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Neuronal oscillations on an ultra-slow timescale: daily
rhythms in electrical activity and gene expression in the
mammalian master circadian clockwork

Mino D. C. Belle1 and Casey O. Diekman2,3
1Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
2Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA
3Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA

Keywords: circadian rhythms, clock genes, electrical activity, mathematical modelling, neuronal oscillations, suprachiasmatic
nuclei

Abstract

Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span
across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal
oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-
translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This
intracellular molecular clock interacts with the cell’s membrane through poorly understood mechanisms to drive the daily pattern
in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the mem-
brane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian
processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our
increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and
across other brain circuits.

Introduction

Neuronal oscillations or rhythms are integral to normal brain func-
tion and underlie the ever-evolving landscape of brain activity, brain
states and behaviour (Engel et al., 2001; Buzsaki & Draguhn, 2004;
Buzsaki, 2015). These perpetual oscillations can be monitored from
the scalp as electroencephalogram (EEG) and depict the syn-
chronous activity of neurons that spans a number of brain region-
specific frequency bands, from less than 0.2 Hz to frequencies in
excess of 500 Hz (Lopes da Silva, 2013; Buzsaki, 2015). Intrigu-
ingly, these myriad rhythms can interact with one another through
cross-frequency coupling, where oscillations with slower frequency
drive and modulate the amplitude of faster local oscillatory events,
while broadcasting to and recruiting larger networks of neuronal
ensemble across the brain (Steriade, 2001; Csicsvari et al., 2003;
Sirota et al., 2003; Buzsaki & Draguhn, 2004; Buzsaki et al.,
2012). Our increasing understanding is that these oscillations and
their interactions shape and manage information flow in the brain,

and are critical for healthy brain function (Basar-Eroglu et al., 1996;
Herrmann & Demiralp, 2005; Buzsaki et al., 2012; Basar, 2013;
Buzsaki, 2015).
This article focuses on the neuronal oscillations of the mammalian

master circadian clock, the suprachiasmatic nuclei (SCN), which by
comparison influence brain activity at a much slower frequency with
a circadian period of near 24 h. We discuss some of the ionic, inter-
and intracellular signalling, and molecular clockwork mechanisms
driving the rhythmic excitability states of SCN neurons across the
day–night cycle. In addition, we indicate how mathematical mod-
elling is complementing and guiding some of the experimental
work. This maturing synergy between experimental and computa-
tional methods is providing circadian biologists with invaluable
insights into some of the circadian processes and mechanisms that
otherwise would be impenetrable (Gonze, 2011b; Pauls et al.,
2016).
The SCN is a network of approximately 20 000 heterogeneous

neurons coupled through chemical synapses, paracrine signalling
and electrical gap junctions. A hallmark feature of SCN neurons,
and one that is paramount to their collective functioning as the mas-
ter circadian clock, is that their electrical activity shows spontaneous
oscillation across the day–night cycle (Brown & Piggins, 2007; Col-
well, 2011; Belle, 2015; Allen et al., 2017); see Fig. 1. That is,
these neurons are significantly more active during the day [an up-
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state with depolarised resting membrane potential (RMP) and gener-
ally discharging action potentials (APs) at ~ 4–6 Hz] than at night
(a down-state with hyperpolarised RMP, firing at ~ 0.1–2 Hz or
completely hyperpolarised-silent and not spiking; Fig. 1). Even
when dissociated from the SCN network and dispersed in vitro,
most SCN neurons retain their ability to generate this daily oscilla-
tion in excitability states for several days [e.g., see (Welsh et al.,
1995; Herzog et al., 1998; Honma et al., 1998; Shirakawa et al.,
2000; Aton & Herzog, 2005; Webb et al., 2009)]. This indicates
that most individual SCN neurons are intrinsic circadian oscillators,
and while synaptic communication between the neurons is needed
for synchronisation, it is largely not necessary for rhythms at the
single-cell level. To achieve such evolving spontaneity in excitabil-
ity across the circadian day, several intrinsic ionic membrane cur-
rents must interact (Bean, 2007; Llinas, 2014). Importantly, the
magnitude of these currents and their interactions must also be
appropriately tuned and sculpted across the 24-h period. The prevail-
ing view is that these are achieved through the coordinated and
cooperative activity of the molecular and membrane clocks (Colwell,
2011; Belle, 2015), see Fig. 2 and Modelling section 1.

The drive to peak excitation during the day

The depolarised RMP during the day (on average at ~ �45 mV)
results from membrane excitation driven by several voltage-sensitive
cation currents, including inward conductance provided both by
sodium and calcium channels (Thomson, 1984; Wheal & Thomson,
1984; Thomson & West, 1990; Akasu et al., 1993; Huang, 1993;

Pennartz et al., 1997; De Jeu et al., 2002; Cloues & Sather, 2003;
Jackson et al., 2004; Kononenko & Dudek, 2004; Kononenko et al.,
2004; Paul et al., 2016). Recently, through combined modelling and
experimental work, a voltage-independent sodium channel (NALCN)
was also identified as a positive driver for the SCN neuronal up-
state (Clay, 2015; Flourakis et al., 2015). Reduced global potassium
channel activity during the day also contributes to the depolarised
RMP (Jiang et al., 1997; Kuhlman & McMahon, 2004). In particu-
lar, inhibition of the voltage-insensitive small-conductance calcium-
activated potassium channels (SKCa) forces some SCN neurons to
become hyperexcited (severely depolarised) and enter depolarisation
blockade, a membrane state too positive (~ �30 mV) for AP gener-
ation (Belle et al., 2009; Scott et al., 2010; Diekman et al., 2013;
Belle, 2015; Paul et al., 2016; Wegner et al., 2017). Thus, these
neurons either become completely silent or generate 2–7 Hz TTX-
resistant, L-type calcium channel-dependent, depolarised low-ampli-
tude membrane oscillations (DLAMOs) (Belle et al., 2009; Diekman
et al., 2013; Belle & Piggins, 2017). Although the neurophysiologi-
cal function of DLAMOs remains unknown, similar low-amplitude
membrane oscillations are seen at more moderate RMPs
(~ �45 mV) when TTX-sensitive sodium channels are pharmaco-
logically blocked [TTX-LAMOs: see (Diekman et al., 2013)]. These
TTX-LAMOs arguably provide the underlying membrane rhythm
for pacemaking activity in some SCN neurons (Jiang et al., 1997;
de Jeu et al., 1998; Pennartz et al., 2002; Jackson et al., 2004).
Indeed, mathematical modelling of experimental data shows that
DLAMOs and TTX-LAMOs share similar neurophysiological char-
acteristics and that the daily drive to hyperexcitation in SCN

Fig. 1. A schematic overview of the excitability profile/waveform of suprachiasmatic nuclei (SCN) neurons over the day–night cycle. SCN neurons show overt
oscillation in their resting membrane potential (RMP), traversing through points of neutral rest state (indicated by where the dashed blue line crosses the orange
dashed and solid lines). The RMP of SCN neurons is depolarised (up-state) during the day and hyperpolarised (down-state) at night. In some neurons, the
increased RMP elicits action potential (AP) discharge. In others, the RMP becomes too positive (~ �33 mV) to sustain AP production. These neurons display
depolarised low-amplitude membrane oscillations (DLAMOs: ~ �33 mV) or become silent by depolarisation blockade (~ �25 mV). At night, the RMP reduces
(~ �55 mV) causing SCN neurons to generate APs at lower rates or become completely silent by severe hyperpolarisation (~ �70 mV, not shown). Top yellow
and grey bars represent the daytime and night-time, respectively. The blue arrow during the day represents extrinsic signals reinforcing SCN electrical up-state,
and at night, the blue arrow represents physiological signals reinforcing SCN down-state (hypoexcitability). The light- and dark-blue shading areas, under and
over the curve, show the differences in waveform amplitude between autonomous SCN activity (dashed line) and during appropriate daily reinforcement inputs.
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neurons may be paramount for circadian rhythm generation, mainte-
nance and communication in this hypothalamic region (Diekman
et al., 2013; DeWoskin et al., 2015).
In response to these moderately depolarised RMPs during the

day, most SCN neurons generate 4–6 h of sustained spiking activ-
ity (Schaap et al., 2003a; Welsh et al., 2010). At the population
level, this firing activity pattern collectively extends across the
entire light phase of the circadian cycle, with peak firing frequency
occurring in the middle of the day, around zeitgeber time 6-7
(ZT6-7, ZT0; time of lights on). This profile of activity has been
measured extracellularly in vitro and in freely moving animals in
several pioneering studies (Inouye & Kawamura, 1979; Green &
Gillette, 1982; Groos & Hendriks, 1982; Shibata et al., 1982; Gil-
lette et al., 1995; Schaap et al., 2003b; VanderLeest et al., 2007;
Lucassen et al., 2012), and in more recent years, with whole-cell
electrophysiology and voltage-sensing genetic probe imaging
(Morin & Allen, 2006; Brown & Piggins, 2007; Colwell, 2011;
Belle, 2015; Allen et al., 2017; Brancaccio et al., 2017; Enoki
et al., 2017a, 2017b). To support the elevated firing frequency dur-
ing the day, the activity and gating characteristics of several action
potential-shaping potassium channels are appropriately regulated.
This includes upregulation of the fast delayed rectifier (FDR) and
A-type channels, and downregulation/modulation of the large-con-
ductance calcium-activated potassium (BKCa) channel activity
(Cloues & Sather, 2003; Itri et al., 2005, 2010; Pitts et al., 2006;
Granados-Fuentes et al., 2012; Montgomery & Meredith, 2012;
Montgomery et al., 2013; Whitt et al., 2016).

Night-time silencing

Towards the end of the light phase, SCN neurons begin to traverse
to the hypoactive down-state where most of these cells reduce their
firing rate or become hyperpolarised-silent, ceasing spiking activity
(Fig. 1). In some neurons, this represents an impressive 20–30 mV
migration in RMP, when daytime and night-time rest state values
are compared (Kuhlman & McMahon, 2004, 2006; Belle et al.,
2009; Paul et al., 2016). Potassium channel activity is the main dri-
ver for this night-time silencing. For example, the outward conduc-
tance of potassium channels, such as BKCa, is known to increase
during the night (Jiang et al., 1997; Pitts et al., 2006; Flourakis
et al., 2015; Whitt et al., 2016). Further, SCN neurons show activity
for the two-tandem pore domain potassium (K2P) channels (Wang
et al., 2012; Belle et al., 2014). Although no biophysical and elec-
trophysiological measurements of K2P channel activity are reported
in SCN neurons across the day–night cycle, transcripts for these
channels peak during the night (Panda et al., 2002; Lein et al.,
2007). These voltage-independent potassium ‘leak’ channels con-
tribute to RMP setting in neurons (Mathie, 2007). Thus, their activ-
ity in the SCN at night will contribute to membrane
hyperpolarisation, placing SCN neurons into the down-state (see
possible reinforcement by orexin-K2P channel activity below).
As a result, the average excitability waveform of the SCN neu-

ronal ensemble across the day–night cycle is sinusoidal with a peak
during the day and a trough at night, traversing two neutral rest
states at dawn and dusk (Fig. 1). Incredibly, the overall timing and

Fig. 2. A simplified schematic view of the intricate collaborative relationship between the molecular and electrical/membrane clocks for generating circadian
rhythms/oscillations in the suprachiasmatic nuclei (SCN), and beyond. Within SCN neurons, autonomous molecular timekeeping signals generated by the tran-
scription-translation feedback loop (TTFL) appropriately drive daily excitability and electro-responsiveness of the proximal membrane via intracellular signalling
modulation of ion channel activity. Changes in membrane electrical activity feed back to sculpt and stabilise the molecular clockwork. This molecular/genetic-
electrical interplay is dynamic and changes over the circadian cycle, temporally integrating time-adjusting cues from the light–dark cycle, physiology and beha-
viour. Thin intracellular blue arrows indicate direction of signal flow. Input and output signals to and from the SCN clockwork, respectively, are shown by
extracellular thick blue arrows.
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half-width of this peak and trough in electrical activity follow
day length/photoperiod, endowing the SCN with the additional abil-
ity to time and regulate important aspects of the body’s seasonal
rhythms, such as neuro-hormone secretion during the short winter
and long summer days (Mrugala et al., 2000; VanderLeest et al.,
2007; Welsh et al., 2010; Coomans et al., 2014).

The molecular clockwork: demonstrated as the driver of
SCN electrical oscillations

Compared with some of the high-frequency rhythms that are mea-
sured elsewhere in the brain, SCN neurons are exceedingly slow
oscillators. This is because the daily excitability cycle of SCN neu-
rons is driven by an internal molecular clock which functions as an
interlocking transcription-translation feedback loop (TTFL). Much is
known about the intricate inner working of the TTFL molecular
machinery which shares remarkable homology across species studied
so far, from plants to insects, fish and mammals (Hastings & May-
wood, 2000; Reppert & Weaver, 2002; Ko & Takahashi, 2006;
Guilding & Piggins, 2007; Takahashi et al., 2008; Glossop, 2011;
Mohawk & Takahashi, 2011; Mohawk et al., 2012; Buhr & Taka-
hashi, 2013; O’Neill et al., 2013; Partch et al., 2014). At its core,
the molecular clock in mammals includes a dynamic interplay
between the protein products of canonical clock genes, such as Peri-
od1/2 (Per1/2), Cryptochrome 1/2 (Cry1/2), Clock and Bmal1
(Fig. 2). The TTFL-clockwork is excellently reviewed in the above
references and therefore will be fleetingly mentioned here. The ‘pos-
itive arm’ of the clock begins with the nuclear transcription and
cytoplasmic translation of the proteins CLOCK and BMAL1. Once
accumulated in the cytoplasm, they dimerise and the CLOCK/
BMAL1 heterodimer then enters the nucleus and binds onto the pro-
moter regions of the Per1/2 and Cry1/2 genes, activating their tran-
scription (Fig. 2). The negative loop occurs when PER/CRY
proteins dimerise, get phosphorylated by casein kinase 1 and
translocated into the nucleus to suppress the CLOCK/BMAL1 activ-
ity, thereby terminating their own transcription. The overall interac-
tion of these feedforward feedback loops drives perpetual rhythms
in Per1/2 and Cry1/2 expression, with a peak during the day and a
nadir at night, while Bmal1 peaks at night and trough during the
day [e.g. see Fig. 2 in (Guilding & Piggins, 2007)]. During the day
phase of the cycle, the Rev-erba gene is also transcribed and its pro-
tein product, REV-ERBa, acts in the nucleus to inhibit Bmal1 tran-
scription, forming an additional negative loop. Eventually, this
Bmal1 inhibition is lifted through PER/CRY suppression of Rev-
erba transcription, permitting BMAL1 to again slowly accumulate
in the cytoplasm during the night phase.

Linking TTFL activity with excitability and behavioural
rhythms

Although the mechanistic nature of the intracellular signals that
interweave the molecular clockwork and membrane excitability in
the SCN is still poorly understood, there is compelling evidence
linking the activity of the molecular clock with membrane excitabil-
ity oscillations in SCN neurons. The strongest indications come
from studies assessing the effects of molecular clock mutations on
the SCN temporal excitability profile. There is a clear relationship in
wild-type animals between the period of the molecular clockwork,
neuronal rhythms in the SCN and the animal’s daily locomotor
activity cycle. This link is highlighted/exposed when the activity of
the molecular clock is astutely manipulated genetically. For exam-
ple, in hamsters, a mutation in casein kinase 1 (the Tau mutation)

shortens the period of neuronal oscillations (accelerates the speed of
the clock) in the SCN, as measured by the timing in the daily peak
of electrical activity (Liu et al., 1997). This mutation also acceler-
ates the locomotor activity rhythms in these animals (measured by
wheel-running activity) by a factor that is representative of the per-
iod change in the SCN’s electrical oscillations (Liu et al., 1997). In
mice, heterozygous Clock mutation lengthens behavioural and peak
firing activity rhythms in the SCN (Herzog et al., 1998; Nakamura
et al., 2002). Elimination of Cry1 or Cry2 activity lengthens and
shortens the electrical and behavioural rhythms, respectively (May-
wood et al., 2011a; Anand et al., 2013), while animals with Cry1/2,
Per1/2, Bmal1 deletion or homozygous mutations for Clock are
completely arrhythmic with severe alterations in electrical firing pat-
terns in the SCN (Herzog et al., 1998; van der Horst et al., 1999;
Vitaterna et al., 1999; Bunger et al., 2000; Nakamura et al., 2002;
Bae & Weaver, 2007; van der Veen et al., 2008; Pfeffer et al.,
2009). Further, delaying the degradation of CRY1 and CRY2 in
mice lengthens the periods of the molecular clock, excitability
rhythms in the SCN, and locomotor activity (Godinho et al., 2007;
Guilding et al., 2013; Wegner et al., 2017), whereas the Tau muta-
tion of casein kinase 1 accelerates the clock and behavioural
rhythms in these animals (Lowrey et al., 2000; Meng et al., 2008).

Further evidence linking the activity of the molecular clock with
membrane excitability oscillations in the SCN comes from studies
showing that the transcription activity and conductivity of several ion
channels expressed by SCN neurons, such as L- and T-type calcium,
BKCa, K2P, and voltage-gated and passive ‘leak’ sodium channels,
are under circadian control (Panda et al., 2002; Brown & Piggins,
2007; Colwell, 2011; Belle, 2015; Flourakis et al., 2015; Whitt et al.,
2016; Allen et al., 2017). Also, ion channel activity can be directly
regulated by the TTFL components, such as the REV-ERBa regula-
tion of L-type calcium channel activity (Schmutz et al., 2014). In sup-
port, disruption in the activity of circadian clock’s key molecular
components perturbs ion channel function, leading to altered electrical
activity in SCN neurons (Albus et al., 2002; Colwell, 2011; Grana-
dos-Fuentes et al., 2012). And finally, several intracellular signalling
molecules that are associated with modulating membrane excitability
in SCN neurons, such as cAMP, are also rhythmically regulated in the
SCN (O’Neill et al., 2008; Doi et al., 2011).

The slow daily TTFL and electrical oscillations in SCN neurons
are fundamental for providing appropriate circadian timing in physi-
ology and behaviour, such as the sleep/wake cycle, feeding, hor-
mone synthesis and secretion, and cardiovascular output (Kalsbeek
et al., 2006; Bechtold & Loudon, 2013; Miller & Takahashi, 2013;
Belle, 2015). Having such a daily timer arms organisms with the
capacity to predict recurring changes in the environment, an ability
that is critical for survival; maximising feeding and reproduction
while avoiding predation, for example (Pittendrigh & Minis, 1972;
Saunders, 1972; Ouyang et al., 1998; DeCoursey et al., 2000;
Spoelstra et al., 2016). Indeed, for most species, the most relevant
recurrent environmental change is the light–dark (LD) cycle, emerg-
ing from the earth’s daily rotation about its axis.

Synchronisation and reinforcement of SCN neuronal
oscillations by the environment and physiology

Although the daily excitability waveform of SCN neurons persists
in the absence of external time cues (endogenous/free-running), their
activity has to be synchronised and aligned with the animal’s LD
cycle. This ensures that the circadian timing signals communicated
to the brain and body are in accordance with the external environ-
ment (see Modelling section 2). Our current understanding is that
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under natural conditions, these neurons are entrained/synchronised
by information on the intensity and spectral composition of ambient
daylight (Walmsley et al., 2015; Brown, 2016). This light informa-
tion is conveyed directly to SCN neurons by the glutamatergic
retino-hypothalamic tract (Lokshin et al., 2015; Fernandez et al.,
2016) through the activity of specialised melanopsin-containing reti-
nal ganglion cells (Meijer & Rietveld, 1989; Schmidt et al., 2011;
Lucas et al., 2014). Although not all SCN neurons respond to light,
a large proportion of cells are excited by this photic signal (Groos
& Mason, 1978; Meijer et al., 1989; Jiao et al., 1999; Saeb-Parsy &
Dyball, 2003b; Drouyer et al., 2007; Brown et al., 2011; Walmsley
& Brown, 2015; Walmsley et al., 2015; Tsuji et al., 2016). There-
fore, besides synchronising SCN activity, this extrinsic excitatory
photic drive may also act to reinforce the TTFL-driven up-state of
SCN neurons during the day.
Several internal physiological signals emerging from the body’s

arousal/wakefulness and homeostatic brain circuits feedback to influ-
ence circadian timing in the SCN [(Mrosovsky, 1996; Hut & Van
der Zee, 2011; Hughes & Piggins, 2012; Belle, 2015; Meijer &
Michel, 2015); see next section below]. These non-photic inputs
include neuropeptide Y (NPY) neurons of the thalamic intergenicu-
late leaflet (IGL) which send axonal projections through the geni-
culo-hypothalamic tract (GHT), the serotonergic system of the raphe
nuclei (Harrington, 1997; Morin, 2013), the basal forebrain choliner-
gic system (Bina et al., 1993; Yamakawa et al., 2016), as well as
the arousal-promoting orexinergic neurons of the lateral hypothala-
mus (Mieda & Sakurai, 2012) which projects in the vicinity of SCN
neurons (Date et al., 1999; Belle et al., 2014). In nocturnal rodents,
a dark-pulse during the daytime causes increased locomotor activity
together with a reduction of c-fos expression in the SCN (Marston
et al., 2008). This suggests that brain activity during arousal and
wakefulness can feed back to suppress excitability in SCN neurons.
Indeed, electrical recordings in behaving nocturnal rodents revealed
that bouts of prolonged behavioural activity are associated with the
immediate suppression of action potential discharge in the SCN,
which remained stably suppressed throughout the duration of the
behavioural activity (Yamazaki et al., 1998; Schaap & Meijer,
2001; van Oosterhout et al., 2012). It is therefore probable that in
nocturnal animals, activity during wakefulness at night may serve as
reinforcement for the TTFL-driven electrical down-state of SCN
neurons. This is likely mediated through behavioural-dependent
release of NPY and orexins in the SCN (Biello et al., 1994; Belle
et al., 2014).
In support, exogenous application of NPY, serotonin, agonists for

the acetylcholine receptors or orexins to SCN slices robustly sup-
press clock gene expression and excitability in SCN neurons (Liou
& Albers, 1991; Shibata et al., 1992; Prosser et al., 1994b; van den
Pol et al., 1996; Cutler et al., 1998; Gribkoff et al., 1998; Farkas
et al., 2002; Brown et al., 2008; Klisch et al., 2009; Yang et al.,
2010; Besing et al., 2012; Belle et al., 2014; Belle & Piggins,
2017). Fittingly, when applied to SCN slices during the subjective
night, orexin-A recruits the activity of potassium ‘leak’ channels to
strongly suppress the RMP and spiking activity of SCN Per1-
EGFP+ve neurons (Belle et al., 2014); see also night-time silencing
section above.
Despite differences in their temporal niche preference, clock gene

expression and electrical activity in the SCN of diurnal and noctur-
nal animals show similar patterns of circadian oscillations (Kubota
et al., 1981; Schwartz et al., 1983; Sato & Kawamura, 1984; Bae
et al., 2001; Mrosovsky et al., 2001; Yan & Okamura, 2002; Calde-
las et al., 2003; Otalora et al., 2013). This suggests that mechanisms
acting downstream from the SCN are involved in determining

animal’s chronotype (Smale et al., 2003). Nevertheless, results from
the above studies make tantalising conjectures that suppressive beha-
vioural inputs into the SCN are important in nocturnal animals to
reinforce the night-time electrical down-state, while in diurnal spe-
cies, up-state SCN activity is reinforced by excitatory photic inputs
during the day.
To date, the effects of behavioural activity on SCN electrical out-

put in diurnal species have not been comprehensively investigated.
However, from our knowledge of the electrical rhythms in diurnal
rodent SCNs we hypothesize that wakefulness and locomotor activ-
ity in these animals should provide excitatory inputs to SCN neu-
rons. Under laboratory conditions, unlike in the wild, nocturnal
animals are continuously exposed to ambient light during the day. It
is therefore likely that, at least under laboratory conditions, light can
act to reinforce SCN excitability during the day both in diurnal and
nocturnal SCNs. The locomotor activity, on the other hand, rein-
forces SCN suppression in nocturnal animals at night while possibly
supporting SCN excitability in diurnal species during the day.
Overall, these external and internal reinforcements are vital for

normal SCN function as they collaborate with TTFL activity to
ensure high-amplitude circadian oscillations in SCN excitability (van
Oosterhout et al., 2012), a neurophysiological requirement for good
health, well-being and cognition (Ramkisoensing & Meijer, 2015).
Indeed, this necessity for neuronal oscillation bolstering in the SCN
by extrinsic signals is exposed during the ageing process. Here, the
age-related dampening of SCN electrical rhythms, due to diminished
TTFL outputs and neurochemical signalling, can be restored by
daily voluntary exercise and exposure to bright light during the day
(Schroeder & Colwell, 2013).

Glial reinforcement of SCN neuronal oscillations

Brain function occurs largely through the intricate and balanced syn-
ergistic relationship between neurons and neuroglia. In recent years,
the role of glia in neuronal function has received renewed recogni-
tion with the discovery that astrocytes respond, synthesise and
release many of the neurochemicals (known as ‘gliotransmitters’)
that are pertinent in neuronal information processing (Cornell-Bell
et al., 1990; Fiacco et al., 2009; Halassa et al., 2009; Santello
et al., 2012; Verkhratsky et al., 2012b). This raises the possibility
that, besides maintaining homeostatic processes of the brain (sustain-
ing energy balance, modulating synaptic/neurotransmitter activity
and providing metabolic support), glial cells may have a more direct
involvement in brain communication processes. Indeed, glial cells
show fast intracellular calcium oscillations and can signal through
vast network by gap junctions, shaping neuronal activity in the pro-
cess (Verkhratsky & Kettenmann, 1996; Nedergaard & Verkhratsky,
2010; Nedergaard et al., 2010; Verkhratsky et al., 2012a). In the
context of neuronal oscillations, recent pioneering studies have
undeniably revealed a surprising role for astrocytes in information
processing and cognitive behaviour. These studies found that astro-
cytic activity in the cortices of behaving animals shapes neuronal
rhythm features in these brain areas to influence aspects of learning
and memory (Lee et al., 2014), and to appropriately switch cortical
circuit rhythms into a synchronous sleep-like state (Poskanzer &
Yuste, 2016).
The SCN have an elaborate astrocytic cell network (Guldner,

1983), which exhibits daily rhythms in glial fibrillary acidic protein
(Lavialle & Serviere, 1993; Moriya et al., 2000; Gerics et al., 2006;
Becquet et al., 2008; Lindley et al., 2008; Canal et al., 2009;
Womac et al., 2009; Burkeen et al., 2011), and metabolic activity
(Schwartz & Gainer, 1977; van den Pol et al., 1992; Lavialle &
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Serviere, 1993; Womac et al., 2009; Burkeen et al., 2011). This
SCN GFAP oscillation is sensitive to light, suggesting a possible
role for glial involvement in SCN photic information processing. In
support, the genetic disruption of GFAP activity in animals main-
tained under constant light conditions (LL) elicited profound alter-
ation in locomotor activity (Moriya et al., 2000). In addition,
several lines of evidence suggest that astrocytes may influence the
phase-resetting effects of light in the SCN by putative modulation of
glutamatergic transmission at the retinal terminals (van den Pol
et al., 1992; Lavialle & Serviere, 1995; Tamada et al., 1998; Mor-
iya et al., 2000; Lavialle et al., 2001; Girardet et al., 2010). Astro-
cytes are also known to rhythmically affiliate with dendrites of
vasoactive intestinal polypeptide (VIP) and arginine vasopressin
(AVP) SCN neurons across the day (Becquet et al., 2008). Activity
of these neurons promotes cell-to-cell synchronisation and circadian
communication within the SCN, and beyond (see section below).
Therefore, this daily fluctuation in glial-VIP/AVP neuronal contact
may shape electrical activity in these neurons and, thus, supports cir-
cadian-relevant information processing in the SCN. In turn, VIP can
dose-dependently influence the phase and amplitude of astrocytic
rhythms (Marpegan et al., 2009), and pharmacological blockade of
metabolic activity in astrocytes alters electrical rhythms in the SCN
(Prosser et al., 1994a). Together, these results support that func-
tional signalling between neurons and glia occurs in the SCN, but
the role of glial communication in circadian timekeeping still needs
in-depth investigation (Jackson, 2011).
Importantly, several studies have reported intrinsic daily oscilla-

tions in clock gene/protein expression in SCN astrocytes (Prolo
et al., 2005; Cheng et al., 2009; Yagita et al., 2010; Duhart et al.,
2013; Brancaccio et al., 2017). This raises the possibility that the
daily variation in SCN astrocytic clock activity contributes to overall
circadian rhythm generation and communication in the SCN. Indeed,
genetic disruption/manipulation of GFAP [(Moriya et al., 2000), but
only under LL)] and circadian clock gene (Brancaccio et al., 2017)
activities in SCN astrocytes produced profound alteration in locomo-
tor activity, and in SCN neuronal clock gene and intracellular cal-
cium oscillations (Barca-Mayo et al., 2017; Brancaccio et al., 2017;
Tso et al., 2017). Remarkably, clock gene expression in SCN astro-
cytes oscillates in antiphase to the rhythm in SCN neurons, peaking
during the subjective night in astrocytes (Brancaccio et al., 2017).
This night-time peak in SCN astrocytic clock activity is associated
with elevated extracellular glutamate level, which may favour an
increase in inhibitory GABAergic tone in the SCN, primarily in the
dorsal aspect (Brancaccio et al., 2017). Novel mechanisms through
which astrocyte activity transforms glutamatergic excitation into
tonic GABAergic inhibition have been described elsewhere in the
brain (Heja et al., 2012). Such glial-dependent tonic inhibitory
GABAergic activity may provide further reinforcement for the elec-
trical down-state in the SCN at night.
Collectively, these studies provide strong evidence supporting a

collaborative role for glia and neurons in circadian rhythm genera-
tion and communication in the SCN, and, likely, beyond. Further, as
in the cortices, glial activity in the SCN may have the additional
function in shaping neuronal oscillation features to promote/favour
appropriate circadian information processing across the circadian
day, such as entrainment, synchronisation and brain-wide/body-wide
circadian rhythm communication.

Intra- and intercellular signalling

Elsewhere in the nervous system, oscillations in intracellular calcium
signalling underlie most of the fast rhythms in neuronal excitability

(Berridge, 1998, 2014). In SCN neurons, steady-state intracellular
calcium [Ca2+]i concentration/level oscillates in a circadian manner,
peaking during the day and entering a nadir at night [(Colwell,
2000; Ikeda et al., 2003a; Irwin & Allen, 2010; Enoki et al., 2012;
Hong et al., 2012; Brancaccio et al., 2013; Belle et al., 2014; Ikeda
& Ikeda, 2014; Noguchi et al., 2017); but see (Ikeda et al., 2003b)].
This peak in global SCN [Ca2+]i anticipates the peak in electrical
activity (Ikeda et al., 2003a; Enoki et al., 2017b), raising the possi-
bility that the initial source of [Ca2+]i in SCN neurons is largely
through clock-operated intracellular calcium store release (COi-
CaSR), and not through depolarised RMP- and action potential-
evoked membrane calcium entry via voltage-gated calcium channels
(VGCCs). In support, pharmacological blockade of VGCCs and
voltage-gated TTX-sensitive sodium channels diminished the ampli-
tude (by ̴ 30%) but does not completely abolish circadian rhythms
in [Ca2+]i (Ikeda et al., 2003a; Enoki et al., 2012).
Activation of the ryanodine receptors (RyR1 and RyR2) repre-

sents one of the key signalling pathways by which calcium is
released from intracellular stores (Berridge, 1998). The transcripts
and proteins for both receptor types are expressed by SCN neurons
with RyR2 transcript and protein showing higher levels during the
subjective day than at night (Diaz-Munoz et al., 1999; Pfeffer et al.,
2009). Interestingly, pharmacological disruption of RyR function
abolishes circadian rhythms in [Ca2+]i level, electrical activity and
behaviour (Ikeda et al., 2003a; Mercado et al., 2009), suggesting
that this is a key link between the molecular and electrical oscilla-
tions in SCN neurons. Indeed, members of the molecular clock,
Bmal1 and Cry1, interact to modulate the activity of the RyR2 tran-
scription (Pfeffer et al., 2009; Ikeda & Ikeda, 2014), while pharma-
cological activation of the RyRs causes excitation in SCN neurons
(Aguilar-Roblero et al., 2007, 2016). Together, this suggests that
clock-operated intracellular calcium store release contributes to the
up-state of SCN neurons during the day.
As in all neurons, the depolarised RMP and increased action

potential firing during the up-state cause further calcium influx in
SCN neurons through VGCCs (Jackson et al., 2004; Irwin & Allen,
2007). Pharmacological blockade of this TTX-sensitive extracellular
calcium source interrupts the molecular clock and electrical oscilla-
tions (McMahon & Block, 1987; Yamaguchi et al., 2003; Lundkvist
& Block, 2005; Lundkvist et al., 2005; Myung et al., 2012; Enoki
et al., 2017b), suggesting that calcium entry through VGCCs also
contributes to circadian rhythm generation in the SCN.
Suprachiasmatic nuclei neurons are neurochemically and function-

ally heterogeneous, forming distinct peptidergic clusters within the
ventral, medio-lateral and dorsal aspects of the SCN. Broadly, ven-
tral SCN neurons synthesise VIP, while cells in the medio-lateral
region produce gastrin releasing peptide (GRP), and dorsal neurons
contain and release AVP (Antle & Silver, 2005; Morin & Allen,
2006; Golombek & Rosenstein, 2010). Some SCN neurons also
contain prokineticin 2 (PK2), cardiotrophin-like cytokine and the
transforming growth factor a (Kalsbeek & Buijs, 1992; Kalsbeek
et al., 1993; Kramer et al., 2001; Cheng et al., 2002, 2005; Kraves
& Weitz, 2006; Li et al., 2006; Burton et al., 2016). Collectively,
most SCN neurons produce the neurotransmitter GABA and express
GABAA receptors (Abrahamson & Moore, 2001; Belenky et al.,
2008). Here, GABA acts primarily on the GABAA receptors to
cause excitation or inhibition in the SCN [see (Albers et al., 2017)
for a comprehensive review], presumably coreleased by the SCN
peptidergic neurons. As demonstrated by most forms of neuronal
synchronisation in the central nervous system, GABA-GABAA

receptor signalling in the SCN acts to synchronise the activity of its
neurons (Liu & Reppert, 2000; Shirakawa et al., 2000; Aton &
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Herzog, 2005; Evans et al., 2013; DeWoskin et al., 2015; Myung
et al., 2015). Signalling from VIP, GRP and AVP neurons intermin-
gles with GABAergic activity across the day–night cycle, through
poorly understood mechanisms, to organise and sustain the overall
neuronal oscillation architecture of the SCN (see Modelling section
3), such as the phase relationship of its neurons (Harmar et al.,
2002; Albus et al., 2005; Aton & Herzog, 2005; Brown et al.,
2005; Maywood et al., 2006, 2011a; Hughes et al., 2008; Kalsbeek
et al., 2010; Welsh et al., 2010; Evans et al., 2013; Freeman et al.,
2013; Fan et al., 2015; Mieda et al., 2015). This phase relationship
is dynamic with tremendous plasticity, and varies with environmen-
tal conditions (VanderLeest et al., 2007; Lucassen et al., 2012). The
GABAergic-neuropeptidergic communication conduits also act coop-
eratively with the light-input pathway to integrate and align the
SCN’s daily pattern of oscillations with external environmental sig-
nals and feedback inputs from physiology and behaviour. Together,
this ensures that, at the population level, SCN neurons produce
coherent and high-amplitude circadian rhythms that are representa-
tive of the animal’s solar cycle and internal physiological demands.
Such integrated outputs are in turn necessary for driving robust cir-
cadian rhythms across the brain and body.

Function of neuronal oscillations in the SCN

Despite running at a much slower pace, circadian neuronal oscilla-
tions in the SCN share some common underlying principles and
functions with neuronal oscillators studied elsewhere in the brain.
For example, neuronal oscillators have an inherent capacity to
appropriately ‘gate’ or ‘vary’ their sensitivity to synchronising sig-
nals, otherwise known as ‘bias input selection’ [see (Hutcheon &
Yarom, 2000)]. Similarly, SCN neurons show variation across the
day in their sensitivity to inputs, such as environmental light and
internal physiological signals. Pioneering studies investigating the
effects of light on nocturnal rodents, for example, established that
light exposure in the early night delays subsequent cycles in loco-
motor activity, during the late night advances locomotor rhythms,
and light during the day has no shifting effect on behavioural
rhythm phase (Decoursey, 1960, 1964; Daan & Pittendrigh, 1976).
These patterns of temporal sensitivity to light can also be observed
in diurnal species, including humans [(Hoban & Sulzman, 1985;
Kas & Edgar, 2000; Mahoney et al., 2001; Khalsa et al., 2003); see
also Fig. 1 in (Brown, 2016)]. Application of pharmacological mim-
ics of the light-input pathways to living SCN slices, such as gluta-
mate or the glutamate receptor agonists AMPA and NMDA, also
causes phase shifts in the electrical rhythms that imitate the light-
induced shifts in locomotor activity (Colwell & Menaker, 1992; Shi-
bata et al., 1994; Biello et al., 1997; Ding et al., 1998; Moriya
et al., 2000, 2003). Similarly, optogenetic manipulation of SCN
activity causes phase shifts in electrical and gene expression rhythms
both in vivo and in vitro (Jones et al., 2015). This phase adjustment
by light allows daily resynchronisation of SCN cells to the external
light–dark cycle (see section above) and, in extreme situations, per-
mits realignment of the circadian system following a drastic shift in
the LD cycle, as is the case in humans when flying across time
zones. Albeit, the SCN’s slow oscillation means that resynchronisa-
tion to the new LD cycle takes several cycles to accomplish (Reddy
et al., 2002; Nagano et al., 2003; Yan & Silver, 2004; Nakamura
et al., 2005; Davidson et al., 2009).
By contrast, non-photic inputs produce phase shifts in the SCN

that differ significantly from those produced by light [see Fig. 1 in
(Albers et al., 2017)]. These signals produce large phase advances
in behavioural rhythms during the day and small phase delays

during the night (Mrosovsky, 1988; Reebs & Mrosovsky, 1989;
Mead et al., 1992; Hastings et al., 1998; Lone & Sharma, 2011;
Polidarova et al., 2011). These non-photic phase shifts of the circa-
dian system have also been studied in humans (Redlin & Mro-
sovsky, 1997; Mistlberger & Skene, 2005). As with the
glutamatergic agonist mimics of the light-input pathway, when the
SCN are treated during the day with neurochemicals that are linked
with non-photic signalling in this structure, such as NPY, large
phase advances are seen in locomotor behaviour or SCN firing rate
rhythms in vitro (Albers & Ferris, 1984; Huhman & Albers, 1994;
Biello & Mrosovsky, 1996; Golombek et al., 1996; Biello et al.,
1997; Besing et al., 2012). Remarkably, excitatory photic and sup-
pressive non-photic signals can interact with each other at the level
of the SCN. Cancellation of non-photic resetting effects occurs dur-
ing the day if the non-photic signal is followed by a light pulse, or
glutamatergic receptor agonists (Biello & Mrosovsky, 1995; Biello
et al., 1997; Gamble et al., 2004). Similarly, the phase-shifting
effects of light or glutamatergic receptor agonists at night are attenu-
ated if the light pulse or glutamatergic agonist application is fol-
lowed by non-photic-associated signals (Ralph & Mrosovsky, 1992;
Mistlberger & Antle, 1998; Yannielli & Harrington, 2000, 2001;
Yannielli et al., 2004).
These inputs modulate rather than dictate SCN function, and this

amenability to appropriate phase modulation by external signals rep-
resents a canonical property of neuronal oscillators of the brain and
one that is central to their function. The capacity for SCN neurons
to maintain temporal sensitivity and phase-adjust their electrical
rhythms to pharmacological mimics of the light and non-photic
input pathways in vitro suggests that the mechanisms involved are
largely confined within the SCN circuits. Emerging evidence also
suggests that these processes are determined both by the molecular
and excitability states of SCN neurons (Ding et al., 1998; Pfeffer
et al., 2009; Belle & Piggins, 2017). Therefore, the daily oscillatory
excitability patterns or waveform of the SCN (up-state during the
day and down-state at night, see Fig. 1) determines when and how
excitatory and inhibitory inputs are likely to cause significant adjust-
ments to the SCN phase. Such gating properties are crucial, provid-
ing a mechanistic neuronal substrate that permits the animals to
appropriately respond to potentially competing external and internal
signals in order to organise physiology and behaviour.

SCN outputs: communicating circadian rhythms across
the brain

Circadian rhythms generated by SCN neurons are communicated
across the brain through a broad array of synaptic and paracrine
neurochemical signalling, such as VIP, GABA, AVP and PK2
(Ralph et al., 1990; Silver et al., 1990, 1996; Tousson & Meissl,
2004; Morin & Allen, 2006; Maywood et al., 2011b; Morin, 2013;
Silver & Kriegsfeld, 2014; Belle, 2015). Many of the downstream
targets, including cortical, thalamic, epithalamic and hypothalamic
areas, also express clock genes with some showing semi-autono-
mous variation in clock activity (Guilding & Piggins, 2007; Guild-
ing et al., 2009, 2010; Mohawk et al., 2012; Bano-Otalora &
Piggins, 2017). Indeed, electrical activity measurement in some of
these brain regions also shows daily patterns in neuronal firing rate
that are linked with the molecular clock activity (Sakhi et al.,
2014a, 2014b). Arguably, this demonstrates that the influence of the
molecular clock on neuronal excitability is not a unique feature of
SCN neurons, but extends to other neuronal populations across the
brain. Notably, the phasing of clock gene expression in some of
these extra-SCN oscillators is aligned with the animal’s locomotor
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patterns and not with the SCN’s phase. Ideal examples for this can
be seen in the hippocampi of dual-phasing rodents, such as the
Octodon degus and diurnal grass rat, Arvicanthis niloticus. In these
dual-phasing species, hippocampal circadian gene activity peaks in
phase with the animal’s behavioural rhythm, that is coincidently in
phase with SCN activity when the animals show a diurnal activity
pattern, but establish an antiphase relationship when these animals
shift their activity phase preference to the night (Ramanathan et al.,
2010; Otalora et al., 2013). Indeed, hippocampal and SCN clock
gene oscillations in nocturnal species occur out of phase, with hip-
pocampal clock gene expression consistently peaking during the ani-
mal’s active phase at night (Wakamatsu et al., 2001; Wang et al.,
2009). This supports the view that extra-SCN oscillators provide
brain region-specific circadian timing in neurophysiology, aligning
appropriate neuronal activity rhythms with behavioural and physio-
logical demands (Martin-Fairey & Nunez, 2014), such as for the
support of hippocampal memory formation and persistence (Eckel-
Mahan, 2012; Wardlaw et al., 2014). Indeed, these semi-autono-
mous clocks form part of an extended brain-wide circadian timing
circuit in which the SCN are the master pacemakers (Green et al.,
2008; Morin, 2013). Accordingly, some of these SCN target areas
receive direct neuronal projections from the SCN, and collectively,
they express receptors for the neurochemicals that are endogenous
to SCN neurons, including receptors for VIP (VPAC2), AVP (V1a/
b) and PK2 (Zhou & Cheng, 2005; Cheng et al., 2006; Morin &
Allen, 2006; Guilding & Piggins, 2007; Mohawk et al., 2012; Sakhi
et al., 2014b; Belle, 2015; Burton et al., 2016). The intricate neuro-
physiological processes and mechanisms through which SCN neu-
rons dynamically sustain/shape circadian rhythms in these extra-
SCN clocks, however, remain poorly understood (Fig. 3). Sadly, this
knowledge gap is now hampering progress in our understanding of
how chronodisruption impacts ailments, such as mental health, meta-
bolic syndrome, Alzheimer’s disease and cancer.

Indeed, in several of these brain regions, rhythms that occur at
the circadian timescale coexist with neuronal oscillations happening
at much faster rates. Good examples for this can be measured in
hippocampal and thalamic neuronal ensembles, where exceedingly
fast oscillations (at 0.1 to 500 Hz) are interlaced with rhythms sus-
taining a near 24-h periodicity (Colavito et al., 2015; Loh et al.,
2015; Besing et al., 2017; Chen et al., 2017). It is noteworthy that
at the population level, neurons of the SCN, and those of the IGL
and dorsolateral geniculate nuclei, also produce faster-than-24-h
isoperiodic, ultradian or fast narrowband oscillations in electrical
activity (Groos & Hendriks, 1979; Miller & Fuller, 1992; Walsh
et al., 1992; Bina et al., 1993; Zhang et al., 1995; Pennartz et al.,
1998; Aggelopoulos & Meissl, 2000; Lewandowski et al., 2000;
Saeb-Parsy & Dyball, 2003a; Brown et al., 2008; Sakai, 2014; Tsuji
et al., 2016; Storchi et al., 2017). Recent work has also described
neuronal discharge in the SCN with a harmonic distribution close to
30 Hz (Tsuji et al., 2016), oscillations that normally frequent the
thalamocortical systems. Remarkably, even when dispersed in cul-
ture, SCN neurons can sustain faster-than-24-h oscillations in firing
rate at the single-cell level [firing burst rhythms of ~10 min in dura-
tion with interburst intervals of 20 to 60 min (Kononenko et al.,
2013)]. Elsewhere in the brain, when neighbouring neuronal
rhythms with contrasting frequency bands occur within the same
anatomical structure, they are normally associated with different
brain states. Indeed, these oscillations can appropriately compete or
interact with one another (Klimesch, 1999; Kopell et al., 2000;
Engel et al., 2001; Steriade, 2001; Csicsvari et al., 2003). In the
SCN, how these neighbouring rhythms interact and whether they
coalesce to influence circadian rhythm generation and

communication in this hypothalamic structure are unknown and war-
rant detailed investigations.
Nevertheless, the interesting observation that these faster ultradian

and beta/gamma rhythms are more prominent during photopic than
scotopic conditions suggests that they may play important roles in
broadcasting and modulating environmental light information across
the SCN circuits, and beyond. Indeed, many of the body’s hor-
monal secretion profiles follow an ultradian rhythm (Bonnefont,
2010; Fitzsimons et al., 2016). Our recent understanding of the
intricate relationship between circadian and ultradian rhythms in
daily corticosterone pulsatile release and activity provides a
glimpse, perhaps, into how these oscillations may interact in the
SCN and the brain for normal physiology [(Spiga et al., 2014;
Fitzsimons et al., 2016); see Fig. 3 for a hypothesis]. As demon-
strated elsewhere in the ‘rhythm’ fields, mathematical modelling
will no doubt play a crucial role in shaping our understanding of
such interactions and their physiological and behavioural relevance
(see Modelling section 4).

