By applying suitable channel dependent precoders to the transmit signals, and beamformers to the 
receive signals, several interfering users can communicate simultaneously. Alignment helps confine 
the interference at each mobile device to a smaller dimensional subspace while projecting the desired 
signals into the null space of the interference. 

Several works have analyzed IA on a theoretical level. A typical metric used to characterize IA is 
known as Degrees of Freedom (DoF). DoF is defined as the number of spatial dimensions that are 
free from interference [36]. The authors in [37] have provided examples showing acheivability of IA 
and various DoF in K-User interference networks with different antenna configurations. In [38], an 
iterative algorithm for obtaining the precoders and beamformers is presented for a Time Divi- sion 
Duplex (TDD) mode of operation. The precoders in this method are a function of the dual relationship 
between the MIMO forward and reverse channels. Another IA framework involving TDD channels is 
presented in [39]. In [40], interference alignment in MIMO downlink networks is investigated where 
precoders are derived by eigen decomposition of the MIMO channels. 

Another IA scheme for a K-User MIMO X network, is proposed in [41]. By appropriately precoding 
the transmit signals, this scheme maximizes the interference free space by limiting the interference 
at every mobile device to half of the received signal space. Further, by applying a zero forcing 
beamformer which is a function of interfering channels and precoders, interference cancellation has 
been achieved for K  3. The algorithms in [41] are purely theoretical and we improve upon them. 

Discussion on how to demodulate symbols is not provided in [41]. Further, in order to maximize 
capacity, we wish to operate the K-User MIMO X system such that each access point is transmitting 
different symbols to each mobile device, whilst all being on the same frequency subcarrier. We have 
investigated the case where each access point is on a different subcarrier in [42] and found that the 
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bandwidth and therefore the capacity of the K-User system is reduced by a factor of K which is 
significant. We present a new signal separation beamformer to regain the lost factor of K. 

Interference Alignment uses precoders and beamformers that are channel dependent. Naturally, 
channel estimation is critical to IA [43, 44]. Both [41] and our previous works [42, 45, 46] either 
consider perfect channel state information or do not consider exact channel estimation error mod- 
els. Neither considers the overheads arising from transmitting pilot symbols for estimation. [41] 
assumes perfect channel state information. [42] does not explicitly estimate the channel but assumes 
a Cramér-Rao variance for the estimation error, which is only a lower bound on the error. In [45] the 
channel is not estimated but the effects of imperfect estimation are simulated. Residual interference 
due to imperfect precoders and beamformers is modelled as a random variable and an expression 
for its distribution is provided. [46] is the first paper that introduces signal separation concepts for 
K-user MIMO but it too assumes perfect channel estimation.

We extend our previous work to provide realistic and practical capacity results for K-User MIMO
X systems, that account for channel estimation overheads. 

Table	14:	System	model	parameters	for	key	derivations	

For K    3 

3.2.7.4.3 System model for cellular based K-User MIMO This section describes the system 
model for K-User MIMO X that shows, transmit precoding, receive interference cancellation and 
signal separation. Table 14 shows the parameters used in the key equations and derivations. Figure 
101 shows the overall K-User MIMO protocol steps. Lastly, an Orthogonal Frequency Division 
Multiplexing (OFDM) multiple access protocol is shown. This protocol illustrates the pilot 
overhead resulting from serving several (> K) mobile devices. 

Parameter Description Size  

M  Minimum number of antennas at each access point & mobile 
device 

≥ K(K − 1) 

≥ 6 

= 

ND Number of desired signals at each mobile device K  3 

NI Number of interference terms at each mobile device K(K − 1) 6 

Hij Channel matrix between access point j  and mobile device i  M × M  6 × 6 

vij Precoder vector for signal between access point j and mobile 
device i 

M × 1 6 × 1 

sij Symbol to be transmitted between access point j and mobile 
device i 

1 × 1 1 × 1 

wi AWGN at mobile device i  M × 1 6 × 1 

PI
i Matrix of aligned interference column vectors at the mobile 

device i 

M × NI 

2 
6 × 3 

Ui Zero forcing beamformer matrix at mobile device i  M × M − NI 

2 6 × 3 

PD
ij Matrix of desired column vectors at mobile device i to isolate 

signal from access point j 

M − NI × ND − 1 
2 

− × 

3 × 2 

Uij Signal Separation beamformer matrix at mobile device i to 
isolate signal from access point j 

M  NI M − NI − ( − )2 

2 ND  1 
3 × 1 

Ns Number of recovered copies of each symbol sij M − NI − (ND − 1) 
2 1 
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Figure	123:	K‐User	MIMO	X	network	showing	the	application	of	precoders	at	the	access	points	as	well	as	stage	1	and	stage	2	
beamformers	(Equations	(50)‐	(52))	
 

 
3.2.7.4.4 Received Signal at antenna Each of the K access points and mobile devices is 

equipped with M antennas. The all-to-all connectivity results in each mobile device receiving K 
desired signals and K K  1 interfering signals. This is shown in Figure 101 and(50). Transmitted 
symbols sij between the jth access point and the ith mobile device are precoded by length M 
precoder vectors vij and transmitted over Rayleigh fading channels Hij. Without loss of generality, 
we consider downlink transmissions. The received signal at the ith mobile device is given by, 

 

yi = ∑ Hijvijsij  + ∑  ∑ Hijvkjskj +  wi (50) 
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We focus on the maximum capacity scenario. Therefore it is assumed that each sij is unique. The 
precoders vij are channel dependent and are obtained by solving a system of alignment equations. 
The procedure for obtaining the precoder vectors is shown in Appendix A. The noise at the ith mobile 
device, wi is assumed to be 0 mean Additive White Gaussian Noise (AWGN) with variance 

2 = E[wiwi
∗] where E[.] represents the expected value. σ 
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K K
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K 
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i Ui 
Ui Ui 

j=1 k=1,≠i 

Hijvkjskj Ui wi 

ij i ij ij ij i

3.2.7.4.5 Received signal after beamformer for interference cancellation A beam- 
former matrix Ui is applied to the received signal yi to cancel the interference as shown below. 

y1 = H ⋅ = H ∑
K 

+ H ⋅ ∑  ∑ + H (51) 

'--··························································
I
········
ϵ

···-v-· · ·
0 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 

·_, 

where, Iϵ is the residual interference after cancellation. In the case of perfect channel state infor- 
mation, it is exactly equal to zero. The interference cancellation beamformer Ui is obtained by first 
generating a matrix, whose columns contain aligned interference vectors. The left hand side of the 
Singular Value Decomposition (SVD) of this matrix contains the beamformer. The derivation of 
this beamformer is shown in Appendix A. 

3.2.7.4.6 Received signal after beamformer for desired signals separation Symbols 
transmitted from access points on the same frequency subcarrier, add coherently at the mobile 
device. Under this model, symbol recovery is straight forward when each access point sends the same 
symbol to the ith mobile device. However, for maximizing capacity, each access point must be able to 
send different symbols to the ith mobile device. In such cases, a second beamformer operator is 
applied after interference cancellation, as shown in (52). This second operator is applied K times at 
each mobile device (shown in Figure 100) and helps separate the signals sent from each of the K 
access points. 

y2 = UHUHy1 = UHUH ∑ Hijvijsij + UHIϵ +UHUHwi (52) 
ij ij i i ij i 

j=1 '--
≈
· -v-
0

·· _,
ij i 

= UHUHH   v  s  + UHUHw  -
T
-
o
-
detector fo

-
r symbol recove

-
r
→
y 
sˆ 

The signal separation beamformer Uij is obtained by first generating a matrix whose columns contain 
desired signal vectors from other access points that act as interference when recovering the symbol 
transmitted from a specific access point. The left hand side of the SVD of this matrix contains the 
beamformer. The derivation of this beamformer is shown in Appendix A. 

After separation, the desired signals from each of the K access points can be decoded by cor- 
recting for the effects of Uij, Ui, Hij and vij. The decoding and detection process that recovers the 
symbols sij is shown in Appendix A. 

3.2.7.4.7 K-User MIMO X Multiple Access Protocol  We now apply K-User MIMO 
X to a typical OFDM cellular scenario. Let us assume that there are nK mobile devices (n  1) 
associating with K  access points forming n K-User Groups (UG). In a single UG, there are K2M 2 
Channel Impulse Responses (CIR) that need to be estimated. We propose that each of the MK 
transmit antennas sends pilot symbols on non-overlapping OFDM symbol times. We assume the use 
of pilot signals that are configured for both synchronization as well as channel estimation. An 
example of such a sequence is the Zadoff Chu sequence, commonly used in LTE. Akin to LTE pilot 
signals, when one transmit antenna is sending pilots, all other transmit antennas are off. This 

ij 

yi 
j=1 Hijvijsij

ij i 

ij 
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Figure	124:	Example	showing	the	channel	estimation	overhead	for	n	K‐User	Groups	(UG).	The	bandwidth	allocated	for	
estimation	is	divided	among	the	n	K‐User	Groups.	Each	group	transmits	pilot	signals	in	its	allocated	band.	

 
is shown in Figure 102. In the time domain, the channel needs to remain constant for at least 
MK  symbol times. We leverage frequency domain resources to support the n User Groups. In 

the frequency domain, the available bandwidth B is divided into m sub-bands where m = B and 
Bc is the channel coherence bandwidth. Each of the m  sub-bands is divided equally among the 
n K-User Groups. As shown in Figure 102, each UG gets a chunk of bandwidth in each of the 
m  sub-bands in which to transmit pilot signals for synchronization and channel estimation. The 
channels in the sub-bands not available for a certain UG, can easily be obtained by interpolation. 
The channel estimates are conveyed by the mobile devices to a global network entity in the backhaul 
which makes all channels available to all access points and mobile devices through the appropriate 
interfaces. The overhead from this step is not considered and will make up future work. 

 
3.2.7.4.8 Derivation of Shannon Capacity for K-User MIMO X And Small Cell 

Geometric Capacity In Rayleigh Fading This section presents an analysis of Shannon Ca- 
pacity as a function of K, with and without pilot overheads. Further simulation results show the 
statistical distributions of capacity for K = 3 in Rayleigh fading and small cell geometries. 

3.2.7.4.9 Ideal K-User MIMO X capacity versus K excluding pilot overhead The 
theorem for the upper bound capacity for K-User MIMO X incorporates channel and beamformer 
gains that scale with K and antenna array size M . It is defined below. 

Theorem 1. The upper bound multi-user capacity of a K-User MIMO X system is bounded by 

Cbits/sec ≤ BK2log2(1 + [M − NI − (ND − 1)][M − NI ] M 2 × SINR) 
2 
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Tc 

ence time, i.e., MKTsymb < Tc, the remaining time can be reserved exclusively for data transmission. 

2 2 

Figure	125:	:	Comparison	of	our	very	high	throughput	K‐User	MIMO	X	spectral	efficiencies	against	related	technologies	such	as	
5G‐NR	Massive	MIMO.	Spectral	Efficiencies	are	for	a	100m	cell	in	an	Indoor	A	channel	scenario.	The	curve	for	Massive	MIMO	
is	based	on	the	formula	shown	in	[47].	The	number	of	antennas	is	M =	K(K −	1).	

where B  is the bandwidth, and the SINR  = Ptd−α includes the transmit power P   and the
t 

distance dependence based on a path loss exponent α and target distance d. The proof of the theorem 
and verification by simulation are shown in Appendices B and C respectively. The result of Theorem 
1 gives the upper-bound multi-user capacity of the combined K2 streams. Note that the theorem 
represents an unconstrained case which assumes that the entire available time-frequency resources 
are available only for data transmission. 

3.2.7.4.10 Ideal K-User MIMO X capacity versus K including pilot overhead Real 
systems are impacted by various overheads for synchronization signals, channel estimation pilot 
signals and exchange of other control information. We consider two of the most important overheads, 
that of synchronization and channel estimation. We propose the use of pilot signals configured for 
both time synchronization and channel estimation. Consequently, we define the following theorem 
that refines Theorem 1 to include pilot overheads. 

Theorem 2. If MK channel estimation symbols can be transmitted in less than the channel coher- 

The capacity equation in Theorem 1 can be modified as follows, C 
 

[M − NI − (ND − 1)][M − NI ] M 2 × SINR) 

 
bits/sec ≤ Tc−MKTsymb BK2log2(1 +

where Tc is the channel coherence time. Tsymb is the duration of 1 OFDM symbol given by 

2 
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N    CP  Ts where N  is the size of the FFT, CP is the size of the cyclic prefix in samples and Ts is 
the sampling period. 

Figure 103 shows the Shannon Capacity curves for K-User MIMO X with and without pilot 
overheads. The key observation from the curves is that while the unconstrained capacity from 
Theorem 1, continues to grow with K, that is not the case when pilot overheads are taken into 
account. After a certain point, it can be seen that the pilot overheads overwhelm the gains from 
K-User MIMO and the capacity begins to drop. In highly varying channel scenarios, it is more 
beneficial to operate at a lower value of K and schedule several User Groups in a multiple access 
framework similar to that shown in Figure 102. Figure 103 also compares the performance of our K-
User MIMO X system with 5G-NR Massive MIMO [47]. It should be noted that the Massive MIMO 
model assumes one access point equipped with M antennas and K single antenna mobile devices. 
The Shannon limit is also plotted. This limit is based on the analysis provided in [48] and assumes a 
system with a single access point and single mobile device each with MK antennas. 

 
 

 
Figure 126: Cumulative distribution functions of spectral efficiencies in bits/sec/Hz for K  3 in single 

hexagonal cells of radius 50m, 100m and 500m for Indoor A channel scenarios [49]. Results are shown both 
with realistic channel estimation using ML/MMSE and also at the Cramér-Rao Lower Bound. 

 
3.2.7.4.11 Capacity results for Small Cell K-User MIMO at K = 3 This section 

describes the simulation model, choosing K  3 as an example. Simulations are done in MATLAB 
and the key parameters are listed in Table 15. Cell spectral efficiency performance in 500m, 100m 
and 50m hexagonal cells is obtained and shown in Figure 104. 
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ij = 

v = 3 

> 

f r e q u√e n c y  fc = 1.9GHz, speed of light c = 3 × 108m/s, the channel coherence time Tc is calculated as,

16πf 2 

have a fraction of the channel coherence time, say 60ms. 
c 

Table	15:	Simulation	Parameters	

Channel Model Rayleigh Fading 
Channel Scenario Indoor A [49] 
Cell Radius 50 m, 100 m, 500 m 
Transmit Power 16 dBW 
Total Bandwidth 20 MHz 
FFT Size (N ) 2048 
Cyclic Prefix (CP ) 512 samples
Sampling frequency 30.72 MHz 
Sub-carrier spacing 15 kHz 
Number of used sub-carriers 1320 
Noise Figure 4 dB 
Thermal Noise Density  203.9 dBW/Hz
Path Loss Exponent 3 

Without loss of generality, the hexagonal geometry is chosen, for simplicity of analysis. The 
system can easily be translated to stochastic geometries, commonly associated with 5G systems. 
3 access points are placed on alternate corners of the cell. 3 mobile devices are placed uniformly 
within the cell. The simulations assume an exponential path loss Lij  d−α.

While K-User MIMO X is not limited by any particular channel scenario, we note that one 
example of a use case is a high throughput IoT robotic factory model. Hence without loss of 
generality, a Rayleigh fading channel model with the Indoor A power delay profile [49] is used. 
Considering an Indoor A channel scenario with parameters such as, velocity kmph, carrier 

Tc = 9  ≈ 80ms where fd is the Doppler shift given by fd = vfc . Let us assume that we only 
 

Multiple channel and location trials are run. In each trial, the channel is estimated in the first 18 
symbol times (1.5ms). We assume the use of well known estimation methods such as the Maximum 
Likelihood (ML) or Minimum Mean Square Error (MMSE). 

For statistical analysis, it suffices to assume the presence of one K-User group. In such a case, the 
entire bandwidth is available for pilot signals. We use the Zadoff Chu sequence for both time 
synchronization and channel estimation. After channel estimation, the remaining 58.5ms is available 
for data transmission. The Cumulative Distribution Function (CDF) of the spectral efficiency is 
calculated from the multiple trials and plotted in Figure 104. These spectral efficiencies account for 
pilot signal overhead as well as estimation error. 

In the case of n  1 K-User Groups, in the channel estimation symbols, the bandwidth can be 
divided as shown in Figure 102. In the data transmission symbols, the bandwidth could also be 
divided into sub-bands in which the different User Groups could be network scheduled using greedy 
or proportional fair algorithms. 

3.2.7.4.12 Incorporation of channel estimation errors Figure 105 shows the variance 
of the estimation error as a function of signal to noise ratio for both the ML and MMSE estimates. 

d 
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CRLB 

The Cramér-Rao Lower Bound (CRLB) is also shown. As expected, the ML and MMSE variances 
are higher than the CRLB. The equations for the channel estimation methods and the CRLB are 
well researched in other works and are hence shown in Appendix D. Figure 104 also shows the 
spectral efficiency if the estimation error variance is at the Cramér-Rao Lower Bound (CRLB). To 
simulate this, we calculate the CRLB as shown in (68) in Appendix D. The CRLB is calculated for 
each transmit-receive antenna link and error terms are drawn from CN (0, σ2 ). These errors 
are added to the actual channels to simulate estimation error at the CRLB. 

Figure 127: Comparison of channel estimation error variance between ML/MMSE and the Cramér- 
Rao Lower Bound (CRLB) 

It can be seen from Figure 104 that the median best case spectral efficiency in 500m, 100m and 
50m cells are 170, 230 and 256 bits/sec/Hz respectively. These results are under Rayleigh fading 
conditions. If the channel follows a Rician distribution, it means that there is one dominant line of 
sight path in the Channel Impulse Response. The stronger the line of sight component, the rarer the 
occurrences of deep fades. Though this scenario is not simulated explicitly, we have investigated 
another scenario, which is maximum capacity scheduling with Rayleigh fading. This approach 
schedules K-User groups in a particular sub-band with the best channel conditions, thus weeding out 
deep fade channel instances. We have found very little improvement in spectral efficiency with this 
type of scheduling. We believe that the same will be the case with Rician channels. The reason for 
this is that the non-co-located nature of K-User MIMO transmitters already provides enough channel 
diversity to overcome the effects of deep fades. 

The spectral efficiencies in Figure 104 are multi-user values and take into account the fact that 
channel estimation through pilot signals takes up 18 symbol times, where no data is transmitted. In a 
20MHz band this amounts to a best case scenario of 3.4Gbps, 4.6Gbps and 5.1Gbps respectively and 
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met is span(Himvkm) = span(Hinvln) where k, l ≠ i 
K(K − 1) 

M = K(K − 1) 
K = 3 

( − ) 

Hijvkj ≠ Hijvlj i ≠ k ≠ l 
K  K(K − 1) 

2 

in the case of 5 aggregated bands, data rates in excess of 17Gbps, 23Gbps and 25Gbps respectively 
can be achieved. This underlines the wide range of exciting possibilities that can be achieved in 
beyond-5G and 6G networks with K-User MIMO X. 

The 6G extension of eMBB, defined in [50] as eMBB Plus will serve mobile and IoT communica- 
tions with data rate requirements far greater than 5G. The high throughput and spectral efficiency of 
K-User MIMO X lend themselves well to help support eMBB Plus. 6G will also be more machine
learning and security driven [51, 52]. The all-to-all nature of K-User MIMO X, with its ability to
switch between maximum capacity and maximum reliability modes, makes it particularly suitable
for future machine learning integration. Machine learning algorithms could be used to come up with
new encoding schemes across the K transmitters that can help adapt to spatially and temporally
varying channel conditions as well as eavesdroppers and jammers. This flexibility leads perfectly
into the 6G version of URLLC, known as event-defined-URLLC [52] which provides context-aware
communications, not thought of in 5G.

3.2.7.4.13 Conclusion We have reviewed and identified the massive scope for increased 
throughput for beyond-5G or 6G networks. Under realistic channel estimation constraints, we have 
provided a K-User MIMO X framework that can cancel interference, demodulate and maximize 
capacity through signal separation. Further practical aspects such as OFDM multiple access for 
channel estimation and data transmission have been described. Lastly, cell capacity performance has 
been simulated and compared with related technologies. 

3.2.7.4.14 Appendix:  K-User MIMO Interference Alignment Mathematics for K=3 

3.2.7.4.15 System of Interference Alignment Equations for precoder generation 
Interference cancellation can be achieved subject to the following constraints. 

Postulate 1 [41]: At each mobile device, interfering signals from the same access point, cannot 
be aligned in the same direction such that, where . 

Postulate 2 [41]: In a user system, since each mobile device receives interference 
components, in order to align (K − 1) interference signals along K dimensions, the condition to be 

Since there are interference terms at each mobile device, the minimum number of 
antennas at each access point and mobile device has to be . 

Table 16 show one possible set of Interference Alignment equations for . These equations 
are formed by dividing the K K  1 interference terms at each mobile device into pairs, subject to 
postulates 1 and 2. Each pair represents the left and right hand sides of a single IA equation. Since 
there are K(K − 1) interference terms at each mobile device, there will be K(K−1) IA equations.
These equations will be used to solve for the precoders. 

Each access point will apply K precoders. From the IA equations, the precoders vij are obtained 
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Table	16:	K‐User	MIMO	X	Interference	Alignment	conditions,	K	=	3	
 

 IA conditions [41] 

 
Rx 1 

span(H11v21) = span(H12v22) 

span(H11v31) = span(H13v33) 

span(H12v32) = span(H13v23) 

 
Rx 2 

span(H21v11) = span(H22v12) 

span(H21v31) = span(H23v13) 

span(H22v32) = span(H23v33) 

 
Rx 3 

span(H31v11) = span(H33v23) 

span(H31v21) = span(H32v12) 

span(H32v22) = span(H33v13) 

 

 
as follows, 

v12  H22 
−1H21v11  v33  H13 

−1H11v31 v21  

H31 
−1H32v12  v32  H22 

−1H23v33 v22  H12 

−1H11v21  v23  H13 
−1H12v32 v13  H33 

−1H32v22  v11  H31 
−1H33v23 v31 = 

(H21)−1H23v13 

 
 

 
(53) 

The initial value of v11 is obtained by first defining a matrix E [41] as follows, 

E  H31 
−1H33 H13 

−1H12 H22 
−1H23 H13 

−1H11 

H21 
−1H23 H33 

−1H32 H12 
−1H11 H31 

−1H32 

× (H22)−1H21 

 
 
 

(54) 

 

It is to be noted that E is obtained from (53). Then, v11 is arbitrarily chosen to be one of the eigen 
vectors of E  and subsequently all the other precoders can be obtained in the order, v12, v21, v22, 
v13, v31, v33, v32 and v23. 

 
3.2.7.4.16 Obtaining the beamformer for interference cancellation The zero forcing 

beamformer matrix Ui is obtained by first defining a matrix P I  for each mobile device and taking 
the Singular Value Decomposition (SVD) as follows, 

P I  = [H11v21 H11v31 H12v32] 

= [Ū (1) Ū (0)][
Λ̄1] [V  ̄(1) V̄ (0)]

H (55) 
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is applied after zero forcing and signal separation. Defining Γij = UHUHH ij and taking the SVD, 

⎡
⎢
λij (1) 0 . . .  0 0 0⎤

⎥

Where P I  is the set of aligned interfering column vectors at the first mobile device. From (55) 

we can set Ū (0) = U1, the zero forcing beamformer at the first mobile device.  The number of

columns in U1 is equal to the number of non zero singular values in Λ̄ 1 .  Similarly we determine the 
beamformers at the second and third mobile devices by defining P I  = [H21v11 H21v31 H22v32] 
and P I  = [H31v11 H31v21 H32v22] where P I  and P I are the sets of aligned interfering column 
vectors at the second and third mobile devices respectively. 

3.2.7.4.17 Obtaining the beamformer for signal separation At the ith mobile device in 
order to separate the different signals sent from the K access points we apply a second beamformer 
matrix. This operator is applied K  times at each mobile device. This matrix is obtained by defining 
a matrix PD for each access point-mobile device pair and taking the SVD as follows, 

11 1 

= [Ū (1) 

1 

Ū (0)][
Λ̄11] [V  ̄(1) V̄ (0)]

H (56) 

Where PD is the set of desired column vectors at mobile device 1 corresponding to access points 2 
and 3. From (56) we can set Ū (0)  U11. The number of columns in U11 is equal to the number of
non zero singular values in Λ̄ 1 1 .  The matrix U11 when multiplied to the received signal after zero 
forcing, isolates the desired signal at mobile device 1 from access point 1. Similarly the desired 
signals at mobile device 1 from access points 2 and 3 respectively can be isolated by defining 
PD = [UHH11v11  UHH13v13] and PD = [UHH11v11  UHH12v12] where PD and PD are the sets 
of desired column vectors at mobile device 1 corresponding to access points 1, 3 and 1, 2 respectively. 
The same process can be repeated at the other mobile devices. 

3.2.7.4.18 K-User MIMO X demodulation and symbol detection The following de- 
modulation process helps recover symbols arriving from each access point. Note that this process 

we have, 
Γij = Φij ⋅ Λij ⋅ ΨH 

ij i  

(57) 

Where Λij is a diagonal matrix containing the singular values of Γij such that, 

Λij = 
⎢ ⋮ 

λij

⋮
(2) 0 . . .  0 0

⎥ 
(58) 

⎢⎣ 0 0 λij(Ns) 0 . . .    0 ⎥⎦

The information symbol from access point j to mobile device i is estimated by the element-wise 
division, 

 ϕ
H ỹij

sˆ 1 , . . . , sˆ γ , . . . , sˆ N 
ψHvij 

(59) 

1
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ij i 

ij F i F ij F 

≤  ∑∣λ(UH)∣2  ∑∣λ(UH)∣2  ∑∣λ(Hij)∣2 

ij 

The demodulation process recovers Ns copies (refer Table 14) of each symbol sij corresponding to 
the number of non-zero singular values in Λij. Due to interference cancellation, the demodulated 
signal obtained from (59) takes the form, 

Ns 

sˆij λij γ sij γ  ŵ i  (60) 
γ=1 

where λij γ  is the γth diagonal element in Λij and ŵ i j  is the noise after demodulation. 
The spectral efficiency after interference cancellation, signal separation and demodulation can 

be computed as follows, 
∣ 

N
∑

s 
λ    (γ)s    (γ)∣

2 

ij Cbits/sec/Hz = log2[1 +
∣ 2 

] (61)γ=1 

3.2.7.4.19 Proof of Theorem 1 

ŵ i ∣  

Proof. To complete the proof, we leverage two well known results from Matrix Theory [53]. First, 
for any matrix A, the sum of the squares of the singular values is equal to the square of its Frobenius 
Norm such that ∑i λ

2(A) = ∥A∥2 where λi(A) is the ith singular value of A and ∥A∥  is the Frobenius
Norm of A. This follows from the decomposition of matrix A as a singular value decomposition, 

H. The Frobenius norm is invariant under orthogonal transformation of the left and right 
orthogonal matrices. Therefore, based on the fact that λi A  is the component of A along the 

diagonal of Λ, the sum of squares of the components of Λ equals the square of the Frobenius norm. 
Second, the Frobenius Norm of the product of matrices is upper bounded by the product of the 

Frobenius Norms of the individual matrices such that AB F A  F  B  F . The proof of this is 
based on the well-known Cauchy Schwarz Inequality. 

From Equation (57), Γij = UHUHHi j and λij(1)⋯λij(Ns) are the singular values of Γij. Com- 

 

Ns 
2 2 

F 
γ=1 

≤ ∥UH∥
2 
∥UH∥

2 
∥H    ∥2 

ij i 

≤ [M − 
NI − (N   − 1)][M −

NI ] ⋅ [M −
NI ]M ⋅ M (62) 

2 D 2 2 

(63) 

bining the above two statements from [53], 
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Figure	128:	Relative	frequency	distribution	of	the	singular	value	power	sum	for	K	 3. The	upper	bound	for	this	sum	is	given
by	equation	(63).	

3.2.7.4.20 Verification of capacity upperbound To verify the capacity upperbound for 
K  3, several simulation trials were run in which Rayleigh Fading Channels with the Indoor A 
power delay profile were generated. It should be noted that Uij and Ui are normalized to have a 
power of 1 whereas H  has a power of 1 only in an expected sense. The values of λ UH 2, 
λ UH 2 and λ Hij 2 were found to be 3, 18 and 6 respectively which correspond to the 

dimensions of Uij, Ui and Hij respectively (Table 14). 
The SVD in (57) is computed and a distribution of the sum of the singular value powers 

∑Ns ∣λij(γ)∣2 is plotted.  This is shown in Figure 106.  It can be clearly seen from the distribu- 
tion that the values of the singular value power sum fall below the upper bound for K  3 thus 
satisfying the theorem. 

3.2.7.4.21 Channel estimation theory and Cramér-Rao Lower Bound In OFDM systems, 
for proper detection of symbols, channel estimation is performed by transmitting either known pilot 
symbols at certain frequency sub-carriers or across the entire OFDM symbol. In the K- User MIMO X 
framework described above, the pilot signals are set up such that only one antenna is transmitting 
in any given symbol time, during the estimation phase. So the MIMO channel estimation can be 
broken down into several single antenna channel estimations. To that end, in this section we 
summarize some of the well known theory on estimating a channel between a single transmit-receive 
antenna pair. We also present the mathematics for calculating the Cramér-Rao Lower Bound (CRLB).
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Transform twiddle factor matrix where N is the Fourier Transform size. 
Let us assume that an OFDM symbol X containing Np pilots is transmitted where Np N . The 

received signal Y  between a single transmit-receive antenna pair in the frequency domain is given 
by [54], 

Y  diag  X  Fh  W  (65) 

where W  is the noise with variance σ2 . 
Let Fp denote the Np L truncated Fourier matrix. The Maximum Likelihood estimate of the 

channel is given by [54], 
hML = (FHFp)−1FHdiag(X)HY (66) 

It is to be noted that hML is in the time domain. The corresponding frequency domain estimate 
HML can be obtained by taking the Fourier Transform. 

The Minimum Mean Square Error estimate of the channel is given by [54], 

HMMSE = RHHp (RHHp + σ2(diag(X)diag(X)H )−1)−1HML (67) 

where Hp is the channel frequency response at the pilot sub-carriers, RHHp is the cross-correlation 
between all the sub-carriers and the pilot-subcarriers and RHpHp is the auto-correlation between the 
pilot sub-carriers. 

The CRLB is referenced from [55] in which it is defined as follows, 

2 
CRLB = σ2Tr{D−1} (68) 

where 1 is the effective signal to noise ratio after the signal power has been normalized to 1. The 
 

σ2 

operator Tr   .    is the matrix trace. The matrix D, a function of the pilot locations is defined as 

Dn,k = 
Np−1 

m=0 
e−j2π(n−k)im/N 0 ≤ n, k ≤ L − 1 where {im ∶ 0 < m < Np − 1} represents the indices of the 

pilot locations. 

σ 
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3.2.7.4.22 Research 2: On the Application of Key-Based Physical Layer Security 

in 5G Heterogeneous Networks The 5G wireless standard is set to unlock several new applica- 
tions such as smart cities, autonomous vehicle  control, industrial automation, drone coordination 
and control all of which require seamless  connectivity [56] between a large number of devices. 
This diversity of devices and services  has highlighted the need for improved capacity and relia- 
bility while at the same time providing robust and low  latency security solutions for protection 
against malicious agents such as eavesdroppers. Several security  applications have been proposed 
in the past [57, 58] most of which  involve Layer 4 (Transport) and Layer 3 (Network) ciphering, 
access control, and other associated security policies applied along with tunneling or port for- 
warding [59]. Incorporating security at the higher  layers requires that received data be sampled, 
demodulated and propagated through the layers of the Open Systems Interconnect (OSI) stack 
before applying the decryption process, leading to more latency. We integrate 5G  heterogeneous 
networks, a key enabler for increased capacity, with enhanced security protocols at the Physical 

Layer to provide privacy at low delay. 
 
Unlike traditional cipher-based privacy algorithms, Physical Layer Security applies privacy pro- 

tocols at Layer-1 of the OSI stack as shown in 107. It is an alternate paradigm of security which 
uses imperfections in the wireless medium such as fading or noise to hide decryption information 
[60, 61] and provides security against eavesdroppers. There are two broad forms of Physical Layer 
Security techniques: dissemination and key extraction. Dissemination techniques aim to create bet- 
ter reception conditions at the intended receiver than the eavesdropper, either naturally or by using 
artificial noise [62, 63]. The gap in SNR can be used to convey secret information. The performance 
of these techniques is usually expressed in terms of the secrecy rate which is the rate difference 
between the intended channel and the eavesdropper’s channel. On the other hand, key extraction 
based systems use information from the unique transmitter-receiver channel as the secret key for a 
higher-level encryption algorithm. These techniques primarily rely upon differences in the channel 
rather than SNR and cannot be overcome simply by placing the eavesdropper closer to the trans- 
mitter. key based techniques include Channel Quantization and Precoder Matrix Indexing (PMI), 
among others [64]. We provide 5G extensions to key based Physical Layer Security by leveraging 
Precoder Matrix Indexing. 
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Figure	129:	OSI	5‐Layer	model	showing	Physical	Layer	Security	for	privacy	without	higher	layer	ciphers.	
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Figure	130:	System	model	showing	a	new	mode	for	securing	5G	communication	through	a	secrecy	plane.	[68]	
 

3.2.7.4.23 Review of PMI schemes Precoder Matrix Indexing (PMI) schemes convey secret 
information by mapping secret keys to different transmit precoders which can then be de- tected at 
the receiver if the channel is known. The secret key is used as an index to a precoder in a 
universally known codebook. The secret bits themselves never leave the transmitter but the mapped 
precoders can be decoded by the receiver to recover the codebook indices. Secret trans- mission 
requires that the channel between the legitimate transmitter and receiver be unknown to the 
eavesdropper. A scheme presented in [65] involves shuffling of codebook indices based on the 
channel capacity so that even if Eve can detect the transmit precoder, no information is extracted. 
This method however would require large codebook sizes to prevent brute force iteration of the 
codebook indices at Eve. In [66] a random rotational matrix and Singular Value Decomposition (SVD) 
is used to send arbitrary precoders between Bob and Alice. In [67], a scheme that effectively creates 
a fast-fading transmitter-eavesdropper channel and protects against blind estimation based 
decryption is described. 

 
3.2.7.4.24 Application of Physical Layer Security to Cellular Networks Several ef- 

forts to integrate dissemination type Physical Layer Security into cellular networks have been stud- 
ied. A probabilistic secrecy rate analysis is provided in [69] for cellular networks with Poisson Point 
Process models for the location of nodes. The work in [70] deals with artificial noise based physical 
layer security in millimeter wave cellular networks. Another approach which combines stochastic 
geometry with the analysis of average secrecy rate in relation to eavesdropper densities is shown in 
[71]. Lastly, [72] presents closed form expressions for secrecy outage probability as a function of 
fading, location and number of interferers. However, there have been few attempts to apply key 
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extraction techniques to cellular networks apart from our previous works [73, 74] which have inves- 
tigated key error rate based network planning for cellular environments with hexagonal geometries. 
We extend our previous work on Key based Physical Layer Security to more realistic stochastic 
network geometries. 

 
3.2.7.4.25 System Model 

 
3.2.7.4.26 Secrecy Plane through 5G Network Slicing 5G is expected to support bil- lions 

of connected devices in the upcoming future. To support this, a single network infrastructure must 
be capable of meeting a diverse set of service specifications. A key feature proposed for 5G is the 
separation of information on two independent logical planes- the control plane and the data plane 
[27]. In typical 5G heterogeneous networks it is envisioned that the control plane will facilitate the 
broadcast of system information (Radio Resource Management) at the macro cell level. The small 
cells can handle lower footprints so they will be mainly tasked with data offload. 

108 shows this separation which is referred to as Network Slicing. It is defined in [75] as 
the ability to create multiple logical slice networks on one physical network, where each slice can 
individually be managed and configured depending on different needs related to latency, privacy etc. 
In 3GPP it is defined as “A logical network that provides specific network capabilities and network 
characteristics” [76] such as transmission of data or control or the provision of privacy. To support a 
large number of devices, at the network infrastructure level, Software Defined Networking (SDN) and 
Network Function Virtualization (NFV) need to be applied to achieve flexibility and programmability. 
Both these techniques will allow the creation of multiple virtual networks sharing a single physical 
resource. In the backhaul network, SDN and NFV enable the logical separation of functions onto 
different planes or slices [75]. 

The current security methods for 5G involves the programming of a secret key during installation 
which is then used as a cipher for a higher level encryption algorithm. However, to incorporate 
physical layer security methods we propose a new mode for communication networks that adds a 
third plane - the secrecy plane - which can be used for secure exchange involving authentication, 
transmission and refresh of secret keys and other sensitive network information. The Secrecy plane 
represents a logical network infrastructure for physical layer security protocols such as the one 
investigated here. The secrecy plane forms a network slice just like the data and control planes. This 
plane, shown in 108 would encompass the security of both the control plane and the data plane at 
the physical layer. 

 
3.2.7.4.27 Geometry Model The proposed system model considers a stochastic geometry 

framework in which the base stations are spatially distributed according to a two-dimensional ho- 
mogeneous Poisson Point Processes (PPP). This framework is more realistic and more in line with 
5G Heterogeneous Networks than the hexagonal geometry. This is because the locations of nodes 
are more likely to be random in nature due to the size and unpredictability. The base station PPP 
is denoted by ϕBS and has density λBS. Given an area A, the number of base stations are drawn 
according to a Poisson Process with parameter AλBS. The nodes themselves are then uniformly 
placed in the two-dimensional space. We analyze the performance at a target user located at the 
origin. In the context of stochastic geometry, a cell is defined as the Voronoi Tessellation formed 
by the PPP ϕBS. This means that users in a Voronoi Cell are closest to the base station in that cell 
and are therefore assumed to be served by it. Consequently, we make the assumption that the 

Approved for Public Release; Distribution Unlimited. 
198



= ( ) 

target user placed at the origin connects to the base station closest to it. Once the target base station 
is found, every other base station is a source of co-channel interference at the target. 

The target base station is assumed to be Alice and the target user is assumed to be Bob. Slivnyak’s 
theorem states that performance metrics obtained at the target placed at the origin hold good for any 
generic receiver [77]. Communication between Alice and Bob is required to be protected against 
eavesdroppers by applying Physical Layer Security. The eavesdropper Eve, is assumed to be passive 
and can be located anywhere within the target Voronoi cell. A sample realization of the geometry is 
shown in 109. 

Figure	131:	An	example	realization	of	the	system	geometry	based		
on	a	Poisson	Point	Process	in	a	5	x	5	sq.	 km	area	

3.2.7.4.28 Signal Model Both Alice and Bob have MIMO capability with NA and NB 
antennas respectively. The signal model used consists of the transmission of precoded reference 
signals between Alice and Bob and vice versa. The channels between the two are assumed to be 
Time Division Duplex (TDD) channels, denoted by HAB and HBA. Perfect channel reciprocity is 
assumed, so that HBA HAB T . The system uses a codebook which is assumed to be known 
universally. The codebook contains the precoders each of which has an index called the Precoder 
Matrix Index (PMI). The binary equivalent of the PMI is used as the secret key. It can be seen that 
a k bit codebook contains 2k precoder matrices. We used the DFT codebook presented in [78]. 

Target Base Station (Alice) Interfering Base Station (BS) 

Target UE (Bob) 

Eavesdropper (Eve) 

UE served by Interfering BS 

Voronoi cell boundary 
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for sub-band i  and performs the following SVD, HAB,iGi = UB,iΣB,i(V†  Gi) 

3.2.7.5 Review of the 5G Extended MOPRO Scheme 

In this section, a PMI based physical layer security scheme called MIMO-OFDM Precoding matrix 
index based scheme with ROtation matrix (MOPRO [66]) is described. We add 5G extensions 
to the work in [66] including 5G reference signals and heterogeneous networks. The steps of the 
scheme [66], are shown below and also in 110 and 111. The scheme assumes an OFDM system in 
which the secret key is exchanged between Alice and Bob through precoded reference signals in each 
sub-band. 5G NR does not require cell specific reference signals but configuration of cell parameters 
to match LTE reference signals is possible [79]. With respect to MOPRO, it should be noted that 
the reference signals r1 and r2 shown in 111 are on different sub-bands. The scheme also relies upon 
the channel being correlated for at least 3 symbol times. 

 

Figure	132:	5G	Extended	MOPRO	signalling	time	schedule	showing	transmission	of	rotated	
refer‐	ence	signals.	

 
Step 1: Alice to Bob 

1. Alice first transmits a reference signal r, rotated by a random unitary matrix Gi in sub-band 
i where r ∈ CNA×1 and Gi ∈ CNA×NA . Bob then estimates the channel and obtains HAB,iGi 

 

 

Step 2: Bob to Alice 

 

B,i 
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. The bit sequence in sub-band 

B,i 

A,i 

2. If a k bit codebook is used, CB is divided into Ns = ⌈∗ p ⌉ groups of k bit sequences. The total

k k 

i A,i 

Figure	133:	Signalling	Procedure	of	the	5G	Extended	MOPRO	compatible	with	LTE	like	OFDM‐	reference	signals.	In	each	step,	the	
reference	signals	r1	and	r2	are	on	different	frequency	sub‐bands. 

1. Bob generates a p bit random secret key, SB and optionally applies channel coding to it to
generate CB.

number of sub-bands, N  must be equal to ⌈∗ p ⌉ 
k 

i is denoted 

3. For each sub-band i, Bob looks up CB,i in the codebook indices and finds the corresponding
precoder FB,i.

4. Bob then transmits a rotated reference signal G1,ir to Alice, where G1,i = U∗
B,iF

†  . 

5. Alice estimates HBA,iG1,i and performs an SVD, such that HBA,iG1,i = V∗
A,iΣ

T (UT G1,i)

Then she looks up the right singular matrix in the codebook and estimates the PMI. Alice
repeats this for all sub-bands and reconstructs CB. If channel coding is applied, Alice decodes
it to obtain SB.

Step 3: Alice to Bob 

1. Next, Alice generates her own p bit random secret key, SA and optionally applies channel
coding to generate CA. The k bit sequence for each sub-band i is denoted by CA,i.

2. For each sub-band i, Alice looks up CA,i in the codebook and finds the corresponding precoder
FA,i.

3. Alice then transmits a rotated reference signal G2,ir to Bob, where G2,i = VA,iF†  . 

by CB,i. 
s 
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4. Bob estimates HAB,iG2,i and performs an SVD. Then he looks up the right singular matrix
in the codebook and estimates the PMI. Bob repeats this for all sub-bands and reconstructs CA.
If channel coding is applied, Bob decodes it to obtain SA.

The secret key of the entire system is the concatenation of SA and SB. Both Alice and Bob 
have half of the key which they generated themselves and the other half which they estimated in the 
form of the PMIs. 

3.2.7.5.1 Security Properties of 5G Extended MOPRO It is worth analyzing exactly 
how the 5G Extended MOPRO scheme prevents the eavesdropper from intercepting the secret key. 
Firstly, the use of the random unitary matrix in step 1, effectively generates uniformly distributed 
secret keys. As stated in [66], the security guarantee comes from the fact that the secret key is split 
into two parts. For Eve to obtain the secret key, she needs to obtain both SA and SB. Eve can 
estimate HAEG, HBEG1 and HAEG2. If Eve is far away from both Alice and Bob, both HBEG1 
and HAEG2 will be completely different from HBAG1 and HABG2. Therefore Eve will not be able 
to ascertain any information about the secret keys. 

In the case where Eve’s location is close to that of Alice, her estimated HBEG1 may be similar 
to the actual HBAG1. In this case Eve perhaps might be able to acquire SB. But this is insufficient 
since she is still missing the other half of the key SA, which has been generated by Alice and never 
explicitly transmitted. A similar argument can be made for the case where Eve is near Bob and 
HAEG2 may be similar to the actual HABG2. In this case Eve can possibly obtain SA but not SB 
since this part of the key has never left Bob. 

3.2.7.5.2 Precoder detection for key recovery Let us consider a DFT codebook con- 
taining precoder matrices of size . Further, let us assume that a certain 
transmission uses a precoder matrix Ft t  1, 2,  , Nm from the codebook. The detected pre- coder 
at the receiver, Fr is a perturbed version of Ft as shown in (69). The perturbation is a result of both 
Additive White Gaussian noise and interference which is treated as noise. 

Fr Ft Θ (69) 

The precoder detection process uses the minimum distance operator χopt as shown below, 

χopt min  χ1, χ2, . . . , χNm (70) 

where χn n    1, 2,  , Nm is the distance between the received precoder matrix and each element 
of the codebook. The detection procedure is based on the unitary property of the precoder matrices 
in the DFT codebook as shown in (71). 

† 
n 

where r  1, 2,  , Nm and n  1, 2,  , Nm and the operator .  is the Frobenius Norm. By com- 
bining, (69) and (71) we have, 

χn = ∥(Ft + Θ)F † − I∥ = ∥FtF † − I + ΘF †∥ (72) 

where t  1, 2,  , Nm and n  1, 2,  , Nm. The precoder index n that satisfies (70) is the estimated 
PMI. Once the PMI has been obtained for all the sub-bands, the estimated bits of the secret key 
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can be obtained. In general the Key bit Error Rate is defined as the probability that any bit in the 
transmitted key is not the same as in the estimated key. However there is a modification that is 
specific to MOPRO, which adds a scale factor of 0.5 to the Key bit Error Rate calculated as defined 
above. This is due to the fact that the secret key is the concatenation of both SA and SB but the 
errors are only in either SA or SB depending on the MOPRO stage. Recall that Alice generates SA 
herself and estimates SB. So the errors are only in SB. Similar is the case for Bob. 

3.2.7.6 Simulation procedure and results 

In this section we present simulation results for the Key Bit Error Rate of the 5G Extended MOPRO 
scheme under both interference and noise limited scenarios in a stochastic geometry environment. 
We consider an area A    5km  5km. For a given base station density λBS, multiple trials are 

Table	17:	Simulation	Parameters	

Channel Model Rayleigh Fading 
MIMO System 
Subchannel bandwidth 15 kHz ∆f 
Channel bandwidth 20 MHz 
Number of subcarriers 1320 
Codebook DFT Codebook [78] 
Transmit Power 46 dBm 
Rx Noise Figure 4 dB 
Thermal Noise Density 173.8 dBm/Hz 
Path Loss Exponent 3.5 

performed to reduce the effect of noisy data. The number of base stations in a trial is drawn from the 
corresponding Poisson Process and the nodes are placed uniformly. 

The target user at the origin connects to its closest base station. The target user is assumed 
to be Bob and the closest base station is Alice. Each of the base stations apart from the serving 
base station is counted as a co channel interferer. The aim of the simulation is to obtain the Key 
Bit Error Rate performance at the target Alice Bob pair in the presence of other interfering base 
stations using the same time-frequency resources. 

Assuming that each base station (Alice) has the same transmit power of 46 dBm, all three 
steps of the security scheme are performed over 1320 subcarriers in the presence of both noise and 
interference. A free space exponential path loss model, d−α is used, where d is the distance and α is 
the path loss exponent. The Key Bit Error Rate across trials is calculated and plotted for various 
values of base station densities. The simulation parameters are shown in Table 17. 

In a small, finite area such as 25 sq.km, lower densities exhibit better Key Bit Error Rate 
performance simply on account of the fact that lower densities result in less interfering base stations 
on average. For λBS between 0.01km−2 and 0.1km−2, the average number of interferers is rather low 
so this leads to the best performance in Key Bit Error rate as indicated by 112. Further it can be seen 
that using a higher codebook size while improving security leads to higher key error rates. 113 shows 
the cumulative distribution functions of the Key Bit Error Rates for both 1 and 2 bit 
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There are some additional considerations which could form a part of future work. The first is the 

inclusion of multiple eavesdroppers. The second is the case where there are multiple receivers with 
which secret keys need to be exchanged. In this case, network scheduling algorithms based on 
channel conditions can be applied. These include Proportional Fair algorithms or greedy algorithms 
which minimize Key Bit Error Rate. 

 
3.2.7.6.1 Conclusion We proposed the use of network slicing to incorporate a new secrecy 

plane in 5G networks. We have investigated Key Based Physical Layer Security as a component of the 
Secrecy plane. Under stochastic geometry frameworks, the Key Bit Error rate performance was 
analyzed to obtain optimum base station densities for 5G Heterogeneous Network design. The results 
indicate a way forward for 5G dynamic key refresh and 5G network slicing for secret information 
exchange. 

 
3.2.7.7 Technical Accomplishments in Task T2-7 

Describe the technical accomplishments made during the course of the project. 
T2-7 accomplishments were the innovative use of relaxed constraints to enable high throughput 

through K-User MIMO, seen in [42], [80], and used for IoT ecosystems in [81]. K-User MIMO 
facilitates all-to-all communication between K access points and K mobile devices.  For such a 

bit codebooks for λBS = 0.01. λBS = 0.1 achieves close to 3%. 
codebooks at various base station densities. A reasonable threshold of 1% is met by both 1 and 2 

Figure	134:	Key	Bit	Error	Rate	vs	Base	Station	density	
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Figure	135:	CDF	of	Key	Bit	Error	Rate	for	various	Base	Station	densities	(λBS)	and	codebook	sizes.	

network, T2-7 illustrated the demodulation of K2 independent data streams through a new inter- 
ference cancellation beamforming algorithm that improves spectral efficiency compared to massive 
MIMO. Research shown in [80] derives a multi-user Shannon Capacity formula for K-User MIMO 
for K    3. [80] defined an Orthogonal Frequency Division Multiplexing (OFDM) frame structure 
that demonstrates the allocation of time-frequency resources to pilot signals for channel estimation. 
T2-7 determined a practical upper bound for MIMO array sizes that balance estimation overhead and 
throughput. The simulation results show the practical capacity in small cell geometries under 
Rayleigh Fading conditions, with both perfect and realistic channel estimation, [80]. 

T2-7 also enabled the use of an entirely novel version of Physical Layer Security by creating 
protocols that map random secret key bits to precoders in a codebook through a Precoder Matrix 
Index, [82], [83]. This research introduced a scheme for extending 5G with Physical Layer Security, 
an emerging Open Systems Interconnect Layer-1 security area that achieves perfect secrecy data 
transmission. This technical achievement sets the foundations for a Stochastic Geometry approach to 
Key-based Physical Layer Security establishes a paradigm for 5G Heterogeneous Networks. T2-7 
utilized Time Division Duplex algorithms with reference signals in a 5G-OFDM framework to enable 
shared, private information. The Physical Layer Security algorithm maps random secret key bits 
to a precoder in the Precoder Matrix Index (PMI) codebook. These new Layer-1 protocols, which are 
separate from higher-layer network and transport layer security, can decrease latency of the 5G-
OFDM system and improve computational overhead [83]. 

Over the last few months, T2-7 has augmented the Physical Layer Security scheme in [82] 
and [83] to use machine learning to process received precoders in noisy and imperfect channel 
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environments at 99.49% accuracy in 10dB SNR environments. Results show that as we increase the 
antenna diversity, T2-7 shows that machine learning augmentation can lead to exemplary results for 
low-SNR environments. 

In summary, task 2-7 has accomplished the following: 

• Developed a more feasible implementation of K-User MIMO for K  3. 

• Innovated a new form of Physical Layer Security that provides perfect privacy that allows for 
low-latency, low-computation privacy. 

• Augmented the new Physical Layer Security algorithm to make use of machine learning meth- 
ods to improve detection accuracy in low SNR environments. 

 
3.3  Project Progress and Project Plans for Thrust 3: Testing, Evaluations and 

Verification of Large-scale Autonomous Vehicles (TEVLAV) 

3.3.1 Project Progress for Task T3-1 (Motion planning and control framework for 
coordinated collective motion of robotic swarms) 

3.3.1.1 Period of Performance under Task T3-1 

Start Date: January 2018 

Conclusion Date: December 2021 

Faculty lead:  Dr. Ali Karimoddini 
 

3.3.1.2 General Description of Task T3-1 

A robotic swarm is a group of many robots in which a desired collective behavior emerges from local 
interactions among robots and between the robots and the environment. In robotic swarms, the 
individual member robots are simple in design and small in size. Relatively small robots can navigate 
narrow spaces, are disposable and economical, and are safe in human-robot collaborations. For 
example, a swarm of small quad-rotors can collect aerial imagery quickly and cheaply. Moreover, 
whereas individual members may be inherently limited in their sensing, communication, and perfor- 
mance capabilities, as a group, robotic swarms may solve complex problems collectively even when 
member robots do not have access to centralized control or global knowledge. Therefore, in recent 
years, robotic swarms have been suggested as a convenient means to perform tasks that are too risky 
for humans, or where fast response is crucial, and tasks that are beyond the capabilities of a single or 
few individual robots. For example, a swarm of drones could be instructed to spray pesticides, 
pollinate a field, and monitor crops. Inspired by termites, heterogeneous robotic swarms could be 
programmed to search and rescue people buried under snow avalanches or trapped in wildfires, pile 
sandbags along coastlines vulnerable to flooding, or layout a fence around fatal radio-active spills. 
There have been impressive light shows with a swarm of drones, such as Intel’s Shooting Star drones, 
contracted in the 2017 Super Bowl halftime and the 2018 Winter Olympics. Robotic swarms can also 
be employed in search and rescue operations, mining, area explorations, planetary explorations, 
industrial machinery inspections , environmental monitoring, mapping, distributed manipulation, 
collective transportation, surveillance, and reconnaissance. 
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The ability of robotic swarms to execute complex tasks with enhanced adaptability and robust- 
ness stems from the core principle of the swarm of robotics. The core idea behind swarm robotics is 
that individual robots run local control algorithms, merely based on local communication and local 
sensing inputs such that a desired collective (global) behavior emerges from local interactions among 
the neighboring robots and between the robots and the environment. Moreover, this principle em- 
powers individual robots with limited actuation and limited computational power to solve complex 
problems cooperatively without relying on any centralized observer. Not relying on a centralized 
observer promises robustness of the robotic swarm to member robot drop-outs, as a single(some) 
failing robot(s) will not peril task execution because its(their) role(s) will be fulfilled by one(some) 
of the many other robots in the swarm. 

Many robotic swarm applications often involve a coordinated collective motion of a robotic 
swarm from the current location to other locations in space. For example, consider the problem 
of transporting large objects from location A  to location B  or the problem of carefully spraying 
pesticides and monitoring crops. Here, we drive or fly several robots from location A to location B 
while keeping the group together, following the desired path, and keeping the distance between each 
pair to not exceed a certain threshold. The process of collectively navigating a robotic swarm from 
the current location to other locations in space may require the swarm to rotate, translate, shrink, 
expand, and track the desired target (path) with enhanced adaptability, flexibility, and robustness to 
collaboratively complete tasks. 

This project studies the coordinated collective motion of robotic swarms via abstraction. We 
propose a distributed swarm path planner, swarm pattern formation controller, and swarm time- 
varying formation controller to plan and control the motions of a robotic swarm through a relatively 
fewer set of meaningful parameters. Abstraction is made to capture the motion of the swarm using a 
set of few swarm descriptors or channeling the motion of the robotic swarm as the motion of a lower-
dimensional system. More specifically, consider a scenario with hundreds of robots where a human 
operator would like to command the motions of these hundreds of robots to execute a given task. 
This can be very demanding and cumbersome if motions are to be specified individually for each 
robot. Moreover, since the original problem exists in the higher dimensional space, methods to 
reduce the dimension of the problem to a lower meaningful ones need to be devised. Hence, using 
abstraction techniques, we transform the motion of the robotic swarm into the motion of a lower-
dimensional system. In general, to handle such and related scenarios, we design a swarm path 
planning and control framework to realize a flexible coordinated collective motion while also 
satisfying the following requirements. 

• Robustness: the flexible coordinated motion algorithm does not depend on the ordering and
identification of member robots. It copes well with the addition or loss of individuals.

• Scalability: the algorithm scales well with different group sizes. The introduction or removal
of members does not drastically change the performance of the control algorithm.