Modelling section 1: mathematical modelling of the
circadian clock at the single-cell level

One of the earliest models of biochemical oscillations incorporating
the regulation of gene expression was introduced by Goodwin
(Goodwin, 1965). This three-variable model, consisting of delayed
negative feedback to a single gene, has been used by many research-
ers as a simple model of the mammalian molecular clock; see
Fig. 4A (Ruoff et al., 1999; Locke et al., 2008; Woller et al.,
2013). The basic mathematical concept underlying these models is
that delayed negative feedback can destabilise a steady state and

Fig. 3. A conceptualised schematic view of possible interactions between
circadian rhythms and much faster neuronal oscillations in the brain, such as
the fast rhythms of the hippocampus. The slow near 24-h rhythms generated
by the suprachiasmatic nuclei (SCN) and/or extra-SCN oscillators interact
with faster neuronal oscillations through cross-frequency coupling. This inter-
action influences the rhythm features, such as rhythm amplitude, of these fas-
ter brain oscillators. The detailed mechanisms involved remain elusive, but
the concept presented here is based on our current understanding of neuronal
rhythms interactions in the brain, and the circadian influence on ultradian
corticosterone pulsatile release. Together, these may provide a glimpse into
how these oscillations interact in the CNS in order to organise physiology
and behaviour.
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give rise to stable limit cycle oscillations through Hopf bifurcation
(Forger, 2017). The only nonlinearity in the Goodwin model is the
sigmoidal Hill function that characterises repression of transcription.
Griffith showed that limit cycle oscillations are only possible in the
Goodwin model with a Hill exponent n > 8 (Griffith, 1968). While
such a large Hill exponent is unlikely to arise from cooperative
binding of the repressor to the promoter (the typical interpretation
for using n = 3 or 4 in enzyme kinetics) alone, other processes,
such as multisite phosphorylation/dephosphorylation, could con-
tribute to the sharpness of the protein activation function (Gonze &
Abou-Jaoude, 2013; Woller et al., 2014). Following the identifica-
tion of several core clock genes, Leloup–Goldebeter and Forger–
Peskin introduced detailed models incorporating these genes and
their protein products (Forger & Peskin, 2003; Leloup & Goldbeter,
2003). The Leloup–Goldbeter retained the Hill function formulation
of transcriptional regulation, whereas the Forger–Peskin model
replaced Hill functions with first-order mass action kinetics. This
results in a higher-dimensional model (73 differential equations in
Forger–Peskin versus 16 in Leloup–Goldebeter), but fewer phe-
nomenological parameters (such as Hill exponents) to estimate since
all parameters now represent reaction rates. Development of new
molecular models in both of these styles has continued as additional
clock components and processes are characterised (Mirsky et al.,
2009; Rel�ogio et al., 2011; Kim & Forger, 2012; Jolley et al.,
2014; Woller et al., 2016); see (Podkolodnaya et al., 2017) for a
recent review of this line of work. These models have made testable
predictions that were validated experimentally, such as the short-per-
iod effect of the Tau mutation in hamsters (Gallego et al., 2006).
Detailed predictive models can provide insight into circadian clock
mechanisms and evaluate competing hypotheses. For example, the
Kim–Forger model has been used to argue that the key mechanism
of transcriptional regulation in the mammalian clock is sequestra-
tion, and not multisite phosphorylation, of the repressor protein
(Kim & Forger, 2012; Kim, 2016).
In comparison with the molecular clock, the electrical activity of

mammalian clock neurons has received less attention from mod-
ellers. The first electrophysiological model of SCN neurons was
developed by Sim and Forger (Sim & Forger, 2007) using the
Hodgkin–Huxley formalism. The basic concept underlying conduc-
tance-based models is an electrical equivalent circuit representation
of the cell membrane; see Fig. 4B. The Sim-Forger model was fit
primarily to voltage-clamp data from dissociated SCN neurons
(Jackson et al., 2004), and included three voltage-gated currents
(INa, ICa and IK) and a passive ‘leak’ current (IL). This model sug-
gested that SCN neurons may enter depolarisation blockade at a cer-
tain time of day, a prediction that has since been validated
experimentally (Belle et al., 2009). Several authors have extended
the Sim–Forger model to study various aspects of SCN neuronal
activity, such as interspike interval variability due to stochastic
openings of subthreshold voltage-dependent cation (SVC) channels
(Kononenko & Berezetskaya, 2010), calcium-dependent inhibition
of calcium influx through RNA editing of L-type calcium channels
(Huang et al., 2012) and nonlinear dependence of ICa on the Ca2+

driving force (Clay, 2015).
There are many ways in which the molecular clock may affect

membrane excitability, such as by regulating the activation or inacti-
vation properties of voltage-gated ionic channels. For example,
Kononenko & Berezetskaya (2010) assumed that a circadian-regu-
lated protein decreases the closed-time distribution of SVC channels
(Kononenko & Berezetskaya, 2010). However, the most common
way of connecting molecular and membrane models is to translate
rhythms in mRNA levels of ion channel transcripts to rhythms in

maximal conductances. As circadian changes in gene expression and
protein abundance happen on a much slower timescale than the
dynamics of action potential generation, one can model the electrical
activity of SCN neurons over a short time interval by treating the
gene and protein levels as parameters rather than dynamical vari-
ables. To simulate electrical activity at different times of day, the
gene and protein parameters can be set in accordance with the phase
of their daily rhythms. Viewed in this context, the maximal conduc-
tances of a Hodgkin–Huxley-type model become natural bifurcation
parameters, and dynamical systems tools can be used to study transi-
tions in SCN electrical activity over the course of the day. This
strategy was used to interpret the DLAMOs observed in a subset of
SCN neurons as evidence of the cells approaching a supercritical
Hopf bifurcation due to increased gCa and decreased gK (Belle et al.,
2009). The circadian variation in firing rate and resting membrane
potential exhibited by SCN neurons is likely due to circadian varia-
tion in the conductance of several different types of ion channels
(Kim & Jeong, 2008; Colwell, 2011). Flourakis et al. (2015) used a
combination of experiments and modelling to show that antiphase
rhythms in voltage-independent passive ‘leak’ currents, with sodium
leak upregulated during the day and potassium leak upregulated at
night, could reproduce the observed circadian variations in firing
rate of SCN neurons. Furthermore, this ‘bicycle’ mechanism of anti-
phase regulation appears to be conserved in flies and mice.
A few models have dynamically integrated gene regulation and

electrical activity at the single-cell level. Vasalou and Henson com-
bined the Leloup–Goldbeter model of the molecular clock with an
electrophysiology model based on the integrate-and-fire formalism
(Vasalou & Henson, 2010). In this framework, circadian variation in
ionic conductances leads to daily rhythms in variables representing
RMP and firing rate. However, the model evolves on a timescale of
minutes rather than milliseconds and therefore does not actually pro-
duce individual spike events (action potentials). Diekman et al.
(2013) combined a modified version of the Sim–Forger model of
action potential generation with a Goodwin-like model of gene regu-
lation. In both the Vasalou–Henson and Diekman et al. models,
intracellular calcium serves as the link between membrane dynamics
and gene expression. The additional layer of feedback that comes
from coupling membrane excitability to transcription can induce cir-
cadian oscillations in gene expression in a model of the molecular
clock with parameters set such that it does not oscillate in the
absence of excitation–transcription coupling (see Figs. 4C and 5).
This supports the notion that SCN electrical activity may not just be
a circadian output signal but also part of the clock’s timekeeping
mechanism, conceptualised here as the membrane clock.

Modelling section 2: mathematical modelling of
circadian entrainment

There is a long history of mathematical modelling to aid understand-
ing of how circadian oscillators (with periods near but not equal to
24 h) entrain to 24-h environmental cycles (Pavlidis, 1978; Winfree,
2001; Gonze, 2011a). Models predating the discovery of the
suprachiasmatic nuclei and the transcriptional-translation feedback
loops underlying the molecular clock were necessarily phenomeno-
logical rather than mechanistic. Wever used a modified version of
the van der Pol oscillator to study re-entrainment of circadian
rhythms following phase shifts of the light–dark cycle (Wever,
1966). Kronauer and colleagues further modified the van der Pol
model to match experimental data on human circadian rhythms
(Kronauer, 1990; Forger et al., 1999). Variants of the Kronauer
model are still being used to explain properties of jet-lag and to
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design optimal schedules for fast re-entrainment following trans-
meridian travel (Serkh & Forger, 2014; Diekman & Bose, 2017).
The process of re-entrainment has also been studied in more detailed
models of the SCN network (Kingsbury et al., 2016), and hierarchi-
cal systems with internal desynchrony between the SCN and clocks
in peripheral organs (Leise & Siegelmann, 2006). An area requiring
further work in the context of re-entrainment is the incorporation of
homeostatic sleep drive and the gating of light input due to sleep
(Booth et al., 2017; Skeldon et al., 2017). Classical dynamical

systems tools such as phase response curves and Arnold tongues
(Bordyugov et al., 2015), along with the more recently developed
methods of velocity response curves (Taylor et al., 2010), macro-
scopic reduction of coupled phase oscillators (Hannay et al., 2015;
Lu et al., 2016), and entrainment maps (Diekman & Bose, 2016),
can provide insight into how entrainment properties of circadian
oscillators depend on internal and external parameters, such as the
oscillator’s endogenous period, the environmental light intensity and
daylength.

Fig. 4. Schematic overview, main equations and sample output for models of the molecular circadian clock (A), the electrophysiology of suprachiasmatic
nuclei (SCN) neurons (B), and the interaction between circadian gene expression and SCN electrical activity (C). A: Goodwin model of gene regulation. A gene
is transcribed into mRNA (M) and translated into protein (P), which undergoes posttranslational modifications (P*) and is imported back into the nucleus where
it inhibits production of M. This negative feedback loop can lead to oscillations in mRNA and protein levels if the Hill exponent (N) in the transcription repres-
sion function f(P*) is large enough. The dashed arrows represent mRNA and protein degradation. B: Hodgkin–Huxley-type model of neuronal excitability. The
membrane voltage (V) is governed by a current-balance equation involving the cell capacitance (C) and ionic currents (Ix for ion x), described by a conductance
(gx) multiplied by a driving force (V � Ex), where Ex is the reversal potential of the ion channel. The sodium (Na), potassium (K) and calcium (Ca) channels
are voltage-gated, with activation (m, n, r) and inactivation (h) gating variables that open/close as functions of voltage (red resistors). The activation gating vari-
able (s) of the calcium-dependent potassium channel (KCa), as well as the inactivation gating variable of the calcium channel (f), are functions of intracellular
calcium concentration [Ca2+] (green resistors). The conductance of the leak channel (L) is passive, that is, not voltage- or calcium-dependent (black resistor).
The differential equations describing the dynamics of the gating variables are not shown. This system of ordinary differential equations (ODEs) simulates how
membrane voltage evolves over time and can produce both repetitive firing of action potentials (gKCa = 100 nS) and depolarised low-amplitude membrane oscil-
lations (DLAMOs; (gKCa = 3 nS). C: Extended gene regulation model incorporating electrophysiology. Another gene product (R) is under the control of the
same enhancer (E-box) found in the promoter region of the circadian clock gene that is transcribed into M. R downregulates the activity of potassium channels,
which depolarises the membrane potential (V), leading to calcium influx through ICa. Higher levels of intracellular calcium (Cac) can activate transcription
through the cAMP response element (CRE) pathway. Modelling CRE-dependent transcription as a function of Cac (bottom right inset) provides an additional
layer of feedback control from membrane excitability onto gene expression and induces oscillations in mRNA concentration (M, arbitrary units), whereas mod-
elling CRE activity as constant (top right inset) does not produce oscillations. In both cases, the Hill exponent representing cooperativity of repression at the E-
box is set at N = 4.
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Modelling section 3: mathematical modelling of the
circadian clock at the network level

How the neurons within the SCN form a tissue-level clock capable
of entraining to 24-h environmental rhythms and communicating this
time-of-day information to other parts of the brain and body remains
a fundamental question in the circadian field. As is the case for sin-
gle-cell models, network models of the SCN exist at varying levels
of biophysical detail. On the abstract end of the spectrum are mod-
els that view the SCN as a weakly coupled network of phase oscil-
lators (Liu et al., 1997). However, generic amplitude–phase
oscillators may be more appropriate than pure phase models
(Bordyugov et al., 2011), as it has been shown that the amplitude
of circadian oscillations can affect entrainment behaviour (Van-
derLeest et al., 2009). Networks of modified van der Pol oscillators

with local coupling (Kunz & Achermann, 2003), or daily inputs
from non-rhythmic ‘gate’ cells (Antle et al., 2003), have also been
explored. Gonze et al. (2005) studied a network of Goodwin-like
genetic oscillators globally coupled by a generic neurotransmitter.
Many network models have since been developed incorporating
more detailed descriptions of clock gene regulation, intercellular sig-
nalling cascades, and coupling architecture [for a review, see (Hen-
son, 2013)]. For example, To et al. (2007) employed the Leloup–
Goldbeter model of the TTFL, then added VIP/VPAC2 signalling,
and a network with coupling strengths inversely proportional to the
distance between cells. Bernard et al. (2007) used a molecular clock
model that produces damped oscillations in the absence of coupling
(Becker-Weimann et al., 2004) and tested the effects of random
sparse coupling, nearest-neighbour coupling, and an SCN-like com-
bination of random sparse and nearest-neighbour connections. The

Fig. 5. Computer simulations of a multiscale mathematical model of suprachiasmatic nuclei (SCN) neurons integrating membrane excitability, intracellular cal-
cium dynamics and gene regulation (see Fig. 4C). The membrane potential (V, thick black trace) exhibits a daily oscillation traversing several different electrical
states on the timescale of hours. Embedded within the daily rhythm are oscillations on a much faster timescale (milliseconds), such as repetitive firing of action
potentials at 6 Hz (top left inset) and DLAMOs (top right inset). These rhythms in RMP drive oscillations in intracellular calcium concentration (Cac) on both
the daily (thick red trace) and millisecond (above left and right insets) timescales. The calcium rhythm induces a daily oscillation in gene expression [mRNA
concentration M (arbitrary units), thick blue trace]. In turn, the gene expression rhythm regulates ion channel conductances that coordinate to produce the daily
oscillation in membrane potential. This figure is adapted from (Diekman et al., 2013).
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Vasalou–Herzog–Henson model included both VIP and GABA sig-
nalling, and mimicked the spatial organisation of the SCN by using
small-world coupling for the ventral core region and nearest-neigh-
bour coupling for the dorsal shell region (Vasalou et al., 2011). This
model also included an electrophysiology component that accounted
for the effect of various ion channels and synaptic currents on each
cell’s firing rate, but did not simulate individual action potentials.
Similarly, Bush and Siegelman used the leaky integrate-and-fire for-
malism and a two-variable model of the molecular clock to investi-
gate the interaction of gene expression and firing rate in a small-
world SCN network (Bush & Siegelman, 2006). Diekman and For-
ger modelled action potential generation in the SCN network with
Hodgkin–Huxley-type neurons and GABA synapses. However, this
model did not include dynamics of the molecular clock (Diekman &
Forger, 2009). DeWoskin et al. (2015) developed the first network
model of the SCN that resolves individual action potentials and
intracellular molecular clock mechanisms. This model predicts that
tonic GABA release at depolarised resting membrane potentials
(during hyperexcitation) can phase shift the molecular rhythms and
affects SCN synchrony. This highlights the importance of hyperexci-
tation in SCN neurons during the day.

Modelling section 4: future directions for mathematical
modelling of the circadian system

In contrast to the prevalence of phenomenological and molecular mod-
els of the circadian clock, electrophysiological modelling of the SCN
network is relatively nascent. The mechanisms by which the release of
GABA, VIP, and other neurotransmitters and neuropeptides coordi-
nate the daily electrical and gene expression rhythms of SCN neurons
in the dorsal shell and ventral core are still poorly understood. Mul-
tiscale models of the SCN have the potential to generate experimen-
tally testable predictions regarding rhythm generation across the
network, inspired by the role that the interaction of modelling and
experiment has played in distinguishing the ING (interneuronal net-
work gamma) and PING (pyramidal-interneuronal network gamma)
mechanisms of gamma oscillations (Whittington et al., 2000; Tiesinga
& Sejnowski, 2009; Wang & Buzs�aki, 2012; B€orgers, 2017).

In this review, we have primarily discussed models consisting of
deterministic systems of ordinary differential equations (ODEs). Fig-
ure 6 provides a visual summary of the degree to which detailed
molecular clock and electrophysiological mechanisms were incorpo-
rated into each of these models. Stochastic single-cell and network
models have also been developed (Forger & Peskin, 2005; Ko et al.,
2010; An et al., 2013) to explore the robustness of circadian
rhythms to intrinsic and extrinsic sources of noise, but these have
yet to be combined with electrophysiological models. ODE models,
whether deterministic or stochastic, also neglect the spatial aspect of
mRNA and protein molecules moving throughout the cell. Thus,
partial differential equation (PDE) models incorporating reaction-dif-
fusion may be useful for making quantitative predictions about spa-
tial dynamics of the molecular clock. Nonetheless, ODE models
have been able to explain certain features of spatial patterning in the
SCN, such as why clock gene expression in the dorsal region phase
leads the ventral region (Myung et al., 2012). Aside from dynamical
modelling, machine-learning algorithms have also been used to anal-
yse how the spatial architecture of the SCN contributes to robust
rhythm generation (Pauls et al., 2014).
Beyond circadian rhythms, other biological oscillations involve

the feedback between gene expression and electrical activity, for
example the pulsatile release of GnRH every 90 minutes. Lightman
and colleagues (Spiga et al., 2015) have developed mathematical

models to explore the interaction between the circadian clock and
this ultradian endocrine rhythm. Furthermore, a mathematical mod-
elling study of pancreatic islet b-cells has shown that calcium-
dependent transcription can adjust potassium channel activity to res-
cue electrical bursting and insulin oscillations (Yildirim & Bertram,
2017). Circadian rhythms also modulate cortical excitability and
EEG synchrony (Ly et al., 2016). Chellappa et al. (2016) used neu-
ral mass modelling and the dynamic causal modelling (DCM)
framework to demonstrate a strong circadian influence on cortical
excitation/inhibition balance and gamma oscillations. Recent mod-
elling and experimental work has also suggested that the circadian
phase distribution of neurons in the hippocampus can support mem-
ory formation (Eckel-Mahan, 2012; Damineli, 2014). Damineli
coined the term ‘Tau wave’ to describe the temporarily coherent
phase clusters with an approximately 24-hour period that emerged
in his model of memory trace formation. As Tau is often used to
denote the intrinsic period of a circadian oscillator, this term nicely
emphasises the commonality between brain rhythms on the ultra-
slow timescale and faster neuronal oscillations, such as alpha, beta,
gamma, delta, mu and theta waves/oscillations. Future work integrat-
ing circadian components into models of neuronal oscillations on
faster timescales could reveal new insights into daily regulation of a
variety of brain functions.

Conclusion and perspectives

Neuronal oscillations in the master mammalian daily clock generate
and broadcast circadian timing across the brain and body. These
synchronising signals shape the spatiotemporal architecture of physi-
ology and behaviour, aligning their respective processes and activity
with the prevailing light–dark cycle and the animal’s internal physi-
ological demands. To provide such timing signals, SCN neurons
vary their membrane excitability state, so that their RMPs are gener-
ally more depolarised during the day than at night. In some SCN
neurons, action potential discharge patterns are in phase with the
day–night RMP rhythm, firing at higher rates during the day than at
night. In others, the daytime RMP becomes too depolarised for spik-
ing, and the neurons enter a silent state of depolarisation blockade
or generate 2–7 Hz DLAMOs during the afternoon, before travers-
ing to the hypoexcited night state. These RMP and firing rate excur-
sions produce a sinusoidal excitability waveform in the SCN that
peaks during the day and troughs at night, sustaining a neuronal
oscillation with a near 24-h period or wavelength (Fig. 1).
In most SCN neurons, the drive to peak excitation during the day

and hypoexcitation at night results from the activity of an internal
molecular clockwork, where perpetual daily oscillations in clock
gene expression regulate intracellular signalling cascades, ion chan-
nel activity and neurotransmitter release. Despite our formidable
knowledge of the cell-autonomous processes that cause daily oscilla-
tions in clock gene expression, our understanding of how the molec-
ular clockwork interacts with the membrane to regulate excitability
of SCN neurons is severely lacking. Feedback cues from the envi-
ronment and internal physiology also signal to SCN neurons, adjust-
ing the timing precision of their internal molecular clockwork. This
raises an interesting conundrum, because to influence the activity of
the clock these resetting cues must first signal through the plasma
membrane (Fig. 2). The mechanisms involved in this electrical-
genetic interaction remain elusive, but emerging evidence, both in
mammals and Drosophila clocks, supports the concept that the
plasma membrane is not merely the proximal target of the molecular
clockwork, but its excitability is integral to the functioning of the
clock (Nitabach et al., 2002, 2006; Lundkvist & Block, 2005;
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Lundkvist et al., 2005; Wu et al., 2008; Diekman et al., 2013;
Granados-Fuentes et al., 2015), conceptualised here as the mem-
brane clock (Fig. 2). An ingenious study in flies by Mizrak and col-
leagues established that the membrane clock can indeed feedback to
impose time-of-day stamps onto the molecular clock transcriptome,
acting as an internal zeitgeber (time-giver; Mizrak et al., 2012).
Alternatively, intercellular signals could also influence the activity
of the molecular clock in manners that are independent of membrane
excitability. For example, VIP could directly activate clock gene
transcription through its effects on intracellular calcium and cAMP
signalling (Akiyama et al., 2001; Travnickova-Bendova et al., 2002;
Itri & Colwell, 2003; Irwin & Allen, 2010). Indeed, calcium entry
through glutamatergic receptors activation could also have similar
direct modulating effects on clock gene transcription alongside or
independent of electrical excitation. Remarkably, therefore, the circa-
dian clock functions through an autonomous and intricate genetic-
electrical interplay which dynamically regulates, integrates and
processes converging inputs at multiple cellular and network levels,
while simultaneously broadcasting circadian signals across the brain
and body.
Undeniably, neuronal rhythms are a widespread phenomenon,

spanning across several brain regions and a wide range of frequency
bands, from 0.05 to 600 Hz. In some of these structures, such as
the hippocampus and cortex, these fast rhythms coexist alongside
the much slower circadian oscillations. Interestingly, even in the
SCN, faster ultradian and beta/gamma rhythms are found embedded
within the slower circadian cycle. Uncovering the relationship
between these brain-wide neuronal oscillators is a daunting chal-
lenge, but a necessary task if we are to understand how the all-
important timing in physiology and behaviour is dynamically
shaped and organised at multiple timescales (see Fig. 3). Across the
forebrain regions, slow rhythms are known to influence the ampli-
tude of oscillations with higher frequencies, synchronise large spa-
tial domains and temporally link neurons into assemblies. Thus,

taking all this into account, circadian rhythms must therefore be
studied in the context of other brain oscillations if we are to under-
stand their roles in shaping faster global brain events. In support,
despite the wide distribution of neuronal oscillators along the fre-
quency spectrum, the frequencies of these oscillations form a linear
progression on the natural logarithmic scale (Freeman et al., 2000;
Penttonen & Buzsaki, 2003), perhaps mathematically underscoring
their brain-wide interconnection. In the context of circadian timing,
it is therefore conceivable that neuronal oscillations in the SCN at
the circadian, ultradian and faster timescales represent the critical
‘middle ground’, linking single neuron activity, at the microsecond
and millisecond timescales of ion channel conductance, action
potential firing and synaptic release, to circadian pattern generation
in physiology and behaviour.
Indeed, as demonstrated across the neuroscience disciplines and

beyond, mathematical modelling has become an indispensable com-
panion for driving our hypotheses, guiding our experiments and
clarifying our understanding. This alliance between the two fields
will no doubt be central in our strive to unravel some of the
idiosyncratic processes in brain operation, physiology and behaviour
that otherwise would be impenetrable.
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List of Abbreviations
DA data assimilation
PDE partial differential equation
4D-Var 4D-Variational
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
SNIC saddle-node on invariant circle
EnKF Ensemble Kalman Filter
LETK Local Ensemble Transform Kalman Filter

1 Introduction

1.1 The Parameter Estimation Problem

The goal of conductance-based modeling is to be able to reproduce, explain, and
predict the electrical behavior of a neuron or networks of neurons. Conductance-
based modeling of neuronal excitability began in the 1950s with the Hodgkin–Huxley
model of action potential generation in the squid giant axon [1]. This modeling frame-
work uses an equivalent circuit representation for the movement of ions across the cell
membrane:

C
dV

dt
= Iapp −

∑

ion
Iion, (1)

where V is membrane voltage, C is cell capacitance, Iion are ionic currents, and
Iapp is an external current applied by the experimentalist. The ionic currents arise
from channels in the membrane that are voltage- or calcium-gated and selective for
particular ions, such sodium (Na+) and potassium (K+). For example, consider the
classical Hodgkin–Huxley currents:

INa = gNam
3h(V − ENa), (2)

IK = gKn4(V − EK). (3)

The maximal conductance gion is a parameter that represents the density of channels
in the membrane. The term (V − Eion) is the driving force, where the equilibrium
potential Eion is the voltage at which the concentration of the ion inside and outside
of the cell is at steady state. The gating variable m is the probability that one of three
identical subunits of the sodium channel is “open”, and the gating variable h is the
probability that a fourth subunit is “inactivated”. Similarly, the gating variable n is
the probability that one of four identical subunits of the potassium channel is open.
For current to flow through the channel, all subunits must be open and not inactivated.
The rate at which subunits open, close, inactivate, and de-inactivate depends on the
voltage. The dynamics of the gating variables are given by

dx

dt
= αx(V )(1 − x) + βx(V )x, (4)

where αx(V ) and βx(V ) are nonlinear functions of voltage with several parameters.
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The parameters of conductance-based models are typically fit to voltage-clamp
recordings. In these experiments, individual ionic currents are isolated using pharma-
cological blockers and one measures current traces in response to voltage pulses.
However, many electrophysiological datasets consist of current-clamp rather than
voltage-clamp recordings. In current-clamp, one records a voltage trace (e.g., a se-
ries of action potentials) in response to injected current. Fitting a conductance-based
model to current-clamp data is challenging because the individual ionic currents have
not been measured directly. In terms of the Hodgkin–Huxley model, only one state
variable (V ) has been observed, and the other three state variables (m, h, and n) are
unobserved. Conductance-based models of neurons often contain several ionic cur-
rents and, therefore, more unobserved gating variables and more unknown or poorly
known parameters. For example, a model of HVC neurons in the zebra finch has 9
ionic currents, 12 state variables, and 72 parameters [2]. An additional difficulty in
attempting to fit a model to a voltage trace is that if one performs a least-squares
minimization between the data and model output, then small differences in the tim-
ing of action potentials in the data and the model can result in large error [3]. Data
assimilation methods have the potential to overcome these challenges by performing
state estimation (of both observed and unobserved states) and parameter estimation
simultaneously.

1.2 Data Assimilation

Data assimilation can broadly be considered to be the optimal integration of observa-
tions from a system to improve estimates of a model output describing that system.
Data assimilation (DA) is used across the geosciences, e.g., in studying land hydrol-
ogy and ocean currents, as well as studies of climates of other planets [4–6]. An
application of DA familiar to the general public is its use in numerical weather pre-
diction [7]. In the earth sciences, the models are typically high-dimensional partial
differential equations (PDEs) that incorporate dynamics of the many relevant gov-
erning processes, and the state system is a discretization of those PDEs across the
spatial domain. These models are nonlinear and chaotic, with interactions of system
components across temporal and spatial scales. The observations are sparse in time,
contaminated by noise, and only partial with respect to the full state-space.

In neuroscience, models can also be highly nonlinear and potentially chaotic.
When dealing with network dynamics or wave propagation, the state-space can be
quite large, and there are certainly components of the system for which one would
not have time course measurements [8]. As mentioned above, if one has a biophys-
ical model of a single neuron and measurements from a current-clamp protocol, the
only quantity in the model that is actually measured is the membrane voltage. The
question then becomes: how does one obtain estimates of the full system state?

To begin, we assume we have a model to represent the system of interest and a
way to relate observations we have of that system to the components of the model.
Additionally, we allow, and naturally expect, there to be errors present in the model
and measurements. To start, let us consider first a general model with linear dynamics
and a set of discrete observations which depend linearly on the system components:

xk+1 = Fxk + ωk+1, xk ∈R
L (5)
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yk+1 = Hxk+1 + ηk+1, yk+1 ∈R
M. (6)

In this state-space representation, xk is interpreted as the state of the system at some
time tk , and yk are our observations. For application in neuroscience, we can take
M � L as few state variables of the system are readily observed. F is our model
which maps states xk between time points tk and tk+1. H is our observation operator
which describes how we connect our observations yk+1 to our state-space at tk+1.
The random variables ωk+1 and ηk+1 represent model error and measurement error,
respectively. A simplifying assumption is that our measurements are diluted by Gaus-
sian white noise, and that the error in the model can be approximated by Gaussian
white noise as well. Then ωk ∼N (0,Qk) and ηk ∼N (0,Rk), where Qk is our model
error covariance matrix and Rk is our measurement error covariance matrix. We will
assume these distributions for the error terms for the remainder of the paper.

We now have defined a stochastic dynamical system where we have characterized
the evolution of our states and observations therein based upon assumed error statis-
tics. The goal is now to utilize these transitions to construct methods to best estimate
the state x over time. To approach this goal, it may be simpler to consider the evalu-
ation of background knowledge of the system compared to what we actually observe
from a measuring device. Consider the following cost function [9]:

C(x) = 1
2
‖y − Hx‖2

R + 1
2
∥∥x − xb

∥∥2
Pb , (7)

where ‖z‖2
A = zT A−1z. P b acts to give weight to certain background components xb ,

and R acts in the same manner to the measurement terms. The model or background
term acts to regularize the cost function. Specifically, trying to minimize 1

2‖y−Hx‖2
R

is underdetermined with respect to the observations unless we can observe the full
system, and the model term aims to inform the problem of the unobserved compo-
nents. We are minimizing over state components x. In this way, we balance the influ-
ence of what we think we know about the system, such as from a model, compared
to what we can actually observe. The cost function is minimized from

∇C = (
HT R−1H + (

P b
)−1)

xa − (
HT R−1y + (

P b
)−1

xb
) = 0. (8)

This can be restructured as

xa = xb + K
(
y − Hxb

)
, (9)

where

K = P bHT
(
HP bHT + R

)−1
. (10)

The optimal Kalman gain matrix K acts as a weighting of the confidence of our
observations to the confidence of our background information given by the model.
If the background uncertainty is relatively high or the measurement uncertainty is
relatively low, K is larger, which more heavily weights the innovation y − Hxb.

The solution of (7) can be interpreted as the solution of a single time step in our
state-space problem (5)–(6). In the DA literature, minimizing this cost function in-
dependent of time is referred to as 3D-Var. However, practically we are interested in
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problems resembling the following:

C(x) = 1
2

N∑

k=0
‖yk − Hxk‖2

Rk
+ 1

2

N−1∑

k=0
‖xk+1 − Fxk‖2

Pb
k

, (11)

where formally the background component xb has now been replaced with our model.
Now we are concerned with minimizing over an observation window with N +1 time
points. Variational methods, specifically “weak 4D-Var”, seek minima of (11) either
by formulation of an adjoint problem [10], or directly from numerical optimization
techniques.

Alternatively, sequential data assimilation approaches, specifically filters, aim to
use information from previous time points t0, t1, . . . , tk , and observations at the cur-
rent time tk+1, to optimally estimate the state at tk+1. The classical Kalman filter uti-
lizes the form of (10), which minimizes the trace of the posterior covariance matrix
of the system at step k + 1, P a

k+1, to update the state estimate and system uncertainty.
The Kalman filtering algorithm takes the following form. Our analysis estimate,

x̂a
k from the previous iteration, is mapped through the linear model operator F to

obtain our forecast estimate x̂
f

k+1:

x̂
f

k+1 = Fkx̂
a
k . (12)

The observation operator H is applied to the forecast estimate to generate the mea-
surement estimate ŷ

f

k+1:

ŷ
f

k+1 = Hk+1x̂
f

k+1. (13)

The forecast estimate covariance P
f

k+1 is generated through calculating the covari-
ance from the model and adding it with the model error covariance Qk :

P
f

k+1 = FkP
a
k FT

k + Qk. (14)

Similarly, we can construct the measurement covariance estimate by calculating the
covariance from our observation equation and adding it to the measurement error
covariance Rk :

P
y

k+1 = Hk+1P
f

k+1H
T
k+1 + Rk. (15)

The Kalman gain is defined analogously to (10):

Kk+1 = P
f

k+1H
T
k+1

(
P

y

k+1
)−1

. (16)

The covariance and the mean estimate of the system are updated through a weighted
sum with the Kalman gain:

P a
k+1 = (I − Kk+1Hk+1)P

f

k+1 (17)

x̂a
k+1 = x̂

f

k+1 + Kk+1
(
yk+1 − ŷ

f

k+1
)
. (18)
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These equations can be interpreted as a predictor–corrector method, where the pre-
dictions of the state estimates are x̂

f

k+1 with corresponding uncertainties P
f

k+1 in the
forecast. The correction, or analysis, step linearly interpolates the forecast predictions
with observational readings.

In this paper we only consider filters, however smoothers are another form of
sequential DA that also use observational data from future times tk+2, . . . , tk+l to
estimate the state at tk+1.

2 Nonlinear Data Assimilation Methods

2.1 Nonlinear Filtering

For nonlinear models, the Kalman equations need to be adapted to permit nonlinear
mappings in the forward operator and the observation operator:

xk+1 = f (xk) + ωk+1, ωk ∈ RL, (19)

yk+1 = h(xk+1) + ηk+1, ηk+1 ∈ RM. (20)

Our observation operator for voltage data remains linear: h(x) = Hx = [e10 . . .0]x,
where ej is the j th elementary basis vector, is a projection onto the voltage com-
ponent of our system. Note that h(x) is an operator, not to be confused with the
inactivation gate in (2). Our nonlinear model update, f (x) in (19), is taken as the
forward integration of the dynamical equations between observation times.

Multiple platforms for adapting the Kalman equations exist. The most straightfor-
ward approach is the extended Kalman filter (EKF) which uses local linearizations of
the nonlinear operators in (19)–(20) and plugs these into the standard Kalman equa-
tions. By doing so, one preserves Gaussianity of the state-space. Underlying the data
assimilation framework is the goal of understanding the distribution, or statistics of
the distribution, of the states of the system given the observations:

p(x|y) ∝ p(y|x)p(x). (21)

The Gaussianity of the state-space declares the posterior conditional distribution
p(x|y) to be a normal distribution by the product of Gaussians being Gaussian, and
the statistics of this distribution lead to the Kalman update equations [10]. However,
the EKF is really only suitable when the dynamics are nearly linear between obser-
vations and can result in divergence of the estimates [11].

Rather than trying to linearize the transformation to preserve Gaussianity, where
this distributional assumption is not going to be valid for practical problems anyway,
an alternative approach is to preserve the nonlinear transformation and try to estimate
the first two moments of transformed state [11]. The Unscented Kalman Filter (UKF)
approximates the first two statistics of p(xk|y0 . . . yk) by calculating sample means
and variances, which bypasses the need for Gaussian integral products. The UKF uses
an ensemble of deterministically selected points in the state-space whose collective
mean and covariance are that of the state estimate and its associated covariance at
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Fig. 1 Unscented transformation. (A) Initial data where blue corresponds to sampling points from a nor-
mal distribution of the V,n state-space and the red circles are the sigma points. Black corresponds to the
true uncertainty and mean of the sampled distribution. Magenta corresponds to the statistics of the sigma
points. (B) Illustrates the forward operator f (x) acting on each element of the left panel where f (x) is the
numerical integration of the Morris–Lecar equations (42)–(46) between observation times

some time. The forward operator f (x) is applied to each of these sigma points, and
the mean and covariance of the transformed points can then be computed to estimate
the nonlinearly transformed mean and covariance. Figure 1 depicts this “unscented”
transformation. The sigma points precisely estimate the true statistics both initially
(Fig. 1(A)) and after nonlinear mapping (Fig. 1(B)).

In the UKF framework, as with all DA techniques, one is attempting to estimate the
states of the system. The standard set of states in conductance-based models includes
the voltage, the gating variables, and any intracellular ion concentrations not taken to
be stationary. To incorporate parameter estimation, parameters θ to be estimated are
promoted to states whose evolution is governed by the model error random variable:

θk+1 = θk + ωθ
k+1, ωθ

k ∈ RD. (22)

This is referred to as an “artificial noise evolution model”, as the random disturbances
driving deviations in model parameters over time rob them of their time-invariant
definition [12, 13]. We found this choice to be appropriate for convergence and as a
tuning mechanism. An alternative is to zero out the entries of Qk corresponding to the
parameters in what is called a “persistence model” where θk+1 = θk [14]. However,
changes in parameters can still occur during the analysis stage.

We declare our augmented state to be comprised of the states in the dynamical
system as well as parameters θ of interest:

Augmented State: x= (V ,q, θ)T, q ∈R
L−1, θ ∈ R

D, (23)
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where q represents the additional states of the system besides the voltage. The filter
requires an initial guess of the state x̂0 and covariance Pxx . An implementation of this
algorithm is provided as Supplementary Material with the parent functionUKFML.m
and one time step of the algorithm computed in UKF_Step.m.

An ensemble of σ points are formed and their position and weights are determined
by λ, which can be chosen to try to match higher moments of the system distribution
[11]. Practically, this algorithmic parameter can be chosen to spread the ensemble for
λ > 0, shrink the ensemble for −N < λ < 0, or to have the mean point completely
removed from the ensemble by setting it to zero. The ensemble is formed on lines
80-82 of UKF_Step.m. The individual weights can be negative, but their cumulative
sum is 1.

σPoints : Xj = x̂a
k ± (√

(N + λ)Pxx

)
j
, j = 1, . . . ,2N, X0 = x̂a

k ,

Weights: Wj = 1
2(N + λ)

, j = 1, . . . ,2N, W0 = λ

N + λ
.

(24)

We form our background estimate x̂b
k+1 by applying our map f (x) to each of the

ensemble members

X̃j = f (Xj ) (25)

and then computing the resulting mean:

Forecast Estimate : x̂b
k+1 =

2N∑

j=0
WjX̃j . (26)

We then propagate the transformed sigma points through the observation operator

Ỹj = h(X̃j ) (27)

and compute our predicted observation ŷb
k+1 from the mapped ensemble:

Measurement Estimate: ŷb
k+1 =

2N∑

j=0
Wj Ỹj . (28)

We compute the background covariance estimate by calculating the variance of the
mapped ensemble and adding the process noise Qk :

Background Cov. Est.: P
f
xx =

2N∑

j=0
Wj

(
X̃j − x̂b

i+k

)(
X̃j − x̂b

i+k

)T + Qk (29)

and do the same for the predicted measurement covariance with the addition of Rk :

Predicted Meas. Cov. : Pyy =
2N∑

j=0
Wj

(
Ỹj − ŷb

k+1
)(

Ỹj − ŷb
k+1

)T + Rk+1. (30)
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The Kalman gain is computed by matrix multiplication of the cross-covariance:

Cross-Cov. : Pxy =
2N∑

j=0
Wj

(
X̃j − x̂b

k+1
)(

Ỹj − ŷb
k+1

)T (31)

with the predicted measurement covariance:

Kalman Gain : K = PxyP
−1
yy . (32)

When only observing voltage, this step is merely scalar multiplication of a vector.
The gain is used in the analysis, or update step, to linearly interpolate our background
statistics with measurement corrections. The update step for the covariance is

P a
xx = P

f
xx − KP T

xy, (33)

and the mean is updated to interpolate the background estimate with the deviations
of the estimated measurement term with the observed data yk+1:

x̂a
k+1 = x̂b

k+1 + K
(
yk+1 − ŷb

k+1
)
. (34)

The analysis step is performed on line 124 of UKF_Step.m. Some implementa-
tions also include a redistribution of the sigma points about the forecast estimate
using the background covariance prior to computing the cross-covariance Pxy or the
predicted measurement covariance Pyy [15]. So, after (29), we redefine X̃j , Ỹj in
(25) as follows:

X̃j = x̂b
k+1 ± (√

(N + λ)Pxx

)
j
, j = 1, . . . ,2N,

Ỹj = h(X̃j ).

The above is shown in lines 98–117 in UKF_Step. A particularly critical part of us-
ing a filter, or any DA method, is choosing the process covariance matrix Qk and the
measurement covariance matrix Rk . The measurement noise may be intuitively based
upon knowledge of one’s measuring device, but the model error is practically impos-
sible to know a priori. Work has been done to use previous innovations to simul-
taneously estimate Q and R during the course of the estimation cycle [16], but this
becomes a challenge for systems with low observability (such as is the case when only
observing voltage). Rather than estimating the states and parameters simultaneously
as with an augmented state-space, one can try to estimate the states and parameters
separately. For example, [17] used a shooting method to estimate parameters and the
UKF to estimate the states. This study also provided a systematic way to estimate an
optimal covariance inflation Qk . For high-dimensional systems where computational
efficiency is a concern, an implementation which efficiently propagates the square
root of the state covariance has been developed [18].

Figure 2 depicts how the algorithm operates. Between observation times, the pre-
vious analysis (or best estimate) point is propagated through the model to come up
with the predicted model estimate. The Kalman update step interpolates this point
with observations weighted by the Kalman gain.
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Fig. 2 Example of iterative estimation in UKF. The red circles are the result of forward integration through
the model using the previous best estimates. The green are the estimates after combining these with obser-
vational data. The blue stars depict the true system output (without any noise), and the magenta stars are
the noisy observational data with noise generated by (48) and ε = 0.1

2.2 Variational Methods

In continuous time, variational methods aim to find minimizers of functionals which
represent approximations to the probability distribution of a system conditioned on
some observations. As our data is available only in discrete measurements, it is prac-
tical to work with a discrete form similar to (7) for nonlinear systems:

C(x) = 1
2

N∑

k=0

∥∥yk − h(xk)
∥∥2

Rk
+ 1

2

N−1∑

k=0

∥∥xk+1 − f (xk)
∥∥2

Pb
k
. (35)

We assume that the states follow the state-space description in (19)–(20) with
ωk ∼N (0,Q) and ηk ∼N (0,R), where Q is our model error covariance matrix and
R is our measurement error covariance matrix. As an approximation, we impose Q, R
to be diagonal matrices, indicating that there is assumed to be no correlation between
errors in other states. Namely, Q, contains only the assumed model error variance
for each state-space component, and R is just the measurement error variance of the
voltage observations. These assumptions simplify the cost function to the following:

C(x) = 1
2

N∑

k=0
R−1(yk − Vk)

2 + 1
2

L∑

l=1

N−1∑

k=0
Q−1

l,l

(
xl,k+1 − fl(xk)

)2
, (36)

where Vk = x1,k . For the current-clamp data problem in neuroscience, one seeks to
minimize equation (36) in what is called the “weak 4D-Var” approach. An example
implementation of weak 4D-Var is provided in w4DvarML.m in the Supplementary
Material. An example of the cost function with which to minimize over is given in
the child function w4dvarobjfun.m. Each of the xk is mapped by f (x) on line 108.
Alternatively, “strong 4D-Var” forces the resulting estimates to be consistent with the
model f (x). This can be considered the result of taking Q → 0, which yields the
nonlinearly constrained problem

C(x) = 1
2

N∑

k=0
R−1(yk − Vk)

2 (37)
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such that

xk+1 = f (xk), k = 0, . . . ,N. (38)

The rest of this paper will be focused on the weak case (36), where we can define
the argument of the optimization as follows:

x= [x1,1, x1,2, . . . , x1,N , x2,1, . . . , xL,N , θ1, θ2, . . . , θD] (39)

resulting in an (N + 1)L + D-dimensional estimation problem. An important aspect
of the scalability of this problem is that the Hessian matrix

Hi,j = ∂2C

∂xi∂xj

(40)

is sparse. Namely, each state at each discrete time has dependencies based upon the
model equations and the chosen numerical integration scheme. At the heart of many
gradient-based optimization techniques lies a linear system, involving the Hessian
and the gradient ∇C(xn) of the objective function, that is used to solve for the next
candidate point. Specifically, Newton’s method for optimization is

xn+1 = xn −H−1∇C(xn). (41)

Therefore, if (N + 1)L + D is large, then providing the sparsity pattern is advan-
tageous when numerical derivative approximations, or functional representations of
them, are being used to perform minimization with a derivative-based method. One
can calculate these derivatives by hand, symbolic differentiation, or automatic differ-
entiation.

A feature of the most common derivative-based methods is assured convergence
to local minima. However, our problem is non-convex due to the model term, which
leads to the development of multiple local minima in the optimization surface as de-
picted in Fig. 3. For the results in this tutorial, we will only utilize local optimization
tools, but see Sect. 5 for a brief discussion of some global optimization methods with
stochastic search strategies.

3 Application to Spiking Regimes of the Morris–Lecar Model

3.1 Twin Experiments

Data assimilation is a framework for the incorporation of system observations into an
estimation problem in a systematic fashion. Unfortunately, the methods themselves
do not provide a great deal of insight into the tractability of unobserved system com-
ponents of specific models. There may be a certain level of redundancy in the model
equations and degeneracy in the parameter space leading to multiple potential solu-
tions [19]. Also, it may be the case that certain parameters are non-identifiable if,
for instance, a parameter can be completely scaled out [20]. Some further work on
identifiability is ongoing [21, 22].
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Fig. 3 Example cost function for 4D-Var. (A) Surface generated by taking the logarithm of C(α,β),
where C(α,β) = C(x0(1 −α)(1 −β)+αxmin,d +βxmin,s) so that at α = β = 0, x= x0 (magenta circle),
and at α = 1 and β = 0, x = xmin,d for the deeper minima (gray square), and similarly for the shallower
minima (gray diamond). (B) Contour plot of the surface shown in (A)

Before applying a method to data from a real biological experiment, it is important
to test it against simulated data where the ground truth is known. In these experiments,
one creates simulated data from a model and then tries to recover the true states and
parameters of that model from the simulated data alone.

3.2 Recovery of Bifurcation Structure

In conductance-based models, as well as in real neurons, slight changes in a parame-
ter value can lead to drastically different model output or neuronal behavior. Sudden
changes in the topological structure of a dynamical system upon smooth variation of
a parameter are called bifurcations. Different types of bifurcations lead to different
neuronal properties, such as the presence of bistability and subthreshold oscillations
[23]. Thus, it is important for a neuronal model to accurately capture the bifurca-
tion dynamics of the cell being modeled [24]. In this paper, we ask whether or not
the models estimated through data assimilation match the bifurcation structure of
the model that generated the data. This provides a qualitative measure of success or
failure for the estimation algorithm. Since bifurcations are an inherently nonlinear
phenomenon, our use of topological structure as an assay emphasizes how nonlinear
estimation is a fundamentally distinct problem from estimation in linear systems.

3.3 Morris–Lecar Model

The Morris–Lecar model, first used to describe action potential generation in barna-
cle muscle fibers, has become a canonical model for studying neuronal excitability
[25]. The model includes an inward voltage-dependent calcium current, an outward
voltage-dependent potassium current, and a passive leak current. The activation gat-
ing variable for the potassium current has dynamics, whereas the calcium current acti-
vation gate is assumed to respond instantaneously to changes in voltage. The calcium
current is also non-inactivating, resulting in a two-dimensional model. The model
exhibits multiple mechanisms of excitability: for different choices of model parame-
ters, different bifurcations from quiescence to repetitive spiking occur as the applied
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Fig. 4 Three different excitability regimes of the Morris–Lecar model. The bifurcation diagrams in the top
row depict stable fixed points (red), unstable fixed points (black), stable limit cycles (blue), and unstable
limit cycles (green). Gray dots indicate bifurcation points, and the dashed gray lines indicate the value of
Iapp corresponding to the traces shown for V (middle row) and n (bottom row). (A) As Iapp is increased
from 0 or decreased from 250 nA, the branches of stable fixed points lose stability through subcritical Hopf
bifurcation, and unstable limit cycles are born. The branch of stable limit cycles that exists at Iapp = 100
nA eventually collides with these unstable limit cycles and is destroyed in a saddle-node of periodic orbits
(SNPO) bifurcation as Iapp is increased or decreased from this value. (B) As Iapp is increased from 0,
a branch of stable fixed points is destroyed through saddle-node bifurcation with the branch of unstable
fixed points. As Iapp is decreased from 150 nA, a branch of stable fixed points loses stability through
subcritical Hopf bifurcation, and unstable limit cycles are born. The branch of stable limit cycles that exists
at Iapp = 100 nA is destroyed through a SNPO bifurcation as Iapp is increased and a SNIC bifurcation
as Iapp is decreased. (C) Same as (B), except that the stable limit cycles that exist at Iapp = 36 nA are
destroyed through a homoclinic orbit bifurcation as Iapp is decreased

Table 1 Morris–Lecar
parameter values. For all
simulations, C = 20,
ECa = 120, EK = −84, and
EL = −60. For the Hopf and
SNIC regime, Iapp = 100; for
the homoclinic regime,
Iapp = 36

Hopf SNIC Homoclinic

φ 0.04 0.067 0.23
gCa 4 4 4
V3 2 12 12
V4 30 17.4 17.4
gK 8 8 8
gL 2 2 2
V1 −1.2 −1.2 −1.2
V2 18 18 18

current is increased [23]. Three different bifurcation regimes—Hopf, saddle-node on
an invariant circle (SNIC), and homoclinic—are depicted in Fig. 4 and correspond
to the parameter sets in Table 1. For a given applied current in the region where a
stable limit cycle (corresponding to repetitive spiking) exists, each regime displays a
distinct firing frequency and action potential shape.



Page 14 of 38 M.J. Moye, C.O. Diekman

The equations for the Morris–Lecar model are as follows:

Cm

dV

dt
= Iapp − gL(V − EL) − gKn(V − EK)

− gCam∞(V )(V − ECa)

= f �
V (V,n; θ), (42)

dn

dt
= φ

(
n∞(V ) − n

)
/τn(V ) = f �

n (V,n; θ), (43)

with

m∞ = 1
2
[
1 + tanh

(
(V − V1)/V2

)]
, (44)

τn = 1/ cosh
(
(V − V3)/2V4

)
, (45)

n∞ = 1
2
[
1 + tanh

(
(V − V3)/V4

)]
. (46)

The eight parameters that we will attempt to estimate from data are gL, gK, gCa,
φ, V1, V2, V3, and V4. We are interested in whether the estimated parameters yield
a model with the desired mechanism of excitability. Specifically, we will conduct
twin experiments where the observed data is produced by a model with parameters
in a certain bifurcation regime, but the data assimilation algorithm is initialized with
parameter guesses corresponding to a different bifurcation regime. We then assess
whether or not a model with the set of estimated parameters undergoes the same
bifurcations as the model that produced the observed data. This approach provides an
additional qualitative measure of estimation accuracy, beyond simply comparing the
values of the true and estimated parameters.

3.4 Results with UKF

The UKF was tested on the Morris–Lecar model in an effort to simultaneously esti-
mate V and n along with the eight parameters in Table 1. Data was generated via a
modified Euler scheme at observation points every 0.1 ms, where we take the step-
size �t as 0.1 as well:

x̃k+1 = xk + �tf �(tk, xk),

xk+1 = xk + �t

2
(
f �(tk, xk) + f �(tk+1, x̃k+1)

)

= f (xk).

(47)

The UKF is a particularly powerful tool when a lot of data is available; the compu-
tational complexity in time is effectively the same as the numerical scheme of choice,
whereas the additional operations at each time point are O((L + D)3) [26]. f (x) in
(19) is taken to be the Morris–Lecar equations (42)–(43), acting as f �(tk, xk), inte-
grated forward via modified Euler (47), and is given on line 126 of UKFML.m. The
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function fXaug.m, provided in the Supplementary Material, represents our augmented
vector field. Our observational operator H is displayed on line 136 of UKFML.m. To
reiterate, the states to be estimated in the Morris–Lecar model are the voltage and the
potassium gating variable. The eight additional parameters are promoted to the mem-
bers of state-space with trivial dynamics resulting in a ten-dimensional estimation
problem.

These examples were run using 20 seconds of data which is 200,001 time points.
During this time window, the Hopf, SNIC, and homoclinic models fire 220, 477, and
491 spikes, respectively. Such a computation for a ten-dimensional model takes only
a few minutes on a laptop computer. R can be set to 0 when one believes the observed
signal to be completely noiseless, but even then it is commonly left as a small num-
ber to try to mitigate the development of singularities in the predicted measurement
covariance. We set our observed voltage to be the simulated output using modified
Euler with additive white noise at each time point:

Vobs(t) = Vtrue(t) + η(t), (48)

where η ∼ N (0, (εσtrue)
2) is a normal random variable whose variance is equal to the

square of the standard deviation of the signal scaled by a factor ε, which is kept fixed
at 0.01 for these simulations. R is taken as the variance of η. The initial covariance
of the system is αI I , where I is the identity matrix and αI is 0.001. The initial guess
for n is taken to be 0. Q is fixed in time as a diagonal matrix with diagonal 10−7

[max(Vobs) − min(Vobs),1, |θ0|], where θ0 represents our initial parameter guesses.
We set λ = 5; however, this parameter was not especially influential for the results of
these runs, as discussed further below. These initializations are displayed in the body
of the parent function UKFML.m.

Figure 5 shows the state estimation results when the observed voltage is from the
SNIC regime, but the UKF is initialized with parameter guess corresponding to the
Hopf regime. Initially, the state estimate for n and its true, unobserved dynamics have
great disparity. As the observations are assimilated over the estimation window, the
states and model parameters adjust to produce estimates which better replicate the
observed, and unobserved, system components. In this way, information from the
observations is transferred to the model. The evolution of the parameter estimates for
this case is shown in the first column of Fig. 6, with φ, V3, and V4 all converging
to close to their true values after 10 seconds of observations. The only difference
in parameter values between the SNIC and homoclinic regimes is the value of the
parameter φ. The second column of Fig. 6 shows that when the observed data is from
the homoclinic regime but the initial parameter guesses are from the SNIC regime,
the estimates of V3 and V4 remain mostly constant near their original (and correct)
values, whereas the estimate of φ quickly converges to its new true value. Finally, the
third column of Fig. 6 shows that all three parameter estimates evolve to near their
true values when the UKF is presented with data from the Hopf regime but initial
parameter estimates from the homoclinic regime.

Table 2 shows the parameter estimates at the end of the estimation window for all
of the nine possible twin experiments. Promisingly, a common feature of the results is
the near recovery of the true value of each of the parameters. However, the estimated
parameter values alone do not necessarily tell us about the dynamics of the inferred
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Fig. 5 State estimates for UKF. This example corresponds to initializing with parameters from the HOPF
regime and attempting to correctly estimate those of the SNIC regime. The noisy observed voltage V and
true unobserved gating variable n are shown in blue, and their UKF estimates are shown in red

Table 2 UKF parameter estimates at end of estimation window, with observed data from bifurcation
regime ‘t’ and initial parameter guesses corresponding to bifurcation regime ‘g’

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.040 0.40 0.040 0.067 0.040 0.067 0.237 0.224 0.224
gCa 4.017 4.019 4.025 4.001 4.000 4.001 4.112 3.874 3.877
V3 1.612 1.762 1.660 11.931 11.937 11.912 11.751 11.784 11.772
V4 29.646 29.832 29.771 17.343 17.337 17.342 17.739 16.806 16.815
gK 7.895 7.926 7.892 7.970 7.971 7.958 7.929 7.854 7.850
gL 2.032 2.027 2.033 2.003 2.004 2.003 2.025 1.967 1.968
V1 −1.199 −1.195 −1.189 −1.193 −1.193 −1.190 −1.064 −1.346 −1.341
V2 18.045 18.053 18.067 17.991 17.991 17.991 18.179 17.734 17.740

model. To assess the inferred models, we generate bifurcation diagrams using the es-
timated parameters and compare them to the bifurcation diagrams for the parameters
that produced the observed data. Figure 7 shows that the SNIC and homoclinic bifur-
cation diagrams were recovered quite exactly. The Hopf structure was consistently
recovered, but with shifted regions of spiking and quiescence and minor differences
in spike amplitude.

To check the consistency of our estimation, we set 100 initial guesses for n across
its dynamical range as samples from U(0,1). Figure 8 shows that the state estimates
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Fig. 6 Parameter estimates for UKF. This example corresponds to initializing with parameters from the
HOPF, SNIC, and HOMO regimes and attempting to correctly estimate those of the SNIC, HOMO, and
HOPF regimes (left to right column, respectively). The blue curves are the estimates from the UKF, with
±2 standard deviations from the mean (based on the filter estimated covariance) shown in red. The gray
lines indicate the true parameter values

Fig. 7 Bifurcation diagrams for UKF twin experiments. The gray lines correspond to the true diagrams,
and the blue dotted lines correspond to the diagrams produced from the estimated parameters in Table 2

for n across these initializations quickly approached very similar trajectories. We
confirmed that after the estimation cycle was over, the parameter estimates for all
100 initializations were essentially identical to the values shown in Table 2. In this
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Fig. 8 UKF state estimates of n

for the Morris–Lecar model with
100 different initial guesses of
the state sampled from U(0,1),
with all other parameters held
fixed

paper, we always initialized the UKF with initial parameter values corresponding to
the various bifurcation regimes and did not explore the performance for randomly
selected initial parameter guesses. For initial parameter guesses that are too far from
the true values, it is possible that the filter would converge to incorrect parameter val-
ues or fail outright before reaching the end of the estimation window. Additionally,
we investigated the choices of certain algorithmic parameters for the UKF, namely λ

and αI . Figure 9(A) shows suitable ranges of these parameters, with the color indi-
cating the root mean squared error of the parameters at the end of the cycle compared
to their true values. We found this behavior to be preserved across our nine twin ex-
periment scenarios. Notably, this shows that our results in Table 2 were generated
using an initial covariance αI = 0.001 that was smaller than necessary. By increasing
the initial variability, the estimated system can converge to the true dynamics more
quickly, as shown for αI = 0.1 in Fig. 9(B). The value of λ does not have a large im-
pact on these results, except for when αI = 1. Here the filter fails before completing
the estimation cycle, except for a few cases where λ is small enough to effectively
shrink the ensemble spread and compensate for the large initial covariance. For ex-
ample, with λ = −9, we have N − 9 = 1 and, therefore, the ensemble spread in (24)
is simply Xj = x̂a

k ± √
Pxx . For even larger initial covariances (αI > 1), the filter

fails regardless of the value of λ. We noticed that in many of the cases that failed,
the parameter estimate for φ was becoming negative (which is unrealistic for a rate)
or quite large (φ > 1), and that the state estimate for n was going outside of its bio-
physical range of 0 to 1. When the gating variable extends outside of its dynamical
range it can skew the estimated statistics and the filter may be unable to recover. The
standard UKF framework does not provide a natural way of incorporating bounds on
parameter estimates, and we do not apply any for the results presented here. However,
we did find that we can modify our numerical integration scheme to prevent the filter
from failing in many of these cases, as shown in Fig. 9(C). Specifically, if n becomes
negative or exceeds 1 after the update step, then artificially setting n to 0 or 1 in the
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Fig. 9 (A) UKF results from runs of the t:SNIC/g:HOPF twin experiment for various parameter combi-
nations of λ and αI . The color scale represents the root mean squared error of the final parameter values
at T = 200,001 from the parameters of the SNIC bifurcation regime. Gray indicates the filter failed out-
right before reaching the end of the estimation window. (B) Parameter estimates over time for the run
with λ = 5, αI = 0.1. The parameters (especially φ and V3) approach their true values more quickly than
corresponding runs with smaller initial covariances; see column 1 of Fig. 6 for parameter estimates with
λ = 5, αI = 0.001. C: Same as (A), but with a modification to the numerical integration scheme that
restricts the gating variable n to remain within its biophysical range of 0 to 1
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modified Euler method (47) before proceeding can enable the filter to reach the end
of the estimation window and yield reasonable parameter estimates.

3.5 Results with 4D-Var

The following results illustrate the use of weak 4D-Var. One can minimize the cost
function (36) using a favorite choice of optimization routine. For the following ex-
amples, we will consider a local optimizer by using interior point optimization with
MATLAB’s built-in solver fmincon. At the heart of the solver is a Newton-step which
uses information about the Hessian, or a conjugate gradient step using gradient in-
formation [27–29]. The input we are optimizing over conceptually takes the form
of

x= [V0,V1, . . . , VN,n0, n1, . . . , nN , θ1, θ2, . . . , θD] (49)

resulting in an (N + 1)L + D-dimensional estimation problem where L = 2. There
are computational limitations with memory storage and the time required to suffi-
ciently solve the optimization problem to a suitable tolerance for reasonable parame-
ter estimates. Therefore, we cannot be cavalier with using as much data with 4D-Var
as we did with the UKF, as that would result in a (200,001)2 + 8 = 400,010 dimen-
sional problem. Using Newton’s method (41) on this problem would involve inverting
a Hessian matrix of size (400,010)2, which according to a rough calculation would
require over 1 TB of RAM. Initialization of the optimization is shown on line 71 of
w4DVarML.m.

The estimated parameters are given in Table 3. These results were run using
N = 2001 time points. To simplify the search space, the parameter estimates were
constrained between the bounds listed in Table 4. These ranges were chosen to en-
sure that the maximal conductances, the rate φ, and the activation curve slope V2 all
remain positive. We found that running 4D-Var with even looser bounds (Table A1)
yielded less accurate parameter estimates (Tables A2 and A3). The white noise per-
turbations for the 4D-Var trials were the same as those from the UKF examples.
Initial guesses for the states at each time point are required. For these trials, V is ini-
tialized as Vobs, and n is initialized as the result of integration of its dynamics forced
with Vobs using the initial guesses for the parameters, i.e., n = ∫

fn(Vobs, n; θ0). The
initial guesses are generated beginning on line 38 of w4DvarML.m. We impose that
Q−1 in (36) is a diagonal matrix with entries αQ[1,1002] to balance the dynamical
variance of V and n. The scaling factor αQ represents the relative weight of the model
term compared to the measurement term. Based on preliminary tuning experiments,
we set αQ = 100 for the results presented.

Figure 10 depicts the states produced by integrating the model with the estimated
parameters across different iterations within the interior-point optimization. Over it-
eration cycles, the geometry of spikes as well as the spike time alignments eventually
coincide with the noiseless data Vtrue. Figure 11 shows the evolution of the parameters
across the entire estimation cycle. For the UKF, the “plateauing” effect of the param-
eter estimates seen in Fig. 6 indicates confidence that they are conforming to being
constant in time. With 4D-Var, and in a limiting sense of the UKF, the plateauing
effect indicates the parameters are settling into a local minimum of the cost function.
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Fig. 10 Example of 4D-Var assimilation initializing with parameters from the Hopf regime but observa-
tional data from the SNIC regime. The blue traces are noiseless versions of the observed voltage data (left
column) or the unobserved variable n (right column) from the model that produced the data. The red traces
are the result of integrating the model with the estimated parameter sets at various points during the course
of the optimization. (A) Initial parameter guesses. (B) Parameter values after 100 iterations. C: Parameter
values after 1000 iterations. D: Parameter values after 30,000 iterations (corresponds to t:SNIC/g:HOPF
column of Table 3)

In Fig. 12 we show the bifurcation diagrams of the estimated models from our
4D-Var trials. Notice, and shown explicitly in Table 3, when initializing with the true
parameters, the correct model parameters are recovered as our optimization routine
is confidently within the basin of attraction of the global minimum. In the UKF, com-
paratively, there is no sense of stopping at a local minimum. Parameter estimates
may still fluctuate even when starting from their true values, unless the variances of
the state components fall to very low values and the covariance Qk can be tuned to
have a baseline variability in the system. The parameter sets for the SNIC and homo-
clinic bifurcation regimes only deviate in the φ parameter, and so our optimization
had great success estimating one from the other. The kinetic parameters (V3 and V4)
for the Hopf regime deviate quite a bit from the SNIC or homoclinic. Still, the recov-
ered bifurcation structures from estimated parameters associated with trials involving
HOPF remained consistent with the true structure.
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Table 3 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The pa-
rameter bounds in Table 4 were used for these trials. Hessian information was not provided to the optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.040 0.037 0.039 0.069 0.067 0.066 0.414 0.218 0.230
gCa 4.000 3.890 3.976 4.024 4.000 4.045 9.037 3.813 3.999
V3 2.000 3.404 3.241 12.695 12.000 12.076 7.458 13.022 12.004
V4 30.000 29.085 30.122 18.759 17.400 16.990 28.365 17.165 17.403
gK 8.000 8.386 8.287 8.284 8.000 8.009 9.817 8.472 8.002
gL 2.000 2.016 2.021 1.930 2.000 2.071 3.140 1.941 2.000
V1 −1.200 −1.335 −1.250 −1.078 −1.200 −1.179 2.872 −1.419 −1.202
V2 18.000 17.619 17.911 18.091 18.000 18.162 24.769 17.712 18.000

Table 4 Bounds used during
4D-Var estimation for the results
shown in Tables 3 and A4

Lower bound Upper bound

φ 0 1
gCa 0 10
V3 −20 20
V4 0.1 35
gK 0 10
gL 0 5
V1 −10 20
V2 0.1 35

A drawback of the results shown in Table 3 is that for the default tolerances in
fmincon, some runs took more than two days to complete on a dedicated core. Fig-
ure 11 shows that the optimal solution had essentially been found after 22,000 itera-
tions; however, the optimizer kept running for several thousand more iterations before
the convergence tolerances were met. Rather than attempting to speed up these com-
putations by adjusting the algorithmic parameters associated with this solver for this
specific problem, we decided to try to exploit the dynamic structure of the model
equations using automatic differentiation (AD). AD deconstructs derivatives of the
objective function into elementary functions and operations through the chain rule.
We used the MATLAB AD tool ADiGator, which performs source transformation
via operator overloading and has scripts available for simple integration with various
optimization tools, including fmincon [30]. For the same problem scenario and al-
gorithmic parameters, we additionally passed in the generated gradient and Hessian
functions to the solver. For this problem, the Hessian structure is shown in Fig. 13.
Note that we are using a very simple scheme in the modified Euler method (47) to
perform numerical integration between observation points, and the states at k + 1
only have dependencies upon those at k and on the parameters. Higher order meth-
ods, including implicit methods, can be employed naturally since the system is being
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Fig. 11 Example parameter estimation with 4D-Var initializing with Hopf parameter regime and estimat-
ing parameters of SNIC regime

Fig. 12 Bifurcation diagrams for 4D-Var twin experiments. The gray lines correspond to the true dia-
grams, and the blue dotted lines correspond to the diagrams produced from the estimated parameters in
Table 3

estimated simultaneously. A tutorial specific to collocation methods for optimization
has been developed [31].

The results are shown in Table A4. Each twin experiment scenario took, at most,
a few minutes on a dedicated core. These trials converged to the optimal solution in
much fewer iterations than the trials without using the Hessian. Since convergence
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Fig. 13 (A) Sparsity pattern for the Hessian of the cost function for the Morris–Lecar equations for
N + 1 = 2001 time points. The final eight rows (and symmetrically the last eight columns) depict how the
states at each time depend upon the parameters. (B) The top left corner of the Hessian shown in (A)

Fig. 14 (A) Logarithm of the value of the cost function for a twin experiment initialized with parameters
from the Hopf regime but observational data from the SNIC regime. The iterates were generated from
fmincon with provided Hessian and gradient functions. (B) Bifurcation diagrams produced from parameter
estimates for selected iterations. The blue is the initial bifurcation structure, the gray is the true bifurcation
structure for the parameters that generated the observed data, the red is the bifurcation structure of the
iterates, and the green is the bifurcation structure of the optimal point determined by fmincon

was achieved within a few dozen iterations, we decided to inspect how the bifurca-
tion structure of the estimated model evolved throughout the process for the case of
HOPF to SNIC. Figure 14 shows that by Iteration 10, the objective function value
has decreased greatly, and parameters that produce a qualitatively correct bifurca-
tion structure have been found. The optimization continues for another 37 iterations
and explores other parts of parameter space that do not yield the correct bifurcation
structure before converging very close to the true parameter values.
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Again, these results, at best, can reflect only locally optimal solutions of the op-
timization manifold. The 4D-Var framework has been applied to neuroscience using
a more systematic approach to finding the global optimum. In [32], a population of
initial states x is optimized in parallel with an outer loop that incorporates an anneal-
ing algorithm. The annealing parameter relates the weights of the two summations
in (36), and the iteration proceeds by increasing the weight given to the model error
compared to the measurement error.

We also wished to understand more about the sensitivity of this problem to initial
conditions. We initialized the system with the voltage states as those of the obser-
vation, the parameters as those of the initializing guess bifurcation regime, and the
gating variable [n0, n1, . . . nN ] to be i.i.d. from U(0,1). The results confirm our sus-
picions that multiple local minima exist. For 100 different initializations of n, for the
problem of going from SNIC to HOPF, 63 were found to fall into a deeper minima,
yielding better estimates and a smaller objective function value, while 16 fell into a
shallower minima, and the rest into three different even shallower minima. While one
cannot truly visualize high-dimensional manifolds, one can try to visualize a subset
of the surface. Figure 3 shows the surface that arises from evaluating the objective
function on a linear combination of the two deepest minima and an initial condition
x0, which eventually landed in the shallower of the two minima as points in 4010-
dimensional space.

4 Application to Bursting Regimes of the Morris–Lecar Model

Many types of neurons display burst firing, consisting of groups of spikes separated
by periods of quiescence. Bursting arises from the interplay of fast currents that gen-
erate spiking and slow currents that modulate the spiking activity. The Morris–Lecar
model can be modified to exhibit bursting by including a calcium-gated potassium
(KCa) current that depends on slow intracellular calcium dynamics [33]:

Cm

dV

dt
= Iapp − gL(V − EL) − gKn(V − EK)

− gCam∞(V )(V − ECa) − gKCaz(V − EK), (50)

dn

dt
= φ

(
n∞(V ) − n

)
/τn(V ), (51)

dCa

dt
= ε(−μICa − Ca), (52)

z = Ca

Ca + 1
. (53)

Bursting can be analyzed mathematically by decomposing models into fast and
slow subsystems and applying geometric singular perturbation theory. Several differ-
ent types of bursters have been classified based on the bifurcation structure of the
fast subsystem. In square-wave bursting, the active phase of the burst is initiated at a
saddle-node bifurcation and terminates at a homoclinic bifurcation. In elliptic burst-
ing, spiking begins at a Hopf bifurcation and terminates at a saddle-node of periodic
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Table 5 Parameters for
bursting in the modified
Morris–Lecar model. For
square-wave bursting Iapp = 45,
and for elliptic bursting
Iapp = 120. All other parameters
are the same as in Table 1

Square-wave Elliptic

φ 0.23 0.04
gCa 4 4.4
V3 12 2
V4 17.4 30
gK 8 8
gL 2 2
V1 −1.2 −1.2
V2 18 18
gKCa 0.25 0.75
ε 0.005 0.005
μ 0.02 0.02

orbits bifurcation. The voltage traces produced by these two types of bursting are
quite distinct, as shown in Fig. 15.

4.1 Results with UKF

We conducted a set of twin experiments for the bursting model to address the same
question as we did for the spiking model: from a voltage trace alone, can DA meth-
ods estimate parameters that yield the appropriate qualitative dynamical behavior?
Specifically, we simulated data from the square-wave (elliptic) bursting regime, and
then initialized the UKF with parameter guesses corresponding to elliptic (square-
wave) bursting (these parameter values are shown in Table 5). As a control experi-
ment, we also ran the UKF with initial parameter guesses corresponding to the same
bursting regime as the observed data. The observed voltage trace included additive
white noise generated following the same protocol as in previous trials. We used
200,001 time points with observations at every 1 ms. Between observations, the sys-
tem was integrated forward using substeps of 0.025 ms. For the square-wave burster,
this included 215 bursts with 4 spikes per burst, and 225 bursts with 2 spikes for the
elliptic burster.

The small parameters ε and μ in the calcium dynamics equation were assumed
to be known and were not estimated by the UKF. Thus, for the bursting model, we
are estimating one additional state variable (Ca) and one additional parameter (gKCa)
compared to the case for the spiking model. Table 6 shows the UKF parameter esti-
mates after initialization with either the true parameters or the parameters producing
the other type of bursting. The results for either case are quite consistent and fairly
close to their true values for both types of bursting. Since small changes in parameter
values can affect bursting dynamics, we also computed bifurcation diagrams for these
estimated parameters and compared them to their true counterparts. Figure 16 shows
that in all four cases, the estimated models have the same qualitative bifurcation struc-
ture as the models that produced the data. The recovered parameter estimates were
insensitive to the initial conditions for n and Ca, with 100 different initializations
for these state variables sampled from U(0,1) and U(0,5), respectively. Note, most
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Fig. 15 Bursting model bifurcation diagrams and trajectories. The bifurcation diagrams (top row) depict
stable fixed points (red), unstable fixed points (black), stable limit cycles (blue), and unstable limit cycles
(green) of the fast subsystem (V ,n) with bifurcation parameter z. The gray curves are the projection
of the 3-D burst trajectory (V , second row; n, third row; Ca, fourth row) onto the (V , z) plane, where
z is a function of Ca. (A) During the quiescent phase of the burst, Ca and therefore z are decreasing
and the trajectory slowly moves leftward along the lower stable branch of fixed points until reaching the
saddle-node bifurcation or “knee”, at which point spiking begins. During spiking, Ca and z are slowly
increasing and the trajectory oscillates while traveling rightward until the stable limit cycle is destroyed at
a homoclinic bifurcation and spiking ceases. (B) During the quiescent phase of the burst, z is decreasing
and the trajectory moves leftward along the branch of stable fixed points with small-amplitude decaying
oscillations until reaching the Hopf bifurcation, at which point the oscillations grow in amplitude to full
spikes. During spiking, z is slowly increasing and the trajectory oscillates while traveling rightward until
the stable limit cycle is destroyed at a saddle-node of periodic orbits bifurcation and spiking ceases
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Table 6 UKF parameter
estimates for each bursting
regime

t:Square-wave t:Elliptic

g:Square-wave g:Elliptic g:Square-wave g:Elliptic

φ 0.214 0.215 0.040 0.040
gCa 3.758 3.767 4.396 4.398
V3 12.045 12.023 1.603 1.685
V4 16.272 16.316 29.582 29.639
gK 7.955 7.952 7.866 7.889
gL 1.974 1.972 2.015 2.017
V1 −1.514 −1.511 −1.120 −1.199
V2 17.640 17.624 18.010 18.015
gKCa 0.251 0.251 0.767 0.763

Fig. 16 Bifurcation diagrams for UKF twin experiments for the bursting Morris–Lecar model. The gray
lines correspond to the true diagrams, and the blue dotted lines correspond to the diagrams produced from
the estimated parameters in Table 6

predominantly in the top right panel, the location of the bifurcations is relatively
sensitive to small deviations in certain parameters, such as gKCa. Estimating gKCa
is challenging due to the algebraic degeneracy of estimating both terms involved in
the conductance GKCa = gKCaCa/(Ca + 1), and the inherent time-scale disparity of
the Ca dynamics compared to V and n. If one had observations of calcium, or full
knowledge of its dynamical equations, this degeneracy would be immediately alle-
viated. To address difficulties in the estimation of bursting models, an approach that
separates the estimation problem into two stages based on timescales—first estimat-
ing the slow dynamics with the fast dynamics blocked and then estimating the fast
dynamics with the slow parameters held fixed—has been developed [34].
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Table 7 4D-Var parameter
estimates for each bursting
regime

t:Square-wave t:Elliptic

g:Square-wave g:Elliptic g:Square-wave g:Elliptic

φ 0.230 0.260 0.037 0.040
gCa 4.009 4.509 4.244 4.412
V3 12.009 11.920 6.667 1.971
V4 17.437 19.581 32.605 30.026
gK 8.006 8.244 9.485 8.002
gL 2.003 2.068 1.979 2.009
V1 −1.187 −0.627 −1.307 −1.172
V2 18.029 18.754 17.469 18.049
gKCa 0.250 0.237 0.554 0.741

4.2 Results with 4D-Var

We also investigated the utility of variational techniques to recover the mechanisms
of bursting. For these runs, we took our observations to be coarsely sampled at 0.1
ms, and our forward mapping is taken to be one step of modified Euler between ob-
servation times, as was the case for our previous 4D-Var Morris–Lecar results. We
used 10,000 time points, which is one burst for the square wave burster, and one full
burst plus another spike for the elliptic burster. We used the L-BFGS-B method [35],
as we found it to perform faster for this problem than fmincon. This method approxi-
mates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton algorithm us-
ing a limited memory (L) inverse Hessian approximation, with an extension to handle
bound constraints (B). It is available for Windows through the OPTI toolbox [36] or
through a nonspecific operating system MATLAB MEX wrapper [37]. We supplied
the gradient of the objective function, but allowed the solver to define the limited-
memory Hessian approximation for our 30,012-dimensional problem. The results are
captured in Table 7. We performed the same tests with providing the Hessian; how-
ever, there was no significant gain in accuracy or speed. The value for gKCa for ini-
tializing with the square wave parameters and estimating the elliptical parameters is
quite off, which reflects our earlier assessment for the value in observing calcium dy-
namics. Figure 17 shows that we are still successful in recovering the true bifurcation
structure.

5 Discussion and Conclusions

Data assimilation is a framework by which one can optimally combine measurements
and a model of a system. In neuroscience, depending on the neural system of interest,
the data we have may unveil only a small subset of the overall activity of the system.
For the results presented here, we used simulated data from the Morris–Lecar model
with distinct activity based upon different choices for model parameters. We assumed
access only to the voltage and the input current, which corresponds to the expected
data from a current-clamp recording.
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Fig. 17 Bifurcation diagrams for 4D-Var twin experiments for the bursting Morris–Lecar model. The gray
lines correspond to the true diagrams, and the blue dotted lines correspond to the diagrams produced from
the estimated parameters in Table 7

We showed the effectiveness of standard implementations of the Unscented
Kalman Filter and weak 4D-Var to recover spiking behavior and, in many circum-
stances, near-exact parameters of interest. We showed that the estimated models un-
dergo the same bifurcations as the model that produced the observed data, even when
the initial parameter guesses do not. Additionally, we are also provided with esti-
mates of the states and uncertainties associated with each state and parameter, but
for sake of brevity these values were not always displayed. The methods, while not
insensitive to noise, have intrinsic weightings of measurement deviations to account
for the noise of the observed signal. Results were shown for mild additive noise. We
also extended the Morris–Lecar model to exhibit bursting activity and demonstrated
the ability to recover these model parameters using the UKF.

The UKF and 4D-Var approaches implemented here both attempt to optimally
link a dynamic model of a system to observed data from that system, with error
statistics assumed to be Gaussian. Furthermore, both approaches try to approximate
the mean (and for the UKF also the variance) of the underlying, unassumed sys-
tem distributions. The UKF is especially adept at estimating states over long time
courses, and if the algorithmic parameters such as the model error can be tuned, then
the parameters can be estimated simultaneously. Therefore, if one has access to a
long series of data, then the UKF (or an Unscented Kalman Smoother, which uses
more history of the data for each update step) is a great tool to have at one’s dis-
posal. However, sometimes one only has a small amount of time series data, or the
tuning of initial covariance, the spread parameter λ, and the process noise Qk asso-
ciated with the augmented state and parameter system becomes too daunting. The
4D-Var approach sets the states at each time point and the parameters as optimization
variables, transitioning the estimation process from the one which iterates in time to
the one which iterates up to a tolerance in a chosen optimization routine. The only
tuning parameters are those associated with the chosen optimization routine, and the
weights Q−1

l,l , l ∈ [1 . . .L], for the model uncertainty of the state components at each
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Table 8 Comparison of the sequential (UKF) and variational (4D-Var) approaches to data assimilation

UKF 4D-Var

Implementation choices initial covariance (Pxx ) model uncertainty (Q−1)
sigma points (λ) type of optimizer/optimizer settings
process covariance matrix (Q) state and parameter bounds

Data requirements Pro: can handle a large amount of
data

Pro: may find a good solution with a
small amount of data

Con: may not find a good solution
with a small amount of data

Con: cannot handle a large amount
of data

Run time Minutes Days, hours, or minutes depending
on choice of optimizer and settings

Scalability to larger models Harder to choose Q Search dimension is (N + 1)L + D

EnKF may use a smaller number of
ensemble members

Sparse Hessian can be exploited
during optimization

time. There are natural ways to provide parameter bounds in the 4D-Var framework,
whereas this is not the case for the UKF. However, depending upon the implemen-
tation choices and the dimension of the problem (which is extremely large for long
time series data), the optimization may take a computing time scale of days to yield
reasonable estimates. Fortunately, derivative information can be provided to the op-
timizer to speed up the 4D-Var procedure. Both the UKF and 4D-Var can provide
estimates of the system uncertainty in addition to estimates of the system mean. The
UKF provides mean and variance estimates at each iteration during the analysis step.
In 4D-Var, one seeks mean estimates by minimization of a cost function. It has been
shown that for cost functions of the form (36), the system variance can be interpreted
as the inverse of the Hessian evaluated at minima of (36), and scales roughly as Q

for large Q−1 [32]. The pros and cons of implementing these two DA approaches are
summarized in Table 8.

The UKF and 4D-Var methodologies welcome the addition of any observables of
the system, but current-clamp data may be all that is available. With this experimental
data in mind, for a more complex system, the number of variables increases, while
the total number of observables will remain at unity. Therefore, it may be useful to
assess a priori which parameters are structurally identifiable and the sensitivity of
the model to parameters of interest in order to reduce the estimation state-space [38].
Additionally, one should consider what manner of applied current to use to aid in state
and parameter estimation. In the results presented above, we used a constant applied
current, but work has been done which suggests the use of complex time-varying
currents that stimulate as many of the model’s degrees of freedom as possible [39].

The results we presented are based on MATLAB implementations of the derived
equations for the UKF and weak 4D-Var. Sample code is provided in the Supple-
mentary Material. Additional data assimilation examples in MATLAB can be found
in [40]. The UKF has been applied to other spiking neuron models such as the
FitzHugh–Nagumo model [41]. A sample of this code can be found in [42], as well as
further exploration of the UKF in estimating neural systems. The UKF has been used
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on real data from pyramidal neurons to track the states and externally applied current
[43], the connectivity of cultured neuronal networks sampled by a microelectrode ar-
ray [44], to assimilate seizure data from hippocampal OLM interneurons [15], and to
reconstruct mammalian sleep dynamics [17]. A comparative study of the efficacy of
the EKF and UKF on conductance-based models has been conducted [45].

The UKF is a particularly good framework for the state dimensions of a single
compartment conductance based model as the size of the ensemble is chosen to be
2(L + D) + 1. When considering larger state dimensions, as is the case for PDE
models, a more general Ensemble Kalman Filter (EnKF) may be appropriate. An in-
troduction to the EnKF can be found in [46, 47]. An adaptive methodology using past
innovations to iteratively estimate the model and measurement covariances Q and R

has been developed for use with ensemble filters [16]. The Local Ensemble Tranform
Kalman Filter (LETKF) [48] has been used to estimate the states associated with car-
diac electrical wave dynamics [8]. Rather than estimating the mean and covariance
through an ensemble, particle filters aim to fully construct the posterior density of
the states conditioned on the observations. A particle filter approach has been applied
to infer parameters of a stochastic Morris–Lecar model [49], to assimilate spike train
data from rat layer V cortical neurons into a biophysical model [50], and to assimilate
noisy, model-generated data for other states to motivate the use of imaging techniques
when available [51].

An approach to the variational problem which tries to uncover the global minima
more systematically has been developed [32]. In this framework, comparing to (36),
they define for diagonal entries of Q−1 that

Q−1 = Q−1
0 αβ

for α > 1 and β ≥ 0. The model term is initialized as relatively small, and over the
course of an annealing procedure, β is incremented resulting in a steady increase of
the model term’s influence on the cost function. This annealing schedule is conducted
in parallel for different initial guesses for the state-space. The development of this
variational approach can be found in [52], and it has been used to assimilate neuronal
data from HVC neurons [34] as well as to calibrate a neuromorphic very large scale
integrated (VLSI) circuit [53]. An alternative to the variational approach is to frame
the assimilation problem from a probabilistic sampling perspective and use Markov
chain Monte-Carlo methods [54].

A closely associated variational technique, known as “nudging”, augments the
vector field with a control term. If we only have observations of the voltage, this
manifests as follows:

dV

dt
= f �

V (V,q; θ) + u(Vobs − V ).

The vector field with the observational coupling term is now passed into the strong
4D-Var constraints. The control parameter u may remain fixed, or be estimated along
with the states [55, 56]. More details on nudging can be found [57]. A similar control
framework has been applied to data from neurons of the stomatogastric ganglion [58].

Many other approaches outside the framework of data assimilation have been de-
veloped for parameter estimation of neuronal models, see [59] for a review. A prob-
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lem often encountered when fitting models to a voltage trace is that phase shifts, or
small differences in spike timing, between model output and the data can result in
large root mean square error. This is less of an issue for data assimilation methods,
especially sequential algorithms like UKF. Other approaches to avoid harshly penal-
izing spike timing errors in the cost function are to consider spikes in the data and
model-generated spikes that occur within a narrow time window of each other as co-
incident [60], or to minimize error with respect to the dV/dt versus V phase–plane
trajectory rather than V (t) itself [59]. Another way to avoid spike mismatch errors is
to force the model with the voltage data and perform linear regression to estimate the
linear parameters (maximal conductances), and then perhaps couple the problem with
another optimization strategy to access the nonlinearly-dependent gating parameters
[3, 61, 62].

A common optimization strategy is to construct an objective function that en-
capsulates important features derived from the voltage trace, and then use a genetic
algorithm to stochastically search for optimal solutions. These algorithms proceed by
forming a population of possible solutions and applying biologically inspired evolu-
tion strategies to gradually increase the fitness (defined with respect to the objective
function) of the population across generations. Multi-objective optimization schemes
will generate a “Pareto front” of optimal solutions that are considered equally good.
A multi-objective non-dominated sorting genetic algorithm (NSGA-II) has recently
been used to estimate parameters of the pacemaker PD neurons of the crab pyloric
network [63, 64].

In this paper, we compared the bifurcation structure of models estimated by DA
algorithms to the bifurcation structure of the model that generated the data. We found
that the estimated models exhibited the correct bifurcations even when the algorithms
were initiated in a region of parameter space corresponding to a different bifurcation
regime. This type of twin experiment is a useful addition to the field that specifically
emphasizes the difficulty of nonlinear estimation and provides a qualitative measure
of estimation success or failure. Prior literature on parameter estimation that has made
use of geometric structure includes work on bursting respiratory neurons [65] and
“inverse bifurcation analysis” of gene regulatory networks [66, 67].

Looking forward, data assimilation can complement the growth of new recording
technologies for collecting observational data from the brain. The joint collabora-
tion of these automated algorithms with the painstaking work of experimentalists
and model developers may help answer many remaining questions about neuronal
dynamics.
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Appendix

Table A1 Bounds used during
4D-Var estimation for the results
shown in Tables A2 and A3

Lower Bound Upper Bound

φ 0 ∞
gCa 0 ∞
V3 −∞ ∞
V4 0.1 ∞
gK 0 ∞
gL 0 ∞
V1 −∞ ∞
V2 0.1 ∞

Table A2 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The
loose parameter bounds in Table A1 were used for these trials. Hessian information was not provided to
the optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.040 0.041 0.040 0.066 0.067 0.066 0.406 0.225 0.229
gCa 4.011 3.959 3.989 4.016 4.035 4.040 8.623 3.992 3.983
V3 2.210 13.479 6.284 12.497 12.176 12.102 7.453 14.333 12.197
V4 29.917 37.854 32.748 17.589 17.342 16.998 27.569 18.593 17.464
gK 8.046 10.857 8.989 8.192 8.057 8.021 9.543 9.213 8.092
gL 2.026 1.806 1.959 2.009 2.038 2.067 3.029 1.960 1.990
V1 −1.222 −1.188 −1.208 −1.171 −1.165 −1.188 2.604 −1.198 −1.212
V2 18.030 17.921 17.979 18.087 18.126 18.148 24.260 18.089 17.985
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Table A3 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The
loose parameter bounds in Table A1 were used for these trials. Hessian information was provided to the
optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.039 0.039 0.039 0.066 0.066 0.066 0.571 0.560 0.549
gCa 3.889 3.889 3.889 4.002 4.002 4.002 831.907 911.887 913.350
V3 1.971 1.971 1.971 11.825 11.825 11.825 826.608 896.717 822.366
V4 29.533 29.533 29.533 17.071 17.071 17.071 1695.018 1816.501 1813.829
gK 8.050 8.050 8.050 7.923 7.923 7.923 847.999 932.249 885.392
gL 1.928 1.928 1.928 2.027 2.027 2.027 0.024 0.026 0.118
V1 −1.301 −1.301 −1.301 −1.232 −1.232 −1.232 53.706 54.172 53.913
V2 17.600 17.600 17.600 18.004 18.004 18.004 75.855 76.135 76.111

Table A4 4D-Var parameter estimates at the end of the optimization for each bifurcation regime. The
parameter bounds in Table 4 were used for these trials. Hessian information was provided to the optimizer

t:HOPF t:SNIC t:HOMO

g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.039 0.039 0.039 0.066 0.067 0.066 0.230 0.230 0.230
gCa 3.889 3.889 3.889 4.002 4.035 4.002 4.014 4.019 4.014
V3 1.971 1.971 1.971 11.825 12.176 11.825 12.321 12.320 12.320
V4 29.533 29.533 29.533 17.071 17.342 17.071 17.615 17.633 17.616
gK 8.050 8.050 8.050 7.923 8.057 7.923 8.157 8.158 8.157
gL 1.928 1.928 1.928 2.027 2.038 2.027 1.996 1.997 1.996
V1 −1.301 −1.301 −1.301 −1.232 −1.165 −1.232 −1.154 −1.148 −1.153
V2 17.600 17.600 17.600 18.004 18.126 18.004 18.050 18.057 18.050
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Entrainment Dynamics of Forced Hierarchical Circadian Systems Revealed by
2-Dimensional Maps\ast 
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Abstract. The ability of a circadian system to entrain to the 24-hour light-dark cycle is one of its most important
properties. A new tool, called the entrainment map, was recently introduced to study this process
for a single oscillator. Here we generalize the map to study the effects of light-dark forcing in
a hierarchical system consisting of a central circadian oscillator that drives a peripheral circadian
oscillator. We develop techniques to reduce the higher-dimensional phase space of the coupled system
to derive a generalized two-dimensional entrainment map. Determining the nature of various fixed
points, together with an understanding of their stable and unstable manifolds, leads to conditions
for existence and stability of periodic orbits of the circadian system. We use the map to investigate
how various properties of solutions depend on parameters and initial conditions including the time
to and direction of entrainment. We show that the concepts of phase advance and phase delay need
to be carefully assessed when considering hierarchical systems.