• Distributed: the flexible coordinated collective motion algorithm performs well under the
absence of a leader or a centralized controller.

• Flexibility: the flexible coordinated collective motion algorithm shall apply to a broad spec- 
trum of tasks and environmental conditions.

• Correctness: the distributed algorithm shall converge to the correct value; that is, the robots
shall reach consensus on the correct value.
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3.3.1.3 Objectives for Task T3-1 over the Course of Project 

• Objective Name: Design, development and analysis of motion planning and control frame- 
work for coordinated collective motion of robotic swarms. 

Objective Type: Research 

Objective Description: The motion planning and control framework shall be robust to 
individual robots drop-out, scalable, and distributed to be applicable to a broad spectrum 
of tasks and environmental conditions. To achieve these goals, the main cases of interest 
are : 

1 Swarm path planning: to plan an optimal path for a coordinated collective motion of 
a robotic swarm. The swarm path planning returns suitable swarm center positions, 
swarm rotational angles (roll, pitch, and yaw angles), swarm lengths, swarm widths, 
and swarm heights to move a robotic swarm from an initial configuration to the goal 
configuration. 

2 Swarm pattern formation: to form the desired robotic swarm shape suitable to execute 
a given task. The swarm pattern formation framework commands the robots to attain 
the desired shape before transferring the group from starting location to destination 
location. 

3 Swarm formation and trajectory tracking: to collectively drive a robotic swarm while 
rotating, shrinking, and expanding the group about the desired target (path) to col- 
laboratively complete tasks. 

Impact: Many existing works fail to address the motion planning and control problem that 
respects the robustness, scalability, leaderless (distributed), and flexibility requirements. 
Addressing these challenges is essential to bring the developed swarming technologies 
from an innovation space in controlled environments to real-world reliable and large-scale 
operations. More precisely, the planning and control framework allows a human operator 
or a task planner to command the group of robots with few meaningful parameters, 
independent of a large number of robots in the swarm, without imposing unnecessary 
constraints such as rigidity constraints, robot ordering, and seeding, and robot labeling on 
the swarm. Also, the developed algorithms are easy-to-use, robust to robot drop-outs, 
robust to network failures, scalable to different swarm sizes, and perform correctly under 
the absence of a leader or a centralized controller/observer. 

 
3.3.1.4 Progress Against Planned Objectives in Task T3-1 

The objective of this task is accomplished. Several novel algorithms addressing the collective motion 
of robotic swarms in the presence of robot drop-outs, network failures, and limited communication 
bandwidth capacity are developed. The main accomplishment of this task are: 

• A swarm path planning algorithm that plans the swarm center position, rotation angle, length, 
width, and height suitable for a coordinated collective motion. The proposed algorithm is based 
on a distributed RRT∗ algorithm on a radial configuration space with origin at the initial 
location of the swarm. 

• A distributed swarm pattern formation algorithm that steers the robots to form the desired 
shape collectively and cooperatively. The swarm pattern formation appears in the first stage 
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of the coordinated collective motion of the robotic swarm. The convergence analysis of the 
proposed swarm pattern formation algorithm is also provided. 

• Two distributed dynamic average consensus estimators that do not require special initial- 
ization. The proposed consensus estimators are robust to network failures, do not require the
knowledge of derivatives of signals at each robot, do not exhibit chattering phenomena, and
have zero steady-state errors. The consensus estimators are used to estimate the current value
of the global behaviors of the swarm. The convergence analysis of the proposed dynamic
average consensus estimators is also provided.

• A distributed time-varying formation control and tracking algorithm for robotic swarm with
directed and undirected underlying communication topologies. The proposed algorithm does
not require specifying formation parameters for individual robots in the swarm; rather, all the
robots are given similar global specifications, independent of the number of robots in the group.
Furthermore, a detailed stability analysis is carried out to determine suitable control
parameters and develop the formation feasibility conditions.

• A distributed and scalable leaderless robotic swarm control framework that allows the group to
navigate an environment with obstacles in a coordinated manner collectively. The framework
allows the robotic swarm to track a given path while achieving the desired geometric pattern
parametrized by the high-level swarm descriptors. The developed framework is also robust to
member robot drop-outs and communication link failures among the robots. Furthermore, the
detailed stability and converge analysis of the proposed coordinated collective motion
algorithm is provided to determine suitable control parameters.

• A distributed and scalable swarm control framework for a swarm of robots with non-linear
kinematics and dynamics communicating over a network with limited bandwidth capacity.

3.3.1.5 Technical Accomplishments in Task T3-1 

In this task, to meet the mission requirements and enable scalable human-swarm interaction, we 
develop a hierarchical framework layered into various hierarchies. In a hierarchical control structure, 
the complexity of the design process can be distributed into different layers. In our proposed hierar- 
chical swarm control framework, each layer abstracts away the details of other layers in the frame- 
work. A swarm pattern formation, path planning, time-varying formation tracking, and collision 
avoidance algorithms were embedded in the framework to safely arrange the team into the desired 
shape and navigate towards the desired destination collectively. More precisely, the swarm pattern 
formation first rearranges the swarm into the desired pattern using sorting and max-consensus algo- 
rithms. Then, the swarm time-varying formation tracking controls the swarm to track the desired 
trajectory of the swarm descriptors. The desired trajectory of the swarm descriptors is generated by 
the swarm path planning algorithm using a distributed RRT∗ algorithm on the radial configuration 
space. 

This task proposes a distributed hierarchical control framework for the swarm time-varying 
formation tracking, using tools from control theory, graph theory, and statistics. Based on local 
sensory input and information from local neighbors, the framework transfers a robotic swarm from 
the current location to the desired destination location while tracking the desired pose and shape 
(length, width, and height) trajectory. For this purpose, all the individual robots will be given the 
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global specification (desired center trajectory, orientation, length, width, and height of the swarm) 
from a swarm path planner. Our distributed hierarchical control architecture has two layers: the 
high-level (swarm) control and low-level (robot) control layers. In the high-level layer, we estimate 
the global properties of the swarm using a dynamic average consensus estimator and generate the 
desired trajectory for the low-level control layer. Our dynamic average consensus estimator does not 
require special initialization, does not suffer from chattering phenomena, and converges to an 
adjustable bounded error in a finite time. In the low-level control layer, we design a trajectory 
tracking control and collision avoidance control to achieve a desired coordinated collective motion 
while avoiding obstacles in the environment. Furthermore, the developed framework ensures scalable 
control computations, robustness to robot drop-outs, and communication link failures. The proposed 
control laws are independent of robot permutations and do not assign unique label identification to 
individual robots in the swarm. The proposed swarm control framework is easy to integrate with a 
global planner or interface with humans to provide specifications. 

Next, we the coordinated collective motion of robotic swarms from global specifications. In many 
applications, tasks are assigned to the swarm in terms of reaching goals [84–87] and/or tracking 
a specified trajectory that capture the collective behaviors of the swarm [88–91]. Here, individual 
(local) robot controllers should be developed so that the robotic swarm performs a specified collective 
(global) behavior required to execute a given task effectively. 

There are various control design approaches presented in the literature of swarm control al- 
gorithms (see, e.g., [92, 93] and reference therein), which include density-based [85], potential 
field [89, 94], optimization [88], behavior-based [84, 95, 96], consensus-based [97–99], leader-follower 
[100–103], and virtual structure control [98] methods, to name a few. The density-based, potential 
field-based and optimization approaches are mainly employed to solve the swarm pattern forma- 
tion problem [85, 88, 94, 104]. Similarly, behavior-based approaches have been employed to design 
local behaviors for robots to perform swarm navigation to achieve the desired performance col- 
lectively. The work in [96] develops a decentralized behavior-based architecture, requiring fewer 
communications among the robots in the swarm. However, in general, behavior-based approaches 
are analytically challenging to establish proofs of their convergence. 

On the other hand, in the leader-follower and virtual structure methods, the desired trajectory of 
the swarm are assigned to leader robot(s), virtual leader(s), or virtual structures. Olfati-saber [89] 
employed formation graphs to capture the robots’ dynamics and inter-robot constraints, and then 
combined them with a potential field and virtual leader approach to drive a group of agents along 
a specified path. To improve the scalability of the swarm control algorithm, Belta et al. [90] proposed 
an abstraction-based control framework that drives a swarm of robots along a given path. However, 
the centralized architecture in [90] makes the design vulnerable to observer failures and 
communication link losses. Recently, Shiyu Zhao [91] presented a new approach based on stress 
matrices of graphs to achieve multi-agent formation maneuvers. The author adopted a distributed 
leader-follower approach to solve the formation maneuver control problem for a team of single- 
integrator, double-integrator, unicycle, and non-holonomic agents. However, the calculation stress 
matrices in [91] is nontrivial. Freeman et al. [105] designed a distributed estimation algorithm to 
estimate first-order and second-order moments of the swarm’s distribution. They combined their 
estimation algorithm with motion controllers for each robot to regulate the shape and position of the 
swarm [106]. Nevertheless, the proposed PI estimator exhibits slow convergence rates, and the 
combined estimator/controller algorithm in [105] is limited to single integrator agents. 

In this work, given a global specification (swarm formation and trajectory), we propose a scalable 
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the linear velocity, ωi is the steering velocity, and gi(xi) = [gi1 (xi)  gi2 (xi)], where gi1 (xi) = 

Let the set of neighbors of Robot i at time t be given by Ni(t) = {j ∈ V(t) ∶ (i, j) ∈ E(t)}. The 

1,  stacks the argument vectors. The swarm structure χ 

and robust distributed control framework for synthesizing control laws for local (individual) robots 
so that they, as a group, can switch to any time-varying affine transformation of initial swarm 
formation while the swarm is tracking a desired bounded C1 trajectory. For this purpose, we develop 
a distributed control algorithm for swarm formation control using feedback linearization and 
dynamic average consensus estimation. A salient feature of the proposed method is handling the 
losses or addition of robots from/to the swarm. This is due to the flexible and distributed architecture 
of the proposed framework versus the fixed and centralized network architecture in [90] where a 
communication loss with an observer results in a complete failure of the swarm system. Furthermore, 
many existing leader-follower based swarm algorithms require robot labeling [91, 102]. For example, 
in [102], a unique swarm leader and a unique tail robot are required for the swarm to navigate along 
the desired trajectory. However, our leaderless swarm formation control formulation do not require 
special robot ordering and labeling. More importantly, compared to swarm algorithms with a fixed 
inter-robot distance (see, e.g. [89]), our control design formulation allows the swarm to shrink, 
expand, rotate, translate, or perform compositions of these operations. All these features make our 
swarm control framework suitable for diverse applications. 

3.3.1.5.1 Problem formulation Consider a swarm  of identical rear-wheel driving 
car-like robots deployed to execute task  in a world-frame ( with center and basis vectors 
{xW , yW }). The governing kinematics of Robot i are given by 

ẋi = gi(xi)ui,  i = 1, ⋯, N,  (73) 

where xi = [ x̄ i  y¯i θ  ϕ ] ⊆ R4 is the state vector, u  = [v  ω ]T ⊆ R2 is the control input T i i 

vector, [ x̄ i  y¯i]T is the position vector, θi is the heading angle, ϕi is the steering angle, vi is 

[cos θi sin θi 1 tan ϕi 0] , g  (x ) = [0  0  0  1] , and L  is the wheel base of Robot i, respec- T T 

tively. Let be a time-varying communication graph of the swarm  at time 
, where is the set of robots in the swarm and is the set of 

communication links among the robots in the swarm. The communication graph t  changes i) 
when new robots join the swarm; ii) when the swarm loses some member robots, and iii) when the 
communication links among the member robots fail. 

Assumption 1. The communication graph   is assumed to be a slowly time-varying graph. Also, 
we assume that G(t) is a strongly connected bidirectional graph at each time t. 

swarm configuration xs ∈ Xs of a swarm S is defined as xs = colN (xs ), where xs = [ x̄ i  ȳi ]T , 

i = ⋯ , and the operator (⋅) 
i=1 i i 

is then 

defined as the tuple . Now, our objective is to design a swarm formation control 
law u that steers a swarm of robots S given by 

ẋ = G(x)u,  (74) 

where x = colN (xi), G(x) = diag(g1(x1), ⋯, gN (xN )), u = colN (ui), along the desired path. Given
a large number of robots evolving in the swarm configuration space Xs, solving the aforementioned 
control problem is non-trivial as the dimension of the swarm system in (74) depends on the number 
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of robots in the swarm. To remedy this, we capture the motion of the swarm in terms of the motion 
of an abstract shape. An abstract shape is a convex closed curve S circumscribing the convex hull 
of configuration xs of the swarm structure χ. In the Cartesian coordinate ( x̄ ,  y¯), the abstract shape S 
is given by 

∣ 
x̄ − μx ∣

ma 
+ ∣ 
y¯ − μy 

∣
na 

= 1, n  ≥ 2, m  ≥ 2,  (75) 

 

where is the coordinate of center of the abstract shape,  and  are the length of the 
semi-major and semi-minor axes of the abstract shape, respectively. Let a  R5 be the vector of 
parameters of abstract shape (see Section 2.3.1.5.2). Also, let a surjective submersion 

Φ R2N R5,  Φ xs a.  (76) 

relate the abstract shape parameters a  and the swarm configuration xs. Then, we can specify 
the desired path for the swarm as the trajectory of the abstract shape parameters a. Specifying 
the swarm’s desired trajectory in terms of the trajectory of the abstract shape parameters is more 
practical than providing the desired trajectory for every member robot in the swarm. Also, in this 
approach, the swarm’s trajectory is independent of the number and permutation of robots in the 
swarm. 

Now, we aim to design a distributed control law ui for each Robot i  in the swarm so that the 
abstract shape parameters a track the desired trajectory ζ  specified by the user (motion planner 
or human). However, the synthesis of control law ui requires each Robot i in the swarm to know the 
position of all robots in the swarm to determine the abstract shape parameters a. In [90], this 
requirement is handled by introducing a central observer that moves with the swarm. The observer 
collects the position information of all robots in the swarm, computes the abstract shape parameters, 
and broadcasts the computed value of the abstract shape parameters to all robots in the swarm. 
However, this approach requires all the robots to be in the communication range of each other or the 
observer, thus, prone to high bandwidth requirements or a single point of failure at the observer. 
To circumvent this problem and realize a distributed control architecture, we design a dynamic 
average consensus estimator for each Robot i to estimate the abstract shape parameters a only based 
on the information collected from Robot i’s neighboring robots. More precisely, we state the 
formation and trajectory tracking control problem as follows: 

Problem 2. Under Assumption 1, given a time varying desired trajectory ζ  R5 of an abstract shape, 

a) Construct the abstract shape parameters a. 

b) For the abstract shape parameters a, design a distributed neighbor-based estimator so that each 

robot’s estimation of abstract shape parameters 
{1, ⋯, N }. 

ā i  converges to a  in a finite time, for all i ∈ 

c) Generate the desired trajectory for Robot i, i  1,  , N  , such that the abstract shape parameters 
a tracks ζ. 

d) Design a feedback control law for Robot , , so that each robot tracks its desired 
trajectory, and the swarm system (74) tracks the given trajectory ζ ∈ R5. 

a a
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3.3.1.5.2 The leaderless swarm formation control framework A swarm formation control 
is a challenging problem. Complexities of the robot kinematics and the swarm dynamics often lead 
to intractable control problems. This section employs tools from differential geometry, consensus, 
and control theory to systematically design local control laws for Robot i in the swarm to realize a 
specified swarm formation ζ. The desired time-varying swarm formation is given in terms of the 
abstract shape parameters a. For Robot i, we propose a control law that drives the pose and shape 
of the swarm (the motion of the abstract shape) to track the desired trajectory ζ. For this purpose, 
Robot i estimates the value of the abstract shape parameters a via a dynamic consensus estimator 
from the information available at neighboring robots. The detailed design of the proposed control 
framework is presented in the following sections. 

3.3.1.5.3 Trajectory-tracking control law This Section solves a trajectory tracking con- trol 
problem (Problem 2.d) using input-output linearization. For this purpose, we define the Robot i’s 
output yi hi xi , hi xi R4 Rr in such a way that the decoupling between Robot i’s linear input-
output dynamics and internal dynamics is achieved: 

hi xi L cos xi D cos xi xi 

hi2 = xi2 + L sin xi3 + D sin(xi3 + xi4 ), 
(77) 

where r is the total relative degree of Robot i and D  0 is the “look-ahead” distance. The output 
function hi, defines the position of a virtual point Pv (see Figure 114a) in front or behind of Robot 
i based on the sign of D to simplify the control design by decoupling input-output dynamics and 
internal dynamics. Let the augmented function h̄ (x ) ∶ R4 → R4−r be chosen as h̄ (x ) = [x  x  ]

T 

such that the state transformation T (x ) = [qT qˇT]
T 

= [hT(x  ) h̄ T (x  )]
T 

is a diffeomorphism.

Also, let the control input ui to Robot i be given as ui = ᾱi(xi)+ β̄i(xi)v̄i , where ᾱi(xi) = 0 due to the 

i i i i i Lg 
hi (xi)  Lg hi (xi) 

qˇ̇ i = f̌ i(qi, q ǐ), q i̇ = Aiqi + Biv̄i, yi = Ciqi,  (78) 

yW v (yi1 yi2) 
yb 

yW b 

xi1

OW yi1 xW

(a) 

OW xW

(b) 
Figure	136:	(a)	Robot	reference	frames	and	definition	of	virtual	point	Pv,	(b)	Swarm	reference	frames	and	the	abstract	shape	
that	circumscribes	the	region	occupied	by	swarm	of	robots.	
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the mean of position vectors of virtual point of each Robot i in Frame {W}. It represents the center 

b N i=1 

where q  = [h 
h  ]T, q̌̇ = fˇ(q , qˇ ) = ∂ h̄i(xi) x˙ is the internal dynamics, and A  = [ 0 0 ], B  = I  , 

C  = I  , v¯ = [v¯ v¯ ]
T
. Based on this, we design a linear control law v¯ so that q  can track desired

trajectory qid. Assuming that all states of the control affine system in (73) are measurable, for stable 
zero dynamics [107], we employ the control law 

v¯i q˙id Ǩ i  qid qi , Ǩ i  0,  (79) 

where Ǩ i  is the control gain, for Robot i  to exponentially tracks the desired trajectory qid. In
many application area of swarm of robots, specifying reference trajectory qid for each individual robot 
is not practical. Therefore, we design qid by solving the multi-input multi-output (MIMO) input-
output linearization problem in the next section. 

3.3.1.5.4 Trajectory generation The collective behavior of robots in the swarm is cap- tured 
by the motion of the abstract shape, which is represented by the trajectory of the abstract shape 
parameters a. For each robot in the swarm, we design a distributed swarm controller so that the 
abstract shape parameters a  tracks the desired trajectory ζ. In this setting, we design a dynamic 
average consensus estimator to estimate the abstract shape parameters a. Then, for each Robot i, the 
swarm controller output will be converted to the desired trajectory qid to be tracked by the 
trajectory tracking control law (79). For Robot i, the approaches to the desired trajectory generation 
are discussed next. 

We start by putting together the linearized input-output dynamics given in (78) to form a new 
swarm system as 

q˙ = Aq + B v̄ ,   y = Cq,  (80) 
where A = diag(A1, ⋯, AN ), B = diag(B1, ⋯, BN ), C = diag(C1, ⋯, CN ), q = colN (qi), v¯ = 
colN 

i=1 (v̄ i ). The output 
i 1 

y of the swarm system in (80) is the collection of the output of individ- 

ual robots (local behaviors). However, the control specifications for the swarm is given in terms of 
collective (global) behaviors of the swarm. To address this issue, we transform (80) from the robot 
configuration space to the abstract shape space using the input-output linearization technique. To 
input-output linearize the swarm system in (80), we construct a new output function y˜ to be the 
abstract shape parameters a of abstract shape. Let the abstract shape be described in the world 
coordinate by Frame (shown in Figure 114b with center and basis vectors ) 
and in the body coordinate by Frame   (shown in Figure 114b with center   and basis vectors 

). The position vector of virtual point of Robot with respect to Frame is represented 
by , and the position vector describing the origin of Frame with respect to Frame  is 
denoted by  W . Let  W be the rotation matrix of Frame   with respect to Frame 
and pi be the position vector of virtual point of Robot i with respect to Frame {b}. Using geometry, 

p  = [p  p    ]
T 

= −RW TOW + RW Tq  , (81) 

where and are the components of vector in Frame . The origin W of Frame ,  , is 

of the abstract shape : OW = μ =  1 ∑N  qi. We utilize the co-variance matrix of robot distribution
in the region circumscribed by the abstract shape to define the shape and orientation of the swarm. 
The co-variance matrix of the ensemble of the robots in Frame {b} is given by 

i1 i
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  2σxy  ). (85) 

the w
√

idth and length of the abstract shape in Frame {b} can be captured by sw = cps2  and 

x y 2 1 s 

s f 1 f 5 

f 
⋱ ⋮ 

⎤ 
⎦ 

= [ 
1  ∑N 

(pix − 0)2 0 
] (82) 

0 N −1 ∑i=1(piy − 0) 

Similarly, the co-variance matrix of the ensemble of the robots in Frame {W} is given by 

Σ 
σxx σxy  . (83) 
σxy σyy 

The covariance matrix Σ0 is related to the co-variance matrix Σ1 in Frame {b} as 

Σ  = RW TΣ RW = [ 
s1 s12] . (84) 

Solving (84), the orientation θ of the abstract shape will be 

2 σyy − σxx 

Now, consider the convex hull that captures p  percentage of robots in the swarm. Then, 

sl = cps1, respectively, where cp = −2 ln(1 − p). The abstract shape parameters is given by a 

5−dimensional vector a = [μ = [μ  , μ  ], θ, s  , s ]
T

. Besides, assuming that q ≈ x  , from Defini- 
tion 76 we have . Now, to address Problem 2.a, we define the mapping as 
Φ q  a  Φ1 q  Φ5 q   T, where Φ1 q  μx, Φ2 q  μy, Φ3 q  θ, Φ4 q  s2, and Φ5 q  s1. 
Then, the state feedback control law will be 

v¯ = α(q) + β(q)w,  (86) 

where α(q) = −∆−1(q). [L
ri1 Φ (q) ⋯  L

ri5 Φ (q)]
T 

= 0, 
⎡
⎢ L   L

ri1 
−1
Φ (q)  ⋯  L L

ri1 
−1
Φ ( q ) ⎥

⎤ 

∆s(q) = ⎢ ⋮ 
gN  f 1 

⎥ , 
⎢L   L

ri5 
−1
Φ (q)  ⋯  L L

ri5 
−1
Φ (q)⎥

⎣
⎡⎢

g1 f 5 
I2 ⋯ 

gN 5 
I2 ⎥ 

⎢ 
N
⋮ ⋱ N

⋮ ⎥ 
β(q) = ∆s

−1

∆s(q) = 
⎢(q1−µ)TRs1 ⋯ 

(qN −µ)TRs1 ⎥
, 
f = Aq = 0 

,

⎣ N −1 N −1 ⎦ 
2 cos2 θ  sin 2θ 

Rs1 sin 2θ  2 sin2 θ 
,  g1 gN B, 

where N,  ,  , is the vector relative degree of (80), is the Lie 
derivative of function  along a vector field , and  is the Lie derivative of function 

along a vector field and along another vector field , where  . The surjective 
submersion Φ(q) and the state feedback control law v¯ in (86) transforms (80) into 

Σ1 N −1 i=1 

2 

. 

g1 1
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zi2 

)( 
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⎢⎢ 
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⎥⎥

⎢ 

η˙i
−

jk 
= −ρ tanh{c(γjk − γik )}, c ≥ 1, j ∈ Ni 

Accordingly, for swarm of N  robots, parameters [ µx µy σ∗ σ∗ s1 s2 ]T are expressed as the average 

N i=1 k N i=1 k

where ηi = [ηi
+

j ηi
−

j ]
T ∈ R2Ni is the internal state of the estimator on Robot i, ρ ∈ R and c ∈ R 

− 

−

where Ā  05×5, B̄  I5×5, and w  is the control law that steers abstract shape parameter a  to track 
the desired trajectory ζ. For the sake of reducing the computation cost, we simply design w as a linear 
control law, given as 

w  K̄  ζ  ā ζ˙,  (88) 

where K̄ is the control gain and ā is the estimate of a. 
Now, we can calculate from as , where and are th row of 

α(q) and β(q), respectively. We then compute the reference trajectory qid by solving 

q˙id = αi(qi) + βi(qi)(K̄ (ζ − ā )  + ζ˙),  (89) 

with qi(0) = xsi (0) being known. 

3.3.1.5.5 The dynamic consensus estimator Determining the abstract shape parameters 
vector a  R5 requires a centralized communication architecture or all to all communication among 
the robots in the swarm. This process is prone to failures associated with the centralized observer 
and with communication links between the observer and individual robots in the swarm. Therefore, 
rather than relying on a central observer to compute the abstract shape state vector a, we estimate 
the abstract shape state vector a (Problem 2.b) by exploiting the underlying graph structure of the 
network of robots in a distributed way using dynamic average consensus. To leverage the technique 
of average consensus, we represent all the components of the abstract shape parameters a in termsof the average of suitable expressions. First, we re-write (85) as θ =  tan    ( 1 ), where σ1 = 

and σ∗ = σyy −σxx . Then, we introduce  as: 
1 1 σ

∗ 
∗ 
2 

2σxy 
N 

2 N zi 

⎡
⎢
zi1 
⎤
⎥ 
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⎢  2( 

qix

qiy − ) 

⎤

⎥ 

z  = ⎢
zi3 
⎥ = ⎢(

qix μx qiy 
−
μy

) ⎥ 
. (90) 

zi4
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⎣zi6 ⎦

qiy 
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2 
ix 
2 
iy 

qix μx 
2 

⎥⎥⎦

of zi, that is,  1 ∑N zi . To estimate  1 ∑N zi , where k = 1, ⋯, 6, we implement an edge-based
dynamic consensus estimator of the form 

η˙i
+

jk 
= −ρ tanh{c(γik − γjk )} 

γik = ∑ ηi
+

jk 
− ∑ ηi

−
jk 

+ zik ,  k = 1, ⋯, 6,

    

(91) 

j∈Ni j∈Ni 

σ 

p 
p 

1 

2 

2 
∗ 

i 
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( ) 
k N i=1 k 

are global estimator parameters, and γi ∈ R is the estimate of  1 ∑N zi  where k = 1, ⋯, 6. From 
(91), it is clear that the edge dynamics captures the state of the disagreement between Robot i and 
Robot j. Further, the use of tanh  .  in (91), makes the proposed estimator smooth, avoiding the 
chattering phenomena [108]. This approach makes the protocol robust to agents joining or leaving 
the network, and to communication link failures among the agents. The proposed estimator has 
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w

c p s¯ 1 , respectively. Accordingly, the 

three stages due to the fact that the estimation of the average of some of the components of zi 
requires the knowledge of the average of other components of zi. In the first stage, we estimate 
the average of zi1 and zi2 by the mean estimator. Using the information from the mean estimator 
stage, the average of zi3 and zi4 is then estimated in the second stage by the orientation estimator. 
Similarly, in the third stage, using the information from the orientation estimator, we estimate the 
average of zi5 and zi6 by the width and length estimator. Then, the estimate of the components 
of abstract shape parameters a at each Robot i  is given by μ̄ = [γi1 γi2 ], σ̄ 1

∗  = γi3 , σ̄ 2
∗  = γi4 , 

s¯1 = γi5 , and s¯2 = γi6 . Based on this, the estimation of the abstract shape orientation is given 

θ̄ = tan− ( as 1 
 

1 σ¯1
∗
 
 
). Further, the estimate of the length of semi-minor axis s¯  and the semi-major

axis  = cp  s̄ 2 and s̄ l = 
estimate of the abstract shape parameters ā is given by 

ā(t) = [μ̄  θ̄  s¯2 s¯ ]  .  (92) T
1 

s¯l of the abstract shape are given as s̄ w



= 

×

ζ(t) = [ ( )  − 

Swarm navigation along a winding road 
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Figure	137:	(a)	The	communication	graph	of	the	swarm	of	robots	in	the	conducted	simulation.	
(b)	Navigation	of	swarm	of	robots	along	a	desired	trajectory		ζ.	The	robots	are	initially	in	a	square	

formation.	Their	formation	evolves	to	rectangular	and	parallelogram	shapes	along	the	road	while	tracking	ζ.	

3.3.1.5.6 Simulation results In this Section, we present numerical simulation results to 
illustrate the performance of our leaderless swarm formation control system. We consider a group of 
9 identical rear wheel driving car-like robots with the virtual reference point of each robot located at 
D   0.05m away from its center. The robots’ initial locations, heading angles, and steering angles 
are given as (0,0,0,0), (0,2,0,0), (0,4,0,0), (2,0,0,0), (2,2,0,0), (2,4,0,0), (4,0,0,0), (4,2,0,0), 
and (4,4,0,0) for Robots 1-9, respectively. The underlying communication graph is given in Figure 
115a. The initial formation is a 4m  4m square grid, circumscribed by a circle with radius of 3.6091m. 

Consider that the swarm of robots is tasked to navigate along a winding road, given by the trajec- 
tory ζ(t) = [[μxd μyd ]  θd s2d s1d ] = [t + 4  10 sin(0.2t)  tan− (2 cos(0.2t))  10.513  13.57] 

1 T 

and  ̇ 1  2 cos 0.2t  0.4  sin(0.2∗t)  (4∗cos2(0.2∗t)+1) 0  0]
T

. The width of the road is 10.513m and we

want the length of swarm to be 13.57m. All the robots have the knowledge of ζ and ζ˙(t). After

y 
(m

) 
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Figure	138:	The	abstract	shape	parameters	trajectory:	(a)	Swarm	position	tracking,	(b)	Swarm	orientation	tracking,	(c)	swarm	
width	tracking,	(d)	swarm	length	tracking.	
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Figure	139:	Inputs	to	the	robots:	(a)	the	driving	velocity	of	each	robot,	(b)	the	steering	angle	velocity	of	each	robot.	
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Figure	140:(a)	The	heading	angle	of	each	robot,	(b)	the	steering	angle	of	each	robot	in	the	swarm.	

 
116. 

Looking at individual robots in Figure 115b, the swarm of robots tracks affine transformations of 
the initial square grid formation, where the swarm is expanded and elongated by changing its 
formation between a rectangular and parallelogram shape. Figure 115b also shows the motion 
of the abstract shape of the swarm captured by different snapshots of ellipses (ma  2, na  2). To 
further investigate the history of the swarm’s configuration, the abstract shape parameters 
trajectory including μ, θ, sw and sl, are shown in Figure 116. The simulation results in Figure 117 
show the steering and forward velocity as inputs to individual robots. Further, Figure 118 shows the 
heading angle and steering angle of individual robots in the swarm. From these simulation results, it 
can be observed that the robots in the swarm have almost similar velocity and heading angle 
while navigating the road. Also, the proposed algorithm performs well against robot failures and 
communication link failures as long as the communication graph, , remains connected aftermath 
of the failures. To demonstrate this, we made Robot 2 to stop moving at t  20s and disabled its 
communication links with its neighbours. Accordingly, the simulation results show that after failure 
of Robot 2, the swarm again converges to the desired shape and continues tracking the desired 
trajectory. 

 
3.3.1.5.7 Conclusion In this work, we introduced a distributed swarm formation control 

framework for transferring a swarm of robots from a current location to the desired location while 
allowing the shrinkage, expansion, elongation, and compression of the swarm along a reference time- 
varying path. For this purpose, we represented the swarm by an abstract shape that circumscribes 
the convex hull of robots’ positions. Then, for each robot in the swarm, we designed a distributed 
control law to track a suitable trajectory that allows the swarm to follow a desired time-varying 
swarm formation without relying on any leader. We also developed a dynamic average consensus 
estimator algorithm to estimate the abstract shape states in a distributed manner for use in a 
trajectory generation. We demonstrated the effectiveness and robustness of the designed control 
system through simulations by introducing failures to individual robots and their communication 
links. 
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3.3.2 Project Progress for Task T3-2 (Developing a compositional verification ap- 
proach for LSASV) 

3.3.2.1 Period of Performance under 

Task T3-2 Start Date: August 2016 

Conclusion Date: August 2021 

Faculty lead:  Dr. Ali Karimoddini 

3.3.2.2 General Description of Task T3-2 

In robotics applications, it is typical to construct a pre-planned series of actions to achieve a goal, 
particularly for industrial robots used in factories and assembly lines. These robots do a task in a 
cyclic fashion with great precision in a predefined environment. During the operation of the robots if 
a need arise to conduct a new task, an operator has to reconfigure the robots or update the software 
manually. Even if such kind of behavior or mode of operation is appropriate in a pre-defined static 
environment, it is not desirable for robots operating in a highly dynamic environment. For example 
a battle robot has to adapt to the enemy movement or strategy in real-time without out waiting 
for instruction or a helper robot should be able to navigate avoiding moving obstacles. These kind of 
tasks requires the robot to have an intelligence for replanning the immediate next action based on 
the observable events. We propose to capture the intelligence using behavior trees (BTs) which are 
modular, hierarchical and more readable control architecture in comparison to mostly used finite-
state-automata (FSA). 

Further, with advances in communication, computation, and control technologies, it is now be- 
coming possible to deploy Intelligent in the form of a heterogeneous team of autonomous vehicles 
with different capabilities (sensors and actuators) to collectively accomplish complex missions and 
tasks, which are distributed in time and space and may not be possible to be achieved individu- ally. 
A cooperative control strategy not only can handle such complex scenarios, but also could 
significantly reduce the cost, enhance the resilience of the overall system, and improve the team 
functionality through sharing resources and distributing tasks and loads. Nonetheless, multi-agents 
cooperation introduce challenges and complexities including but not limited to task decomposition, 
task assignment, communication, task execution, and task monitoring. A common method for task- 
ing multi-agent systems is to employ scheduling mechanisms. For example, [109] provides a reliable 
scheduling algorithm for a team of agents with the capability to conduct dynamic rescheduling. Al- 
ternatively, one can use consensus-based algorithms to minimize the cost or maximize the number 
of tasks assigned to an agent. The challenge is that generally tasks are sequences of actions that have 
to be completed is a particular sequence and often in collaboration with other agents, which is 
beyond the scheduling problem as it requires a coordinator(s) to synthesize and execute a scheduling 
and sequencing plan in a collaborative setting. 

To address the challenge of coordinating multiple intelligent agents, in this work, we distribu- 
tively and reactively synthesize the local BTs on-the-fly for a set of streamed tasks, so that each agent 
is responsible for synthesizing its own BT. Moreover, our proposed technique incorporates a tasking 
mechanism by assigning the tasks via a market-based auctioning algorithm to minimize the cost. In 
the proposed framework, collaboration among agents is needed if and only if a single robot cannot 
do the task alone, thus resource utilization is improved leaving other robots for new tasks. 
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The developed method is illustrated via several examples, and the effectiveness of the proposed 
approach is verified. 

 
3.3.2.3 Objectives for Task T3-2 over the Course of Project 

• Objective Name: Automatic behaviour tree synthesis for the coordination of multi-agents 

Objective Type: Research 

Objective Description: Develop behavior tree (BT)-based automatic tasking, synthesis, and 
execution framework for the coordination of heterogeneous agents with different 
capabilities to meet the goal of a series of tasks. In the proposed framework there are two-
levels of auctioning where agents compete to win either a task (has to be expanded into a 
sequence of actions) or an action. Further, collaboration among agents is on a need basis, 
i.e., if an agent lacks the capability to perform an action, that action could be completed 
by delegation. 

Impact: The developed behavior tree based multi-agent coordination platform allows the 
deployment of a team of sophisticated autonomous vehicles with different capabilities to 
collectively accomplish complex missions and tasks that are distributed in time and space. 

 
3.3.2.4 Progress Against Planned Objectives in Task T3-2 

1. Objective 1 Developed BT based framework for the collaboration of heterogeneous agents to 
accomplish a task either individually or in collaboration with other agents using market based 
auctioning. 

2. Objective 2 Provided proof of correctness and complexity of the proposed framework 

3. Objective 3 Implemented the BT based framework for a single and multiple-agents in robotics 
operating system (ROS) environment. 

 
3.3.2.5 Technical Accomplishments in Task T3-2 

In the literature, different techniques are developed to address these issues. In [110], an optimal 
multi-robot tasking framework is introduced by modeling each robot as a weighted transition system 
and composing the model of the robots with the mission requirement expressed as a linear temporal 
logic (LTL). However, this framework is centralized and as the number of participating robots 
increases, scalability becomes a bottleneck. In [111], a bottom-up decentralized multi-agent control 
strategy is presented, where each agent synthesizes a local controller to ultimately meet a global 
mission. However, since the agents have no prior knowledge about each local task, conflicts among 
agents could arise which has to be resolved by a centralized mission controller. In [112], an automated 
supervisory control framework models the system and its corresponding specifications as a discrete 
event system (DES) where the supervisor centrally coordinates the robots by enabling or disabling 
controllable events. In turn, each robot chooses to execute or not to execute the enabled events that 
are communicated back to the supervisor to enforce team behaviour.In [113] mixed integer linear 
programming (MILP) formulation is used for multi-UAV task allocation, multi-robot target tracking, 
and optimal area coverage problems in a centralized way. In [114], decentralized optimal task 

Approved for Public Release; Distribution Unlimited. 
222



= { ⋯ } ∈ 

Tj j = 1, ⋯, N 
∈ 

A  Ak k = 1, ⋯, L  L ∈ 
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allocation algorithms are introduced. These (Centralized or decentralized) optimal task allocation 
methods rely on offline computations, requiring the information about the environment and all tasks 
in advance. Therefore, if new tasks are introduced or if the environment changes, these methods 
require iterative and expensive repetition of the entire optimization process. 

In this work, we propose to employ Behaviour Trees (BTs) [115] and integrate them with auction- 
ing mechanisms to simultaneously allocate and execute the tasks. BTs are graphical mathematical 
models for execution of tasks with inherent hierarchical, modular, and reactive properties. With BTs 
it is fairly more convenient to manage, modify, and add tasks or subtasks due to the modular and 
scalable structure of BTs. In [116], given a global BT controller and assuming that the tasks are 
decomposable, a heuristic approach is employed to create local BTs for each agent. However, the 
question of how to determine the global BT is left unanswered. In [117], a procedure is pro- vided to 
obtain a BT for a single robot that meets a mission specification. To extend this method to multi-
agent systems, one way is to use the method in [117] to develop a global BT and then decompose the 
global BT to local BTs using the method in [116]. However, this approach is not computationally 
efficient and may end up with the state explosion problem for larger systems. 

To address these challenges, we synthesize the local BTs for individual agents in a decentralized 
manner to accomplish a given set of tasks. The proposed technique integrates the developed BT 
synthesis mechanism with an auctioning algorithm to minimize the overall cost. In the proposed 
framework, collaboration among agents is needed if and only if a single robot cannot do the task 
alone, thus resource utilization is maximized leaving other robots for new tasks. In the proposed 
framework, the task allocation and task execution are handled simultaneously by synthesizing local 
BTs which generate an appropriate sequence of actions to meet the goals of the tasks. This method 
provides the agents with autonomy capabilities to handle newly introduced tasks on the fly, while 
reacting to changes in the environment. The developed method is illustrated via several examples 
and the effectiveness of the proposed approach is verified. 

3.3.2.5.1 Problem formulation In this section, we use BTs to formulate the coordination 
and tasking for multi-agent systems over the following components: 

1. The set R which includes a team of robots R    R1,  , RM , where M  N is the number of
agents. Here, the terms agents, robots, and vehicles are used interchangeably. 

2. The set is the global action bank and contains a set of actions , , where N 
is the total number of actions. We define a set of action capability indicators , , 
k  1,  , L, for which â i k  1 if the robot Ri can accomplish Action Ak, otherwise â i k  0. Here, 
the robots are assumed to perform single action at a time. 

3. The set T which includes a set of complex Tasks ( a task can be decomposed into multiple
set of actions that could satisfy the same task goal in different ways [118]) ,  , 
where N N is the number of tasks. The accomplishment of each task, Tj, can be captured by
meeting a condition Cj. For example, if the task T1 is to “reach a goal region”, then C1 is “being
at the goal region.” We also define a set of task indicators , , , for 
which if the task is assigned to to handle it individually or in collaboration with 
other robots, otherwise . Similarly, we define a set of action assignment indicators  , 
i  1,  , M , j  1,  , N , k  1,  , L, for which xijk 1 if action Ak of Ri is assigned for task completion 
of Tj. To reach the ”goal” of a task Tj, depending on the agent that is responsible 
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to handle the task, a series of actions from the action bank A should be completed, where the 
last action should meet Cj. In our proposed framework, only a robot that can accomplish an 
action which meets Cj, can be a candidate for being selected to handle Tj. Such a robot can 
complete an action to meet Cj, and may delegate the prerequisite actions to other agents if 
necessary. Further, we define the indicators , , , , for which 
â i j k   1 if action Ak from robot Ri is needed to complete the task Tj, otherwise â i j k   0. 

4. The set F  includes a set of values fij R  T    R+ to describe the cost of handling the task Tj 
by Ri based on performance, energy, and proximity. Robot Ri can accomplish the actions in 
Tj individually or delegate the actions to other robots if necessary. We define a cost function 
fˆik  N, which indicates the cost of accomplishing an individual action Ak by the agent Ri. 

5. We define the set ˆ which includes a set of preconditions , , , and 
p  1,  , Pk, where Pk is the number of preconditions for action Ak, and cˆikp specifies pth 
preconditions for completing action Ak by robot Ri. We also define action status indicator 
cˆik where cˆik 1 if action Ak is executed and completed by Ri, otherwise cˆik 0. 

6. Consider a discrete clock clk with a granularity of 1sec, i.e., clk  clk  1 (this can be of smaller 
step sizes if needed). The clock clk represents the elapsed time starting from the first task 
announcement. Then, we define  tik, i  1,  , M , k  1,  , L, which represents the duration the 
agent Ri needs to complete the action Ak. We also define an action timeline indicator tio, 

, , where is the last sample time, and during the time that 
Ri is assigned to perform one of the actions A∗, which takes Ri for  ti∗ time units. 

7. We define an operation Ri  con which checks if the agent Ri, i  1,  , M , satisfies the condition 
con  at its current state, where the condition con  can be a condition for a task, i.e., Cj, or a 
precondition for an action, cikp. 

Further, to do automatic tasking for multi-agent systems, similar to [117], we need to make the 
following assumptions: 
Assumption 1: Each agent can verify if an action has succeeded, failed or if it is running. 
Assumption 2: Each agent can verify if a condition is true or false. 
Assumption  3: For each goal and for each initial configuration of the agents, there exists a 

sequence of actions that can be taken by the agents leading to the achievement of the goal. This 
assumption guarantees that each goal is achievable at least by one of the agents. 
Assumption 4: The effect of the dynamic environment can void the accomplishment of the 

actions at most a finite number of times. This assumption is made to avoid sticking in a live-lock 
of repeating an action and being voided by the environment over and over, preventing the agent to 
achieve its goal. 
Assumption 5: Given two actions Ai and Aj, if the execution of Ai requires the execution of 

Aj, Aj must not require the execution of Ai. This assumption prevents deadlocks due to cyclic 
dependency. 
Assumption 6: All actions are ultimately reversible. That is, each action can be undone through a 

finite sequence of actions. 
Assumption  7: For each action, there exists at least one agent to achieve it, which can be 

accomplished by a low-level controller embedded in the agent in a finite time. 
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Mission consists  Tj j = 1, ⋯, N 
Ri i = 1, ⋯, M  Ak 

= ⋯ △ 

= ⋯ 

∈ { }  ∀ 

∑ = ∀ 

k=1 
( ) 

∇(tio, Tj, Ak) clk(Tj, Ak) 
Ak Tj tio = 0 clk ≥ clk(Tj, Ak) + △tik ∇(tio, Tj, Ak) = 1 

min ∑ fijxij, ∀j 

Now, given R, T,  F, A, C, and Ĉ ,  and making assumptions 1 7, the tasking problem for
multi-agent systems can be stated as: 

Problem 3. Consider a  of several tasks , , to be completed by a 
set of robots , , that (some of them) are capable of accomplishing the actions  , 
k    1,  , L, within  tik time units to achieve the mission. Also, consider that there is no order 
and dependency among the tasks, other than the order in which tasks are issued (one at a time). 
Synthesize decentralized BTi to coordinate the individual robots Ri to collectively achieve a set of 
tasks Tk. 

3.3.2.5.2 Automatic Behavior Tree Synthesis To address Problem 3, we propose a de- 
centralized method for generating the local BTs by combining a market-based auctioning algorithm 
with a reactive BT synthesis technique, so that the generated local BTs can collectively satisfy the 
mission specification. Task Assignment for Coordination of Multi Agent Systems: To fairly 
assign tasks and avoid conflicts, we adopt a two-level market-based auctioning algorithm. Generally 
in a market-based auctioning, even-though there is a collaboration among agents we assume each 
agent acts on its own interest, i.e. to maximize the reward or to minimize cost. An auctioning pro- 
cess has four steps, starting with a task announcement by the coordinator (announcement stage), 
followed by the bidding stage where capable agents send a bid. Based on the cost, the auctioneer 
selects the best agent (the selection stage) and finalize the auction by forming a contract with the 
selected agent (contract stage). In the proposed framework the Mission Controller (MC) an- 
nounces a task Tj, where capable agents (agents that can meet Cj), Ri, i  1,  , M , participate in 
the bid. To complete the task Tij, the candidate agent has to identify the sequence of actions either 
from the local action bank or by delegation, where these actions are used to estimate the total cost fij 
before issuing the bid. Based on the estimated cost fij from each agent, the MC selects an agent 
and form a contract. Mathematically, this is equivalent to: 

xij i 

M 

subject to  xij 1 j 

xij 0, 1 ,  i, j  (93) 

where fij is the cost of task Tj when handled by Ri and xij is an indicator that task Tj is assigned 
to Ri. 

If an agent delegate an action to complete a task, then the agent has to act as the auctioneer 
and perform a second level auctioning to identify a suitable agent. Therefore, the total cost for a 

task is the sum of local and delegated actions: fij = ∑L  â i j k ( â ik f̂ i k  +(1 − âik)fD(ijk)), ∀i, j, where
fD ijk  is the cost of the delegated action Ak for the task Tj by Ri, provided that the involved 
robots are available to complete the actions at the time they are needed. To check availability of 
the robot, we introduce the function  where represents the time that the 
action is needed for the task . If for   , then , 
otherwise it returns 0. In addition, ∇(tio, Tj, Ak) returns the nearest time slot that the agent Ri 

M 

i 
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△ ∇̂ (  △ ) 

−

T ← (T T ) T 

7 if Ri ⊧ Cj then 

13 while Conflict(Tij) do 

Output: Tij = Syntheisized BT 
∶

=

T ← 

10 while r = Executable; 

12 Tij, Tsubtreeij ← ExpandTree(Tij, cif ) //Resolve the cause by Algorithm 2 

x̂ djk 

can accomplish an action. This indeed is equivalent to the following minimization: 
 

fD(ijk) = min ∑ x̂dj k f̂dk , ∀k 
 

 
subject to 

 

 

d = 1⋯M,  d ≠ i, 

∑ x̂ dj k = 1 ∀j, k, 
 

 

∇(tdo, Tj, Ak) = 1 (94) 
 

where fˆdk is the cost of action Ak when done by Rd and x̂ dj k  indicates if action Ak of task Tj is 
assigned to agent Rd or not. 

Once an action or a task is assigned to an agent, the availability indicator t∗o is updated from 
0 to 1 for t∗o using the function t∗o,  t∗k to avoid double assignment. 

Decentralized Behavior tree synthesis algorithm: The overall procedure to generate the 
BTs for individual agents is explained in Algorithms 1 3. First, the mission controller announces a 
task Tj (level-I auctioning). Then, any capable agent estimates the task cost and sends a bid. The 
estimation of the cost is calculated starting from the goal and recursively identifying the precondition 
of the successor action until the action can be done at the current state of the robot. Upon receiving 
the bid from the agents, the MC selects the best agent and form a contract (Algorithm 3). The 
winning agent Ri synthesizes a BT using Algorithm 1 while Algorithm 2 is used to identify actions 
locally or by delegation (level-II auctioning) to meet the conditions needed to complete the task. 

 
Algorithm 1: Main BT  Synthesis and Execution 

 

1 function MainBTSynthesisandExecution (Cj) ; 
Input : Cj Condition for assigned task of agent i 

 

2 ij Cj // Start the BT for task Tj from the condition Cj, which is 
used to cheek if the task is completed or not 

3 alli Parallel  ij,  alli // alli represents all BTs of an agent running in parallel 
to execute multiple tasks including bidding and auctioning 

4  while True do 

6 r, c îk ← Execute(Tij) 

8 Set xij 0 // Task Tj is completed 
9 break // End execution of Tij 

 
11 cif ← GetConditionToExpand(Tij) //Identify the the reason why Ti is not executable 

14 Tij ← IncreasePriority(Tsubtreeij ) 
 

Assume that the task Tj is assigned to the robot Ri as it can meet the condition Cj. Algorithm 
1 then synthesizes the local BTs. Algorithm 1 starts from the “goal” input, which describes the 
condition for the accomplishment of a “task” indicated by the condition Cj (Line 1).  By first 

d 

d 

5 do 
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( ) 

Tsubtreeij 
(T ) T 

cˆikp Tseqij 

Talli do while 
⊧ 

Tseqij 
Tselij cif 

T 

T 
ij 
→ (T 

ij 
) 

3 Tselij ← cif

Output: Tij = Expanded BT 

Ak and its preconditions 

(T ) 

5 cik = GetPrecondtionforAction(Ak) 

∇( ) △ 

( ) // 

15 return Tij, Tselij

9 Tselij  ← Selector(Tselij , Tseq
ij 

) 

assigning the condition Cj to the BT (Line 2) (this condition will be used to determine if the task is 
completed or not), the algorithm iteratively updates the BT until a sequence of actions is obtained 
which as a whole realizes the task and achieves the goal (Lines 4-17). Since each task requires its 
own BT, to execute multiple tasks, the BTs for each task are composed in parallel with the existing 
BTs, (Line 3). In a loop, the BT actions are tested to determine whether they are 
executable (Lines 5-11). If the condition Ri  Cj is satisfied by the execution of the BT, the agent 
is free to accept a new task (Lines 7-10). Otherwise, if the BT is not executable, Line 12 identifies the 
cause of failure, cif . The identified cause will become a condition in a subtree to resolve the problem 
by finding alternative actions or other agents (Line 13), as will be described in Algorithm 
2. After updating the BT, due to the addition of a new subtree, , a conflict could arise. 
To resolve the conflict, the function conflict  ij increases the priority of subtreeij by moving the 
subtree toward the left. As an example, in response to avoid an obstacle the robot decides to pick 
an obstacle (object), but picking up an object has to be done if the robot arm is free. 

Algorithm 2 essentially synthesizes a subtree that satisfies the condition cif . In Line 2 of 
Algorithm 2, the function GetlocalActionwithPrecondtion  .    returns the optimal action, which 

satisfies the condition cif . If the returned action is not empty, then the identified action Ak along 
with its preconditions, , are composed by a sequence node to form (Lines 5-9). Further, 

is composed with , defined as (Line 3), by a selector node, to enforce the execution 
of seqij only in situations where cif is not satisfied (Line 10). To avoid double assignment, the 
time-line and availability indicators for Ri are also updated (Lines 11-12). However, if no local 
action exists, the AuctioningModule (similar to Algorithm 3) is activated to conduct an auction 
in pursuit of finding an agent that can accomplish cif (Lines 14-16). Finally, the condition cif is 
replaced with a sub-tree that can meet cif (Line 17). 

  Algorithm 2: Expand Behavior Tree Module For Ri 
1 function ExpandBT ij, cif  ; 

Input : cif = condition (cause) for Tj not being executable 

2 Ak ← GetLocalActionwithPrecondtion(cif ) // Identify local actions that satisfy cif 

4  if GetLocalActionwithPrecondtion(cif ) ≠ ∅ then 

6 for cikp in cik do 
7 seq Sequence    seq , cikp // sequence BT with the condition of action 

8 Tseq
ij 
← Sequence(Tseq

ij 
, Ak) // Generate a sequence subtree containing action 

10 

11 

12 else 

 
ˆ tio, Tj, Ak // tio is set to 1 for tik time units 
set x̂ i j k = 1 // Action Ak of Tj is assigned to Ri

13 AuctionModule_L2  cif If there is no action to meet a condition, 
initialize the Level  IIAuction Module  for delegation 

14 Tij ← Substitute(Tij, cif , Tselij ) // add the subtree Tselij to Tij replacing cif 

Algorithm 3 performs an auction to find a suitable agent following a standard market based 

Approved for Public Release; Distribution Unlimited. 
227



 
 
 

  

2 selectedf ← ∅ 
3 Announcing(cif ) cif 

() 

6 Contract(selectedf , cif ) 

 
 

Algorithm 3: Auctioning Module 
1 function AuctioningModule (cif ) ; 

Input  : cif ∶ condition to be delegated 

//broadcasting condition 
4 s = ReceiveSubmission  // agents with the spesfied action replies 
5 selectedf = Selection(s)  // choose the agent that minimizes cost fˆif 

 

auctioning mechanism (Lines 2-6). The auction terminates with a contract (Line 6). 
 

3.3.2.5.3 case study Single Agent: Search and Delivery UAV mission: The mission 
objective is to deliver an object o at a specific place marked by m near position p. The UAV has 
to search for the marking m in close vicinity of p, Np, before delivering the object o. Then, the problem 
is given the action bank in Table 18, generate a BT using Algorithms 1 & 2 to achieve the task. 

Algorithm 1 starts from the goal, “o at p”, i.e., the object o should be at position p, as shown in Fig. 119a. Since initially the goal is 
not satisfied yet and the generated BT  (Line 6 of Alg1) is not executable, the function GetCondtionsToExpand is called to identify 
the preconditions (Line 12). From Table 18, the Deliver action can meet the precondition of Algorithm1 and hence, the ExpandBt 
function (Line 13) uses this action to update the BT by composing the conditions of Deliver action via a sequence node and the goal by a 
selector node (Lines 4-13 of Alg2) as shown in Fig. 119b. Again since the preconditions, uav  at Np and m  is detected, are not true, 
they have to be expanded, following the same procedure, by their corresponding actions MoveTo and Detect as shown in Fig. 119c. 
 
 
 

Table	18:	Action	templates	for	case	study.	
 