Key words. circadian rhythm, limit cycle, Poincar\'e map, coupled oscillators
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1. Introduction. Circadian rhythms refer to a variety of oscillatory processes that occur
over a roughly 24-hour time period. Circadian oscillations are found in a variety of animal
and plant species [5]. Within humans a common example involves our core body temperature
which shows a local minimum typically in the early morning hours (\sim 4:00 AM) and a local
maximum roughly twelve hours later [25]. Similarly, concentrations of certain hormone levels
within our bodies oscillate over the course of a day [12]. In the absence of any explicit forcing
from naturally occurring light-dark cycles, circadian oscillators possess endogenous periods of
roughly 24 hours. Their ability to also entrain to 24-hour periodic cycles of light and dark is
one of their most important properties.

The entrainment of circadian oscillators has been mathematically analyzed using a vari-
ety of techniques. Often this involves describing the circadian oscillator with a reduced phase
description such as that given by a Kuramoto oscillator [7, 27]. The problem then reduces
to studying periodically forced Kuramoto systems. Other approaches include deriving model
equations that retain more of their connection to the underlying biological process [36, 41].
Recently Diekman and Bose [13] introduced a novel tool called the entrainment map to de-
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termine whether a circadian oscillator can entrain to the 24-hour light-dark cycle and, if so,
at what phase. The derived map is equivalent to a 1-dimensional (1-D) Poincar\'e map that
tracks the phase of light onset of the light-dark forcing on a cycle-by-cycle basis. In princi-
ple, the dimension of the underlying circadian oscillator model is not relevant. Diekman and
Bose derived entrainment maps for the 2-dimensional (2-D) Nov\'ak--Tyson model [41, 36], the
3-dimensional (3-D) Gonze model [18], and the 180-D Kim--Forger model [22]. In general, the
map can be used to estimate both entrainment times and whether entrainment occurs through
phase advance or delay with respect to the daily onset of lights.

There are several scenarios in which circadian oscillators do not directly receive light-dark
forcing [18, 20, 29]. Instead they are part of hierarchical systems in which, as ``peripheral""
oscillators, they are periodically forced by other ``central"" circadian oscillators that do directly
receive light input. Cells within major organs in our bodies fall into this category. Several
natural questions arise about the entrainment process of these peripheral oscillators. For
example, do they entrain through phase advance or phase delay as central oscillators do? To
what extent is their entrainment time dependent on the entrainment process of the central
oscillator from which they receive forcing? To study such questions, here we generalize the
entrainment map to a 2-D map where we track from the perspective of the peripheral oscillator
both the phase of the central oscillator as well as the phase of light onset.

In this paper, we first consider the situation in which a single central oscillator receives
light-dark input. In turn, this central oscillator sends input to a single peripheral oscillator.
To focus on the mathematical aspects of the derivation and analysis of the 2-D entrainment
map, we will utilize the planar Nov\'ak--Tyson model [36] for both the central and peripheral
oscillators. The phase space for this problem is 5-dimensional (5-D), two for each of the
oscillators and a fifth that accounts for the light-dark forcing. We will define a Poincar\'e
section transversal to the flow allowing us to derive a 2-D map that determines the phase of
light and the phase of the central oscillator at each cycle when the peripheral oscillator lies on
the Poincar\'e section. We analyze the map by extending techniques first introduced in Akcay,
Bose, and Nadim [1] and Akcay et al. [2]. We will show that for a range of parameter values, the
map possesses four fixed points: one asymptotically stable and three unstable fixed points, two
of which are saddle points. All of these fixed points are related to actual periodic orbits of the
flow. By numerically calculating entrainment times (defined precisely later in the text), we are
able to uncover how the stable and unstable manifolds of the saddle points organize the iterates
of the map, determine the direction of entrainment, and give rise to a rich set of dynamics. The
findings of the map are then validated by comparing them to direct simulations of the model
equations. We also extend the analysis to the case of a semihierarchical system that consists
of a second central oscillator that receives less light input than the first central oscillator.

Analysis of the map reveals several important insights into the entrainment and reentrain-
ment process. First, bounds on important parameters, such as the intensity of light input and
the strength of the coupling from the central oscillator that lead to entrainment, are easily
identified. We are able to determine which kinds of perturbations lead to faster or slower reen-
trainment, e.g., whether perturbations that desynchronize only the peripheral oscillator but
not the central one lead to quick reconvergence. Interestingly, we find that the straightforward
notion of convergence via phase advance or phase delay needs to be generalized. Indeed, the pe-
ripheral oscillator can converge by a combination of phase advance and delay while the centralD
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oscillator typically converges by either phase advancing or delaying. This result has implica-
tions for recovery from jet lag and abrupt changes in sleep-wake schedules. In experimental
studies of aircrews, some subjects experienced internal dissociation with different components
of the circadian system converging in opposite directions [23]. Specifically, after an eastbound
flight across 9 time zones, activity rhythms reentrained through phase advances while body
temperature reentrained through phase delays. In hospital studies, a 12-hour phase shift of
sleep time results in a phase advance of urinary potassium but a phase delay in urinary hydrox-
ycorticosteroids [31]. Aschoff [4] referred to this behavior as ``reentrainment by partition"" and
suggested that it may impact health and contribute to the degradation of psychomotor perfor-
mance observed on postflight days. The saddle fixed points of our map provide a dynamical
explanation for the partitioning phenomenon, as will be elaborated upon in the discussion.

2. Models and methods. Our model is based on the Nov\'ak--Tyson (NT) model [41] for
the molecular circadian clock in the fruit fly Drosophila. The NT model can be written in the
following form:

1

\phi 

dP

dt
= M  - kfh(P ) - kDP  - kLf(t)P,

1

\phi 

dM

dt
= \epsilon (g(P ) - M) ,

(1)

where g(P ) = 1
1+P 4 , and h(P ) = P

0.1+P+2P 2 . The M variable represents mRNA concentra-
tion, and P variable represents the protein concentration. The parameter \epsilon is small, which
separates P and M into fast and slow variables. The parameter \phi will directly affect the
period of the solutions of this system; smaller values imply longer endogenous periods. The
function f(t) describes the light-dark (LD) forcing, which is defined by a 24-hour periodic
step function, f(t) = 1 when lights are on and f(t) = 0 when lights are off. We consider for
convenience a 12:12 photoperiod. There is no difficulty in extending to other photoperiods,
though a minimum amount of light per day is needed for entrainment; see [13] for a detailed
assessment of how entrainment depends on photoperiod and light intensity. In Drosophila,
there is protein degradation during darkness, and light increases the degradation. So kD repre-
sents the degradation rate during darkness, and kL represents the additional degradation rate
which is caused by light. The parameter kf is a combination of two variables in the original
Tyson et al. paper [41]. In [13], the entrainment of a single NT oscillator to a 24-hour period
LD forcing was studied. The ensuing solution was denoted as an LD-entrained solution.

2.1. Coupled NT model. The coupled NT (CNT) model is given by the following equa-
tions:

1

\phi 1

dP1

dt
= M1  - kfh(P1) - kDP1  - kL1f(t)P1,

1

\phi 1

dM1

dt
= \epsilon [g(P1) - M1],

1

\phi 2

dP2

dt
= M2  - kfh(P2) - kDP2  - kL2f(t)P2,

1

\phi 2

dM2

dt
= \epsilon [g(P2) - M2 + \alpha 1M1g(P2)].

(2)
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(a) (b)

Figure 1. (a) Model with strict hierarchical coupling. (b) Semihierarchical model when both oscillators
receive light input, but the light into O2 is much weaker than the light into O1.

The parameters and variables have the same meaning as the original NT model. We introduce
a coupling term \alpha 1M1g(P2), from oscillator 1 (O1) to oscillator 2 (O2). The parameter \alpha 1 is a
nonnegative real number which denotes the coupling strength. We placed the coupling factor
into the second equation of O2 based on Roberts et al. [39], who suggest that coupling occurs
between the mRNA production rates.

We mainly study the case with strict hierarchical coupling, which is shown in Figure 1(a).
In this case, the LD forcing is applied only on O1, which then has feedforward coupling onto
O2. We fix the value of parameter kL2 = 0. Figure 1(b) shows the semihierarchical CNT
model when both oscillators receive light forcing, but the effect of light into O2 is taken to be
less intense than that into O1; in other words, kL2 < kL1 .

2.2. The entrainment map. When attempting to determine the existence of periodic
solutions using Poincar\'e maps, one has to decide where in phase space to place the section.
Often in circadian models, the Poincar\'e section is placed on the 24-hour LD forcing, leading to
a stroboscopic map that determines the state of the system every 24 hours. In [13], Diekman
and Bose instead placed the section in the phase space of the circadian oscillator and backed
out the phase of light when the oscillator was at the section. Here, we follow that approach
when building the 2-D map. The Poincar\'e section is chosen at a location in the flow that
O2 will be shown to cross. In this section, we first introduce the original 1-D map, and then
generalize it to our 2-D map.

The entrainment map \Pi (y) for the original NT model was introduced as a 1-D map in
[13]. To define \Pi (y), Diekman and Bose take a Poincar\'e section \scrP as a 1-D line segment which
intersects the LD-entrained solution of a single periodically forced NT oscillator. The section
is placed along a portion of an attracting 1-D slow manifold where all trajectories of the NT
oscillator pass. A phase variable y is defined to be the amount of time that has passed since
the beginning of the most recent LD cycle. When the trajectory first returns to \scrP , the map
\Pi (y) is defined to be the amount of time that has passed since the onset of the most recent
LD cycle, which is the new phase of the light forcing. The domain and range of \Pi (y) are both
(0,24]. The domain is actually homeomorphic to the unit circle \BbbS 1, so y = 0 and y = 24 are
equivalent. The map is written as yn+1 = \Pi (yn), where

(3) \Pi (yn) = (\rho (yn) + yn) mod 24.

\rho (y) is a return time map that measures the time a trajectory starting on \scrP takes to returnD
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ENTRAINMENT OF CIRCADIAN SYSTEMS 2139

to \scrP . It is continuous and periodic at its endpoints \rho (0+) = \rho (24 - ). If \rho (y) < 24  - y, then
\Pi (x) = \rho (y)+y, because the trajectory will return back to \scrP within the same LD cycle which
it started. If 24  - y < \rho (y) < 48  - y, then \Pi (y) = \rho (y) + y  - 24, because the trajectory will
return in the next LD cycle and so on.

If there exists a ys such that ys = \Pi (ys) and | \Pi \prime (ys)| < 1, then ys is a stable fixed
point of the map \Pi (y), and it also determines a 1:1 phase locked solution. The phenomenon
of 1:1 phase locking in this case occurs when the oscillator has one return to the Poincar\'e
section for every one period of the LD forcing. When a stable solution exists, the map \Pi (y)
quite accurately calculates the time to approach the stable solution starting from any initial
condition of y. Numerically we use the concept of entrainment to evaluate the convergence
time. Suppose yj is a sequence of iterates of the map, then we say the solution is entrained
if there exists m, such that for all j \geq m, | ys  - yj | < 0.5. The entrainment time is then
\Sigma m
i=1\rho (yi).
The 1-D \bfitO \bfone -entrained map for the CNT system. The 1-D map for the NT system

cannot be directly applied to the CNT system because the second oscillator will have additional
free variables to determine, meaning that the entrainment map for the CNT system will be
higher dimensional. However, for the hierarchical CNT system, if we assume that O1 is already
entrained, then the chain LD \Rightarrow O1 \Rightarrow O2 is reduced to O1-entrained \Rightarrow O2. The system can
be rewritten in the following manner:

1

\phi 2

dP2

dt
= M2  - kfh(P2) - kDP2,

1

\phi 2

dM2

dt
= \epsilon [g(P2) - M2 + \alpha 1M1g(P2)].

(4)

In the O1-entrained case, O2 is continuously forced by the coupling from O1. This differs
from the coupling due to direct light input into O1 which is a discontinuous square wave.
We place a Poincar\'e section that intersects the entrained O2 limit cycle solution at \scrP : P2 =
1.72, | M2  - 0.1289| < \delta such that P \prime 

2 < 0, where \delta is a small control parameter. In the results
section, we will explain why trajectories are funneled into a region that forces them to cross
this choice of Poincar\'e section. Along the section \scrP , P2 is fixed, and M2 is bounded by \delta , so
the only free variable is the phase of light. We define the 1-D O1-entrained map by

(5) yn+1 = \Pi O1(yn) = (yn + \rho (yn; \gamma (yn))) mod 24,

where y \in (0, 24] is defined to be the phase of the LD forcing, which has the same meaning
as the 1-D entrainment map in [13]. We define \gamma (t) := \varphi t(X0) to be the LD-entrained limit
cycle of O1, where X0 is a chosen reference point on \gamma (t). We denote the set of points that
lie on the limit cycle of O1 by \Gamma O1 . At X0, the lights just turn on for O1. In the O1-entrained
case, the location of O1 only depends on yn and can be denoted by \gamma (yn). Based on the above
definition, \gamma (yn) means a point on the limit cycle of O1 when the light has been turned on for
yn hours. \rho (yn) measures the return time when O2 first returns \scrP .

Notice that in the definition of the O1-entrained map, the phase of O1 is determined by y
(the phase of the LD forcing), since it is O1-entrained. This makes the O1-entrained map a 1-D
map, and most of the properties of the NT model's 1-D map carry over to the O1-entrained
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map. For example, if there is a point ys, such that ys = \Pi O1(ys) and | \Pi \prime 
O1

(ys)| < 1, then ys
is a stable fixed point of the O1-entrained map. The fixed points of the map also determine
1:1 phase locked solutions of the coupled system.

The general 2-D entrainment map. In the case of the O1-entrained map, the initial
location of O1 when O2 lies on \scrP is always determined by y, the phase of the LD cycle. But in
general, the initial location of O1 doesn't always depend on y, rather it could lie arbitrarily in
its phase space. To limit the possibilities, we restrict the initial location of O1 to lie anywhere
along its own limit cycle \Gamma O1 . This restriction will therefore only introduce one new free
variable and motivates us to generalize the map to two dimensions:

(xn+1, yn+1) = \Pi (xn, yn) = (\Pi 1(xn, yn),\Pi 2(xn, yn)).

We keep the definition of yn and the location of the Poincar\'e section \scrP the same as in the
O1-entrained map. We now introduce a new variable x to determine O1's position in phase
space relative to its own LD-entrained solution. The detailed definition is explained using a
phase angle.

Defining \Pi \bfone using a phase angle. According to the O1-entrained map, the trajectory
of O1 always remains on \Gamma O1 . However, if O1 is not already entrained, then its trajectory may
not lie on \Gamma O1 but will instead approach it asymptotically. Thus we need a new independent
variable to determine the position of O1 for this situation. From the O1-entrained case, the
position of O1 can always be described as \gamma (t), where t \in (0, 24]. The idea is to define a new
independent phase variable x equivalent to the time variable t that is obtained by projecting
the real location of O1 onto its limit cycle \Gamma O1 , while keeping the error small. We define the
phase angle in the following steps:

(1) Transform the coordinate system appropriately: Shift the origin to the intersection
point of the uncoupled O1's two nullclines. Then connect the origin and the point X0 and
expand the line segment as the x-axis of the new coordinate system. The y-axis is determined
automatically to be orthogonal to the x-axis, as in Figure 2(a).

(2) Define x in terms of the phase angle: Consider the phase plane as a complex plane
\BbbC . Let's call the point X0 as z0 = r0e

i\theta 0 \in \BbbC , where \theta 0 = 0 after the coordinate system
transformation. We can then represent any point on the limit cycle \gamma (t) as a complex number
z = rei\theta , where we define \theta \in (0, 2\pi ]. Then x is defined to be the phase of O1 when choosing
X0 as the reference point. In other words, z = \gamma (x) = rei\theta . Notice that x is homeomorphic to
the unit circle \BbbS 1, because \theta = Arg(\gamma (x)); see Figure 2(a). The domain of x is also \~\BbbS 1 = (0, 24].

(3) Define the map \Pi 1. Suppose we start integrating the system with any initial condition
(xn, yn) (see Figure 2(a), lower panel as an example). After the time \rho (xn, yn), O2 returns to
the Poincar\'e section, the new location of O1 is now

\Psi \rho (xn,yn)(\gamma (xn)) = rn+1e
i\theta n+1 ,

where \Psi t(X) is the flow of O1, and the phase angle is \theta n+1. We then find the unique point \^x
lying on \Gamma O1 such that the phase angle of \Psi \rho (xn,yn)(\gamma (xn)) matches the angle associated with
\gamma (\^x). That is we choose \^x such that Arg(\gamma (\^x)) = \theta n+1. Geometrically, we are simply choosing
\^x as the associated value at which the ray passing through \Psi \rho (xn,yn)(\gamma (xn)) intersects \gamma (t).D
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(a) Schematic for \Pi 1 (b) Schematic for \Pi 2

Figure 2. (a) The upper panel shows a schematic of the homeomorphism from the unit circle \BbbS 1 to \Gamma O1 .
The lower panel shows how we construct the map in two different conditions; the left one shows the case when
the phase angle \theta associated with the trajectory of O1 rotates through more than 2\pi , the right one is where
the rotation is less than 2\pi . (b) In both panel schematics, the first blue vertical line segment denotes where
we chose the initial phase of light. After time \rho (xn, yn), the trajectory returns to \scrP , and the new phase of
light is yn+1. For the upper panel, yn + \rho (xn, yn) > 24, so yn+1 = yn + \rho (xn, yn)  - 24. For the lower panel,
yn + \rho (xn, yn) < 24, so yn+1 = yn + \rho (xn, yn). The black square wave f(t) in both panels represents the LD
forcing.

We define xn+1 = \^x. We can then write \Pi 1 as the following:

(6) xn+1 = \Pi 1(xn, yn) = \{ \^x \in [0, 24) : Arg(\gamma (\^x)) = \theta n+1\} .

(4) To numerically compute the map \Pi 1, we integrate an initial condition where O1 lies
along its limit cycle and O2 at \scrP , and integrate the system until O2 returns to the section. We
then use a linear map to shift the new location of O1 to the coordinate system we set up in
step 1. We transform the point into a complex number, and then use the built-in MATLAB
function angle() to find the phase angle. Using this angle, we locate a point on the limit cycle
of O1, that we had previously partitioned, with the same phase angle.

The definition of \Pi 2 is straightforward. We just mimic the construction of the O1-entrained
map. The only difference is that the return time function \rho depends on both x and y, because
O1 is no longer O1-entrained:

(7) yn+1 = \Pi 2(xn, yn) = yn + \rho (xn, yn) mod 24,

where y \in \~\BbbS 1 = (0, 24] is defined on a homeomorphism of the unit circle \BbbS 1, y = h(\theta ) = 12
\pi \times \theta .

The schematic Figure 2(b) depicts a way to understand the definition of \Pi 2. The first blue
vertical line segment signifies the initial phase yn of the lights when O2 starts on \scrP . After
time \rho (xn, yn), the trajectory returns to \scrP , signified by the second blue vertical line segment,
with the lights having turned on yn+1 hours ago. In the upper panel, \rho (xn, yn) > 24  - yn,
therefore, the trajectory does not return to \scrP within the same LD cycle. In the lower panel,
\rho (xn, yn) < 24 - yn, therefore, the trajectory does return to \scrP within the same LD cycle.

3. Results. In this section, we first show simulations demonstrating the entrainment of
the strictly hierarchical CNT model. We then define and analyze a 1-D map in which O1 isD
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assumed to already be entrained. We call this the O1-entrained map. Understanding the 1-D
map will facilitate the definition and analysis of the 2-D entrainment map. Finally, we extend
the results to the semihierarchical case.

3.1. The entrained solutions of the CNT model. To find the entrained solutions and
understand the geometry of the strictly hierarchical CNT system in the presence of the LD
cycle, the nullclines of each oscillator play an important role. The nullclines are the set
of points where the right-hand sides of (2) equal zero and will be different for each of the
oscillators. For O1, there are two different P -nullclines corresponding to the dark or light
condition manifested through the square-wave forcing f(t) and a single M -nullcline:

NPD
: M1 = kfh(P1) + kDP1,

NPL
: M1 = kfh(P1) + (kD + kL)P1,

NM1 : M1 = g(P1).

(8)

For O2, there is a single P -nullcline (since kL2 = 0), but a family of M -nullclines since the
coupling from O1 is continuous rather than discrete:

NP : M2 = kfh(P2) - kDP2,

NM2 : M2 = g(P2) + \alpha 1M1g(P2).
(9)

Each P -nullcline is a cubic shaped curve. Note that NPD
and NPL

are independent of the
variables P2 and M2. In the four-dimensional space (P1,M1, P2,M2) they actually correspond
to hypersurfaces. But since the equations governing the evolution of O1 are independent of
O2, we simply project and view NPD

and NPL
as curves in (P1,M1) space (Figure 3(a)).

We similarly view the sigmoidal nullcline NM1 as a curve in this phase plane. We project
the nullclines of O2 onto the (P2,M2) space (Figure 3(c)). Note that NM2 now represents a
continuum of sigmoidal shaped curves that vary depending on the value of M1. When O1 is
entrained, along its limit cycle, the M1 value is bounded between min| M1(t)| and max| M1(t)| .
Thus NM2 can oscillate between N\mathrm{m}\mathrm{i}\mathrm{n}

M : M2 = g(P2) + \alpha 1min| M1(t)| g(P2) and N\mathrm{m}\mathrm{a}\mathrm{x}
M : M2 =

g(P2)+\alpha 1max | M1(t)| g(P2). We assume that any intersection between NP and NM occurs on
the middle branch of the corresponding cubic nullclines. This will guarantee that any ensuing
fixed points of the CNT system are unstable and will allow oscillations to exist.

We plot the entrained solution of the CNT by direct simulation. In our simulations, we
take a specific set of parameters for (2), i.e., \phi 1 = \phi 2 = 2.1, \epsilon 1 = \epsilon 2 = 0.05, kD = 0.05, kL1 =
0.05, kL2 = 0, kf = 1, \alpha 1 = 2. In Figure 3(a), the periodic solutions of O1 are presented for
different light conditions. The dashed black (red) limit cycle denotes the stable solution of O1

in DD (LL) conditions. The solid red-black limit cycle denotes the LD-entrained solution of
O1, with hourly markings shown by green open circles. We also show various nullclines and
note that the M nullcline (yellow curve) is unique, but the P -nullcline (red and blue curves)
varies between M1 = (kD+kL)P +kfh(P ) and M1 = kDP +kfh(P ). The corresponding time
courses are shown for the P1 variable in Figure 3(b).

In Figure 3(c), we show the entrained solutions of O2 when O1 is in different light con-
ditions. The color convention is the same as in Figure 3(a). Here, we note that the P -
nullcline (blue curve) is unique, but the M -nullcline (red and yellow curves) varies betweenD
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(a)
(b)

(c)
(d)

Figure 3. (a) The periodic solutions of O1 in DD, LL, and LD conditions. The dashed black trajectory
represents the DD limit cycle (f(t) \equiv 0), the dashed red trajectory represents the LL limit cycle (f(t) \equiv 1). The
solid trajectory represents the LD solution with green hourly markers. The two different P1 nullclines, NPD

and NPL and the single M1 nullcline, NM , are shown. Note that for panels (a) and (c) the horizontal scale is
much larger than the vertical scale. (b) The time course plots: P1 versus t in all three cases (blue line lies at
0, 1, or is a square wave for DD, LL, or LD, respectively. (c) The periodic solutions of O2 when O1 is in DD,
LL, and LD conditions. Same color scheme as in (a). The Poincar\'e section is represented at P2 = 1.72 by a
small vertical line segment. Note that only the maximal and minimal sigmoidal M2 nullclines, N\mathrm{m}\mathrm{i}\mathrm{n}

M and N\mathrm{m}\mathrm{a}\mathrm{x}
M ,

are shown that bound the family of nullclines that exist for this case. (d) The time course plots: P2 versus t in
DD, LL, and LD conditions.

M2 = (1 + \alpha 1min | M1(t)| )g(P2) and M2 = (1 + \alpha 1max | M1(t)| )g(P2). We also show the time
course plots related to the same condition in Figure 3(d). The time course plots show that
the period of the DD solution is longer than that of LD, and the period of the LL solution
is shorter than that of LD. In particular, we found that the period of the DD cycle is 28.9
h, which is the same as the DD cycle of O1, and the period of the LL cycle is 21.6 h, whichD
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2144 GUANGYUAN LIAO, CASEY DIEKMAN, AND AMITABHA BOSE

is also the same as the LL cycle of O1. This is not surprising, because when the coupling is
strong enough, O2 is entrained by O1.

The nullclines shown in Figure 3(c), together with the dashed LL and DD O2 limit cycles,
are useful to explain our choice of the Poincar\'e section at P2 = 1.72, centered at M2 = 0.1289.
It is straightforward to use the vector field and phase plane analysis to show that any trajectory
starting on \scrP will evolve clockwise and cross the right branch of NP with P2 > 3. Because of
the difference in scaling of the vertical and horizontal components of that phase plane it may
not be so obvious that the M2 value does not vary much for points along the right branch
between where the LL (dashed red) and DD (dashed blue) limit cycles intersect it. In the LD
situation, a trajectory will intersect the right branch of the NP nullcline somewhere between
a neighborhood of each of these points. We now show that any two trajectories with initial
conditions lying on this nullcline in that region remain close in their M2 value. Suppose we
have a trajectory cross the right branch of NP at ( \~P2, \~M2), where \~P2 > 3, so that

\~M2 = H(P2) = kfh( \~P2) + kD \~P2.

Taking a derivative of the function on the right-hand side and, for convenience, using x to
represent the P2 variable, yields

H \prime (x) = kfh
\prime (x) + kD = kf

0.1 - x2

(0.1 + x+ x2)2
+ kD.

When x is large, H \prime (x) \rightarrow kD, implying H(x) \approx kDx, where kD is a small parameter. So
when \~P2 > 3,

H(x1) - H(x2) \approx kD(x1  - x2).

Thus the difference of M2 between two points on the right branch of NP is small. Next we
show that those points have approximately the same dynamics in the M2 direction. When P2

is large, g(P2) \rightarrow 0, the second equation of (4) is approximately

dM2

dt
=  - \phi 2\epsilon M2,

M2(t) = \~M2e
 - \phi 2\epsilon t.

The main point here is that the effect of M1 is gone, so trajectories evolve largely independent
of the coupling. Since any initial points lying on the region of the right branch of the NP

nullcline are close in their M2 value, it is an easy application of Gronwall's inequality to
show that they remain close until P2 becomes sufficiently smaller. Thus those trajectories are
funneled into the small region between the LL and DD limit cycles and cross the Poincar\'e
section.

We note that our choice of Poincar\'e section is dictated by the funneling effect. For example,
choosing the section elsewhere, say P2 = 3, | M2  - 0.521| < \delta , \delta > 0 but small, would not
guarantee that trajectories cross through this section again. Trajectories will, of course, cross
P2 = 3 with P \prime 

2 > 0, but won't necessarily do so in a small neighborhood of the LD-entrained
solution.D
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3.2. The \bfitO \bfone -entrained map. The O1-entrained map we obtained from (5) has similar
properties as the entrainment map Diekman and Bose constructed in their paper [13]. Figure
4 shows that there are two fixed points which correspond to different types of periodic solutions
for the CNT system. The lower one with yn+1 = yn = 10.2 is a stable fixed point of the map,
which represents a stable periodic solution. The upper one with yn+1 = yn = 17.2 is an
unstable fixed point of the map.

We classify the direction of entrainment as occurring through phase advance or phase
delay. Suppose yn+1 = \Pi O1(yn), and the return time needed from yn to yn+1 is less than
24 hours. We call this a phase advance. Alternatively, if the return time is greater than 24
hours, we call it a phase delay. The unstable fixed point of the map plays an important role
in determining this direction. For example, pick two different initial conditions (y0 = 16.5, 18)
near the unstable fixed point and use the cobweb method to observe how different directions
of entrainment can occur. For y0 = 16.5, the iterates move to the left and converge to the
stable solution by phase advance. For y0 = 18, however, the iterates move to the right and
converge to the stable solution by phase delay. In Figure 4(b), we compare the iterates with
simulations; the green curve corresponds to y0 = 16.5 and the magenta curve corresponds to
y0 = 18. The black curve is the entrained solution for O2. The direction of entrainment from
the simulations agrees with the calculations obtained from the map.

In our model system, there are two parameters of interest, the coupling strength \alpha 1 and
the intrinsic period of O2 governed by \phi 2. In Figure 4(c), we decrease \alpha 1 from 2.5 to 1.4,
so that the coupling strength is weaker. As a result, the return time \rho (y) increases. This
makes the map move up, and the stable and unstable fixed points get closer to each other.
At \alpha 1 = 1.51, the two fixed points collide at a saddle-node bifurcation. In Figure 4(d), we
increase the intrinsic period of O2 by decreasing \phi 2 from 2.3 to 1.9, so that the difference
between the intrinsic period and the 24-h forcing increases, which increases the return time
to the Poincar\'e section. Hence the map moves up. When \phi 2 = 1.91, the map passes through
the saddle-node bifurcation value. The disappearance of the stable fixed point means that in
the full system 1:1 entrainment is lost and replaced by higher order periodic behavior. The
details of this kind of behavior are interesting in their own right, but an investigation of this
behavior is beyond the scope of this work.

Notice that the O1-entrained map we construct is not monotonic, which makes it different
from the 1-D entrainment map found in [13]. To understand this nonmonotonicity, we take
two initial conditions (y0 = 6 and y0 = 8) near the local maximum of the map in Figure 5(a),
and analyze the dynamics of the system. Associated with the return time plot in Figure 5(b),
we found that the return time is between 28 and 29 when y is less than the local maximum
point. But when it crosses that point, the return time decreases quickly with the derivative
\rho \prime (y) <  - 1. In Figure 5(c), we plot the trajectories with the two initial conditions. The
trajectory for y0 = 6 flows to the left branch of the P -nullcline, which increases the return
time since evolution near this branch is slow. Alternatively, the trajectory for y0 = 8 doesn't
flow near the left branch and thus has a shorter return time. A minor consequence of this
nonmonotonicity is that some solutions converge to the stable fixed point by initially phase
delaying, but then ultimately phase advancing. For example, in Figure 5(d), we take y0 = 18
then cobweb the map. We find that the first four iterates initially phase delay. The fourth
iterate lands near the local maximum of the map, which lies above the value of the fixed point.D
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(a) (b)

(c) (d)

Figure 4. (a) The cobweb diagram for the O1-entrained map. We pick two different initial conditions and
show how the iterates move to the stable fixed point. (b) The approach to the stable solution (black curve) in the
t versus P plane; the colors correspond to the two initial conditions in (a). (c) The map displays a saddle-node
bifurcation by decreasing \alpha 1. (d) Decreasing the intrinsic period of O2 by decreasing \phi 2 also leads the map to
display a saddle-node bifurcation. Fixed points shown as open circles are unstable, and those shown with solid
circles are stable.

This causes subsequent iterates to phase advance. This nonmonotonicity foreshadows a more
complicated picture that arises under the dynamics of the 2-D map.

3.3. The results of the general 2-D map. In this section, the analysis of the 2-D map
is presented. We follow ideas first derived by Akcay, Bose, and Nadim [1] and followed up on
in [2] to find fixed points of the map via a geometric method. The entrainment time and the
direction of entrainment are analyzed by iterating the map. We also compare these results
with simulations. At the end of this section, we show that the map is also applicable to the
semihierarchical model.D
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(a) (b)

(c) (d)

Figure 5. Nonmonotonicity in the entrainment map leads to convergence initially due to phase delay but
ultimately due to phase advance. (a) The nonmonotone O1-entrained map and two choices of initial conditions
near the local maximum. Note that the local maximum lies above the value of the fixed point of the map. (b)
The return time plot associated with the two initial conditions. (c) The corresponding phase plane. The solid
blue trajectory for y0 = 8 does not approach the left branch of NP , while the solid red trajectory for y0 = 6 does,
causing its evolution to slow down. (d) Starting with an initial condition y0 = 18, the first four iterates phase
delay. The fourth iterate lands near the local max of the map, and subsequent iterates then phase advance.

Basic results from the map. Both parts of the 2-D map \Pi 1 and \Pi 2 are surfaces in
relevant 3-D spaces. Because of the mod 24 operation, each surface will contain discontinuities.
In Figures 6(a) and 6(b), we project the surface onto the x--y plane. For \Pi 1, the purple part
of the surface is points lying above the diagonal plane z = x, in other words, xn+1 > xn. The
red part of the surface of \Pi 2 is points lying above the diagonal plane z = y, i.e., yn+1 > yn.
The points of gray color denote all points that are below the diagonal planes, xn+1 < xn andD
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(a) (b)

(c) (d)

Figure 6. (a) and (b) The 2-D entrainment map is plotted as two separate maps \Pi 1 and \Pi 2, and projected
onto the domain space (xn, yn). The purple and red color in both maps denote all points that are above the
diagonal plane. The gray color denotes points that are below the diagonal plane. The white curves denote the
discontinuity. (c) The purple curves denote points of \Pi 1's nullcline Nx, where x = \Pi 1(x, y), the red curves
denote points of \Pi 2's nullcline Ny, where y = \Pi 2(x, y). Their intersections are the four fixed points of the
map. (d) The entrainment time is plotted with a heatmap. The color denotes the entrainment time starting
from a specific initial condition. The light green curves locate W s(B) and W s(C) from near which the longest
entrainment times occur.

yn+1 < yn. The white curves indicate locations of discontinuity of the map. The separation of
the two different colors consists of curves which indicate the points where x = \Pi 1(x, y) and y =
\Pi 2(x, y). Here we define those curves as nullclines of the map:

Nx = \{ (x, y) : x = \Pi 1(x, y)\} , Ny = \{ (x, y) : y = \Pi 2(x, y)\} ,

which are plotted in Figure 6(c). The purple curves denote Nx. Similarly, the red curvesD
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Table 1
Numerical computation of the eigenvalues of the map at the four fixed points. Eigenvalues with modulus

less than one correspond to stable directions, while those with modulus greater than one correspond to unstable
directions.

x y Eigenvalue Stability

A 10.6 10.6 0.1609, 0.4453 sink

B 17.2 17.2 2.0858, 0.4238 saddle

C 10.6 21.1 2.325, 0.2734 saddle

D 17.2 3.7 1.595+0.77i, 1.595-0.77i source

denote Ny. Their intersections are four fixed points of the map. We numerically calculated
the Jacobian at those fixed points and found the eigenvalues of the linearization. These values
and the corresponding stability of each fixed point are shown in Table 1. From the results
of the O1-entrained map, points A and B lying on the diagonal line correspond to the stable
solution of O1. For O2, point A corresponds to the stable solution. For point B, the trajectory
of O2 returns to the Poincar\'e section after 24 hours but corresponds to the unstable solution
of the O1-entrained map. At the fixed point C, O1 lies on its own unstable periodic orbit.
This can be inferred from and agrees with the calculation of Diekman and Bose [13] who
showed that the original 1-D entrainment map has an unstable fixed point that corresponds
to an unstable periodic orbit. Thus O1 is entrained to a 24-hour LD cycle and provides a
24-hour forcing to O2. From simulation, we found that the trajectory of O2 stays for several
cycles near what appears to be a stable limit cycle, though it is different from the limit cycle
corresponding to point A since O1 is unstable and the forcing signal to O2 is different. At
point D, if we check the difference between C and D, we can see that

(xD, yD) = (xC , yC) + 6.6 mod 24,

so O1 is still on its unstable periodic orbit. That is, points C and D represent conditions
where the forcing M1(t) is identical, but just phase shifted by 6.6 hours. Thus O2 still receives
24-hour forcing so we also expect there to exist an unstable O2 limit cycle for this case.

One advantage of the map is its ability to estimate the entrainment time. Starting from
different initial conditions, we iterate the map (xn+1, yn+1) = \Pi (xn, yn) until \| (xn+1, yn+1) - 
(xs, ys)\| < 0.5, where point A has coordinates (xs, ys). The entrainment time is the sum of
the return times corresponding to each iterate. In Figure 6(d), we show the entrainment times
corresponding to different initial conditions on the torus expanded as a square. We also plot
the nullclines Nx and Ny on top of it for illustrative purposes. The color for each point on
the square denotes the entrainment time needed for that initial point.

Notice that, in Figure 6(d), there are two light green curves. Along these curves, the
entrainment time is much longer than other regions. Additionally, they appear to connect
the two saddle points B, C with the unstable source D. Though not proven here, we believe
that these curves locate where the stable manifolds of the saddle points B and C (W s(B) and
W s(C)) are. To completely understand the dynamics of the entrainment map, it is useful to
numerically find the stable and unstable manifolds.

The algorithm we used to find the manifolds of the entrainment map are based on the
following results. For the unstable manifold, Krauskopf and Osinga [26] introduced a growingD
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method to calculate the unstable manifold point by point. They initially iterate points chosen
in a neighborhood of the fixed point along the associated unstable eigenvector and accept new
points as lying on the unstable manifold if they satisfy specific constraints. For the stable
manifold, the search circle (SC) method introduced by England, Krauskopf, and Osinga [16]
utilizes the stable eigenvector to find points within a certain radius that iterate onto a segment
of the stable eigenvector. The SC method has the advantage that it does not require the
inverse of the map to exist, which is important for us since our map is noninvertible. Both
of these methods are constructed for planar nonperiodic domains. In our case, the map lives
on a torus, but is graphically shown on a square. Whenever an iterated point exceeds the
boundary of the square, we use the modulus operation to define the correct value within the
square. Thus we develop our algorithm to account for this discontinuity. Another difference is
that the terminating conditions for both the growing and SC methods rely on calculating the
arc length of the manifolds up to a certain predetermined length. However, in our map, the
stable manifolds of points B and C are generated from the source point D, while their unstable
manifolds terminate at point A. Thus our algorithm terminates when these manifolds enter
prescribed neighborhoods of those corresponding fixed points D and A.

In Figure 7(a), we choose initial points ranging from 0 < x < 24, 0 < y < 24, and iterate
ten times for each initial point. The arrow on each coordinate is pointing to its own next
iterate. The obtained vector field give us another visualization of the map. In Figure 7(b),
the numerical result of stable and unstable manifolds of B and C are plotted (also overlayed in
panel (a) for easier comparison). W s(B) andW s(C) agree with the light green curves in Figure
6(d). W u(B) is exactly the diagonal line of the phase plane, which is not surprising. Because
the diagonal line corresponds to the O1-entrained case, if an iterate starts on the diagonal line,
it stays on it. The numerical calculation of the eigenvector of Eu(B) is approximately (0.7,0.7)
on the diagonal line, which means W u(B) = Eu(B). W u(C) also matches the darkest region
in Figure 7(a). Indeed, these dark regions indicate the location of the unstable manifolds
of points B and C. The located manifolds are also helpful for understanding the direction
of entrainment of 2-D maps. In the case of the 1-D map, the direction of entrainment is
essentially either phase advance or delay, and the longest entrainment times happen for initial
conditions lying near the unstable fixed point. In the case of the 2-D map, the direction of
entrainment need no longer be monotonic. The manifolds associated with the saddle points B
and C appear to behave like a separatrix, despite this being a map and not a flow. To classify
the direction of entrainment in the 2-D map, we consider phase delays and advances in the
x and y directions separately. For the x direction, if the rotated angle from xn to xn+1 is
greater than 2\pi , we call it phase delay, otherwise we call it phase advance. For the y direction,
we use the same definition as in the O1-entrained map. To illustrate different directions of
entrainment, we pick several initial conditions near the stable manifolds, then iterate the map.
We also run simulations with the same initial conditions for comparison. For Figure 8(a), in
the left panel, we pick an initial point slightly above W s(C). It entrains to the stable solution
by phase delay in the y direction, and phase delay-advance-delay in the x direction. In the
right panel, the initial point is slightly below W s(C), but the entrainment is through phase
delay-advance in y, and phase delay-advance in x. The corresponding simulations in Figure
8(b) agree with the direction of entrainment found through the map and demonstrate the
sensitivity to initial conditions.D
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(a)
(b)

Figure 7. (a) N = 10 iterates from various initial points are shown. The arrow at each coordinate point is
in the direction of the next iterate. The vector field indicates that there may exist a separatrix type structure at
both points B and C. (b) Stable and unstable manifolds of B and C as generated through the generalization of
the search circle and growing methods (see text) which are also overlayed in panel (a). The labeled manifolds
do appear to provide a separatrix type behavior despite this being a map and not a flow.

Parameter dependence of the map. In the section on the O1-entrained map, we
calculated the O1-entrained map for four different values of \alpha 1, and found the system will lose
entrainment if the coupling strength is too small. Now we calculate the 2-D map at different
values of \alpha 1 to see how the fixed points and the entrainment time depend on \alpha 1. In Figures
9(a) and 9(b), we show the x and y nullclines for three different \alpha 1 values; the points with a
a solid circle are the stable fixed points, the points with open circles are the unstable fixed
points, and the starred points are saddle points. In Figure 9(c), we show the heatmap of
entrainment times for \alpha 1 = 1.52. In Figures 9(d), we show the heatmap of entrainment times
for \alpha 1 = 2.5. Note that \alpha 1 = 2 is our canonical case, and was presented before in Figure 6(d).
Increasing \alpha 1, in general, decreases the entrainment time as can be observed from the color
scale values (yellow max value \approx 700 for \alpha 1 = 1.52) versus 400 for \alpha 1 = 2.5. In other words,
stronger coupling between the central to peripheral oscillator speeds up entrainment.

The 2-D map for the semihierarchical case. For the strictly hierarchical model with
only one feedforward connection from O1 to O2, we have shown how to construct both the
O1-entrained map and the general 2-D entrainment map. Here we will show that the 2-D map
can be derived for the model when 0 < kL2 < kL1 . In this case, O1 is still dominant, allowing
us to keep a semihierarchical structure.

We take kL2 = 0.025, and keep the values of other parameters the same, so that O1 and
O2 both receive light forcing. We define the Poincar\'e section \scrP : P2 = 1.72, | M2 - 0.1548| < \delta .
We then obtained a 2-D map for this model. In Figures 10(a) and 10(b), the top view of
\Pi 1 and \Pi 2 are presented. In Figure 10(c), we similarly obtained 4 fixed points (A,B,C,D) as
in the strictly hierarchical case. Compared to the strictly hierarchical model, we found that
the additional light forcing into O2 accelerates the entrainment process, so that the time toD
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(a)

(b)

Figure 8. Direction of entrainment depends sensitively on initial conditions. (a) The initial point (labeled 1)
in the left panel lies above W s(C), while the similarly labeled point in the panel to the right lies below W s(C).
Numbers indicate iterates. As shown, the direction of entrainment differs significantly. (b) Corresponding
simulations agree with the iterates. Note the top panel shows that O2 (red time course) entrains through phase
delay to the entrained solution (black time course); the lower panel shows O2 entraining through phase delay-
advance.D
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(a) (b)

(c) (d)

Figure 9. (a)--(b) The x and y nullclines under different \alpha 1 values. Solid circles denote stable fixed points,
open circles unstable fixed points, and stars saddle points. (c)--(d) The heatmap of entrainment times for
different values of \alpha 1. Note the difference in numeric value of the maximum value of the color scale.

return to \scrP is decreased. Thus the whole surface shifts down, which causes A to move to
the left of the diagonal, and B to move to the right of the diagonal. For points C and D,
the limit cycle of O2 is now determined by both O1 and the light forcing, which changes the
location of C and D. In Figure 10(d), we calculated the first 10 iterates of each initial point.
Comparing these results with the strictly hierarchical case, the stability of each fixed point
remains unchanged, but their location has changed. Further, the entrainment time required
for each initial condition is reduced because of the LD forcing into O2.

4. Discussion. Circadian oscillations exist from the subcellular level involving genes, pro-
teins, and mRNA up to whole body variations in core body temperature. These oscillations
are typically entrained to the 24-hour LD cycle. Additionally, food, exercise, exterior tem-
perature, and social interactions can also act as entraining agents in certain species [34]. InD
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(a) (b)

(c) (d)

Figure 10. 2-D semihierarchical case. (a)--(b) The top view of \Pi 1 and \Pi 2 are presented; see Figures 6(a)
and 6(b) for an explanation of color coding. (c) We obtained 4 fixed points (A,B,C,D) with similar stability of
the canonical model. (d) Ten iterates of each point. The vector field looks qualitatively similar to the strictly
hierarchical case shown in Figure 7(a).

these cases, various pathways in each species exist which carry the entraining information to
relevant parts of the circadian system. In this paper, we refer to the set of oscillators that
first receive this input as central circadian oscillators. In turn, these central oscillators send
signals about the time of day to other peripheral oscillators. When viewed in this manner,
we obtain a hierarchical circadian system. For example, in the strictly hierarchical model
(Figure 1(a)), the central oscillator O1 could represent the suprachiasmatic nucleus (SCN),
the master pacemaker in the hypothalamus of mammals. The peripheral oscillator O2 that
does not receive light input could represent circadian clocks in organs such as the heart orD
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kidney. Alternatively, O1 could represent the part of the SCN that directly receives light
input (the ventral core), and O2 could then represent the part of the SCN that does not (the
dorsal shell) [21]. For the semihierarchical model (Figure 1(b)), O1 and O2 could represent
the central and peripheral clocks in Drosophila, since in flies the clock protein cryptochrome
is a photoreceptor and thus even peripheral organs receive some direct light input [11]. The
main goal of this paper has been to develop a low-dimensional method to study the basic
properties of hierarchical systems such as the existence and stability of entrained solutions,
together with how the phase and direction of entrainment of the constituent oscillators depend
on important parameters.

In this work, we have focused on how a hierarchical circadian system entrains to an
external 24-hour LD cycle. To do so, we developed a method, partly analytic and partly
computational, to assess the existence and stability of the entrained solution. Generalizing
the approach of Diekman and Bose [13], we derived a Poincar\'e map by placing a section
in the phase space of the peripheral oscillator O2. The phase of O1 with respect to a ref-
erence point on its own limit cycle, x, and of lights y, was then determined to derive the
2-D map. With this approach, we were able to determine that over a large set of parame-
ters, the 2-D map possesses four fixed points, each of which corresponds to a periodic orbit
of the hierarchical circadian system. Only one of these fixed points is asymptotically sta-
ble. The other three fixed points are unstable. We showed how one of them, labeled D in
Figures 6(c), 7(b), and 10(c), is a source from which iterates emerge, including the stable
manifolds of the two saddle points B and C. These manifolds appear to act as separatrices
in the x-y domain of the map in the sense that, although they are for a map and not a
flow, the manifolds separate the direction of convergence towards the stable fixed point A.
Perhaps this is not so surprising as the saddle structure of the fixed points implies the ex-
istence of a saddle structure of the periodic orbits associated with points B and C. In the
full 5-D phase space of the flow, each of the corresponding 1-D stable and unstable mani-
folds from the map become 3-D; the motion along the O1 and O2 limit cycles provide the
additional two dimensions. This would be enough to form a separatrix in the 5-D phase
space.

There are several findings of our work that are readily revealed through the 2-D map.
First, in a strictly hierarchical system, central oscillators typically entrain first. This can be
seen quite clearly from Figure 7(a) which shows that iterates of the map congregate along the
diagonal line, which represents the O1-entrained subset of the 2-D map. This figure also shows
that the peripheral oscillators may entrain in a different direction than the central oscillator
or may in fact change their direction of entrainment during the transient. Given that direct
light input speeds up entrainment, it is intuitively clear to see why entrainment times are,
in general, less for semihierarchical compared to strictly hierarchical systems; see Figure 10.
A second finding involves the stable and unstable manifolds of the fixed points. Despite this
being a map, these manifolds help to organize the iterate structure. In particular, the stable
manifolds of the unstable saddle points create a tubular neighborhood of initial conditions that
lead to very long entrainment times, as seen in Figure 6(d). Determining that the unstable
node and saddle points of the map actually exist is yet another important consequence of our
map-based approach. Simulations alone would be unlikely to reveal either the existence or the
role of these fixed points. Finally, effects of changing relevant parameters are readily explainedD
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using the map. For example, the limits on parameters of entrainment are readily observed
if the coupling to the peripheral oscillator is too weak or if that oscillator is intrinsically too
slow (Figure 4). Alternatively, stronger coupling from central to peripheral oscillators speeds
up entrainment as shown in Figure 9.

Related work. The mechanisms of communication between clock neurons is a topic of
much ongoing research in the circadian field. The neuropeptide pigment-dispersing factor
(PDF) is thought to act as the main synchronizing agent in the fly circadian neural network
[32]. The analogue of PDF in the mammalian circadian system is vasoactive intestinal peptide
(VIP), which plays a major role in synchronizing SCN neurons [33]. Although it is clear
from studies with mutants that these neuropeptides provide important signals to synchronize
circadian cells, the manner in which the signals interact with the molecular clock is not
well understood [15]. Mathematical modeling can be used to explore the effect of different
coupling mechanisms on clock network synchronization. In our model, we have assumed that
production of the synchronizing factor is induced by activation of the clock gene in oscillator
1 (M1), and that the effect of the synchronizing factor is to directly increase transcription of
the clock gene in oscillator 2 (M2). This type of coupling is similar to how Gonze et al. [18]
modeled the action of VIP in the mammalian clock network; however, in the Gonze model
they included a linear differential equation for the production and decay of the coupling agent.
Thus, in their model the coupling agent is a delayed version of the clock gene activity. In
the Roberts et al. [39] model of the fly clock network, the coupling signal is also increased by
clock gene activity. As in our model, the coupling signal then instantaneously increases the
clock gene transcription rate in other oscillators. In addition, the Roberts model included a
second type of coupling where the coupling signal depends on clock protein levels, rather than
clock gene activity, and the effect of the coupling signal is to instantaneously reduce the clock
gene transcription rate in other oscillators. Their simulations suggested that networks with
both coupling types promoted synchrony and entrainment better than networks with either
type of coupling alone. In a more detailed model of the fly clock network, Risau-Gusman and
Gleiser [38] explored 21 different coupling mechanisms and found that synchronization of the
network can only be achieved with a few of them. In future work, it would be interesting to
use generalized entrainment maps to try to gain insight into why certain types of coupling
promote synchrony and entrainment better than others.

Several prior modeling studies on entrainment of circadian oscillators exist. Bordyugov
et al. [7] used the Kuramoto phase model and found, via Arnold tongue analysis, that the
forcing strength and the oscillator amplitude both affect the entrainment speed. As noted in
their work, a limitation of the method is that it only works for relatively weak coupling. An
et al. [3] found that large doses of VIP reduce the synchrony in the SCN, which then reduces
the amplitude of circadian rhythms in the SCN. In turn, they show that this leads to faster
reentrainment of the oscillators in a jet lag scenario. Lee et al. [28] directly introduced a
linear phase model to study the entrainment processes. They found that the period of the
central and peripheral oscillators are not the only predictors of the entrained phase. The
intensity of light forcing to the central oscillator and the strength of coupling from the central
to the peripheral oscillator also play a role in determining the stable phase. Their results are
consistent with what we found for the O1-entrained map shown in Figure 4. Roberts et al.
[39] studied a population of coupled, modified, heterogeneous Goodwin oscillators under DDD
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and single light pulse conditions. Their model simulations of a semihierarchical system show
that because of heterogeneity, a single light pulse can desynchronize and phase disperse the
oscillators. This can lead to a change in the coupling strength between oscillators which in turn
leads to a new periodic solution of different amplitude than before the light pulse. Although
they didn't consider 24-hour LD forcing, Roberts et al. suggests that this desynchrony can be
an important component in assessing reentrainment of semihierarchical networks after jet lag.
Our 2-D entrainment shows that this is indeed true. Namely, a shift in the light phasing that
retains synchrony between O1 and O2 is equivalent to changing the initial y-value of our map,
but keeping x fixed. Whereas a shift of light phasing accompanied by a desynchronization
is equivalent to changing both x and y from the stable fixed point. As our simulations show
(Figure 10(d)), the reentrainment process can be quite different in these two cases.

There are two modeling papers of hierarchical systems that are quite relevant to our work.
In Leise and Siegelman [29], the authors consider a multistage hierarchical system to assess
properties of jet lag. They utilized a 2-D circadian model due to olde Scheper et al. [37]
to show that the direction of entrainment of peripheral oscillators need not follow that of
the central oscillator. This is referred to as reentrainment by partition. To understand this
idea more clearly, consider the concepts of orthodromic and antidromic reentrainment which
are studied in the context of a time zone shift as in jet lag. Orthodromic reentrainment is
defined as the oscillator shifting in the same direction as the forcing signal (e.g., advancing
in response to an advance of the LD cycle) and antidromic reentrainment is when the oscil-
lator shifts in the opposite direction as the forcing signal (e.g., delaying in response to an
advance of the LD cycle). The situation is more complicated for hierarchical systems where
different parts of the system may shift in different directions. For example, when Leise and
Siegelman simulated a jet lag scenario involving a phase advance of 6 hours, they found that
the pacemaker oscillator responded by phase advancing but the intermediate and peripheral
oscillators responded by phase delaying. Similarly to Leise and Siegelman, we also observe
reentrainment by partition in our model. With the parameter values that we used in this
paper, a 6-hour phase advance leads to orthodromic reentrainment in our model with both
oscillators responding by phase advancing. However, simulating a 10-hour phase delay of
the LD cycle places the initial condition in the vicinity of the saddle fixed point C, lead-
ing to reeentrainment through partition depending on the exact location relative to C. Our
results are consistent with those of Leise and Siegelman, as they note that in their model
reentrainment by partition can also be observed in response to phase delays of the LD cycle
for certain values of the coupling strength between the master pacemaker and the interme-
diate component. The qualitative similarity in our results suggests that our findings can be
used to infer that the Leise-Siegelman multistage model also possesses unstable saddle fixed
points whose properties govern the reentrainment process. A second more recent paper due
to Kori, Yamaguchi, and Okamura [24] developed a hierarchical Kuramoto model to study
the entrainment of circadian systems. They applied the model to predict the reentrainment
time after two types of phase shifts, a single eight-hour shift versus a two-step shift with
4-hour shifts in each step. It turns out the latter requires fewer days to recover. In our
paper, this can be related to the properties of stable manifolds of B or C. For example, in
Figure 6(d), for a single eight-hour shift near the fixed point A, the new point will stay close
to W s(C), which makes the reentrainment time longer. For two successive four-hour shifts,D
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the new point will be further from W s(C), which decreases the reentrainment time. This
result generalizes findings from Diekman and Bose [14] and Kori, Yamaguchi, and Okamura
[24].

Regarding the numerical methods that we used to find stable and unstable manifolds,
we basically applied the search circle for stable manifolds [16] and the growing method [26]
for unstable manifolds. One difference between those methods and ours is the domain of
the map, \BbbR 2 versus a torus \BbbT 2 in our case. Instead of growing one curve, our manifold is
cut off when it hits the boundary of the domain. We then restart the calculation at the
equivalent periodic point of the domain, e.g., x = 24 is reset to x = 0. Another difference is
the terminating criteria for both growing and SC methods rely on calculating the arc length
to a predetermined length. However, in our map, the manifolds are generated from a certain
point (the source D or the sink A), thus our algorithm terminates when those manifolds enter
a neighborhood of the corresponding fixed points D and A.

Recently Castej\'on and Guillamon derived a different 2-D entrainment map [9]. This map
applies to a single oscillator (not necessarily a circadian oscillator), subject to pulsed periodic
input. The variables of their map are the phase and amplitude of the oscillator. They use
phase-response curve type methods to show that their 2-D map is more accurate in tracking
the phase-locking dynamics as compared to a 1-D map of simply phase. While they use the
term 2-D entrainment map, it appears that their method applies to a class of problems that
are different than the ones considered in this paper.

Advantages and disadvantages of our method. The methods derived in this paper
have the following advantages. Aside from allowing us to calculate entrainment times and
directions as discussed above, the method provides a clear geometric description of why these
results arise. Namely, the unstable manifolds of various fixed points organize the iterate
structure of the dynamics. Our method does not specifically require the LD forcing to be weak
in amplitude or short in duration. This is in contrast to methods that use phase response
curves and thus require weak coupling or short duration perturbations [8, 35].

Second, the dimension on which we perform analysis is significantly reduced from five to
two dimensions. The classical Poincar\'e map can reduce the dimension of the original system
by one. For example, Tsumoto et al. [40] construct a Poincar\'e map for the 10-dimensional
Leloup and Goldbeter model of the Drosophila molecular clock [30], reducing the dimension
to 9. The phase reduction techniques of Brown, Moehlis, and Holmes [8] can reduce the
dimension of limit cycle oscillators to 1 dimension, however, this method is not accurate for
strong coupling.

There are some disadvantages of the map. First, the map only works to study local
behavior near the stable limit cycle solutions. This is because we restrict the type of per-
turbations that we are considering to allow only for a shift of the LD cycle or a shift of
the central oscillator along its own limit cycle. In particular, we don't know if there is an
unstable or stable structure outside the basin of attraction of the stable entrained solution
without additional analysis. Second, the phase angle method works well with 2-D systems.
For higher-dimensional systems, it would require additional assumptions.

Open questions and future directions. This work is based in part on analysis and in
part on simulations. We have not proved that the correspondence of the findings of the 2-D
map, e.g., existence and stability of fixed points, actually exist for the hierarchical system ofD
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ODEs. We would like to use a 1-D phase model, for example a Kuramoto model [27] for each
oscillator, to see if this proof can be made. Alternatively, we believe this method of mapping
should be applicable to other models, such as Goodwin [19], Gonze et al. [18], or Forger,
Jewett, and Kronauer [17] oscillators which are all higher dimensional. Verifying this, at the
moment, would have to rely on checking agreement with simulations. The 2-D entrainment
map should also be applicable to understanding the interaction of circadian and sleep-wake
rhythms to generalize the findings of Booth, Xique, and Diniz Behn [6].

A necessary condition of our method is the existence of limit cycle solutions of the forced
system, so that we can map any point in the phase plane to a point on the limit cycle.
Light input is not the only forcing signal that a circadian oscillator receives. For instance,
exercise, the intake of meals, and taking melatonin can also be considered as an external
forcing. We would like to develop the entrainment map for multiple forcing signals. Another
possible direction for future work involves generalization of model reduction techniques. Most
reduction techniques are based on weak coupling, such as phase reduction [8]. We would like
to develop a technique for a system with strong coupling. This part could potentially be
done by deriving a Floquet normal form [10] in phase and amplitude space. For the circadian
oscillators that we studied in this paper, it remains open how to derive the Floquet normal
form.
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Abstract 
 
Daily or circadian rhythms in mammals are orchestrated by a master circadian clock within 
the hypothalamic suprachiasmatic nuclei (SCN). Here, cell-autonomous oscillations in gene 
expression, intrinsic membrane properties, and synaptic communication shape the electrical 
landscape of the SCN across the circadian day, rendering SCN neurons overtly more active 
during the day than at night. This well-accepted hallmark bioelectrical feature of the SCN has 
overwhelmingly emerged from studies performed on a small number of nocturnal rodent 
species. Therefore, for the first time, we investigate the spontaneous and evoked electrical 
activity of SCN neurons in a diurnal mammal. To this end, we measured the electrical activity 
of individual SCN neurons during the day and at night in brain slices prepared from the 
diurnal murid rodent Rhabdomys pumilio and then developed cutting-edge data assimilation 
and mathematical modelling approaches to uncover the underlying ionic mechanisms. We 
find that R. pumilio SCN neurons were more excited in the day than at night, recapitulating 
the prototypical pattern of SCN neuronal activity previously observed in nocturnal rodents. 
By contrast, the evoked activity of R. pumilio neurons included a prominent suppressive 
response that is not present in the SCN of nocturnal rodents. Our computational modelling 
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approaches reveal transient subthreshold A-type potassium channels as the primary 
determinant of the suppressive response and highlight a key role for this ionic mechanism in 
tuning excitability of clock neurons and optimising SCN function to accommodate R. 
pumilio’s diurnal niche. 
 
Keywords: diurnality, circadian rhythms, suprachiasmatic nucleus, electrical activity, 
mathematical modelling, data assimilation 

INTRODUCTION 
The mammalian master circadian clock is localized within the hypothalamic suprachiasmatic 
nucleus (SCN), where nearly 20,000 neurons synchronize their daily activity with the light-
dark cycle to orchestrate circadian rhythms in physiology and behaviour (Reppert & Weaver, 
2002). SCN neurons are electrically and chemically heterogeneous. Most, if not all, SCN 
neurons contain an internal molecular clock that operates on a transcription-translation 
feedback loop (TTFL) (Ko & Takahashi, 2006). Activity of the TTFL drives circadian rhythms 
in electrical activity, with SCN neurons notably more active during the day (up-state) than at 
night (down-state). This excitability landscape within the SCN is reinforced by the 
appropriate synaptic integration of extrinsic signals, which includes photic information from 
the retina and behavioural feedback reflecting arousal state (Belle & Diekman, 2018).  
 
Our current understanding of SCN neurophysiology comes overwhelmingly from 
electrophysiological recordings on a small number of nocturnal rodent species (mice, rats 
and hamsters) (Colwell, 2011; Belle & Diekman, 2018; Harvey et al., 2020). A handful of 
studies have confirmed that the daytime peak in spontaneous activity (as reflected in 
extracellular electrical activity or deoxyglucose uptake) is retained in the SCN of diurnal 
species (Sato & Kawamura, 1984; Schwartz, 1991; Ruby & Heller, 1996). However, there 
has been no whole-cell recording of SCN neurons from a diurnal species, and the question 
of how, or if, SCN neurophysiology is altered to accommodate a diurnal niche remains 
unanswered. Rhabdomys pumilio (the four striped mouse) represents an excellent 
opportunity to address this question. This species is strongly diurnal (Dewsbury & Dawson, 
1979; Schumann et al., 2005; Bano-Otalora et al., 2020) and is a murid rodent, facilitating 
comparison with established findings from closely related nocturnal species (mice and rats).  
 
We adopted a parallel approach of experimental recording and advanced computational 
modelling to understand the R. pumilio SCN. First, we address the lack of data on single-cell 
physiology in diurnal SCN by using whole-cell recordings to describe spontaneous electrical 
states and their daily variation. We then determined the evoked membrane properties of 
these diurnal SCN neurons by recording their responses to inputs. We then turned to cutting-
edge data assimilation and modelling approaches to gain insight into the cellular and ionic 
mechanisms underlying passive and evoked electrical states. Our results revealed 
similarities in SCN neurophysiology between the R. pumilio and other rodent species, but 
also exposed fundamental differences which may serve to accommodate SCN functioning to 
a diurnal niche. 
 
RESULTS   
SCN neuropeptidergic organization in the diurnal Rhabdomys pumilio.  
Prior to assaying single-cell electrical properties in the R. pumilio SCN, we first described the 
anatomical and neuropeptidergic organization of the SCN in this species. This provided us 
with a practical guide to ensure only neurons within the SCN were targeted for 
electrophysiology since no brain atlas yet exists for this species. To this end, we performed 
immunofluorescence labelling for nuclear DNA with DAPI, vasoactive intestinal polypeptide 
(VIP), arginine vasopressin (AVP), and gastrin-releasing peptide (GRP) (Fig.1).  
 
The gross neuroanatomy of the R. pumilio SCN across the rostro-caudal axis is broadly 
similar to other rodent species (Smale & Boverhof, 1999; Abrahamson & Moore, 2001) 
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(Fig.1A). Immunofluorescence labelling for the main neuropeptides showed that the R. 
pumilio SCN contains VIP, AVP, and GRP, and importantly, the neuroanatomical localization 
of these neuropeptides was broadly similar to the distribution found in other rodent species 
(Smale & Boverhof, 1999; Abrahamson & Moore, 2001), AVP-positive cell bodies were 
mainly localized in the dorsomedial aspect (sometimes termed “shell” (Fig.1B)), while VIP-
positive somas were localized throughout the ventral region or “core”, with VIP 
immunoreactive axonal processes extended into the dorsal SCN (Fig.1C). By contrast, GRP-
positive neurons were localized in the central SCN (Fig.1D).  
 
Diurnal changes in the spontaneous electrical activity of Rhabdomys pumilio SCN 
neurons.  
The day-night electrical activity and membrane excitability states of SCN neurons at the 
single-cell level are well characterized in nocturnal animals (Colwell, 2011; Belle & Diekman, 
2018; Harvey et al., 2020), but thus far there are no such measurements performed in the 
SCN of diurnal mammals. We therefore set out to describe the intrinsic electrical states of R. 
pumilio SCN neurons with respect to the cell’s passive membrane properties (resting 
membrane potential (RMP), spontaneous firing rate (SFR), and input or membrane 
resistance (Rinput)), and how these change across the day and at night, using in vitro whole-
cell patch clamp electrophysiology.  
 
Recording (Fig.2A) from a total of 111 SCN neurons (from 8 animals) over the day-night 
cycle revealed four spontaneous excitability states in R. pumilio (Fig.2B), similar to previous 
descriptions in mice (Belle et al., 2009; Diekman et al., 2013; Paul et al., 2016; Collins et al., 
2020). Thus, some SCN neurons were resting at moderate RMPs (-43.9 ±0.41 mV, 
n=94/111) and firing action potentials (APs). Other neurons were severely depolarized or 
“hyperexcited” (-32.7 ± 2.36, n=6/111), to the extent that rather than generating APs, they 
became depolarized-silent or exhibited depolarized low-amplitude membrane oscillations 
(DLAMOs). The final category of neurons were hyperpolarized-silent, having RMPs too 
negative to sustain firing (-50.5 ± 2.29 mV, n=11/111).  
 
SCN neurons were overall more excited during the day than at night (Fig.2C-E), with 
hyperpolarized-silent neurons only appearing at night, and the daytime state being 
characterized by firing and depolarized cells, indicating a time-of-day control on these 
cellular electrical states (χ2=21.498, p<0.001: Fig.2C). Accordingly, RMP and SFR showed a 
robust circadian variation (Fig.2D-E). During the day, SCN neurons were overall resting at 
more depolarized RMP, generating APs at a higher rate. This indicates that, as in nocturnal 
species (Belle et al., 2009; Belle & Piggins, 2017), cellular RMP in the diurnal R. pumilio 
SCN is a strong determinant of electrical states and SFR. To directly test this, we subjected 
depolarized-silent SCN neurons to progressive steps of steady-state suppressive (negative) 
currents (from 0 to ~ -16pA; driving RMP from -32mV to -60mV), to see if we could elicit the 
range of spontaneous electrical behaviours seen in SCN neurons. Indeed, R. pumilio SCN 
neurons could be easily driven to transit from the depolarized- through to hyperpolarized-
silent states, switching to DLAMOs and firing activity at appropriate RMPs in the process 
(Fig. 2G).  
 
Measurement of Rinput values showed a range from 0.84 to 4.23 GΩ, skewed towards high 
values, as reported in other species (Pennartz et al., 1998; Jackson et al., 2004; Kuhlman & 
McMahon, 2004; Belle et al., 2009). However, we found neither a significant day-night 
variation in this measure (Mann-Whitney U=1966, p>0.05, Fig.2F) nor a correlation with 
RMP (R² = 0.0305, p>0.05), which stands in contrast to measurements in the SCN of 
nocturnal animals (de Jeu et al., 1998; Kuhlman & McMahon, 2004; Belle et al., 2009). This 
represents the first substantial difference between R. pumilio and mouse or rat SCN. 
 
Diversity in the evoked electrical responses of Rhabdomys pumilio SCN neurons.  
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In addition to the daily variation in intrinsic electrical activity, SCN clock function also critically 
relies on the integrated activity of excitatory and inhibitory synaptic signals (Albers et al., 
2017). These inputs originate both from within the SCN (e.g. excitation or inhibition via 
GABA-GABAA receptor signalling) and from other brain circuits (e.g. excitation or inhibition 
via glutamate, or GABA signalling). Mimicking these fast signals by depolarizing and 
hyperpolarizing current pulses elicits diverse electrical responses in the SCN of nocturnal 
animals and is useful for characterizing SCN neurons (Pennartz et al., 1998; Belle et al., 
2009; Harvey et al., 2020). Therefore, we next investigated the spiking responses of R. 
pumilio SCN neurons to inputs by challenging the cells with brief current pulses (see 
Methods). 
 
When subjected to depolarizing pulses, R. pumilio SCN neurons exhibited electrical 
responses similar to those of nocturnal species: a small proportion of cells (21/102) 
responded with a sustained and regular train of action potentials, with no, or marginal, spike-
frequency adaptation (non-adapting cells, Fig.3A). The remaining neurons (81/102) showed 
some degree of frequency adaptation (Fig. 3B&C). These cells either progressively slowed 
firing rate and exhibited increased spike shape broadening and amplitude reduction during 
the pulse (adapting-firing, Fig. 3B), or fired only a few APs during the initial phase of the 
depolarization before entering a silent state (adapting-to-silent, Fig. 3C). We found non-
adapting and adapting cells resting at similar RMPs, indicating that cellular RMP was not the 
determinant of response type (e.g. Fig. 3A vs C). The proportion of cells displaying each of 
these responses did not vary across the day-night cycle (χ2=0.324, p>0.05, Fig. 3D). This 
suggests that, as in the mouse SCN (Belle et al., 2009; Belle & Piggins, 2017), these 
different types of spiking behaviour likely reflect “hardwire” differences between SCN 
neurons, rather than time-of-day dependent variations in physiological state.  
 
We next mimicked the effect of inhibitory signals by injecting hyperpolarizing current pulses 
(Fig.3E&F). In all cases, spike firing ceased during these hyperpolarizing currents. Upon 
pulse termination, 67% (69/103) of R. pumilio SCN neurons immediately resumed normal 
firing or showed rebound depolarization spiking before resuming normal pre-pulse level of 
firing (Fig. 3E), as previously reported for mouse and rat SCN (Thomson & West, 1990; 
Pennartz et al., 1998; Kuhlman & McMahon, 2004; Belle et al., 2009). The remaining 33% 
(34/103) of units displayed a low-threshold spike (LTS) followed by a rebound 
hyperpolarization which produced a prominent delay, ranging from 160 to 1430 msec, before 
firing resumed (Fig. 3Fi-ii, 6H). A high proportion of cells in this second group (73.5%; 25/34) 
also showed an inward rectification or depolarization “sag” (Fig. 3F) during the pulse, an 
electrical response that is associated with H-current activation (IH, (Pennartz et al., 1998; 
Atkinson et al., 2011)). The hyperpolarization-evoked delay to fire and LTS response (Fig. 
3Fi-ii) have not previously been reported for SCN neurons, and thus represents another 
significant point of divergence in SCN neurophysiology between R. pumilio and, previously 
studied, nocturnal species. 
 
We termed R. pumilio neurons with rebound firing Type-A cells (Fig. 3E), and those with 
delays Type-B neurons (Fig. 3Fi-ii), to be consistent with nomenclatures previously used to 
identify neurons with those distinct electrical characteristics elsewhere in the brain (Burdakov 
& Ashcroft, 2002; Burdakov et al., 2004). The relative abundance of Type-A and -B cells did 
not change across the day-night cycle (χ2=, p>0.05, Fig.3G), indicating that these response 
properties are determined by cell-type rather than time-of-day. 
 
Ionic mechanisms underlying evoked electrical responses. 
A comprehensive understanding of SCN neurophysiology would encompass an appreciation 
of the ionic mechanisms and channel parameters responsible for the electrophysiological 
properties revealed in our whole-cell recordings (Belle & Diekman, 2018; Harvey et al., 
2020). Capturing this ionic information from current-clamp data has only recently become 
feasible due to advances in data assimilation (DA) techniques (Abarbanel, 2013). Here, we 
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developed a state-of-the-art DA algorithm (see Methods section for a detailed description) 
and applied it to build detailed computational models of R. pumilio SCN neurons (Fig.S1 & 
S2). This modelling approach reproduced the voltage trajectory and nuances of action 
potentials and subthreshold electrical activity generated during spontaneous and evoked 
firing of SCN neurons in remarkable detail (Fig. 4 and S2), providing confidence that the 
ionic currents and parameters estimated by our DA algorithm, and their dynamical 
relationship in the models, are indeed a close match to their biological values and activity.  
 
Through simulations of the model, we first assessed how ionic conductances interact with 
each other to produce AP firing and other electrical behaviours (information that could never 
be obtained experimentally since current-clamp and voltage-clamp cannot be simultaneously 
performed). We applied this approach to compare the conductances underlying spontaneous 
AP generation in the R. pumilio SCN model (Fig.4A) to our previously published model of 
mouse SCN neurons (Belle et al., 2009) containing the same sets of ionic currents (voltage-
dependent transient sodium INa, voltage-dependent transient calcium ICa, voltage-dependent 
potassium IK, and voltage-independent leak, IL). We found that the overall profile of how 
these currents contribute to AP generation is similar across the two species (Fig.S3). In 
addition, the types of bifurcations at the transitions between rest states and spiking are the 
same in both models (subcritical Hopf from hyperpolarized silent to spiking, and supercritical 
Hopf from depolarized-silent to spiking), suggesting the qualitative dynamics that lead to 
repetitive AP firing are similar across the two species (Fig. S4A). Furthermore, the R. pumilio 
model can produce all the electrical behaviours observed across the day-night cycle 
(depolarized-silent, DLAMOs, fast-firing, slow-firing, and hyperpolarized-silent, Fig. S4B-F) 
through an antiphase circadian rhythm in sodium and potassium leak currents, consistent 
with the “bicycle model” proposed for the circadian regulation of electrical activity in mice and 
flies (Flourakis et al., 2015). 
 
We next used the model to gain insight into the mechanisms responsible for the adapting 
versus non-adapting firing behaviours observed in response to depolarizing pulses. Our DA 
algorithm yielded models that faithfully reproduced the voltage traces and spike shapes from 
non-adapting, adapting-firing, and adapting-to-silent cells (Fig. 5A-B). By inspecting the ionic 
currents flowing during the simulated voltage traces, we assessed the role of voltage-gated 
sodium INa, calcium ICa, and potassium IK currents in producing these responses (Fig. 5C).  
 
Our models revealed that frequency adaptation in SCN neurons in response to excitation 
resulted from the progressive inactivation of sodium channels. Indeed, the adapting-firing 
model indicated a much smaller amount of INa available for the APs during the depolarizing 
pulse (peak INa =-80pA, Fig. 5Cii), and a greater reduction in sodium conductance GNa (26 
nS before vs 1.5 nS during the pulse, Fig. 5Dii) compared with the non-adapting model 
(peak INa = -580 pA; GNa= 27 nS before vs 13 nS during the pulse, Fig. 5Ci & Di). 
Remarkably however, increased sodium channel inactivation (hNa close to 0) could not be 
ascribed to intrinsic differences in the sodium channel properties themselves between the 
non-adapting and adapting-firing models as the kinetic parameters of the sodium activation 
and inactivation gating variables were similar (Fig.5F-G). Rather, the difference was due to 
differing properties of the potassium channels. A combination of a flattened steady-state 
potassium activation (n) curve (Fig. 5H) and the lower gK value (Fig. 5I), led to a smaller IK 
and reduced GK during AP firing in the adapting-firing compared to the non-adapting model 
(250 pA, 3 nS vs 900 pA, 11 ns, respectively) (Fig.5C-D i-ii). Since IK is an outward current, 
this means that the adapting-firing model does not repolarize as strongly after the peak of an 
AP, and therefore, the membrane does not hyperpolarize enough to de-inactivate the 
sodium channels. Thus, in the adapting-firing model, the inability of a weak IK to sufficiently 
repolarize the membrane is what ultimately leads to the reduced INa and low-amplitude APs. 
The IK is even smaller in the adapting-to-silent model (Fig. 5Ciii), failing to repolarize the 
membrane, and leads to sustained inactivation of the sodium channel (Fig. 5Eiii), negligible 
sodium conductance (Fig. 5Diii) and ultimately the inability to repeatedly fire APs during the 
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pulse (Fig. 5Biii). In summary, our models support progressive sodium channel inactivation 
as the mechanism of frequency adaptation (consistent with experimental observation in 
neurons elsewhere in the brain (Fleidervish et al., 1996; Jung et al., 1997; Kimm et al., 2015) 
and our previously published model of mouse SCN neurons (Belle et al., 2009)), while 
indicating that this is primarily a consequence of a weak IK. 
 
We next interrogated our models for the key ionic origins of Type-A vs Type-B responses to 
inhibition (Fig. 3E&F). In both cell types, hyperpolarizing pulses drove the membrane 
potential in the real and model cells below the firing threshold, which suppressed firing 
activity during the pulse (Fig. 6A-B, i-ii). Model analysis showed that in the Type-A cell, the 
INa and ICa currents were larger during the first AP immediately following the pulse than 
during the APs before the pulse (Fig. 6D), leading to a high-amplitude rebound spike. The 
rebound spiking was due to sodium and calcium ion channels becoming completely de-
inactivated (hNa and hCa both approach 1) at the hyperpolarized membrane potential reached 
during the pulse (Fig. 6F). The time scale of calcium ion channel inactivation causes ICa to 
remain elevated for a few hundred milliseconds after the pulse, resulting in a transient after-
depolarization and a short burst of firing before returning to the baseline pre-pulsed spike 
rate (Fig. 6A).  
 
Similar INa and ICa dynamics were present in the Type-B neuron model. However, the 
rebound hyperpolarization and prominent delay-to-fire after the pulse observed in Type-B 
neurons (Fig. 3F and 6Bi-ii), was not possible to reproduce using our existing basic model 
(Fig. 4A), consistent with the failure to observe such behaviour in the mouse SCN. It is well 
established in neurons elsewhere in the brain that the inhibitory actions of the transient 
subthreshold activating A-type (IA) voltage-gated potassium channels (Kv) underpin such 
delay-to-fire activity (Schoppa & Westbrook, 1999; Saito & Isa, 2000; Burdakov & Ashcroft, 
2002; Burdakov et al., 2004; Nadin & Pfaffinger, 2010). Another feature of Type-B activity 
that could not be recreated with our basic model was the prominent depolarization “sag” 
seen in the voltage trace during the pulse (Fig. 3F and 6Bi). Such behaviour could be 
produced by activation of an IH current by the hyperpolarizing pulse. We therefore added IA, 
as well as a hyperpolarization-activated (IH) current, to our mouse SCN model in an attempt 
to recreate the voltage trace and biophysical condition of the Type-B neuron (Fig. 6C).  
 
The expanded model revealed a larger IA current during the first APs after the delay (480 pA) 
than during a typical spike (220 pA, Fig. 6E). Importantly, there was also 15 pA of IA current 
flowing during the delay itself (Fig. 6E inset). It is noteworthy that this was greater than the 5 
pA of IA current that flows during the inter-spike interval. This enhanced IA current following 
the pulse was due to de-inactivation of the A-type channel (hA approaches 1) during the 
hyperpolarizing pulse (Fig. 6G), rendering the IA channel fully available upon release of the 
pulse, an observation that is consistent with experimental findings (Burdakov et al., 2004). 
The IA current then inactivates slowly and, until this outward current decays sufficiently, the 
cell cannot reach threshold to fire, thereby prolonging inhibition. This inhibition-supportive 
action of IA is consistent with observations made elsewhere in the brain (Burdakov & 
Ashcroft, 2002; Burdakov et al., 2004), and previous simulations (Rush & Rinzel, 1995; Patel 
et al., 2012).  
 
It has previously been shown that variation in cellular IA conductances and inactivation time 
constant can impact time to fire (e.g. (Saito & Isa, 2000)), and this may explain the broad 
range in the delay-to-fire, from 160 to 1430 msec, seen in our Type-B neurons (Fig. 6H). 
Indeed, this was the case in our model. By varying the maximal IA conductance (Fig. 6I&J) 
and inactivation time constant (Fig. 6M &N) parameters, we were able to capture the full 
range of latency to fire seen in Type-B cells, with higher conductances and longer 
inactivation time constants producing longer delays. Complete removal of the IA conductance 
eliminated the delay and produced a Type-A response (Fig. 6Ji-iii), reinforcing the different 
ionic composition of these two cell types.  
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In summary, our revised model was able to mirror all the electrical features observed in R. 
pumilio SCN neurons in response to extrinsic inputs, and identified transient subthreshold A-
type potassium channels as playing a key role in evoked-suppression firing in simulated 
SCN neurons. 
 
IA currents suppress firing under physiological simulation. 
We finally interrogated our model to understand how the IA conductances required to explain 
SCN responses to hyperpolarizing pulses may impact firing activity in a more realistic 
neurophysiological setting. To this end, we first subjected the model to simulated synaptic 
conductances recorded from R. pumilio SCN neurons (Fig. S5). To account for the ability of 
the SCN’s major neurotransmitter (GABA) to be either inhibitory or excitatory (Albers et al., 
2017), we applied GABAergic synaptic conductances of either polarity (gsyn-I and gsyn-E). Our 
simulations showed that overall, in the absence of GABAergic synaptic conductance (gSyn-I = 
0 nS), IA led to a suppression of spontaneous firing rate in model SCN neurons (Fig. 7 A&B, 
a1 vs a4). This observation is consistent with previous experimental work (Granados-
Fuentes et al., 2012; Hermanstyne et al., 2017). This effect was retained following inclusion 
of synaptic input of either polarity (Fig.7A-B, compare a2 vs a5, and a3 vs a6), with the 
suppressive effect of gsyn-I especially augmented by high IA (Fig.7B).  
 
Having observed such effects of IA on intrinsic activity and cellular response to inputs, we 
next investigated its effects on the spontaneous activity exhibited by SCN neurons across 
the circadian day. Here, we simulated the different resting states of R. pumilio SCN neurons 
and day-night changes in spontaneous firing rate (as in the neurons, Fig. 2B&E, 
respectively) by subjecting the model to a range of leak currents. Specifically, we varied the 
scaling factor for the ratio of potassium leak (gLK) to sodium leak (gLNa) from 0.85 to 1.15 
(Fig. 7C). This was motivated by previous work showing that sodium leak current is higher 
during the day than at night in mouse SCN neurons (Flourakis et al., 2015). Furthermore, it 
has been suggested that potassium leak currents are lower during the day and higher at 
night. According to this “bicycle” model, a gLK/gLNa scaling factor less than 1 corresponds to a 
daytime “up-state”, and a scaling factor greater than 1 to a night-time “down-state”. 
Simulating this variation in leak currents indeed transited the spontaneous RMP and firing 
rate of the model cells from the daytime depolarized state to night-time suppressed state (as 
in the neurons, Fig. 2B&G; Fig. S4B-F). We then tested the influence of IA on firing rate at 
each of these electrical states. As reported above, our results revealed that, overall, IA 
conductances suppressed spontaneous firing activity (Fig. 7C, c1-c3), but the extent of this 
suppression was magnified in slow firing and more hyperpolarized cells (Fig. 7C, c3), such 
as those frequently recorded at night.  
 
Altogether, these observations are consistent with experimental findings in the SCN, and 
elsewhere in the brain, that IA conductances assist suppressive signals. We therefore 
conclude that in the R. pumilio SCN, IA conductances may act as a “break” to modulate (tone 
down) excitation during the day in depolarized excited cells, and promote inhibition at night 
in more hyperpolarized slow-firing neurons. 
 
 
DISCUSSION 
 
We have applied whole-cell recordings, advanced data assimilation and modelling 
approaches to provide the first comprehensive description of spontaneous, and evoked, 
electrical activity of individual SCN neurons in a diurnal species. Our approach reveals 
strong similarities with the SCN of closely related nocturnal species, but also notable 
differences. 
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Similarities with the nocturnal SCN 
Most importantly, the fundamental daily rhythm in electrical excitability (‘upstate’ during the 
day and a ‘downstate’ at night (Allen et al., 2017; Belle & Diekman, 2018; Harvey et al., 
2020)) reported for nocturnal species is retained in R. pumilio. This reinforces the current 
view that mechanisms of rhythm generation and regulation are broadly retained across 
mammalian species with different circadian niches. Moreover, the response of R. pumilio 
SCN neurons to depolarizing inputs and the underlying ionic mechanisms were similar to 
that of nocturnal rodents (Belle et al., 2009). In further support of this view, our modelling 
revealed similar action potential generation mechanisms in the R. pumilio SCN to those in 
the mouse and rat SCN (Jackson et al., 2004; Belle et al., 2009). 
 
Novel properties of the Rhabdomys pumilio SCN 
The most obvious point of divergence between the R. pumilio SCN and that of closely 
related nocturnal species was its response to hyperpolarizing pulses. Thus, we found that a 
substantial fraction of R. pumilio neurons showed a prominent delay-to-fire (for several 
hundreds of milliseconds in some cells) following inhibitory pulses. This sort of electrical 
reaction to inhibition has been observed in neurons elsewhere in the brain (Schoppa & 
Westbrook, 1999; Saito & Isa, 2000; Burdakov & Ashcroft, 2002; Burdakov et al., 2004; 
Nadin & Pfaffinger, 2010), but to the best of our knowledge has never before been reported 
in SCN neurons (Thomson & West, 1990; Pennartz et al., 1998; Kuhlman & McMahon, 
2004; Belle et al., 2009; Gamble et al., 2011; Belle & Piggins, 2017). The appearance of 
such ‘Type-B’ neurons in the SCN is thus a novel property of R. pumilio. 
 
What causes delay-to-fire activity in R. pumilio neurons (and why are they absent from the 
nocturnal SCN)? Our computational models identified the activity of the transient 
subthreshold A-type potassium channels (IA) as the likely determinant of this suppressive 
bioelectrical effect, with the IA conductance density (which presumably represents the 
number of functional IA channels), defining the delay-to-fire latency. The implication, that 
cells with higher IA conductances show longer delay-to-fire latencies, finds support from 
experimental findings elsewhere in the brain (Schoppa & Westbrook, 1999; Saito & Isa, 
2000; Burdakov & Ashcroft, 2002; Burdakov et al., 2004; Nadin & Pfaffinger, 2010). 
 
The pore-forming (α) subunits of IA channels (Kv1.4, 4.1, 4.2 and 4.3) are present in 
nocturnal rodent (rat, mouse and hamster) SCN neurons, and have been implicated in 
regulating electrical activity and supporting core clock function (Huang et al., 1993; Bouskila 
& Dudek, 1995; Alvado & Allen, 2008; Itri et al., 2010; Granados-Fuentes et al., 2012; 
Granados-Fuentes et al., 2015; Hermanstyne et al., 2017). Their failure to produce the 
delay-to-fire phenotype in those nocturnal species therefore likely reflects some quantitative 
variation in their function. A likely possibility, consistent both with known features of IA 
physiology and our modelling of the R. pumilio SCN, is variation in inactivation time constant 
(timescale over which a channel becomes inactivated following de-inactivation). Elsewhere 
in the brain it has been shown experimentally that cells expressing IA channels with faster 
inactivation time constants (close to 12 ms) show rebound firing, while slower inactivation 
time constants (~140 ms) produce delay-to-fire activity (Saito & Isa, 2000; Burdakov et al., 
2004). Interestingly, the IA inactivation time constant measured in mouse and hamster SCN 
neurons showed relatively fast gating variables (below 22 ms: (Alvado & Allen, 2008; Itri et 
al., 2010)), consistent, therefore, with the presence of rebound but not delay-to-fire 
characteristics in SCN neurons of these species. In agreement, to fully model the range of 
delay-to-fire behaviours observed in R. pumilio SCN neurons, our original mouse model had 
to be supplemented with IA channels with a slow inactivation time constant (near 140 ms) 
(Fig. 6C,J&N). Variation in delay-to-fire appeared due to alteration in IA conductances (Fig. 
6I&J), however, the range of delay latencies observed in our recordings could also be 
produced by varying the inactivation time constant while holding the IA conductance constant 
(Fig. 6M&N). The inactivation time constants returned by this modelling fall within 
physiological ranges, and values required to produce delay-to-fire responses are similar to 
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experimentally determined values in other parts of the brain (Saito & Isa, 2000; Burdakov et 
al., 2004).  
 
The functional properties of the IA channel family (Kv4), specifically inactivation time constant 
and current density, can be influenced by two classes of auxiliary proteins known as Kv 
channel-interacting proteins (KChIP1–4) and dipeptidyl peptidase-like proteins (DPLPs; 
DPP6 and DPP10) (Jerng & Pfaffinger, 2014). When associated with the various 
complements of these proteins, the IA channel inactivation time constant can vary from a few 
ms to several hundred ms (depending on their expression pattern and the nature of 
interaction with the channels), reversibly transforming rebound firing to delay firing cells 
(Shibata et al., 2000; Holmqvist et al., 2002; Jerng et al., 2004; Jerng et al., 2005; Jerng et 
al., 2007; Amarillo et al., 2008; Maffie et al., 2009; Nadin & Pfaffinger, 2010). The transcripts 
for these auxiliary proteins are expressed brain-wide across different mammals, including in 
the SCN of nocturnal rodents (Wen et al., 2020) and the diurnal baboon (Mure et al., 2018), 
and have been implicated in circadian control mechanisms in other excitable cell types 
(Jeyaraj et al., 2012).   
 
A plausible explanation for the range of delay-to-fire activity in the R. pumilio SCN, therefore, 
is variation in activity of KChIP and DPLP proteins producing diversity in inactivation time 
constants. Interestingly, such a mechanism could also account for the other notably unusual 
feature of the R. pumilio SCN - the absence of a clear relationship between RMP and Rinput 
(Figure 2F). These IA auxiliary proteins are known to regulate the input resistance (Rinput) of 
neurons without changing resting membrane potential (RMP) and capacitance (Nadin & 
Pfaffinger, 2010). Thus, variation in KChIP and DPLP activity across the population of R. 
pumilio SCN neurons could both produce diversity in delay-to-fire activity and disrupt the link 
between RMP and Rinput across neurons observed in nocturnal species (Kuhlman & 
McMahon, 2004; Belle et al., 2009). 
 
Putative functional significance 
We applied modelling to determine how IA channels may regulate excitability in R. pumilio 
SCN neurons in the face of spontaneous (circadian) variations in intrinsic neuronal 
properties and synaptic input. Experimental results in nocturnal SCN (Granados-Fuentes et 
al., 2012; Hermanstyne et al., 2017) and elsewhere in the brain (Connor & Stevens, 1971; 
Rudy, 1988; Liss et al., 2001; Baranauskas, 2007; Khaliq & Bean, 2008) reveal that IA 
channels can suppress spontaneous firing rate. Our modelling returned a similar impact of IA 
in R. pumilio, while revealing aspects of this effect that could be especially relevant for a 
diurnal species. Thus, in general, IA reduced the effect of intrinsic or synaptically-driven 
increases in excitability on firing, while enhancing the impact of inhibitory currents (Fig. 7). 
The weight of this effect though fell differently across the circadian cycle.  
 