Global Action Template 
No Action Precondition Effect 
1 MoveTo(p, path) path is 

collsionfree 
uav  at p 

2 Detect(m) uav  at Np m  is detected 
3 Deliver(i, m) uav  at Np 

m  is detected 
o at p 

 
 

Table	19:	Mission	tasks	expanded	using	Algorithm	1	
 
 

Mission 
No Task Condition Sequence of actions 
1 T1 C1 A1, A3, A2 

2 T2 C2 A6, A4, A3 

3 T3 C3 A5, A1 

4 T4 C4 A4 

5 T5 C5 A2, A8 or A3, A7 
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Figure	141:	Synthesizing	a	BT	for	a	UAV	to	search	and	deliver	an	object	to	a	particular	position	

Resource 

No Agent 

{ 
Agent capability - {Ak,(fˆij , △

(
tik}) 

)} ( )} { ( ) {   1 
 UAV1 

A1,  0.1, 3  ,  A2,  0.2, 2 A8,  0.6, 2 { ( )} { ( )} { ( )}

2 UAV2 A3,  0.5, 2  ,  A5,  0.4, 3  ,  A7,  0.4, 2 { ( )} { ( )} { ( )} 

3 UAV3 A3,  0.7, 1  ,  A4,  0.7, 1  ,  A6,  1, 4 

Table	20:	 Agents	capability	along	with	 the	cost	 ,fˆij ,	and	duration,	△tij,	of	an	action	Ak 

Auctioning steps for assigning the tasks T1, ⋯, T5 
Step Task/ Action time Auctioneer Candidates Contract 

1 T1 1 MC, L1 {UAV1 ∶ A2 , f 12 = 0.2} - 
2 A3 4 UAV1 , L2 {UAV2 ∶ f 23 = 0.5, clk(T1 , A3 ) = [4 − 6]} 

{UAV3 ∶ fˆ33 = 0.7, clk(T1 , A3 ) = [4 − 5]} 
UAV2 

3 T1 MC, L1 - {UAV1 ∶ f11 = 0.8, clk(T1 , A∗) = [1 − 8])} 
4 T2 2 MC, L1 {UAV2 ∶ A3 , f 23 = 0.5} 

{UAV3 ∶ A3 , fˆ33 = 0.7} 
- 

5 A6 2 UAV2 , L2 {UAV3 ∶ f 36 = 1, clk(T2 , A6 ) = [2 − 6]} UAV3 

6 A4 6 UAV2 , L2 {UAV3 ∶ f 34 = 0.7, clk(T2 , A4 ) = [6 − 7]} UAV3 

7 T2 MC, L1 {UAV2 ∶ f22 = 2.2, clk(T2 , A∗) = [2 − 9]} 
{UAV3 ∶ f32 = 2.4, clk(T2 , A∗) = [2 − 8]} 

{UAV2 ∶ f22 = 2.2, clk(T2 , A∗) = [2 − 9])} 

8 T3 3 MC, L1 {UAV1 ∶ A1 , f 11 = 0.1} - 
9 A5 3 UAV1 , L2 {UAV2 ∶ f 15 = 0.5, clk(T2 , A5 ) = [9 − 12]} UAV2 

10 T3 MC, L1 {UAV1 ∶ f13 = 0.6, clk(T3 , A∗) = [10 − 15]} {UAV1 ∶ f13 = 0.6, clk(T3 , A∗) = [3 − 15]} 
11 T4 4 MC, L1 {UAV3 ∶ A4 , f 34 = 0.7} {UAV3 ∶ f34 = 0.7, clk(T4 , A∗) = [4 − 8])} 
12 T5 5 MC, L1 {UAV1 ∶ f15 = 0.8, clk(T5 , A8 ) = [9 − 12]} 

{UAV2 ∶ f25 = 0.9, clk(T5 , A∗) = [13 − 16])} 
{UAV2 ∶ f25 = 0.9, clk(T5 , A∗) = [5 − 12])} 

Table	21:	Task	Assignment:	T1 represents	task	1,	”MC, L1”	represents	level‐one	auctioning	by	the	
mission	controller	and	”UAV∗, L2”	 represents	level‐two	auctioning	by	an	agent	

Multiple Agent Multiple Task:  Given multiple, R    UAV 11, UAV2, UAV3 , along with 
their capabilities described by the action bank in Table 20, our aim is to synthesize BTs in a 
decentralized way to satisfy the tasks listed in Column 2 of Table 19. To avoid repeating the 
procedure of generating a sequence of actions for each task, each task is expanded to a sequence of 
actions which is described in Column 3 of Table 21. Then, following Algorithms 1 - 3, the details of 
the BT generation are given in Table 21. As an example, consider the expanded task T 1 with the 
sequence A1, A3, A2 (Row 1 of table 21), where UAV1 is the only candidate and winner of T1 (since 
only UAV1 can do the last action, i.e., A2). However, in task T1, action A2 cannot be executed by UAV1 
because UAV1 cannot perform action A3 which precedes action A2. Hence UAV1 initiates a level-two 
auctioning to assign action A3 (Row 2 of table 21), where UAV2 wins the auction with minimum cost. 
Now the final action A1 in T1 can be handled by UAV1. This concludes the action assignment for the 
task T1 with a total cost of 0.8 in the time interval [1, 8] (Row 3 of Table 21). 
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Figure	142:	Task	assignment	along	a	timeline	

 

 
The assignment of all tasks follows the same procedure. Sometimes it may be the case that agents 
are not available at the time a task is requested, like in T3. When T3 is assigned, even though UAV2 is 
free, the available time before A3 of T1 starts execution is not enough to complete the action A5 of T3 
completely. So action A5 is deferred to a later time (Row 9 of Table 21). This can be seen more clearly 
in Figure 120 which shows the tasks and UAVs’ assignments along with time axis. The final task, T5, 
can be accomplished by UAV1 and UAV2 in a non-unique way. This shows that tasks are not 
necessarily a fixed sequence of actions rather multiple capable agents can do a task in different ways 
to meet the goal. 

 
3.3.3 Project Progress for Task T3-3 (Developing Formal Methods for Human-robot 

Collaboration) 

3.3.3.1 Period of Performance under Task T3-3 

Start Date: August 2017 

Conclusion Date: April 2021 

Faculty lead:  Dr. Ali Karimoddini 
 

3.3.3.2 General Description of Task T3-3 

Sufficient information about the components of a large scale system does not always exist. Further- 
more, uncertainty in the model parameters and external disturbances may challenge model-based 
analysis and synthesis techniques. Therefore, to further improve the proposed verification approach, 
learning techniques will be augmented simultaneously and incrementally to capture the non-modeled 
parameters of the system while evaluating the performance of the system. Hence, to develop Human- 
Robot Cooperation (HRC) using formal method analysis in the multi-agent system considering the 
human operator in the loop has been reviewed to establish the cooperative control followed by an 
agent, in a model-free system. 

One of the challenging problems in HRC settings is to characterize physical and cognitive work- 
loads of human operators and the robots and to assess their impacts on the establishment of trust for 
developing a safe and optimized approach for task sharing amongst a team of humans and robots. 
The goal of this task is to develop the systematic approaches for analyzing human factors in HRCs 
involving single/multi-robot(s). First, a novel time-driven human cognitive performance modeling 
approach for human-robot collaborative actions is mathematically developed in terms of human 
cognitive workload, robot performance, and human physical performance. Novel about the proposed 
model is its ability to relate human cognitive workload and the task complexity to a uti- lization 
factor, which is functionally correlated with the robot’s mistake probability. Second, the 
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developed human cognitive performance model is used as a basis for proposing a computational trust 
model to estimate the evolution of human operator’s trust in robot operation. For this purpose, a 
time-driven performance-aware mathematical model for trust in the robot operation is proposed for 
an HRC framework. The human operator’s performance is modeled based on both the physical and 
cognitive performances, while the robot performance is modeled over its unpredictable, predictable, 
dependable, and faithful operation regions. This developed time-driven mathematical model for 
trust is then extended to HRCs with multiple robots. Finally, the impact of learning capability 
of robot on human cognitive performance and the evolution of trust on robots are modeled. The 
developed models are validated via simulations of different case-studies confirming that a learning 
capability allows robots to reduce human workloads and improves human performance and trust on 
robots. 

3.3.3.3 Objectives for Task T3-3 over the Course of Project 

• Objective Name: Performance-Aware Trust Modeling within a Human-Multi-Robot Col- 
laboration Setting

Objective Type: Research

Objective Description: The modeling of human performance and trust in the robot oper- ation
within an HRC is a challenging task. To address this problem, a novel time-driven 
mathematical model was proposed to capture the human operator’s performance and 
trust in the robot’s operation within an HRC framework. The proposed models were 
based on the performance of both the robot and the human operator. Both physical and 
cognitive performances of the human operator were considered for modeling the human 
operator’s performance. 

Impact: By developing the human performance and trust model within an HRC setting, for- 
mally non-model parameters were captured that exist within the human-in-the-loop sys- 
tem. The models can be extended to the complex dynamic system including autonomous 
vehicles, manufacturing setting, and so on, where human is taking part physically and 
cognitively. The derivable of this task, on the other hand, has made a new addition to the 
human-centered control by leveraging human science and robot information to control 
the system operation that underlies human behaviors during the interaction. 

3.3.3.4 Progress Against Planned Objectives in Task T3-3 

The objective of this task is accomplished. Several models are developed to: 

• mathematically represent a time-driven human cognitive performance model for Human-robot 
Collaboration (HRC) actions considering the human cognitive performance as a function of
human cognitive workload, robot performance, human physical performance, and complexity
of shared tasks.

• capture a time-driven performance-aware mathematical model for trust in the robot operation
for a Human-robot Collaboration (HRC) setting taking into account the human operator
physical and cognitive performances, the robot performance, and complexity of shared tasks.
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• extend the time-driven performance-aware mathematical model for trust in a human-multi- 
robot collaborative actions considering the trust as a function of human cognitive workload, 
human physical and cognitive performances, the robots’ performances, and complexity of 
shared tasks. 

Besides, several mathematical formulations are proposed to illustrate the capability of the models 
in solving complex problems with some assumption. Single or multiple robots are involved in those 
scenarios to analyze the time-variant nature of human performance and non-linear characteristics of 
human trust in the robot operation. 

 
3.3.3.5 Technical Accomplishments in Task T3-3 

To accomplish the objective of this task, this research proposes a novel time-variant mathematical 
model for an effective human cognitive performance model within an HRC framework. It considers 
human cognitive performance as a function of human cognitive workload, robot-added workload, 
and human physical workload. The human cognitive workload is formulated in terms of maxi- mum 
and minimum bounds of cognitive workload, human utilization factor, and the complexity of tasks. 
Human utilization has been quantified and directly related to the robot’s mistake probabil- ity that 
defines the robot performance. The proposed model considers the cognitive workload as the 
dominant factor in quantifying human cognitive performance. Further, the developed model takes 
into account the effect of human physical and robot performances on human cognitive perfor- mance. 
Simulation results and performance analysis have been provided for a real-life scenario in the 
manufacturing industry. Besides, the effect of change of robot performance on human cognitive 
performance is investigated. In particular, the model shows that if the robot can learn from its 
mistakes and improve its performance, human cognitive performance will be enhanced. 

This research work also proposes a novel time-driven mathematical model to capture the human 
operator’s trust in the robot’s operation within an HRC framework. The proposed model is based on 
the performance of both the robot and the human operator. Further, both physical and cogni- tive 
performances of the human operator have been considered for modeling the human operator’s 
performance. The human operator’s trust in the robot’s operation is influenced by the robot-added 
workload, task complexity, and the human operator’s physical and cognitive workloads. The devel- 
oped trust model considers the change of the human operator’s performance over time due to factors 
like fatigue and recovery. In comparison to the static trust models in [119–121], the proposed model 
is able to capture the trust in a dynamic way. In addition, the proposed model considers both the 
human operator’s physical and cognitive performances for modeling trust which is more realistic 
than the models that consider only the physical performance for the human operator [122]. Further, 
simulation results have been provided to show the trust development for the manufacturing industry 
that can be applied to other situations that involve HRC. The results show that as the robot learns 
about the task handling at the workspace through the guidance provided by the human operator, the 
human operator’s trust in the robot’s operation for decision-making improves over time. 

The contribution of this task is, therefore, the development of a novel time-driven mathematical 
model for an effective human cognitive performance model in order to capture the human opera- 
tor’s trust in the multi-robot operation. The proposed cognitive performance model considers the 
cognitive workload as the dominant factor in quantifying human cognitive performance and is based 
on the performance of both the multi-robot and the human operator, which takes into account the 
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cognitive performance as a function of human physical workload, cognitive workload, and robot- 
added workload. Further, the robots-added workload, task complexity, and the human operator’s 
physical and cognitive workloads influence the human operator’s trust in the robot’s operation. The 
proposed trust model also studies the change of the human operator’s performance due to factors 
like fatigue and recovery and is able to capture the evolution of trust in comparison to the static trust 
models in [119–121]. Besides, the proposed model within human-multi-robot setting considers both 
the human operator’s physical and cognitive performances for modeling trust that is more real- istic 
than the models that consider only the physical performance of a human operator and a robot setting 
[122] or workload-adaptive cognitive approach in the teaming of manned and unmanned vehicles
[123]. Simulation results for the human operator and the robots’ performance analysis have been
provided for a real-life scenario in a manufacturing case-study to show the efficiency of the developed
trust model. In addition, the effect of robots’ learning capability on the established trust on robots is
investigated. The results show that as the robots learn about the task handling through the guidance
provided by the human operator, the human operator’s trust in the robots’ operation for decision-
making improves over time.

In summary, here is a list of the main contributions of this task: 

• A novel mathematical representation of dynamical human cognitive performance model has
been proposed for an HRC framework based on the human operator’s physical workload,
the robot added workload, and the human operator’s cognitive workload. The developed
model has been verified via simulation for a shared task between a human operator and a robot.
Simulation results have been provided to validate the proposed collaboration model and
analyze the effects of variations of the involved parameters.

• A novel time-driven performance-aware mathematical representation of human operator trust
in the robot operation has been developed for an HRC framework based on the human
operator’s physical workload/physical performance, the human operator’s cognitive work- 
load/cognitive performance, and the robot added workload/robot performance. The devel- 
oped model has been verified via simulation for a shared task between a human operator and
a robot. Simulation results have been provided to validate the proposed collaboration model
and analyze the effects of variations of the involved parameters.

• A human-multi-robot performance-aware trust model has been developed considering the hu- 
man operator’s physical performance and workload model, human operator’s proposed cogni- 
tive performance and workload model, human operator’ performance model, and robot added
workload/robot performance. The developed trust model for human-multi-robot performance
has been verified via simulation for a shared task among a human operator and multiple robots. 
Simulation results have been provided to validate the proposed collaboration model and
analyze the effects of variations of the involved parameters.

• The developed models are extended by considering the robots with a learning capabilities to
capture the impact of robots’ learning on human cognitive performance and the evolution of
human trust on robots.

Next a novel time-variant human cognitive performance modeling for human-robot collaborative 
actions is discussed. 
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3.3.3.5.1 Human-Robot Collaboration Setting Consider a human-robot collaboration 
(HRC) scenario, where a human and a robot are collaborating to perform a shared task. In this 
HRC setting, the robot can be utilized to perform repeated routine work while human intelligence 
can handle more complex tasks such as decision-making. For example, the human operator can 
supervise the robot to complete the assigned tasks by guiding the robot via cognitive signals and 
helping the robot by physically changing the object orientation appropriately so the robot can pick 
the object easily. The robot performs the task based on instructions received from the human in 
the form of cognitive signals. The more the robot can perform a task successfully, the less human 
supervision is required. Conversely, if the robot mistake rate increases, more assistance from the 
human operator is needed. Fig. 121 shows a symbolic diagram for an HRC setting, in which a 
robot transfers heavy objects from the source conveyor belt to the destination (packaging) conveyor 
belt. The human operator supervises the robot and observes (takes feedback from) the robot’s 
actions, the source where the robot has to pick objects, and the destination where the robot delivers 
objectives for packaging. If the robot commits a mistake in picking/placing the objects from/in 
wrong conveyors, the human operator sends the robot corrective cognitive signals (e.g., in the form 
of push-button, vocal, or EEG signals) to correct its actions and guide it for successful completion 
of the task. Once the object is available on the destination conveyor, the human operator controls 
the conveyor to transfer it out of the workspace. Robot performance is measured in terms of its 
capability to accommodate a human operator’s instruction(s). Therefore, the robot performance 
has a significant impact on the human cognitive workload during the collaboration between the 
human operator and a robot. The robot performance, RP t , for a given time instant t depends on 
its success in the completion of tasks, which can be modeled as: 

RP (t) = R 

 

 
P,max − 

SR(t − 1) − (1 − PmR)DR(t − 1)  
(95) 

 

where RP,max is the maximum value of the robot performance, PmR is the robot’s mistake proba- bility, 
SR t  1 is the source rate (the feeding rate of source conveyor) and DR t  1 is the delivery rate 
(percentage of items being handled by the robot and put on the destination conveyor) at the 
preceding time instant. 

 

Figure	143:	A	human‐robot	collaboration	(HRC)	setting.	
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3.3.3.5.2 Human Performance Modeling: In this section, we model human performance. In 
particular, we provide a model for human cognitive performance, which indicates its cognitive 
capability to perform the mental work [124]. A human’s cognitive performance is at a maximum 
when it is subjected to a minimum workload, no fatigue, and maximum robot performance. On 
the other hand, human performance will be minimum when the human is experiencing maximum 
workload and fatigue level, and minimum robot performance. If the robot did not perform the 
immediate preceding task satisfactorily, the human operator instructs it to make a correction. The 
interactions between human and robot increase human utilization factor and cognitive workload. 

Human Physical Performance Model A human’s physical performance can be related to the 
muscular contraction and expansion system and can be tied to the fatigue level of the muscles and 
their recovery. The fatigue and recovery models of muscles affect the human physical performance 
that can be modeled as [124]: 

P  (t) = 
Fmax,iso(t) − Fth 

 
(96) 

where PP t  is the human physical performance at time instant t and Fth stands for the threshold force 
which is calculated at the equilibrium point where the fatigue and the recovery balance out each other. 
Fmax,iso t  stands for the maximum value of isometric force. The isometric force, Fiso t  , is 
generated when the human muscles apply force but the length of muscles does not change [124]. 
Maximum Voluntary Contraction (MVC) stands for the maximum value of isometric force that one 
can produce at rest or the initial state (at zero-level of fatigue) [124]. Clearly, Fmax,iso t decreases over 
time due to muscle fatigue. Adopted from [124–126], we use the following first-order Euler 
approximation to represent the dynamic calculation of the maximum isometric force: 

 

F  (t) = F  (t − 1) − C  F  (t − 1) 
F (t − 1) 

+ C  (MV C − F  (t − 1)) (97) 

where Cf and Cr stand for the fatigue and recovery constants, respectively, and F  t denotes the real-
time applied force that reduces over time due to increase in fatigue levels. 

In this model, continuous-time fatigue and recovery processes are used to represent the dynamic 
evolution of the maximum isometric force. It can be verified in Eq. 97 that fatigue increases when 

muscles continuously apply the force. On the other hand, when no force is used or if the applied 
force is relatively small, the muscles will recover, i.e., will be increased. 

is maximum when the human operator starts the task, i.e.  . 
Therefore, based on Eq. 96, at the beginning when [124], but 
then it reduces to zero when Fmax,iso Fth. Further, it can be verified that in Eq. 96, the isometric force 
is affected by the fatigue level. Higher fatigue levels result in lower isometric force, which in turn will 
reduce the overall human performance values. 

Human Cognitive Workload Model:  The cognitive workload refers to the amount of 
mental work to be performed in a given period. A human operator’s performance degrades for high 
cognitive workloads and/or while handling complex tasks. During the inactive mode (when no 
cognitive work is performed), the human operator’s cognitive performance level gradually increases. 
This recovery process can improve the cognitive performance up to the Optimum Level of Arousal 
(OLA) point [124, 127, 128]. Here, we model the human operator’s cognitive workload for a given 
time, Cw t  , as a function of the complexity of the task(s) to be performed and the human operator’s 
utilization factor as: 
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(98) 

where CW,min and CW,max are the minimum and maximum cognitive workloads respectively, which 
may vary from person to person, depending on the individual’s capabilities to handle the tasks. 

is the complexity of the task (a relative value between 0 to 1) being handled at time and 
u(t) is the human operator’s utilization factor which can be captured as: 

u  t  u  t  1 u  t  (99) 

where u  t  stands for the change in the utilization factor which is a function of the robot’s mistake 
probability for a given time as: 

△u(t) = 
PmR(t) − u(t − 1)  

(100) 

where τ  is a positive integer number representing the time constant. In other words, τ  is the 
time that the human operator takes to respond to the changes in the robot’s mistake probability, 
thereafter the effect of changes in robot’s mistake probability appears in human operator utilization 
factor. 

Remark 1. If the human operator is doing the same task all the time, then the value of C  t  will 
be a constant number, otherwise its value changes depending on the complexity of the task being 
handled at each time instant. 

Remark 2. In the proposed HRC framework, individual tasks are assumed to be independent events. 
Further, a task either can be failed by the robot, which requires human operator’s intervention, or 
it will be successfully handled by the robot, which does not need the human operator to be utilized. 
This allows us to use a binomial form in Eq. 98 to describe the human cognitive workload based on 
successfully handled tasks and failed ones. 

Human Cognitive Performance Model: Human(s) cognitive workload primarily impact(s) its 
cognitive performance. Further, human physical workload or the additional workload due to 
mistakes of the robot affect the cognitive performance of the robot as well. Incorporating all these 
factors, human cognitive performance, CP (t) for a given time, can be modeled as: 

CP t  CP,max αCw t  βHw t  γHR t  (101) 

where is the maximum cognitive performance for a given time, is the human physical 
workload for a given time, is the additional workload added due to mistakes of the robot, 
and α, β, and γ  are positive real numbers with α    β    γ    1. 

The human physical workload and the additional workload due to mistakes of the robot can be 
indirectly estimated from the human physical performance and the robot performance for a given 
time is as follows: 

HW (t) = PP,max − PP (t) (102) 

HR(t) = RP,max − RP (t) (103) 
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where Pp,max and RP,max are the maximum human physical performance and robot’s maximum 
performance, respectively. PP (t) and RP (t) have been derived in Eq. 96 and Eq. 95, respectively. 

 

Figure 144: A human-robot collaboration scenario: robot transfers heavy objects from the “source” 
conveyor belt to the “destination” conveyor belt, and the human operator guides the robot to 
successfully complete the task. 

 

3.3.3.5.3 Analyzing the Human Cognitive Performance within the Proposed HRC 
Setting Consider a manufacturing workspace in which a human operator and a robot can collab- 
oratively work to transfer the produced items as shown in Fig. 122. The source conveyor carries the 
incoming boxes to the workspace, and the destination conveyor moves the inspected items to the 
packaging area. The robot’s task is to physically move the objects from source conveyor to packing 
conveyor based on the human’s instructions. The human operator supervises and instructs the robot 
to complete its task correctly. The human operator is assumed to help the robot by physically 
changing the object orientation appropriately so the robot can pick the object easily. Also, the human 
operator is involved in (minimal) physical activity, such as regulating the speed of the destination 
conveyor, maintaining the logs, etc. 

To simulate this scenario, we use the derived set of equations from Eq. 95 to Eq. 103 in 
which the simulation parameters are chosen as summarized in Table 22. Some of the parameters’ 
values including Cf , Cr, MV C, and Fth are set similar to those in [124]. Since in human cognitive 
performance, the human cognitive workload is a dominant factor, in Eq. 101, the value of α is selected 
larger than the values for β and γ. 

The simulation runs over an operating period of ten hours with the sample time of 30 minutes. 
The minimum level of human cognitive performance, CP t  , at any given hour is assumed to be more 
than 0.2, below which the human operator is considered to be incapable of performing the cognitive 
workload. In order to maintain simplicity, the robot’s mistake probability has been assumed to be 
constant over time. 
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(a) RP t   = 0.7 (b) RP t  = 0.5 (c) RP t   = 0.1 

Figure	145:	The	change	of	physical	performance	(blue	line),	cognitive	workload	(red	line),	robot	performance	(green	line),	
cognitive	performance	(black	line),	and	utilization	factor	(cyan	line)	are	represented	over	time	for	the	task	complexity,	C(t)	=	
0.1	
 
 
 
 
 

(a) RP t   = 0.7 (b) RP t  = 0.5 (c) RP t   = 0.1 
Figure	146:	Figure	146:	The	change	of	physical	performance	(blue	line),	cognitive	workload	(red	line),	robot	performance	
(green	line),	cognitive	performance	(black	line),	and	utilization	factor	(cyan	line)	are	represented	over	time	for	the	task	
complexity,	C(t)	=	0.4	
 
 
 
 
 

(a) RP t   = 0.7 (b) RP t  = 0.5 (c) RP t   = 0.1 
Figure	147:	Figure	147:	The	change	of	physical	performance	(blue	line),	cognitive	workload	(red	line),	robot	performance	
(green	line),	cognitive	performance	(black	line),	and	utilization	factor	(cyan	line)	are	represented	over	time	for	the	task	
complexity,	C(t)	=	0.7.	
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Table	22:	Human Cognitive Performance Simulation Parameters 

Name & Symbol of Parameters Value 
Fatigue constant, Cf 10−4 

×
Recovery constant, Cr 2.4 10−4 

MVC 200 
Minimum threshold force, Fth 151.9 
Time constant, τ  10 
Max cognitive workload, CW,max 1 
Min cognitive workload, CW,min 0 
Cognitive workload co-efficient, α  0.7 
Physical workload co-efficient, β  0.1 
Additional robot workload co-efficient, γ  0.2 

The simulations are performed using three different task complexity values, , and 
, each simulated for three different values of robot performance, , and . The 

simulation results are provided using three different task complexity values,  and 
in Fig. 123, Fig. 124, and Fig. 125 respectively for each RP t    0.7, 0.5, and 0.1. 

Analyzing the results of the three subplots in Fig. 123, it can be seen that for a fixed value 
of task complexity, the human cognitive performance, , decreases, while its utilization factor, 

, increases for decreasing values of robot performance, . For higher values of , 
higher values of  are observed, at the corresponding time instants. For example, in the case 
when , the robot is making mistakes frequently and requires assistance from the human 
operator much often, resulting in lower values for CP t  than those for the case when RP t    0.7, 
at the corresponding time instants. Similar trends are observed in the comparison of the three 
subplots in Fig. 124 and Fig. 125. 

The impact of task complexity on the performance values can be analyzed by comparing the 
results in the subplots in Fig. 123a, Fig. 124a, and Fig. 125a for similar values of robot performance. 
The results reveal that for a fixed value of robot performance, the values for human cognitive 
performance, , decrease, while the utilization factor, , increases for increasing values 
of task complexity,  . For lower values of , higher values of   are observed at the 
corresponding time instants. For example, in the case when  , the robot requires frequent 
instructions from the human operator, resulting in a lower value for than  the  case  when C 
t  0.1 at the corresponding time instants. Similar trends are observed in the comparison of the 
other corresponding subplots shown in these figures, i.e., Fig. 123b, Fig. 124b and Fig. 125b as 
well as Fig. 123c, Fig. 124c and Fig. 125c. 

Furthermore, it can be observed that in the subplots Fig. 124c, Fig. 125b and Fig. 125c, the 
maximum operating time tmax is less than the ninth hour. This is because the human operator’s 
cognitive capabilities have exhausted already, i.e., the overall human cognitive performance values, 
CP (t), are below 0.2. 

3.3.3.5.4 Conclusions In this paper, a dynamical human cognitive performance model has 
been proposed for a Human-Robot Collaboration (HRC) framework. This model has been simulated 
for a shared task between a human operator and a robot. Simulation results have been used to 
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validate the proposed collaboration model and analyze the effects of variations in the values of 
the involved parameters. A mathematical representation of human cognitive performance has been 
provided in terms of the associated human physical workload, robot added workload, and human 
cognitive workload. Also, the complexity of tasks at hand and the associated human utilization 
factor for different values of human capabilities have been considered to model the HRC framework. 

Simulation results show that for a fixed complexity of the task, a decrease in robot performance 
increases human utilization factor and the associated cognitive workload, which in turn degrades the 
human cognitive performance. It has also been shown that human cognitive workload decreases as 
the robot performance improves. For fixed values of robot performance, the human utilization factor 
increases as the task complexity increases which in turn increases the human cognitive workload 
and degrades the human cognitive performance. 

 
3.3.4 Project Progress for Task T3-4 (Formulation of LCS to Learn Emergent Behav- 

iors) 

3.3.4.1 Period of Performance under 

Task T3-4 Start Date: Fall 2016 

Conclusion Date: 15 May 2021 

Faculty lead: Abdollah Homaifar, Ph.D 
 

3.3.4.2 General Description of Task T3-4 

Learning Classifier Systems use reward-mechanism to capture internal processes of a system based 
on the system’s environmental variables. Here, the environment for the LCS is the LSASV under test 
and all of the entities and features in the simulation environment. Unlike a single agent, one major 
challenge to address when dealing with multiple agents is a methodology to standardize the different 
inputs of the different components of the LSASV for computer processing. This will be handled using 
advanced data normalization techniques. The inputs from the LSASV (like position, heading, speed, 
etc.), the messages it transmits as well as the messages and rules it transmits, can be coded in the 
form of string bits or classifiers which are the fundamental units of information in the LCS 
implementation. The outputs or actions of the LCS correspond to the output (emergent behavior) of 
the LSASV. The rules that the LCS learns are the ones that govern the transitions between emergent 
behavior states of the LSASV. The solution domain comprises a set of rules that collectively give a 
model of the LSASV’s interaction with its environment as shown in Figure 3. LCS needs a trainer to 
provide a reinforcement signal in the form of a reward or punishment using just a sufficient number 
of rules (called training data). The evaluator receives the response of the LSASV for a given input and 
compares it with the corresponding action of the LCS system and generates feedback to the LCS 
block. The intention here is to train the LCS block using this known set of rules. Once sufficiently 
trained, the LCS can be utilized for predicting correct state transitions for previously unknown input 
scenarios. 

 
3.3.4.3 Objectives for Task T3-4 over the Course of Project 

• Objective Name: Development of Online Clustering-based Technique for Classifying Emer- 
gent Behaviors of LSASV 
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Objective Type: Theoretical development and simulation implementation. 

Objective Description: Provide Objective Description 

Impact: Provide the impact 
 

3.3.4.4 Progress Against Planned Objectives in Task T3-4 

Due to the dynamic and complex environmental conditions in real-world scenarios, the character- 
istics of autonomous vehicles’ behaviors usually change over time and LCS can not fully capture 
the non-stationary patterns of emergent behaviors. Therefore, we formulated it as an online classi- 
fication problem and developed a clustering-based stream data classification framework. With the 
developed clustering-based data stream classification framework, Task 3-3 is accomplished and the 
technical accomplishments are summarized in the following subsection. 

 
3.3.4.5 Technical Accomplishments in Task T3-4 

Considering the exponential growth of data generated from autonomous vehicles, non-stationary 
data stream classification has been extensively investigated in recent years. Unlike traditional data 
classification problems, the non-stationary nature of data streams requires the learning algorithms 
to cope with the change of data patterns over time. The infinite length and high dimensionality 
of data streams pose another layer of challenge in terms of memory and time complexity. More 
importantly, the scarcity of data labels and expensive labeling efforts also challenged the existing 
techniques to classify the non-stationary data stream. 

Generally, the non-stationary nature of the data streams can be captured by two phenomenons 
[129, 130]: (1) concept drift, and (2) concept evolution. The concept drift refers to the change of the 
existing data distributions over time and it usually appears as the change in the class boundary. 
On the other hand, concept evolution arises when unknown concepts appear in the data stream and 
comes as novel class distributions. To handle concept drift, most of the existing approaches employed 
a forgetting mechanism in the learning algorithm to monitor the model performance using the latest 
knowledge from the data stream [131–136]. The labels of the data stream are required to handle the 
concept drift. However, due to the fact that the labeling of data streams is both time and resource 
consuming, it is necessary to develop a more effective labeling procedure in addressing the concept 
drift. For concept evolution, the two-phase procedure is widely used in the literature [137]. First, a 
warm-up phase is initiated to develop a classification model using the initial training data. Then, the 
initially developed model is used to classify the incoming data samples and distinguish novel classes. 
With the two-phase procedure, many concept evolution-based data stream classification techniques 
are developed [138–142]. However, these approaches assume that classes are separated by a distinct 
boundary function and ignore the potential overlap among classes. Similar to the concept drift 
methods, the scarcity of data labels and expensive labeling costs are the other two technical 
challenges in the literature. In summary, the limitations of the existing data stream classification 
methods are described below: 

• Initial model training: most of the existing approaches require an initial labeled set to create a 
model for identifying novel concepts from the data stream. However, the real-world data 
streams are unlabeled and very little knowledge is available initially. 
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• Overlap among classes: many data stream classification frameworks assume that samples from 
the same class should be close to each other. This assumption may not hold when some classes 
are highly overlapped. 

• Label scarcity and costs: the unrealistic assumption on the availability of data labels is widely 
used in state-of-the-art techniques. Solutions are required for handling the label scarcity and 
high labeling costs in data stream classification tasks. 

 
3.3.4.5.1 Problem Formulation Let DS be an unknown data stream and CHt is a chunk 

of data from DS  such that DS = ⋃T CHt  where t and T  refer to the time index of the current ∣CH ∣ 

and final data chunk, respectively. For each data chunk, CHt = ⋃ t {xi∣xi ∈ Rm} where xi denotes 

a data sample in and is the dimension of i. Assume 
i=1 

= { } 

a data stream where GSt and LSt represent the macro-level and the micro-level summary of DS. 
We use Ci to represent the ith cluster center of DS at time t, and SCi,j refers to the jth sub-cluster t 

center of cluster i at time t. The notation yi,j 
t 

denotes the class label of SCi,j. Considering the 
non-stationary nature of data streams, the following assumptions are considered: 

• The characteristics of data streams can change abruptly or gradually. 

• Multiple novel concepts may arise simultaneously. 

• Overlapped classes will appear over time. 
 

3.3.4.5.2 Overview of Clustering-based Data Stream Classification Framework With 
the mathematical notations and assumptions described above, an algorithm description of the de- 
veloped clustering-based data stream classification framework, namely CDSC-AL framework, is 
presented in Algorithm 4. As shown in algorithm 4, CDSC-AL framework extended the recently 
developed density-based stream clustering algorithm, namely dynamic fitness proportionate sharing 
(DFPS-clustering) [143], to perform the classification of data streams considering several aspects. 
First, a new merge procedure between clusters from the incoming data chunk and historical clusters 
is employed and the modified merge procedure is used to detect novel classes and drifted classes. 
Second, two levels of cluster summary are maintained continuously to reflect the characteristics of 
the data stream through an active learning procedure. Third, an effective classification procedure 
using the k-nearest-neighbor (KNN) rule [144] is introduced to classify the incoming data chunk 
based on the summary and queried labels. Additionally, the overlap among classes is addressed by 
exploring the sub-cluster information from the micro-level summary. 

 
3.3.4.5.3 Concept Drifts and Evolution Detection through Clustering  To capture the 

non-stationary property of data streams, we modified the DFPS-clustering algorithm substan- tially 
by employing a new cluster merge procedure between the historical clusters and new clusters. Then, 
we use the new DFPS-clustering method to distinguish novel concepts from drifted concepts. 
Algorithm 5 summarizes the new cluster merge procedure for the detection of drifted and novel 
concepts. 

As shown in Algorithm 5, the new merge procedure utilizes the density of boundary instances to 
decide whether a merge should happen between a historical cluster and its neighboring cluster from 

CHt m  is the summary of 
t 

Approved for Public Release; Distribution Unlimited. 
242



μ(FCt ) 

t t t t

Algorithm 4: An overview of CDSC-AL framework using the modified DFPS-clustering 
1 Input: DS 
2 Parameters: Ct: the set of clusters at time t; CHt: the current data chunk; CCHt : a set of clusters 

discovered in CHt; Qt: a small set of samples for active label querying in CHt; YQt : the label set of the 
queried samples Qt; YCHt : the label set for CHt. 

3 Output: HSt 

4 while t = 1  to T do 
5 Conduct recursive density evaluation on CHt and rank all samples of CHt according to their density 

values 
6 Perform the search of possible clusters in CHt 

7 Merge highly overlapped clusters to obtain CCHt 

8 if t == 1 then 
9 HSt ← ∅, Ct ← CCHt [Qt, YQt ] = ActiveQuery(HSt, Ct, CHt) 

10 YCHt =Classify(HSt, Qt, Y (Qt), CHt) 
11 HSt=ClusteringModel(HSt, CCHt , CHt) 
12 else 
13 Ct=CheckMerge(HSt, CCHt , CHt) 
14 [Qt, YQt ]=ActiveQuery(HSt, Ct, CHt) 
15 YCHt =Classify(HSt, Qt, YQt , CHt) 
16 HSt=ClusteringModel(HSt, CCHt , CHt) 

Algorithm 5: New cluster merge procedure 
1 Parameters: LNC: a list of paired clusters between a historical cluster and its neighboring clusters in 

CHt, XB: a set of boundary samples between each pair of clusters in LNC 

2 Function: CheckMerge(HSt, CCHt , CHt) 
3 Identify the paired neighboring historical clusters in HSt for CCHt to obtain LNC 

4 Extract XB for each pair of neighboring clusters in LNC 

5 Evaluate the density of XB and check for the density drop for each pair of neighboring clusters 
6 Merge each pair of neighboring clusters when there is no density drop in XB 

7 Mark unmerged clusters as novel clusters and merged clusters as updated clusters 
8 Validate the existence of novel clusters using Remark 3 
9 Return Ct = [novel clusters, updated clusters] 

CHt. Then, it generates two types of clusters: (i) novel clusters and (ii) updated clusters. Clus- ters 
that are not merged with historical clusters are considered as novel clusters while the merged clusters 
are defined as updated clusters. Based on these two types of clusters, the novel concepts are 
captured by novel clusters and drifted concepts are identified as updated clusters. To validate the 
existence of novel clusters, we use the mean and standard deviation of the density values of 
historical clusters to compute a dynamic density threshold. Let Cno be a novel cluster and FCno 

t t 

be its density value. The mean and standard deviations of historical clusters are denoted as 
and σ(FCt ), respectively. The following Remark is defined for novel cluster detection. 

Remark 3. If FCno ≥ ∣μ(FC ) − σ(FC )∣, then Cno is a true novel cluster. 

Remark 3 is derived from the three-sigma principle of Gaussian distribution used in [143] and it 
means a cluster is considered as a valid novel cluster if its density value falls inside the one-sigma 
distance from the average density of historical clusters at time t. With Remark 3, a novel cluster 
detector with a dynamic density threshold is used for validating the existence of novel clusters. 
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3.3.4.5.4 Adaptation of Drifted and Novel Concepts using Active Learning Con- 
sidering time and space constraints, we maintain a summary of the data stream rather than keeping 
all historical samples from DS. The maintained summary HSt consists of two levels of summary 
on DS: (i). macro-level summary GSt, and (ii) micro-level summary LSt. The definitions of these 
two levels of summary are expressed as: 

 ∣Ct∣ 
i i i 

 
 

and 

GSt = ⋃[Zt, Ft , Rt],  (104) 

 
 

∣Ct∣ ∣SCi∣ 

= ⋃{ ⋃
t 

[SCi,j, yi,j ]}.  (105) 

Where F i  and Ri denote the density value and radius of the ith cluster at time t, respectively. yi,j 

t t t 

refers to the class label of SCi,j and all samples from SCi,j share the same label. LSt is used to 
explore the sub-cluster structure of each cluster when classes are highly overlapped. Specifically, we 

split each cluster into a set of sub-clusters such that each sub-cluster only has a unique class label. 
Instead of computing the mean vector for each sub-cluster, we consider only the sample with the 
highest density value in each sub-cluster as the sub-cluster center and use it for label propagation. 

These two levels of summary are continuously updated to adapt to the change of DS  using 
an active learning procedure. Since two types of clusters can be obtained from the clustering analysis, 
a hybrid active learning strategy of informative-based and representative-based sampling is 
introduced to reduce the labeling costs. The adaptation procedure of these two levels of summary is 
provided in Algorithm 6. In Algorithm 6, for novel clusters, the representative-based query [145] is 
performed by sampling from the centers of clusters. On the other hand, we conduct the informative- 
based query [145] in updated clusters through a distance-based strategy. Unlike the entropy-based 
sampling [146] strategy, samples that are relatively far from the updated clusters are selected as 
informative samples for label querying. Let Qt be the set of queried samples and YQt be the label 
set for Qt.  After the active label query, the label propagation procedure begins to predict the 
label of the remaining samples in CHt using YQt and HSt. Finally, the predicted labels are used 
to update the LSt with a two-step procedure. First, we update the centers of sub-clusters within 
updated clusters with new samples that have higher density values. Second, we create a set of new 
sub-clusters for each novel cluster to capture the characteristics of novel concepts. 

 
3.3.4.5.5 Classification through Label Propagation To classify an incoming data chunk, 

we employ an effective label propagation procedure based on HSt and Qt. First, a set of proto- 
types with label information are obtained from HSt and Qt. Then, the KNN-based classification 
procedure is employed to propagate the labels of the prototypes to samples in CHt. Here, we set 
the value of k to five and the classification procedure is presented in Algorithm 7. 

To evaluate the efficacy of the CDSC-AL framework, nine multi-class benchmark datasets from 
[147], are used in the experiments for performance evaluation. Table 23 summarizes these datasets 
in terms of sample size, dimensionality, number of classes, and class overlap. We compared the CDSC-
AL framework with supervised approaches. Four supervised methods, including Leverage Bagging 
(LB) [148], OZA Bag ADWIN (OBA) [149], Adaptive Hoeffding Tree (AHT) [150], and SAMkNN [135], 
are used for the second comparison study. The results are presented in Table 24. To account for 
imbalanced class distributions in benchmark datasets, we use the balanced classification 

i=1 

i=1 j=1 
t LS 
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Algorithm 6: Adaptation of drifted and novel concepts 
 

1 Parameters: Xno: a set of samples from novel clusters; Xup: a set of samples from updated clusters; QI : a 
set of queried samples using the Informative-based sampling; QR: a set of queried samples using 
Representative-based sampling; YCHt : the label set for CHt. 

2 Function: ClusteringModel(HSt, Ct, CHt) 
3 [Qt, YQt ]=ActiveQuery(Ct, CHt) 
4  YCHt =Classify(HSt, Qt, YQt , CHt) 
5 Update the GSt according to Ct 

6 Update the LSt using YCHt 

7 return HSt = [GSt, LSt] 
8 Function:ActiveQuery(Ct, CHt) 
9 Extract novel clusters and updated clusters from Ct 

10 Identify samples that are close to the novel clusters as Xno 

11 Identify samples that are close to updated clusters as Xup 

12 Representative-based sampling for Xno to obtain QR 

13 Informative-based sampling for Xup to obtain QI 

14 Qt = (QI ∪ QR) 
15 Query labels from human experts to obtain YQt 

16 return [Qt, YQt ] 
 

Algorithm 7: Classification through label propagation 
 

1 Parameters: YCHt : the label set for CHt; Subr: a set of representatives from sub-clusters; Pt: a set of 
prototypes with labels. 

2  Function:Classify(HSt, Qt, YQt , CHt) 
3 Extract sub-cluster centers and its labels from HSt as Subr 

4 Pt = Subr ∪ [Qt, YQt ] 
5 Propagate labels from the prototype set to samples in CHt using KNN rule and obtain the predicted label 

set YCHt 

6 return YCHt 

 

accuracy (BA) [151] and the macro-average of F-score (Fmacro) [152] as performance evaluation 
metrics. We recorded these two metrics over the entire data stream classification and reported the 
average values for performance evaluation. 

Table 24 presents the results of CDSC-AL and the four supervised methods. Using only 10% of 
the labels, Table 24 demonstrates that the CDCS-AL method achieves the best performance on six of 
the benchmark data streams including Synthetic-1, Synthetic-2, Sea, Gas Sensor Drift, MNIST, and 
CIFAR-10. For data streams with abrupt concept drifts, CDSC-AL presents slightly better or 
comparable performance relative to supervised approaches. In summary, the comparison study with 
supervised methods reveals that CDSDF-AL could always provide statistically better or comparable 
performance with the supervised methods using a small proportion of labeled data. 

In conclusion, we developed a clustering-based data stream classification framework through 
active learning (CDSC-AL) to handle non-stationary data streams. The comparison studies with 
the state-of-the-art supervised data stream classification methods justify the efficacy of the proposed 
method on both synthetic and real data. 
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Table	23:	Dataset	descriptions.	
 
 

Datasets Sample size Dimensions No. of Classes Overlap 
Synthetic-1 18900 2 9 Non-overlapped 
Synthetic-2 11400 2 10 Overlapped 
Sea 60000 2 3 Non-overlapped 
KDD cup 99 494021 34 5 Non-overlapped 
Forest covtype 581012 11 7 Overlapped 
Gas Sensor Drift 1391 128 6 Overlapped 
Shuttle 58000 9 7 Non-overlapped 
MNIST 70000 784 10 Non-overlapped 
CIFAR-10 60000 3072 10 Non-overlapped 

 
Table	24:	Performance	comparison	with	supervised	methods.	 (Relative	rank	of	each	algorithm	is	

shown	within	parentheses.)	
 

Dataset Metric LB OBA AHT SAMkNN CDSC-AL 

Synthetic-1 BA  0.7910(2) 0.6640(3) 0.6354(4) 0.6247(5) 0.9459(1) 
 Fmacro 0.7965(2) 0.6675(3) 0.6513(4) 0.6313(5) 0.9490(1) 

Synthetic-2 BA  0.7124(2) 0.7204(3) 0.6926(4) 0.6784(5) 0.8459(1) 
 Fmacro 0.7218(2) 0.7219(3) 0.6977(4) 0.6864(5) 0.8149(1) 

Sea BA  0.8204(2) 0.7498(3) 0.7493(4) 0.7205(5) 0.9691(1) 
 Fmacro 0.8227(2) 0.7501(4) 0.7505(3) 0.7345(5) 0.9729(1) 

KDD cup 99 BA  0.7585(4) 0.7812(3) 0.8541(1) 0.7495(5) 0.8364(2) 
 Fmacro 0.7564(4) 0.7798(3) 0.8012(1) 0.7682(5) 0.7921(2) 

Forest covtype BA  0.8888(1) 0.8707(2) 0.8612(3) 0.8545(4) 0.8465(5) 
 Fmacro 0.8901(1) 0.8709(2) 0.8688(3) 0.8588(4) 0.8230(5) 

Gas Sensor Drift BA  0.7185(2) 0.6345(4) 0.6111(3) 0.6357(5) 0.8916(1) 
 Fmacro 0.7199(2) 0.6361(4) 0.6188(3) 0.6412(5) 0.8995(1) 

Shuttle BA  0.4789(1) 0.4477(4) 0.4508(3) 0.4424(5) 0.4744(2) 
 Fmacro 0.5187(1) 0.5112(2) 0.4978(3) 0.4894(4) 0.4789(5) 

MNIST BA  0.8909(2) 0.8498(4) 0.8393(5) 0.8549(3) 0.9669(1) 
 Fmacro 0.8946(2) 0.8501(4) 0.8412(5) 0.8596(3) 0.9676(1) 

CIFAR-10 BA  0.7199(3) 0.6208(5) 0.7366(2) 0.6218(4) 0.7857(1) 
 Fmacro 0.7208(2) 0.6325(4) 0.7381(3) 0.6295(5) 0.7869(1) 

Mean ranks BA 
Fmacro 

2.00 
1.75 

2.86 
2.63 

3.57 
3.00 

4.57 
4.00 

1.86 
2.00 

 
3.3.5 Project Progress for Task T3-5 (Formulation of FLS to Handle Uncertainty) 

3.3.5.1 Period of Performance under 

Task T3-5 Start Date: August 2016 

Conclusion Date: Dec 2022 

Faculty lead:  Dr. Abdollah Homaifar 
 

3.3.5.2 General Description of Task T3-5 

To evaluate the LSASV’s perceptual capability representative sensing tasks will be used such as the 
detection of enemy targets in order to launch an attack; formation execution; task allocation and 
detection and localization of landmarks. The task here is to translate experts’ heuristic knowledge 
into fuzzy IF-THEN statements. Earlier work will be extended to automate the process of catego- 
rizing the input/output relations to associated decisions. The fuzzy logic approach can provide the 
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tester with the reasons for a particular cause of action in human understandable terms. The most 
fundamental aspect of this connection is that the uncertainty involved in any problem-solving situa- 
tion is as a result of some information deficiency, which may be incomplete, imprecise, fragmentary, 
not fully reliable, vague, contradictory, or deficient in some other way. The general framework of 
fuzzy reasoning allows handling much of this uncertainty. The effects of uncertainty in a system can 
be handled in a better way by using type-2 fuzzy logic because it offers better capabilities to cope 
with linguistic uncertainties by modeling vagueness and unreliability of information. 

Considering the multi-label classification problem, in which objects may belong simultaneously 
to several classes an observed instance may apply to multiple classes. One such problem is arises 
multi-sensor data collection and fusion problem that arise in LSASV’s perception studies. Given a new 
instance representing the item of evidence from different sources (experts) will used to make belief 
probability assignments based on mass function assignments. The resulting multiple masses from 
neighboring instances or label representations may be combined by the methods studied pre- viously 
(for instance the conjunctive sum). For making decisions based on these observations, we may find 
labels with the greatest commonality and compare two different degrees of belief for each label which 
result in a multi-labels classifier. 

Another research aspect we were exploring where uncertainty plays a significant role is in human- 
machine interaction and subsequent human-machine trust relationships. 

3.3.5.3 Objectives for Task T3-5 over the Course of Project 

• Objective Name: Multi-sensor data fusion using uncertainty measure

Objective Type: Research

Objective Description: Developing a bi-criteria evaluation of belief functions in a multi- 
sensor data fusion using a combination of both distance/similarity and uncertainty mea- 
sure. 

Impact: Developed a multi-sensor data fusion solution based on the Dempster-Shafer(DS) 
theory of evidence. 

• Objective Name: Conflict Resolution in the Dempster Shafer (DS) theory of evidence.

Objective Type: Research

Objective Description: Conflict among the different sources of information is one of the major 
issues threatening a successful implementation of multi-sensor data fusion systems. This 
occurs when a decision made based on one information source conflicts with another. A 
consensus based strategy is proposed to properly manage conflict among the different 
information sources. 

Impact: Identification of spoofed sources from hostile targets. Detection of faulty or mal- 
functioning sensors. 

• Objective Name: Target classification.

Objective Type: Research

Objective Description: Target classification is the process of categorizing an observed tar- 
get into one of the known set of target classes. To make a decision about the class of 
the target, the sensing devices are used to capture the various attributes of the target. 
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Information extracted from the observation of the different attributes are often charac- 
terized by uncertainty. To effectively manage potential conflict, a reliability factor based 
on the discriminating capability is proposed. This controls the relative contributions of 
the different information sources on the final decision. 

Impact:  This can offer a significant application in the identification of friendly/hostile target 
e.g. identification of friend and foe (IFF). 

• Objective Name: Reduction of cardinality of Information Sources. 

Objective Type: Research 

Objective Description: The selection/reduction of information sources is not only to mea- 
sure the significance/relevance of the different information sources with respect to output 
decision but also to capture the redundancy among the different sources. We proposed 
the average pairwise discordance index (APDI), a measure of discriminating capability to 
determine the relative importance of the different information sources. 

Impact: Besides getting rid of non-informative/noisy information sources, an important 
relevance of reducing the number of information sources is to decrease the processing 
time at the fusion node for the online target classification system. 

• Objective Name: Human-autonomoy trust evaluation and explainability 

Objective Type: Research 

Objective Description: The objective of the trust evaluation and explainability study is 
providing a means to understand what factors affect human-machine trust relationship 
and to understand how trustworthy decisions are carried out by a machine. 

Impact: We devised various machine learning techniques to evaluate trust based on real- time 
sensing of trust markers, and the explainability study of trust using the SHAP explanations 
provided insights into the need to reduce the number of features needed for the 
classification problem. Additionally, in conjunction with variable importance evaluations, 
our explainability study indicated the subjectivity of trust propensities that implied the 
possibility of designing autonomous systems tailored to individual needs. However, it also 
implies that the generalizability of trust-related features is rather difficult with a small 
sample size of individuals studied. 

 
3.3.5.4 Progress Against Planned Objectives in Task T3-5 

The objective of this task is accomplished. Several novel algorithms addressing the notions of 
uncertainty modeling and sensor data fusions have been developed. Additionally, we devised a way 
to evaluate human-trust from real-time sensing and explainability of such evaluation approaches 
based on SHAP explainability approach. The main accomplishment of this task are: 

• In the developed multi-sensor fusion based on uncertainty measures, we devised a DS theory 
of evidence employed in a multi sensor data fusion for classification of targets. Measurements 
acquired by different sensors for the various attributes of the observed target are represented 
by belief functions. The belief functions are then combined using a robust fusion algorithm 
to obtain a final belief function. The resulting final mass is transformed into probability 
distribution for decision making as to the class of the observed target. 
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• With regard to human trust evaluation based on real-time sensing of pyschophysiological sig- 
nals, we developed novel approaches of feature extraction and classification methods that are
able to distinguish trust/distrust behaviors based on features extracted from the pyschophys- 
iological sensors. Additionally and even more importantly we devised a method toward ex- 
planability of machine decisions on the basis of Shapley Additive Explanations.

3.3.5.5 Technical Accomplishments in Task T3-5 

• Multi-sensor data fusion is usually believed to produce more reasonable results than a single
sensor in estimating the state of a problem. As rightly discussed in some of our earlier reports,
the DS theory of evidence is an important framework that can be deployed for fusion of
information from different sources. An integral component of the DS theory is the DS rule
of combination which is the fusion engine. This engine tends to yield unreasonable results
when information in form of the belief functions being reported by different sources are
conflicting with one another. In the last quarterly report, we introduced a fusion strategy that
assigns weights to every belief function before the deployment of the traditional DS rule
of combination.The weight (evaluation) of each belief function is based on the distance between
each belief function and the average belief function. This evaluation criteria is based solely on
distance function. Measure of uncertainty has been used to assign weights to bodies of
evidence. Since the weight of a belief function can be determined by using not only the distance
function but also uncertainty measure. The use of both measures can be described as a bi-
criteria evaluation approach. In this report, we consider a quick literature survey of some
uncertainty measures in the theory of belief functions. The numerical example in the last
quarterly report is used to demonstrate the usefulness of the different measures. Measuring
uncertainty in evidence theory is simply the task of quantifying the information volume of a
belief function. They can be broadly categorized into three: Conflict/discord, non-
specificity/imprecision, and total uncertainty [153–157].

• Conflict management based on the average consensus belief function We proposed a new fusion
strategy based on the average belief function (consensus belief function). In this approach,
weights are assigned to each belief function based on its closeness to the average belief function.
The closer, the higher the weight of the associated information source. The obtained weight is
then used to adjust the effect of the individual information sources on the

final decision.

• Information extrcated from the sensors are model as belief function to induced local declara- 
tions represented by m1; m2; :::; mN. A reliability factor is proposed to control the impact of
the various sources on the global declaration denoted by m.

• Selection of information sources based on the average pairwise discordance index (APDI). The
rationale behind the selection of information sources is to ensure that the selected information
sources are: correlated with target classes, discriminatory with minimum degree of overlap
among the different target classes as fewer as possible. With every attribute/feature considered
as an information source, we proposed a

filter-based selection strategy that utilizes the average pairwise discordance index (APDI).
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• In light of the second problem at the outset of this work, real-time sensing and explainability of 
trust, the prediction/classification performance of the machine learning methods demon- 
strated the ability to use the features acquired by the psychophysiological sensors in a real-time 
manner. We devised ensemble classification methods and methods based on the reduced fea- 
ture sets to classify trust in human-machine interaction teams, owing to a couple of reasons. 
First, the ensemble methods have inbuilt parameter optimization capabilities, which enable 
successively and iteratively improve their decision capabilities. Secondly, these methods ex- 
ploit the informativeness among the correlative analysis they carry out among a larger set 
of features which, despite the redundancy of features, gives them an additional edge. Never- 
theless, the traditional machine learning methods implemented based on the reduced sets of 
features that resulted from the feature selection process have also performed reasonably well 
on almost one-tenth of the available features to classify trust in human-machine teams under 
uncertainty representation. Both performances attest to the practicality of using real-time 
sensing of factors affecting trust [158–160]. 

• The explainability study of trust using the SHAP explanations provided a couple of insights 
as well. First, it intimated the need to reduce the number of features needed for the classifi- 
cation problem. Second, in conjunction with the variable importance evaluations, the SHAP 
summary indicated the subjectivity of trust propensities. This was demonstrated by the fact 
that individuals’ final trust/distrust decisions depend on different features. This also might 
lead to the conclusion that there is a possibility of designing autonomous systems tailored to 
individual needs. However, it also implies that the generalizability of trust-related features is 
rather difficult with such a small sample size of individuals studied [161]. 

 
3.3.6 Project Progress for Task T3-6 (Train and Test LSASVs using PIE) 

3.3.6.1 Period of Performance under 

Task T3-6 Start Date: 15 August 2017 

Conclusion Date: 23 December 2020 

Faculty lead:  Abdollah Homaifar, Ph.D 
 

3.3.6.2 General Description of Task T3-6 

Embedded in this task is the task of inferring the LSASV’s perception of its environment because this 
perception determines what the LSASV’s active behavior state should be. As the complexity of 
LSASV increases, efficiency and cost are considered critical factors in T&E; the search for near- exact 
models of behavior and perception inference becomes challenging. The method for developing these 
models must use observations of the LSASV and its interactions with its environment and learn from 
these interactions. LCS that embraces a hierarchically cooperating and competing set of classifiers 
can meet these needs. The uncertainties associated with the system can also be modeled with a type-
2 Fuzzy Logic System. Once sufficiently trained, PIE will be able to correctly predict the outputs 
of LSASV given input scenarios that were not exposed to the PIE during the training phase of the 
PIE. The PIE infers the internal processes/transitions of the LSASV’s and predicts the behavior 
of the LSASV next state, such as the ability to determine an enemy target. Because 
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the rules governing an LSASV’s behavior are not fully known, nor are the capabilities of its sensor 
systems, the behavior and perception models require ongoing adaptation in order to approximate 
unknown scenarios intuitively. Secondly, the internal parameters governing the behavior of the 
LSASV might change with time, which may cause the PIE’s behavior to deviate from the behavior 
of the LSASV. The online adaptation of the PIE enables it to adjust its training parameters to align 
itself with the LSASVs behavior. 

3.3.6.2.1 A theoretical study of decision tree algorithm  We studied the theory behind the 
decision tree algorithm. The ID3 algorithm is listed and implemented for a synthetic data set. The 
implementation results are reported. 

3.3.6.2.2 A theoretical study of Probabilistic graphical model(PGM) PGM was studied 
for the development of PIE. In PGM, the Bayesian network had been investigated. The chain rule of 
probability, different reasoning techniques such as causal, evidential, and inter-causal reasoning 
were discussed. The vital concept of D-separation, Active trail, Factorization, and I-map were studied. 
Two types of structure learning technique were reported which were constraints based approaches 
and score-based approaches with an easy to follow the example. 

3.3.6.2.3 Implementation of the studied algorithms on a synthetic dataset  Two well-
known algorithms are known as The Naive Bayes Classifier and The Tree-Augmented Naive Bayes 
Classifier were implemented on a synthetic dataset from UAV simulation. The dataset has 12 input 
variables and 4 output classes. We got an average accuracy of around 85% in this experiment. 

3.3.6.2.4 A simulation environment is developed to collect synthetic data and an 
initial framework has been proposed We developed a search mission in the simulation environ- 
ment. The scenario is developed using the Robot Operating System(ROS), Gazebo, and Pixhawk. Two 
different UAVs are used to design the scenario named as 3DR IRIS and 3DR SOLO. The synthetic data 
had been labeled to five different modes of operation named Hold, Takeoff, Hover, Search, and Land. 
Moreover, the definitions of each mode were provided. A decision tree algorithm is applied to these 
data for the prediction of the defined modes. The empirical results showed that the proposed 
testing framework can successfully predict the defined modes. At this stage, we achieved our first 
goal towards the development of a data-driven testing framework. The details of this 
accomplishment are provided in the following section. 

Description of the Perception Inference Engine 
The Perception Inference Engine (PIE) is composed of three main sub-systems. They are named as 
follows: 

1. Data collection

2. Prediction model generation

3. Test & Evaluation

Each sub-system has its own components. The complete system is shown in Figure 126. 
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Figure	148:	Complete	PIE	system	diagram.	

 

 
1. Data collection sub-system 

Data is collected in three steps. First, a scenario is generated which is composed of different 
high-level states describing, distinct behavioral modes, characteristics, or actions. Second, the 
UAV behaviors needed to execute the scenario are implemented. Third, the UAV behavior is 
captured as observed by an external sensor. An external sensor is an off-board observation of 
the UAV system which can be a VICON motion capture system in a lab environment or a 
radar system for outdoor experiments or other visual or sensor networks [162]. External 
sensor data are stored and used to generate a model capable of predicting future UAV behavior 
within the scenario. A sample scenario is described in Section 2.3.6.2.4. The high-level states 
are described in more details in Section 2.3.6.2.4. Measurement of different variables can be 
captured during the online operation such as position, orientation, linear and angular velocity, 
linear and angular acceleration, altitude or video of the UAV. Captured data is then forwarded 
to the prediction model generation sub-system. 

2. Prediction model generation sub-system 
After getting data from the data collection sub-system, it is labeled by a human expert accord- 
ing to the definition of high-level states introduced later in Section 2.3.6.2.4. This labeling 
process can be automated by using some probabilistic approach during the data collection 
process [163, 164]. However, in our experiment, we did it manually. A block diagram of this 
sub-system is shown in Figure 127. The collected data are labeled first and split among three 
sets named as validation, training and testing. Then the training set is used for training the 
classification model and later the validation set is used for fine tuning the trained model and at 
the end the testing set is used for evaluation of the fine-tuned model. At this point, we have 
labeled data, which can be used to predict the label from the features that we recorded during 

Approved for Public Release; Distribution Unlimited. 
252



the online operation. In the machine-learning domain, it is known as a classification problem 
and it is a supervised learning problem because we know the label associated with the input 
data. In our system, we have multiple high-level states, which makes it a multi-class classifica- 
tion problem. In the machine-learning literature, there are many algorithms and approaches 
for solving multi-class classification problems such as Decision Tree (DT), Neural Network 
(NN), Support Vector Machine (SVM), Naïve Bayes (NB), Learning Classifier System (LCS), 
Fuzzy Logic (FL), and a Bayesian Network (BN) to name a few of them [165]. However, 
each algorithm or approach has its own strengths and weaknesses [165], for example: a neural 
network is known to be a “black-box” (in terms of the transparency, rationale or logic of its 
input-output mapping) and needs many iterations to converge [166]; inferencing and finding 
the optimal structure in a Bayesian Network is an NP-hard problem [167]; and the Naïve Bayes 
approach is prone to under-fit the data [167]. In our system design, we used a Decision Tree 
algorithm. There are different variants of the DT algorithm. In our implementation, we used 
the CART algorithm. The mathematical formulation of the decision tree is described in 
[168]. After proper analysis of the DT model, it is used by the test & evaluation sub-system. 

Figure	149:	Block	diagram	of	prediction	model	generation	sub‐system.	

3. Test & Evaluation sub-system
In the test & evaluation (TE) sub-system, the trained DT model is used to predict the current
state of the UAV. As with the data collection sub-system, UAVs are updated with different
scenarios and the external sensors are activated to observe the UAVs in operation. Data from
the external sensor is directly fed to the DT model, which predicts the current states of the
UAVs. PIE then matches these states with the expected states according to the scenario
generator and produces a human-readable report about the flight. A sample report is shown in
Figure 128. The report provides information about the capability of the UAV to carry out a
particular mission. So, it is a proof of the performance of the UAV.

State Definition 
We defined five high-level states during the simulation and hardware implementation. The high- 
level states are named as hold, takeoff, hover, search and land. We used four state variables to define 
the high-level states. The state variables are altitude (h), linear velocity in the X direction (ẋ), linear 
velocity in the Y  direction (y˙) and linear velocity in the Z  direction (z˙). The coordinate 
representation, used for state definition, is “ENU.” ENU is a ground-fixed frame where X axis points 
East, Y  points North and Z up. The UAV body frame is oriented with X  towards the front, Z up 
and Y  towards the left. The definitions of the high-level states are as follows: 

Hold: The UAV is in hold state, when h = 0, vx = 0, vy = 0, and vz = 0. 
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h ≠ 0 vx = 0 vy = 0 vz > 0 
h = constant  h ≠ 0 vx = 0 vy = 0 vz = 0 
h = constant  h ≠ 0 vx ≠ 0 vy ≠ 0 vz = 0 

 
Figure	150:	A	sample	report	for	a	simulation	experiment	(here,	Hold	=	1.0,	Takeoff	=	2.0,	Hover	

 

 
Takeoff: The UAV is in takeoff state, when , , , and . 
Hover: The UAV is in hover state, when & ,  ,  , and . 
Search: The UAV is in search state, when  &  ,  ,  , and  . 
Land: The UAV is in land state, when h ≠ 0, vx = 0, vy = 0, and vz < 0. 

Scenario Description 
To prove our concept, we designed a scenario so that it contains all the predefined high-level states. 
In our scenario, we chose a rectangular area for the UAV to search with the aim to observe the total 
ground area beneath. The UAV starts from a predefined starting point known as the home location 
and then vertically takes off. It hovers for a few seconds at a constant altitude and then starts 
searching the area by following a lawnmower pattern using a way point navigation algorithm. After 
finishing the search it returns to the starting point, hovers there for a few seconds and lands at the 
home location. In this scenario, all of the five high-level states are implemented. If we discretize the 
scenario, we observe that it is a combination of hold-takeoff-hover-search-hover-land-hold. The 
whole scenario and state transition diagram are shown graphically in Figure 129. 

Simulation Implementation 
For simulating the system, we developed the scenario described in Section 2.3.6.2.4 in the Gazebo 
simulation environment. The specification of the simulation computer is Intel Core-i7(8 core) pro- 
cessor, 16 GB of RAM, 128 GB of Hard Disk and Ubuntu 16.04 LTS version as the operating 
system (OS). We used the 3DR IRIS and 3DR SOLO quadcopter models as simulated UAVs. These 
quadcopters are shown in Figure 130. We used the Robot Operating System (ROS) [169] to im- 
plement the scenario and used open source Pixhawk firmware for the UAV autopilot. We used the 
OFFBOARD mode to implement the way-point navigation. In OFFBOARD mode, we can send a 
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Figure	151:	:	Visual	representation	of	the	scenario	and	the	state	transition	diagram	of	the	scenario.	

setpoint to the Pixhawk autopilot as a goal position. 
We logged and saved the sensor data during the simulation in a comma separated value (CSV) 

formatted file. We saved position x, position y, position z, roll angle ϕ, pitch angle θ, yaw angle 
ψ, linear velocity in X direction ẋ ,  linear velocity in Y  direction y˙, linear velocity in Z direction z˙, 
roll speed ϕ˙, pitch speed θ˙, and yaw speed ψ˙. However, we used only position z, linear velocity in
X direction ẋ ,  linear velocity in Y  direction y˙, and linear velocity in Z direction z˙ to develop our 
prediction model. 

We used this data to build our classification tree to predict the five predefined high-level states. 
We ran the simulation ten times to collect 19, 884 data-samples from the IRIS quadcopter and 
26, 011 data-samples from the SOLO quadcopter which have five class labels. Then, we labeled the 
data according to the definition of the high-level states and merged them together. The details of the 
data samples are given in Table 26. We randomly split the data into two partitions known as a 
training set and testing set. Then we extract the classification tree from the training set and used that 
tree to predict for the testing data. 

Figure	152:	3DR	IRIS	(left)	and	SOLO	(right)	quadcopter.	

We calculate both training accuracy and test accuracy. Figure 131 shows the effect of partitioning 
the data using a different ratio on the accuracy of the model. For 50% training & validation and 50% 
testing samples, the prediction accuracy for the training dataset is 99.95% and for testing dataset 
98.55%. 
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Table	25:	Physical	configuration	of	the	drones	used	in	the	experiments.	
 
 
 
 
 
 

Intel Aero 
Ready to Fly Drone 

36 22.2 865 Quadrotor x 

Parrot AR.Drone 2.0 45 15 380 Quadrotor x 
 

 

	

	

	

Table	26:	Details	of	the	simulation	dataset	
 

 

No. of 
samples 

Hold Takeoff Hover Search Land 

 

IRIS 6323 684 6285 5597 995 
SOLO 11817 1014 4586 7122 1472 

 

	

	

	

Table	27:	 Precision,	Recall	and	F1‐Score	of	the	trained	model	

Hold Takeoff Hover Search Land 

 
 
 
  

Name 
Motor-to-motor 
dimension(cm) 

Height(cm) 
Weight(gm) 
without battery 

Airframe 
Configuration 

3DR IRIS 55 10 1020 Quadrotor Wide 
3DR SOLO 26 25 1000 Quadrotor x 

P  0.99 0.97 0.99 0.98 0.98 
R  0.99 0.98 0.99 0.98 0.98 
F1 0.99 0.98 0.99 0.98 0.98 
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The performance of the trained model is evaluated with precision, recall, F1-Score and confusion 
matrix. The mathematical expressions of these performance indices are given below: 

  Tp 
Precision, P 

p p 

  Tp 
Recall, R 

p n 

(106) 

(107) 

P  R 
F1 

P + R

 

(108) 

Here, Tp is the true positive, Fp is false positive and Fn is false negative. The performance of 
the trained model is given in Table 27 and the confusion matrix is shown in Figure 132. 

3.3.6.2.5 A physical experiment has been done in the lab environment After the successful 
implementation of the framework in the simulation environment, we implemented the whole 
framework in the lab environment. We used the VICON motion capture system to track each UAV in 
the real operation. Two types of UAVs are used, one is Parrot AR. Drone 2.0 and the other one is Intel 
Aero Ready to Fly Drone. The hardware description of each drone was described. We got 
comparable results in these experiments with the simulation results. Moreover, we provided a 
detailed discussion regarding the slight discrepancy between simulation and real experimental 
results. The details of the hardware implementation are described in the following paragraphs. 
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Figure	153:	Effect	of	partitioning	data	on	model	accuracy	(left	for	simulation	data	and	right	for	real	data).	The	accuracy	is	
averaged	over	20	trials.	

Figure	154:	Unnormalized	(left)	and	normalized	(right)	confusion	matrix	of	the	trained	model.	

Hardware Implementation 
For hardware, we implemented the same scenario discussed in Section 2.3.6.2.4 in our laboratory. 
The dimension of the laboratory-testing arena is 48 15×  15 ft× 3. For implementing the proposed system 
in hardware, we used the following hardware and software tools. 
Hardware Tools 

1. As physical test UAVs, we used an Intel Aero Ready to Fly Drone and a Parrot AR.Drone
2.0. The Intel drone contains an Intel Aero Computer Board which has an Intel Atom x7- Z8750
processor, 2.56 GHz burst, quad-core, 2M cache, 64 bit, 4 GB LPDDR3-1600 RAM, and 32
GB eMMC storage. It can run the Ubuntu Linux OS. The drone was modified for propeller
protection and to enable VICON tracking in the laboratory environment. The Parrot drone has
an ARM Cortex A8 (1GHz) processor and 128 MB DDR2 RAM. It uses the Linux OS2.6.32 as its
operating system.

2. For the external-sensor, we used the VICON motion capture system. Figure 133 shows the
modified drones and the VICON motion capture camera setup in our laboratory; there are
ten total cameras.

3. To get data from the VICON and to process the data, we used a PC with specification 8 core
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Intel Xeon processor 3.7 GHz, 8GB of RAM, 4TB of Hard Disk and Windows 7 Professional 
as the OS. 

4. The Netgear-R6300 WiFi router is used to communicate with the drone.

Figure	155:	Modified	Intel	Aero	Ready	to	Fly	Drone	(top‐left),	Parrot	AR.Drone	2.0	(top‐right)	and	VICON	Motion	capture	system	
(bottom).	

Software Tools 

1. PX4 autopilot firmware is used for the drone’s low-level control system.

2. ROS is used for developing the scenario.

3. VICON Tracker 3.5 software is used to track the UAV.

4. Python scikit-learn [170] tool is used for developing the prediction model.

5. MATLAB is used for data visualization, labeling, and cleaning.

The hardware implementation is quite similar to the simulation implementation. The main 
difference between the simulation and the hardware implementation is that in the hardware imple- 
mentation we used the external sensor VICON to observe the UAV. However, in the simulation, we 
used the on-board IMU sensor. The steps for hardware implementation are given below: 

Step-1: The scenario described in Section 2.3.6.2.4 was implemented using ROS, the OFF- 
BOARD mode of PX4 autopilot, and MAVROS (an extendable communication node for ROS with 
proxy for a ground control station) as the communication tools between our ROS node and the 
autopilot. 

Step-2: The VICON motion capture system was set up to track the UAV while in operation and 
a ROS node implemented to record the four variables named altitude, velocity in the X direction 
(ẋ), velocity in the Y direction (y˙) and velocity in the Z direction (z˙) in CSV format. 

Step-3: The saved data was used to visualize and label the data with the five high-level states 
defined in Section 2.3.6.2.4 using MATLAB. 
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Step-4: The prediction model was extracted from the labeled data using the scikit-learn tool in 
Python programming language and the model was evaluated with a different performance 
matrix and saved for use in PIE. 

Step-5: The UAV experiment was run again, this time using PIE, the saved model, to predict the 
active state of the UAV in online operation. At the end of the experiment, PIE generated a 
report of the experiment. 

We have a total of 13,979 data samples from the Intel drone and 46,891 data samples from the 
Parrot AR. drone. After labeling, the data are divided into five classes. The details of the data samples 
are given in Table 28. 

 

Table	28:	Details	of	the	real	dataset	
 
 

samples 

 
Parrot AR. 

 
 
 

4633 4308 21453 14447 2050 

 drone  
 

We trained our model with real UAV data by splitting the whole dataset into 50% training data 
and 50% testing data. Data are chosen randomly for training and testing set. Then, we use the trained 
model for testing the test data. We have 95.54% train accuracy and 92.88% test accuracy. The 
performance index of the trained model is shown in Table 29 and the confusion matrix is shown in 
Figure 134. 

Table	29:	Precision,	Recall	and	F1‐Score	of	the	trained	model	with	real	dataset	
 

 Hold Takeoff Hover Search Land 

P  1.0 0.98 0.91 0.89 0.96 
R  1.0 0.96 0.93 0.85 0.94 
F1 1.0 0.97 0.91 0.87 0.95 

 

3.3.6.2.6 A custom Quadcopter was built After the lab experiment, we found signifi- 
cant drawbacks of using commercially available drones such as the size, computation capability, or 
attached sensors on the drone. Therefore, we built our drone which will be used for the physical 
testing in the lab environment. A detailed description of the hardware components and design 
procedure of the drone was provided. Moreover, the initial flight testing and its performances were 
reported. The developed drone was a quadcopter fully compatible with ROS and Pixhawk firmware. 
This drone gave us the full flexibility to develop different algorithms both in software and hardware. 
The custom built UAV is shown in Figure 135. 

 
3.3.6.2.7 Lab experiment with the custom quadcopter We developed an identical scenario 

from the simulation implementation in the lab environment using the developed UAV 

No. of 
Hold Takeoff Hover Search Land 

Intel drone 9862 501 1767 1251 598 
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Figure	156:	Unnormalized	(top)	and	normalized	(bottom)	confusion	matrix	of	the	trained	model	for	real	data.	

and collected real-world data from the experiments. The recorded data had been labeled by a human 
expert and used in three different classification techniques, named as Decision tree, Support vector 
machine, and Naive Bayes classifier. The comparison study showed that the decision tree 
outperformed compare to the other two techniques. We also studied the effect of noisy sensor 
measurement on the trained model and found that the trained model was robust to noise. 

3.3.6.2.8 Scalability analysis of the proposed System  After validating the system from 
a real-world dataset, we studied the scalability of the proposed system to the number of UAVs. We 
found that the memory complexity was O(1) and time complexity is O(N) where N is the number 
of UAVs for serial implementation of the framework. Conversely, the memory complexity was O(N) 
and time complexity is O(1) for parallel implementation. We also studied the physical space 
complexity and proposed two different implementation techniques. First, normal arrangement when 
the physical space complexity was O(N) and second, alternative arrangement when the complexity 
was O   N 

T +1 
), T is the number of turns in a scenario. 

3.3.6.2.9 A mathematical formulation is developed for the proposed system We 
developed a mathematical formulation of the proposed system and provided a formula to quantify 
the capability of a UAV in performing its mission in different scenarios. We empirically verified the 

Figure	157:	The	developed	UAV	which	is	used	to	implement	the	scenarios	and	tested	in	the	lab	
environment.	
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p  q  UAVi,  i ∈ {1, 2, ..., p + q} 

The area A has a set of n discrete fire zones {fz1, fz2, ..., fzn} with respective areas {a1, a2, ..., an}, 

formulation with both simulation and real-world datasets. 
 

3.3.6.2.10 A multi-UAV simulation study is conducted We designed a multi-UAV scenario 
for forest fire detection missions with a different type of UAVs. We proposed a two-step search and 
survey algorithm to accomplish the mission objectives. The simulation study shows that the 
proposed algorithm was robust to different environmental parameters such as wind gust or terrain 
of the environment. We also conducted a comparison study with state-of-the-art techniques and 
found our algorithm outperformed. The details of the proposed algorithms are described in the 
following paragraphs. 

 
Problem Description 

In this section, the basic definitions and problem description are provided to elucidate the scope of 
this work. 

According to the specifications in the AMASE simulation interface [171] four basic definitions 
about the characteristics of the benchmark UAVs are described below. 
Fire detection sensor: A binary detection sensor is used to generate an interrupt signal when 
the fire appears in the field of view of the sensor. The footprint of the sensor is a square with a b  b 
area (m2) and its range is R (m) as shown in Figure 136. 
Sprint UAVs: A fixed-wing UAV with a maximum speed of Vsp (m s) and a fire detection sensor 
range of Rsp (m). 
Survey UAVs: A second type of slower, fixed-wing UAVs with a maximum speed of Vsu (m s) 
and a fire detection sensor range of Rsu (m). 
Fire Zone: A set of 2D points (latitude and longitude) in space, consisting of the corner points of 
an irregular polygon. 

 

 
Figure	158:	 Illustration	of	the	fire	detection	sensor.	

 
Let A be the area-of-interest in a forest. The map of A, referenced with respect to the Geodetic 

coordinate system, provides relevant terrain (altitude for a given latitude and longitude) information. 

where ai ⊂ A, ∀ i ∈ {1, 2, ..., n}; fzi ∩ fzj = ∅ for every i, j ∈ {1, 2, ..., n} with i ≠ j; and ∑n  ∪ai ⊂ 
A. The n fire zones are randomly distributed in the area-of-interest A at unknown locations. It is 
assumed that there are sprint and survey UAVs denoted as where with 
p > q, randomly placed inside the area A. In this study, three principal problems are considered: 
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1. How the p sprint UAVs and q survey UAVs will search the area A for those n fire zones within
the time interval of duration T ?

2. When a fire nest is detected, how the UAVs will estimate the area of the detected fire zone
areas?

3. How the p sprint UAVs and q survey UAVs will coordinate during the search and estimation
mission?

While carrying out the search and survey missions, it is assumed that the UAVs (both types) 
crash to the ground if the following conditions are met: 

1. Flying outside of area A for a ∆t time interval.

2. Flying on top of any fire zone fzi for a ∆t time interval.

3. Flying without considering the topography of the area A (e.g., flying in low altitude, colliding
with mountains or trees).

Proposed Methodology 
In this section, a two-step search and survey procedure is proposed for a team of heterogeneous UAVs 
to perform the search and area estimation for forest fires. For clarity, we deconstruct our proposed 
multi-UAV system into two principal components: (i) The fire search procedure, and (ii) The fire 
boundary survey procedure. The details of each procedure are discussed below. 

1. Search for Fire Zones
Grid-based search strategies have been widely used in many search and rescue missions for
UAVs. In this paper, the proposed method utilizes a grid map for the search of potential
fire zones. With p available sprint UAVs, the search area A is divided into p equal square
grid cells with area Ac  A . Then, all p  sprint UAVs are preplanned to conduct the search
of the fire zones, and each sprint UAV is assigned with a specific grid cell, as shown in
Figure 137. At the same time, q survey UAVs are send to the center of the grid cells for loitering
so that they can be quickly switched to the boundary surveying operation for any neighboring
detected fire zones. However, unlike other existing search paths, the proposed approach
adopts a novel search pattern for the local search within each grid cell. The shape of the
proposed search pattern is similar to the 2D projection of a sand clock. It is because of this that
is referred to as the Sandclock search pattern. As shown in Figure 137, the Sandclock
search pattern is rotated by π radian in the neighboring grid cell to avoid repeating the
search for fires in the boundary regions, improving the overall search efficiency. The generated
trajectory of the Sandclock search pattern is a set of way-points (latitudes, longitudes, and
altitudes). The altitude of a way-point has been calculated by adding a safe height (100 m
in our implementation) according to the terrain information. The calculated safe altitude
reduces the chance of potential collision of the UAVs within the terrain. Assuming that all
the UAVs have a robust low-level controller capable of following the given way-points reliably.

Considering real-world forest fires usually spread quickly and have a large impacted area after
a short period of time, UAVs have a higher chance to detect the fire zone by following the
Sandclock search pattern. Using elemental geometry arguments, from Figure 137, it is seen that
the Sandclock pattern guarantees the detection of an occurring fire zone if afirezone > Ac ,
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patterns, specifically, the Creeping Line search and the Expanding Squares search. Let L√be 

C 

 
Figure	159:	Proposed	search	pattern.	The	dotted	line	shows	the	boundary	of	each	grid	cell.	
 

 

(a) Creeping line (b) Expanding squares (c) Sandclock 
Figure	160:	Graphical	representation	of	the	Creeping	Line	(CL‐search),	Expanding	Squares	(ES‐	search)	and	the	proposed	
Sandclock	search	patterns	within	each	grid	cell.	

 
where afirezone  a1, a2, ..., an . This condition indicates that the proposed search pattern will go 
through the fire zone area when the fire zone covers a quarter of the grid cell. Although the 
initial area of the fire zones may not satisfy this condition, fire zones are constantly expanding 
(over time) and their area increases accordingly, which will result in rapidly meet this 
condition. 

To show the benefits of the proposed search pattern, we compare it with two standard search 

the length√of the entire search area and Ls be the length of each grid cell such that L = A 

and Ls = Ac where we have assumed a square search area. Below, we compare the path 
lengths of three search patterns. 

Creeping Line search (CL-search): As shown in Figure 138a, let WC be the width between 
two consecutive line segments; it is easy to show that there are ⌊ Ls ⌋ + 1 horizontal lines and 

⌊ Ls ⌋ vertical segments of length WC within each grid cell. Thus, the total length LT of the 
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Creeping Line search pattern is calculated as: 
Ls Ls L2 

LTC = Ls × (⌊ 
W 

⌋ + 1) + ⌊ 
W 

⌋ × WC =   s + 2Ls. (109) 

Expanding Squares search (ES-search): In Figure 138b, let WE be the fixed width by which each 
square increases; then, Ls squares are generated within a grid cell. The length of the outermost 
square can be expressed as 3Ls. The next inner square has a of length 2 Ls  WE 

and the length of the innermost square is 2 Ls WE Ls 1 . Therefore, the overall 

length LTE of the Expanding Square search is written as below: 

⌊ Ls ⌋−1

LTE = 3Ls + 2 
i
∑
=1 

⌊ Ls ⌋−1 

(Ls − WE × i) 

⌊ Ls ⌋−1

= 3Ls + 2 
i
∑
=1 

Ls − 2WE × i 
i=1 (110) 
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Sandclock search: In Figure 138c, the proposed search pattern does not perform any further 
decomposition inside the grid cell, and it searches the space by following a path similar to the 
shape of a Sandclock. Thus, the total length LTP of the proposed search pattern becomes: 

LTP = Ls + 
√

2Ls + Ls + 
√

2Ls = (2 + 2
√

2) × Ls.  (111) 
 
 
 

From Equation 111, the size of the grid cell Ls can be derived as Ls 

 
LTP 

2+2 

 
. By substituting 

Ls in equations 109 and 110 we get the following equations: 
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2 2. This condition means that the number of lines or squares needs to be less than three 

From Equation 112, there is a quadratic relationship between LTC and LTP when WC is 
fixed. With a fixed value of WE, Equation 113 shows that the overall length of the ES-search 
increases quadratically as the length of the proposed search pattern increases. From this 
aspect, the total travel distance of the proposed search pattern is smaller than the CL-search 
and ES-search patterns. To further compare the overall travel distances among these three 
search patterns, the following equations are obtained: 

LTP 

L 

> LTC 

> L 

, if, 
Ls 

WC 

, if, 
Ls 

< 2
√

2,  (114) 

< 2
√

2.  (115) 

In Equations 114 and 115, the proposed search pattern shows longer travel distance when 
th√e ratio between the size of the grid cell and the width between lines or squares falls below

(3) and a small grid cell is required. Accordingly, the total number of grid cells increases and
more UAVs are required to complete the search task, significantly increasing the search cost.
Therefore, the proposed search pattern is more efficient than the other two search patterns
(CL-search and ES-search).

The search coverage area for three search patterns has been calculated using the specification 
of fire detection sensors. The entire search area A is partitioned into smaller grid cells of area 
b  b (area of the fire detection sensor’s footprint). The central node assigns a value of 1 to a cell, 
if it has been visited by a UAV, or a value of zero, otherwise. If the current position of any 
UAV  is within any of these small cells, then the cell is assigned a value of 1. If n is the number 
of all captured cells, by the sensor, then at the end of the mission the total coverage area 
denoted as Acov is n  b  b. 

2. Fire Boundary Survey Strategy
After locating the fire zone, the next task for the UAVs is to survey the fire zone and estimate its
area. Multiple UAVs are used to survey one fire zone. The UAV which found the fire zone
will share its location with the rest of the UAVs in the system. A sub-group of m m    q
closest UAVs will fly to the location of the source and loiter around until the fire zone is
identified due to its increasing size and perceptual shift in location. If this sub-group of UAVs
detect the existence of fire around that location, they begin the survey phase of the monitoring
process. Once the group of surveying units is informed about the location of a fire zone
heading towards it, they may then discover another one. The detected fire boundary
points are stored in a central database as a unified list, irrespective of which point belongs to
which fire zone. To this end, a clustering algorithm is applied before estimating the area of a
fire zone, as discussed in Section 3. The value of m depends on the availability of the UAVs.
In the simulation, we called only from the q survey UAVs while the sprint UAVs will continue to
explore the other areas in the search region. To survey the fire boundary, we developed a new
strategy as shown in Figure 139. Consequently, there is the risk of losing a UAV when it
hovers more than ∆t  seconds on top of the fire zone. This constraint is considered in the
proposed survey strategy. In Figure 139, we denote by ∆Θ the change of heading angle when
the UAV identifies the existence of a fire boundary point from the fire detection sensor. The

TP TE 
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UAV may enter into the fire zone because of its inertial motion. The angle ∆Θ can be tuned 
to reduce the time of stay on top of a fire zone. Smaller ∆Θ will increase the time of stay and 
larger ∆Θ reduces the time of stay. Because the shape of the fire zone is an irregular polygon, 
there is not a closed-form expression of the time of stay as a function of ∆Θ. 

 

 

 

 
The blue dot in Figure 139 is the detected boundary point by the UAV. Since multiple UAVs 
survey the same fire zone, two consecutive UAVs follow the circle in two different directions. 
The first UAV surveys the fire zone by following the circular trajectory clockwise, while the 
second UAV will follow the circular trajectory counterclockwise (if it gets the fire source 
location from the first UAV) as illustrated in Figure 140. This directional approach restricts two 
consecutive UAVs to explore same boundary points if they are surveying the same fire zone. In 
the proposed survey procedure, D is considered as a safe distance, and it is included as a design 
parameter. If D is large, then the sampled points from the fire boundary will be far from each 
other, whereby for a smaller D the sampled points will be closer to each other. As such, the safe 
distance, D, will affect the final estimation of the fire zones’ shape. As shown in Figure 140, a 
UAV could successfully survey the whole fire zone by following these cycles. Algorithm 8 
summarizes UAV’s survey procedure. 

 
 

following CW circular trajectory following CCW circular trajectory 

 
Figure	162:	Continuation	of	the	survey	procedure	for	two	UAV	s.	The	red	lines	are	the	trajectories	of	the	two	UAV	s	during	the	
survey	procedure.	

Fire Zone 

Figure	161:	Survey	procedure.	

Approved for Public Release; Distribution Unlimited. 
268



5 direction == clockwise 

= 

= 

= 

= 

Algorithm 8: Survey algorithm 
Input: D, ∆θ, direction 

1 γ  reading from the fire detection sensor 
2 while Simulation running do 
3 Change the heading angle of the UAV by ∆θ 
4 C  Currently detected fire boundary point 

/* This is the position of the UAV while fire detection sensor detects 
fire and γ  is True. */ 

if then 
6 τ  A CW circular trajectory with center at C and radius D 
7 else 
8 τ  A CCW circular trajectory with center at C and radius D 

9 Send trajectory τ  to the UAV 
/* The UAV is assumed to follow the trajectory unless new command is sent 

to it. */ 
10 while γ==False do 
11 Wait 

/* A CW circular trajectory indicates that the UAV will follow the circle in 
a clockwise direction and for CCW, the UAV will follow the circle in a 
counter clockwise direction as shown in Figure 140. The terrain of area 
A  is used to calculate the way-points of all the trajectories as 
described in section 1. */ 

3. Estimation of the Fire Zone Area
In this research, multiple UAVs are used to conduct the search and survey tasks for fire zones
and one fire zone can be surveyed by more than one UAV. From the survey procedure, a
collection of 2D sampled points are obtained and these sampled points are used to conduct the
area estimation for fire zones. In Figure 141, fz1 is being surveyed by UAV1 and UAV3. The blue 
dots are the sampled boundary points of the fire zone from the corresponding UAVs in Figure
141. We stored all the sampled points in a central database and a grouping algorithm is
required for selecting the boundary points of a particular fire zone. For grouping the
corresponding fire zone boundary points, we used the Mean-Shift Clustering algorithm. Unlike
most of the existing clustering approaches, the mean-shift clustering method introduces the
multivariate kernel density estimator to approximate the density distribution of the data and
then extracts the cluster structure using the estimated density distribution.

Compared with the state-of-the-art clustering approaches, the Mean-Shift Clustering algo- 
rithm is able to group the input data points without knowing the true number of clusters. Since 
there is no prior knowledge about the number of fire zones, the Mean-Shift Clustering algorithm 
is a suitable choice for the problem presented. Moreover, the Mean-Shift Cluster- ing showed a 
strong robustness to the noises, or outliers, which may address potential data corruption in 
multi-UAVs fire search and survey missions. More importantly, the mean-shift clustering has 
been recently used for information processing in UAV-based sensing missions and has shown 
promisingly good performance [172]. The latitude (X) and longitude (Y ) of 
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the sampled points are used as the primary feature representation for the subsequent data 
clustering analysis. Let be the coordinates of a sampled point ; the set of all 
sampled points is denoted as Ps  Pi i  1, 2, ..., Ps . The Mean-Shift Clustering algorithm 
takes the set Ps as the input to perform the cluster analysis. With the clustering proce- 
dure, all sampled points are grouped into a set of clusters , where 
Ci PCi , j  1, 2, ..., Ci . Each cluster of sample points captures the shape of the fire zones’ 
boundary and the area of the fire zone is estimated by connecting the boundary points se- 
quentially within each cluster. Every two consecutive boundary points from cluster Ci can 
be connected with different types of curves. In our implementation we used a straight line 
to connect them. The area of the fire zone is calculated using fundamental image processing 
techniques. Specifically, a polygon with the sampled boundary points is drawn inside a black 
background image with height h and width w. Then, the polygon is filled with white pixels. The 
area is calculated by counting the number of white pixels in the image. Using the same width 
and height, another image is created for the true polygon. A Bitwise AND  operation is 
conducted on the two images to calculate the intersection area of the estimated fire zone and 
true fire zone. To measure the efficacy of the survey algorithm, we calculate the Intersection 
Over Union (IOU ) using the true polygon area and the estimated polygon area. Let A1 be 
the true area of a fire zone, A2 the estimated area, and A3 the intersection area of A1 and A2. 
Then, the IOU can be calculated as IOU = ∣A1∩A2∣ = ∣A3∣    . The IOU value is between
zero and one, where a value of one indicates perfect estimation of the fire zone area and zero 
means the estimated area is completely outside of the true area. 

The fire zone can expand, shrink, and translate over time in space due to the wind impact. 
Therefore, we adjust the estimated area of the fire zone based on wind speed and direction in 
each time stamp. The wind speed and direction can be directly obtained from the on-board 
sensor of the UAV. All the sampled fire boundary points are updated by wind speed and 
direction according to 

Xnew Xold vw cos θw, 

Ynew = Yold + vw sin θw, 

(116) 

where X, Y  are the temporal coordinate of the fire boundary point, vw is the wind speed, 
and θw is the wind direction with respect to the Geodetic coordinate system. 

3.3.6.2.11 The proposed framework is used with multi-UAV scenarios We defined 
two new modes of operation and designed five new scenarios for testing multiple-UAVs simultane- 
ously. We collected data from simulation environment to train a LSTM model and verified with 
the real-world data recorded from the lab environment. We performed a comparison study with 
decision tree algorithm but LSTM worked better than decision tree. The trained model is deployed 
to the lab experiment and found satisfactory result from the experiment. Both simulation study and 
real-world experiment leads us to the same conclusion that the proposed testing framework can 
successfully evalute the performance of a UAV or a group of UAVs while it/they are executing a real-
world mission. 
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Figure	163:	A	sample	scenario	while	multiple	UAVs	are	surveying	multiple	fire	zones.	

3.3.7 Project Progress for Task T3-7 (Test uncertainty in human perception of system 
states) 

3.3.7.1 Period of Performance under 

Task T3-7 Start Date: May 2016 

Conclusion Date: December 2020 

Faculty lead:  Dr. Joseph DW Stephens 

3.3.7.2 General Description of Task T3-7 

In Task T3-7, we performed research to test and evaluate human perception of system states in 
operations of autonomous systems of vehicles. This is critical for the success of missions with large-
scale autonomous systems of vehicles (LSASV); no matter how finely the system has been engineered, 
it must have the oversight of humans. This is required for many reasons, including LSASV operations, 
ethical reasons, in case of a change of plans, system errors, unexpected situations, and situations the 
LSASV is not equipped to handle. Humans have the flexibility and ability to make decisions that 
automated systems may not be equipped to handle. Humans are also required to make decisions that 
involve human life and safety. For example, in a rescue situation being evaluated by an LSASV, the 
operators must locate people in need of rescue. It is necessary for the human to decide where to send 
help because errors by the system may result in loss of life. Humans must also be in the loop for 
everyday operations. Humans need to be there to decide when to take a closer look, where to direct 
the swarm, what actions need to be taken, how best to complete the 
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mission, whether the mission needs to be abandoned, when safety concerns arise for people in the 
environment of the LSASV, and many other situations 

To be able to perform this role successfully, the operators need to be aware of what is going on in 
the system and in the environment. This knowledge is called situation awareness. Maintaining 
situation awareness while removed from the situation is very difficult. This is further compounded 
by the fact that most of the sensory cues from the situation are removed or translated into a different 
sense that would be experienced in person. LSASV interfaces rely heavily on visual cues. Some 
information may be given by auditory output such as communication between operators and alerts, 
but the human in the loop does not typically experience the sounds that exist in situ. Similarly, 
humans do not experience the sense of acceleration and movement (vestibular senses) that they 
would in person, and peripheral vision is typically limited in visual LSASV displays. In addition to all 
this, the human in the loop is responsible for paying attention to huge amounts of information for 
long periods of time. This may include the locations of the LSASV, health of the system, error 
states, adversary positions, alerts, communications from other people involved in the mission, area 
map, local map, heading, movement, elevation, terrain, visibility, entities in the environment, physical 
surroundings (such as buildings, mountains, or lakes), and more. 

Because of the incredible complexity and importance of situation awareness in LSASV opera- 
tions, we have evaluated the ways humans perceive the information being communicated about the 
system. We have done so by reviewing the literature, performing two types of experiments and 
designing a simulated user interface. 

We reviewed the literature to determine best practices for development of interfaces of LSASV to 
best support situation awareness and accurate decision making. We found that the best model is to 
place the human in the loop at a high level of supervisory control, rather than being responsible for 
many detailed choices at all times. 

Based on the levels of automation set forth in the article by [173], the concept of adding a machine 
estimate places the decision to be made into Level II or III in the Levels of Automation. The computer 
offers a set (Level II) or a complete set (Level III) of available decisions or actions. By creating an 
automation estimate, the system can increase the level of the autonomy of the decision making 
process and offer support to the operator. The types of decisions that are appropriate for machine 
aid include decisions in the highest level of control. [173] state that this level of control includes 
decisions that require knowledge, experience, abstract reasoning, and judgment. A user interface 
that integrates a machine estimate for operations of large-scale autonomous systems of vehicles such 
as the one developed in our experiments will allow users to make better decisions. It will allow for 
high level monitoring, increasing operators’ situational awareness and decreasing their risk of 
cognitive overload or cognitive tunneling. 

The first experiment evaluated the ways in which humans integrate a decision aid with their own 
judgment when perceiving novel stimuli. The purpose was to train participants to identify novel 
stimuli, then test how much they would depend on a decision aid when the stimuli were presented 
with varying conditions of uncertainty. First, participants were trained on a computer to identify 
novel stimuli with the nonsense labels "leebish" and "grecious." The stimuli are pictures of shapes 
from the YUFO stimulus set. The YUFO stimuli had two different groups with several different 
individuals in each group. Each group had similar characteristics that made it possible to differentiate 
them. The purpose of this experiment was to understand how humans will react when they need to 
identify new We chose to use the YUFO dataset as stimuli that the participants have not been exposed 
to before. Visual representations of motion, heat, chemical sniffer readouts, and 
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other sensors do not correspond to the way humans experience the world. Operators of unmanned 
vehicles must be trained to identify and understand the sensor information given to them through 
the interfaces so that they can maintain situation awareness. To train the participants to recognize 
the stimuli, we used the following procedure. Participants were instructed to imagine that they were 
explorers on a new planet. On this planet they would encounter two different types of aliens, leebish 
and grecious. The leebish aliens were to be approached and the grecious aliens were to be avoided. 
This was used to create a behavioral response to each type of alien rather than associating any 
particular key with each type of alien. In each trial, a picture was presented of a single stimulus with 
a picture of an astronaut next to it. The participants had to decide whether to approach or avoid the 
stimulus. Participants made their response using the arrow keys. After each response, the name of 
the stimulus type was displayed above the picture and a bell or buzzer was sounded to indicate a 
correct or incorrect answer. After the training session, the testing portion of the experiment was 
administered. Participants were instructed that they needed to identify the aliens once again, this 
time by pressing the "f" key for leebish or the "j" key for grecious. This time, there were no 
feedback responses for the responses. The particpants were instructed that a machine estimate was 
available to help them. It would display the likelihood of the alien belonging to the groups. The 
estimate was designed to be statistically correct–that is, if the machine estimate said there was a 75% 
chance the alien was leebish, then the alien was one of a group of four aliens made of three leebish 
and one grecious alien. This method meant that if one were to round that estimate, it would be wrong 
one in four times. (Note that the trials were in randomized order so there was no pattern in the 
stimuli or machine estimate.) The machine estimate gave likelihoods of 75% leebish, 50% leebish, or 
25% leebish (and thus 25%, 50%, and 75 % grecious by deduction, respectively). The first and fourth 
experiments used a numeric machine estimate; it displayed the results as a simple written number 
and percent. The second and third experiments used a visual machine estimate. We introduced 
uncertainty in the testing part of the experiment by manipulating the stimuli. The training session 
used a given set of aliens presented from the front view. The testing session added in a side view in 
half of the trials. It also added new leebish and grecious aliens that the participants had not seen 
before. In a given trial, the alien could be from the trained (front) view or the side (untrained) view, 
and it could be a trained (familiar) alien or an untrained (new) alien. 

In the first experiment, the researchers found that as the level of uncertainty increased, the 
dependence on the machine estimate also increased. This is desirable as human operators will not 
need the help of a decision aid when they are certain about what is going on in the environment, but 
they will need assistance when they are not sure. At the lowest level of uncertainty (trained alien and 
trained view), the participants relied the least on the machine estimate. As the level of uncertainty 
increased, so did the level of dependence on the machine estimate. For example, with machine 
estimates of 75%, 50%, and 25% leebish, the percent of aliens correctly identified by all subjects as 
leebish in the trained alien, trained view category was 93.1%, 75%, and 58.62% respectively. This 
group of aliens is the most familiar and well-trained category. In the least familiar/most uncertain 
category, the percentages of aliens correctly identified as leebish at machine estimates of 75%, 50%, 
and 25% leebish are 78.28%, 50%, and 39.29%. This demonstrates that on average, the participants 
relied more heavily on the machine estimates as their level of uncertainty increased. 

A four-way repeated-measures ANOVA was performed to performed to analyze the results of the 
testing phase and to determine whether or not any of the independent variables were associated with 
a change in response patterns. A 2(category of alien) x 2(training level of view) x 2(training level of 
stimulus) x 3(machine estimate)-way repeated-measures ANOVA found that the machine estimate 
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had a highly significant effect; F(2,27) = 16.409, p <.001. The type of alien (leebish or grecious) was 
also found to be significant (F(1,28) = 21.533, p <.001), which validates that the type of alien did 
indeed affect the decisions made by the subjects and that subjects were able to learn to distinguish 
between the two families. In addition, the interaction between training level of alien and machine 
estimate was found to be significant (F(2,27) = 3.681, p = .039) while the interaction between the 
level of training of the view and the machine estimate did not reach statistical significance (F(2,27) 
= 2.481, p = .102). This supports our statement that as the level of uncertainty increased, subjects 
relied more heavily on the machine estimate. 

After reviewing the experiment, we discovered a pattern that suggested the participants may 
have been rounding the machine estimate to make their decisions. For example, 75% leebish may 
have been rounded up to 100% to make a classification decision of leebish, and 25% leebish may 
have been rounded down to 0% leebish to choose "grecious." Therefore, we decided to test the 
experiment with a visual machine estimate to more clearly convey the information being given by 
the machine estimate. We also changed the visual stimulus sets to two different groups of stimuli 
from the YUFO dataset. This was done to test whether the particpants’ responses were influenced by 
distinguishing visual characteristics of the stimuli. 

In the second experiment, the subjects relied on average much less heavily on the machine 
estimate than in the previous study, and they used it the most to identify stimuli in the untrained 
viewpoint classification category. The first study which used the numeric machine estimate had 
an average correctness score of 63.427%, but the most recent study which used the visual machine 
estimate had an average correctness score of 78.971%. It was unclear whether this was due to the 
use of a different stimulus set, or if it was due to the use of the sliding bar machine estimate. Further 
study would be required to determine the cause. 

The increased accuracy of the scores may be due to the visual machine estimate’s representation 
of ambiguity. The visual representation may provide a better indication of ambiguity that does not 
facilitate the use of a rounding rule as readily. That may encourage subjects to observe the stimulus 
more carefully before making a decision, understanding that the visual estimate at the condtion of 
50% provides essentially no information. 

A four-way repeated-measures ANOVA (2(category of alien) x 2(training level of view) x 2(train- 
ing level of stimulus) x 3(machine estimate)) showed that once again, the machine estimate had 
a highly significant effect at F(2,30) = 19.567, p <.001. This is in keeping with the effect of the machine 
estimate in the previous experiment. Family x trained and untrained view was also highly significant 
at F(1,31) = 15.463, p <.001. The type of alien was once again found to be significant at F(1,31) = 
49.134, p <.001, which validates that the subjects were in fact able to learn the features of the aliens 
and categorize them by type. In addition, the training level of the viewpoint (trained or untrained) 
x the machine estimate had a strong effect at F(2,30) = 5.199, p = .008. Family x machine estimate 
also had a significant effect at F(2,30) = 5.134, p = .009. 

Overall, the results show that in this second study, subjects were able to integrate the machine 
estimate into their decision making process in the classification of the stimuli. The accuracy of 
subjects’ responses in this study was higher, which may be due to the difference in the type of 
the machine estimate. We elected to continue the study using the original stimulus set and visual 
representation of the machine estimate to compare the results and glean further information about 
whether the sliding bar representation yields better results than the percentage estimate. 

We published the results of the first two experimental studies in a paper entitled “Decision 
Making Using Automated Estimates in the Classification of Novel Stimuli.”  This research was 
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Figure	164:	ent	of	stimuli	identified	as	“leebish”	versus	the	percent	likelihood	indicated	by	the	machine	estimate	in	the	second	
experiment.	The	four	different	stimulus	conditions	represent	varying	levels	of	uncertainty.	In	the	most	uncertain	condition	of	
untrained	stimulus/untrained	view,	the	responses	are	closest	to	the	percentage	value	given	by	the	automated	estimate.	
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Figure	165:	The	mean	accuracy	of	responses	for	each	type	of	machine	estimate	in	experiments	1	and	2.	

 
presented at the 10th International Conference on Applied Human Factors and Ergonomics held in 
Washington, D.C. 

After this, we performed a literature review to ascertain the best direction to go with our 
continuing research. We assessed the existing autonomous vehicle and LSASV interfaces, decision 
aids, flaws in existing interface designs, and the effects and visualization of uncertainty. We found 
that current models of remote operations provide far fewer sensory cues to operators than would be 
given in the location being represented. Remote operators typically do not receive kinesthetic, 
auditory, vestibular, and ambient visual cues, and most cues are instead given in a visual manner 
[174]. Uncertainty is increased by the fallible nature of unmanned vehicles; communication loss, 
sensor failure, and vehicle malfunctions can all cause problems in the data received by the remote 
operation interface [175]. This article recommends explicit consideration of uncertainty in decision 
making rather than simple reliance on designing machines with greater robustness to failures. This 
information shows the need for user interface design which provides operators with the necessary 
information while communicating the possibility of inaccuracy. 

A study by [176] found that the optimal method of keeping the human in the loop (aware of what 
the unmanned vehicle system is doing and what its state is) is to use the management by consent 
technique. This research highlights the importance of human operators actively participating in 
decision making with automation. In addition, it supports the concept that the present experimental 
model correlates with the appropriate level of automation. Our research presents participants with 
information and options from which to choose, matching the management by consent model. 

Effective communication of information about system states, situation, and points of interest are 
crucial in operations of swarms of unmanned vehicles. Deploying many types of sensors in large 
numbers allows for far greater information capture than a human could manage [177]. Distilling this 
information into a machine estimate and presenting this side by side with sensor output may be used 
in large-scale autonomous systems of vehicles (LSASV) operator interfaces to enable the human in 
the loop to make accurate, quick decisions while harnessing the computational power of distributed 
and varying types of sensors. The present research combines training and system design with the goal 
of improving operators’ ability to maintain focus as recommended in [178]. The goals 
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of this type of training and interface also include decreasing mental fatigue, lowering response times, 
and prevention of loss of systems. Such a system will also take better care of its users; constant 
vigilance, particularly when using automated subsystems, is stressful and difficult mental work that 
causes increasing distress with greater task difficulty [179]. Research that promotes such changes is 
crucial for LSASV use. 

Building on the model of the previous experiments, a new combination of the stimulus sets 
and machine estimate was used in a third experiment, including the second group of novel stimuli 
from the YUFO set with the percentage machine estimate. This research was necessary in order 
to determine that the effects observed in the first studies were not due to distinguishing visual 
characteristics of the stimuli. The results of this experiment are consistent with the previous research 
and validate the findings that presenting a visual stimulus with a machine estimate is a valid method 
of presenting information about a situation to humans tasked with classification of stimuli [180]. The 
results were similar to the previous findings, showing a pattern of increased reliance on the machine 
estimate in greater conditions of uncertainty. This is desirable in a supervisory classification task. 

A multi-way repeated-measures ANOVA was performed on logit transformed data. The machine 
estimate, classification training level of stimulus, and classification training level of viewpoint 
all showed significant effects on the percent “leebish” classification response of the participants. 
The effect of the machine estimate is F(2,16) = 5.652, p = .014. The effect of the classification 
training level of stimulus is F(1,17) = 5.553, p = .031, and the effect of classification training level 
of viewpoint is F(1,17) = 6.322, p = .022. 

This experiment showed less significant effects than the first two. This may be due to a smaller 
sample size (n = 17). However, the response patterns were observed in overlapping areas with the 
first two experiments, most importantly from the machine estimate, which verifies the influence 
of the decision aid. Another difference is in the accuracy of the participants’ responses. The 
experiment which used a visual machine estimate remains the highest in terms of accuracy; in 
fact, Experiment Three which uses the same data set as Experiment Two with a numeric machine 
estimate scored dramatically lower in accuracy by 18.12 percent. These results encourage inclusion 
of a visual machine estimate in following experimental designs. The findings affirm the validity of 
the proposed model. 

Experiment Type of ME Stimulus Set Mean Response Accuracy Standard Error 
1 Numeric 1 63.40% .0149
2 Visual 2 73.75% .0129
3 Numeric 2 55.63% .0182

After this, we researched the best way to modify the experiment to learn more about situation 
awareness and decision making in conditions of uncertainty. We evaluated existing user interfaces, 
the types of information they convey, and their designs to shape our continuing research. We 
identified a new method to test whether participants will rely increasingly on the decision aid given 
in previous experiments as the level of uncertainty of the target stimulus increases. We considered 
several different modalities for the research and concluded that adding a realistic interface may 
extend the experimental results by simulating the visual experience and heavy task load of operators 
of unmanned vehicles. 

To develop the user interface, the authors explored existing interfaces and related challenges. 
Operators of swarms of unmanned vehicles must perform a large number of tasks for extended 
periods of time.  They must give commands, monitor system health, diagnose problems, make 
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decisions about whether to continue or stop the mission, choose whether to make changes to the 
mission as planned, and maintain awareness of enemies or threats [181]. Current interfaces are 
difficult to use because of the large amount of information displayed on them. Each has a learning 
curve, and interfaces are usually designed to be mission-specific [182]. The sensor information and 
environment can vary with the types of vehicles in use, whether they are unmanned aerial, ground, 
surface, or underwater vehicles [183]. The information displayed on unmanned vehicle interfaces can 
be divided into categories of environment, task and control, and equipment. In addition, interfaces 
may be designed for different levels of automation and thus be configured for different tasks. 

To continue the goal of researching ways to help remote operators of unmanned vehicles maintain 
situation awareness and make appropriate decisions, the researchers are developing their own model 
of an unmanned vehicle interface. They will combine this with their previous research to test its 
performance in a more realistic environment. Adding new monitoring tasks and providing much 
more information will require more cognitive resources and attention switching, thus mimicking the 
circumstances experienced in real remote operations of unmanned vehicles. 

In the experiment, the participants will learn to classify unknown stimuli on a training screen, 
then be tested on their ability to identify the stimuli using the full simulated interface. In the testing 
section of this research, participants will be informed that they are monitoring a remotely operated 
autonomous vehicle on the planet. They will be tasked with classifying the aliens once again, this 
time with the help of a machine estimate designed to help them. They must also monitor the screen 
to detect warnings or faults. The participants will be given extra training to enable them to complete 
their tasks. The levels of uncertainty of the stimuli will be manipulated as in the previous 
experiments, showing trained and untrained stimuli and viewpoints, to evaluate whether the 
participants rely increasingly on the machine estimate in more uncertain conditions. 

The unmanned vehicle remote operations interface will provide only visual information in order 
to avoid introducing too many variables at once (e.g. auditory or haptic outputs); a visual interface 
will already add an abundance of information to the experiment. The interface is divided into eight 
sections, each of which contains different mission information. The environment sections include a 
satellite view, large area view, a small area map with points of interest and a key, and the stimulus 
classification panel used in past experiments. The latter panel is placed in the center of the screen; it 
displays the stimulus (unknown entity in the environment), a machine estimate of classification 
likelihood, and reminders for the categorizations associated with each response key. 

The top left panel displays mission information, warnings, and communications. The panel on the 
left center displays measures of unmanned vehicle health. The bottom left and bottom center panels 
show status information including bearing, altitude, airspeed, wind, command mode, landing gear 
status, and a picture of the vehicle. The bottom right and center panels show environmental 
information including temperature, visibility, fuel, cloud ceiling, altitude, elevation, and barometric 
pressure. 

After the experiment was developed, social distancing measures were enacted by the university. 
For this reason, we redeveloped the experiment for online administration. We made extensive 
changes to the format of the experiment, set up a server, set up a JATOS account for experimental 
administration and data collection, and ran many tests. 

After administering the online experiment, we analyzed the data and discovered significant 
changes from the results of our previous work. Rather than showing a pattern of increased reliance 
on the machine estimate as uncertainty increased, all conditions of uncertainty showed similar strong 
reliance on the machine estimate. This suggests that increased tasks and cognitive workload 
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Figure	166:	The	display	interface.	