In our model, the weight of the imposed suppression of firing by IA conductances was 
stronger at night (in hyperpolarized low-firing neurons) than in the day (in more depolarized 
fast-firing neurons) (Fig. 7). In this way, IA would reinforce the SCN’s ‘down-state’ at night. In 
nocturnal species, the intrinsic reduction in SCN activity at night is augmented by the 
appearance of inhibitory inputs associated with activity and arousal at this circadian phase 
(van Oosterhout et al., 2012). Such inhibitory inputs are presumably reduced in diurnal 
species such as R. pumilio, in which activity occurs predominantly during the day. The 
biophysical properties of IA channels (conductance active at the subthreshold range of the 
RMP and progressively becoming available with hyperpolarization), together with its 
sensitivity to neurotransmitters (Aghajanian, 1985; Yang et al., 2001; Burdakov & Ashcroft, 
2002), could provide an opportunity for the R. pumilio SCN to compensate for the reduction 
in inhibitory inputs at night. Accordingly, our modelling evidence favours the interpretation 
that IA acts to amplify suppressive signals at night to maintain the low electrical activity in the 
SCN at this time of day.  
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The IA conductance may also be an important response to enhanced excitatory inputs during 
the day in diurnal species. Day-active animals are exposed to daytime light (the most 
important excitatory input to the SCN) to an extent that nocturnal species are not. The ability 
of IA to reduce the impact of such excitatory inputs, and perhaps augment the effect of 
inhibitory inputs from the thalamus, lateral hypothalamus or retina (Belle et al., 2014; Sonoda 
et al., 2020) or intrinsic to the SCN (Hannibal et al., 2010), would apply an appropriate 
‘brake’ on daytime activity of the SCN.    
 
In summary, our whole-cell recordings and computational modelling highlight the potential 
importance of IA in tuning excitability in the R. pumilio SCN. This may be an important step in 
accommodating SCN activity to diurnal living while maintaining the day/night contrast in 
electrical activity necessary for health and wellbeing.  
 
Applying the data assimilation method to physiology 
Our results demonstrate that data assimilation (DA) is a powerful tool for developing 
conductance-based models. Our state-of-the-art DA algorithm was able to reliably perform 
state and parameter estimation for R. pumilio SCN neuron models from current-clamp 
recordings without the use of voltage-clamp and pharmacological agents to isolate specific 
currents, and without the injection of custom-designed stimulus waveforms as used in other 
DA approaches (Meliza et al., 2014). Rather, we made judicious use of the voltage traces 
resulting from standard depolarizing and hyperpolarizing current steps. This is an important 
step forward for the practicality of applying DA methodology in the neuroscience context, as 
it enables model-building from the plethora of past, present, and future current-clamp 
recordings obtained by electrophysiology labs using classical current-step protocols. 
 
 
METHODS 
Animals 
All animal use was in accordance with the UK Animals, Scientific Procedures Act of 1986, 
and was approved by the University of Manchester Ethics committee. Adult R. pumilio (male 
and female, age 3-9 months) were housed under a 12:12h light dark cycle (14.80 Log 
Effective photon flux/cm2/s for melanopsin or Melanopic EDI (equivalent daylight 
illuminance) of 1941.7 lx) and 22oC ambient temperature in light tight cabinets. Food and 
water were available ad libitum. Cages were equipped with running wheels for environmental 
enrichment. Zeitgeber Time (ZT) 0 corresponds to the time of lights on, and ZT12 to lights 
off.  
 
Brain slice preparation for electrophysiological recordings 
Following sedation with isoflurane (Abbott Laboratories), animals were culled by cervical 
dislocation during the light phase (beginning of the day or late day). Brains were immediately 
removed and mounted onto a metal stage. Brain slices were prepared as described 
previously (Hanna et al., 2017). 250µm coronal slices containing mid-SCN levels across the 
rostro-caudal axis were cut using a Campden 7000smz-2 vibrating microtome (Campden 
Instruments, Loughborough, UK). Slices were cut in an ice-cold (4°C) sucrose-based 
incubation solution containing the following (in mM): 3 KCl, 1.25 NaH2PO4, 0.1 CaCl2, 5 
MgSO4, 26 NaHCO3, 10 D-glucose, 189 sucrose, oxygenated with 95% O2, 5%CO2. After 
slicing, tissue was left to recover at room temperature in a holding chamber with 
continuously gassed incubation solution for at least 20 min before transferring into recording 
aCSF. Recording aCSF has the following composition (mM): 124 NaCl, 3 KCl, 24 NaHCO3, 
1.25 NaH2PO4, 1 MgSO4, 10 D-Glucose and 2 CaCl2, and 0 sucrose; measured osmolarity 
of 300-310 mOsmol/kg. Slices were allowed to rest for at least 90 min before starting 
electrophysiological recordings.   
 
Whole-cell patch clamp recordings 
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SCN brain slice electrophysiology was performed as previously described (Belle et al., 
2014). SCN coronal brain slices were placed in the bath chamber of an upright Leica epi-
fluorescence microscope (DMLFS; Leica Microsystems Ltd) equipped with infra-red video-
enhanced differential interference contrast (IR/DIC) optics. Brain slices were kept in place 
with an anchor grid, and continuously perfused with aCSF by gravity (~2.5ml/min). 
Recordings were performed from neurons located across the whole SCN during the day and 
at night (Fig. 2A). SCN neurons were identified and targeted using a 40x water immersion 
UV objective (HCX APO; Leica) and a cooled Teledyne Photometrics camera (Retiga 
Electro), specifically designed for whole-cell electrophysiology. Photographs of the patch 
pipette sealed to SCN neurons were taken at the end of each recording for accurate 
confirmation of anatomical location of the recorded cell within the SCN.  
 
Patch pipettes (resistance 7–10MΩ) were fashioned from thick-walled borosilicate glass 
capillaries (Harvard Apparatus) pulled using a two-stage micropipette puller (PB-10; 
Narishige). Recording pipettes were filled with an intracellular solution containing the 
following (in mM): 120 K-gluconate, 20 KCl, 2 MgCl2, 2 K2-ATP, 0.5 Na-GTP, 10 HEPES, 
and 0.5 EGTA, pH adjusted to 7.3 with KOH, measured osmolarity 295–300 mOsmol/kg). 
 
An Axopatch Multiclamp 700A amplifier (Molecular Devices) was used for voltage-clamp and 
current-clamp recordings. Pipette tip potential was zeroed before establishing membrane-
pipette giga-ohm seal, and cell membrane was ruptured under voltage-clamp mode at -70 
mV using minimal negative pressure. Signals were sampled at 25 kHz and appropriately 
acquired in gap-free or episodic stimulation mode using pClamp 10.7 (Molecular Devices). 
Series resistance (typically 10–30 MΩ) was corrected using bridge-balance in current-clamp 
experiments and was not compensated during voltage-clamp recordings. Access resistance 
for the cells used for analysis was <30 MΩ. Post-synaptic currents (PSCs) were measured 
under voltage-clamp mode while holding the cells at -70mV. Measurement of spontaneous 
activity in current-clamp mode was performed with no holding current (I=0). All data 
acquisition and protocols were generated through a Digidata 1322A interface (Molecular 
Devices). Recordings were performed at room temperature (~ 23oC). A portion of the data 
appearing in this study also contributed to the investigation of the impact of daytime light 
intensity on the neurophysiological activity and circadian amplitude in the R. pumilio SCN 
(Bano-Otalora et al., 2020)  
 
Membrane properties of SCN neurons 
Resting membrane potential (RMP), spontaneous firing rate (SFR) and input resistance 
(Rinput) were determined within 5 min of membrane rupture. Average SFR in firing cells was 
calculated as the number of action potentials per second within a 30s window of stable firing 
using a custom‐written Spike2 script, and average RMP was measured as the mean voltage 
over a 30s window. Rinput was estimated using Ohm’s law (R=V/I) where V represents the 
change in voltage induced by a hyperpolarizing current pulse (−30pA for 500 ms) as 
previously described (Belle et al., 2009) . The neurone's response to excitatory and inhibitory 
stimuli was identified by a series of depolarizing and hyperpolarizing current pulses (from -30 
to +30pA in 5pA steps, duration 1s).  
 
Immunohistochemistry 
R. pumilio were culled during the light phase and brains were fixed in 4% PFA, followed by 5 
days in 30% sucrose. 35µm brain sections were cut using a freezing sledge microtome 
(Bright Instruments, Huntingdon, UK). Immunofluorescence staining was performed as 
previously described (Timothy et al., 2018). Briefly, slices were washed in 0.1M PBS and 
0.1% TritonX-100 in PBS before incubation with blocking solution (5% donkey serum 
(Jackson ImmunoResearch, Pennsylvania, US) in 0.05% Triton-X100 in 0.1M PBS). After 60 
min, sections were incubated for 48h at 4oC with primary antibodies (AVP Rabbit, Millipore 
AB1565, 1:5000; VIP Rabbit, Enzo, VA1280-0100, 1:1000; GRP Rabbit, Enzo GA1166-
0100, 1:5000). Following washes, slices were incubated overnight with secondary antibodies 
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(1:800; Donkey anti-rabbit Cy3, Jackson ImmunoResearch). Slices were finally mounted 
onto gelatine coated slides and cover-slipped using DAPI-containing Vectashield anti-fade 
media (Vector Laboratories, Peterborough, UK). Digital photos were taking using a Leica 
DFC365 FX camera connected to a Leica DM2500 microscope using Leica Microsystems 
LAS AF6000 software.  
 
Data analysis 
Current-clamp data were analysed using Spike2 software (Cambridge Electronic Design, 
CED). Non-normal distributed electrophysiological data from different time-of-day were 
compared using Mann-Whitney U Test. All statistical analyses were performed using SPSS 
version 23 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism 7.04 (GraphPad Software 
Inc., CA, USA. For all tests, statistical significance was set at p<0.05. Data are expressed as 
mean ± SEM. Sample sizes are indicated throughout the text and figure legends. 
Percentages of cells in the different electrophysiological states and responses to 
depolarizing and hyperpolarizing pulses during the day and at night were analysed using 
Chi-Squared test. 
 
Model estimation strategy 
Traditionally, conductance-based (or Hodgkin-Huxley-type) models of neurons are 
constructed using voltage-clamp (VC) measurements of individual ionic currents. While VC 
can provide accurate descriptions of certain channel properties, its execution is 
experimentally labour intensive, and by measuring each current in isolation VC protocols do 
not capture the dynamical interplay between the many active channels that drive complex 
and integrated electrical behaviours in mammalian neurons. Furthermore, it is not feasible to 
use VC to measure all the ionic currents of interest from the same cell, due to the limited 
amount of time available to perform patch-clamp recordings before the cell dialyzes 
(approximately 5 to 10 minutes) and the need to wash out the pharmacological agents used 
to isolate and measure one current before isolating and measuring the next. Thus, a model 
constructed using VC data is not a representation of the currents active in a single cell, but 
rather is a combination of currents measured across several different cells (Golowasch et al., 
2002). 
 
The advantage of current-clamp (CC) protocols is that the recorded voltage trace reflects the 
natural interaction of all the ionic conductances within that cell. The challenge for 
constructing a model based on CC data is that only one of the state variables of the model, 
the membrane voltage, has been measured directly; the gating variables that represent the 
opening and closing of ion channels are unobserved. Each ionic current has several 
parameters associated with it that are typically not known a priori and must also be 
estimated from the data. 
 
Data assimilation is widely used in fields such as geoscience and numerical weather 
prediction but has only recently begun to be applied in neuroscience. One of the main 
classes of DA algorithms are variational methods such as 4D-Var that seek solutions 
through optimization over a time window and are able to deal more effectively with a large 
number of unobserved state variables and unknown parameters. Since our R. pumilio SCN 
model has many parameters that are not known a priori we chose to employ the variational 
approach in this study. 
 
A variational data assimilation algorithm was used to perform model fitting. We used current-
clamp data from multiple protocols (Fig. S1) simultaneously to inform the estimated model of 
robust responses to changes in the applied current. We initially used a set of channels in our 
R. pumilio model similar to that previously used for a mouse SCN model (Belle et al., 2009) 
(Fig.4A), but permitted each of the parameters in the model the freedom to be distinct for 
each individual cell that we fit. We started the estimation algorithm for each cell using over 
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50 initial guesses for the parameters and state variables, and performed model selection by 
assessing a Pareto frontier consisting of the DA cost function evaluation and the mismatch in 
firing rate between the model output and the data for simulations the resulting model under 
various current-clamp conditions. These simulations were preformed using the ode15s and 
ode45 solvers in MATLAB.  
 
Data assimilation algorithm 
Here we briefly describe the variational DA algorithm employed in this paper (see (Moye, 
2020) for further details). We represent the neuronal recordings using the following state-
space description: 

𝑥𝑘+1 = 𝑓(𝑥𝑘) + ω𝑘+1,    𝑥𝑘 ∈ 𝑅𝐿 
𝑦𝑘+1 = 𝑉𝑘+1 + η𝑘+1, 𝑦𝑘 ∈ 𝑅1 

 
where 𝑥𝑘 is interpreted as the state of the neuron at some time 𝑡𝑘 and 𝑦𝑘 are our 
observations (i.e. the voltage measurements). The random variables 𝜔𝑘 and 𝜂𝑘 represent 
model error and measurement error, respectively. We assume that ω𝑘 ∼ 𝒩(0,  𝑄) and 
η𝑘 ∼ 𝒩(0,  𝑅), where 𝑄 and 𝑅 are the model error and measurement error covariance 
matrices, and that these have no cross-covariance. 
  
Strong 4d-var forces our observations to be consistent with the model, 𝑓. This can be 
considered the result of taking 𝑄 → 0, which yields the nonlinearly constrained problem: 

𝐶(𝑥) =
1

2
∑ 𝑅−1(𝑦𝑘 − 𝑉𝑘)2

𝑁

𝑘=0

 

 such that 
𝑥𝑘+1 = 𝑓(𝑥𝑘),  𝑘 = 0 … 𝑁 

where 𝑅−1 can now be scaled out completely. 
 
In the cost function, the estimated voltage is expected to be consistent with the dynamics for 
large model weighting 𝑄−1, but the dynamics cannot possibly reproduce the irregularity in 
the data. 
 
Dynamical State and Parameter Estimation (DSPE) is a technique described by Abarbanel 
et al. (2009) (Abarbanel, 2009), with the premise being to stabilise the synchronization 
manifold of data assimilation problems by adding a control or “nudging” term 𝑢. The cost 
function then becomes: 

𝐶(𝑥) =
1

2
∑ 𝑅−1(𝑦𝑘 − 𝑉𝑘)2

𝑁

𝑘=0

+ ∑ 𝑢𝑘
2

𝑁

𝑘=0

 

 
This synchronization procedure has also been considered for specific function forms of 𝑢 in 
the neuroscience context in (Brookings et al., 2014) wherein they set up an optimal search 
strategy applied to real data. The nudging strategy in general has been used in geosciences 
primarily for state estimation (Park, 2013). As shown in Toth et al. (2011) (Toth et al., 2011) 
and Abarbanel et al. (2009) (Abarbanel, 2009), the control 𝑢 acts to reduce conditional 
Lyapunov exponents.  
 
The goal of DSPE is to define a high-dimensional cost functional which weakly constrains 
the estimated states to the system observations, and strongly constrains the estimates to the 
controlled model dynamics while penalizing the control. Without the control, the problem is 
explicitly formulated as a strong constraint 4D-Var. However, the basin of attraction for 
global minima along the optimization manifold is shallow. Also, while the minimization term 
itself is convex, the nonlinearities present in the model constraints generate a large degree 
of non-convexity in the solution manifold. The intended effect of the nudging term is to 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.23.424225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424225
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

smoothen the surface. Given that the system is so high dimensional and tightly coupled, 
formally visualizing this surface is not achievable for our parameter estimation problems.  
 
In the DSPE framework, parameters and states at each point in time are taken on equal 
footing. Namely, the solution space of the cost function is  (𝐿 + 1)(𝑁 + 1) +  𝐷 where 𝐷 is 
the number of fixed parameters to infer and  𝐿 is the number of dynamical variables. 
Additionally, we are solving for the control 𝑢(𝑡) at each point in time. The control is penalised 
quadratically in an effort to reduce the impact of it at the end of the optimization procedure. 
While having the control present enforces the data in the model equations, by minimizing it, 
one is attempting to recover back the minima subject to the uncontrolled model of the 
system. So, as 𝑢 → 0 over the course of the optimization, the physical system strong 
constraint is recovered. We note that in the results presented here, the control term was not 
fully eliminated by the end of the assimilation window. This may be due to intrinsic voltage-
gated conductances present in the cell that are not included in our model, or other factors 
such as synaptic input or channel noise. 
 
We must choose a particular transcription method to prescribe our equality constraints. We 
define our state vector as 𝑥 = (𝑉, 𝑥̅) and our uncontrolled dynamics as: 

𝑑𝑥

𝑑𝑡
= 𝑓𝑥(𝑥, θ) 

where we can separate out the terms with observations. We assume we only have 
observations of the voltage of one cell in one compartment (with natural generalizations to 
networks and multi-compartment descriptions): 

𝑑𝑉

𝑑𝑡
= 𝑓𝑉(𝑥̅, 𝑉; θ) 

𝑑𝑥̅

𝑑𝑡
= 𝑓𝑥̅(𝑥̅, 𝑉; θ). 

Then our controlled dynamics become 
𝑑𝑉

𝑑𝑡
= 𝑓𝑉(𝑥̅, 𝑉; θ) + u(𝑉𝑂𝑏𝑠 − 𝑉) 

𝑑𝑥̅

𝑑𝑡
= 𝑓𝑥̅(𝑥̅, 𝑉; θ) 

where it is understood that 𝑢(𝑡) appears only at observational times. 
 
We can formulate the constraints using either a multiple-shooting style approach or using 
collocation. We will assume measurements are taken uniformly at 𝑡𝑘 = 𝑡0 + 𝑘τ𝑜𝑏𝑠. High 
resolution measurements are preferred so that we can have control and knowledge of the 
system at basically every knot point. However, there are circumstances where we may not 
have data with that level of precision, or we may desire to downsample our data. For that 
reason, we will say that we have a set of times upon which our constraint equations are 
satisfied, namely 𝑡𝑚 = 𝑡0 + 𝑚τ𝑐𝑜𝑙 where we simply require that the ratio of these time 
differences is a positive integer, τ𝑜𝑏𝑠

τ𝑐𝑜𝑙
∈ 𝑁.  

 
To reiterate, the constraints are what connect each of our time points [𝑡𝑚, 𝑡𝑚+1] to one 
another. 
We use a direct collocation method due to the stability options afforded to us for our highly 
complex, nonlinear problem. With collocation, implementation of implicit methods is 
effectively as simple as explicit methods. We choose to use Hermite-Simpson collocation 
which approximates the set of discrete integrations using Simpson's rule. We introduce 
midpoints in this fashion (𝑥

𝑘+
1

2

), which are approximated using Hermite interpolation.  

𝑥𝑘+1 − 𝑥𝑘 =
1

6
ℎ𝑘 (𝑓𝑘 + 4𝑓

𝑘+
1
2

+ 𝑓𝑘+1) 
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𝑥
𝑘+

1
2

=
1

2
(𝑥𝑘 + 𝑥𝑘+1) +

ℎ𝑘

8
(𝑓𝑘 − 𝑓𝑘+1) 

where 𝑓𝑘 = 𝑓𝑥(𝑥𝑘, θ̂) and θ̂ is the present estimate of θ constant across our time window. 
 
Here, we take the midpoint and endpoint conditions on equivalent footing for our constraints, 
𝑔(𝑥) = 0, in what is known as its ``separated form". Therefore, we implement these 
equations so that  ℎ𝑘 = 2τ𝑐𝑜𝑙 based upon our previous notation, and we have 𝐿𝑁 equality 
constraints. 
 
State and parameter bounds 
Setting lower and upper bounds for the state and parameter estimates, 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈,  can 
improve the performance of the DA algorithm. For the states, we specify that the voltage is 
within a plausible physiological range based on prior knowledge of the system and the 
variance in the observations. The gating variables are restricted to their dynamic range 
between 0 and 1. As for the parameters, it is difficult to know how tight the boundaries 
should be. As a rule of thumb, if it is possible to parameterise the model in a systematic and 
symmetric way, it may be easier to construct meaningful bounds. Also, it is advisable to keep 
the parameters within a bounding box which prevents blow-up of the dynamics such as 
divisions by zero. The maximal conductances are positive valued, and the sign of the slope 
for the steady-state gating functions should dictate if they are activating (positive) or 
inactivating (negative).  
 
Background knowledge of the passive properties of the system, such as the capacitance and 
reversal potentials, can be informed from isolating step protocols by the electrophysiologist 
or voltage-clamp data if that is available. 
 
Implementation 
We have implemented 4D-Var in a framework with CasADi, (Andersson et al., 2019), in 
MATLAB. The “cas” comes from “computer algebra system”, in which the implementation of 
mathematical expressions resembles that of any other symbolic toolbox, and the “AD” for 
algorithmic (automatic) differentiation. These expressions are then easily used for generating 
derivatives by breaking the expressions into a number of atomic operations with explicit 
chain rules, with natural extensions to vector and matrix-valued functions. CasADi data types 
are all sparse matrices, and low-level scalar expressions (SX type) are stored as directed 
acyclic graphs where their numerical evaluation is conducted using virtual machines. For 
nonlinear programming problems, matrix expressions (MX type) are constructed to form the 
structure of the nonlinear program e.g. the collocation expression. The low-level expressions 
e.g. the differential equations are built using SX type to create a hierarchy of functions for 
evaluation efficiency and memory management. CasADi will generate the gradient and 
Hessian information through AD which are then passed to the solver of choice. We elect to 
solve the optimization problem with IPOPT (Interior Point OPTimize) (Wächter & Biegler, 
2006). The high-dimensional linear algebra calculations are done using the linear solver 
MUMPS (MUltifrontal Massively Parallel sparse direct Solver) which is readily distributed 
with CasADi and interfaced with IPOPT. 
 
Conductance-based model 
An issue with the original version of the mouse SCN model (Sim & Forger, 2007; Belle et al., 
2009) is that the structure is asymmetric with huge ranges of parameter values, which 
creates complications when constructing our optimization problem. We aim to fit to current-
clamp data of the R. pumilio using the same set of currents, but expressing their kinetics 
uniformly. Additionally, we separate the leak into sodium and potassium components to 
investigate the role each may play in altering the resting membrane potential of cells in day 
versus night, as was done in (Diekman et al., 2013). Lastly, we will approximate the sodium 
activation as instantaneous, as has been done previously to reduce the dimensionality of the 
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SCN model (Sim & Forger, 2007). Conversely, we will allow the inactivation of sodium to 
have a wide range of permissible time constant values, as persistent sodium is known to 
play a role in maintaining the pace of firing (Harvey et al., 2020). Thus, our sodium channel 
functionally plays the classical role of a transient sodium current in generating the upstroke 
of the action-potential, but also is possibly involved in governing certain sub-threshold 
properties. The full model is described by the following equations: 
 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑎𝑝𝑝(𝑡) − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐶𝑎 − 𝐼𝐿𝑁𝑎

− 𝐼𝐿𝐾
− 𝐼𝐻 − 𝐼𝐴 − 𝐼𝑠𝑦𝑛𝑒−𝐸 − 𝐼𝑠𝑦𝑛−𝐼 

= 𝐼app(𝑡)  − 𝑔Na𝑚𝑁𝑎
3 ℎ𝑁𝑎(𝑉 − 𝐸Na)  − 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾) − 𝑔𝐶𝑎𝑚𝐶𝑎ℎ𝐶𝑎(𝑉 − 𝐸Ca) − 𝑔𝐿𝑁𝑎

(𝑉 − 𝐸𝑁𝑎)

− 𝑔𝐿𝐾
(𝑉 − 𝐸𝐾) − 𝑔𝐻𝑚𝐻(𝑉 − 𝐸𝐻) − 𝑔𝐴𝑚𝐴

3ℎ𝐴(𝑉 − 𝐸𝐾) 
−𝑔𝑠𝑦𝑛𝑒−𝐸𝑠(𝑡)(𝑉 − 𝐸𝑠𝑦𝑛−𝐸) − 𝑔𝑠𝑦𝑛−𝐼𝑠(𝑡)(𝑉 − 𝐸𝑠𝑦𝑛−𝐼) 

 
𝑑𝑞

𝑑𝑡
=

𝑞∞(𝑉) − 𝑞

τ𝑞(𝑉)
,  𝑞 = {𝑚𝑖, ℎ𝑖 , 𝑛} 

𝑞∞(𝑉) =
1

2
+

1

2
tanh (

𝑉 − 𝑣𝑞

𝑑𝑣𝑞
) 

τ𝑞(𝑉) = τ𝑞0 + τ𝑞1 (1 − tanh2 (
𝑉 − 𝑣𝑞

𝑑𝑣𝑞
)) 

 
where C is membrane capacitance, V is membrane potential, Iapp(t) is the applied current, I 
are ionic currents, g are maximal conductances, E are reversal potentials, and q are gating 
variables with steady-state functions 𝑞∞ and time constants 𝜏𝑞. The active conductance of a 
channel, G, is the product of its maximal conductance and gating variables, e.g. 𝐺𝑁𝑎 =
𝑚𝑁𝑎

3 ℎ𝑁𝑎. The gA and 𝜏ℎ𝐴
 scaling factors used in Figures 6 and 7 are coefficients that multiply 

the maximal conductance parameter and time constant variable, respectively. The scaling 
factor for the ratio of potassium to sodium leak conductance used in Figures 7 and S4 is a 
coefficient that divides 𝑔𝐿𝑁𝑎

 and multiplies 𝑔𝐿𝐾
. We calculated the synaptic gating variable 

s(t) from voltage-clamp recordings of post-synaptic currents in R. pumilio SCN neurons with 
the cells held at -70 mV. The synaptic currents Isyne-E and Isyn-I were not used in the DA 
procedure, and were only included in the model simulations shown in Figure 7A-B. The IH 
and IA currents were only included in the DA procedure and model simulations shown in 
Figures 6B-C and 7.   
  
Downsampling 
We utilized a downsampling strategy on the current-clamp data in order to facilitate the use 
of longer stretches of data without exceeding the computational limits on the size of the 
optimization problem that our computing resources can handle. We set a threshold of -20 
mV for each action potential, and within a region of 30 ms on either side of when this 
threshold is hit, the full 25 kHz sampling is preserved. Outside of this window, the data used 
is downsampled by some factor. For the results presented here, we used a downsampling 
factor of 5 so that during the action potential the resolution is 25kHz and outside the time 
window of the action potential it is 5kHz. With this strategy, we can retain as many data 
points as possible during the action potential, which occurs on a much faster timescale than 
the membrane dynamics during the interspike interval and enables us to better fit the spike 
shape. We also used the full 25 kHz sampling for the 30 ms region immediately following the 
onset or offset of the depolarizing and hyperpolarizing pulses.  
 
Multiple observations 
A novel component of our DA approach is the use of multiple observations to inform a 
unified model for each cell’s electrophysiology. We are restricted through a computational 
and memory budget with regard to our implementation on the amount of data we can use for 
each estimation. In a sense, we have a series of variational sub-problems solved 
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simultaneously which are connected through mutually shared parameters. We use 
symmetric current-clamp protocols which start with spontaneous activity, followed by either a 
depolarizing or hyperpolarizing step for 1s, and a subsequent return to spontaneous activity. 
We use a period of a few hundred ms prior to two different hyperpolarizing steps so as to 
access leak channel information and transient inactivation profiles. We use two similar 
segments from the return from hyperpolarizing steps to inform de-inactivation and activation 
time scales from rest. We use similar data for two responses to depolarizing steps to 
characterize the firing profiles and understand the limiting behavior for high-amplitude 
depolarizing pulses, including regular firing, firing with adaptation, or silence. We bias the 
data with a large segment (1500 ms) of data during spontaneous activity to reproduce the 
hallmark spontaneous activity and spike shape in our estimated models. In the problem 
construction shown by Figure S1, 4.5 seconds of data in total are used for the assimilation, 
amounting to around 36,000 time points after incorporating our downsampling strategy. 
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Figure 1 

 

 
 
 
 
Figure 1. Anatomy and neuropeptidergic organization of the Rhabdomys pumilio SCN. 
(A) Coronal sections of the R. pumilio SCN taken across the rostro-caudal axis labelled with 
DAPI, and immunofluorescence for the main SCN neuropeptides: (B) Arginine-vasopressin 
(AVP), (C) Vasoactive intestinal peptide (VIP) and (D) Gastrin releasing peptide (GRP). 3V: 
third ventricle; OC: optic chiasm. dSCN: dorsal SCN, vSCN: ventral SCN. Labelling at the 
rostral level applies to mid and caudal aspects. Scale bar: 250 µm. 
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Figure 2 

 

 
 
Figure 2. Diurnal changes in the spontaneous electrical activity of Rhabdomys 
pumilio SCN neurons. (A) Whole-cell patch clamp recording setup showing bright-field 
image of a SCN coronal brain slice. The SCN (delineated by white dotted lines) can be 
observed above the optic chiasm (OC), on either side of the third ventricle (3V). Patch 
pipette targeting a SCN neuron is indicated by the red arrow and magnified in inset (a1). (B) 
Representative current-clamp traces for each of the spontaneous excitability states recorded 
in R. pumilio SCN neurons (from top): highly depolarized-silent; depolarized low-amplitude 
membrane oscillations (DLAMOs); moderate resting membrane potential (RMP) with cells 
firing action potentials (APs) at high or low rate; and hyperpolarized-silent neurons. (C) Pie 
charts showing the percentages of SCN neurons in the different electrical states during the 
day and at night (***p<0.001, Chi-Squared test). Mean RMP (D), spontaneous firing rate 
(SFR) (E) and input resistance (Rinput) (F) of neurons recorded during the day (orange, n=67) 
and at night (blue, n=44). Data are expressed as mean ± SEM with each dot representing an 
individual neuron. ∗∗∗p ≤ 0.001, Mann-Whitney U-test. (G) Manual hyperpolarization of 
hyperexcited SCN neurons elicits a range of electrical states. Silent cell resting at highly 
depolarized state could be driven to display DLAMOs, fire APs, and become hyperpolarized-
silent by injection of progressive steps of steady-state hyperpolarizing currents (red line). 
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Figure 3 

 

 
 
Figure 3. Diverse responses to depolarizing and hyperpolarizing current pulses in 
Rhabdomys pumilio SCN neurons. Representative current-clamp traces showing the 
different type of responses to a depolarizing pulse (1s, +30pA): (A) non-adapting; (B) 
adapting-firing; or (C) adapting-to-silent response. Phase–plot diagrams on the right of each 
panel (A, B, or C) show action potential (AP) velocity, trajectory and rate of frequency 
adaptation during the pulse for these neurons. (D) Pie charts showing the percentage of 
recorded neurons displaying each of these responses to depolarizing pulses during the day 
and at night. (E-F) Representative current-clamp traces showing the different type of 
responses to a 1s, -30pA hyperpolarizing pulse: (E) Type-A cells responded with a rebound 
spike upon termination of the pulse; (F) Type-B cells exhibited a rebound hyperpolarization 
which produced a delay-to-fire, following a LTS ((i-ii) long and short delay, respectively). (G) 
Pie charts showing the percentage of cells displaying a rebound spike or a delay-to-fire 
response during the day and at night. * indicates a spontaneous synaptic input. LTS: low 
threshold spike. IH: inward membrane rectification or depolarizing “sag”. 
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Figure 4 

 

 

 
 
Figure 4. Computational modelling of Rhabdomys pumilio SCN neurons. (A) Schematic 
of conductance-based model for R. pumilio SCN neurons containing sodium (INa), calcium 
(ICa), potassium (IK), and leak (ILNa, ILK) currents. Orange resistors (gNa, gCa, gK) indicate 
voltage-gated conductances, black resistors (gLK, gLNa) indicate passive leak conductances. 
(B) Voltage traces showing similarity in spontaneous firing of action potentials (APs) in the 
model (red) compared to a current-clamp recording from a R. pumilio SCN neuron (black). 
(C) Phase-plot of the derivative of voltage with respect to time (dV/dt) as a function of 
voltage (V) depicting the shape of APs in the model (red) and the current-clamp recording 
(black) during spontaneous firing. (D) Similarity in firing rate of the model (red) and current-
clamp recordings (black) as a function of applied current (Iapp). 
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Figure 5 

 

 

 
 
Figure 5. Model simulation of the responses to depolarizing pulses in Rhabdomys 
pumilio SCN neurons and the underlying ionic mechanisms. (A-B) Voltage traces of 
models (red) and current-clamp recordings (black) during depolarizing pulses (1s, +30 pA) 
showing non-adapting (i), adapting-firing (ii), and adapting-to-silent (iii) responses. (C) Ionic 
currents sodium (INa, blue), calcium (ICa, magenta), and potassium (IK, green) in the models 
during the non-adapting (i), adapting-firing (ii), and adapting-silent (iii) responses. (D) Ionic 
conductances for sodium (GNa, blue), calcium (GCa, magenta), and potassium (GK, green) in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.23.424225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424225
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

the models during the non-adapting (i), adapting-firing (ii), and adapting-silent (iii) responses. 
(E) Sodium activation (mNa, blue) and inactivation (hNa, orange) gating variables in the 
models during the non-adapting (i), adapting-firing (ii), and adapting-silent (iii) responses. 
Ions cannot pass through the channel if it is closed (mNa = 0) or inactivated (hNa = 0); 
maximal current flows when the channel is fully open (mNa = 1) and fully de-inactivated (hNa = 
1). Steady-state gating variables as a function of voltage in the non-adapting (black), 
adapting-firing (red), and adapting-to-silent (cyan) models for (F) sodium activation (mNa), 
(G) sodium inactivation (hNa), and (H) potassium activation (n). The flattening of the n 
curve in the adapting-firing model indicates that the channel is less activated at depolarized 
voltages than the non-adapting model (e.g. at -13 mV, the adapting-firing model is only half 
activated (n = 0.5), whereas the non-adapting model is almost fully activated (n = 0.93)). 
(I) Maximal conductance parameters gNa and gK in the non-adapting (black), adapting-firing 
(red), and adapting-to-silent (cyan) models. Notice that the maximal potassium conductance 
parameter is much smaller in the adapting-firing model (gK = 43 nS) than in the non-adapting 
model (gK = 102 nS). 
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Figure 6 

 

 

 
 
Figure 6. Model simulation of the responses to hyperpolarizing pulses in Rhabdomys 
pumilio SCN neurons and the underlying ionic mechanisms. (A-B) Voltage traces of 
models (red) and current-clamp recordings (black) during hyperpolarizing pulses (1s, -30 pA) 
showing rebound spiking of Type-A neurons (A) and delay responses of Type-B cells (B). 
(C) Schematic of conductance-based model for Type-B R. pumilio SCN neurons showing the 
addition of transient potassium (IA) and hyperpolarization-activated (IH) currents (blue). (D) 
Ionic currents for sodium (INa, blue) and calcium (ICa, magenta) in the model during the Type-
A neuronal rebound spiking response. (E) Ionic currents IH (cyan) and IA (green) in the model 
during the delay response of Type-B neurons. (F) Sodium (hNa, blue) and calcium (hCa, 
magenta) inactivation gating variables in the model during the Type-A neuronal rebound 
spiking response. (G) Transient potassium (IA) inactivation gating variable (hA, green) in the 
model during the delay response in Type-B neurons (voltage trace, V, is indicated in grey 
and is the same V-trace shown in B). (H) Histogram showing delay-to-fire latencies 
measured in Type-B cells. (I) Relationship between IA conductance (gA Scaling Factor) and 
delay-to-fire latencies in model of Type-B cells. (J) Data trace for a cell with a 0.75 s delay 
(black) overlaid with model voltage traces (red) with varied amounts of IA conductance: (i) 
model of Type-B cell with gA SF = 1 exhibiting a 0.75 s delay; (ii) Model from (i) with reduced 
IA conductance (gA SF = 0.7) exhibiting a reduced delay-to-fire latency; (iii) Model from (i) 
with no IA current (gA SF = 0), exhibiting rebound spiking, as in Type-A neurons. gA SF: gA 
Scaling Factor. (K-L) Gating variable functions for model IA current: (K) steady-state 
activation (mA, black), steady-state inactivation (hA, orange), and (L) inactivation time 
constant (𝜏ℎ𝐴

, green). (M) Relationship between the time constant of IA inactivation and 
delay-to-fire latencies in model of Type-B cells. (N) Model simulations for IA inactivation time 
constant scaling factors of 1.2 (i), 0.8 (ii) and 0.1 (iii). 𝜏ℎ𝐴

 SF:  𝜏ℎ𝐴
 Scaling Factor 
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Figure 7 

 

 
 
Figure 7. IA conductances act to amplify extrinsic and intrinsic suppressive signals in 
the Rhabdomys pumilio SCN. (A) Heatmap showing the overall effects of inhibitory (gsyn-I, 
red) and excitatory (gsyn-E, blue) physiological GABAergic synaptic conductances on firing 
frequency with increasing IA conductances in the model R. pumilio SCN neurons. (a1-a3) 
Examples of firing activity in model cell with low IA conductance (gA SF = 0.1) and absence of 
GABAergic synaptic conductance (a1, gsyn-I = gsyn-E = 0 nS), high suppressive GABAergic 
synaptic conductance (a2, gsyn-I = 18 nS), or high excitatory GABAergic synaptic 
conductance (a3, gsyn-E = 9). (a4-a6) Examples of firing activity in model R. pumilio SCN 
neurons with high IA conductance (gA SF = 0.9) and absence of GABAergic synaptic 
conductance (a4, gsyn-I = 0 nS), high suppressive GABAergic synaptic conductance (a5, gsyn-I 
= 18 nS), or high excitatory GABAergic synaptic conductance (a6, gsyn-E = 9). (B) Firing rate 
as a function of inhibitory (gsyn-I, red) and excitatory (gsyn-E, blue) GABAergic synaptic 
conductances of different strength. Open and filled dots correspond to model cell with high 
(0.9) or low (0.1) IA conductance (gA SF), respectively. (C) Overall effect of intrinsic 
excitability states (scaling factor for the ratio of potassium leak current (gLK) to sodium leak 
current (gLNa) from 0.85 to 1.15) on firing frequency with increasing IA conductances in the 
model cell (gA SF = 0 (cyan), 0.6 (pink) and 1.0 (grey)). gLK/gLNa SF less than 1 corresponds 
to a daytime “up-state”, and a SF greater than 1 to a night-time “down-state”. (c1) Effect of IA 
(gA = 0, 0.6 and 1.0) on firing rate with nominal potassium/sodium leak current ratio (gLK/gLNa 
SF = 1). (c2) Effect of IA (gA SF = 0, 0.6 and 1.0) on firing rate with reduced 
potassium/sodium leak current ratio (gLK/gLNa SF = 0.95), representing daytime up-state. (c3) 
Effect of IA (gA SF = 0, 0.6 and 1.0) on firing rate with elevated potassium/sodium leak 
current ratio (gLK/gLNa SF = 1.05), representing night-time down-state. Notice that IA amplifies 
the suppressive action of the low intrinsic excitability state (during down-state). SF: scaling 
factor. 
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Figure S1 

 

 
 
Figure S1. Example current-clamp traces used in data assimilation algorithm for 
building computational models of Rhabdomys pumilio SCN neurons. (A-F) Current-
clamp recordings (blue) with the portion of the voltage trace used by the data assimilation 
algorithm (orange) to fit the model of rebound spiking in Type-A neuron shown in Figs. 4, 6A, 
and S2. (A-C) Hyperpolarizing current pulses. (D) Spontaneous activity. (E-F) Depolarizing 
current pulses.  
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Figure S2 

 

 
 
Figure S2. Example voltage traces for a computational model of Rhabdomys pumilio 
SCN neurons fit using a data assimilation algorithm. (A-F) Current-clamp recordings 
(black) and simulated voltage traces (red) from the model of rebound spiking in Type-A 
neurons shown in Figs. 4 and 6A using the portions of the data shown in Fig. S1. (A-C) 
Hyperpolarizing current pulses. (D) Spontaneous activity. (E-F) Depolarizing current pulses. 
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Figure S3 

 

 
Figure S3. Ionic currents underlying action potential generation in computational 
models of Rhabdomys pumilio and mouse SCN neurons. (A) Voltage trace showing 
spontaneous firing in model of R. pumilio SCN neurons. (a1) Magnified view of second AP 
shown in (A). (B) Sodium (INa, blue), calcium (ICa, magenta), potassium (IK, green), and leak 
(ILK + ILNa, orange) currents during the voltage trace shown in (A). (b1) Magnified view of 
currents during second AP shown in (A). (C) Same as (B), with y-axis scaled to emphasise 
the currents flowing during the interspike interval. (D) Voltage trace showing spontaneous 
firing in model of mouse SCN neurons. (d1) Magnified view of second AP shown in (D). (E) 
Sodium (INa, blue), calcium (ICa, magenta), potassium (IK, green), and leak (ILK + ILNa, orange) 
currents during the voltage trace shown in (D). (e1) Magnified view of currents during second 
AP shown in (D). (F) Same as (E), with y-axis scaled to emphasise the currents flowing 
during the interspike interval.  
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Figure S4 

 

 
 
Figure S4. Bifurcation diagram for a computational model of Rhabdomys pumilio SCN 
neurons. (A) Voltage at steady-states and maximum/minimum voltage of oscillations for the 
model of rebound spiking in the Type-A neuron shown in Figs. 4, 6A, and S1-S3 with ratio of 
potassium leak current (gLK) to sodium leak current (gLNa) as the bifurcation parameter 
showing stable steady-states (black), unstable steady-states (red), stable periodic orbits 
(blue), and unstable periodic orbits (green). Stable periodic orbits correspond to spiking or 
DLAMOs. Transition from depolarized rest state to DLAMOs occurs through a supercritical 
Hopf bifurcation (grey dot HB1) and transition from spiking to hyperpolarized rest state 
occurs through a subcritical Hopf bifurcation (grey dot HB2). Model voltage traces showing 
each of the spontaneous excitability states: (B) highly depolarized-silent; (C) depolarized 
low-amplitude membrane oscillations (DLAMOs); moderate resting membrane potential 
(RMP) firing action potentials (APs) at high (D) or low rate (E); and hyperpolarized-silent 
neurons (F). According to the “bicycle model” proposed for the circadian regulation of 
electrical activity in mice and flies, a gLK/gLNa ratio scaling factor less than 1 corresponds to a 
daytime “up-state”, and a scaling factor greater than 1 to a night-time “down-state” (Flourakis 
et al., 2015). 
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Figure S5 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. Spontaneous synaptic events in Rhabdomys pumilio SCN neurons. 
Representative trace from a SCN neuron (voltage-clamped at -70mV) showing post-synaptic 
currents (PSCs) under baseline conditions (top). Bath application of the GABAA receptor 
blocker, Bicuculline (20 μM), abolished most synaptic events (middle trace); all PSCs were 
blocked under the presence of Bicuculline (20μM) and specific glutamatergic receptor 
antagonists, CNQX (20μM) and D-AP5 (50μM) (bottom trace). 
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Table S1. Parameter values for the computational models of Rhabdomys pumilio SCN 
neurons. 
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a b s t r a c t 

The normal alignment of circadian rhythms with the 24-h light-dark cycle is disrupted after rapid travel 

between home and destination time zones, leading to sleep problems, indigestion, and other symptoms 

collectively known as jet lag. Using mathematical and computational analysis, we study the process of 

reentrainment to the light-dark cycle of the destination time zone in a model of the human circadian 

pacemaker. We calculate the reentrainment time for travel between any two points on the globe at any 

time of the day and year. We construct one-dimensional entrainment maps to explain several properties 

of jet lag, such as why most people experience worse jet lag after traveling east than west. We show that 

this east-west asymmetry depends on the endogenous period of the traveler’s circadian clock as well as 

daylength. Thus the critical factor is not simply whether the endogenous period is greater than or less 

than 24 h as is commonly assumed. We show that the unstable fixed point of an entrainment map deter- 

mines whether a traveler reentrains through phase advances or phase delays, providing an understand- 

ing of the threshold that separates orthodromic and antidromic modes of reentrainment. Contrary to the 

conventional wisdom that jet lag only occurs after east-west travel across multiple time zones, we pre- 

dict that the change in daylength encountered during north-south travel can cause jet lag even when no 

time zones are crossed. Our techniques could be used to provide advice to travelers on how to minimize 

jet lag on trips involving multiple destinations and a combination of transmeridian and translatitudinal 

travel. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Circadian clocks have evolved to align biological functions with 

the 24-h environmental cycles conferred by the rotation of the 

earth ( Johnson et al., 2003 ). In humans, a central circadian pace- 

maker coordinates various physiological rhythms so that they peak 

at the appropriate time of the day, such as the release of the 

sleep-promoting hormone melatonin in the evening and the wake- 

promoting hormone cortisol in the morning ( James et al., 2007 ). 

The endogenous period of the human circadian oscillator in the 

absence of external time cues is not exactly 24 h ( Czeisler et al., 

1999 ). The period of the oscillator becomes 24 h under normal cir- 

cumstances when exposed to natural environmental cycles, and a 

stable phase relationship between the oscillator and its environ- 

ment is established: the oscillator is phase-locked or entrained to 

the external cycles ( Wright et al., 2013 ). For circadian oscillators, 

∗ Corresponding author. 

E-mail address: diekman@njit.edu (C.O. Diekman). 

the strongest entraining signal is the daily light-dark (LD) cycle 

( Duffy and Wright, 2005 ). If entrainment is disrupted by a sud- 

den shift in the phase of the LD cycle, for example due to rapid 

travel across time zones, then the phase of the circadian oscillator 

undergoes adjustments until phase-locking is reestablished and the 

oscillator is reentrained ( Aschoff et al., 1975 ). 

Jet lag is a collection of symptoms experienced after rapid 

transmeridian travel. These symptoms—such as insomnia, exces- 

sive daytime sleepiness, gastrointestinal disturbances, and general 

malaise—are not simply due to travel fatigue following a long 

flight, but rather are caused by misalignment of the traveler’s inter- 

nal circadian clock with the environmental cycles in the new time 

zone ( Sack, 2009 ). Each year about 30 million US residents fly to 

overseas destinations ( U.S. Citizen Travel to International Regions, 

2017 ). For international business travelers, athletes, or government 

and military personnel, jet lag can impair judgment, hinder per- 

formance, or threaten public safety ( Eastman and Burgess, 2009 ). 