 

Approved for Public Release; Distribution Unlimited. 
279



 
 
 

  

 
Figure	167:	Reliance	on	the	machine	estimate	in	the	present	experiment.	Participants’	decisions	closely	reflect	the	machine	
estimates	of	25%,	50%,	and	75%.	

 
may lead to overreliance on the machine estimate, which could lead to serious errors in real-world 
missions. 

Another significant and surprising finding in this research is that all participants correctly iden- 
tified all the fault states. Participants may have paid such close attention to the fault states of the 
system because they can be critical to the survival of the unmanned vehicle. Classification of items in 
the environment, on the other hand, may not seem as important offhand. This may change when the 
stakes are higher (for example, target identification of enemy unmanned vehicles in a military task). 
The participants spent significantly more time identifying the fault states based on the aver- age time 
spent on identifying them, 5.829 seconds; the mean time spent on identifying the type of visual 
stimuli displayed was only 1.5216 seconds. This is slightly lower than the response times in the 
previous experiments, which were 1.887 seconds, 1.756 seconds, and 1.874 seconds in the first, 
second, and third experiments respectively. On the other hand, time spent identifying fault states 
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Figure	168:	Reliance	on	the	machine	estimate	in	the	second	experiment.	Participants’	decisions	show	increased	reliance	on	the	
machine	estimates	as	the	level	of	uncertainty	of	the	stimuli	increases.	
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was much higher. We hypothesize that part of the decreased time spent in identification of the stimuli 
is due to increased reliance on the machine estimate. This might indicate that participants spent less 
time observing and forming their opinions about the classification of the stimulus, relying on the 
machine estimate to make a decision more quickly. 

Because of this, a weighting scheme may be useful to achieve the desired results. Moving the 
value of the machine estimate closer to 50% may help to indicate less certainty on the part of the 
estimate. This could encourage participants to rely less closely on the machine estimate. Specific 
instructions may be given that although fault state identification is key, target identification is of 
greatest importance. Another factor that may have contributed to the extra time spent on fault 
detection is the fact that it was clearly denoted. As long as the participant noticed the fault 
state indication on the screen, they knew the correct response, unlike the more ambiguous target 
classification task. 

Our research suggests that as the number of tasks to do increases, so does the reliance on 
the machine estimate, with little change being evidenced by varying levels of uncertainty of the 
stimuli. This is not the desired effect of the machine estimate; it is intended to be a guide only when 
needed, when the operator is not sure of the classification of an entity. The increased visual 
complexity of the interface and the additional system status monitoring task may have increased the 
cognitive workload of the participants, perhaps contributing to the overreliance on the machine 
estimate. This is supported by the work of [184], which states that command and control situations, 
particularly those which require multitasking, can cause attention overload. One method which can 
be used to encourage appropriate reliance on identification decision aid systems is to inform users 
of the estimates’ reliability [185]. A study by [186] asked pilots in a simulation to determine the miss 
distance between two approaching aircraft. They found that half of the pilots in the group with 
automation were able to rely on that automation to assist in making their estimates of the miss 
distance, improving their accuracy. This may be due in part to the higher reliability of the automation. 

Another possible cause of the strong reliance on the machine estimate is that participants may 
have prioritized fault detection over target identification. Regardless, this overreliance can lead to 
incorrect decision making with negative consequences. However, this does not mean that a decision 
aid is not useful in the context of human-machine interfaces for unmanned vehicles. It simply 
indicates that this behavior may occur in such a context, so designers must plan with this in mind. A 
weighting scheme that indicates more uncertainty on the part of the machine estimate may help to 
compensate for participants’ overreliance on the machine estimate. In the literature, factors that 
influence whether or not humans choose to use automation (such as the machine estimate in this 
experiment) include risk, fatigue, automation reliability, task complexity, trust in the automation, and 
learning about automation states [187]. Specific instructions or training on how to use the machine 
estimate accurately with feedback may be useful to assist participants in its appropriate use by 
helping them understand the automation. [187] also recommends training individual operators to 
become aware of their own biases toward automation which influence the ways in which they use it. 

 
3.3.7.3 Progress Against Planned Objectives in Task T3-7 

Each of the above objectives was completed. In this research area, we have successfully evaluated 
the ways in which human operators integrate information in uncertainty with a machine estimate 
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to make their decisions. This is critical knowledge to allow humans to make the best decisions 
possible in timely, urgent circumstances. Understanding the information being communicated on the 
interface, being able to successfully interpret it, and making quick accurate decisions is the 
foundation for successful interaction with the interface, thus promoting success of the mission. 

3.3.7.4 Technical Accomplishments in Task T3-7 

Two major technical accomplishments were achieved in this task. First, the researchers created an 
experimental model to evaluate human decision making with a decision aid in varying degrees of 
uncertainty. Second, we developed a simulated user interface. We tested it with human subjects to 
learn how the participants responded to different stimuli and extra tasks in a simulated autonomous 
vehicle monitoring experience. This research will inform development of LSASV interfaces, improv- 
ing their ability to communicate information about the environment and system, using the proper 
level of automation, helping the operator maintain situation awareness, and assisting the human with 
making the best decisions. 

3.3.8 Project Progress for Task T3-8 (Evaluate human trust and its calibration in 
human-machine interaction) 

3.3.8.1 Period of Performance under 

Task T3-8 Start Date: April 2014 

Conclusion Date: April 2021 

Faculty lead:  Younho Seong. Industrial & Systems Engineering 

3.3.8.2 General Description of Task T3-8 

Studies in human trust have demonstrated a compelling relationship between decision-makers and 
the use of automated devices in making crucial judgments. The main objective of this task is to 
conduct simulated experiments and to develop empirical methods for calibrating trust metrics among 
human-automation interactions. The subordinate objectives include: a) Defining the necessary 
factors for calibrating trust in a two-dimensional domain of continuum and human perception when 
human and autonomous machine interact to perform a task, b) Developing a simulated environment 
to collect trust-related data in human-automation interaction systems, and c) Calibrating human 
trust in machine based on experimental data. 

3.3.8.3 Objectives for Task T3-8 over the Course of Project 

In contemporary society, workplaces have become more complex and dynamic because of the strong 
need to perform sophisticated tasks and use advanced technology. In these situations, trust can be 
an important factor of “decision aid” in dynamic and uncertain situations when complex systems are 
impossible to comprehend and when flexible behaviors are necessary to combat unexpected 
situations that arise, which are unavoidable. Measuring the human trust of a worker interacting with 
systems is vital in predicting his or her decision-making. This research examined human trust using 
an electroencephalogram (EEG) by recording, identifying and analyzing specific brainwaves. This 
research adopted a word elicitation study from previous research to evoke situations of trust 
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and mistrust and used a power spectrum analysis for the recorded brainwaves. The results identified 
that while alpha and beta waves were stronger in the trust situations, gamma waves were stronger 
in the mistrust situations. Therefore, based on the activities of the brain waves associated with trust, 
we concluded that trust can impact effective decision-making by increasing concentration and 
performance, which are related to alpha and beta waves. Contrarily, mistrust can interrupt effective 
decision-making by increasing stress and anxiety, which are related to beta waves. 

 
3.3.8.4 Progress Against Planned Objectives in Task T3-8 

3.3.8.5 Study 1 - Literature Review on Human Trust in Sociological Environment and 
its Potential Implication for Human Interaction with Autonomous Systems 

As there have been some attempts investigating the role of human trust in human machine (specif- 
ically, human automation) interaction, reference materials have been collected accordingly. In ad- 

dition, the issue of human trust in a sociological environment has been surveyed and the reference 
materials have been collected and summarized. The progress has been made according to the initial 
plan. Articles and manuscripts from various journals and sources were collected and summarized 
to provide a foundation to develop 1) theoretical framework to develop a model of human cognition 
with and trust in autonomous systems, and 2) an experimental testbed to investigate some identified 

factors of human cognition and trust on human autonomous system collaboration. In addition, we 
discovered some potential evidences in finding the correspondence between human trust and brain 
originated waves, leading us to envision an establishment of experimental protocols to be used later. 

During the past decade, the role of human trust as a determinant of human interaction be- 
havior with automated systems has been studied extensively. Borrowing several definitions from 
the sociological and more dyadic perspective, landmarks studies performed by several researchers 
found empirically that the levels of trust affected by the reliability of automated systems were a 
good predictor of the human use of such systems, and once this trust was broken, it was difficult 
to recover. These studies used many task domains such as an industrial process control, autopilots 
and flight management systems, and maritime navigation systems to investigate the role of trust in 

joint human-machine work systems. 
Studies in trust have demonstrated a compelling relationship between human decision makers 

and the use of automated devices in making crucial judgment. In a study, trust among civil aviation 
pilots was strongly correlated with control actions based on the information displayed by automa- 
tion. It was observed that trust is a true component of pilot activity. A study presented equally useful 
results in studies of air traffic controllers as there was a trust between the air traffic controllers and 
their reliance on the conflict probe automation designed for the aircraft separation. Hall [188] noted 
that trust in automation is similar to trust in human organizations involving supervisors and 
subordinates. Hall [188] therefore concluded that trust can be used to estimate how supervisors 
trust their subordinates regarding the use of key critical information in decision-making. Trust has 
been shown to serve as a metric that determines whether a human will use automation judiciously, 
misuse it, or even abuse it. 

 
A close examination of trust characteristics in the literature appears to suggest that some char- 

acteristics can only be captured through analytical interaction, (e.g., effects of automation reliability 
on human trust of the automation). However, psycho-social factors such as fiduciary responsibility, 
usefulness, and familiarity are based on human judgment and intuition and must be subjectively 
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evaluated. Under these conditions, the theory of cognitive continuum is useful in evaluating human 
trust. In this theory, human cognition dynamically varies on a continuum ranging from analytic 
to intuitive, depending on the properties of task (e.g., graphics versus text). Thus, trust may be 
defined using the same continuum which is termed the trust continuum. In this context, we may 
be able to define human trust continuum, borrowing the fundamentals of cognitive continuum. 

Another important issue with regards to human trust in autonomous systems is the concept 
of trust along with its calibration. Studies on human trust in automated systems have been dra- 
matically increasing during the past decade. Since several studies provided an extensive review on 
trust in sociological perspective ( [189]; [190]), this work will focus on the issue that has not been 
discussed elsewhere. First is the question of how humans build their trust in automated systems. In 
other words, what dimensions of trust in automated systems will humans examine to decide whether 
to trust or not to trust. [191] provided a list of dimensions or attributes of trust specifically for a 
human machine environment. These are reliability, robustness, validity, transparency, understand- 
ability, usefulness, and utility. While one dimension, reliability, has been extensively used by many 
landmark studies ( [189]; [190]) to operationally and successfully manipulate human operators’ trust 
in automated systems, the rest of Sheridan’s dimensions were never discussed or used in an attempt 
to calibrate operator’s trust. This is precisely the value of this study by visualizing other dimensions 
to provide an opportunity for an operator to calibrate trust. Therefore, brief examinations of these 
unused dimensions are necessary. 

First is the reliability factor. Briefly, this refers to a system of reliable, predictable, and consis- 
tent functioning ( [191]). Most of the prior definitions of trust addressed this attribute as the first 
step in developing trust, based on the premise that a person who behaves in a consistent manner will 
be trusted easily. In [189] experiments, the definition of reliability is broader than Sheridan’s. While 
the latter indicates consistent functioning, the former includes the degree to which auto- matic 
controlled values are close to the target values as well, which includes the notion of validity, 
Sheridan’s second dimension. Validity refers to the degree to which an automated system produces 
correct output. It seems intuitive that the automated system that produces more valid outputs to the 
human operators will be trusted more. 

Third is robustness. Robustness supports expectations of future performances based on capabil- 
ities and knowledge not strictly associated with specific circumstances that have occurred before. If 
the automated system was designed to handle this situation whether it is (un)expected, it will still 
provide a useful way to control the situation. [192] performed an experiment investigating the effect 
of inferior decision aid on users’ performance in the tax calculation domain representing highly 
structured environment. However, the decision aid was designed to mainly focus on the typical cases. 
That is, the decision aid was not robust to consider a variety of cases that can exist in the real world. 
Their results showed that participants’ performance was significantly better with the decision aid 
than those without the decision aid, but only for those typical cases. For non-typical cases, 
participants without the decision aid significantly outperformed those with the decision aid. From 
the result, it appears that if the decision aid is not robust to handle many different cases, it is of no 
use in supporting human operators’ judgment and decision-making activities. 

Next is the issue of transparency. Transparency refers to the degree to which the inner workings 
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or logic of the automated systems are known to human operators to assist their understanding about 
the system. Somewhat related to transparency, understandability refers to the operators’ 
understanding of the automation for the expectations that make the operators’ trust and use the 
system appropriately. The operator’s intervention will be better and more timely when one’s trust 
is well calibrated to the actual trustworthiness of the system. In designing a machine to aid a human 
operator, understandability is affected by the degree of transparency of the system which the 
operator can see the underlying mechanisms through the interface. 

 
Another way to increase the level of operators’ understanding is to develop an appropriate 

display interface design. The interface design presumably matches the operators’ concept of auto- 
mated systems, so called mental model. Many studies (e.g., [193]) have claimed that an interface 
embedded with relationships among the components can enhance operators’ understanding, which 
consequently contributes to increase in performance. On the other hands, [194] found no signifi- 
cant effect of different display types (configural display, bar graph, and alphanumeric) on operators’ 
decision time to agree or disagree with the recommendations. In the case of a decision aid which 
produces the estimate of the environment, there must be a suitable presentation of the uncertainty 
regarding the system’s inferences. This method of presentation becomes the window of opportunity 
for the operators to reduce the additional uncertainty created by having the automated decision aid. 

 
The final characteristic is usefulness or utility. The usefulness of data or machines means re- 

sponding in a useful way to create something of value for operators, eventually developing into trust. 
Conducting an experiment with two operators as a team within the tactical decision-making 
environment, [195] found that the operators tended to rate those parts of the decision-making sup- 
port system modules that supported quick decision making, and thus were more useful, higher than 
other modules. However, it should be noted that these characteristics are difficult to be hard-coded 
into a program to manipulate the degree of system’s trustworthiness due their subjective nature. 

 
[191] list seems comprehensive in that it includes factors beyond those of [190], or of [196], that 

may have effect on operators’ trust indirectly. For example, consider understandability and trans- 
parency. These factors may not be the ones that operators directly access when they evaluate the 
level of trustworthiness of an automated system. However, as operators understand the automated 
system better, they can grasp knowledge about the pros and cons of the system and when to rely on 
the system. Therefore, it seems that Sheridan’s list of trust attributes provides a comprehensive 
understanding of operators’ trust and systematic characteristics of trust that may cause operator’s 
trust to develop. 

 
Based on the research framework to study human trust in human-machine interaction setting, 

several studies performed experiments in a continuous processing domain. Among the prior research, 
two studies, [197], and [189], made attempts to identify the role of operator’s trust in automated 
systems. Further, these two studies showed interesting results on the relationship between the op- 
erator’s trust in automated systems and their reliance on the system measured by the use of the 
system. For example, [197] performed a process control simulation experiment and the results sup- 
ported this perspective, showing a positive regression coefficient between operator’s trust and the 
use of automation. They also concluded that as the level of operator’s trust suffers, their use of au- 
tomated system decreases. [189] conducted very similar experiments and showed that the operators 
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tended to use less of the automated system as the level of trust decreases. 
 

A behavioral counterpart of operator’s trust in an automated system is an index of reliance, use 
of automation. This is based on the assumption that the more operators trust, the more they use the 
automation. [198] performed an experiment using a simple computer game in which participants had 
to control various simple multiple tasks, part of which they could relinquish the control to au- 
tomated system. Automation reliability (90%, and 50%) was controlled by setting the probability 
that the automation would perform a task correctly. The automation faults were distributed over 
time and the experimental conditions, which were different in the level of workload and in the level 
of uncertainty. The level of uncertainty in a task was controlled by introducing abnormalities so that 
the automated system could not perform the task appropriately. The level of workload was also 
controlled by making another separate task more complicated. The results showed that par- ticipants 
demonstrated a bias toward manual control, and that both college student and pilots did not delay 
turning on automation after a failure, and continued to rely on failed automation. Pilots showed 
greater tendency toward the use of automation under the lower risk. In a subsequent exper- iment 
focusing on the dynamics of trust, Riley controlled the level of information that participants were 
given about the automation prior to performing the experiment. These conditions differed in whether 
participants were provided with information regarding automation reliability, state uncer- tainty, or 
both to reveal the contributions of each element to their automation use decisions. He found that 
both state uncertainty and trust affect automation use decisions, but only early in the participants’ 
experience with automation. 

 
Although those research projects concentrated on human trust in automation based on the 

general understanding of supervisory control tasks, the importance of the trust concept seems 
applicable. It has been attempted to define the role of trust in other domains, such as computer 
supported cooperative work ( [199]), decision-making in management ( [200]), medical diagnosis 
expert system ( [201]), computer security problems ( [202]), trust in e-commerce ( [203]). 

Neurological approach to human trust in autonomous systems 
 

In contemporary society, autonomous systems have become more complex because of the strong 
need to perform sophisticated tasks and the need to design complex control systems using advanced 
technology. In complex autonomous systems, the role of the human operator of controlling and 
monitoring is crucial to avoid failure and risk, and to prevent unpredictable situations that cannot be 
programmed in the system. Trust can affect the operator’s degree of acceptance and reliance on 
the automated system, so measuring human operators level of trust is vital in predicting their 
strategies when interacting with the system. Previous studies investigated the relationship between 
social constructs (i.e., trust) and neural or physiological evidence and focused on brain regions using 
fMRI and efMRI, which engage with stimuli related to trust and distrust. This research measures and 
analyzes human brainwaves in situations involving trust and mistrust using an elec- 
troencephalogram (EEG). This experiment uses a word elicitation study taken from a survey used in 
previous research about words related to trust and mistrust. The international 10-20 system of 
electrode placement is used for recording brainwaves of participants in real time when they watch 
the selected words, which evoke trust and mistrust. After the experiment, the noise from the raw 
EEG data was removed using filters. Power spectrum analysis was used to analyze the EEG data 
collected. The results indicate that α and β waves are affected by trust situations while γ waves 
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are affected by mistrust situations. Therefore, trust can assist in effective decision-making by in- 
creasing concentration and performance, which are related to α and β waves, while mistrust can 
disrupt effective decision-making by increasing stress and anxiety, which are related to γ waves. The 
findings of this research will contribute to defining how trust in automation affects the human 
operator’s decision-making and overall performance. In addition, it will contribute to monitoring the 
psychological state of the human operators in complex automations such as pilots of automated 
aircrafts, captains of automated ships or supervisors of automated factories. 

 
An autonomous system is the use of various control systems for operating equipment with 

minimal or reduced human intervention. It has been actively used in many applications such as ma- 
chinery, factories, ships, aircraft and vehicles to consistently improve quality, accuracy, productivity 
and efficiency. Automated systems have evolved very rapidly into complex sophisticated tasks and 
advanced technology. However, complex autonomous systems can increase unstable and uncertain 
situations in workplaces that eventually will lead to increased uncertainty, which will increase cogni- 
tive complexity [204]. In these dynamic and uncertain situations, trust can be a ’decision aid’ when 
complex automated systems are impossible to comprehend and when flexible behaviors are neces- 
sary to combat unexpected situations that arise, which cannot be programmed in the system [204]. 
Trust also plays a crucial role in contributing to the cognitive complexity and increased uncertainty 
in sophisticated automation systems. 

 
To understand trust between human and automation, it is necessary to study how to define trust 

in sociological settings. Trust has been defined related to expectation. [205] defined trust as 
confidence that one will find what is desires from another and [196] defined it as a generalized 
expectation related to the subjective probability to future events. A sociologist [206] defined trust 
with three specific expectations such as persistence, technical competence, and fiduciary responsi- 
bilities. By integrating the study of [206], and [196], [207] extended her study to develop trust in 
human-machine relationships and claimed that trust is developed by the human’s ability to estimate 
the predictability of the machine’s behaviors. 

 
Trust between humans and machines is similar. Trust is developed over time but very hard to 

regain once gone. Humans (trustor) can develop trust in a machine (trustee) by evaluating the 
performances of the machine over time. With trust, then human (trustor) is willing to rely on the use 
of the machine (trustee). If the machine’s outcome is unexpected and unstable involving the risk of 
failure or harm to humans (trustor), humans (trustor) will lose their trust and not rely on the 
machine in the future. Building trust is also influenced by previous experiences, the current state is 
to believe and the future expectation is to have faith. Therefore, the key here is maintaining a level of 
trust in the interaction between humans and machines. 

 
Trust can affect the operator’s degree of acceptance and reliance on the automated system. Hu- 

man operator’s trust in the complex automation plays an important role in decision making and 
solving problems during unexpected and uncertain situations. If the operator mistrust automation, 
he or she will tend to use manual operation in possible emergent situations [207]. Using manual 
operation can also increase the operator’s workload needed to process all information without the 
assistance of automation, which will inevitably decrease quality, productivity and efficiency. If the 
operator overtrusts automation, he or she cannot correctly monitor and properly control the system. 
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Nor can the operator find the cause of the problem(s). Subsequently, these type situations become 
difficult to understand and to solve the problem that can cause a serious accident or failure. Hence, 
trust is an important factor in using automation properly. [208] states the degree of trust can influ- 
ence system performance because trust can affect the operator’s degree of acceptance and reliance 
on automation [191] and the operator’s strategies regarding the use of automation [209]. Therefore, 
measuring the human operator’s level of trust in automation becomes crucial in predicting their 
strategies while using automation. However, trust is a multidimensional construct influenced by 
various factors such as motives, intentions, and actions [210] [211], so it is challenging to measure 
trust. How can we measure human trust in the use of automation effectively? As a method to measure 
trust, questionnaires are mostly used to investigate trust in interpersonal relationships ( [212] 
[196].) However, many questionnaires used in these studies are based on a theoretical ap- proach 
that does not have an objective measure and can vary by respective researchers’ theoretical 
orientation. 

To compliment a theoretical approach of questionnaires, there are researchers to use with 
a semi-automatic simulation of human and automation [209] and with an empirical approach ( 
[213] [214]). [209]) used an experimental system such as a semi-automatic pasteurization plant to
investigate the change in an operator’s control strategies and trust during interaction with the
automation. [213] used empirically developed trust questionnaires and they extensively investigated
three types of trust, which are human-human trust, human-machine trust, and trust in general, with
a three phased experiment of a word elicitation study, a questionnaire and a paired compari- son
study. The use of questionnaires with simulations or empirical approaches has great potentials to
measure trust effectively, but the questionnaires cannot be a direct method to measure trust. Trust
is a multidimensional concept, so it is required to measure trust in various perspectives.

To supplement the questionnaires, this research proposes use a neurological measure, which can 
be a direct and objective method to detect and measure human trust. This research uses an 
empirically developed wordlist related to trust and mistrust from a word elicitation study of [213] to 
evaluate the subjective feeling of trust with the neurological measure. Some studies have in- 
vestigated the correspondence of relationship between social constructs (i.e., trust) and neural or 
physiological evidence. [215] investigated the correlation between the degree of trust and human 
facial appearance using event-related functional magnetic resonance imaging (efMRI). They found 
that trustworthiness was correlated in a frontopolar cortex (frontal lobe) and untrustworthiness was 
correlated with right amygdala and right insula (temporal lobes). [216] examined interpersonal trust 
when two strangers interacted online with one another in a trust game and detected differ- ent brain 
regions based on conditional and unconditional trust in a partnership using hyper-fMRI. They 
discovered that conditional trust activated the ventral tegmental area (frontal lobe) while 
unconditional trust activated the septal area (temporal lobes). [217] had an experiment to find a 
correlation between brain regions and trust using fMRI by measuring response of two fictitious 
online sellers who have high and low reputation. They found that trust is related to the caudate 
nucleus, putamen, anterior paracingulate cortex, and orbitofrontal cortex (frontal lobe) while dis- 
trust is related to the amygdala and insular cortex (temporal lobes). These previous studies focused 
on brain regions using fMRI and efMRI, which engage with stimuli related to trust and distrust. 
However, the previous studies did not fully investigate brainwaves in the situations of trust and mis- 
trust. fMRI and efMRI resolution provide excellent spatial resolution and good temporal without 
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no radiation and no side effects from the magnetic fields and radio waves, so they are very useful to 
detect brain regions with specific stimuli. However, both fMRI and efMRI are claustrophobic, noisy, 
and dangerous to any present of mental in the body, and very sensitive to moving objects [218]. 
In other words, fMRI and efMRI are not effective tools measure various cognitive tasks in a real time. 

 
This research measures and analyzes human brainwaves using situations involving trust and 

mistrust using an electroencephalogram (EEG). Electroencephalography (EEG) is an electrophys- 
iological monitoring method that records the electrical activity of the brain by placing electrodes on 
the scalp. EEG has several benefits for measuring brain activity. EEG has a wide range of intra-
individual and inter-individual variability which can be divided in frequency bands (δ, θ, α, β and γ) 
[219]. EEG detects changes in the brain’s electrical activity in response to external stimuli in 
various regions within a millisecond timeframe in real time. EEG can be sensitively changed to 
the external stimuli, so it is useful for experiments with a wide range of cognitive tasks, which 
requires to observe responses by external stimuli. In addition, EEG provides high resolution without 
exposure to radiation or magnetic fields and it is not expensive compared to other equipment types, 
portable, and is not claustrophobic. 

 
Human Brain regions and EEG 

 
Neuroimaging research is useful to investigate neural activities with a wide range of cognitive 

processes with attention, language and memory. Particularly, neuroimaging techniques contributes 
to the study of cognition. Neuroimaging techniques can assist with examining various cognitive 
processes including language, reasoning, problem solving, decision making and other complicated 
mental functions [220]. Neuroimaging techniques allow us to find out how neural activities relate to 
any particular cognitive task through detecting brain regions and brain waves. This part will 
investigate the cognitive process through examining the human brain, EEG history, EEG analysis, 
brain waves, brain regions, and brain imaging methodologies. Also, a clear connection to measure 
human trust using EEG will be articulated. 

The human brain is the center of the central nervous system, which consists of the cerebrum, 
brainstem and cerebellum. The cerebral cortex is the outer layer of the neural tissue in the cerebrum 
that plays an important role in memory, attention, perception, awareness, thought, language and 
consciousness. The cerebral cortex is divided into four lobes - the frontal, parietal, temporal and 
occipital lobes. The frontal lobe involves with executive functions, the parietal lobe involves with 
sensory information, the temporal lobe involves with processing sensory input, and the occipital lobe 
involves with visual information through the visual cortex. 

The cerebral cortex is relative to the cognitive process, namely, frontal lobe, parietal lobe, 
occipital lobe and temporal lobe (see Figure 157. The frontal lobe plays a crucial role in the brain as 
a control tower because of its association with memory, willpower, logical thinking, adjusting the 
activities of other regions of the brain, and controlling emotion and impulse [221]. In addition, the 
frontal lobe is associated with problem-solving, judgment, attention, organization, planning, and 
anticipation [222]. Particularly, the prefrontal cortex (PFC), which is the cerebral cortex that covers 
the front part of the frontal lobe, performs executive functions. This involves organizing and 
executing a series of actions for complex cognitive goals by predicting consequences of current 
activities, and making decisions by differentiating among conflicting thoughts and determining good 
and bad ( [222], [223]). To conduct actions in a timely manner, the prefrontal cortex needs direct 
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access to sensory, motor and mnemonic information [222]. A damaged prefrontal cortex could result 
in antisocial, violent and psychopathic behaviors [223]. 

The parietal lobe of the brain is located above the occipital lobe and behind the frontal lobe 
and central sulcus. The parietal lobe deals with language, sensation, perception and integrating 
sensory inputs, especially the sense of touch, pain and temperature. The posterior parietal cortex is 
highly associated with visuomotor integration, spatial perception and spatial orientation, because of 
its location between the sensory and motor area that are related to both sensory-related and motor-
related activity [224]. 

 

Figure	169:	Brain	Anatomy.	 Source:	[225]	
 

The occipital lobe is located under the occipital bone at the lower back of the skull and is divided 
into two areas, dorsal (superior) and ventral (inferior). As a visual processing center, it houses the 
visual cortex which functions visuospatial processing, color differentiation, and motion perception. 
Damage to the right hemisphere of the occipital lobe can cause serious problems with the visual 
perception [225]. 

The temporal lobe is interconnected with other cortical regions for executing complicated func- 
tions [225]. This lobe is associated with the perception of visual and auditory sensation related to 
speech and language processing, language comprehension, long term memory storage and facial and 
object recognition and emotion. A damaged temporal lobe can cause perseverative speech, para- 
noia, and rage. Amygdala, which is deep inside the temporal lobe is known for controlling major 
affective activities like friendship, love and affection and the expression of moods such as fear, rage, 
and aggression. The amygdala is the center for identifying danger that aids in self-protection, when 
activated brings fear and anxiety [226]. 

The human brain functions when neurons, electrically excitable cells process and transmit in- 
formation, are electrically charged by membranes that transport proteins to pump ions across their 
membranes and pass electrical signals to other neurons through a synapse, a specialized connec- tion 
with other cells. Neurons make up the core components of the brain and the spinal cord (the central 
nervous system (CNS)), and the ganglia (the peripheral nervous system (PNS)). These elec- trical 
signals affect all the processes in the brain; therefore, understanding how the brain works is 
important (e.g., how neurons communication, how stimuli are maintained to function correctly, how 
attention is used selectively, and how memory is made and stored to understand how neurons 
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communicate). These electrical signals can be detected and recorded using electroencephalography 
(EEG). EEG is an electrophysiological monitoring method used to record the electrical activity of the 
brain. EEG measures voltage fluctuations that resulted from ionic current within the neurons of 
the brain detected by multiple electrodes placed on the scalp. 

The use of EEGs to measure brain activity dates back more than a century ago. In 1875, Richard 
Caton (1842-1926), an English physician, reported electrical activities from the cerebral cortex of 
rabbits and monkeys in the British Medical Journal. German physiologist and psychiatrist Hans 
Berger (1873-1941) recorded the first electrical activities of human brain by inserting two platinum 
electrodes under the damaged cranial bone and called it electroencephalography (EEG) similar to an 
electrocardiogram (ECG) or electromyography (EMG). 

 
3.3.8.5.1 EEG Band related to Cognitive Process 

Brain waves consist of different frequency waves, which allows one to analyze the waves using a 
specific frequency. The Power Spectrum analysis allows for classifying the brain waves by frequency 
ranges: delta waves (0.2-4 Hz), theta waves (4-8 Hz), alpha waves (8-13 Hz), beta waves (13-30 Hz) 
and gamma waves (30-60 Hz). The classification of the beta waves is low beta (13-15 Hz, which is 
called as SMR), mid beta (15-20 Hz) and high beta (20-30 Hz). 

Delta waves have a frequency between 0.2 Hz and 4 Hz. Usually, these waves are common in 
infants or in normal adults in a deep state of sleep. They tend to be the highest in amplitude and the 
slowest waves. When delta waves are strong, the body is healing itself by resetting its internal clock. 
Delta waves are common in people in a coma or have a defect of the cerebral cortex. Delta wave 
frequency and the frequency of the movement of the eyes or bodies to objects are similar. During an 
experiment conducted to record brain waves over time due to unavoidable noise, the increased 
power of the delta waves was not seriously considered for analysis. 

Alpha waves have a frequency between 8 Hz and 13 Hz. The waves appear when people are 
awake but have a relaxed awareness and inattention without processing much information. When 
people are more comfortable and relaxed, the alpha waves increase. The waves generally appear as 
a regular wave, detected strongly over the occipital lobe, and in small amounts over the frontal lobe. 
They emerge with the closing of the eyes and with tension, and are suppressed during eye opening 
or mental exertion. These waves relate to recalling memory, relieving pain and reducing stress and 
anxiety. Therefore, stimulating alpha waves can improve the efficiency of learning and working. 

Beta waves have a frequency between 13 Hz and 30 Hz. These waves are detected mostly in 
the front lobe and are associated with conscious activities. They can affect cognitive tasks such as 
attention, problem solving, judgment and decision-making. In sustained attention tasks, low beta 
(SMR) waves affect perceptual sensitivity and lower omission errors, while mid-beta waves reduce 
reaction times. Beta waves can be a guideline for measuring the cognitive process. High beta waves 
are associated with intensity, anxiety and hypervigilance. People that lack sufficient beta activity can 
experience mental or emotional disorders such as depression, Attention Deficit Disorder (ADD) and 
insomnia. Beta activity is important because it can enhance concentration, attention, emotional 
stability and energy levels. 

Gamma waves have a frequency between 30 Hz and 60 Hz. These are the fastest waves, indicative 
of anxiety and processes advanced cognitive information such as reasoning and judgement. They are 
connected to the development of ideas, the use of language, processing memories and learning. They 
are detectable when people use their short-term memory to identify objects, sounds and tactile 
sensations. 
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Theta waves have a frequency between 4 Hz and 8 Hz. These waves occur in young children and 
are present in adults and teens during drowsiness. They are usually detected when people are falling 
asleep or a state of calming down. Theta waves are associated with access to unconscious mind, 
creative inspiration and deep meditation, but this has not been proven because of lack of 
standardized results. They can be used in hypnotherapy and self-hypnosis during a receptive mental 
state to accept affirmations and suggestions. 

3.3.8.5.2 Experiment I: Human Trust and EEG 
The word trust originated with trust, which means comfort in German. If I trust someone, it means 

that I am comforted by the belief that he or she will not do any action contrary to my ex- pectation. 
Many researchers have proposed to define trust between humans related to expectation. Barber 
[206] defined trust as “confidence that one will find what is desired from another rather than what is
feared.” Others summarized trust as “an actor’s willingness to arrange and repose his or her activities 
on others because of the confidence that others will provide expected gratification.” It was also
defined the concept of interpersonal trust as “a generalized expectancy held by an individual that the
world promise, oral or written statement of another individual or group can be relied on.” Rempel et
al. [196] explained trust as “a generalized expectation related to the subjective probabil- ity of an
individual assign to the occurrence of some set of future events,” and later, Rempel and Holmes [196]
defined trust as “the degree of confidence one feels when thinking about a relation- ship.” Barber
[206] understood the multidimensional concept of trust and defined trust with three expectations of
“the persistence of the natural and the moral social orders, technically competent role performance,
and fiduciary obligations and responsibilities.” Based on the definitions of trust by Barber [206] and
Rempel and Holmes [196] , Muir [207] defined trust in the human-machine relationship as such:
“Trust is the expectation, held by a member of a system, of persistence of the natural and moral
social orders, and of technically competence performance, and of fiduciary responsibility, from a
member of the system, and is related to, but not necessarily isomorphic with, objective measures of
these qualities.” Therefore, it is necessary to understand trust as a multidi- mensional concept. Trust
is highly related to the idea of social influence because it would be much easier to influence or
persuade someone who is trusting. Trust can also have a positive influence on a person’s behaviors,
perceptions and performances. Trust can predict the acceptance of behaviors by other individuals,
social groups such as friends, communities, organizations, companies, nations and objects such as
machines and automated systems. Trust can play the important role of “deci- sion aid” in dynamic
and uncertain situations when complex automated systems are impossible to comprehend and when
flexible behaviors are necessary to combat unexpected situations that arise, which are unavoidable.

How can we measure human trust effectively? Because trust is a multidimensional concept, mea- 
suring a worker’s level of trust becomes crucial in predicting his or her decision-making while using 
the systems. Many researchers have used questionnaires that measure subjective feelings of trust. 
However, the questionnaires used in these studies are based on a theoretical approach, which can 
vary by the researcher’s theoretical orientation. Lee and Moray [209] used an experimental system, 
such as a semi-automatic pasteurization plant, that posed limitations when being applied to other 
automated systems due to the systems having different tasks or levels of complexity. Because trust is 
a multidimensional concept, we needed to use both quantitative and qualitative methods to measure 
trust. As a method for this research, we used both a neurological imaging technique as a quantitative 
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method and a questionnaire as a qualitative method to measure human trust. Neurological imaging 
techniques can measure quantitative aspects of trust by investigating relations between neurolog- 
ical activities and human trust. Up to now, there have been some studies investigating trust and 
neural correspondence. Winston et al. [215] investigated the correlation between the degree of trust 
and human facial appearance using event-related functional magnetic resonance imaging (efMRI). 
Krueger et al. [216] examined interpersonal trust in an online context to detect different brain 
regions based on conditional and unconditional trust using hyper-fMRI. Another study defined a 
relationship between brain areas and psychological processes using fMRI that revealed a correlation 
between trust and mistrust with different brain areas. These studies focused on brain regions using 
fMRI and efMRI that engaged with stimuli related to trust and mistrust. However, the previous 
studies did not fully investigate to identify specific brainwaves in the situations of trust and mistrust. 

 
The aim of this research is to understand human trust by measuring and analyzing human brain- 
waves captured with an electroencephalogram (EEG). The experiment consisted of a word-elicitation 
study used to identify specific brainwaves (i.e., delta, theta, alpha, beta and gamma) which can aid in 
understanding brain activities relative to trust and mistrust. The aim of this research is to 
understand human trust by measuring and analyzing human brainwaves captured with an elec- 
troencephalogram (EEG). Thus, the research investigated human trust and mistrust by analyzing the 
neurological activities (brainwaves) between human operators. Specifically, this research em- ploys 
two experiments. Experiment I consisted of a word elicitation study used to identify specific 
brainwaves and brain regions that resulted from trust and mistrust situations. Identifying specific 
brainwaves (i.e. delta, theta, alpha, beta and gamma) and brain regions (i.e. frontal, parietal, 
temporal, central and occipital lobes) can aid in understanding brain activities relative to trust and 
mistrust. 

 
3.3.8.5.3 Experiment I with words 

Experiment I is designed to measure neurological activities in the situations of trust and mistrust 
using a word list related to trust and mistrust. It adopts the framework from a previous study about 
words related to trust and mistrust. The previous study collected 96 words related to trust using a 
word elicitation study by rating an initial set of 138 words from dictionary definitions and thesauri 
and adding 38 words obtained from the written descriptions about trust from participants in 
Linguistics or English graduate students. Then they used the questionnaire study to 120 students in 
various majors identify the limited set of words related to trust and distrust using a seven-point scale. 
Through the word elicitation study and the questionnaire study, they had a figure, which contains 
sets of the top 5, 10 and 15 words related to trust and distrust. After the questionnaire study, they 
did factor analysis and cluster analysis to compare three types of trust, which are general trust, 
human-human trust, and human-machine trust. Finally, they confirmed that the three types of trust 
are very similar in sets of words related to trust. This experiment utilizes only the top 15 ranked 
words related to trust and mistrust from the study of Jian et al (2000) to measure general concept of 
trust. 

 
3.3.8.5.4 Hypotheses 

 
• In the situation of general concept of trust, specific brainwaves and brain regions will be 
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detected. 

• In the situation of general concept of mistrust, specific brainwaves and brain regions will be 
detected. 

 
3.3.8.5.5 Recruitment of participants 

A total of 18 participants (male and female) were solicited to participate in the experiment I. All 
participants would encompass undergraduate and graduate students recruited on campus at North 
Carolina A&T State University. 

 
3.3.8.5.6 Participants demographics 

Each participant was over 18 years old, with normal or corrected to normal vision, was free 
of current or past neurological and psychiatric disorders and was able to read and comprehend 
the English language. There would be no preference on right-handed or left-handed user, but all 
participants must have the ability to use a keyboard and a mouse with their hands. There would 
be no discrimination upon participants based on age, race, gender, religion, or prior participation in 
other experiments. Each participant was in an isolated room under guided instruction. Conditions for 
all participant were same. 

 
3.3.8.5.7 Instrumentation 

The EEG data was recorded using the g.HIamp (256 multichannel amplifier), g. GAMMAsys 
(active electrode system with g. GAMMAcap) and g. Recorder (brain signal recording software) 
by g. tec medical engineering company. Per the International 10-20 system of electrode placement, 
20 electrodes (Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, T6, O1, O2) 
were recorded and measured (see Figure 2). The 10-20 system is based on the relationship between 
the location of an electrode and the underlying area of the cerebral cortex. The letters F, T, C, P, 
and O represent the frontal, temporal, central, parietal, and occipital lobes. Even numbers refer to the 
right hemisphere of the brain and odd numbers refer to the left hemisphere of the brain. The 
participants head is fitted with a cap of electrodes (g. GAMMAcap), and the selected 20 electrodes 
are filled with abrasive electrolyte gel using a syringe. The sampling frequency to record brainwaves 
is 256 Hz, high-frequency filter as 60 Hz, and low-frequency filter as 0.1 Hz. The g.Recorder (brain 
signal recording software) also included artifact removing filters for eye blink, jaw clenching and 
muscle movement. Before an experiment, participants artifacts were recorded, marked and removed 
from the raw data for the experiment. 

 
3.3.8.5.8 EEG procedure 

At the beginning of the experiment, each participant reads informed consent agreement. After- 
wards, the researcher addresses any questions and concerns. All participants are required to provide 
demographic information such as age, gender, and contact information as well as a signed and dated 
consent form. After each participant signs the consent form, the participant is asked to put aside all 
personal items on a secure table. The participant is asked to turn off their cell phone to avoid any 
interruptions during the experiment. After the participant is seated, detail instructions are given for 
each experiment. The facilitator in the room addresses any questions or concerns related to the 
experiments. Then the participant is fitted with a g. GAMMA cap with electrodes that measures 
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Figure	170:	Example	of	g.	GAMMAcap	&	g.HIamp	

 

 
 
 
 
 
 
 
 

 

Figure	171:	 International	10‐20	system	for	electrode	placement	
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small electrical signals produced by the brain in a completely non-invasive manner. The 20 elec- 
trodes, per the international 10-20 system for electrode placement is filled with a gel using a syringe 
with a plastic tip. Before each experiment begins, participants are asked to record their brainwaves 
for marking and removing artifacts such as eye blink, jaw clenching and muscle movement. Then, as 
baseline data without any stimuli, participants brainwaves are recorded when they are relaxed, but 
they are asked not to move, not to talk and see the blank monitor for a minute. When an experiment 
begins, the participant is asked to focus their attention on the computer screen and use the keyboard 
or mouse if needed. They are asked not to talk and blink their eyes (if possible) to reduce recording 
artifacts in the brainwaves. After the experiment, each participant gently removes the electrode cap 
and any remaining gel from their head or hair using the tissues and/or towel provided. 

 
3.3.8.5.9 Experimental design 

Experiment I with words is designed to measure neurological activities in the situations of trust 
and mistrust using a word list related to trust and mistrust. It adopts the framework from a previous 
study about words related to trust and mistrust. The top rating of 15 words are selected from the 
previous study and presented in the experiment randomly. All 18 subjects participated in the 
experiment. The participants were expected to think about situations of trust and mistrust evoked 
by the selected words. Before the experiment began, the instruction was displayed for 10 seconds. 
Each word displayed for 7 seconds in a slideshow, which was enough time to read and understand 
the meaning of each word. The slideshow lasted for a total of 3 minutes and 30 seconds, which was 
enough time to evoke a situation of trust or mistrust. Each experiment consisted of two slideshows: 
1) trust words and 2) mistrust words. The experiment I is designed to record trust first and mistrust 
later without counter-balancing design because it evokes emotional responses. Especially mistrust 
can evoke negative emotions such as stress and anxiety, which can last longer and affect other 
emotions. The first slideshow consisted of a slideshow with 30 random stimuli which was sufficient 
stimuli for recording brainwaves by displaying the 15 words related to trust twice in a random order. 
The participants brainwaves were recorded during the slideshow with words related to trust. The 
participant took a one-minute break in order to avoid fatigue and stress. Similarly, the second 
slideshow consisted of a slideshow with 30 random stimuli which was enough stimuli for recording 
brainwaves by displaying the 15 words related to mistrust twice in a random order. After the 
experiment, the participants completed a survey to evaluate the level of trust for trust and mistrust 
word sessions. 

• Words related with trust: honesty, royalty, love, confidence, assurance, friendship, security, 
integrity, fidelity, familiarity, honor, reliability, trustworthy, entrust, promise. 

• Words related with mistrust: cheat, betray, deception, steal, suspicion, distrust, sneaky, mis- 
leading, mistrust, phone, beware, harm, falsity, lie, cruel. 

 
3.3.8.5.10 Analysis 

This research used both power spectrum for identifying specific brainwaves and coherence analysis 
for detecting active brain regions. Analyzing brainwaves consisted of linear spectral measurements, 
nonlinear measurements of complexity, and interdependency measurements. The benefits of using 
linear spectral measurements (power spectrum and coherence analysis) are results of obtainable fast 
and easy; thus, most often used. 
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One linear spectral measurement termed the power spectrum measurement is a common method 
to quantify EEG raw data to illustrate the distribution of signal power by frequency. To identify 
specific brainwaves corresponding to the words for trust and mistrust situations, this involved an- 
alyzing the EEG data using the power spectrum through the EMSE Suite Data Editor by Cortech 
Solutions. Power spectrum analysis involved performing a Fast Fourier Transform (FFT) on defined 
data intervals. Then, the results are squared and averaged. The power spectrum data is displayed in 
units of Volts-square(V 2). 

1.0μV 2 = 1.0(μV 2) = 1.0e−0.12V 
2 

Power spectrum analysis is helpful in analyzing each channels frequency; however, this analysis 
has limitations when examining complex and comprehensive activities of the brain such as trust and 
mistrust situations. Therefore, this study used a coherence analysis to detect active brain regions 
and to examine communications among the active brain regions. 

Using coherence analysis (based on the power spectrum) for functional connectivity in the dif- 
ferent brain regions has gained frequent use. Coherence is a measurement of the amount of phase 
stability or phase jitter between two different time series. When the phase difference between two 
signals is constant, coherence =1; when the phase difference between signals is random, coherence = 
0. To obtain coherence when two channels (a, b) are recorded from a specific range of the frequency 
(f); the square of cross-spectrum (Pab) needs to be divided by power spectrum Pa(f) and multiplied 
by power spectrum Pb(f). 

Cohab(f 
P(ab)(f )2 

[Pa(f )×Pb(f )] 

 
 

3.3.8.5.11 Results 
This research recorded the participants’ brainwaves as they responded to select words relative to 

trust and mistrust by the 10-20 systems of electrode placement. The total time for each session was 
210 seconds. The brainwaves of the 17 participants were normal without any extreme brain activity, 
but the brainwaves of the one subject had abnormal brain activity, so the collected brainwaves of 17 
subjects were usable for analysis. 

First, the power spectrum analysis was used to analyze the raw data generated from the brain- 
waves to examine specific brainwaves for the trust and mistrust situations. The researcher used 
the power spectrum analysis to classify the frequency ranges by brain waves as follows: delta 
(δ, 0.2 4Hz  , theta  θ, 4 8Hz  , alpha  α, 8 13Hz  , beta  β, , 13 30Hz  andgamma  γ, 30 60Hz  . 
Delta and theta waves were not relative to this experiment because delta waves occur in a deep 
sleep state and theta waves occur during drowsiness; thus, these were not applicable for this exper- 
iment. Therefore, the analysis includes the alpha, beta, gamma waves, intraindividual and average 
differences that are compared to the trust and mistrust situations. Further, the individual variabil- 
ity for the brainwaves is high, so the analysis includes the intraindividual differences, which shows 
individual difference with baseline and two stimuli of trust and mistrust situation, followed by the 
average differences. Second, the power spectrum and coherence analyses aided in investigating 
the active regions of the brain (frontal, temporal, central, parietal and occipital areas) for the trust 
and mistrust situations. The power spectrum analysis aided in investigating the stimulated region 
with the absolute power value. The regions of the brain were compared to the trust and mistrust 

) = 
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situations.  The coherence analysis was used to compare trust and mistrust situations to the brain 
regions by investigating functional connectivity in each region based on a relative value scale of 0 to 
1. According to the modified 10-20 system of electrode placement, each channel is assigned a
location such as frontal lobe (F3, F4), temporal lobe (T3, T4), central lobe (C3, C4,), parietal
lobe (P3, P4) and occipital lobe (O1, O2).

3.3.8.5.12 Comparison of Intraindividual and Average Differences 
The frequency of alpha waves ranged from 8 Hz to 13 Hz. By comparing the intraindividual 

differences for the trust situations to the baseline (with no stimuli), the power of alpha waves 
of 16 of 17 participants significantly increased and the power of 1 participant (P16) decreased. 
By comparing the intraindividual differences for the mistrust situation to the baseline (with no 
stimuli), the power of the alpha waves for 14 of 17 participants slightly decreased but the power of 3 
participants (P2, P4 and P5) increased. 

The averages for the baseline, trust, and mistrust were 2.63E-10 μV 2, 4.15E-10 μV 2 and 2.08E- 
10μV 2 respectively. By comparing these averages, the power of alpha waves increased for the trust 
situation with a difference of 1.53E-10 μV 2 and decreased for the mistrust situation with a difference 
of 5.50E-11 μV 2. 

The frequency of beta waves ranged from 13 Hz to 30 Hz. By comparing the intraindividual 
differences for the trust situation to the baseline (with no stimuli), the power of beta waves for 
16 of 17 participants significantly increased, but the power of 1 participants (P4) decreased. By 
comparing the intraindividual differences for the mistrust situation to the baseline (with no stimuli), 
the power of the beta waves for 14 of 17 slightly increased, but the power of 3 participants (P1, P3 
and P5) decreased. 

The averages of the baseline, trust and mistrust were 1.58E-10 μV 2, 2.23E-10 μV 2and 1.65E-10 
μV 2, respectively. A comparison of these averages showed the power of beta waves significantly 
increased for the trust situation to a difference of 6.50E-10 μV 2 and slightly increased for the mistrust 
situation to a difference of 7.00E-12 μV 2. 

The frequency of gamma waves ranged from 30 Hz to 60 Hz. A comparison of the intraindividual 
differences for the trust situation to the baseline (with no stimuli) showed a slight decrease for the 
power of gamma waves for 14 of 17 participants, but not in 3 participants (P6, P9 and P12). A 
comparison of the intraindividual differences for the mistrust situation to the baseline (with no 
stimuli) showed a significant increase for the power of the gamma waves for 15 of 17 participants, 
but not in 2 participants (P2 and P9). 

The averages of the baseline, trust, and mistrust were 2.48E-11 μV 2, 2.36E-11 μV 2and 3.38E-11 
μV 2, respectively. A comparison of these averages showed a slight decrease for the power of gamma 
waves for the trust situation with a difference of 1.20 E-12 μV 2 and showed a significant increase for 
the mistrust situation with a difference of 9.00 E-12 μV 2. 

Since the 4 participants brainwaves were normal without any extreme brain activity, the anal- 
ysis was performed on the averaged data of all the brainwaves. The participants brainwaves were 
recorded as they responded to the word selections relative to trust and mistrust by the 10-20 system 
of electrode placement (22 channels) with a total time of 210 seconds for each session. First, the 
power spectrum was used to analyze the raw data generated from the brainwaves. Then, the average 
of the power spectrum results was used in the coherence analysis. 

The power spectrum analysis categorized the brainwaves by frequencies: alpha (8-13 Hz), beta 
(13-30 Hz), and gamma (30-60 Hz). For a more detailed analysis in the future, the classifications 
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Figure	172:	Coherence	topography	map	(alpha	waves)	

 

 
of beta waves are as follows: low beta (13-15 Hz, called Sensorimotor Rhythm), mid beta (15-20 Hz) 
and high beta (20-30 Hz). The study examined the experimental results for the trust and mis- trust 
situations by using the frequencies of the active brain regions (alpha, beta, and gamma waves). 

 
In the trust situations, the alpha and beta waves were stronger than mistrust (see Figure 161 & 

162). The simulation of the frontal and parietal lobes also showed activity in the trust situations 
in the alpha and beta wave frequencies. By contrast, in the mistrust situations, the gamma waves 
were stronger than trust. Also, the temporal and occipital lobes showed engagement in the mistrust 
situations in the gamma frequency waves (see Figure 163). 

 
3.3.8.5.13 Comparisons of trust and distrust 

By comparing the alpha waves, beta waves and gamma waves in the trust and mistrust situation, 
the alpha and beta waves are associated with the trust situation and the gamma waves are associated 
with the mistrust situation, so they need to analyze with more details. By comparing the trust 
differences to the alpha waves when the baseline is 0, 94.11% of participants increases in the trust 
situation and the standard deviation is 2.25E-10. By comparing the trust differences to the beta 
waves when the baseline is 0, 94.11% of participants increases in the trust situation and the standard 
deviation is 7.96E-10) . By comparing the mistrust differences to the gamma waves when the 
baseline is 0, 88.23% of participants increases in the mistrust situation and the standard deviation is 
1.09E-11) 

 
3.3.8.5.14 Comparison of stimulated brain regions to the baseline, trust, and mis- 

trust situations 
Comparing the stimulated brain regions of the alpha waves to the baseline, trust, and mistrust 

situations, it revealed that the frontal lobe (3.71E-09 uV2) for the trust situation was highly stimu- 
lated compared to the other regions. According to the topography map with the average data, the 
alpha waves in the frontal lobes showed active connectivity for the trust situations, but the right 
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Figure	173:	Coherence	topography	map	(beta	waves)	

 

 
 
 
 
 
 
 
 

 

Figure	174:	Coherence	topography	map	(gamma	waves)	
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central and temporal lobes showed little connectivity for the mistrust situations. 
 

Comparing the stimulated brain regions for the beta waves to the baseline, trust, mistrust sit- 
uations, it also revealed that the frontal lobe (1.01E-09 uV2) in the trust situations was highly 
stimulated compared to the other regions. According to the topography map with the average data, 
the beta waves in the frontal lobes also showed active connectivity for the trust situations. However, 
the temporal lobe showed little connectivity for the mistrust situations. 

 
Comparing the gamma waves for the stimulated brain regions for trust, mistrust, and the base- 

line. The temporal lobe (3.15E-10 uV2) for mistrust was highly stimulated compared to the other 
regions. According to the topography map with the average data, the gamma waves in the temporal 
lobes showed active connectivity for the mistrust situations, but there is not active connectivity for 
the trust situation. 

 
3.3.8.5.15 Detailed comparison of average and exceptional topography maps in the 

trust and mistrust situations 
By comparing average and exceptional topography maps of the alpha waves in the trust situation, 

the average topography map showed the active connectivity in the frontal lobe, but the other typog- 
raphy map showed the active connectivity in the parietal lobes. This exceptional topography map is 
from P16, which is the participant who decreased alpha waves while 16 of 17 participants increased. 

 
By comparing average and exceptional topography maps of the beta waves in the trust situa- tion, 

the average topography map showed the active connectivity in the frontal lobe, but the other 
typography map showed the active connectivity in the parietal lobes. This exceptional topography 
map is from P4, which is the participant who decreased beta waves while 16 of 17 participants 
increased in the trust situation. 

 
By comparing average and exceptional topography maps of the gamma waves in the mistrust 

situation, the average topography map showed the active connectivity in the temporal lobe, but 
the other typography map showed the active connectivity in the occipital lobes. This exceptional 
topography map is from P2, which is the participant who decreased gamma waves while 15 of 17 
participants increased in the mistrust situation. 

 

3.3.8.5.16 Conclusion 
Based on the power spectrum analysis, a comparison of trust and mistrust situations by α, β, 

andγwaves is shown. While alpha and beta waves were stronger in the trust situations, gamma waves 
were stronger in the mistrust situations. Alpha waves represent a calm state without any stress or 
tension and beta waves correspond cognitive tasks such as attention, problem-solving, judgment, and 
decision-making. Gamma waves denote complicated cognitive processes with significant stress and 
anxiety. By examining alpha, beta and gamma waves, trust situations can help calm down or execute 
normal cognitive tasks. However, mistrust situations can interrupt mental activity because of 
increased stress and anxiety. 

The coherence analysis consisted of a simulation of specific brain regions derived from the trust 
and mistrust situations.  While the frontal and parietal lobes showed active communication for 
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the trust situations, the temporal and occipital lobes showed active engagement for the mistrust 
situations (See Figure 161-163). To investigate the simulation of the trust and mistrust situations, an 
understanding of the function of the specific brain region related to cognitive process are necessary. 

Trust situations seem to affect the frontal and parietal lobes, which proves that trust is highly 
related and important in the cognitive process such as processing information from senses, controlling 
emotions, solving problems and making decisions. The frontal lobe plays a crucial role in the 
brain as a control tower because of its association with memory, willpower and logical thinking, 
and adjusting the activities of other regions of the brain and controlling emotion and impulse 
( [221]). In addition, it is related to problem-solving, judgment, attention, organization, planning, 
and anticipation ( [222]).  The parietal lobe of the brain deals with sensation, perception and 

integrating sensory inputs, especially the sense of touch. 
In this study, mistrust situations activated the occipital and temporal lobe; therefore, proving that 

mistrust situation increases the workload for perception from visual and auditory sensation and 
evokes intensive emotions such as fear and anxiety. The occipital lobe is in the lower back of the 
brain. This is the visual processing center that house the visual cortex that functions visuospatial 
processing, color differentiation, and motion perception. The temporal lobe deals with sensation 
such as visual and auditory inputs, language comprehension, memory, and emotion. Especially, a 
damaged temporal lobe can cause perseverative speech, paranoia, and rage. Amygdala, which is deep 
inside the temporal lobe, which is known for controlling major affective activities like friendship, love 
and affection and the expression of moods such as fear, rage, and aggression. The amygdala is the 
center for identifying danger for self-protection, when activated brings fear and anxiety ( [226]). 

3.3.8.5.17 Discussion 
As denoted by the findings of this research, trust can assist in effective decision-making by in- 

creasing concentration and performance. However, mistrust can impede the effectiveness of decision- 
making by increasing stress and anxiety. Even though there were limited samples of brainwaves, this 
research presents the differences between specific brainwaves, in response to the words related with 
trust and mistrust, and the differences between the brain regions. Further research with more 
samples of brainwaves and brain regions will aid in further investigation of complex cognitive 
processes between trust and mistrust; eventually, to define how trust can affect performance and 
decision-making. 

While considering a human-machine system, especially if they consist of any kind of automation, 
it is important to interpret the human brain signal correctly in a quantitative way. Over the years, 
studies have been conducted to understand human decision-making behavior and trust in different 
contexts. Along with studying different somatic markers, neural signals have been analyzed using 
EEG, fNIR, etc. 

One of the common challenges while studying neurological signals, it is hard to identify the 
specific mental function that is associated with the neural signal in the instance. While we are 
interpreting signals to understand ‘decision making’, other mental influence can be involved, such as 
emotion, analysis, stress, social context, etc. Similarly, while analyzing neural signals associated with 
trust/mistrust, there might be other influences like emotion, experience, training, etc. In Brain-
Computer Interface and human-automation teaming, a very frequently faced issue is decision making 
based on trust/mistrust. But it is hard to measure them together. Several studies have been 
associated with decision-making based on trust in the machine. An experiment has been conducted 
before in this project to study human decision-making based on trust/mistrust involving automation 
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using a simulated driving car, where the participant i.e. the human operator is to choose between 
manual and automatic control. In our study, to understand the brain function more profoundly, we 
aimed to study neurological function from two individual aspects- decision making and trust. 

 
3.3.8.5.18 Decision Making Decision making is a complex process and cannot be described 

in a ‘simple’ form. This single mental task can be divided into three distinct steps: (1) the assessment 
of options and formation of preferences (2) the selection and execution of an action, and (3) the 
experience or evaluation of an outcome. And several dimensions can affect decision making- 1) 
uncertainty, 2)reward or punishment effect, 3) Experience, 4) group decision vs individual decision, 
5) Contextual characteristics. Some studies found that decision making can consist of two parallel 
processes may come with conflicting outcomes, one is evolutionarily older, faster, kind of automatic 
and thus not very accessible to conscious awareness and control; and the other process is based 
on rules and algorithms, formal logic slower. Using neuroimaging studies or brain lesion patients 
and decision-making paradigms, several investigators have shown that structures important for the 
processing of reward, punishment, positive and negative moods, as well as self-relevant processing 
are also active in decision-making situations. Decision making has an association with cognitive 
operations for logical reasoning, cognitive control. Under risk situation, decision making neural 
association has been found with parietal, occipital, and temporal regions with an fMRI study. 

We plan to approach decision making as a ‘single’ task and as free as possible other cognitive 
tasks. So we aim to study binary situations, like- ‘go’/’no-go’, ‘yes’/’no’, ‘right’/’left’ based on several 
stimuli set-ups. Different ‘go’/’no-go’ studies have been conducted to understand the neural 
correlates, but most of them focused on some specific context, such as- with children, social drinkers, 
ERP analysis with complex tasks. 

 
3.3.8.5.19 Trust and Decision Making 

For trust has several dimensions, we aim to understand neurological activities regarding basic 
trust, mistrust situation. Like decision making, trust is also related to other mental factors, like- 
emotion, stress, confidence. 

Few studies have been done on Trust and Mistrust from a neuroscience perspective. A study 
performed power spectrum analysis with EEG data and observed frequency ranges. This study found 
that Trust evokes higher alpha and beta waves whereas mistrust evokes higher gamma waves. This 
can be interpreted as trust that can cause calmness and a relaxing state of the human brain and 
mistrust can cause stress and anxiety. This study also shows that there can be intraindividual 
differences in power spectrum density regarding trust and mistrust. A study has been conducted to 
observe different trust scenarios by games among human-human partners and human-robot part- 
ners, there was no overall difference in initial trust to human and robots; but their trust can vary 
depending upon their partners, observing their behavior. 

Trust is an important factor for automation reliance decisions and affects human-automation 
performance. Trust also affects the human operators’ adaptation to automation and self-confidence. 
In different automation system settings, the wrong trust may lead to different kinds of complications. 
Under-trust can cause demotivation to rely on the system while over-trust may cause users less 
cautious. While some robot or automation is involved, there should not be any presence of “trust 
betrayal”, so humans sometimes choose to depend on machine decision over ‘other human’s’ decision. 
And hence comes the question of over-trust. In a study on maritime navigation using autopilot, it has 
been found that human operators make more error when they trust the autopilot. Automated 
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vehicle drivers’ behavior also to be found affected by trust. Neural studies have found that trust can 
be associated with many other factors including very individual factors like emotion, stress, anxiety 
feelings. 

A study found that human trust decreases with the increasing rate of error, thus choosing manual 
control over automation. The findings are aligned with the above discussed findings, alpha and beta 
waves are associated with trust and active in the frontal lobe, where gamma wave is associated with 
mistrust and active in the temporal lobe. 

 
3.3.8.5.20 Experiment II with Simulation For investigating human trust in automa- tion, 

the experiment II is designed to measure neurological activities of decision-making between 
automatic or manual control and to record the use of automatic control. This experiment is de- 
veloped from a simulation model of previous study. We used an experimental system such as a semi-
automatic pasteurization plant to investigate the change in an operatorÕs control strategies and trust 
during interaction with the automation. The operator had the two goals of performance and safety, 
and made decisions by using manual control, automatic control or a combination of the two. They 
evaluated trust based on data collected from subjective but specific questions about the operatorÕs 
trust in automation and the self-confidence in specific parts of automation. The study used a well-
designed experiment of 60 trials with a training trial and the occurrence of fault that examined 
various aspects of human-machine trust that could influence the operatorÕs strategies. 

 
3.3.8.5.21 Hypotheses This study investigates human trust through EEG recordings, iden- 

tify and analyze specific brainwaves and brain regions, and explore how human trust affect human 
operatorÕs use of automation. Based on the findings of current literature and the rationale de- 
scribed, the followings hypotheses will be investigated: 

• When a human operator trusts automation, alpha and beta waves and the frontal lobe will 
be detected, and human operatorÕs strategy the use of automation will increase. 

• When a human operator mistrusts automation, gamma brainwaves and the temporal lobe will 
be detected, and human operatorÕs strategy on the use of automation will decrease. 

 
3.3.8.5.22 Instrumentation The EEG data was recorded using the g.HIamp (256 multi- 

channel amplifier), g. GAMMAsys (active electrode system with g. GAMMAcap) and g. Recorder 
(brain signal recording software) by g. tec medical engineering company. Per the International 
10-20 system of electrode placement, 20 electrodes (Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, T7, C3, Cz, 
C4, T8, P7, P3, Pz, P4, T6, O1, O2) were recorded and measured. The 10-20 system is based on 
the relationship between the location of an electrode and the underlying area of the cerebral cortex. 
The letters F, T, C, P, and O represent the frontal, temporal, central, parietal, and occipital lobes. 
Even numbers refer to the right hemisphere of the brain and odd numbers refer to the left hemi- 
sphere of the brain. The participantÕs head is fitted with a cap of electrodes (g. GAMMAcap), 
and the selected 20 electrodes are filled with abrasive electrolyte gel using a syringe. The sampling 
frequency to record brainwaves is 256 Hz, high-frequency filter as 60 Hz, and low-frequency filter as 
0.1 Hz. The g.Recorder (brain signal recording software) also included artifact removing filters for 
eye blink, jaw clenching and muscle movement. Before an experiment, participantsÕ artifacts were 
recorded, marked and removed from raw data for the experiment. 
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3.3.8.5.23 EEG procedure At the beginning of the experiment, each participant reads 
informed consent agreement. Afterwards, the researcher addresses any questions and concerns. All 
participants are required to provide demographic information such as age, gender, and contact 
information as well as a signed and dated consent form. After each participant signs the consent 
form, the participant is asked to put aside all personal items on a secure table. The participant 
is asked to turn off their cell phone to avoid any interruptions during the experiment. After the 
participant is seated, detail instructions are given for each experiment. The facilitator in the room 
addresses any questions or concerns related to the experiments. Then the participant is fitted with a 
g. GAMMA cap with electrodes that measures small electrical signals produced by the brain in 
a completely non-invasive manner. The 20 electrodes, per the international 10-20 system for 
electrode placement is filled with a gel using a syringe with a plastic tip. Before each experiment 
begins, participants are asked to record their brainwaves for marking and removing artifacts such as 
eye blink, jaw clenching and muscle movement. Then, as baseline data without any stimuli, 
participantsÕ brainwaves are recorded when they are relaxed, but they are asked not to move, not 
to talk and see the blank monitor for a minute. When an experiment begins, the participant is asked 
to focus their attention on the computer screen and use the keyboard or mouse if needed. They are 
asked not to talk and blink their eyes (if possible) to reduce recording artifacts in the brainwaves. 
After the experiment, each participant gently removes the electrode cap and any remaining gel from 
their head or hair using the tissues and/or towel provided. 

 
3.3.8.5.24 EEG Recording 

The EEG data are recorded using the g.HIamp (256 multichannel amplifier), g. GAMMAsys 
(active electrode system with g. GAMMAcap) and g. Recorder (brain signal recording software) 
by g. tec medical engineering company. Per the international 10-20 system of electrode placement, 
20 electrodes (Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, T6, O1, O2) 
are recorded and measured (see Figure 163). The 10-20 system is based on the relationship between 
the location of an electrode and the underlying area of the cerebral cortex. The letters F, T, C, P, 
and O represent the frontal, temporal, central, parietal, and occipital lobes. Even numbers refer to the 
right hemisphere of the brain, and odd numbers refer to the left hemisphere of the brain. The 
participants head is fitted with a cap of electrodes (g. GAMMAcap) and the selected 20 electrodes are 
filled with abrasive electrolyte gel using a syringe. The sampling frequency to record brainwaves is 
256 Hz, high frequency filter as 50 Hz and low frequency filter as -50 Hz. 

 
3.3.8.5.25 Results 

 
3.3.8.5.26 Rate of Automatic Control and Trust Level After 28 participants com- pleted 

10 trials, they finished the survey to evaluate the level of trust between people and automa- tion with 
7 scales. The level of trust can be defined using a subjective trust questionnaire with a trust scale. 
This survey follows a 7-point rating scale that ranged from ‘1’ being ‘not at all’ (which is close to 
mistrust) to ‘7’ being ‘extremely’(which is close to trust). For trials 1 to 6, the level of trust increased 
from 57% to 94% whereas using the automatic control increased from 79% to 96% (see Figure 165. 
On the other hand, when an error of automatic control with 32% performance rate in trial 6 
occurred, trial 7 showed a substantial decrease in the level of trust from 94% to 30%, and a decrease 
in the automatic control from 96% to 21% (see Figure 4). These results imply that when the trust 
level in automation increases, the use of automatic control will increase. Trust is 

Approved for Public Release; Distribution Unlimited. 
306



Figure	175:	International	10‐20	system	for	electrode	placement	

a multidimensional construct influenced by various factors, so it is important to find which trial 
evokes trust or mistrust through the level of trust. It is important to understand that previous 
performance affected the next decision. For example, the low performance (32%) of automation of 
trial 6 affected the decision of trial 7. Trial 5 shows 93% and trial 6 shows 94%, so they show a high 
level of trust. The brainwaves of trial 5 and 6 were analyzed for trust situations. Trial 7 shows 30% 
and trial 8 shows 26%, so they show a low level of trust, which is mistrust. The brainwaves of trial 7 
and 8 were analyzed for mistrust situation. 

3.3.8.5.27 Comparison of Intraindividual and Average Differences 
The individual variability for the brainwaves is high because of individual characteristics, so the 

analysis of this paper focuses on the intraindividual differences, which shows the individual difference 
with baseline (standard) and two stimuli of trust and mistrust situation in this paper. This paper paid 
attention to the change in how trust and mistrust situations affect individual brainwaves. It didn’t 
compare the female and male results yet, but it can be investigated in the future. In the trust 
situation, the power of alpha waves of 27 of 28 participants highly increased, and the power of 1 
participant (P16) decreased, but in the mistrust situation, the power of the alpha waves of 26 from 
28 participants slightly decreased, but the power of 2 participants (P5 and P24) increased (see a in 
Figure 166). In the trust situation, the power of beta waves for all 28 participants increased 
considerably, but in the mistrust situation, the power of the beta waves for 26 of 28 participants 
increased slightly, but the power of 2 participants (P3 and P16) decreased (see b in Figure 166). 
In the trust situation, the power of the gamma waves decreased slightly for 22 of 28 participants, but 
5 participants (P6, P14, P16, P26, and P27) increased and 1 participant (P4) didn’t change, but 
in the mistrust situation, the power of the gamma waves increased significantly for the 27 of 28 
participants, but not for 1 participant (P23) (see c in Figure 166). There was 1 subject (P16) who 
chose more manual control than other subjects regardless of the performance of automation. In the 
trust situation, the alpha and beta wave of the subject (P16) is decreased and different than other 
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Figure	176:	Comparison	of	the	trust	level	and	the	use	of	an	automatic	control
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participants. In the mistrust situation, the gamma waves of the subject (P16) are increased and 
similar to other participants. Some people have over-confidence in themselves or strong mistrust of 
machines, so it needs to research further in the future. 

 
3.3.8.5.28 Comparison of Trust and Distrust differences According to the results of 

intraindividual differences, the alpha and beta waves are associated with the trust situation, but the 
gamma waves are associated with the mistrust situation, so they need to analyze further using a 
standard deviation. By comparing the trust differences to the alpha waves when the baseline is 0, 
96.42% of participants increases in the trust situation, and the standard deviation is 1.13E-08E (see 
in Figure 167). By comparing the trust differences to the beta waves when the baseline is 0, 100% of 
participants increases in the trust situation, and the standard deviation is 1.18E-08E (see b in Figure 
167). By comparing the mistrust differences to the gamma waves when the baseline is 0, 96.42% of 
participants increases in the mistrust situation, and the standard deviation is 4.08E-10E (see c in 
Figure 167. According to the comparisons of trust and mistrust differences, the alpha and beta waves 
are increased in the trust situation, while the gamma waves are increased in the mistrust situation. 

 
3.3.8.5.29 Conclusion This research investigated human trust in automation using EEG 

to identify specific brainwaves within the trust and mistrust situations. According to the results of 
the experiment, the power of alpha and beta waves was stronger for the trust situation; whereas, the 
power of gamma waves was stronger for the mistrust situation. This section investigates the 
neurological relationships that are grounded within the neuroscience literature, which is critical to 
understand the relation of alpha, beta, and gamma waves to trust. Alpha waves are related to 
meditation and reducing stress and anxiety. Beta waves are associated with conscious activities and 
can be a guideline for measuring the cognitive process. Beta activity is important because it can 
enhance concentration, attention, emotional stability, and energy levels. As the fastest brainwaves, 
Gamma waves can indicate anxiety, and advanced cognitive information, such as reasoning and 
judgment. By understanding the brain waves, alpha, and beta waves in trust situations were related 
to the normal cognitive process. However, gamma waves in mistrust situations are related to the 
complex cognitive process by increased stress and anxiety. Previous studies dealt with factors such 
as risk and feedback that affect human trust and decision-making using EEG and support the results 
of this research. Using EEG, Cohen found increased feedback processing affected lower the power 
delta and theta waves, and higher the power of alpha and beta waves through a competitive 
decision-making game. Findings from this research will contribute to utilizing a neurological 
technology to measure the human operator’s level of trust which may affect decision- making and 
overall performances of automation in industries. This research can be valuable in designing 
automated systems to develop a user-friendly interface and effective training, which can increase the 
human operator’s trust and decrease workload. Further, this research can be applied to monitor the 
psychological state of human operators in complex automation such as pilots operating automated 
aircraft or captains operating automated ships. 

 
3.3.8.6 Technical Accomplishments in Task T3-8 

This task is finished. 
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Figure	177:	Comparisons	of	the	intraindividual	differences	to	the	alpha	(a),	beta	(b),	and	gamma	
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Figure	178:		Comparisons	of	trust	and	mistrust	differences	to	the	alpha	(a),	beta	(b),	and	gamma	
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3.3.9 Project Progress for Task T3-9 (Evaluation of visualization of uncertainty dy- 
namically and intuitively) 

3.3.9.1 Period of Performance under 

Task T3-9 Start Date: April 2014 

Conclusion Date: April 2021 

Faculty lead:  Younho Seong. Industrial and Systems Engineering 
 

3.3.9.2 General Description of Task T3-9 

In addition to error reduction and improvement of trust in the human-machine interaction, a fur- 
ther means for coping with uncertainty in semi-autonomous systems would be to enable human 
awareness of uncertainty itself. This task proposes to develop and test a prototype that represents 
uncertainty dynamically in order to support operators’ judgment and sense-making. An experi- 
mental framework to examine the efficacy of the developed prototype for tactical visualization of 
uncertainty through many dimensions and morphing mechanisms will be provided to collect ob- 
jective measures of performance. Studies into display factors influencing decision-making under 
uncertainty are planned. Specifically, indications from past research show that a more concrete 
representation may lead people to believe that information is more certain than it actually is, while 
a degraded or less concrete representation may result in an understanding as less certain. The pro- 
posed research will utilize a multi-dimensional framework to systematically vary display factors to 
simulate conditions of degraded information corresponding to uncertainty present. For example, the 
information could be represented through the use of numeric ranges or graphical areas rather than 
point estimates. Experiments will evaluate and compare how these various visualizations influence 
human judgments in operating simulated LSASVs. 

 
3.3.9.3 Objectives for Task T3-9 over the Course of Project 

There is a gap between the high-level references made to cognitive fit and the low-level ability to 
identify and measure it during human interaction with visualizations. We bridge this gap by using an 
electroencephalography metric derived from frontal midline theta power and parietal alpha power, 
known as the task load index, to determine if mental effort, measured at the level of cortical activity, 
is less when cognitive fit is present compared to when cognitive fit is not. We found that when there 
is cognitive fit between the type of problem to be solved and the information displayed by a system, 
the task load index is lower compared to when cognitive fit is not present. Furthermore, we support 
this finding with subjective (NASA task load index) and performance (reaction time and accuracy) 
measures. Our approach using electroencephalography provides supplemental information to self- 
report and performance measures. Findings from this study are important because they (1) provide 
more validity to the cognitive fit using a neurophysiological measure, and (2) use the task load index 
metric as a means to assess cognitive workload and effort in general. 
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3.3.9.4 Progress Against Planned Objectives in Task T3-9 

3.3.9.5 Introduction 

Technology allows information to be presented in any way for any task system, providing system 
designers with many choices for displaying information about the task system. However, task 
representation formats are seldom designed with a clear understanding of the cognitive activity they 
will induce in the human operator. Indeed, relationship between task representation formats, task 
types, and information processing is one of the least understood areas in research on how 
information visualization influence problem solving. 

 
3.3.9.5.1 Cognition and Task Types Cognition refers to the mechanisms by which hu- mans 

organize and understand the world through perception of stimuli, and selection of an option from a 
set of available alternatives. Dual process theories can be used as organizing framework to explain 
human cognition. The theories posit that cognition can either be intuitive or analytical. Intuitive 
cognition is relatively fast and requires less cognitive effort, while analytical cognition is relatively 
slow and requires more cognitive effort. 

According to Payne, "... decision-making ... is highly contingent on the demands of the task." 
For instance, a task that represents information in numerical or symbolic format and allows enough 
time for computation offers greater support for analytical cognition. Whereas, a task that presents 
the same information in graphical format and allows a short time for judgment offers greater support 
for intuitive cognition. 

Task information may be represented in graphical or table format. Graphs are spatial problem 
representations that facilitate viewing presented information without attending to elements analyt- 
ically. They accentuate relationships in the data. Tables, on the other hand, are symbolic problem 
representations that facilitate analytical processing of presented information. They do not represent 
data relationships openly. However, they facilitate extracting data values. 

 
3.3.9.5.2 Cognitive Fit Theory The cognitive fit theory (CFT) is a suitable theoretical 

framework for understanding the relationship between visualizations and task types. It was devel- 
oped to explicate how the fit between information presentation format and decision-making task can 
influence the human operator’s problem-solving performance. The CFT (see Figure) suggests that 
when there is a match between information presentation format (visualization) and task type, human 
operators can form the right mental representations and use cognitive strategies to fit the presented 
data. This fit minimizes their cognitive effort leading to better decision–making perfor- mance. 

In CFT, problem representation and problem-solving task are viewed independently. Task types 
are classified as either symbolic or spatial. On the one hand, symbolic tasks involve "extracting 
discrete and therefore, precise, data values" and "are best accomplished by analytical processes". 
Symbolic tasks are akin to analysis-inducing tasks. On the other hand, in spatial tasks decision 
makers evaluate "the problem as a whole...and therefore requires making associations or perceiving 
relationships in the data". Spatial tasks are akin to intuition-inducing tasks. 

There is cognitive fit when graphical representations support spatial (intuition-inducing) tasks, 
and when numerical (or table) representations support symbolic (analysis-inducing) tasks. CFT 
posits that when there is a cognitive fit, decision makers exert minimal cognitive effort. 
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Figure	179:	Cogntive	Fit	Theory	

 

 
It was considered clinical decision making as a set of problem-solving activities in which (1) 

subjective responses from a patient and objective data from the patient encounter represent the 
problem and (2) assessment of a patient’s condition based on consolidated subjective and objective 
information, and treatment planning represent the task. They posited that clinical decision support 
systems (CDSSs) that align with the problem representation and task representation in order to 
match clinicians’ mental schemas should lead to reduced cognitive effort and enhanced performance. 
Based on this, they developed a stroke CDSS. It was reported that physicians performed better and 
reported lower perceived cognitive effort when they used the developed stroke CDSS compared to a 
baseline stroke CDSS. Also it was investigated cognitive fit between quality control tasks and 
how these tasks are visually represented. They found that specific information visualizations can 
improve both accuracy of detection and response time of identifying out-of-control conditions. Their 
results suggest that CFT can be used to evaluate the effectiveness of information visualization tech- 
nologies. Another claim compared relative effectiveness of different social network representations 
for aiding human problem–solving. They found that participants performed best when symbolic 
problem–solving tasks were represented in table format. Likewise, they found that participants per- 
formed best when spatial problem–solving tasks were represented in graphic (node–link diagrams) 
format. Their results suggest that problem–solving is enhanced when there is a match between task 
type and network representation. 

 
3.3.9.5.3 Cognitive Effort Cognitive effort is the amount of cognitive resources –including 

perception, memory, and judgment– required to cope with the demands of a task or complete a task. 
It is a subjective, psychological construct. Self-reports, psychological or physiological measures can 
be used as proxies of cognitive effort. 

 
3.3.9.5.4 Subjective measures of cognitive effort Previous CFT research has used a variety 

of subjective measures as proxies for cognitive effort. For example, it was employed the NASA Task 
Load Index (NASA-TLX) as a measure of perceived cognitive effort. The NASA-TLX is considered 
one of the most widely used, extensively validated and effective measures of perceived mental 
workload. The NASA TLX instrument can be administered using a paper and pencil version 
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or by a computer-based application during or following an experimental trial. 
 

3.3.9.5.5 Physiological measures of cognitive effort Traditional means of assessing cog- 
nitive effort are intrusive and do not produce enough information on the cognitive state of the human 
operator. Subjective measures are prone to bias from tasks that have been previously completed. 
That is, cognitive workload ratings, in particular, have been shown to be influenced by how de- 
manding a preceding task was. Moreover, task performance measures are limited since they are 
overt and neglect the underlying biological content of behavior. These measures are unable to 
explain the variability of human performance under conditions of stress and high workload. The 
same level of performance may be accompanied by multiple degrees of cognitive workload. Indeed, 
human performance should be analyzed as a summation of task performance and physiological cost 
of maintaining that performance. Physiological measures can be used as proxies of cognitive effort. 
They include pupil dilation, heart rate and brain activity. 

Neuroergonomics, defined as the study of brain and behavior, allows researchers to study and 
develop new frameworks about humans and work than an approach based solely on the measure- 
ment of subjective perceptions or overt performance of human operators. Functional brain imaging 
techniques employed in neuroergonomics enable the monitoring and/or capturing of brain activ- 
ities while participants perform various perceptual, motor, and/or cognitive tasks. They include 
electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and functional mag- 
netic resonance imaging (fMRI). Despite its relatively low spatial resolution, EEG’s high temporal 
resolution makes it very suitable for assessing cognitive states. 

 
3.3.9.5.6 EEG Spectral (frequency) analysis of EEG data is commonly used to understand 

neural mechanisms underlying perception and decision making. EEG frequency bands include delta 
(less than 4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), and gamma (30-80Hz). Several 
researchers have demonstrated that EEG can be used as an unobtrusive measure of cognitive effort. 
Highly related to the present study compared the effectiveness of different visualizations of box plots 
in terms of the cognitive effort required by participants to interpret them. They focused on EEG theta 
power and alpha power derived from electrodes placed around the prefrontal cortex. The study 
found simultaneous alpha power decreases and theta power increases were associated with 
visualizations that were difficult to interpret. Their findings are consistent with prior studies which 
found increased cognitive effort to be associated with increased frontal-midline theta band activity 
and decreased parietal-occipital alpha band activity. Task load index (TLI), a composite metric, is 
defined as the ratio of theta band activity at frontal midline sites to alpha band activity at parietal 
sites - ratio between Frontal theta power and Parietal Alpha power. TLI increases with increasing 
cognitive effort and can be used to measure cognitive effort. 

 
3.3.9.5.7 Aim of study Neuroergonomics holds promise for measuring cognitive effort in 

visualization and CFT research. We did not find the use of neurophysiological measures to estimate 
cognitive effort in the published CFT literature. Indeed, the traditional approach of evaluating the 
best visualization from a set of visualizations for a particular data set is not enough as it discounts the 
neurophysiological cost of interpreting visualizations. This study evaluates visualizations by using 
EEG to measure the cognitive effort exerted by participants as they interact with visualizations. 
Particularly, we use subjective (NASA TLX) and objective (TLI) measures to investigate the claim 
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that congruence between visualization format and nature of a task minimizes cognitive effort and 
leads to better performance. 

 
3.3.9.5.8 Hypotheses Representing an inherently spatial (intuition-inducing) task in two 

presentation formats-graphical and numerical (see Figure 2), we hypothesize that when there is a 
match between task type and task representation: 

Hypothesis 1: Perceived cognitive effort, measured by NASA TLX, will be lower, 
Hypothesis 2: Cognitive effort, measured by TLI, will be lower, 
Hypothesis 3: Accuracy will be higher; response time will be faster. 

 
 

 

Figure 180: Hypothese development 
 
 

3.3.9.6 Methods 

3.3.9.6.1 Description of Experimental Task Online water quality monitoring enables 
drinking water utilities to detect, in real-time, changes in water quality conditions in their distribu- 
tion systems. Water quality parameters that can be monitored include chlorine, fluoride, pH, total 
dissolved solids (TDS), nitrate, and turbidity.  The US Environmental Protection Agency has water 
quality standards that must be met by these drinking water utilities. Some contaminants and their 
maximum contaminant levels are shown in Figure 159. Human operators visualizing the data must 
ensure no contaminant exceeds its maximum contaminant level (MCL). 

 

Figure 181: Contaminants and the maximum contaminant levels 
 

In the present study we simulated a fictional company, XYZ Aqua Inc, with an automated sampling 
station. The station contained 6 different sensors that measured 6 different water qual- ity 
parameters. We randomly generated parameter values in Python version 2.7 using the trun- cated 
normal distribution function, a normal distribution with finite interval, implemented as the 
scipy.stats.truncnorm module. Figure 4 shows distribution characteristics of 120 generated param- 
eter values. 

 
3.3.9.6.2 Participants  Fifteen right-handed participants (25.9 +/-1.9 years, 10 men) from 

a university in the south east of the United States participated in the study. Each participant read 
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Figure	182:	Distribution	characteristics	of	generated	parameter	values	(n	=	120).	

 

 
and signed the informed consent form. Participants had no history of neuropsychiatric disorders 
and were not taking psychoactive medications. 

 
3.3.9.6.3 Experimental Design We designed a within-subject experiment in which par- 

ticipants were subjected to two conditions – graphical (intuition-inducing) and numerical (analysis- 
inducing). Participants had to decide if water quality parameters were within acceptable limits using 
either a graphical display or numerical format. We presumed cognitive fit would occur with this 
inherently spatial task using graphical display because it allowed participants to make infer- ences 
about relationships within data, make comparisons, and detect patterns or deviations from patterns. 
Figure 5 below shows 2 stimuli (1 for each condition) representing 6 separate simulated sensor 
readings for water samples collected at time intervals. Each condition had 4 blocks, with each block 
containing 30 trials making it 120 trials per condition. A trial, in each condition, begun with a black 
screen for 1s, followed by presentation of the stimuli for 60s. The trial ended when participants 
clicked the mouse button before or at the stipulated duration of 60s. A cross fixation of variable 
duration (2 4s) was presented between trials. (see Figure 163.) We inserted markers to record the 
onset of each trial, the presentation of each visualization, and the response of the partici- pants. We 
instructed participants to press the left mouse button to indicate bad water quality when any of the 
parameters exceeded its MCL. Otherwise, they were to press the right mouse button to indicate good 
water quality. 

 

Figure 183: Stimuli presented in graphical format 
 
 

3.3.9.6.4 EEG We fitted participants with an EEG cap, g.GAMMAcap (g.tec, Austria), which 
uses the International 10-20 system for EEG electrode placement locations, and ensured that the cap 
was correctly positioned with Cz showing the same distance to the naison and to the inion. All 
channels used the right ear lobe as common reference (Ref), and AFz as ground (Gnd). 
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Figure	184:	Stimuli	presented	in	numerical	format.	
 

 
Figure	185:	Study	block	design.	Conditions	were	randomized.	Depending	on	the	condition,		

stimuli	were	presented	in	graphical	or	numerical	format.	

 
Before recording participants’ EEG, we ensured that electrode impedances were less than 10k 

. Electrodes were connected and amplified with a g.HIamp amplifier. We recorded continuous raw 
EEG data (see Figure 165) at a sampling rate of 512 Hz using a Butterworth filter (0.01Hz high 
pass -100Hz low pass). We used a notch filter with 60 Hz cutoff frequency to remove line noise. We 
stored data to disk and analyzed it offline. 

 
3.3.9.6.5 EEG Processing We imported the continuous raw EEG data into EEGLAB. We 

downsampled the data from 512 Hz to 256 Hz to compress its size and reduce computational require- 
ments. We used Artifact Subspace Reconstruction and implemented in EEGLAB, to automatically 
remove artifacts including eye blinks. 

In this study, we time-locked EEG epochs to stimuli presentation. Epochs started 1s after a trial 
(see Figure 163). Because of the variable response time for each trial, we set a 1s window around 
participant response to mark the end of an epoch. Thus, an epoch started 1s after a trial and ended 
when the participant clicked the mouse button. We performed all EEG data analysis offline with 
MATLAB, EEGLAB, and custom code. We used the nonparametric Welch method implemented in 
MATLAB as pwelch to estimate the power spectrum in the frequency bands of interest. To minimize 
spectral leakage and smearing, we used a Hamming window to segment preprocessed EEG data into 
1s windows with a 50% overlap of the previous segment and 50 % of the next. We calculated log 
spectral power in each window for theta (4-8Hz) and alpha band (8-12Hz) and mean over all data 
segments for each participant for the two experimental conditions. Finally, for each experimental 
condition, we computed each participant’s TLI as ratio of mean theta power at Fz to mean theta 
power at Pz. 
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Figure	186:	22‐channel	electrode	montage	

 

 
3.3.9.6.6 Procedure After completing an informed consent form and a demographic ques- 

tionnaire, participants were given a brief introduction to the tasks. Participants sat on a chair 
approximately 56 cm from a 21 inch LCD monitor with a resolution of 1024 x 768. Stimuli were 
presented using the stimulus delivery software, Presentation® software (Version 18.0, Neurobehav- 
ioral Systems, Inc., Berkeley, CA) at an approximate size of 15 x 10.5 of visual angle. Each stimulus 
contained sensor readings and corresponding MCLs for 6 water quality parameters. We used 
outcome feedback to familiarize participants with tasks before the main experiment. The familiar- 
ization session consisted of 30 trials per condition. We did not record participants’ EEG during this 
session. After the familiarization session, we fitted participants with an EEG cap (see Figure 8) 
and recorded EEG data as they carried out the main experiment. We did not use outcome feedback 
in the main experiment. Participants carried out the experiment as show in Figure 6 above. To avoid 
order effects, we presented the block of trials, and the trials in each block in pseudorandom order. 
We recorded participants’ accuracy and response times. We administered the NASA-TLX 
questionnaire at the end of the last block for each condition. Finally, we debriefed and thanked 
participants. 

 

Figure	187:	Participant	undertaking	experiment	

 
 

3.3.9.6.7 Data analysis We conducted all statistical analyses in R version 3.4.1. Before testing 
each hypothesis, we tested for normality using Shapiro-Wilk test. Where normality was not 
violated, we used two-tailed paired t-tests to test for significant differences between conditions. 
Otherwise, we used two-tailed Wilcoxon signed-rank tests. We used p-value of 0.05 as criterion 
for statistical significance. We use Hedge’s grm to estimate effect sizes for differences between 

Approved for Public Release; Distribution Unlimited. 
319



 
 
 

  

< 

< 
< 

dependent means. 
 

3.3.9.7 Results 

3.3.9.7.1 Hypothesis 1 First, we considered each subscale of the NASA TLX questionnaire. 
Results (see Fig. 9) showed the conditions significantly differed with respect to EF (t(14) = 3.84, 
p = .02, grm = 0.86), FR (t(14) = 3.20, p < .001, grm = 0.77), MD (t(14) = 4.67, p < .001, grm 
= 1.72 ), PE (t(14) = 2.47, p = 0.03, grm = 0.63), and TD (t(14) = 5.78, p < .001, grm = 1.19). 
It is worth noting that scores for the PE subscale are low for ratings of high performance. There 
was no significant difference between the two conditions in terms of physical demand (PD); t(14) = 
0.21, p = .83, grm = 0.31. 

 

Figure	188:	Subjective	ratings	by	NASA	TLX	subscale	for	the	graphical	and		
numerical	conditions	Error	bars	are	standard	errors.	The	asterisk	indicates	a	significant	difference	(p		0.05).	

Second, we determined the global workload rating in each condition. Using the unweighted 
scoring procedure, we determined workload scores on each of the six subscales. A paired t-test 
revealed that mean perceived workload of the graphical format condition (M = 19.73, SD = 8.75) was 
significantly lower than that perceived of the numerical format condition (M = 26.27, SD = 6.53) ; 
t(14) = 8.32, p = .02, grm = 1.79. 

 
3.3.9.7.2 Hypothesis 2 Figure 167 presents data for each participant and all experimental 

conditions, including the mean theta power at Fz and mean alpha power at Pz, as well resulting 
TLI values. For all participants mean theta power was higher in the numerical condition than in the 
graphical condition. Conversely, mean alpha power was higher in the graphical condition than in the 
numerical condition. 

Figure 168 shows mean TLI in each task condition for each participant. For all 15 participants, 
task load indices were substantially higher in the numerical condition than in the graphical condition. 
TLI of the numerical condition (M = 0.49, SD = 0.13) was significantly greater than TLI of the 
graphical condition (M = 0.35, SD = 0.16); t(14) = 6.43, p = .03, grm = 0.86. 

 
3.3.9.7.3 Hypothesis 3 Accuracy of the graphical condition (M = 94.72, SD = 4.36) was 

significantly higher than accuracy of the numerical condition (M = 91.28, SD = 6.68); t(14) = 3.37, 
p .02, grm = 0.88. Response time was significantly higher in the numerical condition (M = 44.60, SD 
= 11.62) than in the graphical condition (M = 13.72, SD =11.62); t(14) = 11.75, p  .001, grm 
= 2.89. 
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Figure	189:	Mean	theta,	mean	alpha	power	and	mean	TLI	for	each	participant	and	all	experimental	conditions.	
 

Figure	190:	Mean	EEG	TLI	in	each	task	condition	for	each	participant,	and	
	overall	graphical	vs.	numerical	group	means.	Error	bars	are	standard	errors.	

 
3.3.9.8 Discussion 

In the present study, we adopted a neuroergonomic approach to evaluate the effectiveness of infor- 
mation visualizations using the CFT. This approach afforded us the opportunity to employ neuro- 

physiological measures to validate the claim that cognitive fit leads to minimal cognitive effort and 
enhanced performance. We found that when there is a match between task type and task represen- 

tation, perceived cognitive effort, measured by NASA TLX, is lower; cognitive effort, measured by 
TLI, is lower; accuracy is higher; response time is lower. Furthermore, we found that found that 

the TLI can be used to evaluate visualizations in the context of the CFT, suggesting that the it can 
complement the strengths of behavioral and subjective methods used in traditional CFT research. 
Previous CFT research has used subjective methods to estimate cognitive effort, and accuracy 

and reaction time to determine decision making performance. Though traditional subjective meth- 
ods for estimating cognitive effort, including NASA TLX, are applicable to general user studies, they 

are mostly administered post-task, making them susceptible to recall bias. Furthermore, because 
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these measures only provide information following task completion, there is no way to assess cogni- 
tive effort during actual task performance. It is worth noting that traditional behavioral measures 
disregard underlying biological content of behavior and therefore are unable to explain the burden 
that different visualizations of the same data place on participants’ cognitive resources. By using 
neurophysiological measures, as adopted in the present study, the challenges listed above may be 
overcome. Variations in task demand and/or task difficulty have been shown to lead to changes 
in the spectral composition of EEG. Increasing task demand elicits lower parietal alpha power and 
higher frontal theta power. TLI, a composite measure of parietal alpha power and frontal theta 
power, is known to be very good at discriminating different cognitive task demand levels, with higher 
TLI values indicating higher cognitive effort. The two conditions in the present study are akin to a 
task at two different task demand levels. We used a radar chart to represent the task in the graphical 
condition because it allows for the viewing of high dimensional quantitative data, is more compact 
and helps visualize a norm violation. Considering the required cognitive effort in the graphical 
condition as different from that in the numerical condition, our results are consistent with our 
previous findings, which found mental effort measured using TLI higher for analysis-inducing tasks 
higher than for intuition-inducing tasks, which found increased TLI with increased task diffi- culty, 
and found simultaneous theta increase and alpha decrease with increased task difficulty. We found 
that mean EEG task load indices across participants increased with increasing task demand, 
suggesting that cognitive effort is significantly lower when there is a fit between task type and task 
representation. 

The mixed methods approach adopted in the present study provided us an opportunity to vali- 
date the TLI using a subjective measure, the NASA-TLX. Previous studies have used the NASA- 
TLX to validate EEG measures. Recall that cognitive effort is low when cognitive fit is present. 
In the present study, we found significant differences between the two conditions with respect to 
mental demand and temporal demand (see Figure 168). These findings suggest that participants 
perceived the numerical condition to be more demanding in terms of mental activity and time 
required. Furthermore, nonsignificant difference between the two conditions regarding physical de- 
mand suggests that participants perceived the two presentation formats as having the same physical 
demand. We found that perceived cognitive effort measured in this study by the global score of NASA 
TLX questionnaire was significantly higher when there was a mismatch between task type and task 
representation. Cognitive fit is associated with enhanced decision-making performance. A review 
of previous literature revealed that decision-making performance is mostly measured by reaction 
time (or task completion time) and accuracy. In the present study reaction time, the per- formance 
measure with the highest effect size, was used to estimate how long it took participants to process 
presented stimuli. It took longer time for participants to initiate motor responses for stimuli in the 
numerical condition than in the graphical condition, suggesting that stimulus that must be recognized 
requires longer time to initiate motor response than stimulus that must be detected. Additionally, 
accuracy was higher in the graphical condition than in the numerical condition. We found that 
cognitive fit between task presentation and task type leads to better decision-making performance. 

 
3.3.9.8.1 Practical Implications There is a gap between the high-level references made 

to cognitive fit and the low-level ability to identify and measure it during human interaction with 
visualizations. This study bridges that gap. Findings from this study are important to human factors 
and ergonomics professionals because they (1) provide more validity to the CFT using a 
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physiological measure, and (2) use the TLI ratio as a means to assess cognitive workload and effort 
in general. Given that visualizations mediate human system interactions in many operational en- 
vironments and that cognitive overload is a source of performance errors during these interactions, 
system developers should examine and minimize the overall cognitive load associated with visu- 
alizations. The neuroergonomic approach adopted in this study can be applied to the evaluation 
of different visualizations. By combining a physiological measure, TLI, with traditional behavioral 
and subjective measures, system designers can determine when there is a cognitive fit between the 
type of problem to be solved and the information displayed by a system. 

 
3.3.9.8.2 Study Limitations and Future Work This study has some limitations. First, while 

the study sample size was small, this was a completely within-subject design that exhibited medium 
to big effect sizes. Future work that considers a larger sample size is warranted. Second, although 
the task in this study might not generalize well to other operational settings, the TLI metric employed 
in the study does generalize across multiple domains. Third, EEG is difficult to apply in practice, 
considering the setup time, electrodes with gel, etc. Despite these limitations, EEG has an added 
value when combined with standard self-reports and performance measures. Future work will 
explore other neuroimaging techniques like fNIRS. In contrast to EEG, fNIRS systems noninvasively 
measure changes in cortical deoxygenated and oxygenated hemoglobin concentrations and are 
relatively resistance to motion artifacts. Finally, integrating EEG and fNIRS systems provide better 
insight into mental workload than either system alone. 

 
3.3.9.9 Conclusion 

To the best of our knowledge this is the first study to use both subjective (NASA TLX) and 
objective (TLI) measures to investigate the claim that congruence be-tween visualization format and 
nature of the task minimizes cognitive effort and leads to better performance. Our results suggest 
that visualization for an inherently spatial (intuitive) task reduces cognitive effort and enhances 
performance when it is in spatial or graphical format rather than when it is in symbolic or numerical 
format. We found TLI to be sensitive to task demand changes elicited by different visualizations, 
demonstrating its utility in visualization evaluation. Furthermore, our results demonstrate that TLI 
could complement the strengths of behavioral and subjective methods used in traditional CFT 
research. 

 
3.3.9.10 Technical Accomplishments in Task T3-9 

We are able to establish concrete research and it associated activities in neuroergonomics field. This 
is the only laboratory in HBCUs in the nation. 

 
4 Deliverables 

4.1 Publications 

32 journal and 103 conference papers, have 2 patents and 4 under consideration and 4 book chapters 
were published: 

• Title: Impact of Time Delays on Networked Control of Autonomous Systems 
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Author(s): Kolar, Prasanna, Nicholas Gamez, and Mo Jamshidi 

Publication date: Feb 29, 2020 

Publication venue: Beyond Traditional Probabilistic Data Processing Techniques: Inter- 
val, Fuzzy etc. Methods and Their Applications. Springer, Cham 

Most Relevant Task: Task T1-1 

Other Relevant Tasks: Task T1-3 

• Title: Development of robot operating system (ROS) compatible open source quadcopter flight 
controller and interface 

Author(s): Abhijit Majumdar, Nicholas Gamez, Patrick Benavidez, Mo Jamshidi 

Publication date: June 18, 2017 

Publication  venue: 2017 12th System of Systems Engineering Conference (SoSE) 

Publication keywords: Quadcopter, Robot Operating System, Unmanned Aerial Vehicle, 
Flight controller, interface 

Most Relevant Task: Task T1-1 

Other Relevant Tasks: Task T1-3 

• Title: Utilizing Transfer Learning and Learning without Forgetting Methods to Train A 3D 
Object Detection System for Autonomous Vehicles Based on LiDAR, RADAR, And Image 
Data 

Author(s): Ramin Sahba, Amin Sahba, Mo Jamshidi, Paul Rad 

Publication date: under review 

Publication venue:  World Automation Congress 2021 

Publication keywords: Transfer Learning, Learning without Forgetting, 3D Object Detec- 
tion, Autonomous Vehicles, LiDAR, RADAR 

Most Relevant Task: Task T1-2 

Other Relevant Tasks: NA 

• Title: Optimized IoT Based Decision Making for Autonomous Vehicles in Intersections 

Author(s): Amin Sahba, Ramin Sahba, Paul Rad, Mo Jamshidi 

Publication date:  October 2019 

Publication venue: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile 
Communication Conference 

Publication keywords: IoT, Autonomous Vehicles, Decision Making, Intersection Manage- 
ment, Optimization, Traffic Network 

Most Relevant Task: Task T1-2 

Other Relevant Tasks: NA tasks. 

• Title: 3D Object Detection Based on LiDAR Data 

Author(s): Ramin Sahba, Amin Sahba, Mo Jamshidi, Paul Rad 
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Publication date:  October 2019 

Publication venue: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile 
Communication Conference 

Publication keywords: 3D Object Detection, Encoder, Lidar, Dataset, Point Cloud 

Most Relevant Task: Task T1-2 

Other Relevant Tasks: NA tasks. 

• Title: Formation Control Implementation Using KobukiTurtleBots and Parrot Bebop Drone 

Author(s): Nicolas Gallardo, Karthik Pai, Berat A. Erol, Patrick Benavidez, Benjamin 
Champion, Nicholas Gamez and Mo Jamshidi 

Publication date: 06 October 2016 

Publication venue:  2016 World Automation Congress (WAC) 

Publication keywords: formation control, virtual leader, robot, drone,UGV, UAV, turtle- 
bot, parrot bebop 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Autonomous Decision Making for a Driver-less Car 

Author(s): Nicolas Gallardo, Nicholas Gamez, Paul Rad, and Mo Jamshidi 

Publication date: 31 July 2017 

Publication venue:  2017 12th System of Systems Engineering Conference (SoSE) 

Publication keywords: Autonomous Driving, Deep Learning, MachineLearning, Neural- 
Network, TensorFlow, Driver-less Cars 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Time Delay Based Dynamic System of Networked Autonomous Vehicles 

Author(s): Nicholas Gamez, Prasanna Kolar, Ahmad Taha and Mo Jamshidi 

Publication date: 31 July 2017 

Publication venue:  2017 12th System of Systems Engineering Conference (SoSE) 

Publication keywords: NA 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Stereo Camera Based Formation Control for Unmanned Aerial Vehicles 

Author(s): Jonathan Lwowski, Abhijit Majumdar, Patrick Benavidez, John J. Prevost, Mo 
Jamshidi 

Publication date: 09 August 2018 

Publication venue:  2018 World Automation Congress (WAC) 
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Publication keywords: Formation control, Leader-follower, control, stereo camera, UAV 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: A New Combination Rule Based on the AverageBelief Function 

Author(s): Gabriel Awogbami, Norbert Agana, Shabnam Nazmi, Abdollah Homaifar 

Publication date: 04 October 2018 

Publication  venue: SoutheastCon 2018 

Publication keywords: Uncertainty, Dempster Shafer rule of combination, belief function. 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: A Symbolic Approach for Multi-target Dynamic Reach-avoid Problem 

Author(s): Laya Shamgah, Tadewos G. Tadewos, Ali Karimoddini, Abdollah Homaifar 

Publication date: 23 August 2018 

Publication venue: 2018 IEEE 14th International Conference on Control and Automation 
(ICCA) 

Publication keywords: reach-avoid, symbolic planning, motion planning, hybrid control, 
reactive synthesis, multi-target 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Multi-Attribute Decision Fusion for Pattern Classification 

Author(s): Gabriel Awogbami, Norbert Agana, Abdollah Homaifar 

Publication date: 04 October 2018 

Publication  venue: SoutheastCon 2018 

Publication keywords: Multi-attribute decision fusion, multi-criteria decision analysis, pat- 
tern classification. 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Implementation of Reinforcement Learning Simulated Model on Physical UGV Using 
Robot Operating System for Continual Learning 

Author(s): Edgar M. Perez, Abhijit Majumdar, Patrick Benavidez, Mo Jamshidi 

Publication date: 4 July 2019 

Publication  venue: 2019 14th Annual Conference System of Systems Engineering (SoSE) 

Publication keywords: Unmanned ground Vehicle, Reinforced Learning, Robotic Operat- 
ing System (ROS), Continual Learning 

Most Relevant Task: Task T1-3 
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Other Relevant Tasks: NA 

• Title: Accuracy of the HTC Vive Tracker for Indoor Localization 

Author(s): Jonathan Lwowski, Abhijit Majumdat, Patrick Benavidez, John J. Prevost, Mo 
Jamshidi 

Publication date: 21 October 2020 

Publication venue: IEEE Systems, Man, and Cybernetics Magazine ( Volume: 6, Issue: 
4, Oct. 2020) 

Publication keywords: Localization, formation control, infrared, sensor calibration, virtual 
reality hardware 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Virtual Testing and Policy Deployment Framework for Autonomous Navigation of an 
Unmanned Ground Vehicle Using Reinforcement Learning 

Author(s): Tyrell Lewis, Patrick Benavidez, Mo Jamshidi 

Publication date: 08 October 2021 

Publication  venue: 2021 World Automation Congress (WAC) 

Publication keywords: Reinforcement Learning, Virtual Reality, Au-tonomous Car, Simu- 
lation, Multi-Agent Systems, Exploration 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Title: Voice Activation and Control to Improve Human Robot Interactions with IoT Per- 
spectives 

Author(s): Berat A. Erol, Conor Wallace, Patrick J. Benavidez, PhD Mo Jamshidi, PhD. 

Publication date:  2018 

Publication  venue: World Automation Congress 2018 

Publication keywords: Human robot interactions, humanoid robot, assistive robotics, Ama- 
zon Echo, Echo controls robot, Internet of robotic things, smart home 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: NA 

• Title: Multi-Agent Exploration for Faster and ReliableDeep Q-Learning Convergence in Re- 
inforcement Learning 

Author(s): Abhijit Majumdar, Patrick J. Benavidez, PhD and Mo Jamshidi, PhD. 

Publication date:  2018 

Publication  venue: World Automation Congress 2018 

Publication keywords: Reinforcement Learning, Q-learning, DQN, au-tonomous car, sim- 
ulation, multi-agent, exploration 

Approved for Public Release; Distribution Unlimited. 
327



 
 
 

  

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Application of a Scaled Ground Vehicle in a Testbed of Heterogeneous Autonomous 
Systems 

Author(s): Alexander Ibarra, Patrick Benavidez and Mo Jamshidi 

Publication date:  2021 

Publication venue:  2021 World Automation Congress 

Publication keywords: Robot Operating System (ROS), Unmanned Ground Vehicle, Hec- 
tor Slam, Autonomous Navigation, Discrete Controllers, Computer Vision 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Survey of Datafusion Techniques for Laser and Vision Based Sensor Integration for 
Autonomous Navigation 

Author(s): Prasanna Kolar, Patrick Benavidez, Mo Jamshidi 

Publication date: April 2020 

Publication venue:  MDPI Sensors Journal 

Publication keywords: datafusion; data fusion; multimodal; fusion; information fusion; 
survey; review; RGB; SLAM; localization; obstacle detection; obstacle avoidance; navi- 
gation; deep learning; neural networks; mapping; LiDAR; optical; vision; stereo vision; 
autonomous systems; data integration; data alignment; robot; mobile robot 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Low-Cost Heterogeneous Unmanned Ground Vehicle (UGV) Testbed for Systems of 
Autonomous Vehicles Research 

Author(s): Aldo Jaimes, Javier Gonzalez, Alexander Ibarra, Patrick Benavidez, and Mo Jamshidi 

Publication date: June 2019 

Publication venue: 2019 Systems of Systems Engineering Conference (SoSE 2019) 

Publication keywords: Localization, Robot Operating System, Unmanned Ground Vehi- 
cles 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Accuracy of the HTC Vive Tracker for Indoor Localization 

Author(s): Jonathan Lwowski, Abhijit Majumdar, Patrick Benavidez, Jeff Prevost, Mo 
Jamshidi 

Publication date:  2021 
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Publication venue: SMC Magazine 

Publication keywords: Localization, formation control, infrared, sensor, calibration 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Toward Artificial Emotional Intelligence for Cooperative Social Human-Machine In- 
teraction 

Author(s): Berat Erol, Abhijit Majumdar, Patrick Benavidez, Paul Rad, Raymond Choo, 
Mo Jamshidi 

Publication date: June 2019 

Publication venue: IEEE Transactions on Computational Social Systems 

Publication keywords: Assistive robotics, human-machine interactions, humanoid robot, 
Internet of robotic things, smart home, supervisory control 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Voice Activation and Control to ImproveHuman Robot Interactions with IoT Perspec- 
tives 

Author(s): Berat A. Erol, Conor Wallace, Patrick J. Benavidez, PhD Mo Jamshidi, PhD. 

Publication date:  2018 

Publication  venue: IEEE World Automation Congress 2018 

Publication keywords: Human robot interactions, humanoid robot, assistive robotics, Ama- 
zon Echo, Echo controls robot, Internet of robotic things, smart home 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Multi-Agent Exploration for Faster and ReliableDeep Q-Learning Convergence in Re- 
inforcement Learning 

Author(s): Abhijit Majumdar, Patrick J. Benavidez, PhD and Mo Jamshidi, PhD. 

Publication date:  2018 

Publication  venue: IEEE World Automation Congress 2018 

Publication keywords: Reinforcement Learning, Q-learning, DQN, au-tonomous car, sim- 
ulation, multi-agent, exploration 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Improved Route Optimization for Autonomous Ground Vehicle Navigation 

Author(s): Ibrahim Mohammed, Berat A. Erol, Ikram Hussain Mohammed, Patrick J. Be- 
navidez, Mo Jamshidi. 

Publication date: 2017. 

Approved for Public Release; Distribution Unlimited. 
329



 
 
 

  

Publication venue: 13th Annual IEEE System of Systems Engineering Conference July 
18th, 2017. 

Publication keywords: Autonomous Navigation, Path Planning, Robot Operating System, 
Differential drive robot. 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: A Deep Vision Landmark Framework for Robot Navigation. 

Author(s): Abhijith Ravikumar Puthussery, Karthik Pai Haradi, Berat A. Erol, Patrick 
Benavidez, Paul Rad, Mo Jamshidi. 

Publication date: 2017. 

Publication venue: 13th Annual IEEE System of Systems Engineering Conference July 
18th, 2017. 