Most travelers experience more severe jet lag after flying east than 

after flying west ( Waterhouse et al., 2007 ), and a recent analysis of 

https://doi.org/10.1016/j.jtbi.2017.10.002 
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over 20 years of data from Major League Baseball games found that 

jet lag impairs performance moreso after eastward than westward 

travel ( Song et al., 2017 ). The conventional explanation for this di- 

rectional asymmetry in jet lag severity is that since the human cir- 

cadian clock typically has an endogenous period of greater than 

24 h, it is easier to phase delay the clock in response to the phase 

delay of the LD cycle caused by westward travel than it is to phase 

advance the clock in response to the phase advance of the LD cy- 

cle caused by eastward ( Eastman and Burgess, 2009 ). Reentraiment 

though phase adjustment in the same direction as the shift of the 

LD cycle is referred to as orthodromic . After long trips, some trav- 

elers reentrain antidromically or through phase adjustments in the 

opposite direction of the phase shift of the LD cycle, i.e. phase de- 

lays after traveling east and phase advances after traveling west 

( Arendt et al., 1987; Klein and Wegmann, 1977; Takahashi et al., 

2001 ). 

In this paper we use a mathematical model of the hu- 

man circadian pacemaker, the Forger–Jewett–Kronauer (FJK) model 

( Forger et al., 1999 ), to explain the existence of east-west asym- 

metry in jet lag severity and the antidromic mode of reentrain- 

ment. The FJK model is a widely accepted model in the circa- 

dian literature that captures both phase and amplitude dynamics 

of daily core body temperature oscillations. It has been fit to ex- 

perimental data on how light affects human circadian rhythms and 

has been used in several studies to design schedules that min- 

imize jet lag ( Dean et al., 2009; Serkh and Forger, 2014; Zhang 

et al., 2016 ). Consistent with a recent study employing a phase- 

only model ( Lu et al., 2016 ), we find that the endogenous period of 

the circadian oscillator does influence east-west asymmetry. Differ- 

ently than ( Lu et al., 2016 ), however, we find that the period being 

greater than or less than 24 h is not the critical factor. Furthermore 

we show that daylength, and therefore the season of the year, af- 

fects whether eastward or westward travel is worse. 

The medical definition of jet lag requires travel across time 

zones, implying that strictly north-south or translatitudinal travel 

within the same time zone cannot cause jet lag. We take a broader 

view of jet lag as symptoms resulting from any travel-induced mis- 

alignment of the circadian clock and the external LD cycle, and 

argue that the change in daylength experienced when traveling 

across latitudes (for example between the northern and south- 

ern hemispheres) in the summer or winter may disrupt entrain- 

ment. The question of whether purely north-south travel can re- 

sult in significant misalignment has received very little attention 

in the literature. We find that in the FJK model, a difference in the 

daylength between departure and destination cities is enough to 

cause jet lag on the order of several days (depending on parame- 

ters) even with no change in time zone. Combining our findings on 

east-west travel with those on north-south travel, we also investi- 

gate travel that incorporates both of these directions. By consider- 

ing a hypothetical case study involving travel between four cities 

located in North America, South America, Asia, and Australia, we 

show that the north-south component of travel can significantly 

add to or reduce reentrainment times even in cases where strict 

north-south travel itself incurs no jet lag. 

The main tool we use to gain insights into the properties of 

jet lag is the entrainment map , a technique we recently intro- 

duced for calculating the LD-entrained solution of an oscillator 

subjected to external periodic forcing consisting of N hours of 

light and 24 − N h of darkness ( Diekman and Bose, 2016 ). The 

method involved deriving a one-dimensional map, �( x ), whose 

fixed points corresponded to stable or unstable entrained periodic 

solutions. We showed that the entrainment map yields more ac- 

curate predictions about the phase of the stable entrained solution 

than methods based on phase response curves. In Diekman and 

Bose (2016) , we showed how the entrainment map for the two- 

dimensional Novak-Tyson model of the Drosophila molecular clock 

( Tyson et al., 1999 ) depends on parameters of the model and how 

it can be used to determine regimes over which solutions entrain 

through phase advance or phase delay. The entrainment map was 

then applied to higher dimensional systems such as the three- 

dimensional Gonze et al. (2005) and the 180-dimensional Kim and 

Forger (2012) models of the mammalian molecular clock. 

Here we build entrainment maps for the FJK model to ex- 

plore various facets of reentrainment after travel. Travel can in- 

volve a change of time zone, such as eastward or westward travel, 

a change in photoperiod, such as northward or southward travel, or 

a combination of both, such as travel from North America to Aus- 

tralia. We show that reentrainment properties depend both quan- 

titatively and qualitatively on key parameters including the en- 

dogenous period of the oscillator, the daylength, and the inten- 

sity of light. Using our methods, we can calculate reentrainment 

times for travel between any two locations on the globe, at any 

time of the year, and for any departure or arrival time. In do- 

ing so, we are able to explain that the east-west asymmetry of 

jet lag is a generic feature of the FJK model that is highly de- 

pendent on both the endogenous period of the traveler as well as 

the daylength. Using a generalization of the concept of neutral pe- 

riod introduced by Aschoff et al. (1975) , we show that for differ- 

ent combinations of these two parameters, travel to the east can 

incur more jet lag than travel to the west or vice versa. In fact, be- 

cause of seasonal changes in the daylength, for the same traveler 

a journey in one direction may be harder in the winter, while a 

journey in the opposite direction may be harder in the summer. 

Our findings are related, in part, to those of Herzel and collabo- 

rators ( Bordyugov et al., 2015; Granada and Herzel, 2009; Schmal 

et al., 2015 ) who have characterized the phase of entrainment 

as a function of endogenous period, zeitgeber (external stimulus) 

strength, and photoperiod for several different circadian models 

using Arnold tongues and Arnold onions. The analysis of the en- 

trainment map also provides insight into the different modes of 

reentrainment. Prior work using a model of the mammalian molec- 

ular clock identified a threshold separating orthodromic and an- 

tidromic modes of reentrainment, but did not explain what math- 

ematical object might act as the threshold ( Leloup and Gold- 

beter, 2013 ). Here we show that the unstable fixed point of the 

entrainment map can be used to predict the threshold that sepa- 

rates the two modes of reentrainment. 

Contrary to what one might naively expect, we find that reen- 

trainment time is relatively independent of departure or arrival 

time, and that the longest trips do not necessarily give rise to 

the longest reentrainment times. Instead, the worst-case trip is 

determined by the ordering and magnitude of the distance be- 

tween the stable and unstable fixed points of the entrainment 

map, which themselves are dependent on the internal body clock 

and daylength. We find that for low light intensities, trips that 

place the traveler in a neighborhood of the unstable fixed point 

of the map will give rise to the longest reentrainment times. For 

higher light intensities, the longest reentrainment times still oc- 

cur in a neighborhood of the unstable fixed point, but there is also 

the potential for dramatically short reentrainment times for certain 

trips within this neighborhood. These dramatically short reentrain- 

ment times are associated with amplitude suppression and a phase 

singularity, and have been observed previously in the FJK model at 

high light intensity ( Serkh and Forger, 2014 ). 

In this study, we consider the light level to be fixed at either 

low or high intensity (lux) across the entire photoperiod. Admit- 

tedly, this is not a light protocol that a traveler is likely to ex- 

perience. However, the main purpose of our study is to provide a 

mathematical explanation for why certain features of jet lag arise, 

such as east-west asymmetry and different modes of reentrain- 

ment. This is most easily explained using single lux levels. As fur- 

ther discussed throughout the paper, we expect the mechanisms 
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that underlie our findings to continue to exist under more realistic 

light schedules. 

2. Model and methods 

2.1. The Forger, Jewett, and Kronauer (FJK) model 

The FJK model ( Forger et al., 1999 ) for the human circadian 

rhythm utilizes a Van der Pol type oscillator and is based on prior 

models of Kronauer and collaborators ( Jewett and Kronauer, 1998; 

Kronauer, 1990 ). It is a three-dimensional model given by 

dC 

dt 
= 

π

12 

(A + B ) (1) 

dA 

dt 
= 

π

12 

(
μ

(
A − 4 

3 

A 

3 
)

− C 

[(
24 

0 . 99669 τc 

)2 

+ kB 

])
(2) 

dn 

dt 
= γ ( α[ I] f (t) (1 − n ) − βn ) (3) 

B = Gα[ I] f (t)(1 − n )(1 − 0 . 4 C)(1 − 0 . 4 A ) (4) 

α[ I] = α0 

[ 
I 

I 0 

] p 
. (5) 

The variable C represents core body temperature, A is a phe- 

nomenological auxiliary variable, and n models the phototrans- 

duction pathway through which light drives the circadian sys- 

tem. The variable B captures circadian modulation of the oscil- 

lator’s sensitivity to light. All parameter values are positive. In 

particular, τ c determines the period of the oscillator in constant 

darkness, I codes for the intensity of light, and μ is a stiff- 

ness parameter that is related to the rate of amplitude growth 

or decay after the oscillator is perturbed off of its limit cycle. 

We refer to μ = 0 . 23 , k = 0 . 55 , γ = 60 , β = 0 . 0075 , G = 33 . 75 , α0 = 

0 . 05 , I 0 = 9500 , p = 0 . 5 with I = 10 0 0 lux and τc = 24 . 2 h as the 

canonical set of parameters. 

The function f ( t ) is the light stimulus. We are interested in 

three distinct situations: constant darkness (DD), in which we set 

f ( t ) ≡ 0; constant light (LL) in which f ( t ) ≡ 1; and a 24-h light/dark 

(LD) photoperiod in which the lights are on for N hours and off

for 24 − N h. During the dark portion of the LD photoperiod f (t) = 

0 , while during the light portion f (t) = 1 . In constant darkness, 

d n/d t = −βn, therefore n → 0 and the parameter β controls the 

rate of decay. In constant light, d n/d t = γ (α(I)(1 − n ) − βn ) such 

that n → α(I) / (α(I) + β) with rate α0 . Note that α0 is an order 

of magnitude larger than β which implies that n approaches its 

maximum when the lights turn on faster than it approaches its 

minimum when the lights turn off. 

The A and C -nullclines are given by 

N A : C = 

μ
(
A − 4 

3 
A 

3 
)

(
24 

0 . 99669 τc 

)2 + kB 

(6) 

N C : A = −B. (7) 

The nullcline N A is a cubic-shaped curve in the projection onto 

the A − C space. During DD conditions, B = 0 , and N C is a verti- 

cal line that intersects N A along its middle branch. This intersec- 

tion corresponds to an unstable fixed point. Surrounding it is a sta- 

ble periodic orbit, referred to as the DD limit cycle. The prefactors 

π /12 and 0.99669 that appear in (2) , and the value of μ = 0 . 23 , 

were chosen such that the period of this limit cycle is very close 

to τ c hours ( Forger et al., 1999 ). The period of the DD limit cycle 

is referred to as the endogenous period. The value of the roots of 

N A are A = 0 , ±√ 

3 / 2 independent of τ c . Increasing τ c makes the 

A -nullcline have steeper left and right branches. This results in a 

decrease in the amplitude of dA / dt , thereby slowing down oscil- 

lations. As a result, the intrinsic period of the DD oscillator is an 

increasing function of τ c . Under LL conditions, although n is con- 

stant, B depends on A and C . Using Eq. (4) , and substituting into 

Eq. (7) , yields a monotone increasing N C nullcline that continues 

to intersect N A along its middle branch. As a result, an LL limit 

cycle also exists. The period of the LL limit cycle is less than τ c 

hours. The LL period is also an increasing function of τ c , for the 

same reasons as the DD period. When the model is considered un- 

der LD conditions, depending on parameters, a periodic solution 

may exist. When the period of the solution matches that of the LD 

forcing (24 h), we call it an LD-entrained solution. 

2.2. The entrainment map �( x ) 

The entrainment map �( x ) is a return map for initial condi- 

tions lying on a Poincaré section that return to it at a later time. 

A Poincaré section is a lower-dimensional slice (hyperplane) of the 

original phase space. Both in theory and in practice, we have free- 

dom to choose the location of the section, provided that we know 

that a trajectory starting on it will return to it later in time. Be- 

cause the FJK model uses a Van der Pol type oscillator, we have 

considerable knowledge of how trajectories evolve in phase space. 

For the sake of illustration, choose the Poincaré section, P, at A = 

0 , with A 

′ < 0, which yields a rectangle in the C and n space. As- 

sume that an oscillator has an initial condition that lies on P with 

n = 0 and the C value chosen as the value at the intersection with 

the DD limit cycle. Let x denote the number of hours since the 

lights last turned on. Evolve the trajectory under the flow until it 

again returns to P . Call this time ρ( x ). The entrainment map �( x ) 

is defined as the amount of time that has passed since the most 

recent onset of the lights. In Diekman and Bose (2016) , we showed 

that �(x ) = (x + ρ(x )) mod 24, which yields a one-dimensional 

map. Because of the mod 24 operation, the map � may have a 

discontinuity. The entrainment map has certain generic properties 

( Diekman and Bose, 2016 ): it maps the interval [0,24] onto itself, it 

has at most one point of discontinuity, it is increasing at each point 

of continuity, and it is periodic in that �(0 + ) = �(24 −) . Moreover, 

it depends continuously on parameters of interest such as τ c , N , 

and I . 

A fixed point x ∗ of the entrainment map satisfies �(x ∗) = x ∗. 

It corresponds to the situation where the trajectory has left P x ∗

hours after the lights turned on, and then returns to P exactly 24 h 

later when the lights have again most recently turned on x ∗ hours 

ago. The fixed point is stable if | �′ ( x ∗)| < 1 and unstable otherwise. 

We will show that over a wide range of parameters, there are typ- 

ically two fixed points of the map, x s which is stable, and x u which 

is unstable. Whether the fixed points of the map correspond to ac- 

tual stable and unstable periodic orbits of the system of Eqs. (1) –

(3) is a delicate issue. A trajectory starting on the Poincaré section 

P at A = 0 would have unknowns C , n , and x . A three-dimensional 

return map would track the values of the unknowns and return 

new values of C , n , and x when the trajectory returns to P . The en- 

trainment map however only tracks whether x has returned to its 

original value, not whether C and n have. As described below, the 

stable fixed point x s of the map corresponds to a stable periodic 

orbit in all the cases we considered. The existence of the unstable 

fixed point of the map x u has different implications depending on 

the light intensity. At low light intensity, the unstable fixed point 

corresponds to an unstable periodic orbit in the full phase space. 

x u also demarcates a region in phase space that separates trajec- 

tories that reentrain through either phase advance or phase delay. 

At larger light intensities, there does not appear to be an unstable 
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periodic orbit that corresponds to x u . Nonetheless this fixed point 

still separates the direction of reentrainment. x u is also related to 

trajectories that can reentrain unusually fast. In the Appendix, we 

further elaborate on the mathematical correspondence between x s , 

x u , and dynamics of the full system of equations. 

To explore various forms of jet lag, we will use a set of en- 

trainment maps that are constructed with Poincaré sections cor- 

responding to every half-hour. These sections are chosen by ob- 

taining the LD-entrained solution numerically, and then dividing 

up this LD-entrained solution into half-hour time intervals, starting 

with X = 0 corresponding to lights on at a nominal choice of 7 AM. 

Radial Poincaré sections emanating from the origin (A = 0 , C = 0) 

and passing through these half-hour marks are then constructed. 

The section is then extended to a rectangle by allowing n to vary 

between 0 and 1. We define �X ( x ) to denote the map obtained by 

choosing the Poincaré section X hours from lights on. By construc- 

tion of the map �X ( x ), the stable fixed point x s of the map occurs 

exactly at X , that is x s = X, since 7 AM denotes both the time of 

lights on and X = 0 . When we build an entrainment map using 

initial conditions that lie on the LD-entrained solution, then at a 

stable fixed point of the map all of the dependent variables C , n , 

and x return to their original values. In this case, the stable fixed 

point does correspond to a stable periodic solution. 

We shall be interested in the transient time it takes a trajectory 

that has an initial condition that lies off of the LD-entrained solu- 

tion to enter a neighborhood of it. Specifically, consider a Poincaré

section taken along the LD-entrained solution X hours after the 

lights turn on. Take an initial condition that lies at the intersection 

of the LD-entrained solution and this Poincaré section, but with 

x 0 � = x s , x u . In this case, the trajectory will not initially be entrained 

since the LD cycle will be offset by | x s − x 0 | hours. This means that 

the first return time ρ( x 0 ) � = 24. We will say that a trajectory is en- 

trained if there exists a k ≥ 0 such that | ρ(x j ) − 24 | < 0 . 5 for j ≥ k , 

where x j = �(x j−1 ) . Entrainment is said to occur on (k + 1) th cy- 

cle. The total entrainment time is simply 	k 
j=0 

ρ(x j ) . In terms of 

the map, �( x ) entrainment is equivalent to | �(x j ) − x s | < 0 . 5 . 

3. Results 

3.1. The LL, DD, and LD-entrained limit cycles of the FJK model 

The DD limit cycle is obtained when f ( t ) ≡ 0. In this case, B = 0 

and d n/d t = −βn, thus n → 0. Since the DD limit cycle is restricted 

to n = 0 , it can be found by solving the planar system given by 

Eqs. (1) and (2) . Those equations are of standard Van der Pol os- 

cillator type that possess a stable limit cycle. The A -nullcline is cu- 

bic, the C -nullcline is linear, and they intersect at an unstable fixed 

point on the middle branch. The DD trajectory encloses that un- 

stable point. Similarly, the LL oscillator is obtained when f ( t ) ≡ 1. 

Now, n → α[ I] / (α[ I] + β) and B can be written in terms of A and 

C . So the model is again planar with a cubic nullcline and one that 

is monotone increasing. They intersect along the middle branch of 

the cubic, forming an unstable fixed point. For the canonical set of 

parameters (defined in Section 2.1 ), the period of the DD oscillator 

is τ c , whereas the period of the LL oscillator (23.96 h) is less than 

τ c . 

In Fig. 1 , we plot the DD, LL, and LD-entrained oscillations for 

N = 12 h, I = 10 0 0 lux. Panel A shows the time traces of each 

of these oscillations, Panel B shows them in the 3-dimensional 

A − C − n phase space, and Panel C shows them projected onto the 

A − C phase plane. Note that the LD-entrained oscillation tracks to- 

wards the DD oscillation during darkness and towards the LL oscil- 

lation during light. The transition of the trajectory from DD to LL is 

fairly rapid, while that from LL to DD is relatively slow since β is 

small compared to α0 . Hourly markings (open red or black circles) 

are placed on the LD-entrained cycle where lights on corresponds 

to 7 AM and lights off to 7 PM. 

In Fig. 2 A and B, we plot ρ( x ) and �( x ) for the canonical set 

of parameters using the A = 0 , A 

′ < 0 Poincaré section. The graph 

of ρ( x ) intersects the horizontal line corresponding to 24 h at two 

points, x s and x u . These points represent return times of exactly 

24 h. Also note that because of periodicity ρ(0 + ) = ρ(24 −) . The 

graph of �( x ) intersects the diagonal at the fixed points x s and x u . 

The slope at the points of intersection determines the stability of 

these fixed points. 

In Fig. 2 C and D, we show two examples of reentrainment, both 

in the map and in simulations. The green trajectory in Panel C 

shows the cobweb diagram for a trajectory that starts with an ini- 

tial condition that is less than x u . The cobwebbed trajectory moves 

to the left with each iterate indicating a phase advancement. The 

corresponding green time trace in Panel D confirms this in its ap- 

proach to the LD-entrained solution (solid black trace). The ma- 

genta trajectory in Panel C shows a trajectory that starts with an 

initial condition to the right of x u , and entrains though phase de- 

lays as the iterates of the cobweb move to the right, over the 

discontinuity, before approaching x s . The magenta trace in Panel 

D shows how the oscillator phase delays at each cycle until en- 

trainment. Thus the unstable fixed point of the map x u separates 

initial conditions of trajectories that entrain in direct simulations 

through phase advance or phase delay. What is particularly inter- 

esting about this agreement is the fact that we have found no ev- 

idence that an unstable periodic orbit actually exists for I = 10 0 0 

lux. Instead, the stable periodic orbit seems to be globally attract- 

ing. Locally near x s and the stable periodic orbit, trajectories ap- 

proach the fixed point by either advancing or delaying. Therefore 

there must be a structure elsewhere in phase space that separates 

trajectories that become phase advancing or phase delaying. We 

speculate that the unstable fixed point x u of the map indicates 

where in phase space to look for such a structure. We provide fur- 

ther evidence for this conjecture in the Appendix; however, fully 

characterizing this structure mathematically is beyond the scope 

of this paper. 

3.2. The dependence of �( x ) on parameters 

The entrainment map �( x ) depends continuously on param- 

eters. In particular, we are interested in how the map changes 

with variations in τ c , N , and I . The dependence on parameters 

is qualitatively the same as what we found in our earlier study 

( Diekman and Bose, 2016 ) of the Novak-Tyson model of the molec- 

ular circadian clock in Drosophila ( Novak and Tyson, 2008 ), and is 

consistent with general theories on the phase of circadian entrain- 

ment ( Bordyugov et al., 2015 ). To understand this dependence, we 

vary one parameter at a time with the others set at their canonical 

values. 

Consider first changes in the intrinsic period τ c . Fig. 3 A and B 

show how the maps ρ( x ) and �( x ) depend on τ c . The return time 

map ρ( x ) is a monotone function of the parameter τ c . This has to 

do with how the A nullcline, N A , changes with τ c . As discussed in 

Section 2.1 , for both the DD and LL cases, the steepness of the right 

and left branches of the cubic increases with τ c , leading to in- 

creases in the period of each of these oscillators ( Fig. 3 C and D). To 

illustrate this, consider the two extreme cases τc = 22 . 2 h and 27.2 

h with an initial condition of x 0 = 18 . Fig. 3 C shows the ensuing 

trajectories leaving the Poincaré section A = 0 projected onto the 

A − C plane. Since x 0 = 18 , the trajectories are initially subjected to 

six hours of darkness and thus they follow the corresponding DD 

dynamics. After six hours of evolution, the green trajectory ( τc = 

22 . 2 h) is about an hour ahead of its magenta counterpart ( τc = 

27 . 2 h). The green trajectory moves faster horizontally since its 

nullcline is further away. For the next 12 h, the trajectories evolve 



C.O. Diekman, A. Bose / Journal of Theoretical Biology 437 (2018) 261–285 265 

Fig. 1. FJK model DD, LL, and LD limit cycles for τc = 24 . 2 h, N = 12 h, I = 10 0 0 lux. (A) Time course of model variables in constant darkness (top), constant light (middle), 

and a 12:12 light-dark cycle (bottom). The variable C is shown as solid lines (black in DD, red in LL, and red/black in LD), the variable A as dashed lines, and the variable 

n as dotted lines. The light stimulus function f ( t ) is shown as solid blue lines. The DD, LL, and LD limit cycles in the 3-dimensional A − C − n phase space (B) and projected 

onto the 2-dimensional A − C phase plane (C). A 1-dimensional projection of the Poincaré section P at A = 0 ( A ′ < 0) is shown in green. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

under conditions of light, as shown in Fig. 3 D. The τc = 22 . 2 h 

trajectory moves further ahead of the other, now by about three 

hours. Again the green trajectory moves faster horizontally. Finally, 

for the last portion of their evolutions back to the Poincaré sec- 

tion, they evolve under darkness; Fig. 3 C. In general, the dynam- 

ics of the LD-forced oscillator are determined by the LL limit cycle 

when the lights are on and by the DD limit cycle when the lights 

are off. Thus, independent of whether the LD-forced oscillator is in 

a current situation of lights on or off, its dynamics will always be 

slower when τ c is greater. Therefore ρ( x ) will be larger for larger 

τ c . 

In Fig. 3 B we show how �( x ) depends on τ c . Increasing τ c 

causes the maps to shift up. This is a consequence of ρ( x ) being 

a monotone increasing function of τ c . This causes the stable fixed 

point x s to increase (and the unstable fixed point x u to decrease). 

This means that individuals with slower intrinsic body clocks reach 

their maximum or minimum core body temperatures later in the 

day. The opposite is true when τ c is decreased below 24.2 for in- 

dividuals with faster than normal intrinsic body clocks. The maps 

shift down and the stable fixed point x s decreases (and x u in- 

creases). Note that as τ c increases, the distance between x s and x u 
decreases. When τ c becomes large enough, these two fixed points 

merge at a saddle-node bifurcation, implying the loss of entrain- 

ment and providing an upper bound on the range of entrainment. 

Similarly, when τ c decreases and becomes too small, a different 

saddle-node bifurcation of these two fixed points occurs signifying 

the lower bound on the range of entrainment. 

In Fig. 4 A and B, we show how the entrainment map varies 

with changes in light intensity I (Panel A) and photoperiod (Panel 

B). Changing light intensity I has a pronounced effect on the shape 

of the maps, but less of an effect on the location of the sta- 

ble and unstable fixed points ( Fig. 4 A). The increased concavity 

with stronger intensity light leads, in general, to faster entrain- 

ment (discussed in greater detail in Diekman and Bose, 2016 ). The 

map becomes insensitive to increases in I above a certain point, 

with nearly complete overlap of the maps for I = 10 0 , 0 0 0 lux 

and above. This suggests that entrainment cannot be lost by in- 

creasing the light intensity too much. On the other hand, if the 

light intensity becomes too weak ( I → 0), then entrainment is lost 

through a saddle-node bifurcation as the maps move up and the 

stable and unstable fixed points collide. Changes to the photope- 

riod, N : 24 − N, are shown in Fig. 4 B. An increase in N , mean- 

ing longer daylength, shifts the discontinuity of the map to the 

right because the portion of the map to the right of x s gets shifted 

down. To the left of x s , the opposite happens where an increase 

in N shifts the map up. Note that the distance between x s and 

x u decreases with N . This change in distance is a critical factor 

in explaining the east-west asymmetry of jet lag, as discussed in 

Section 3.4 . 

Information from entrainment maps can be used to construct 

plots that display the entrainment region as a function of two pa- 

rameters, known as Arnold tongues or Arnold onions . In Fig. 4 C and 

D, we show the stable phase of entrainment for different param- 

eter pairs. The stable phase was determined by constructing an 

entrainment map at each set of parameter values, and then find- 
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Fig. 2. Entrainment map and reentrainment simulations. Parameters: τc = 24 . 2 h, N = 12 h, and I = 10 0 0 lux. (A) ρ(x ) = 24 at x = 5 . 96 (solid dot) and x = 16 . 87 (open dot). 

(B) These x values satisfy �(x ) = x and correspond to stable and unstable fixed points, x s and x u , of the entrainment map. (C) Cobwebbing the entrainment map shows that 

x u separates initial conditions that reentrain through phase advance (green) and phase delay (magenta). (D) Direct simulations for initial conditions lying on opposite sides 

of x u showing reentrainment through phase advances (green) and phase delays (magenta) as predicted by the entrainment map. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

ing the location of the stable fixed point x s . The Arnold tongue 

in Fig. 4 C displays the entrainment region and stable entrained 

phase as a function of endogenous period τ c and light intensity 

I for N = 12 h. The colored region of parameter space represents 

parameter pairs for which stable entrainment occurs, and curves 

of constant phase lie on curves of constant color. For illustrative 

purposes, the curve with x s = 6 is shown in white. As I increases, 

curves of constant phase become almost vertical indicating that 

increasing light intensity does not significantly change the phase 

of entrainment (as noted in Fig. 4 A). Horizontal slices of Fig. 4 C 

show that the range of endogenous periods that lead to entrain- 

ment increases with intensity. These results are consistent with 

those of Bordyugov et al. (2015) , who calculated Arnold tongues 

for a Kuramoto model as well as a variety of circadian models in- 

cluding the Gonze et al. (2005) and Relógio et al. (2011) models. 

The Arnold tongues for those models formed a V-shaped region 

in parameter space, similar to the parabola-shaped region that we 

find here for the FJK model. Our results are also consistent with 

the laboratory study of Wright et al. (2001) , which found that hu- 

mans could entrain to very low intensity light (1.5 lux) if the forc- 

ing period was exactly 24 h, but could not entrain if the forcing 

period was different than 24 h (specifically 23.5 or 24.6 h). The 

Arnold onion in Fig. 4 D displays the entrainment region and sta- 

ble entrained phase as a function of τ c and N for I = 10 0 0 lux. 

The curve with x s = 6 is again shown in white. For a fixed endoge- 

nous period (vertical slice of figure), changes in the photoperiod 

can have large and counterintuitive effects on the stable phase. For 

example, with τc = 24 . 5 h and N = 8 h, the stable phase x s < 6. If N 

is either increased enough, or decreased enough, the stable phase 

becomes x s = 6 . Thus changes in entrained phase are not neces- 

sarily monotonic with respect to changes in photoperiod. This fig- 

ure is qualitatively similar to Fig. 1 B of Schmal et al. (2015) who 

calculate Arnold onions for a host of models. The bottom tip of 

our onion is located at τc = 24 h, corresponding to an endogenous 

period in constant darkness ( N = 0 ) that is equal to the period of 

LD forcing that we used for 0 < N < 24. The top tip of our onion 

is located at τc = 24 . 4 h, which is close to the endogenous pe- 

riod in constant darkness that exhibits a 24-h period when placed 

in constant light ( N = 24 ). The tilt of the onion to the right indi- 

cates that the FJK model is consistent with Aschoff’s Rule , which 

states that τ LL < τDD for day-active animals. The Arnold onions in 

Schmal et al. (2015) are found by holding the endogenous period 

in constant darkness fixed at 24 h and varying the LD forcing pe- 

riod, whereas we vary the endogenous period in constant darkness 

and hold the LD forcing period fixed at 24 h. Thus their onions tilt 

to the left, rather than the right, for day-active animals. 

3.3. Jet lag due to east-west travel 

We now determine how long a traveler takes to reentrain after 

a change in time zone by computing, via direct simulation, reen- 

trainment times for trips with a prescribed arrival time over a pre- 

scribed number of time zones (either east or west). We then use 

the entrainment map to explain the simulation results, as well as 

to explain the east-west asymmetry in jet lag. 

Fig. 5 shows a schematic diagram of the 12:12 LD cycle across 

all time zones. The horizontal direction demarcates hourly inter- 

vals starting with 7 AM (defined as X = 0 ); the vertical direction 

demarcates hourly intervals corresponding to different time zones. 

The middle row of the diagram corresponds to the “home” time 

zone ( Z = 0 ) while those lying above this row ( Z > 0) correspond to 

travel to the east, and those below ( Z < 0) correspond to travel to 

the west. In each row, the corresponding 12:12 LD cycle is shown 

such that lights turn on at 7 AM in the “destination” time zone. 

Each column shows the current position of the LD cycle in that 
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Fig. 3. Dependence of entrainment map on endogenous period τ c . (A) ρ( x ) shifts up as τ c increases and down as τ c decreases. (B) �( x ) shifts up and to the left as τ c 

increases, causing the stable fixed point x s (solid dots) to move to the right, implying that as intrinsic period increases the phase of entrainment becomes more delayed. The 

unstable fixed point x u (open dots) move to the left. As τ c decreases, �( x ) and the fixed points move in the opposite manner. (C) and (D) Evolution of trajectories used in 

computation of ρ(18). In (C), during the initial six hours of darkness the DD nullclines (dashed lines) are such that the τc = 27 . 2 h oscillator moves slower than the τc = 22 . 2 

h oscillator; the green trajectory is ahead of the magenta. In Panel D, for the next 12 h of light, the LL nullclines (dashed lines) are such that the τc = 27 . 2 h oscillator still 

moves slower than the τc = 22 . 2 h oscillator when the lights are on. The final portions of their respective evolutions under darkness are shown in Panel C. Gray curves in 

each panel are copies of the colored curves in the opposite panels. In sum, the magenta trajectory moves slower than the green contributing to a larger ρ(18) value and 

upward shift of the ρ map. For this figure N = 12 h and I = 10 0 0 lux. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

zone. There are two natural ways to use this travel grid. One pos- 

sibility is to assume that from departure, the traveler immediately 

tries to reentrain to the destination time zone (DTZ). The other 

is to assume that the traveler remains phase-locked to the home 

time zone (HTZ) throughout the duration of the trip and only be- 

gins to reentrain upon arrival at their destination. The former case 

is equivalent to studying the dynamics of a leaving time map, and 

the latter, the dynamics of an arrival time map. Both cases can be 

thought of as instantaneous travel time in that the traveler instan- 

taneously switches from the HTZ to the DTZ. In what follows, let 

us take the latter interpretation of an arrival time map. Namely, 

we define the arrival time as the HTZ time when the destination is 

reached. For example, if one travels from New York to Los Angeles 

and arrives at 1 PM, this means they have arrived at 1 PM New 

York time (which corresponds to 10 AM Los Angeles time.) 

In both the home and destination time zones, the 24-h LD forc- 

ing is identical, but phase shifted by Z hours. We construct a set 

of Poincaré maps associated with each arrival time X , denoted by 

�X ( x ). An oscillator that is entrained in the home time zone to 

a value x s = �X (x s ) will also entrain to the same value x s in the 

destination time zone if the Poincaré section is chosen at the same 

time location X along the LD-entrained cycle. In other words, the 

phase of entrainment to the LD cycle is the same, independent of 

the zone. Suppose the oscillator starts in its home time zone Z = 0 

entrained to the 24-h LD forcing, i.e. with x 0 = x s . Now consider 

an arrival HTZ time of X after travel of Z time zones. Upon arrival 

in the destination time zone, the oscillator will not be entrained 

to the 24-h LD forcing in the DTZ due to the shift in the LD cycle. 

For example, consider the blue dots and arrow in Fig. 5 . The HTZ 

arrival time in this case is 11 PM which corresponds to X = 16 . 

Therefore x s = 16 . The trip consists of travel 11 time zones to the 

east, Z = 11 . This corresponds to the vertical blue line and arrow 

pointing up. In the destination time zone, the DTZ time is 10 AM. 

Thus the traveler will be subjected to 9 h of light instead of the 

8 h of darkness that was expected. Therefore in the DTZ, the oscil- 

lator will be phase shifted with regard to the LD cycle and will no 

longer be entrained. In effect, with regard to the Poincaré section 

at X = 16 , the oscillator will have had its initial condition shifted 

to a new value x 0 = 3 and will need to reentrain toward x s = 16 . 

As another example, consider the case of Z = −8 and X = 6 shown 

by the red dot and arrow. This depicts travel 8 zones to the west 

arriving at 1 PM HTZ. The time in the destination zone is 5 AM 

DTZ. Thus the traveler will be subjected to 2 h of darkness in the 

destination time zone compared to the 6 h of light that it would 

have received in the home zone. Now, the oscillator must reentrain 

to x s = 6 from an initial condition x 0 = 22 . 

We first calculate the reentrainment time by direct simulations 

assuming a 12:12 LD photoperiod. Define R = 12 − X − Z. The quan- 

tity R determines how much light or darkness to provide to the 

oscillator once in the destination time zone until the beginning of 

the next full 12 h of L or D. In the example of the travel shown in 

blue, R = −15 and we impose 9 h of light followed by 12 h of D. 

The various cases are summarized below: 

• if R ≤ −12 : impose L for 24 + R, then start 12:12 D:L (eastward 

travel) 
• if −12 < R ≤ 0 : impose D for 12 + R, then start 12:12 L:D (could 

be eastward or westward travel) 
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Fig. 4. Dependence of entrainment map on light intensity I and daylength N . (A) Concavity of the entrainment map increases as I is increased, implying that higher light 

intensity reduces the amount of time it takes an oscillator to reentrain following a phase shift of the LD cycle. The location of the stable fixed points x s (solid dots) and 

unstable fixed points x u (open dots) do not change much as I is varied. For this panel, τc = 24 . 2 h and N = 12 h. (B) Stable fixed points of the entrainment map move to 

the right as N is increased, implying that as daylength increases the phase of entrainment becomes more delayed. The unstable fixed points also move as N is varied. For 

this panel, τc = 24 . 2 h and I = 10 0 0 lux. (C) Arnold tongue computed from entrainment map analysis displaying the entrainment region as a function of τ c and I . Heatmap 

colors indicate the location of x s , i.e. the stable phase of entrainment. The white contour line corresponds to x s = 6 . At the borders of the tongue, entrainment is lost through 

saddle-node bifurcation of x s and x u . For this panel, N = 12 h. (D) Arnold onion computed from entrainment map analysis displaying stable phases x s within the entrainment 

region as a function of τ c and N . For this panel, I = 10 0 0 lux. 

Fig. 5. Schematic diagram of 12:12 LD cycle across all arrival times X and number of time zones traveled Z . This travel grid can be used to easily visualize the offset of the 

LD cycle due to instantaneous travel and to identify the relationship between the home and destination time zones. The horizontal row in the middle of the grid at Z = 0 

represents the home time zone (HTZ). The other rows represent destination time zones (DTZs) that lie east (west) for Z > 0 ( Z < 0). The rows are broken up into one hour 

intervals. The shaded region in each row represents the times of darkness in that time zone relative to HTZ. The Poincaré section X = 0 is nominally chosen to correspond to 

7 AM HTZ. The blue dots and arrow represent travel 11 time zones east with arrival at 11 PM HTZ and 10 AM DTZ. The red dots and arrow represent travel of 8 time zones 

west with arrival at 1 PM HTZ and 5 AM DTZ. The entrainment map’s arrival time section X is defined with respect to HTZ. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Reentrainment times and worst-case jet lag from direct simulations across all arrival times X and number of time zones traveled Z . Light colors indicate longer 

reentrainment times. Z > 0 corresponds to eastward travel and Z < 0 to westward travel. In these simulations N = 12 h and I = 100 lux. (A) For the typical human intrinsic 

period of τc = 24 . 2 h, the longest reentrainment times are for eastward trips of 10.5 time zones ( Z = 10 . 5 ). (B) For a slower than typical intrinsic clock of τc = 24 . 6 h (black), 

the worst jet lag is for eastward trips of 7 time zones ( Z = 7 ). (C) For a faster than typical intrinsic clock of τc = 23 . 8 h, the worst jet lag is westward trips of 10.5 time 

zones ( Z = −10 . 5 ). (D) For an even faster intrinsic clock of τc = 23 . 4 h, the worst jet lag is for westward trips of 6.5 time zones ( Z = −6 . 5 ). 

• if 0 < R ≤ 12: impose L for R , then start 12:12 D:L (could be east- 

ward or westward travel) 
• if 12 < R ≤ 24: impose D for R − 12 , then start 12:12 L:D (west- 

ward travel) 

With direct simulations, the reentrainment time is calculated 

from the start of the above procedure until a stopping criterion is 

achieved; namely, we define reentrainment to have occurred when 

the magnitude of the time difference between the section cross- 

ings of the oscillator and a reference oscillator is less than 0.5 h. 

The reference oscillator is subjected to the same light-dark pro- 

tocol as the traveler, but is by definition already entrained to the 

destination time zone. Thus the reference oscillator starts on the 

LD-entrained solution at the location given by ( X + Z) mod 24. 

To calculate the reentrainment time using entrainment maps, 

at each value X denoting the HTZ arrival time relative to 7 AM, 

we construct a Poincaré section along the LD limit cycle and de- 

fine the return map �X as before. The fixed point of each map 

�X ( x ) is by definition X . To calculate the appropriate initial con- 

dition with which to start iterations in the destination time zone, 

we determine the new phase relationship between the oscillator 

and the LD cycle of that time zone. To do so, compute z 0 = X + Z. 

If 0 ≤ z 0 < 24, then choose the initial condition x 0 = z 0 . If z 0 > 24, 

then x 0 = z 0 − 24 . If z 0 < 0, then x 0 = z 0 + 24 . 

3.3.1. Worst-case travel depends on endogenous period 

In Fig. 6 , we show entrainment time results over all possible 

HTZ arrival times ( X ) and trips ( Z ) for four different intrinsic pe- 

riods τ c . The light intensity was taken at the relatively low level 

of I = 100 lux, which is characteristic of indoor light. Fig. 6 A cor- 

responds to the typical endogenous human DD period of 24.2 h. 

The heatmap shows the reentrainment times with darker colors 

indicating relatively short reentrainment times, and lighter colors 

indicating progressively longer times. In each case, the heatmap 

is asymmetric about Z = 0 indicating that reentrainment due to 

eastward travel can differ compared to westward travel. Indeed, 

for a τc = 24 . 2 h oscillator, the longest reentrainment times oc- 

cur for travel roughly 10 and 11 zones to the east. The reentrain- 

ment times are relatively insensitive to the arrival time. The re- 

maining panels show the heat maps for different τ c . For τc = 24 . 6 

h ( Fig. 6 B), the worst trip shifts to smaller values of Z , mean- 

ing that shorter eastward trips are more difficult for individuals 

with slower body clocks. The right column shows the heatmap for 

individuals whose intrinsic clock is faster than normal, τc = 23 . 8 

( Fig. 6 C) and 23.4 h ( Fig. 6 D). Now observe that the worst reen- 

trainment for these individuals occurs for trips to the west, in- 

stead of to the east. As the intrinsic clock speeds up, progressively 

shorter westward trips lead to longer reentrainment. For example 

at τc = 23 . 4 h, a trip 6 h to the west is the worst. 

The entrainment map can be used to explain these findings. 

In each case, the longest reentrainment time occurs when the 

travel places the oscillator’s initial condition in a neighborhood of 

the unstable fixed point x u . The location of x u relative to x s de- 

pends on τ c . For example, when τc = 24 . 2 h, we have found that 

x u ≈ (x s + 10 . 5) mod 24, independent of arrival time. Thus travel 

of 10 or 11 h east would place the initial condition x 0 near the 

unstable fixed point. Specifically, if the Poincaré section is cho- 

sen at X , then x s = X and x u = (X + 10 . 5) mod 24. Travel of Z > 0 

time zones to the east would imply x 0 = (X + Z) mod 24, there- 

fore x 0 − x u = Z − 10 . 5 . Thus if Z is either 10 or 11, then the initial 

condition x 0 lies within 0.5 of the unstable fixed point and will 

lead to very long reentrainment times. This is consistent with the 

heatmap shown in Fig. 6 A. 
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Fig. 7. Worst-case jet lag is explained by the unstable fixed point of the entrainment map. (A) Reentrainment times for the X = 6 column of the heatmaps in Fig. 6 (corre- 

sponding to an arrival time of 1 PM) computed by cobwebbing the analogous entrainment maps. The longest reentrainment times occur for trips of Z = −4 . 5 for τc = 23 . 4 h 

(magenta), −10 for τc = 23 . 8 h (green), 10.5 for τc = 24 . 2 h (orange), and 6.5 for τc = 24 . 6 h (black). The reentrainment times and Z value of these local peaks qualitatively 

agree with the longest reentrainment times found through direct simulation (the yellow hotspots in Fig. 6 A–D). (B) Same data as (A), replotted with the horizontal axis in 

terms of x instead of Z . The local peaks in reentrainment time are at initial conditions near the location of the unstable fixed point x u (dashed vertical lines) for each value 

of τ c , indicating that the worst jet lag occurs after trips that put the traveler in the vicinity of x u . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Similarly, for different choices of τ c , we find that the distance 

between x u and x s determines the travel distance and direction 

that leads to the longest reentrainment time. We illustrate this 

in Fig. 7 by plotting the reentrainment times derived from cob- 

webbing the map for a single arrival time X = 6 , corresponding 

to one column of the heatmaps. Fig. 7 A shows the reentrainment 

times centered around Z = 0 on the horizontal axis. This clearly 

shows how the worst travel changes as a function of τ c , and that 

east-west asymmetry in jet lag exists over all τ c values chosen. In 

Fig. 7 B, we replot these reentrainment times converting the hor- 

izontal axis from Z to x . The dashed vertical lines show the lo- 

cation of x u for the four different choices of τ c . Recall that in- 

creasing τ c moves the entrainment map up ( Fig. 3 B), and causes 

the unstable fixed point x u to move to the left. For τc = 23 . 4 h, 

x u ≈ 1.5 (dashed magenta line), and as τ c increases x u moves to the 

left through the x = 0 boundary and emerges through the x = 24 

boundary at progressively leftward values (green, orange and black 

dashed lines). The longest reentrainment times predicted by the 

map are for travel of Z time zones that places the initial condition 

x 0 near x u in each of these four cases. To find the worst-case trip, 

we find the value of Z D ∈ (−12 , 12) that solves x u = (x s + Z D ) mod 

24. In all cases the arrival time was held fixed at X = 6 , imply- 

ing x s = 6 . From the map, we found the values x u to approximately 

equal 12.5, 16.5, 20, and 1.5 for τc = 24 . 6 , 24.2, 23.8, and 23.4 h, re- 

spectively. Solving for the corresponding Z D values yields 6.5, 10.5, 

−10, and −4.5 respectively. These correspond to the worst possible 

trips being 6 h east, 10.5 h east, 10 h west, and 4.5 h west respec- 

tively, which are qualitatively consistent, and except for τc = 23 . 4 

h, quantitatively consistent with the reentrainment time heatmaps 

from direct simulation ( Fig. 6 ). We call Z D a demarcation point , 

since it separates trips that reentrain through phase advance or 

phase delay. Its properties will be further discussed in Section 3.5 . 