Publication keywords: Autonomous Navigation, Robot Operating System, Machine learn- 
ing, TensorFlow, Convolutional Neural Network, Differential drive robot. 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Development of Robot Operating System (ROS) Compatible Open Source Quadcopter 
Flight Controller and Interface. 

Author(s): Abhijit Majumdar, Nicholas Gamez, Patrick J Benavidez, Mo Jamshidi. 

Publication date: 2017. 

Publication venue: 13th Annual IEEE System of Systems Engineering Conference July 
18th, 2017. 

Publication keywords: Quadcopter; Robot Operating System; Unmanned Aerial Vehicle; 
Flight controller; interface. 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

Title: Cloud-based Control and vSLAM through Cooperative Mapping and Localization 

Author(s): Berat A. Erol, Patrick Benavidez, Satish Vaishnav, Joaquin Labrado, Mo Jamshidi 

Publication date: 2016. 

Publication venue: WAC 2016 World Automation Congress Rio Grande, PR, USA 

Publication keywords: Cooperative SLAM; vSLAM; RGB-D; Cloud Computing; Robotics 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: 3D Printed Underwater Housing 

Author(s): Benjamin Champion, Mo Jamshidi, Matthew Joordens 

Publication date: 2016. 
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Publication venue: WAC 2016 World Automation Congress Rio Grande, PR, USA 

Publication keywords: 3D Printing, Additive Manufacturing, Underwater Box, AUV 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Autonomous Mobile Robot Platform with Multi-Variant ask-Specific End-Effector and 
Voice Activation 

Author(s): Jonathan Tapia, Eric Wineman, Patrick Benavidez, Aldo Jaimes, Ethan Cobb, 
John Parsi, Dan Clifton, Mo Jamshidi and Benjamin Champion. 

Publication date: 2016. 

Publication venue: WAC 2016 World Automation Congress Rio Grande, PR, USA 

Publication keywords: Polylactic Acid (PLA), Acrylonitrie Butadiene Styrene (ABS), Mecanum 
wheel, Solid Works, Voice Recognition, Fused Filament Fabrication (FFF), 3D printing 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: Cloud-based Control and vSLAM through Cooperative Mapping and Localization 

Author(s): Berat A. Erol, Satish Vaishnav, Joaquin D. Labrado, Patrick Benavidez, and Mo 
Jamshidi 

Publication date:  2016 

Publication  venue: World Automation Congress 2016 

Publication keywords: Cooperative SLAM, vSLAM, Robotics, RGB-D, Cloud Computing 

Most Relevant Task: Task T1-4 

Other Relevant Tasks: Task T1-3 

• Title: A Symbolic Approach for Multi-target Dynamic Reach-avoid Problem 

Author(s): Laya Shamgah, Tadewos G. Tadewos, Ali Karimoddini, Abdollah Homaifar 

Publication date: 2018 

Publication venue: Proc. of IEEE 14th International Conference on Control and Automa- 
tion (ICCA) 

Publication keywords: reach-avoid, symbolic planning, motion planning, hybrid control, 
reactive synthesis, multi-target 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA 

• Title: A Symbolic Motion Planning Approach for the Reach-avoid Problem 

Author(s): Laya Shamgah, Ali Karimoddini, Abdollah Homaifar 

Publication date: 2016 

Publication venue: Proc. of 2016 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC), Budapest 
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Publication keywords: reach-avoid, symbolic planning, motion planning, hybrid control, 
reactive synthesis 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA 

• Title: Path Planning and Control of Autonomous Vehicles in Dynamic Reach-Avoid Scenarios 

Author(s): Laya Shamgah, Tadewos G. Tadewos, Ali Karimoddini, and Abdollah Homaifar 

Publication date: 2018 

Publication venue: Proc. IEEE Conference on Control Technology and Applications (CCTA), 
Copenhagen 

Publication keywords: reach-avoid, symbolic planning, motion planning, hybrid control, 
smooth control 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this publication it is related 
to multiple tasks. 

• Title: On the Design of Smooth Hybrid Controllers for a Class of Non-linear Systems 

Author(s): Laya Shamgah, Tadewos G. Tadewos, Ali Karimoddini 

Publication date: Dec 2020 

Publication venue: IET Control Theory & Applications 

Publication keywords: Provide Publication keywords 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA 

• Title: Reactive Symbolic Planning and Control in Dynamic Adversarial Environments 

Author(s): Laya Shamgah, Tadewos G. Tadewos, Abdullah Al Redwan Newaz, Ali Kari- 
moddini, Albert C. Esterline 

Publication date: Under review 

Publication venue: IEEE Transactions on Automatic Control 

Publication keywords: reach-avoid, symbolic planning, motion planning, hybrid control, 
smooth control 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA 

• Title: Cloud Robotics: A Software Architecture For Heterogeneous Large-Scale Autonomous 
Robots 

Author(s): Ali Miraftabzadeh, Nicolas Gallardo, Nicolas Gamez, Karthik Haradi, Paul Rad, 
Mo Jamshidi 

Publication date:  October 2016 

Publication  venue: 2016 World Automation Congress 
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Publication keywords: cloud robotics; heterogeneous agents; large-scale autonomous; Hadoop- 
MapReduce 

• Title: Formation Control Implementation Using Kobuki TurtleBots and Parrot Bebop Drone 

Author(s): Nicolas Gallardo, Karthik Haradi, Berat A. Erol, Patrick Benavidez Mo Jamshidi 

Publication date: July 2016 

Publication venue: World Automation Conference 2016, Rio Grande, Puerto Rico, USA 

Publication keywords: formation control, virtual leader, robot, drone, UGV, UAV, turtle- 
bot, parrot bebop 

• Title: Task Allocation Using Parallelized Clustering and Auctioning Algorithms for Hetero- 
geneous Robotic Swarms Operating on a Cloud Network 

Author(s): Jonathan Lwowski, Patrick Benavidez, John J. Prevost, and Mo Jamshidi 

Publication date: March 2017 

Publication venue:  Springer-Verlag Autonomy and Artificial Intelligence 

• Title: Pedestrian Detection System Using Deep Convolutional Neural Networks. 

Author(s): Jonathan Lwowski, Prasanna Kolar, Patrick J Benavidez, Paul Rad, John J 
Prevost, Mo Jamshidi. 

Publication date: July 2017 

Publication venue: 2017 IEEE System of System Engineering Conference. 

• Title: Lightweight Multi Car Dynamic Simulator forReinforcement Learning 

Author(s): Abhijit Majumdar, Patrick Benavidez and Mo Jamshidi 

Publication date: 2018 

Publication  venue: IEEE World Automation Congress 2018 

Publication keywords: multi agent, simulation, reinforcement learning,multiple instances, 
multi environment 

• Title: Towards the Optimal Placement of Containerized Applications on a Cloud-Edge Net- 
work 

Author(s): James Nelson, Jonathan Lwowski, Patrick Benavidez, Jeff Prevost, Mo Jamshidi 

Publication date: September 2019 

Publication  venue: 2020 IEEE International Systems Conference (SysCon) 

Publication keywords: cloud computing; edge computing; fuzzy control; expert systems; 
containerization 

• Title: Down Sampling using Simulated Annealing 

Author(s): Sean Ackels, Patrick Benavidez and Mo Jamshidi 

Publication date: June 2020 

Publication  venue: 2020 Systems of Systems Engineering Conference (SoSE 2020) 
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Publication keywords: Optimization; Simulated Annealing; Radial Basis Function; LASSO; 
Data Reduction 

• Title: Comparison of Cloud Architectures for Mobile Sensor Optimization Problem Imple- 
mentation 

Author(s): Sean Ackels, Patrick Benavidez and Mo Jamshidi 

Publication date: June 2020 

Publication  venue: 2020 Systems of Systems Engineering Conference (SoSE 2020) 

Publication keywords: Cloud Computing, Lambda Architecture, Kappa Architecture, Ra- 
dial Basis Function, Mobile Sensor Optimization Problem, Swarm Robotics 

• Title: A Survey of Modern Roadside Unit Deployment Research 

Author(s): Sean Ackels, Patrick Benavidez, Mo Jamshidi 

Publication date: August 2021 

Publication  venue: 2021 World Automation Congress 

Publication keywords: Vehicular ad hoc Networks (VANET), Automated Vehicles, Smart 
Cities, Roadside Unit (RSU), RSU Deployment 

• Title: Solving the Roadside Unit Deployment Problem: A Survey 

Author(s): Sean Ackels, Patrick Benavidez, Mo Jamshidi, Asad Madni 

Publication date: Submitted 

Publication  venue: IEEE Transactions on Intelligent Transportation Systems 

Publication keywords: Intelligent Transportation Systems, Roadside Unit, RSU Placement 
Problem 

Most Relevant Task: Task T1-6 

Other Relevant Tasks: NA 

• Title: A Learning-based Approach for Diagnosis and Disagnosability of Unknown Discrete 
Event Systems 

Author(s): Ira Wendell Bates II, Ali Karimoddini, and Mohammad Karimadini 

Publication date: (under review ) 

Publication venue: IEEE International Conference on Systems, Man, and Cybernetics 
(SMC) 

Publication keywords: Active Learning, Fault diagnosis, Automata, Systematics, Discrete 
Event Systems 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Title: Fault Diagnosis of Discrete Event Systems Under Unknown Initial Conditions 

Author(s): Alejandro White; Ali Karimoddini; Rong Su 

Publication date:  2019 
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Publication venue: IEEE Transactions on Automatic Control 

Publication keywords: Fault diagnosis, Discrete-event systems, Estimation, Systems oper- 
ation, Automata, Systematics, Analytical models 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Title: Asynchronous fault diagnosis of Discrete Event Systems 

Author(s): Alejandro White; Ali Karimoddini 

Publication date:  2017 

Publication  venue: American Control Conference 

Publication keywords: Fault diagnosis, Discrete-event systems, Estimation, Monitoring, 
Automata, Systematics, Tools, Complex Systems 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Title: Semi-asynchronous fault diagnosis of Discrete Event Systems 

Author(s): Alejandro White; Ali Karimoddini 

Publication date:  2016 

Publication venue: IEEE International Conference on Systems, Man, and Cybernetics 
(SMC) 

Publication keywords: Fault diagnosis, Discrete-event systems, Estimation, Cybernetics, 
Systematics, Systems operation 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Title: Event-based Fault Diagnosis for an Unknown Plant 

Author(s): Mohammad Mahdi Karimi; Ali Karimoddini; Alejandro P White; Ira Wendell 
Bates 

Publication date:  2016 

Publication  venue: IEEE 55th Conference on Decision and Control (CDC) 

Publication keywords: Automata, Fault diagnosis, Discrete-event systems, Unmanned aerial 
vehicles, Monitoring, Fuels 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Title: Achieving Fault-tolerance and Safety of Discrete-event Systems through Learning 

Authors: Jin Dai, Ali Karimoddini, Hai Lin 

Publication date:  2016 

Publication venue: The 2016 IEEE American Control Conference 
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Publication keywords: Fault-tolerance, Discrete Event Systems 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Title: Application of Big Data Analytics via Cloud Computing 

Authors: Yunus Yetis, Ruthvik Sara, Berat Erol, Halid Kaplan, Abdurrahman Akuzum, Mo 
Jamshidi 

Publication date:  2016 

Publication  venue: 2016 World Automation Congress 

Publication keywords: Cloud Computing, Data Analytics, MapReduce 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Title: Data-driven Fault Detection of Un-manned Aerial Vehicles Using Supervised Learning 
Over Cloud Networks 

Authors: Parsa Yousefi, Hamid Fekriazgomi, John J. Prevost, Mo Jamshidi 

Publication date:  2018 

Publication venue:  IEEE World Automation Congress 2018 

Publication keywords: Un-manned Aerial Vehicles, Signal-based Fault Detection, Machine 
Learning, Supervised Learning, Data Prediction, Linear Discriminant Analysis, Logistic 
Regression 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Title: Predicting Fault Behaviors of Networked Control Systems Using Deep Learning for 
Mobile Robots 

Authors: Conor Wallace, Patrick Benavidez, Mo Jamshidi 

Publication date:  2019 

Publication venue: 2019 Systems of Systems Engineering Conference (SoSE 2019) 

Publication keywords: Deep Learning, Fuzzy Logic, Long Short-Term Memory Units, Re- 
current Neural Networks, Robot Operating System, Unmanned Ground Vehicles 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Title: Real-Time Distributed Ensemble Learning for Fault Detection of an Unmanned Ground 
Vehicle 

Authors: C. Wallace, S. Ackels, P. Benavidez, M. Jamshidi 

Publication date:  2020 

Publication venue: 2020 15th Annual International Systems of System Engineering Con- 
ference (SoSE) 
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Publication keywords: Cloud Computing, System of Systems, Fault Diagnostics, LSTM, 
Ensemble Learning 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Title: Deep Learning and Spectral Clustering for Fault Tolerant Control of an Unmanned 
Ground Vehicle with Dislocated Actuator Fault 

Authors: C. Wallace, S. Ackels, P. Benavidez, M. Jamshidi 

Publication date:  2020 

Publication venue: IEEE Systems Journal 

Publication keywords: Fault Tolerant Control, Spectral Clustering, Mobile Robots, Neural 
Networks, Control Systems, Evolutionary Computation 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Title: Provide Title 

Author(s): Provide Author(s) 

Publication date: Provide Publication date 

Publication venue: Provide Meeting Location 

Publication keywords: Provide Publication keywords 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this publication it is related 
to multiple tasks. 

• Title: Provide Title 

Author(s): Provide Author(s) 

Publication date: Provide Publication date 

Publication venue: Provide Meeting Location 

Publication keywords: Provide Publication keywords 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this publication it is related 
to multiple tasks. 

• Title: Enabling Content-Centric Device-to-Device Communication in the Millimeter-Wave 
Band 

Author(s): Niloofar Bahadori, Mahmoud Nabil, Brian Kelley, Abdollah Homaifar 

Publication date: April 4, 2021 

Publication  venue: IEEE Transactions on Mobile Computing 

Publication keywords: Content-centric network, information-centric network, device-to- 
device, mmWave, beamwidth selection, peer association 
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Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: Antenna Beamwidth Optimization in Directional Device-to-Device Communication 
Using Multi-Agent Deep Reinforcement Learning 

Author(s): Niloofar Bahadori, Mahmoud Nabil, Abdollah Homaifar 

Publication date: Under-review 

Publication venue: IEEE ACCESS 

Publication keywords: D2D, mmWave, Deep reinforcement learning 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: Device-to-Device Communications in the Millimeter Wave Band: A Novel Distributed 
Mechanism 

Author(s): Niloofar Bahadori, Nima Namvar, Brian Kelley, Abdollah Homaifar 

Publication date: April 2019 

Publication  venue: IEEE Wireless Telecommunication Symposium 

Publication keywords: D2D, mmWave, beam alignment, blockage, stochastic geometry 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: Device-to-Device Communications in Millimeter Wave Band: Impact of Beam Align- 
ment Error 

Author(s): Niloofar Bahadori, Nima Namvar, Brian Kelley, Abdollah Homaifar 

Publication date: April 2018 

Publication  venue: IEEE Wireless Telecommunication Symposium 

Publication keywords: D2D, mmWave, Stochastic geometry 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: Context-Aware D2D Peer Selection for Load Distribution in LTE Networks 

Author(s): Nima Namvar, Niloofar Bahadori, Fatemeh Afghah 

Publication date: November 2015 

Publication  venue: IEEE Asilomar Conference on Signals, Systems and Computers 

Publication keywords: Device to Device communication, Context information, Link selec- 
tion, Matching game 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: Jamming in the Internet of Things: AGame-Theoretic Perspective 
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Author(s): Nima Namvar, Walid Saad, Niloofar Bahadori, Brian Kelley 

Publication date: December 2016 

Publication venue: IEEE Global Communications Conference (GLOBECOM) 

Publication keywords: Internet of Things; Jamming; Security; Game theory 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: IoT-Enabled Autonomous System Collaboration for Disaster-Area Management 

Author(s): Abenezer Girma, Niloofar Bahadori, Mrinmoy Sarkar, Tadewos G Tadewos, Mo- 
hammad R Behnia, M Nabil Mahmoud, Ali Karimoddini, Abdollah Homaifar 

Publication date: July 2020 

Publication venue:  IEEE/CAA Journal of Automatica Sinica 

Publication keywords: Architectural analysis and design language (AADL) and cloud com- 
puting, disaster area management, internet of things (IoT), message queuing telemetry 
transport (MQTT), unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Title: Adaptive and Neural Network Based Control of Pitch of Unmanned Aerial Vehicles 

Author(s): M. Matthews; S. Yi 

Publication date:  2019 

Publication venue:  Journal of Mechatronics and Robotics 

Publication keywords: UAV, PID, 2DOF-PID, Model Reference Adaptive Control (MRAC), 
Neural Network (NN). 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Title: Analysis of Time Delays in Quadrotor Systems and Design of Control 

Author(s): Armah, Stephen and Yi, S. 

Publication date:  2017 

Publication venue: Time Delay Systems: Theory, Numerics, Applications, and Experi- 
ments 

Publication keywords: Time Delay, networked systems, uncertainties, teleoperation, UAV. 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Title: Design of feedback control for quadrotors considering signal transmission delays 

Author(s): Armah, Stephen K. and Yi, Sun and Choi, Wonchang 

Publication date:  2016 
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Publication  venue: International Journal of Control, Automation and Systems 

Publication keywords: Transmission delay, estimation, feedback control, robust control, 
UAV. 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Title: Analysis of the Effects of Communication Trust and Delay on Consensus of Multi- 
Agent Systems 

Author(s): J. Sumpter; C. Thomas; S. Yi; A. Kruger 

Publication date:  2019 

Publication venue: 2019 IEEE Connected and Automated Vehicles Symposium 

Publication keywords: Delay, estimation, internet, Smith predictor, teleoperation, UAV. 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Title: Analysis of the effects of communication delays for consensus of networked multi-agent 
systems 

Author(s): Allen-Prince, Myrielle; Thomas, Christopher;Yi, Sun; 

Publication date:  2017 

Publication  venue: International Journal of Control, Automation and Systems 

Publication keywords: Consensus, delay, multiple-agent systems, sensitivity, stability, topol- 
ogy. 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Title: An IoT self organizing network for 5G dense network interference alignment 

Author(s): Anil Kumar Yerrapragada, Brian Kelley 

Publication date:  6/18/2017 

Publication  venue: 2017 12th System of Systems Engineering Conference (SoSE) 

Publication keywords: Receivers, 5G mobile communication, MIMO, Transmitters, Inter- 
ference cancellation, Radio access networks 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: Design of K-user massive MIMO networks 

Author(s): Anil Kumar Yerrapragada, Brian Kelley 

Publication date: 10/19/2017 

Publication venue: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile 
Communication Conference (UEMCON) 
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Publication keywords: 5G mobile communication, channel estimation, densification, hy- 
percube networks, interference suppression, MIMO communication, radiofrequency in- 
terference, receiving antennas 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: On the application of mimo space-time coding to physical layer security in sub-6 ghz 
5g 

Author(s): Patrick Ormond, Anil Kumar Yerrapragada, Brian Kelley 

Publication date:  5/19/2019 

Publication venue:  2019 14th Annual Conference System of Systems Engineering (SoSE) 

Publication keywords: wireless communication links, enhanced PRP-STBC scheme, 1-bit 
codebook, dense 5G cellular geometries, PRP key based communication framework, per- 
formance improvement, transmission rate, MIMO space time block coding, precoder 
matrix index based scheme, private random precoding, key-based physical layer security, 
key bit error rate performance 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: On the Application of Key-Based Physical Layer Security in 5G Heterogeneous Net- 
works 

Author(s): Anil Kumar Yerrapragada, Patrick Ormond, Brian Kelley 

Publication date:  11/12/2019 

Publication venue: MILCOM 2019-2019 IEEE Military Communications Conference (MIL- 
COM) 

Publication keywords: 5G mobile communication, Physical layer, Network security, Base 
stations, Geometry, Heterogeneous networks 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: Very High Throughput Internet of Things Networks with access points and devices 

Author(s): Anil Kumar Yerrapragada, Brian Kelley 

Publication date:  11/12/2019 

Publication venue: MILCOM 2019-2019 IEEE Military Communications Conference (MIL- 
COM) 

Publication keywords: MIMO communication, Receivers, Transmitters, Mathematical model, 
Interference cancellation, Throughput 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: Error rate analysis of physical layer security for sub-6 ghz 5g network planning 
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Author(s): Patrick Ormond, Anil Kumar Yerrapragada, Brian Kelley 

Publication date:  5/19/2019 

Publication  venue: 2019 14th Annual Conference System of Systems Engineering (SoSE) 

Publication keywords: 5G mobile communication, error statistics, MIMO communication, 
precoding, probability, Rayleigh channels, telecommunication security 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: On the Application of K-User MIMO for 6G Enhanced Mobile Broadband 

Author(s): Anil Kumar Yerrapragada, Brian Kelley 

Publication date:  1/2020 

Publication venue: Sensors 

Publication keywords: beyond-5G, 6G, MIMO, interference alignment, K-User MIMO, 
OFDM 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Title: Design of a Smooth Landing Trajectory Tracking System for a Fixed-wing Aircraft 

Author(s): Solomon Gudeta and Ali Karimoddini 

Publication date: 29 August 2019 

Publication venue: Philadelphia, PA, USA 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Title: Robust Dynamic Average Consensus for a Network of Agents with Time-varying Ref- 
erence Signals 

Author(s): Solomon Gudeta, Ali Karimoddini, and Mohammadreza Davoodi 

Publication date: 14 December 2020 

Publication venue: Toronto, ON, Canada 

Publication keywords: Robust dynamic average consensus, Timevarying signals, Mutli- agent 
systems, Zero steady-state error, Chattering effect, Switching topology, Networked 
control systems 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Title: Leaderless Swarm Formation Control: From Global Specifications to Local Control 
Laws 

Author(s): Solomon Gudeta, Ali Karimoddini, Mohammadreza Davoodi, and Ioannis Raptis 

Publication date: 28 July 2021 
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Publication venue: New Orleans, LA, USA 

Publication keywords: Distributed control, Cooperative control, Robotic swarms 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Title: Flexible Coordinated Collective Motion of Robotic Swarms 

Author(s): Solomon Gudeta, Ali Karimoddini, and Ioannis Raptis 

Publication date: under review 

Publication venue: IEEE Transactions on Cybernetics 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Title: Robust collective navigation of swarm of quadrotor 

Author(s): Solomon Gudeta and Ali Karimoddini 

Publication date: under preparation 

Publication  venue: Conference on Control Technology and Applications 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Title: Distributed Swarm Time-Varying Formation Tracking With Collision Avoidance Sub- 
jected to Switching Topologies 

Author(s): Solomon Gudeta and Ali Karimoddini 

Publication date: under preparation 

Publication venue: IEEE Robotics and Automation Letters 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Title: Distributed swarm assignment and pattern formation with collision avoidance 

Author(s): Solomon Gudeta and Ali Karimoddini 

Publication date: under preparation 

Publication venue: IEEE Systems Journal 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

 
 

• Title: On-the-fly decentralized tasking of autonomous vehicles 

Author(s): Tadewos G. Tadewos, L Shamgah, A Karimoddini 

Publication date: 2019 

Publication venue:  IEEE 58th Conference on Decision and Control (CDC) 

Approved for Public Release; Distribution Unlimited. 
343



 
 
 

  

Publication keywords: Intelligent Vehicles, Behavior Tree, Automatic Synthesis, Multi- 
Agent 

Most Relevant Task: Task T3-2 

Other Relevant Tasks: NA 

• Title: Automatic safe behaviour tree synthesis for autonomous agents 

Author(s): Tadewos G. Tadewos, L Shamgah, A Karimoddini 

Publication date: 2019 

Publication venue: IEEE 58th Conference on Decision and Control (CDC) 

Publication keywords: Intelligent Vehicles, Behavior Tree, Automatic Synthesis, Safety 

Most Relevant Task: Task T3-2 

Other Relevant Tasks: NA 

• Title: Specification-guided Behavior Tree Synthesis and Execution 

Author(s): Tadewos G. Tadewos, Abdullah Al Redwan Newaz, A Karimoddini 

Publication date:  2022 

Publication  venue: Expert Systems with Applications 

Publication keywords: Intelligent Vehicles, Behavior Tree, Automatic Synthesis, Safety 

Most Relevant Task: Task T3-2 

Other Relevant Tasks: NA 

• Title: An Effective Model for Human Cognitive Performance within a Human-Robot Collab- 
oration Framework 

Author(s): Md Khurram Monir Rabby, Mubbashar Khan, Ali Karimoddini, and Steven 
Xiaochun Jiang 

Publication date:  2019 

Publication venue: IEEE 2019 International Conference on Systems, Man, and Cyber- 
netics (SMC) 

Publication keywords: Human-Robot Cooperation, Physical performance, Cognitive per- 
formance, Dynamic model 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Title: Modeling of Trust Within a Human-Robot Collaboration Framework 

Author(s): Md Khurram Monir Rabby, Mubbashar Khan, Ali Karimoddini, and Steven 
Xiaochun Jiang 

Publication date:  2020 

Publication venue: IEEE 2020 International Conference on Systems, Man, and Cyber- 
netics (SMC) 
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Publication keywords: Human-Robot Collaboration (HRC), Human-machine teaming, Trust, 
Physical performance, Cognitive performance, Dynamic model 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Title: Performance-Aware Trust Modeling within a Human-Multi-Robot Collaboration Set- 
ting 

Author(s): Md Khurram Monir Rabby, Mubbashar Khan, Ali Karimoddini, and Steven 
Xiaochun Jiang 

Publication date: Under review 

Publication venue: ACM Transaction on Human-Robot Collaboration 

Publication keywords: Human-Robot Collaboration (HRC), Trust, Human Performance, 
Multi-Robot Performance 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Title: A Novel Clustering Algorithm Based on Fitness Proportionate Sharing 

Author(s): Xuyang Yan, Abdollah Homaifar, Shabnam Nazmi and Mohammad Razeghi- 
Jahromi 

Publication date:  2017 

Publication venue: 2017 IEEE International Conference on Systems, Man, and Cybernet- 
ics (SMC2017) 

Publication keywords: clustering, unsupervised learning. 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Unsupervised feature selection through fitness proportionate sharing clustering 

Author(s): Xuyang Yan, Abdollah Homaifar, Gabriel Awogbami, Abenezer Girma 

Publication date: 2018 

Publication venue: 2018 IEEE International Conference on Systems, Man, and Cybernet- 
ics (SMC2018) 

Publication keywords: Feature selection, dimension reduction. 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Multi-label classification using genetic-based machine learning 

Author(s): Shabnam Nazmi, Xuyang Yan, Abdollah Homaifar 

Publication date: 2018 

Publication venue: 2018 IEEE International Conference on Systems, Man, and Cybernet- 
ics (SMC2018) 
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Publication keywords: Multi-label classification, genetic algorithm. 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Possibility rule-based classification using function approximation 

Author(s): Shabnam Nazmi, Abdollah Homaifar 

Publication date:  2018 

Publication venue: 2018 IEEE International Conference on Systems, Man, and Cybernet- 
ics (SMC2018) 

Publication keywords: Uncertain label classification, possibility theory, learning classifier 
systems 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: A novel streaming data clustering algorithm based on fitness proportionate sharing 

Author(s): Xuyang Yan, Mohammad Razeghi-Jahromi, Abdollah Homaifar, Berat A Erol, 
Abenezer Girma, Edward Tunstel 

Publication date:  2019 

Publication venue: IEEE Access 

Publication keywords: Data stream, clustering, density-based clustering. 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Driver identification based on vehicle telematics data using LSTM-recurrent neural 
network 

Author(s): Abenezer Girma, Xuyang Yan, Abdollah Homaifar 

Publication date:  2019 

Publication venue: 2019 IEEE 31st International Conference on Tools with Artificial In- 
telligence (ICTAI) 

Publication keywords: Driver identification,deep learning,LSTM 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: An efficient unsupervised feature selection procedure through feature clustering 

Author(s): Xuyang Yan, Shabnam Nazmi, Berat A Erol, Abdollah Homaifar, Biniam Gebru, 
Edward Tunstel 

Publication date:  2020 

Publication  venue: Pattern Recognition Letter 

Publication keywords: Unsupervised feature selection, feature clustering 

Most Relevant Task: Task T3-4 
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Other Relevant Tasks: NA 

• Title: IoT-enabled autonomous system collaboration for disaster-area management 

Author(s): Abenezer Girma, Niloofar Bahadori, Mrinmoy Sarkar, Tadewos G Tadewos, Mo- 
hammad R Behnia, M Nabil Mahmoud, Ali Karimoddini, Abdollah Homaifar 

Publication date:  2020 

Publication venue: IEEE/CAA Journal of Automatica Sinica 

Publication keywords: IoT-enabled autonomous system collaboration, disaster-area man- 
agement. 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: Task T3-3, Task T2-5, Task T3-6 

• Title: Evolving multi-label classification rules by exploiting high-order label correlations 

Author(s): Shabnam Nazmi, Xuyang Yan, Abdollah Homaifar, Emily Doucette 

Publication date: 2020 

Publication  venue: Neurocomputing 

Publication keywords: Multi-label classification, Label correlation, Learning classifier sys- 
tems 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: A clustering-based framework for classifying data streams 

Author(s): Xuyang Yan, Abdollah Homaifar, Mrinmoy Sarkar, Abenezer Girma, Edward 
Tunstel 

Publication date:  2021 

Publication  venue: The 30th International Joint Conferences on Artificial Intelligence 

Publication keywords: Data stream classification, active learning 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: A supervised feature selection method for mixed-type data using density-based feature 
clustering 

Author(s): Xuyang Yan, Mrinmoy Sarkar, Biniam Gebru, Shabnam Nazmi, Abdollah Homai- 
far 

Publication date:  2021 

Publication venue: 2021 IEEE International Conference on Systems, Man, and Cybernet- 
ics (SMC) 

Publication keywords: Supervised feature selection, density-based clustering 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 
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• Title: DA2-Net : Diverse & Adaptive Attention Convolutional Neural Network 

Author(s): Abenezer Girma, Abdollah Homaifar, M Nabil Mahmoud, Xuyang Yan, Mrin- 
moy Sarkar 

Publication date:  2021 

Publication venue: 2021 IEEE International Conference on Systems, Man, and Cybernet- 
ics (SMC) 

Publication keywords: Diverse features, diverse and adaptive attention convolutional neu- 
ral network 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Multi-label classification with local pairwise and high-order label correlations using 
graph partitioning 

Author(s): Shabnam Nazmi, Xuyang Yan, Abdollah Homaifar, Mohd Anwar 

Publication date:  2021 

Publication  venue: Knowledge-Based Systems 

Publication keywords: Multi-label classification, graph partitioning, density-based cluster- 
ing 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Mitigating shortage of labeled data using clustering-based active learning with diversity 
exploration 

Author(s): Xuyang Yan, Shabnam Nazmi, Biniam Gebru, Mohd Anwar, Abdollah Homaifar, 
Mrinmoy Sarkar, Kishor Datta Gupta 

Publication date:  2022 

Publication venue: 2022 International Conference on Machine Learning (ICML) Work- 
shop on Adpative Experimental Design and Active Learning in the Real World 

Publication keywords: Active learning, clustering 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: An Online Unsupervised Streaming Features Selection Through Dynamic Feature Clus- 
tering 

Author(s): Xuyang Yan, Abdollah Homaifar, Mrinmoy Sarkar, Benjamin Lartey, Kishor 
Datta Gupta 

Publication date:  2022 

Publication venue: IEEE Transactions on Artificial Intelligence 

Publication keywords: Streaming feature, dynamic feature clustering 

Most Relevant Task: Task T3-4 
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Other Relevant Tasks: NA 

• Title: A clustering-based active learning method to query informative and representative 
samples 

Author(s): Xuyang Yan, Shabnam Nazmi, Biniam Gebru, Mohd Anwar, Abdollah Homaifar, 
Mrinmoy Sarkar, Kishor Datta Gupta 

Publication date:  2022 

Publication  venue: Applied Intelligence 

Publication keywords: Active learning, bi-cluster boundary selection 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Title: Multi-Attribute Decision Fusion for Pattern Classification 

Author(s): Gabriel Awogbami, Norbert Agana, Abdollah Homaifar 

Publication date: 2018 

Publication venue: IEEE, South East Conference 

Publication keywords: Multi attribute decision fusion, multi-criteria decision analysis, pat- 
tern classification 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA 

• Title: A new combination rule based on the average belief function 

Author(s): Gabriel Awogbami, Norbert Agana, Shabnam Nazmi, Abdollah Homaifar 

Publication date:  2018 

Publication venue: IEEE, South East Conference 

Publication keywords: Uncertainty, Dempster-Schafer rule if combination, belief function 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA 

• Title: An evidence theory based multi sensor data fusion for multiclass classification 

Author(s): Gabriel Awogbami, Norbert Agana, Shabnam Nazmi, Xuyang Yan, Abdollah 
Homaifar 

Publication date:  2018 

Publication venue: IEEE, SMC 

Publication keywords: Multi-sensor data fusion, uncertainty, Dempster-Schafer theory of 
evidence, multi-class classification 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA 

• Title: A reliability-based multisensor data fusion with application in target classification 
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Author(s): Gabriel Awogbami, Abdollah Homaifar 

Publication date:  2020 

Publication venue: Sensors 

Publication keywords: multisensor; reliability; classification; belief function; evidence the- 
ory; data fusion 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA 

• Title: A Review on Human–Machine Trust Evaluation: Human-Centric and Machine-Centric 
Perspectives 

Author(s): Biniam Gebru, Lydia Zeleke, Daniel Blankson, Mahmoud Nabil, Shamila Nateghi, 
Abdollah Homaifar, Edward Tunstel 

Publication date:  2022 

Publication  venue: IEEE Transactions on Human-Machine Systems 

Publication keywords: human-machine trust, trust measurement, trust calibration, ma- 
chine trustworthiness 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA 

• Title: PIE: A Tool for Data-driven Autonomous UAV Flight Testing 

Author(s): Mrinmoy Sarkar, Abdollah Homaifar, Berat A Erol, Mohammadreza Behniapoor, 
and Edward Tunstel 

Publication date: 04 September 2019 

Publication venue: Journal of Intelligent & Robotic Systems 

Publication keywords: UAV; Decision tree; Test & evaluation;Data-driven autonomous 
flight and behavior analysis;AR drone;3DR IRIS;SOLO;Intel RTF drone;ROS;Gazebo;VICON 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA 

• Title: A Novel Search and Survey Technique for Unmanned Aerial Systems in Detecting and 
Estimating the Area for Wildfires 

Author(s): Mrinmoy Sarkar, Xuyang Yan, Berat A. Erol, Ioannis Raptis, and Abdollah 
Homaifar 

Publication date: 01 November 2021 

Publication  venue: Robotics and Autonomous Systems 

Publication keywords: UAV; Multi-agent autonomous system; AMASE; Search & Survey; 
Collaborative operation; Robotics; 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA 
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• Title: A Framework for Testing and Evaluation of Operational Performance of Multi-UAV 
Systems 

Author(s): Mrinmoy Sarkar, Xuyang Yan, Shamila Nateghi, Bruce Holmes, Kyriakos Vamvoudakis, 
and Abdollah Homaifar 

Publication date: 27 September 2022 

Publication venue:  Intelligent Systems Conference (IntelliSys) 2021 

Publication keywords: Test and Evaluation; Multi-UAV Testing; Autonomous Behavioral 
Testing; Cognitive Systems; Physical Flight Testing; Perception; Deep Learning; Bi- LSTM; 
ROS; 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA 

• Title: Modeling age differences in effects of pair repetition and proactive interference using 
a single parameter 

Authors: Stephens, J.D.W., Overman, A.A. 

Publication date:  2018 

Publication venue: Psychology and Aging 

Publication keywords: associative deficit, proactive interference, age-related memory im- 
pairment, REM model 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Title: Decision making using automated estimates in the classification of novel stimuli 

Authors: Hoenig, A., & Stephens, J. D. W. 

Publication date:  2020 

Publication venue: AHFE 2019: Advances in Human Factors in Robots and Unmanned 
Systems 

Book Series : Advances in Intelligent Systems and Computing, vol. 962. 

Editor : Chen, J. 

Publication keywords: Human factors, human-systems integration, unmanned vehicles, de- 
cision making, representation of uncertainty 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Title: Neural Investigation of Human Trust using Electroencephalogram 

Author(s): Provide Oh, S. & Seong, Y 

Publication date: 2019 July 

Publication venue: International Advanced Research Journal in Science, Engineering and 
Technology 
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Publication keywords: human trust in automation, brain computer interface, eeg 

Most Relevant Task: Task T3-8 

Other Relevant Tasks: Task T3-9 

• Title: Neurological measurement of human trust in automation using electroencephalogram 

Author(s): Oh, S., Seong, Y., Yi, S., & Park, S. 

Publication date: Provide Publication date 

Publication  venue: International Journal of Fuzzy Logic and Intelligent Systems 

Publication keywords: EEG, human trust 

Most Relevant Task: Task T3-8 

Other Relevant Tasks: Task T3-9 

• Title: Preliminary study on neural correspondence of human trust 

Author(s): Oh, S., Seong, Y., & Yi, S. 

Publication date:  2017 

Publication  venue: Human Factors & Ergonomics Society Annual Meeting 

Publication keywords: human trust, eeg 

Most Relevant Task: Task T3-8 

Other Relevant Tasks: Task T3-9 

• Title: Provide Title 

Author(s): Provide Author(s) 

Publication date: Provide Publication date 

Publication venue: Provide Meeting Location 

Publication keywords: Provide Publication keywords 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this publication it is related 
to multiple tasks. 

• Title: Provide Title 

Author(s): Provide Author(s) 

Publication date: Provide Publication date 

Publication venue: Provide Meeting Location 

Publication keywords: Provide Publication keywords 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this publication it is related 
to multiple tasks. 
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4.2 Meetings and Presentations 

16 journal and conference papers (1 accepted journal paper, 3 accepted conference papers, 2 sub- 
mitted journal papers, and 10 submitted conference papers) were published and submitted as listed 
below: 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Georgia Tech 2019 Southeast Controls Conference 

Meeting Purpose: Technological Information Sharing 

Meeting Start and End Dates: November 14-15, 2019 

Meeting Location: Atlanta, Georgia - Tech Square Research Building, Georgia Tech 

Meeting Attendees from this project: Faculty and students from Southeastern Univer- 
sities 

Presentations Made: Yes - Ira Wendell Bates, II 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA. 

• Meeting Name: 2016 IEEE American Control Conference 

Meeting Purpose: Presenting the paper “Achieving Fault-tolerance and Safety of Discrete- 
event Systems through Learning” 

Meeting Start and End Dates: July 6 through 8, 2016 
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Meeting Location:  Boston, US 

Meeting Attendees from this project: Dr. Karimoddini 

Presentations Made: Yes 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Meeting Name: 61st IEEE International Midwest Symposium on Circuits and Systems 

Meeting Purpose: Presenting the paper “A Survey on Fault-Tolerant Supervisory Control” 

Meeting Start and End Dates Aug4-8, 2018 

Meeting Location: Windsor, ON, Canada 

Meeting Attendees from this project: Drs. Karimoddini and Homaifar 

Presentations Made: Yes 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 
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Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: TECHLAV bi-weekly Seminar Series 

Meeting Purpose To enhance collaboration between project participants and share updates 
of research results. 

Meeting Start and End Dates April 4, 2016 

Meeting Location North Carolina A&T State University, Greensboro, NC 

Meeting Attendees from this project Students and faculty that are participating in the 
TECHLAV project. 

Presentations Made Yes 

• Meeting Name: Master Thesis Defense of Myrielle Allen-Prince 

Meeting Purpose To present the Thesis and receive evaluation from the Thesis Committee. 

Meeting Start and End Dates March 28, 2016 

Meeting Location North Carolina A&T State University, Greensboro, NC 

Meeting Attendees from this project Students and faculty of Mechanical Engineering. 

Presentations Made Yes 

• Meeting Name: TECHLAV bi-weekly Seminar Series 

Meeting Purpose To enhance collaboration between project participants and share updates 
of research results. 

Meeting Start and End Dates November 13, 2015 

Meeting Location North Carolina A&T State University, Greensboro, NC 
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Meeting Attendees from this project Students and faculty that are participating in the 
TECHLAV project. 

Presentations Made Yes 

• Meeting Name: 5th Annual COE Graduate Poster Presentation Competition 

Meeting Purpose Competition for College of Engineering’s graduate students 

Meeting Start and End Dates April 21, 2016 

Meeting Location North Carolina A&T State University 

Meeting Attendees from this project Faculty and students 

Presentations Made Yes 

• Meeting Name: 2016 International Symposium on Flexible Automation 

Meeting Purpose Presentations of recent research results on dynamical systems and robotics. 

Meeting Start and End Dates August 1-3, 2016 

Meeting Location Case Western Reserve University, OH, USA 

Meeting Attendees from this project Faculty, researchers and students from US and 
others. 

Presentations Made Yes 

• Meeting Name: TECHLAV bi-weekly Seminar Series 

Meeting Purpose To enhance collaboration between project participants and share updates 
of research results. 

Meeting Start and End Dates October 14, 2016 

Meeting Location  North Carolina A&T State University, NC, USA 

Meeting Attendees from this project Students and faculty that are participating in the 
TECHLAV project. 

Presentations Made Yes 

• Meeting Name: ACIT Seminar 

Meeting Purpose To enhance collaboration between project participants and share updates 
of research results. 

Meeting Start and End Dates April 28, 2017 

Meeting Location  North Carolina A&T State University, Greensboro, NC, USA 

Meeting Attendees from this project Students and faculty that are participating in the 
TECHLAV project. 

Presentations Made Yes 

• Meeting Name: 2nd TECHLAV Annual Meeting 

Meeting Purpose To improve and excel to ensure continued success for TECHLAV and its 
many contributions to Autonomy. 
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Meeting Start and End Dates May 30-31, 2017 

Meeting Location  North Carolina A&T State University, Greensboro, NC, USA 

Meeting Attendees from this project Researchers and administration members of the 
TECHLAV project. 

Presentations Made Yes 

• Meeting Name: National Society of Black Engineers 44th Annual Convention 

Meeting Purpose Communities of color and all Black students can envision themselves as 
engineers 

Meeting Start and End Dates March 21 - 25, 2018 

Meeting Location  David L. Lawrence Convention Center, Pittsburgh, PA, USA 

Meeting Attendees from this project Black pre-college, collegiate, or professional engi- 
neer. 

Presentations Made Yes 

• Meeting Name: 2018 WM Symposia 

Meeting Purpose Conference on radioactive waste management & disposal, decommission- 
ing, packaging & transportation, facility siting and site remediation 

Meeting Start and End Dates March 18 - 22, 2018 

Meeting Location  Phoenix Convention Center, Phoenix, AZ, USA 

Meeting Attendees from this project Black pre-college, collegiate, or professional engi- 
neer. 

Presentations Made Yes (best presentation in session) 

• Meeting Name: TECHLAV’s 3rd Annual Meeting 

Meeting Purpose Reports progress during the last year and make a plan for next year 

Meeting Start and End Dates May 31 - June 1, 2018 

Meeting Location NCAT, Greensboro, NC, USA 

Meeting Attendees from this project All Techlav project participants and evaluators. 

Presentations Made Yes 

• Meeting Name: 8th Annual COE Graduate Poster Presentation Competition 

Meeting Purpose Competition for College of Engineering’s graduate students 

Meeting Start and End Dates April 24, 2018 

Meeting Location NCAT, Greensboro, NC, USA 

Meeting Attendees from this project Faculty and students 

Presentations Made Yes 

• Meeting Name: 6th IAJC International Conference 
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Meeting Purpose To disseminate updates of research results. 

Meeting Start and End Dates October 11-14, 2018 

Meeting Location  Orlando, Florida 

Meeting Attendees from this project Faculty and students from academia 

Presentations Made Yes 

• Meeting Name: 2019 Waste Management Symposia 

Meeting Purpose To disseminate updates of research results. 

Meeting Start and End Dates March 2-7, 2019 

Meeting Location  Phoenix, Arizona 

Meeting Attendees from this project Faculty and students from academia 

Presentations Made Yes 

• Meeting Name: TECHLAV’s 4th Annual Meeting 

Meeting Purpose Reports progress during the last year and make a plan for next year 

Meeting Start and End Dates June 25 - June 26, 2019 

Meeting Location  UTSA, San Antonio, TX, USA 

Meeting Attendees from this project All Techlav project participants and evaluators. 

Presentations Made Yes 

• Meeting Name: IEEE SoutheastCon 2019 

Meeting Purpose To present original technical work on engineering, science, and technology 
of current interest 

Meeting Start and End Dates April 11-14, 2019 

Meeting Location Huntsville, AL, USA 

Meeting Attendees from this project Faculty and students 

Presentations Made Yes 

• Meeting Name: TECHLAV Student Seminar Series 

Meeting Purpose To explore the latest transportation innovations and provides attendees 
with the chance to network with other professionals. 

Meeting Start and End Dates April 24, 2020 

Meeting Location  Virtually on Zoom 

Meeting Attendees from this project TECHLAV Faculty and Students 

Presentations Made Yes 

• Meeting Name: ACEC/NC NCDOT Joint Transportation Conference 

Meeting Purpose To explore the latest transportation innovations and provides attendees 
with the chance to network with other professionals. 
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Meeting Start and End Dates October 28 to 30, 2019 

Meeting Location Raleigh Convention Center, Raleigh, NC 

Meeting Attendees from this project Universities, NC DOT, and Transportation Com- 
panies 

Presentations Made Yes 

• Meeting Name: International Conference on Design and Analysis of Protective Structures 
2019 

Meeting Purpose Conference to scientists and engineers who are interested in protective 
structures. 

Meeting Start and End Dates Dec 4 to 6, 2019 

Meeting Location  Seoul, South Korea 

Meeting Attendees from this project Faculty from US, EU, Canada and South Korea. 

Presentations Made Yes 

• lhjadhjl 

Meeting Name: 12th Annual IEEE SoSE Conference 

Meeting Purpose: An IoT self organizing network for 5G dense network interference align- 
ment 

Meeting Start and End Dates: June 18-21, 2017 

Meeting Location: Waikoloa Hilton Village, Waikoloa, Hawaii, USA 

Meeting Attendees from this project: Brian Kelley 

Presentations Made: Yes 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Meeting Name: UEMCON New York 

Meeting Purpose: Design of K-user massive MIMO networks 

Meeting Start and End Dates: Oct 19-21, 2017 

Meeting Location: Columbia University, New York City, New York, USA 

Meeting Attendees from this project: Anil Kumar Yerrapragada 

Presentations Made: Yes 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Meeting Name: 2019 Annual IEEE SoSE Conference 

Meeting Purpose: Error Rate Analysis Of Physical Layer Security For Sub-6 GHz 5G Net- 
work Planning 

Meeting Start and End Dates: May 19-22, 2019 
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Meeting Location: Sheraton Hotel, Anchorage, Alaska, USA 

Meeting Attendees from this project: Anil Kumar Yerrapragada 

Presentations Made: Yes 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Meeting Name: MILCOM Conference Norfolk 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: November 12-14, 2019 

Meeting Location: Hilton Norfolk the Main, Norfolk, Virginia, USA 

Meeting Attendees from this project: Anil Kumar Yerrapragada 

Presentations Made: Yes 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Meeting Name: TECHLAV 2nd Annual Meeting 

Meeting Purpose: Self Organizing Networks that Learn 

Meeting Start and End Dates: May 31 - July 1, 2017 

Meeting Location: North Carolina A&T University, Greensboro, North Carolina, USA 

Meeting Attendees from this project: Brian Kelley, Taylor Eisman 

Presentations Made: Yes 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 
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Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: TECHLAV YEAR (YEAR 2019) ANNUAL VIRTUAL MEETING & AGENDA 

Meeting Purpose: Poster Presentation 

Meeting Start and End Dates: 25 26 June, 2019 

Meeting Location: 

Meeting Attendees from this project: TECHLAV members 

Presentations Made: Yes (Poster) 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Meeting Name: IEEE 2020 International Conference on Systems, Man, and Cybernetics 
(SMC) 

Meeting Purpose: Conference Presentation 

Meeting Start and End Dates: 06 09 Oct., 2019 

Meeting Location: Bari, Italy 

Meeting Attendees from this project: Dr. Abdollah Homaifar 

Presentations Made: Yes 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Meeting Name: TECHLAV (YEAR 2020) ANNUAL VIRTUAL MEETING & AGENDA 

Meeting Purpose: To provide a glimpse of the research outcome 

Meeting Start and End Dates: 25 June, 2020 

Meeting Location: VIRTUAL MEETING, WebEx 

Meeting Attendees from this project: TECHLAV members 

Presentations Made: No 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Meeting Name: IEEE 2020 International Conference on Systems, Man, and Cybernetics 
(SMC) 

Meeting Purpose: Conference Presentation (Virtual) 

Meeting Start and End Dates: 11 14 Oct., 2020 

Meeting Location: Toronto, ON, Canada 
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Meeting Attendees from this project: Md Khurram Monir Rabby (self) 

Presentations Made: Yes 

Most Relevant Task: Task T3-3 

Other Relevant Tasks: NA 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 
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Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: 2019 Southeast Controls Conference 

Meeting Purpose: To present the research outcome of the project 

Meeting Start and End Dates: November 14-15, 2019 

Meeting Location: Georgia Tech, Schools of Electrical and Computer Engineering, Civil 
and Environmental Engineering, and Aerospace Engineering. 

Meeting Attendees from this project: Mrinmoy Sarkar 

Presentations Made: Yes 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA 

• Meeting Name: ACIT Seminar Series 

Meeting Purpose: To educate the members of ACIT and TECHLAV in current research 

Meeting Start and End Dates: February 23, 2018 

Meeting Location: North Carolina Agricultural and Technical State University 

Meeting Attendees from this project: Members of TECHLAV 

Presentations Made: Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: Seventh Annual College of Engineering Research Poster Presentation Com- 
petition at NCA&T 

Meeting Purpose Present research work in a forum for the College of Engineering 

Meeting Start and End Dates April 24, 2018 

Meeting Location  Alumni Events Center, NCA&T 

Meeting Attendees from this project Ms. Amber Hoenig; TECHLAV students and fac- 
ulty 

Presentations Made Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: AFRL Project Supervisor Meeting 

Meeting Purpose Update AFRL Project Supervisor with details of ongoing research 

Meeting Start and End Dates February 22, 2019 
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Meeting Location Fort IRC, North Carolina Agricultural and Technical State University 

Meeting Attendees from this project Provide Meeting Attendees from this project 

Presentations Made Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: Eighth Annual College of Engineering Research Poster Presentation Com- 
petition at NCA&T 

Meeting Purpose Present research work in a forum for the College of Engineering 

Meeting Start and End Dates April 18, 2019 

Meeting Location  Alumni Events Center, NCA&T 

Meeting Attendees from this project Ms. Amber Hoenig; TECHLAV students and fac- 
ulty 

Presentations Made Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: TECHLAV Fourth Annual Meeting 

Meeting Purpose Present and plan the research of the TECHLAV program; meet with 
program stakeholders 

Meeting Start and End Dates June 25-26, 2019 

Meeting Location  John Peace Library, University of Texas at San Antonio 

Meeting Attendees from this project Dr. Joseph DW Stephens (presenter), Ms. Amber 
Hoenig, TECHLAV members and stakeholders 

Presentations Made Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: ACIT Seminar Series 

Meeting Purpose: To educate the members of ACIT and TECHLAV in current research 

Meeting Start and End Dates: October 4, 2019 

Meeting Location: North Carolina Agricultural and Technical State University 

Meeting Attendees from this project: Members of TECHLAV 

Presentations Made: Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: 9th Annual College of Engineering Graduate Research Poster Presentation 
Competition 
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Meeting Purpose To share knowledge from students’ research 

Meeting Start and End Dates April 8, 2020 

Meeting Location North Carolina Agricultural and Technical State University, online 

Meeting Attendees from this project Students in the College of Engineering 

Presentations Made Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: 5th Year Annual TECHLAV Meeting 

Meeting Purpose To share knowledge, research, and progress in TECHLAV with share- 
holders and members 

Meeting Start and End Dates June 25, 2020 

Meeting Location  North Carolina Agricultural and Technical State University, online 

Meeting Attendees from this project Members of TECHLAV 

Presentations Made No 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: ACIT Seminar Series 

Meeting Purpose: To educate the members of ACIT and TECHLAV in current research 

Meeting Start and End Dates: July 17, 2020 

Meeting Location: North Carolina Agricultural and Technical State University, online 

Meeting Attendees from this project: Members of TECHLAV 

Presentations Made: Yes 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-8 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 
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Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

• Meeting Name: Provide meeting name 

Meeting Purpose: Provide Meeting Purpose 

Meeting Start and End Dates: Provide Meeting Start and End Dates 

Meeting Location: Provide Meeting Location 

Meeting Attendees from this project: Provide Meeting Attendees from this project 

Presentations Made: Provide Yes/No 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this presentation in case 
it is related to multiple tasks. 

 
4.3 TECHLAV Seminar Series 

TECHLAV Center and its affiliated partners and laboratories are jointly organizing bi-weekly sem- 
inar series in different aspects of modeling, control, testing, and evaluation of large-scale systems 
of autonomous vehicles. The goal is to create this interactive forum as an environment for sharing 
recent research results and discussing various control, modeling, testing and evaluation problems 
from different angles by participants with different backgrounds and expertise. During the last 
reporting period, 4 seminars were delivered which are listed as follows. The presentation content is 
available to public though the TECHLAV Website at the following URL addresses: 
“http://techlav.ncat.edu/seminars.html” 

4.3.1 Title: Formal Methods in the Development of Highly Assured Software for Unmanned 
Air- craft Systems 

Speaker Dr. Cesar Munoz 

Affiliation NASA Langley Research Center 

Date  04/09/2021 

4.3.2 Title: Copilot 

Speaker Dr. Alwyn Goodloe 

Affiliation NASA Langley Reseach Center Computer Engineering 

Date  04/16/2021 

4.3.3 Title: 24.5 GHz airborne sUAS Doppler radar 
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Speaker Dr. George Szatkowski 

Affiliation NASA Langley Safety-Critical Avionics Systems 

Date  04/23/2021 

4.3.4 Title: Data-Centric Architecture: The foundation to CAV design and performance 

Speaker Dr. Bob Leigh 

Affiliation Real-Time Innovations (RTI) 

Date  04/30/2021 

4.3.5 Title: Attention augmented Convolutional Neural Network (CNN) architecture design 

Speaker Abenezer Girma 

Affiliation North Carolina A&T PhD Candidate 

Date  05/07/2021 
 

4.4 Conducted Dissertations and Thesis 

16 journal and conference papers (1 accepted journal paper, 3 accepted conference papers, 2 sub- 
mitted journal papers, and 10 submitted conference papers) were published and submitted as listed 
below: 

• Thesis Title: Design, construction and distrubuted control of high degree of freedom mod- 
ular robot 

Student Name: Ikram Mohammed 

Defense Date: 5/15/2016 

Advisor: Mo Jamshidi 

Link to the Dissertation: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/design- 
construction-distrubuted-control-high/docview/1834614779/ 

Most Relevant Task: Task T1-1 

Other Relevant Tasks: Task T1-3 

• Thesis Title: Autonomous Intelligent Control for UAV with Self Docking, Charging and 
Learning Capabilities 

Student Name: Abhijit Majumdar 

Defense Date: 12/11/2018 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/autonomous- 
intelligent-control-uav-with-self/docview/2158349940/ 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: Task T1-1, T1-4 

• Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi-Agent System of 
Autonomous Vehicles 
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Student Name: Nicolas Gamez 

Defense Date: 5/5/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/modeling- 
simulation-design-time-delayed-multi/docview/1906293552/ 

Most Relevant Task: Task T1-3, T1-6 

Other Relevant Tasks: Task T1-1, T1-2 

• Dissertation Title: Towards Artificial Emotional Intelligence for Heterogeneous System to 
Improve Human Robot Interactions 

Student Name: Berat Erol 

Defense Date: 5/15/2018 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/towards- 
artificial-emotional-intelligence/docview/2091369150/ 

Most Relevant Task: Task T1-3, T1-4 

Other Relevant Tasks: Task T1-1 

• Dissertation Title: Environmental Effects of Renewable Energy: A Machine Learning Ap- 
proach 

Student Name: Yunus Yetis 

Defense Date: 8/12/2020 

Advisor: Mo Jamshidi 

Link to the Dissertation: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/environme 
effects-renewable-energy-machine/docview/2446028689/ 

Most Relevant Task: Task T1-2 

Other Relevant Tasks: NA 

• Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi-Agent System of 
Autonomous Vehicles 

Student Name: Nicholas Gamez 

Defense Date: 5/5/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/modeling- 
simulation-design-time-delayed-multi/docview/1906293552/ 

Most Relevant Task: Task T1-3, T1-6 

Other Relevant Tasks: Task T1-1, T1-2 

• Thesis Title: Kinematic modeling and control of a human-robot platform for the blind and 
visually impaired 
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Student Name: Nicolas Gallardo 

Defense Date: 12/10/2016 

Advisor: Dr. Patrick Benavidez, Dr. Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/kinematic- 
modeling-control-human-robot-platform/docview/1873449098/ 

Most Relevant Task: Task T1-3, T1-6 

Other Relevant Tasks: NA 

• Thesis Title: Autonomous Intelligent Control for UAV with Self Docking, Charging and 
Learning Capabilities 

Student Name: Abhijit Majumdar 

Defense Date: 12/11/2018 

Advisor: Dr. Patrick Benavidez, Dr. Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/autonomous- 
intelligent-control-uav-with-self/docview/2158349940/ 

Most Relevant Task: Task T1-3, T1-4 

Other Relevant Tasks: Task T1-1 

• Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi-Agent System of 
Autonomous Vehicles 

Student Name: Nicholas Gamez 

Defense Date: 5/5/2017 

Advisor: Dr. Patrick Benavidez, Dr. Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/modeling- 
simulation-design-time-delayed-multi/docview/1906293552/ 

Most Relevant Task: Task T1-3, T1-6 

Other Relevant Tasks: Task T1-1, T1-2 

• Thesis Title: Reinforcement Learning Control with Genetic Algorithm and Physical UGV 
Applications 

Student Name: Edgar Perez 

Defense Date: 11/14/2019 

Advisor: Dr. Patrick Benavidez, Dr. Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/reinforcement- 
learning-control-with-genetic/docview/2351548613/ 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Thesis Title: 3D-printed Mobile Assistance Platform (MAP) for rehabilitative robotics 

Student Name: Eric Wineman 

Approved for Public Release; Distribution Unlimited. 
369



 
 
 

  

Defense Date: 12/15/2015 

Advisor: Dr. Patrick Benavidez, Dr. Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/3d- 
printed-mobile-assistance-platform-map/docview/1751135589/ 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: NA 

• Dissertation Title: Towards Artificial Emotional Intelligence for Heterogeneous System to 
Improve Human Robot Interactions 

Student Name: Berat Erol 

Defense Date: 5/15/2018 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/towards- 
artificial-emotional-intelligence/docview/2091369150/ 

Most Relevant Task: T1-4 

Other Relevant Tasks: T1-1, T1-3 

• Dissertation Title: Autonomous Intelligent Control for UAV with Self Docking, Charging 
and Learning Capabilities 

Student Name: Abhijit Majumdar 

Defense Date: 12/11/2018 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/autonomous- 
intelligent-control-uav-with-self/docview/2158349940/ 

Most Relevant Task: T1-3, T1-4 

Other Relevant Tasks: T1-1 

• Dissertation Title: Comparative Performance Analysis of Navigation Algorithm and Deep 
Learning Application: Different Infrastructure and Cloud Robotics 

Student Name: Divya Bhaskaran 

Defense Date: 12/12/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/comparative- 
performance-analysis-navigation/docview/2001602315 

Most Relevant Task: T1-6, T1-4 

Other Relevant Tasks: 

• Dissertation Title: Vision based cloud robotics 

Student Name: Mohan Muppidi Kumar 

Defense Date: 12/5/2014 
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Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/vision- 
based-cloud-robotics/docview/1682256336/ 

Most Relevant Task: T1-4 

Other Relevant Tasks: 

• Dissertation Title: Optimal navigation of autonomous vehicles 

Student Name: Ibrahim Mohammed 

Defense Date: 10/10/2016 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/optimal- 
navigation-autonomous-vehicles/docview/1835089910/ 

Most Relevant Task: T1-4 

Other Relevant Tasks: 

• Dissertation Title: Cooperative mapping and self-localization for multiple quadrocopters 

Student Name: Satish Vaishnav 

Defense Date: 7/14/2015 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/cooperative- 
mapping-self-localization-multiple/docview/1728065326/ 

Most Relevant Task: T1-4 

Other Relevant Tasks: 

• Dissertation Title: A Complete, Automated and Scalable Framework for Science and En- 
gineering 

Student Name: Mevlut Demir 

Defense Date: 5/16/2020 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/complete- 
automated-scalable-framework-science/docview/2444667555/ 

Most Relevant Task: T1-6, T1-4 

Other Relevant Tasks: 

• Dissertation Title: Low-cost home multi-robot rehabilitation system for the disabled pop- 
ulation 

Student Name: Patrick Benavdez 

Defense Date: 7/20/2015 

Advisor: Mo Jamshidi 
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Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/low- 
cost-home-multi-robot-rehabilitation-system/docview/1719264656/ 

Most Relevant Task: T1-4 

Other Relevant Tasks: 

• Dissertation Title: Reactive Symbolic Planning and Control of Autonomous Vehicles in 
Adversarial Environments 

Student Name: Laya Shamgah 

Defense Date: May 24, 2019 

Advisor: Dr. Ali Karimoddini 

Most Relevant Task: Task T1-5 

• Dissertation Title: End to End Control of a Cloud-Based Heterogeneous Swarm for Cyber- 
Physical Systems 

Student Name: Jonathan Lwowski 

Defense Date: 5/17/2019 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/end- 
control-cloud-based-heterogeneous-swarm-cyber/docview/2235967055 

Most Relevant Task: T1-6, T2-2 

Other Relevant Tasks: 

• Dissertation Title: Real-Time Adaptive Data-Driven Perception for Anomaly Priority Scor- 
ing at Scale 

Student Name: Ali Miraftabzadeh 

Defense Date: 12/15/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/real- 
time-adaptive-data-driven-perception-anomaly/docview/1981389850 

Most Relevant Task: T1-6 

Other Relevant Tasks: 

• Thesis Title: Kinematic modeling and control of a human-robot platform for the blind and 
visually impaired 

Student Name: Nicolas Gallardo 

Defense Date: 12/10/2016 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/kinematic- 
modeling-control-human-robot-platform/docview/1873449098/ 

Most Relevant Task: T1-3, T1-6 
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Other Relevant Tasks: 

• Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi-Agent System of 
Autonomous Vehicles 

Student Name: Nicholas Gamez 

Defense Date: 5/5/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/modeling- 
simulation-design-time-delayed-multi/docview/1906293552/ 

Most Relevant Task: T1-3, T1-6 

Other Relevant Tasks: T1-1, T1-2 

• Thesis Title: Comparative Performance Analysis of Navigation Algorithm and Deep Learn- 
ing Application: Different Infrastructure and Cloud Robotics 

Student Name: Divya Bhaskaran 

Defense Date: 12/12/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/comparative- 
performance-analysis-navigation/docview/2001602315 

Most Relevant Task: T1-6, T1-4 

Other Relevant Tasks: 

• Thesis Title: Implementation and Simulation of a Mobile Sensor Network Using Lambda 
Architecture 

Student Name: Sean Ackels 

Defense Date: 4/5/2020 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/implementation- 
simulation-mobile-sensor-network/docview/2423624605/ 

Most Relevant Task: T1-6 

Other Relevant Tasks: 

• Thesis Title: Mitigating Time-Delay Problems with Cloud-Based Networked Controlled UGVs 

Student Name: James Nelson 

Defense Date: 3/20/2020 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/mitigating- 
time-delay-problems-with-cloud-based/docview/2415835721 

Most Relevant Task: T1-6 

Other Relevant Tasks: T1-4 
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• Dissertation Title: A Complete, Automated and Scalable Framework for Science and En- 
gineering 

Student Name: Mevlut Demir 

Defense Date: 5/16/2020 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/complete- 
automated-scalable-framework-science/docview/2444667555/ 

Most Relevant Task: T1-6, T1-4 

Other Relevant Tasks: 

• Thesis Title: Trash Collecting Robotic System Using Two Autonomous, Mobile-Manipulator 
Robots with Convolutional Neural Network Object Detection System 

Student Name: Jacob Hudson 

Defense Date: 12/15/2021 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/pqdtlocal1006280/docview/261513967 

Most Relevant Task: T1-6 

Other Relevant Tasks: 

• Thesis Title: Terrain Traversability Analysis for Off-Road Robots: Emphasis on Semantic 
Segmentation And Terrain Classification with Terrain Assessment 

Student Name: Manjari Gummidipundi 

Defense Date: 12/15/2021 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/pqdtlocal1006280/docview/261513968 

Most Relevant Task: T1-6 

Other Relevant Tasks: 

• Project Title: 

Student Name: Karthik Pai Haradi 

Defense Date: 12/20/2016 

Advisor: Mo Jamshidi 

Link to the Thesis: 

Most Relevant Task: T1-6 

Other Relevant Tasks: 

• Title: Research based PhD 

Student Name: Benjamin Champion 

Defense Date: 11/17/2018 
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Advisor: Mo Jamshidi 

Link to the Thesis: 

Most Relevant Task: T1-6 

Other Relevant Tasks: 
 

• Thesis Title: Design, construction and distrubuted control of high degree of freedom mod- 
ular robot 

Student Name: Ikram Mohammed 

Defense Date: 5/15/2016 

Advisor: Mo Jamshidi 

Link to the Dissertation: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/design- 
construction-distrubuted-control-high/docview/1834614779/ 

Most Relevant Task: Task T1-1 

Other Relevant Tasks: Task T1-3 

• Thesis Title: Autonomous Intelligent Control for UAV with Self Docking, Charging and 
Learning Capabilities 

Student Name: Abhijit Majumdar 

Defense Date: 12/11/2018 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/autonomous- 
intelligent-control-uav-with-self/docview/2158349940/ 

Most Relevant Task: Task T1-3 

Other Relevant Tasks: Task T1-1, T1-4 

• Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi-Agent System of 
Autonomous Vehicles 

Student Name: Nicolas Gamez 

Defense Date: 5/5/2017 

Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/modeling- 
simulation-design-time-delayed-multi/docview/1906293552/ 

Most Relevant Task: Task T1-3, T1-6 

Other Relevant Tasks: Task T1-1, T1-2 

• Dissertation Title: Towards Artificial Emotional Intelligence for Heterogeneous System to 
Improve Human Robot Interactions 

Student Name: Berat Erol 

Defense Date: 5/15/2018 
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Advisor: Mo Jamshidi 

Link to the Thesis: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/towards- 
artificial-emotional-intelligence/docview/2091369150/ 

Most Relevant Task: Task T1-3, T1-4 

Other Relevant Tasks: Task T1-1 

• Dissertation Title: Failure Diagnosis of Discrete Event Systems Under Unknown\Uncertain 
Activation Conditions 

Student Name: Alejandro White 

Defense Date: March 19, 2018 

Advisor: Dr. Ali Karimoddini 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Thesis Title: Developing a Novel Active-Learning Technique for Fault Diagnosis of Unknown 
Systems 

Student Name: Ira Wendell Bates, II 

Defense Date: October 21, 2020 

Advisor: Dr. Ali Karimoddini 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA 

• Dissertation Title: Heterogeneous Data Analytics for Fault Diagnosis and Accommodation 
of a Mobile Robot with Dislocated Actuator Faults 

Student Name: Conor Wallace 

Defense Date: 4/23/2020 

Advisor: Dr. Mo Jamshidi 

Link to the Dissertation: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/ 
heterogeneous-data-analytics-fault-diagnosis/docview/2415841786/ 

Most Relevant Task: Task T2-2 

Other Relevant Tasks: NA 

• Dissertation Title: End to End Control of a Cloud-Based Heterogeneous Swarm for Cyber- 
Physical Systems 

Student Name: Jonathan Lwowski 

Defense Date: 5/17/2019 

Advisor: Dr. Mo Jamshidi 

Link to the Dissertation: https://www-proquest-com.libweb.lib.utsa.edu/dissertations-theses/end- 
control-cloud-based-heterogeneous-swarm-cyber/docview/2235967055/ 
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Most Relevant Task: Task T1-6 

Other Relevant Tasks: Task T2-2 

• Dissertation Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Dissertation: Provide Dissertation Link if available (if not delete this item 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this dissertation in case it 
is related to multiple tasks. 

• Thesis Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Thesis: Provide Thesis Link if available (if not delete this item 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this thesis in case it is 
related to multiple tasks. 

• Dissertation Title: Device-to-Device Communication in 5G Wireless Networks 

Student Name: Niloofar Bahadori 

Defense Date: February, 9, 2021 

Advisor: Dr. John Kelley, Dr. Abdollah Homaifar 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA 

• Thesis Title: Modeling and Analyzing the Effects of Delays Consensus of Networks of Multi 
Agent Systems 

Student Name: Myrielle Allen Prince 

Defense Date: March 28, 2016 

Advisor: Dr. Sun Yi 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Dissertation Title: Internet Teleoperation and Time Delay in Multi-Agent Systems 

Student Name: Christopher Thomas 

Defense Date: March 18, 2020 
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Advisor: Dr. Sun Yi 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Thesis Title: Adaptive and Neural Network Based Control of Unmanned Aerial Vehicles 

Student Name: Mackenzie Truman Matthews 

Defense Date: March 5, 2021 

Advisor: Dr. Sun Yi 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA 

• Dissertation Title: Advanced Algorithms for secure and spectrally efficient 5G-IoT Net- 
works 

Student Name: Anil Kumar Yerrapragada 

Defense Date: 10/19/2020 

Advisor: Dr. Brian Kelley 

Most Relevant Task: Task T2-7 

Other Relevant Tasks: NA 

• Dissertation Title: Motion planning and control framework for robotic swarms 

Student Name: Solomon Genene Gudeta 

Defense Date: August 05, 2021 

Advisor: Dr. Ali Karimoddini 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA 

• Dissertation Title: Automatic Tasking of Multi-Agent Systems Using Behavior Tree 

Student Name: Tadewos G. Tadewos 

Defense Date: June 2021 

Advisor: Dr. Ali Karimoddini 

Most Relevant Task: Task T3-2 

Other Relevant Tasks: NA 

• Dissertation Title: PhD is now under progress 

Student Name: Md Khurram Monir Rabby 

Defense Date: Expected Dec,  2021 

Advisor: Dr. Ali Karimoddini 

Link to the Dissertation: NA 

Most Relevant Task: Task T3-3 
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Other Relevant Tasks: NA 

• Dissertation Title: A Novel Clustering-based Online Learning Framework For Data Stream 
(COLF) 

Student Name: Xuyang Yan 

Defense Date: 09/09/2022 

Advisor: Dr.Abdollah Homaifar 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Dissertation Title: Attention Mechanism Augmented Deep Neural Network Design for Time- 
series and Computer Vision Applications 

Student Name: Abenezer Girma 

Defense Date: 06/28/2022 

Advisor: Dr.Abdollah Homaifar 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Thesis Title: Knowledge Acquisition from Streaming Data through a Novel Dynamic Clus- 
tering Algorithm 

Student Name: Xuyang Yan 

Defense Date: 07/03/2018 

Advisor: Dr. Abdollah Homaifar 

Link to the Thesis: NA 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA 

• Dissertation Title: Managing Uncertainty In Sensor Data: An Evidence Theory Based Mul- 
tisensor Data Fusion Approach. 

Student Name: Gabriel Awogbami 

Defense Date: 10/2019 

Advisor: Dr. Abdollah Homaifar 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this dissertation in case it 
is related to multiple tasks. 

• Dissertation Title: Evaluation of trust in autonomous systems: human trust sensing and 
trustworthy autonomous driving 

Student Name: Biniam Gebru 

Defense Date: 02/2023 
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Advisor: Dr. Abdollah Homaifar 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA 

• Dissertation Title: Performance Evaluation of Autonomous UAV Systems Using Data- 
Driven Techniques 

Student Name: Mrinmoy Sarkar 

Defense Date: 06/14/2022 

Advisor: Dr. Abdollah Homaifar 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA 

• Dissertation Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Dissertation: Provide Dissertation Link if available (if not delete this item 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA or list the tasks that are relevant to this dissertation in case it 
is related to multiple tasks. 

• Thesis Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Thesis: Provide Thesis Link if available (if not delete this item 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA or list the tasks that are relevant to this thesis in case it is 
related to multiple tasks. 

• Dissertation Title: An Investigation of Neural Correspondence of Human Trust in Automa- 
tion 

Student Name: Seeung Oh 

Defense Date: 2019 

Advisor: Younho Seong 

Link to the Dissertation: Provide Dissertation Link if available (if not delete this item 

Most Relevant Task: Task T3-8 

Other Relevant Tasks: Task 3-9 
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• Thesis Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Thesis: Provide Thesis Link if available (if not delete this item 

Most Relevant Task: Task T3-8 

Other Relevant Tasks: NA or list the tasks that are relevant to this thesis in case it is 
related to multiple tasks. 

• Dissertation Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Dissertation: Provide Dissertation Link if available (if not delete this item 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this dissertation in case it 
is related to multiple tasks. 

• Thesis Title: Provide Title 

Student Name: Provide Student Name 

Defense Date: Provide Defense Date 

Advisor: Provide Advisor Name 

Link to the Thesis: Provide Thesis Link if available (if not delete this item 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this thesis in case it is 
related to multiple tasks. 

 
4.5 Claimed Intellectual Properties 

16 journal and conference papers (1 accepted journal paper, 3 accepted conference papers, 2 sub- 
mitted journal papers, and 10 submitted conference papers) were published and submitted as listed 
below: 

• Invention Title: Surveillance systems and methods for automatic real-time monitoring 

Inventors’ name: Berat Alper Erol, Abhijit Majumdar, Patrick Benavidez, Divya Bhaskaran, 
Mohammad Jamshidi, Benjamin Factor, Arman Rezakhani 

Disclosure Date: 9/20/2020 

Publication  Date: 4/13/2021 

Status of the Innovation: Active Patent 

Most Relevant Task: Task T1-4 
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Other Relevant Tasks: NA 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T1-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-1 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 
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Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 
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Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T2-6 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-1 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-4 
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Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-4 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-5 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 
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Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-6 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-7 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• None 
 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 

Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

• Invention Title: Provide Title 

Inventors’ name: Provide name of inventors 
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Disclosure Date: Provide Defense Date 

Date of Disclosure: Provide Date of Disclosure 

Status of the Innovation: Provide Status of the innovation 

Most Relevant Task: Task T3-9 

Other Relevant Tasks: NA or list the tasks that are relevant to this invention in case it is 
related to multiple tasks. 

 
4.6 Financially Supported and Involved Students 

16 journal and conference papers (1 accepted journal paper, 3 accepted conference papers, 2 sub- 
mitted journal papers, and 10 submitted conference papers) were published and submitted as listed 
below: 

• Student Name: Nicolas Gamez 

Level of Student: Masters 

Period of Support: From 1/16/2015 to 5/10/2017 

Type of Support: Stipend 

Dissertation/Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi- 
Agent System of Autonomous Vehicles 

Most Relevant Involved Task: Task T1-3 

Other Relevant Involved Tasks: T1-1 

Defense Date: 5/5/2017 

Student’s Achievements: Two conference papers, book chapter 

Current Employer of the Student: SAIC 

• Student Name: Ikram Mohammed 

Level of Student: Masters 

Period of Support: From Fall 2015 to Spring 2016 

Type of Support: Stipend 

Dissertation/Thesis Title: Design, construction and distrubuted control of high degree of 
freedom modular robot 

Most Relevant Involved Task: Task T1-1 

Other Relevant Involved Tasks: T1-3 

Defense Date: 5/15/2016 

Student’s Achievements: Two conference papers 

Current Employer of the Student: Neosem Technology, Inc 

• Student Name: Prasanna Kolar 

Level of Student: PhD 

Period of Support: From Fall 2018 to (current) 
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Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Smart Mobility in Known Constricted Environment using Brain 
Computer Interfaces Implementing Riemannian Geometry 

Most Relevant Involved Task: Task T1-1 

Other Relevant Involved Tasks: Task T1-3 

Defense Date: TBD 

Student’s Achievements: Book chapter 

Current Employer of the Student: Southwest Research Institute 

• Student Name: Abhijit Majumdar 

Level of Student: Masters 

Period of Support: From Fall 2016 to Fall 2018 

Type of Support: Stipend 

Dissertation/Thesis Title: Autonomous Intelligent Control for UAV with Self Docking, 
Charging and Learning Capabilities 

Most Relevant Involved Task: Task T1-3, T1-4 

Other Relevant Involved Tasks: T1-1 

Defense Date: 12/11/2018 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: PlusOne Robotics 

• Student Name: Berat Erol 

Level of Student: PhD 

Period of Support: From Fall 2015 to Summer 2018 

Type of Support: Stipend and Tuition 

Dissertation/Thesis Title: Towards Artificial Emotional Intelligence for Heterogeneous 
System to Improve Human Robot Interactions 

Most Relevant Involved Task: Task T1-3, T1-4 

Other Relevant Involved Tasks: T1-1 

Defense Date: 5/15/2018 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: Technical Univ of Izmir 

• Student Name: Nima Ebadi 

Level of Student: PhD 

Period of Support: From Spring 2017 to Summer 2018 

Type of Support: Stipend 

Dissertation/Thesis Title: TBD 
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Most Relevant Involved Task: Task T1-1 

Other Relevant Involved Tasks: T1-1 

Defense Date: 12/20/2021 

Student’s Achievements: Conference paper 

Current Employer of the Student: UTSA 

• Student Name: Amin Sahba 

Level of Student: PhD 

Period of Support: From Spring 2019 to Spring 2021 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Intelligent Optimized Flow Control of Connected Driverless Ve- 
hicles in Smart Cities 

Most Relevant Involved Task: Task T1-2 

Other Relevant Involved Tasks: NA 

Defense Date: Summer 2021 

Student’s Achievements: 3 conference papers 

Current Employer of the Student: UTSA 

• Student Name: Ramin Sahba 

Level of Student: PhD 

Period of Support: From Spring 2019 to Spring 2021 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: 3D Object Detection for Autonomous Vehicles Perception Based 
on Combination of LiDAR, Radar, and Image Data 

Most Relevant Involved Task: Task T1-2 

Other Relevant Involved Tasks: NA 

Defense Date: Summer 2021 

Student’s Achievements: 3 conference papers 

Current Employer of the Student: UTSA 

• Student Name: Halid Kaplan 

Level of Student: PhD 

Period of Support: From Spring 2019 to Spring 2021 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: A health monitoring design based on deep learning approach 
for smart grid applications. 

Most Relevant Involved Task: Task T1-2 

Other Relevant Involved Tasks: Task T1-3 
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Defense Date: Summer 2021 

Student’s Achievements: 2 book chapter, 2 Journal papers, 1 conference paper 

Current Employer of the Student: Hallmark University 

• Student Name: Yunus Yetis 

Level of Student: PhD 

Period of Support: From Spring 2018 to Spring 2020 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: 

Most Relevant Involved Task: Task T1-2 

Other Relevant Involved Tasks: NA 

Defense Date: Summer 2020 

Student’s Achievements: Conference papers, journals 

Current Employer of the Student: USAA 

• Student Name: Parsa Yousefi 

Level of Student: PhD 

Period of Support: From Spring 2017 to Summer 2018 

Type of Support: Stipend 

Dissertation/Thesis Title: N/A 

Most Relevant Involved Task: Task T1-2 

Other Relevant Involved Tasks: NA 

Defense Date: N/A 

Student’s Achievements: 1 Conference Paper 

Current Employer of the Student: Unknown 

• Student Name: Hamid Fekriazgomi 

Level of Student: PhD 

Period of Support: From Spring 2017 to Summer 2018 

Type of Support: Stipend 

Dissertation/Thesis Title: N/A 

Most Relevant Involved Task: Task T1-2 

Other Relevant Involved Tasks: NA 

Defense Date: N/A 

Student’s Achievements: 1 Conference Paper 

Current Employer of the Student: Unknown 

• Student Name: Nicolas Gamez 
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Level of Student: MS 

Period of Support: From Fall 2015 to Spring 2017 

Type of Support: Stipend 

Dissertation/Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi- 
Agent System of Autonomous Vehicles 

Most Relevant Involved Task: Task T1-3, T1-6 

Other Relevant Involved Tasks: Task T1-1, T1-2 

Defense Date: 5/5/2017 

Student’s Achievements: 1 Conference Paper 

Current Employer of the Student: SAIC 

• Student Name: Berat Erol 

Level of Student: PhD 

Period of Support: From Fall 2015 to Summer 2018 

Type of Support: Stipend and Tuition 

Dissertation/Thesis Title: Towards Artificial Emotional Intelligence for Heterogeneous 
System to Improve Human Robot Interactions 

Most Relevant Involved Task: Task T1-3, T1-4 

Other Relevant Involved Tasks: T1-1 

Defense Date: 5/15/2018 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: Technical Univ of Izmir 

• Student Name: Ikram Mohammed 

Level of Student: Masters 

Period of Support: From Fall 2015 to Spring 2016 

Type of Support: Stipend 

Dissertation/Thesis Title: Design, construction and distrubuted control of high degree of 
freedom modular robot 

Most Relevant Involved Task: Task T1-1 

Other Relevant Involved Tasks: T1-3 

Defense Date: 5/15/2016 

Student’s Achievements: Two conference papers 

Current Employer of the Student: Neosem Technology, Inc 

• Student Name: Prasanna Kolar 

Level of Student: PhD 

Period of Support: From Fall 2018 to Spring 2022 
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Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Smart Mobility in Known Constricted Environment using Brain 
Computer Interfaces Implementing Riemannian Geometry 

Most Relevant Involved Task: Task T1-1 

Other Relevant Involved Tasks: Task T1-3 

Defense Date: Spring 2022 

Student’s Achievements: Book chapter 

Current Employer of the Student: Southwest Research Institute 

• Student Name: Abhijit Majumdar 

Level of Student: Masters 

Period of Support: From Fall 2016 to Fall 2018 

Type of Support: Stipend 

Dissertation/Thesis Title: Autonomous Intelligent Control for UAV with Self Docking, 
Charging and Learning Capabilities 

Most Relevant Involved Task: Task T1-3, T1-4 

Other Relevant Involved Tasks: T1-1 

Defense Date: 12/11/2018 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: PlusOne Robotics 

• Student Name: Nicolas Gamez 

Level of Student: Masters 

Period of Support: From 1/16/2015 to 5/10/2017 

Type of Support: Stipend 

Dissertation/Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi- 
Agent System of Autonomous Vehicles 

Most Relevant Involved Task: Task T1-3 

Other Relevant Involved Tasks: T1-1 

Defense Date: 5/5/2017 

Student’s Achievements: Two conference papers, book chapter 

Current Employer of the Student: SAIC 

• Student Name: Tyrell Lewis 

Level of Student: PhD 

Period of Support: From 01/2021 to 05/2022 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Reinforcement Learning for Autonomous Robotic Systems 
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Most Relevant Involved Task: Task T1-3 

Other Relevant Involved Tasks: NA 

Defense Date: TBD 

Student’s Achievements: Provide number of publications, presentations in national or in- 
ternational conferences, awards, etc 

Current Employer of the Student: University of Texas at San Antonio 

• Student Name: Berat Erol 

Level of Student: PhD 

Period of Support: From 9/1/2015 to 7/14/2018 

Type of Support: Stipend and Tuition 

Dissertation/Thesis Title: Towards Artificial Emotional Intelligence for Heterogeneous 
System to Improve Human Robot Interactions 

Most Relevant Involved Task: T1-4 

Other Relevant Involved Tasks: 

Defense Date: 5/15/2018 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: Technical Univ of Izmir 

• Student Name: Abhijit Majumdar 

Level of Student: MS 

Period of Support: From 9/1/2016 to 12/15/2018 

Type of Support: Stipend 

Dissertation/Thesis Title: Autonomous Intelligent Control for UAV with Self Docking, 
Charging and Learning Capabilities 

Most Relevant Involved Task: T1-3, T1-4 

Other Relevant Involved Tasks: T1-1 

Defense Date: 12/11/2018 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: PlusOne Robotics 

• Student Name: Divya Bhaskaran 

Level of Student: MS 

Period of Support: From 1/1/2015 to 12/20/2017 

Type of Support: Stipend 

Dissertation/Thesis Title: Comparative Performance Analysis of Navigation Algorithm 
and Deep Learning Application: Different Infrastructure and Cloud Robotics 

Most Relevant Involved Task: T1-6, T1-4 
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Other Relevant Involved Tasks: 

Defense Date: 12/12/2017 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: American NITTO SEIKO CORPORATION 

• Student Name: Mohan Muppidi Kumar 

Level of Student: MS 

Period of Support: From 4/14/2013 to 12/20/2014 

Type of Support: Stipend 

Dissertation/Thesis Title: Vision based cloud robotics 

Most Relevant Involved Task: T1-4 

Other Relevant Involved Tasks: 

Defense Date: 12/5/2014 

Student’s Achievements: Conference papers, journal paper, book chapter 

Current Employer of the Student: iROBOT 

• Student Name: Ibrahim Mohammed 

Level of Student: MS 

Period of Support: From 6/15/2016 to 12/14/2016 

Type of Support: Stipend 

Dissertation/Thesis Title: Optimal navigation of autonomous vehicles 

Most Relevant Involved Task: T1-4 

Other Relevant Involved Tasks: 

Defense Date: 10/10/2016 

Student’s Achievements: Conference papers 

Current Employer of the Student: Works in Saudi Arabia 

• Student Name: Satish Vaishnav 

Level of Student: MS 

Period of Support: From 1/23/2015 to 8/14/2015 

Type of Support: Stipend 

Dissertation/Thesis Title: Cooperative mapping and self-localization for multiple quadro- 
copters 

Most Relevant Involved Task: T1-4 

Other Relevant Involved Tasks: 

Defense Date: 7/14/2015 

Student’s Achievements: Conference papers, journal paper 

Current Employer of the Student: Aptiv 
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• Student Name: Mevlut Demir 

Level of Student: PhD 

Period of Support: From 9/15/2016 to 12/12/2016 

Type of Support: Stipend 

Dissertation/Thesis Title: A Complete, Automated and Scalable Framework for Science 
and Engineering 

Most Relevant Involved Task: T1-6, T1-4 

Other Relevant Involved Tasks: 

Defense Date: 5/16/2020 

Student’s Achievements: Conference papers, journal paper, book chapter 

Current Employer of the Student: UTSA 

• Student Name: Patrick Benavdez 

Level of Student: PhD 

Period of Support: From 5/5/2015 to 8/15/2015 

Type of Support: Stipend and Tuition 

Dissertation/Thesis Title: Low-cost home multi-robot rehabilitation system for the dis- 
abled population 

Most Relevant Involved Task: T1-4 

Other Relevant Involved Tasks: 

Defense Date: 7/20/2015 

Student’s Achievements: Conference papers, journal paper, book chapter, patent 

Current Employer of the Student: UTSA 

• Student Name: Laya Shamgah 

Level of Student: PhD 

Period of Support: From August 2014 to June 2019 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Reactive Symbolic Planning and Control of Autonomous Vehi- 
cles in Adversarial Environments 

Most Relevant Involved Task: Task T1-5 

Other Relevant Involved Tasks: NA 

Defense Date: May 24, 2019 

Student’s Achievements: 3 conference papers and 2 journal papers 

Current Employer of the Student: Lowe’s Corp. 

• Student Name: Jonathan Lwowski 

Level of Student: PhD 
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Period of Support: From 1/1/2016 to 5/20/2019 

Type of Support: Tuition and Stipend 

Dissertation/Thesis Title: End to End Control of a Cloud-Based Heterogeneous Swarm 
for Cyber-Physical Systems 

Most Relevant Involved Task: T1-6, T2-2 

Other Relevant Involved Tasks: 

Defense Date: 5/17/2019 

Student’s Achievements: Journals and Conference Papers 

Current Employer of the Student: Drone Base 

• Student Name: Ali Miraftabzadeh 

Level of Student: PhD 

Period of Support: From 1/10/2015 to 12/15/2017 

Type of Support: Tuition 

Dissertation/Thesis Title: Real-Time Adaptive Data-Driven Perception for Anomaly Pri- 
ority Scoring at Scale 

Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 

Defense Date: 12/15/2017 

Student’s Achievements: Journals and Conference Papers 

Current Employer of the Student: VRBO 

• Student Name: Nicolas Gallardo 

Level of Student: MS 

Period of Support: From 9/1/2014 to 12/15/2016 

Type of Support: Stipend 

Dissertation/Thesis Title: Kinematic modeling and control of a human-robot platform for 
the blind and visually impaired 

Most Relevant Involved Task: T1-3, T1-6 

Other Relevant Involved Tasks: 

Defense Date: 12/10/2016 

Student’s Achievements: Journals and Conference Papers 

Current Employer of the Student: Unknown in San Antonio 

• Student Name: Nicholas Gamez 

Level of Student: MS 

Period of Support: From 1/16/2015 to 5/10/2017 

Type of Support: Stipend 
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Dissertation/Thesis Title: Modeling, Simulation, and Design of a Time-Delayed Multi- 
Agent System of Autonomous Vehicles 

Most Relevant Involved Task: T1-3, T1-6 

Other Relevant Involved Tasks: 

Defense Date: 5/5/2017 

Student’s Achievements: Journals and Conference Papers 

Current Employer of the Student: SAIC 

• Student Name: Divya Bhaskaran 

Level of Student: MS 

Period of Support: From 1/1/2015 to 12/20/2017 

Type of Support: Stipend 

Dissertation/Thesis Title: Comparative Performance Analysis of Navigation Algorithm 
and Deep Learning Application: Different Infrastructure and Cloud Robotics 

Most Relevant Involved Task: T1-6, T1-4 

Other Relevant Involved Tasks: 

Defense Date: 12/12/2017 

Student’s Achievements: Conference Papers 

Current Employer of the Student: American NITTO SEIKO CORPORATION 

• Student Name: Sean Ackels 

Level of Student: PhD 

Period of Support: From 1/18/2018 to 4/30/2020 

Type of Support: Tuition and Stipend 

Dissertation/Thesis Title: Implementation and Simulation of a Mobile Sensor Network 
Using Lambda Architecture 

Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 

Defense Date: 4/5/2020 

Student’s Achievements: Journals and Conference Papers 

Current Employer of the Student: UTSA 

• Student Name: James Nelson 

Level of Student: MS 

Period of Support: From 1/18/2018 to 4/20/2020 

Type of Support: Tuition and Stipend 

Dissertation/Thesis Title: Mitigating Time-Delay Problems with Cloud-Based Networked 
Controlled UGVs 
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Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 

Defense Date: 3/20/2020 

Student’s Achievements: Conference Papers 

Current Employer of the Student: PlusOne Robotics 

• Student Name: Mevlut Demir 

Level of Student: PhD 

Period of Support: From 9/15/2016 to 12/12/2016 

Type of Support: Stipend 

Dissertation/Thesis Title: A Complete, Automated and Scalable Framework for Science 
and Engineering 

Most Relevant Involved Task: T1-6, T1-4 

Other Relevant Involved Tasks: 

Defense Date: 5/16/2020 

Student’s Achievements: Journals and Conference Papers 

Current Employer of the Student: UTSA 

• Student Name: Jacob Hudson 

Level of Student: MS 

Period of Support: From 1/17/2020 to 10/15/2021 

Type of Support: Stipend 

Dissertation/Thesis Title: Trash Collecting Robotic System Using Two Autonomous, Mobile- 
Manipulator Robots with Convolutional Neural Network Object Detection System 

Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 

Defense Date: 12/15/2021 

Student’s Achievements: Conference Papers 

Current Employer of the Student: USAF 

• Student Name: Manjari Gummidipundi 

Level of Student: MS 

Period of Support: From 5/25/2021 to 8/15/2021 

Type of Support: Stipend 

Dissertation/Thesis Title: Terrain Traversability Analysis for Off-Road Robots: Emphasis 
on Semantic Segmentation And Terrain Classification with Terrain Assessment 

Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 
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Defense Date: 12/15/2021 

Student’s Achievements: Conference Papers 

Current Employer of the Student: Schneider Electric 

• Student Name: Karthik Pai Haradi 

Level of Student: MS 

Period of Support: From 1/15/2016 to 12/16/2016 

Type of Support: Stipend 

Dissertation/Thesis Title: 

Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 

Defense Date: 12/20/2016 

Student’s Achievements: Conference Papers 

Current Employer of the Student: Texas Oil Industry 

• Student Name: Benjamin Champion 

Level of Student: PhD 

Period of Support: From 6/10/2016 to 6/30/2016 

Type of Support: Stipend 

Dissertation/Thesis Title: 

Most Relevant Involved Task: T1-6 

Other Relevant Involved Tasks: 

Defense Date: 11/17/2018 

Student’s Achievements: Conference Papers 

Current Employer of the Student: Deakin University 

• Student Name: Ira Wendell Bates, II 

Level of Student: Master or PhD 

Period of Support: From Fall 2018 to Fall 2020 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Developing a Novel Active-Learning Technique for Fault Diag- 
nosis of Unknown Systems 

Most Relevant Involved Task: Task T2-1 

Other Relevant Involved Tasks: NA 

Defense Date: October 21, 2020 

Student’s Achievements: 2 publications, 1 publication under review, 2 conference presen- 
tations 

Current Employer of the Student: Raytheon Technologies 
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• Student Name: Jonathan Lwowski 

Level of Student: PhD 

Period of Support: From 1/15/16 to 5/15/2019 

Type of Support: Tuition and Stipend 

Dissertation/Thesis Title: End to End Control of a Cloud-Based Heterogeneous Swarm 
for Cyber-Physical Systems 

Most Relevant Involved Task: Task T1-6 

Other Relevant Involved Tasks: Task T2-2 

Defense Date: 5/17/2019 

Student’s Achievements: 2 book chapters, 4 conference papers, 1 journal, 1 magazine chap- 
ter 

Current Employer of the Student: Kespry 

• Student Name: Conor Wallace 

Level of Student: Master 

Period of Support: From 9/12/17 to 4/23/20 

Type of Support: Tuition and Stipend 

Dissertation/Thesis Title: Heterogeneous Data Analytics for Fault Diagnosis and Accom- 
modation of a Mobile Robot with Dislocated Actuator Faults 

Most Relevant Involved Task: Task T2-2 

Other Relevant Involved Tasks: NA 

Defense Date: 4/23/2020 

Student’s Achievements: 3 publications 

Current Employer of the Student: Sierra Nevada 

• Student Name: Mauricio Figueroa 

Level of Student: Master 

Period of Support: From 8/22/20 to 8/15/21 

Type of Support: Stipend 

Dissertation/Thesis Title: NA 

Most Relevant Involved Task: Task T2-2 

Other Relevant Involved Tasks: NA 

Defense Date: Fall 2021 

Student’s Achievements:  NA 

Current Employer of the Student: UTSA 

• Student Name: Zack Hudson 

Level of Student: Master 
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Period of Support: From 1/22/20 to 8/10/20 

Type of Support: Stipend 

Dissertation/Thesis Title: NA 

Most Relevant Involved Task: Task T2-2 

Other Relevant Involved Tasks: NA 

Defense Date: NA 

Student’s Achievements:  NA 

Current Employer of the Student: USAF 

• Student Name: Provide student name 

Level of Student: Master or PhD 

Period of Support: From ... to .... 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Provide the research topic 

Most Relevant Involved Task: Task T2-4 

Other Relevant Involved Tasks: NA or list the tasks the student has been involved in 
case the student has been involved in multiple tasks. 

Defense Date: provide the defense data 

Student’s Achievements: Provide number of publications, presentations in national or in- 
ternational conferences, awards, etc 

Current Employer of the Student: Provide the name of the Current Employer of the 
Student 

• Student Name: Provide student name 

Level of Student: Master or PhD 

Period of Support: From ... to .... 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Provide the research topic 

Most Relevant Involved Task: Task T2-4 

Other Relevant Involved Tasks: NA or list the tasks the student has been involved in 
case the student has been involved in multiple tasks. 

Defense Date: provide the defense data 

Student’s Achievements: Provide number of publications, presentations in national or in- 
ternational conferences, awards, etc 

Current Employer of the Student: Provide the name of the Current Employer of the 
Student 

• Student Name: Niloofar Bahadori 

Level of Student: PhD 
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Period of Support: From 2016 to 2021 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Device-to-Device Communication in 5G Wireless Networks 

Most Relevant Involved Task: Task T2-5 

Other Relevant Involved Tasks: NA 

Defense Date: Feb. , 9, 2021 

Student’s Achievements: 6 publications, 3 presentations in national or international con- 
ferences, 1 best paper awards in IEEE WTS conference. 

Current Employer of the Student: Northeastern University 

• Student Name: Myrielle Allen Prince 

Level of Student: Master 

Period of Support: Spring 2016 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Modeling and Analyzing the Effects of Delays Consensus of 
Networks of Multi Agent Systems 

Most Relevant Involved Task: Task T2-6 

Other Relevant Involved Tasks: NA 

Defense Date: March 28, 2016 

Student’s Achievements: 1 publication 

Current Employer of the Student: Boeing 

• Student Name: Christopher Thomas 

Level of Student: PhD 

Period of Support: From Fall 2016 to Spring 2020 

Type of Support: Stipend 

Dissertation/Thesis Title: Internet Teleoperation and Time Delay in Multi-Agent Systems 

Most Relevant Involved Task: Task T2-6 

Other Relevant Involved Tasks: NA 

Defense Date: March 18, 2020 

Student’s Achievements: 3 publications, 1 conference presentation 

Current Employer of the Student: PolarOnyx 

• Student Name: Aaron Amusan 

Level of Student: MS 

Period of Support: Spring 2021 

Type of Support: Stipend and Tuition 

Dissertation/Thesis Title: Teleoperation of Robot Arms Using Gesture Recognition 
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Most Relevant Involved Task: Task T2-6 

Other Relevant Involved Tasks: NA 

Defense Date: May, 2022 

Student’s Achievements: 0 publication 

Current Employer of the Student: 
 

• Student Name: Taylor Eisman 

Level of Student: Master 

Period of Support: 2018 

Type of Support: Stipend 

Dissertation/Thesis Title: Physical Layer Security 

Most Relevant Involved Task: Task T2-7 

Other Relevant Involved Tasks: NA 

Defense Date: Summer 2021 

Student’s Achievements:  NA 

Current Employer of the Student: University of Texas, San Antonio 

• Student Name: Dr. Anil Kumar Yerrapragada 

Level of Student: PhD 

Period of Support: NA 

Type of Support: NA 

Dissertation/Thesis Title: Physical Layer Security 

Most Relevant Involved Task: Task T2-7 

Other Relevant Involved Tasks: NA 

Defense Date: provide the defense data 

Student’s Achievements: 7 

Current Employer of the Student: Indian Institute of Technology, Madras 

• Student Name: Solomon Genene Gudeta 

Level of Student: PhD 

Period of Support: From January 2018 to July 2021 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Motion planning and control framework for robotic swarms 

Most Relevant Involved Task: Task T3-1 

Other Relevant Involved Tasks: NA 

Defense Date: August 05, 2021 

Student’s Achievements: 4 conferences and 3 journal papers 
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Current Employer of the Student: Embark Trucks Inc. 

• Student Name: Tadewos G. Tadewos 

Level of Student: PhD 

Period of Support: From August 2016 to July 2021 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Automatic Tasking of Multi-Agent Systems Using Behavior 
Tree 

Most Relevant Involved Task: Task T3-2 

Other Relevant Involved Tasks: NA 

Defense Date: June 2021 

Student’s Achievements: 2 conferences and 3 journal papers 

Current Employer of the Student: SYNOPSYS 

• Student Name: Md Khurram Monir Rabby 

Level of Student: PhD 

Period of Support: From August 2017 to Dec., 2021 (expected) 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: PhD research on Human-Robot Collaboration is now under 
progress 

Most Relevant Involved Task: Task T3-3 

Other Relevant Involved Tasks: NA 

Student’s Achievements: 2 conference papers and 2 journal papers (under review) 

Current Employer of the Student: NA as the student has not completed dissertation 

• Student Name: Xuyang Yan 

Level of Student: Master 

Period of Support: From 2016 to 2018 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Knowledge Acquisition from Streaming Data through a Novel 
Dynamic Clustering Algorithm 

Most Relevant Involved Task: Task T3-4 

Other Relevant Involved Tasks: NA 

Defense Date: 07/03/2018 

Student’s Achievements: Three conference paper 

Current Employer of the Student: JP Morgan Chase Co. 

• Student Name: Xuyang Yan 

Level of Student: PhD 
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Period of Support: From 2018 to 2022 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: A Novel Clustering-based Online Learning Framework For Data 
Stream (COLF) 

Most Relevant Involved Task: Task T3-4 

Other Relevant Involved Tasks: NA 

Defense Date: 09/09/2022 

Student’s Achievements: Ten conference paper and seven journal paper 

Current Employer of the Student: JP Morgan Chase Co. 

• Student Name: Abenezer Girma 

Level of Student: PhD 

Period of Support: From 2017 to 2022 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Attention Mechanism Augmented Deep Neural Network Design 
for Time-series and Computer Vision Applications 

Most Relevant Involved Task: Task T3-4 

Other Relevant Involved Tasks: NA. 

Defense Date: 06/28/2022 

Student’s Achievements: ten conference paper and three journal paper. 

Current Employer of the Student: JP Morgan Chase Co. 

• Student Name: Gabriel Awogbami 

Level of Student: PhD 

Period of Support: From 2014 to 2019 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Managing Uncertainty In Sensor Data: An Evidence Theory 
Based Multisensor Data Fusion Approach. 

Most Relevant Involved Task: Task T3-5 

Other Relevant Involved Tasks: NA 

Defense Date: provide the defense data 

Student’s Achievements: 5 publications 

Current Employer of the Student: NA 

• Student Name: Biniam Gebru 

Level of Student: PhD 

Period of Support: From 2017 to 2023 

Type of Support: Tuition and stipend 
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Dissertation/Thesis Title: Evaluation of trust in autonomous systems: human trust sens- 
ing and trustworthy autonomous driving. 

Most Relevant Involved Task: Task T3-5 

Other Relevant Involved Tasks: NA 

Defense Date: 02/2023 

Student’s Achievements: 6 publications 

Current Employer of the Student: NA 

• Student Name: Mrinmoy Sarkar 

Level of Student: PhD 

Period of Support: From aug, 2017 to dec, 2020 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: NA 

Most Relevant Involved Task: Task T3-6 

Other Relevant Involved Tasks: NA 

Defense Date: NA 

Student’s Achievements: Two journal papers, Two conference papers and one conference 
presentation. 

Current Employer of the Student: ACIT Institute 

• Student Name: Amber Hoenig 

Level of Student: PhD 

Period of Support: January 2017 to August 2020 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Decision Making Using Automated Estimates in the Classifi- 
cation of Novel Stimuli 

Most Relevant Involved Task: Task T3-7 

Other Relevant Involved Tasks: NA 

Defense Date: N/A 

Student’s Achievements: Paper presentation at the 10th International Conference on Ap- 
plied Human Factors and Ergonomics held in Washington, D.C.; one paper publication. 

Current Employer of the Student: Student is continuing in the doctoral program at NCA&T. 

•  

• Student Name: Seeung Oh 

Level of Student: PhD 

Period of Support: From Jan 2018 to December 2018 

Type of Support: stipend 
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Dissertation/Thesis Title: An Investigation of Neural Correspondence of Human Trust in 
Automation 

Most Relevant Involved Task: Task T3-8 

Other Relevant Involved Tasks: task 3-9 

Defense Date: 2018 May 

Student’s Achievements: journal papers, 5 conference proceedings, a few presentations, 
selected for NSF PhD 

Current Employer of the Student: North Carolina A & T State Universituy 

• Student Name: Marcia Nealy 

Level of Student: Master 

Period of Support: From Jan 2018 to December 2018 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Development of Simulated Environment for Decision Making 
Performance with an Autonomous Systems under Uncertainty 

Most Relevant Involved Task: Task T3-8 

Other Relevant Involved Tasks: task 3-9 

Defense Date: 2018 May 

Student’s Achievements: 2 Conference Proceedings, and 3 professional presentations pro- 
vided. 

Current Employer of the Student: 

• Student Name: Lavoris Langley 

Level of Student: MS 

Period of Support: From 2017 Summer to 2017 December 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Human Trust In Automation 

Most Relevant Involved Task: Task T3-8 

Other Relevant Involved Tasks: NNone 

Defense Date: December 2017 

Student’s Achievements: 

Current Employer of the Student: 
 

• Student Name: Provide student name 

Level of Student: Master or PhD 

Period of Support: From ... to .... 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Provide the research topic 
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Most Relevant Involved Task: Task T3-9 

Other Relevant Involved Tasks: NA or list the tasks the student has been involved in 
case the student has been involved in multiple tasks. 

Defense Date: provide the defense data 

Student’s Achievements: Provide number of publications, presentations in national or in- 
ternational conferences, awards, etc 

Current Employer of the Student: Provide the name of the Current Employer of the 
Student 

• Student Name: Provide student name 

Level of Student: Master or PhD 

Period of Support: From ... to .... 

Type of Support: Tuition and stipend 

Dissertation/Thesis Title: Provide the research topic 

Most Relevant Involved Task: Task T3-9 

Other Relevant Involved Tasks: NA or list the tasks the student has been involved in 
case the student has been involved in multiple tasks. 

Defense Date: provide the defense data 

Student’s Achievements: Provide number of publications, presentations in national or in- 
ternational conferences, awards, etc 

Current Employer of the Student: Provide the name of the Current Employer of the 
Student 
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5 Education and Outreach Plans 

5.1 Student Support-Training Pathway to Next Generation of STEM Leaders 

During this period, we have provided research assistantship to 15 PhD and 4 Masters Students (the 
latter of which includes two USAF Smart Program civilian employees) as well as 16 undergraduate 
students at N.C. A&T, and SIPI. These students, in collaboration with their respective faculty advisors 
are involved in various research tasks and test bed preparations. 

 
5.2 Collaborative Curriculum Development 

The delivered autonomy-related courses included: 

5.2.1 Optimal Linear Control Systems (ECE, N.C. A&T ) 

5.2.2 Machine Learning and Evolutionary Algorithms (ECE, N.C. A&T) 

5.2.3 Sensation & Perception (ISE, N.C. A&T) 

5.2.4 System Dynamics (ME, N.C. A&T) 

5.2.5 Introduction to Modern Telecommunications (ECE, N.C. A&T) 

5.2.6 Big data analytic and cloud infrastructure at UTSA 

5.2.7 Robot Operating System (ROS) at SIPI 

5.2.8 Engineering Internship at SIPI 

The developed and offered collaborative courses that are being offered at both N.C. A&T and 
UTSA include: 

5.2.9 Advanced Robotic Systems 

5.2.10 4G LTE Wireless Communications 
 

This assisted in sharing the resources and facilitate the exchange of knowledge between the stu- 
dents and instructors at N.C. A&T and UTSA. Furthermore, it did further foster the collaboration 
among students from both campuses to have common advisers, sharing and assisting each other in 
the experimental setup and writing papers. 

 
5.3 Organizing a workshop 

To aid our students in effective communication, a workshop was held at N.C. A&T on March 4, 2016. 
This workshop covered the fundamentals of effective communication, writing and public speaking, 
and over 40 students and faculty members were in attendance. The speakers were Dr. Yahya R. 
Kamalipour, Chair, Department of Journalism and Mass Communication, as well as Dr. Faye Spencer 
Maor, Associate Professor, Department of English (see attached appendix for details of this 
workshop). 
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5.4 Other educational activities 

Within the framework proposed in this proposal, N.C. A&T, UTSA, and SIPI focus on the devel- 
opment of the following activities: 

5.4.1 Summer Faculty Program for SIPI faculty in order to promote research collaboration among 
institutions. 

5.4.2 Joint educational design projects involving undergraduate student teams from both institu- 
tions. 

5.4.3 SIPI provided assistance in identifying and encouraging potential Native American students to 
apply and enroll in graduate programs at School of Engineering, The University of New Mexico. 
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5.5 Outreach Activities 

In January 2016, two of the TECHLAV outreach undergraduate students, Na’Kayla and Dunamis, sent 
communication to the coaches of the 5 FTC teams, requesting information on any pressing issues they 
might have been experiencing and to see if the teams would be participating in any of the qualifying 
tournaments. Only two schools responded. Ben L. Smith High School attended a tournament at 
TSDCH on January 30, 2016 in Durham. Their team seemed to be fairly comfortable with the new 
technology. Southern Guilford High School attended a tournament on January 23, 2016 at Northern 
Guilford H.S. and on February 6, 2016 at Southern Guilford H.S. The outreach students also spoke 
with Brian Flack and Warren Berger, two experienced FTC coaches with experienced FTC teams. The 
purpose was to gain additional insight into how to be a successful mentor and how to develop a 
successful team. Southern Guilford is struggling with the basics and needed help with storm bots, 
robust robot build, short critical hardware, and Android Studios. After the intervention, Southern 
Guilford was left with a basic drive program. Penn Griffin School for the Arts was assisted with basic 
questions surrounding App Inventor. 

In February, Na’Kayla and Dunamis distributed another round of communication to the teams. 
Penn Griffin responded and indicated that they would be attending the qualifier at Northern Guil- 
ford on 2/13/16 and that they needed help with autonomous programming. Dunamis attended 
the FTC State Championship as a volunteer. They began working on a feedback survey for the 
coaches. The first revision has been completed and is currently being modified. They are also having 
discussions on how to assist these schools in the summer. 

SIPI has expanded its outreach to the Bernalillo high school, Bernalillo middle school and Pueblo 
of Jemez Education region. Program Outline for these Partner High Schools (and Lower Grades) are: 

5.5.1 To develop creative and demonstrate effective ways to engage students in STEM subjects. 

5.5.2 To develop and deliver curricula to meet this objective. 

5.5.3 To engage student interest in STEM subjects by having them build Mars Rovers and learn 
to program and operate Mars Rovers in Mars-yards that have been constructed on the SIPI 
campus. 

5.5.4 To teach students the math and physics required to build and operate the rovers. 

5.5.5 To enable students to program and operate the Mars Rovers from their current classrooms. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 

Clinical decision support systems   CDSSs 

Computational intelligence   CI 
Demonstration, Implementation, and 
Integration   DII 

Device‐to‐device   D2D 

DOF   Degree of Freedom 

Electroencephalography   EEG 

Extended Kalman Filter   EKF 

Functional magnetic resonance imaging   fMRI 

Indian Polytechnic Institute   SIPI 

Inertial Measurement Unit   IMU 

K‐nearest neighbor   KNN 

Large‐ scale Autonomous Systems of Vehicles   LSASVs 

Large‐Scale Autonomous Systems of Vehicles   LSASVs 

Learning without Forgetting   LwF 

Light Detection and Ranging   LIDAR 

Linear quadratic regulator   LQR 

Linear Temporal Logic   LTL 

Long Short‐Term Memory   LSTM 

MAPE   Mean Absolute Percentage Error 

Maximum contaminant level   MCL 

Modeling, Analysis and Control of Large‐scale 
Autonomous systems of Vehicles   MACLAV 

Multi‐target dynamic reach‐avoid   MTDRA 

Neural network   ANN 
North Carolina Agricultural and Technical State 
University   N.C. A&T 

ORB   Oriented FAST and Rotated BRIEF 

Perception inference engine   PIE 

Principal component analysis   PCA 

Quality of service   QoS 

Recurrent Neural Network   RNN 

Resilient Control and Communication of Large‐
scale Autonomous systems of Vehicles   RC2LAV 

Robot Description File   URDF 
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