Fig. 6 indicates that the average amount of time it takes to 

reentrain after travel also depends on τ c . For example, consider the 

49 possible trips represented by Z ∈ (−12 , 12) in increments of 0.5, 

with the arrival time held fixed at X = 6 . The median reentrain- 

ment times for these trips with τc = 24 . 6 , 24.2, 23.8, and 23.4 h 

are 16.3, 13.3, 13.2, and 17.6 days, respectively. The longer median 

reentrainment times correspond to τ c values closer to the bifur- 

cation points at which entrainment is lost. Maps that are closer 

to bifurcation have less concavity, and therefore longer reentrain- 

ment times ( Fig. 4 A and Diekman and Bose, 2016 ). This finding is 

consistent with previous work showing that for a variation of the 

Poincaré oscillator, reentrainment times are longer near the bor- 

ders of the Arnold tongue entrainment region than at the center 

( Granada and Herzel, 2009 ). 

3.3.2. Quantifying the east-west asymmetry of jet lag 

Fig. 8 shows a comparison of reentrainment times calculated 

using the map (empty circles) versus direct simulation (filled cir- 

cles). In each case, the Poincaré section was chosen at X = 6 . Reen- 

trainment times for trips to the east (west) are shown in blue 

(red). The qualitative predictions of the entrainment map match 

those from the direct simulations. First, both methods show that 

trips to the east require longer reentrainment times than trips to 

the west for humans with average to slow body clocks. This is ev- 

idenced by the blue curves lying above the red curves in the two 

panels in the left column. The opposite is true for humans with 

fast body clocks as shown in the right column. These plots show 

that the extent of the east-west asymmetry found in reentrainment 

times depends critically on the endogenous period of the underly- 

ing DD oscillator. Second, the two methods yield results that are 

in very close agreement for westward travel of travelers with av- 

erage to slow body clocks ( Fig. 8 A and B, red) and eastward travel 

for fast body clocks ( Fig. 8 C and D, blue). For travel in the opposite 

directions than these, the two methods quantitatively agree over 

many time zones, but there are intervals where they disagree. The 

place where the two methods quantitatively differ is when travel- 

ing to a time zone that lies in a neighborhood of the unstable fixed 

point. The predictions from the map for reentrainment for initial 

conditions that lie arbitrarily close to the unstable fixed point can 

become arbitrarily large. This is a consequence of the structure of 

piecewise monotone maps and the particular details of the entrain- 

ment map for FJK model. An arbitrarily large number of iterates are 

needed to leave a neighborhood of x u if x 0 is chosen sufficiently 

close to it. In general, this leads to a map-based prediction that 

is larger than what is found in direct simulations, as seen by the 

larger peaks in the dashed curves than the solid curves in Fig. 8 . 

In addition, for τc = 24 . 6 and 23.4 h, the map-based predictions 

of the Z value corresponding to the worst-case reentrainment time 

are quantitatively different than the results from direct simulation 

(6.5 versus 7 h East for τc = 24 . 6 h, and 4.5 versus 6 h West for 

τc = 23 . 4 h), as further discussed in the Appendix. 

Despite these differences, the map is useful to draw several 

conclusions. First, the sign and magnitude of the difference x u − x s 
determines which direction of travel and over how many time 

zones leads to the worst jet lag. For those with a normal to slow 

intrinsic period, travel to the east will lead to the worst jet lag be- 

cause the unstable fixed point x u lies to the right of the stable one 

x s . For those with a faster than normal intrinsic period, it is travel 

to the west that will lead to the worst jet lag. Second, the proxim- 

ity of the initial condition x 0 in the destination time zone to x u de- 

termines, in part, the length as well as the direction of reentrain- 
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Fig. 8. East-West asymmetry of reentrainment times depends on intrinsic period τ c . The reentrainment times for an arrival time of 1 PM obtained through direct simulation 

(solid lines and filled dots) qualitatively agree with the reentrainment times obtained by cobwebbing the analogous entrainment maps (dashed lines and open circles). (A) 

For τc = 24 . 2 h, eastward trips (blue) take longer to reentrain from than westward trips (red). (B) For τc = 24 . 6 h, eastward trips are worse than westward trips as in (A) 

but here the degree of asymmetry is increased. (C) For τc = 23 . 8 h, westward trips take longer to reentrain from than eastward trips. (D) For τc = 23 . 4 h, westward trips are 

worse than eastward trips as in (C) but here the degree of asymmetry is increased. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

ment (either through phase advance or delay). Since reentrainment 

times are quite sensitive to initial conditions in a neighborhood of 

x u , we are hesitant to attribute too much importance to very long 

reentrainment times. We will further study the role of x u in deter- 

mining the direction of reentrainment in Section 3.3.3 . 

3.3.3. Orthodromic versus antidromic reentrainment 

We now address the direction of reentrainment, and in partic- 

ular the circumstances that lead to orthodromic versus antidromic 

reentrainment. Fig. 9 shows the regions of orthodromic and an- 

tidromic reentrainment for the four different choices of τ c . For 

τc = 24 . 2 h, antidromic reentrainment occurs when travel to the 

east causes the initial condition to lie in the interval ( x u , 18). The 

lower bound of x u is necessary to place the initial condition on 

the “opposite” side of x u . The upper bound of 18 reflects that 12 is 

the maximum number of zones of eastward travel ( x s + 12 = 18 ). 

In this case, x u = 16 . 5 and eastward trips of 10.5 zones or greater 

lead to antidromic reentrainment. All other trips in either direc- 

tion are followed by orthodromic reentrainment ( Fig. 9 A). As τ c 

increases to 24.6, the unstable fixed point x u moves to the left, 

thus creating a larger interval ( x u , 18) of antidromic reentrainment 

( Fig. 9 B). The case for τc = 23 . 8 h ( Fig. 9 C) is largely the same as 

τc = 24 . 2 h, except that antidromy occurs for westward trips of 10 

to 12 zones when x 0 lies in the interval (18, x u ). For τc = 23 . 4 h 

( Fig. 9 D), x u has moved to right, through the boundary at x = 24 to 

about 1.5. Thus the region of antidromy is the union of the inter- 

vals (0, x u ) and (18, 24). To summarize, antidromic reentrainment 

can occur when the number of time zones traveled is larger than 

the distance between x s and x u . 

Antidromic reentrainment is typically regarded as leading 

to longer reentrainment times than orthodromic reentrainment 

( Arendt et al., 1987; Klein and Wegmann, 1977; Sack, 2010 ). Our 

results suggest that while this is often true, it is not always the 

case. For example, consider eastward trips of 10 and 11 time zones 

for the τc = 24 . 2 h oscillator with an arrival time of X = 6 . The 

Z = 10 trip corresponds to x 0 = 16 and entrains orthodromically, 

whereas the Z = 11 trip corresponds to x 0 = 17 and entrains an- 

tidromically ( Fig. 9 A). In this case the orthodromic reentrainment 

takes longer (27.5 days) than the antidromic reentrainment (22.5 

days); to see this compare the Z = 10 and Z = 11 data points in 

Fig. 7 A. Furthermore, this orthodromic Z = 10 trip also has a longer 

reentrainment time than the corresponding 10-zone eastward trip 

for τc = 24 . 6 h, which reentrains antidromically (21.5 days); to see 

this compare the orange and black Z = 10 data points in Fig. 7 A. 

The possibility of antidromic reentrainment being faster than or- 

thodromic reentrainment was also noted in a molecular model of 

the mammalian circadian clock ( Leloup and Goldbeter, 2013 ). This 

feature is due to x u creating a boundary that separates the x 0 val- 

ues that reentrain through phase advances from those that reen- 

train through phase delays, and the fact that reentrainment times 

are sensitive to the distance between x 0 and this boundary. 

To better understand the effect of photoperiod and intrinsic pe- 

riod on orthodromy/antidromy, we computed the differences in 

reentrainment times for the specific cases of trips made 10 time 

zones to the east and west ( | Z| = 10 ) over a range of N and τ c 

values. To simplify the argument, we choose the Poincaré section 

to lie at X = 12 for the different LD-entrained solutions that we 

will consider. This implies that x s = 12 . Antidromic reentrainment 

can only occur when the distance between x s and x u is less than 

12. In Fig. 10 we show a heat map derived from cobweb simula- 

tions for trips 10 h to the east and west. We plot the difference 

of reentrainment times (east minus west). There are three princi- 

pal features of this heat map. First is the solid black curve, which 

we call the neutral period curve for | Z| = 10 , or NPC 10 . The neu- 
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Fig. 9. Unstable fixed point of entrainment map controls whether reentrainment is orthodromic or antidromic. (A) After traveling 8 time zones east (a phase advance of 

the LD cycle), reentrainment occurs through phase advances and is therefore orthodromic if τc = 24 . 2 h. The reentrainment time is 17.69 days. (B) The same trip as in (A) 

reentrains through phase delays and is therefore antidromic if τc = 24 . 6 h. The reentrainment time is 24.64 days. (C) After traveling 8 time zones west (a phase delay of 

the LD cycle), reentrainment occurs through phase delays and is therefore orthodromic if τc = 23 . 8 h. The reentrainment time is 19.31 days. (D) The same trip as in (C) 

reentrains through phase advances and is therefore antidromic if τc = 23 . 4 h. The reentrainment time is 23.35 days. 

Fig. 10. East-West asymmetry and antidromic reentrainment depend on daylength 

N . Reentrainment times were determined by cobwebbing entrainment maps for 

eastward and westward trips of 10 time zones ( Z = ±10 ) over a range of N and 

τ c values with I = 100 lux and the stable fixed point held at x s = 12 . The colormap 

represents the degree of asymmetry in reentrainment times in units of days, and 

was calculated by subtracting the reentrainment time for Z = 10 from the reentrain- 

ment time for Z = −10 . Therefore negative values correspond to ( N , τ c ) pairs for 

which eastward travel is worse, and positive values to westward travel being worse. 

Along the black neutral period curve (NPC 10 ), reentrainment times are the same for 

eastward and westward travel. Along the upper dashed white curve (ADC 10 + ), the 

unstable fixed point is 10 h to the right of x s , i.e. x u = 22 . Along the lower dashed 

white curve (ADC 10 − ), the unstable fixed point is 10 h to the left of x s , i.e. x u = 2 . 

In between these antidromy curves all reentrainment is orthodromic; outside these 

curves all reentrainment is antidromic. Note that eastward travel is much worse 

than westward travel (dark blue colors) near ADC 10 + , whereas westward travel is 

much worse than eastward travel (dark red colors) near ADC 10 − . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

tral period curve is a generalization of the concept of neutral pe- 

riod introduced by Aschoff et al. (1975) . Points on NPC 10 represent 

( N , τ c ) parameter pairs for which the reentrainment time after a 

trip 10 time zones east is identical to the reentrainment times for 

10 zones to the west. For any parameter values that lie above the 

NPC 10 , trips of 10 zones to the east are worse than 10 zones to 

the west. The other two important features of Fig. 10 are the dark 

blue and red regions of the heat map. These lie in a neighborhood 

of what we call the ADC 10 + and ADC 10 − antidromy curves. These 

curves correspond to parameter values at which x u − x s = 10 or -10 

respectively. For parameter values that lie near ADC 10 + (ADC 10 − ), 

trips 10 zones to the east (west) place the initial condition for 

reentrainment very close to the unstable fixed point x u . Reentrain- 

ment times calculated from the map for such initial conditions are 

arbitrarily long. For parameter values between the two antidromy 

curves, reentrainment after a trip of 10 time zones is always ortho- 

dromic. But for eastward trips made with parameter values above 

the ADC 10 + , reentrainment is antidromic. While for westward trips 

made with parameters below the ADC 10 − curve, reentrainment is 

antidromic. 

By studying a fixed horizontal slice of Fig. 10 , we can compare 

how a traveler’s reentrainment times can differ as a function of 

the time of the year. For example, during the summer months the 

value N in the photoperiod is larger than 12, while during the win- 

ter it is less than 12. Thus the left N = 8 h edge of the graph cor- 

responds to reentrainment during the winter and the right edge at 

N = 16 h corresponds to reentrainment during the summer. Con- 

sider the τc = 24 . 2 h slice which shows that traveling east will be 

worse than west at all times of the year. The asymmetry is greater 

in the summer than in the winter. Furthermore in winter the reen- 

trainment will be orthodromic; the parameter pair (8, 24.2) lies be- 

low ADC 10 + . In summer it will be antidromic; the parameter pair 

(16, 24.2) lies above ADC 10 + . For a person with a slower body clock, 

e.g. τc = 24 . 3 h, eastward travel is still worse than westward all 

year-round and reentrainment is still orthodromic in winter and 

antidromic in summer, but now the east/west asymmetry is more 

severe in winter than summer. For someone with a fast body clock, 

e.g. τc = 23 . 9 h, west is always worse than east, but more so in 

summer than winter. Here, reentrainment is antidromic in winter 

(since (8, 23.9) lies below ADC 10 − ), and orthodromic in summer 

(since (16, 23.9) lies above ADC 10 − ), which is the opposite relation- 

ship between season and the type of reentrainment as the other 

two τ c values considered. 
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Fig. 11. East-West asymmetry persists in the absence of antidromic reentrainment. 

For entrainment maps over a range of N and τ c values with I = 100 lux and the 

stable fixed point held at x s = 12 (same maps as in Fig. 10 ), the first iterate of 

the maps was used as a surrogate for the reentrainment time following eastward 

and westward trips of 6 time zones ( Z = ±6 ). The colormap represents the degree 

of asymmetry in the first iterate, and was calculated by subtracting 
N,τc 
(6) from 


N,τc 
(18) ; see text for definition of 
N,τc 

(x 0 ) . Negative values correspond to ( N , τ c ) 

pairs for which eastward travel is worse, and positive values to westward travel be- 

ing worse. Along the black neutral period curve (NPC 6 ), 
N,τc 
(6) = 
N,τc 

(18) imply- 

ing reentrainment times are the same for eastward and westward travel. Along the 

white orthodromy curve (ODC), the unstable fixed point is 12 h away from x s (i.e. 

x u = 0 = 24 ), and all reentrainment is orthodromic. At the intersection of the ODC 

and NPC 6 (the gray dot), reentrainment is both orthodromic and east-west symmet- 

ric. From this intersection point, increasing (decreasing) τ c or decreasing (increas- 

ing) N introduces an asymmetry leading to worse jet lag for eastward (westward) 

travel; see text for a detailed explanation of this phenomenon based on properties 

of the entrainment map. 

Note that the axes of the heatmap shown in Fig. 10 are τ c and 

N , which are the same two parameters as the axes of the Arnold 

onion in Fig. 4 D (albeit with the axes reversed). These two figures 

convey different information however. The Arnold onion shows 

how the stable entrained phase x s changes with parameter vari- 

ations. It does not contain information about the transient time 

it takes for trajectories to converge to the stable phase. The heat 

map in Fig. 10 , on the other hand, is constructed so that the stable 

phase is always at x s = 12 for all parameter pairs. Thus it does not 

contain meaningful phase of entrainment information, but instead 

provides valuable information about reentrainment times. 

3.4. Explaining the east-west asymmetry 

As above, choose the Poincaré section to lie at X = 12 for the 

different LD-entrained solutions. Since x s is fixed at 12, we can 

vary the location of x u by changing τ c and/or N . In general, increas- 

ing τ c makes x u decrease, while decreasing N makes x u increase. 

By balancing N and τ c appropriately, we define the orthodromy 

curve (ODC) as a monotone decreasing curve in N − τc space along 

which the distance | x u − x s | = 12 ; see the white curve in Fig. 11 . To 

find this curve, we chose the values N = 8 , 12, and 16 h and com- 

puted the corresponding τ c values that led to | x u − x s | = 12 . We 

then fit a quadratic curve through the ensuing three ordered pairs 

(the white and gray dots in Fig. 11 ); the resulting curve is quite 

linear, suggesting that three points is sufficient for approximating 

the shape of the ODC. The importance of the ODC is that an oscil- 

lator with parameters ( N , τ c ) of a point chosen along the ODC can 

only experience orthodromic reentrainment, since it is not possible 

for a 12-h trip leaving from x s to go beyond x u in either direction. 

Next we focus on six hour trips in either direction. We will use 

the first iterate of the entrainment map to help determine whether 

reentrainment after travel to the east is faster or slower than af- 

ter travel to the west. Define 
N,τc 
(x 0 ) = | �(x 0 ) − x 0 | . This is the 

distance of the entrainment map from the diagonal for trips with 

initial condition x 0 for the choice ( N , τ c ). It measures the amount 

of phase advance or delay on the first iterate. A larger value in- 

dicates a greater amount of phase change. We have found that a 

larger initial phase change ultimately leads to shorter reentrain- 

ment times. We shall use 
N,τc 
(x 0 ) as a surrogate for compari- 

son of actual reentrainment times. An eastward trip of 6 h corre- 

sponds to x 0 = 18 and a 6 h westward trip corresponds to x 0 = 6 . 

Thus our convention is that for a particular ordered pair ( N , τ c ), if 


N,τc 
(6) < 
N,τc 

(18) , then reentrainment after a trip to the west is 

longer. If the inequality is switched, trips to the east lead to longer 

reentrainment. 

Using this convention and computing at the left endpoint 

of the ODC, we find 
8, 24.1683 (6) > 
8, 24.1863 (18). This implies 

that an eastward trip of 6 h is followed by longer reentrain- 

ment compared to a westward trip of 6 h. At the right end- 

point of the ODC, we find that 
16, 23.9893 (6) < 
16, 23.9893 (18) 

implying that westward trips take longer to reentrain from. By 

continuously varying N and τ c along the ODC, there exists a 

unique value, found to be N = 11 . 8116 , τc = 24 . 1035 , at which 


11 . 8116 , 24 . 1035 (6) = 
11 . 8116 , 24 . 1035 (18) , i.e. the distance from the 

map to the diagonal is the same for x 0 = 6 and 18. We call this 

a neutral period point since it is a combination of photoperiod 

and intrinsic period for which reentrainment times are the same 

for the pair of initial conditions that lie a symmetric distance of 

6 h away from the stable fixed point x s = 12 ; see the gray dot in 

Fig. 11 . We next computed the neutral period points along the ver- 

tical edges of the parameter space, finding them to be at N = 8 , 

τc = 23 . 8133 and N = 16 , τc = 24 . 2147 (black dots in Fig. 11 ). Since 

the maps depend continuously on N and τ c , there exists a neutral 

period curve, NPC 6 , in the N − τc space, that passes through these 

three neutral period points, along which 6 h trips in either direc- 

tion lead to the same reentrainment time as determined from the 

condition 
N,τc 
(6) = 
N,τc 

(18) ; see the black curve in Fig. 11 . 

The neutral period curve NPC 6 divides the parameter space into 

two distinct regions. Above NPC 6 (such as at the left endpoint of 

the ODC), reentrainment after eastward trips takes longer. Below 

NPC 6 (such as at the right endpoint of the ODC), reentrainment 

after westward trips takes longer. Note that NPC 6 must lie be- 

low the ODC for N < 11.8116 and above the ODC for N > 11.8116. 

To understand why, consider the neutral period point on the ODC 

where N = 11 . 8116 , τc = 24 . 1035 . At this point 
11 . 8116 , 24 . 1035 (6) = 


11 . 8116 , 24 . 1035 (18) . Now consider a value of the parameters with 

the same N value but larger τ c value. Since the entrainment 

map moves up as τ c increases, the value �(6) will shift further 

away from the diagonal while the value �(18) will shift closer 

to the diagonal. This immediately implies for all τ c > 24.1035 that 


11 . 8116 ,τc 
(6) > 
11 . 8116 ,τc (18) , which implies that eastward travel is 

worse. Thus all such parameter pairs must lie on the same side of 

neutral period curve as the left endpoint of the ODC. Alternatively, 

for τ c < 24.1035, the map �( x ) shifts down and 
11 . 8116 ,τc 
(6) < 


11 . 8116 ,τc 
(18) ; westward travel is worse and all these parameter 

pairs must lie on the same side of NPC 6 as the right endpoint of 

the ODC. Together, this implies the following relationship between 

NPC 6 and the ODC: to the left of the intersection point of NPC 6 

and the ODC, NPC 6 must lie below the ODC; whereas to the right 

of their intersection point, NPC 6 must lie above the ODC. 

Several observations are in order. First, since NPC 6 intersects 

the ODC, our results show that east-west asymmetry does not re- 

quire antidromic reentrainment. Indeed, along the ODC, all trips 

have orthodromic reentrainment. Roughly half of this curve lies to 

the left of the NPC where east is worse and the other to the right 

where west is worse. The results suggest that east-west asymmetry 

is a natural feature of the FJK model. Second, by considering vari- 

ous horizontal slices of the N − τc plane shown in Fig. 11 for fixed 

values of τ c , we see that the duration of light N in the photoperiod 

is crucial for determining the direction and extent of asymmetry. 

In particular, as N is increased, westward travel takes increasingly 

longer to recover from. This suggests that, for example, individuals 
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with fast clocks will experience more jet lag after eastward trips 

than westward trips in the winter, whereas during the summer 

westward trips are worse. On the other hand, for individuals with 

slow clocks, eastward trips cause more jet lag than westward trips 

at all times of the year, since horizontal lines above τc = 24 . 2 h lie 

to the left and above NPC 6 for all N . 

3.5. Fast reentrainment and the phaseless set 

Numerous experiments and models have found that a stimu- 

lus of a critical strength applied at a critical phase can suppress 

the amplitude of a circadian oscillator to nearly zero ( Jewett et al., 

1991; Sun et al., 2016; Ukai et al., 2007; Winfree, 1970 ). It has been 

suggested that driving the oscillator to this phaseless position, re- 

ferred to as the “singularity”, could shorten reentrainment time by 

allowing the trajectory to take a “shortcut” in phase space ( Serkh 

and Forger, 2014; Winfree, 1991 ). We show that in the FJK model, 

this shortcut can arise at both low and high light intensities. We 

will use the entrainment map to locate a set of initial conditions 

(critical phases) that allow trajectories to take this shortcut. For 

higher light intensities, this shortcut can be accessed from points 

on the LD-entrained solution by changing the light offset x by an 

appropriate amount, which can give rise to unusually fast reen- 

trainment. 

Consider higher intensity light with I = 10 0 0 lux. In Fig. 12 A, 

we reconstruct the heat map for τc = 24 . 2 h using direct simula- 

tion. In comparison to Fig. 6 A, note that now there is a band near 

Z = 10 and Z = 11 for which reentrainment times are much shorter 

than for nearby Z values. These are examples of trips for which 

reentrainment is much faster than would be expected. In addition, 

note that within this band, reentrainment depends on the arrival 

time much more sensitively than for the I = 100 lux case. For ex- 

ample, for Z = 10 arrival times near 7 AM incur shorter reentrain- 

ment than others. For Z = 10 . 5 , arrival times from 12:30 PM to 

5:30 PM have shorter reentrainment, while for Z = 11 , arrival from 

11:00 PM to 1:30 AM have quite short reentrainment times. 

Recall the definition of the demarcation point Z D ∈ (−12 , 12) 

which solves x u = (x s + Z D ) mod 24. For τc = 24 . 2 , Z D = 10 . 67 as 

the unstable fixed point lies roughly 10.67 time zones to the east 

of the stable one. The demarcation point Z D lies in the band of fast 

entrainment. Consider the Poincaré map fixed at X = 6 (1:00 PM), 

which has x s = 6 and x u = 16 . 67 . Fig. 12 B shows entrainment times 

for the X = 6 vertical column of the heat map, centered around 

Z = 0 . Note that as | Z | increases, entrainment times increase as 

would be predicted from the map. However as Z increases through 

10, entrainment times suddenly begin to dip, reaching a local min- 

imum at Z = 10 . 46 (which is near Z D ), then increasing until Z = 11 

before beginning to fall again (gray shaded region of figure). The 

entrainment map predicts instead that the reentrainment times 

would show a local maximum, not a local minimum, in this neigh- 

borhood. In contrast, with I = 100 lux both the map and simula- 

tions show a local maximum in this neighborhood ( Fig. 8 A), which 

is why we chose to work with that light level in Sections 3.3 and 

3.4 . 

To explain why there is fast entrainment, we identify a region 

of phase space that Guckenheimer (1975) calls a phaseless set . The 

easiest way to describe this set is to consider an unforced oscilla- 

tor, say with n ≡ 0 which gives rise to the stable DD limit cycle. 

Every point on the DD limit cycle can be assigned a phase be- 

tween 0 and τ c . Now consider the A − C phase plane. Following 

( Guckenheimer, 1975 ), we define a point to be phaseless if every 

neighborhood of that point intersects each isochron of the stable 

DD limit cycle. An isochron consists of the set of initial conditions 

that have the same asymptotic phase as a particular point on the 

DD limit cycle. In particular, two nearby initial conditions that lie 

in the phaseless set can have very different asymptotic phases. The 

phaseless set lies in a region of phase space where the isochrons 

meet to form a pinwheel or a singularity. For any fixed value of 

n in the FJK model, including n = 0 (DD) or n = 1 (LL), this singu- 

larity lies in a neighborhood of the origin in A − C space. A tubu- 

lar neighborhood of the origin extending in the n direction can be 

considered as the generalization of the phaseless set for the pe- 

riodically LD-forced FJK model. Trajectories that pass through this 

set deviate from the usual dynamics in that they do not stay close 

to the LL and DD limit cycles during the reentrainment process. 

Instead they take the aforementioned shortcut across phase space 

during reentrainment. Characteristics of these trajectories include 

amplitude suppression, an inability to predict whether the entrain- 

ment is strictly through advance or delay, and situations in which 

the phase of the trajectory cannot be clearly discerned on a cycle- 

by-cycle basis. What we have found in simulation is that travel to 

time zones in a neighborhood of the demarcation point Z D , equiva- 

lently choosing an initial condition on the Poincaré section near x u , 

leads to trajectories that enter the phaseless set and take a short- 

cut across phase space. 

Fig. 12 C–F shows the reentrainment process for the trajecto- 

ries whose initial conditions lie in a neighborhood of x u , x 0 = 16 . 46 

(Panels C and D) and x 0 = 16 . 68 (Panels E and F). Both trajectories 

show amplitude suppression and take a shortcut across the pro- 

jection onto the A − C phase space; Panels C and E. The green dots 

in each of those panels indicate where the lights turned on in the 

current LD cycle. By the 4th cycle, both trajectories have reached a 

region of maximal suppression, but at the 5th cycle, the trajectory 

in Panel C emerges from that region in such a way that it quickly 

entrains to the correct phase (as shown by the red dot(s) on each 

of the panels). The trajectory in Panel E does not. From Panel D, 

one could argue that the trajectory entrains through phase advanc- 

ing, but the entrainment in Panel F defies such characterization. 

In particular, the phase of this trajectory does not appear to be 

predictable on a cycle-by-cycle basis. What is common to the two 

trajectories in Panels D and F is that prior to entering the region 

of amplitude suppression (phaseless set), neither one seems to be 

systematically phase advancing or delaying. We comment further 

on this in the Appendix, where we show that a shortcut also ex- 

ists in phase space at lower light intensities, but that this shortcut 

is not directly accessible through travel. 

3.6. Jet lag due to north-south travel 

The question of whether jet lag occurs due to north-south travel 

has received very little attention. Here we show that in fact there 

can be jet lag effects following long-distance north-south travel 

due to significantly different photoperiods between the departure 

and arrival locations. We show that these effects depend on the 

intrinsic period τ c of the traveler, and that the direction of reen- 

trainment (phase advance or phase delay) can be considered anal- 

ogously to orthodromic and antidromic reentrainment due to east- 

west travel. 

In modeling north-south travel and subsequent reentrainment, 

let N dep be the number of hours of light in the departure city and 

N dest be the number of hours of light in the destination city. We 

will make the following assumptions: 

• Prior to and during the flight, the traveler remains entrained to 

the departure LD cycle ( N = N dep ). 
• Upon arrival at the destination, the traveler lies on a Poincaré

section that intersects the LD-entrained solution ( N = N dep ) of 

the departure city X dep hours after the lights turned on in the 

departure city. 
• This Poincaré section intersects the LD-entrained solution ( N = 

N dest ) of the destination city at a location X dest hours after the 

lights last turned on in the destination city. 
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Fig. 12. Dramatically short reentrainment times are possible for travelers entering the phaseless set. (A) Heatmap of direct simulation reentrainment times (in days) for 

arrival times X and trips Z with τc = 24 . 2 h, N = 12 h, and I = 10 0 0 lux. There is a local minimum for eastward trips of 10.5 h ( Z = 10 . 5 ). (B) Reentrainment times for X = 6 

from direct simulation (black) and from cobwebbing the corresponding maps (magenta). The local minimum of reentrainment time observed in direct simulation corresponds 

to a local maximum predicted by the map, and occurs for trips that place the traveler in a region near the unstable fixed point of the map called the phaseless set (gray 

shading). (C–D) Phase plane trajectory (C) and time course (D) during reentrainment for Z = 10 . 46 , which exhibits amplitude suppression and very fast reentrainment (4.5 

days) for the traveler (orange). The green dots correspond to the location of the traveler when the lights turn on ( x = 0 ), with labels indicating the first 7 cycles. The red 

dot is x = 0 for the reference oscillator (blue trajectory). (E-F) Phase plane trajectory (E) and time course (F) during reentrainment for Z = 10 . 68 , which exhibits amplitude 

suppression but does not lead to very fast reentrainment (9.5 days). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

• Upon arrival, in direct simulation, the traveler is subjected to 

the appropriate amount of light and/or dark to complete the 

current 24 h cycle and is then subjected to the destination LD 

cycle ( N = N dest ). 
• Upon arrival, the entrainment map is based on the Poincaré

section X dest and reentrainment time is calculated with an ap- 

propriate initial condition as described below. 

To illustrate our findings we will work with a specific example: 

travel between New York City and Santiago, Chile on the North- 

ern hemisphere’s summer solstice. The reason for this choice is 

that at this time of the year, both cities lie in the same time 

zone and we do not have to adjust for east-west shifts. Below 

we will refer to the NYC LD-entrained solution and the Santiago 

LD-entrained solution. These solutions occur in our model for LD 

photoperiods of 15:9 ( N = 15 h) and 10:14 ( N = 10 h) respectively, 

with I = 10 0 0 lux. This light intensity is characteristic of outdoor 

light and provides a wider range of entrainment in τ c than does 

100 lux ( Fig. 4 C), which makes it easier to illustrate some of our 

findings in Sections 3.6 and 3.7 . 

On the northern solstice (June 20, 2016), the sun rose at 5:25 

AM and set at 8:31 PM in New York City (day length of 15:05 h), 

whereas in Santiago, Chile the sun rose at 7:46 AM and set at 5:42 

PM (day length of 9:56 h). For illustrative purposes we will take 

NYC to have an N = 15 h photoperiod with sunrise at 5:30 AM ( x = 

0 ) and sunset at 8:30 PM ( x = 15 ), and Santiago to have an N = 10 

h photoperiod with sunrise at 8 AM ( x = 0 ) and sunset at 6 PM 

( x = 10 ). 

The flight time from New York City to Santiago is roughly 13 h. 

Consider a leaving time of 10 AM from New York City with an ar- 

rival time of 11 PM in Santiago. Let us assume that the traveler is 

initially entrained to the NYC LD-entrained solution and remains 

so through the duration of the flight. Thus on arrival in Santiago, 

the traveler would be expecting 6.5 h of darkness, but instead re- 
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Fig. 13. Change in daylength due to north-south travel can cause jet lag. For all panels, τc = 24 . 2 h and I = 10 0 0 lux. (A) LD-entrained solution in Santiago on June solstice 

(photoperiod N = 10 h). The sun rises at 8 AM (red dot) and sets at 6 PM (black dot). The green dot represents a traveler from NYC that arrives in Santiago at 11 PM and is 

still entrained to the NYC LD cycle, where 11 PM corresponds to the X NY = 17 . 5 section denoted by the solid gray line. The blue dot represents a reference oscillator already 

entrained to the Santiago LD cycle, where 11 PM corresponds to the X SC = 15 section denoted by the dashed gray line. Therefore the traveler must reentrain and does so 

through phase advancing. (B) LD-entrained solution in NYC on June solstice (photoperiod N = 15 h). The sun rises at 5:30 AM (red dot) and sets at 8:30 PM (black dot). 

The magenta dot represents a traveler from Santiago that arrives in NYC at 11 PM and is still entrained to the Santiago LD cycle, where 11 PM corresponds to the X SC = 15 

section denoted by the dashed gray line. The blue dot represents a reference oscillator already entrained to the NYC LD cycle, where 11 PM corresponds to the X NY = 17 . 5 

section denoted by the solid gray line. Therefore the traveler must reentrain and does so through phase delaying. (C) Entrainment map for NYC to Santiago travel arriving 

at 11 PM. The stable fixed point is located at x s = 14 . 003 , which is where the X NY = 17 . 5 section (solid gray line) intersects the N = 10 LD-entrained solution in (A). The 

initial condition is located at x 0 = 15 , because upon arrival the traveler will experience 9 h of darkness before the sun rises. Cobwebbing the map yields reentrainment 

through phase advance (see inset), in agreement with direct simulation. (D) Entrainment map for Santiago to NYC travel arriving at 11 PM. The stable fixed point is located 

at x s = 18 . 496 , which is where the X SC = 15 section (dashed gray line) intersects the N = 15 LD-entrained solution in (B). The initial condition is located at x 0 = 17 . 5 , because 

upon arrival the traveler will experience 6.5 h of darkness before the sun rises. Cobwebbing the map yields reentrainment through phase delay (see inset), in agreement 

with direct simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ceives 9 h of darkness since the sun does not rise until 8 AM. Thus 

at arrival, the traveler is not entrained to the Santiago N = 10 LD 

cycle. For now, consider a traveler with a normal internal clock of 

τc = 24 . 2 h. At arrival, the traveler lies on the X NY = 17 . 5 Poincaré

section of the NYC LD-entrained solution. The intersection of this 

Poincaré section with the Santiago LD-entrained solution occurs for 

X SC = 14 . 005 . For travel from South to North, if a traveler leaves 

Santiago at 10 AM ( X SC = 2 ) and takes a 13-h flight, then arrival in 

NYC is at 11 PM which is X SC = 15 and X NY = 18 . 946 . Panel A of 

Fig. 13 shows the N = 10 Santiago LD-entrained solution and Panel 

B shows the N = 15 NYC LD-entrained solution. In Panel B, the 

solid gray line is the projection of the Poincaré section onto the 

NYC LD-entrained solution at arrival corresponding to X NY = 17 . 5 . 

The projection of this same Poincaré section onto the Santiago LD- 

entrained solution at X SC = 14 . 005 is shown in solid gray in Panel 

A. Similarly for travel from Santiago to NYC, the dashed gray lines 

correspond to the projection of the Poincaré section at arrival cor- 

responding to X SC = 15 of the Santiago LD-entrained solution and 

X NY = 18 . 946 of the NYC LD-entrained solution. 

The change in the stable entrained phase after north-south 

travel is already predicted by our earlier results concerning the 

Arnold onion and those of Schmal et al. (2015) . North-south travel 

is equivalent to moving along a vertical slice of Fig. 4 D. Knowing 

that there is a change in stable phase indicates that there may be 

an associated time to reentrainment, which we can calculate by 

cobwebbing the appropriate entrainment map. 

We first calculate reentrainment via direct simulation. Since the 

sun will come up in Santiago at 8 AM, we simulate 9 more hours 

of darkness starting with an initial condition corresponding to 11 

PM on the NYC LD-entrained solution ( X NY = 17 . 5 ) and then begin 

10:14 LD cycles. At the same time we also start a reference oscil- 

lator with initial conditions corresponding to 11 PM on the San- 

tiago LD-entrained solution ( X SC = 15 ) and subject it to the same 

protocol. We keep track of the times that the trajectories cross the 

Poincaré section X SC = 14 . 005 , and when they cross within 0.5 h of 

each other we declare the traveler trajectory to be entrained. This 

procedure gives an entrainment time of 71.458 h (see ∗ in Table 1 ). 

Note that travel from NYC to Santiago can be considered as a phase 

delay in the sense that at arrival at 11 PM, the traveler would ex- 

pect the lights to turn on at the start of the next NYC-based LD 

cycle after 6.5 h. Instead the lights turn on at the beginning of the 

next SC-based LD cycle which occurs after 9 h. Thus the traveler is 

phase delayed with respect to lights on in the arrival time zone. 

To compute entrainment time using the map, we build a N = 10 

map with the Poincaré section at X SC = 14 . 005 on the Santiago LD- 

entrained solution. Since arriving at 11 PM means there will be 

9 more hours of dark before the 10:14 LD cycle begins, we cob- 

web the map using an initial condition of x 0 = 15 . This proce- 
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Table 1 

Reentrainment times for southward and northward travel with τc = 24 . 2 h and I = 10 0 0 lux. 

Direct simulation Entrainment map 

t t ref t re f − t x n x n +1 x s − x n +1 ρ( x n ) 	ρ( x n ) 

NYC to Santiago 23.776 23.005 −0.772 15 14.780 −0.775 23.780 23.779 

47.598 47.005 −0.593 14.780 14.622 −0.617 23.842 47.621 

71.459 ∗ 71.005 −0.454 14.622 14.465 −0.460 23.843 71.465 ∗∗

Santiago to NYC 24.34 4 4 24.9960 0.6516 17.5 17.841 0.655 24.341 24.341 

48.5594 ∗ 48.9960 0.4366 17.841 18.040 0.456 24.199 48.540 ∗∗

dure gives an entrainment time of 71.464 h (see ∗∗ in Table 1 ), 

which is in close agreement to the direct simulation result. Fig. 13 C 

shows a cobweb diagram of the reentrainment process. The tra- 

jectory starts with x 0 = 15 and phase advances (moves to the left 

closer to the start of the LD cycle) towards the stable fixed point 

at X SC = 14 . 005 . Thus in this situation, although the travel from 

North to South is a phase delay, the reentrainment is antidromic 

through phase advancement. This is in contrast to the norm for 

east-west travel for which reentrainment is typically orthodromic, 

i.e. through phase delays when the travel yields a phase delay, and 

vice versa for advances. Thus, it is surprising that the “natural”

mode of reentrainment for travel from north to south at the June 

solstice for a traveler with a normal body clock is antidromic. 

For travel from south to north, if a traveler leaves Santiago at 

10 AM ( X SC = 2 ) and takes a 13-h flight, then arrival in NYC is 

at 11 PM which is X SC = 15 and X NY = 18 . 946 . Following a simi- 

lar procedure as above, we simulate 6.5 h of darkness before start- 

ing 15:9 LD cycles. Through direct simulation the entrainment time 

is 48.56 h. Similarly, we build the X NY = 18 . 946 , N = 15 map and 

check reentrainment with an initial condition x 0 = 17 . 5 . Reentrain- 

ment time using the map is found to be 48.54 h. Travel from south 

to north can be considered a phase advance since the traveler will 

experience the onset of the next LD cycle sooner in NYC than in SC. 

But, as noted from Fig. 13 D, reentrainment is through phase delay. 

Thus this reentrainment is also antidromic. As seen from the above 

results, for τc = 24 . 2 h traveling from photoperiods of N = 10 to 

N = 15 h incurs roughly the same reentrainment time (2 to 3 days) 

as traveling from N = 15 to N = 10 h. 

In Fig. 14 A we show reentrainment times calculated from di- 

rect simulation for travel between NYC and Santiago for τ c ranging 

from 22.6 to 26 h. Note, as τ c decreases, it takes longer to reen- 

train after the northbound Santiago to NYC trip than the south- 

bound trip. The opposite is true as τ c increases. Also observe that 

there are values of τ c for which there is no jet lag, e.g. τ c ≈ 23, 

24.7. 

As we change τ c , both the NYC LD-entrained and SC LD- 

entrained solutions change in shape in phase space. This means 

that the locations of various Poincaré sections change. For arrival 

at 11 PM, while this still corresponds to lying on the section X NY = 

17 . 5 , it means that the X SC section changes. Fig. 14 B shows the lo- 

cation of the X SC section as a function of τ c . It is parabolic shaped. 

What does not change is the location of the initial condition x 0 = 

15 from which we check reentrainment time. For any fixed τ c , the 

vertical distance between the dashed line at x 0 = 15 and the blue 

curve of section locations, which corresponds to the stable fixed 

points x s for the respective maps, indicates the distance over which 

a trajectory would have to evolve in order to reentrain. Note that 

the curve of sections intersects x 0 = 15 at the values τ c ≈ 23 and 

24.7. Thus the distance | x 0 − x s | < 0 . 5 which means that the tra- 

jectory is already entrained. This explains why travel for nearby 

values of τ c experience no jet lag. Similarly Fig. 14 C shows the lo- 

cation of the X NY section as determined from using the X SC = 15 

section. This curve is also parabolic shaped, but opens down. It in- 

tersects the line of initial conditions at x 0 = 18 at τ c ≈ 23 and 24.7 

as well. 

Fig. 14. Reentrainment following north-south travel depends on intrinsic period 

and is typically antidromic. (A) Jet lag due to north-south travel is most severe 

for extreme intrinsic periods (greater than 5 days for τ c ≤ 23 and τ c ≥ 25.4), with 

southbound travel (blue) being worse for slow intrinsic clocks and northbound 

travel (red) being worse for fast intrinsic clocks. (B) Location of stable fixed point x s 
and initial condition x 0 for southbound travel as a function of τ c . Severity of south- 

bound jet lag in (A) reflects the distance between x s and x 0 , with zero days of reen- 

trainment required when x 0 is within 0.5 h of x s , as is the case for τc = 23 , 24.6, 

and 24.8 h. For 23 ≤ τ c ≤ 24.6, x s < x 0 , therefore reentrainment is through phase ad- 

vances and is considered antidromic since southbound travel in the month of June 

is a phase delay of the LD cycle; see text for detailed explanation. (C) Location of 

stable fixed point x s and initial condition x 0 for northbound travel as a function of 

τ c . Severity of northbound jet lag in (A) reflects the distance between x s and x 0 . 

For 23 ≤ τ c ≤ 24.6, x s > x 0 , therefore reentrainment is through phase delays and is 

considered antidromic since northbound travel in June is a phase advance of the LD 

cycle. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

For travel from NYC to Santiago, Fig. 14 B shows that the curve 

of sections lies below x 0 = 15 for values lying between 23 and 24.7. 

This means that the stable fixed point lies to the left of the ini- 

tial condition x 0 = 15 . Thus reentrainment would occur through 

advance. However, for τ c less than 23 or greater than 24.7, the 

stable fixed point x s is to the right of x 0 = 15 so reentrainment 

is through phase delay. Since southward travel at the northern sol- 

stice is considered to be a delay, this reentrainment can be thought 

of as being orthodromic. Note that at the extreme values of τ c , or- 

thodromic reentrainment takes longer than the antidromic reen- 

trainment that occurs for intermediate values 23 < τ c < 24.7. In ad- 
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Fig. 15. Jet lag due to trips involving both north-south and east-west travel can be more or less severe than purely eastward or westward travel depending on intrinsic 

period and daylength. (A) Illustration of trips considered: pure eastward or westward travel between NYC and Beijing (E 15 /W 15 ) and Santiago and Perth (E 10 /W 10 ), travel 

between NYC and Perth (SE/NW), and travel between Santiago and Beijing (NE/SW). NYC and Santiago are 11 time zones away from Beijing and Perth. The trips are made on 

the June solstice when NYC/Beijing have 15 h of light and Santiago/Perth have 10 h of light. For these simulations we set I = 10 0 0 lux. (B) Reentrainment times for τc = 24 . 6 

h. For τc = 24 . 6 h, all reentrainment occurs through phase delays. Blue (red) bars correspond to eastward (westward) travel. See text for an explanation of the ordering of 

reentrainment times. (C) Reentrainment times for τc = 23 . 0 h. In this case all reentrainment occurs through phase advances, and the ordering of reentrainment times is the 

opposite of the ordering for τc = 24 . 6 h. (D) Reentrainment times for τc = 24 . 2 h. In this case reentrainment can occur either through phase advance (E 10 ), phase delay (W 15 , 

NW, W 10 , SW, and SE), or fast reentrainment through the phaseless set (NE). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

dition, for travel from Santiago to NYC, orthodromic reentrainment 

for τ c < 23 takes surprisingly long, on the order of 10 to 15 days. 

For small τ c , the N = 15 entrainment map is closer to its bifur- 

cation point than the N = 10 map. What this means is that the 

derivative of the map at the stable fixed point x s is closer to one 

for the N = 15 map compared to the N = 10 map. The magnitude 

of this derivative controls the rate of attraction towards the fixed 

point. The closer it is to one, the slower the reentrainment. At the 

other extreme of τc = 26 h, the N = 10 map is closer to bifurca- 

tion. The situation is reversed and southward trips taker longer to 

reentrain from than northward trips. 

3.7. Travel that is both east-west and north-south 

Having separately considered jet lag due to east-west and 

north-south travel, we now consider travel that combines both 

east-west as well as north-south changes. The main point we 

would like to address is the extent to which changes in photope- 

riod synergistically add on to (or subtract from) jet lag due to pure 

eastward or westward travel. We will consider four different cities, 

New York City (NY), Santiago, Chile (SC), Beijing, China (BC) and 

Perth, Australia (PA); see Fig. 15 A. The main reason to choose Bei- 

jing and Perth is that they lie in the same time zone and have the 

same photoperiods as New York City and Santiago respectively. We 

shall assume that on the June solstice, both NYC and Beijing have 

15:9 photoperiods with sunrise at 5:30 AM and sunset at 8:30 PM. 

Santiago and Perth are both under 10:14 photoperiods with sun- 

rise at 8:00 AM and sunset at 6:00 PM. Both Beijing and Perth are 

11 time zones east of NYC and Santiago. We assume that the trav- 

eler stays entrained to the HTZ during travel. Initially, we will work 

with two different periods of the intrinsic clock, τc = 23 and 24.6 

h. We choose these representative values because results from the 

prior section indicate that strict north-south travel for individuals 

with these clocks produces no jet lag. Thus an interesting ques- 

tion to explore is whether northeast and southeast (northwest and 

southwest) travel have different jet lag than pure eastward (pure 

westward) travel. 

Fig. 15 A shows the different directions of travel that we shall 

consider. The directions SE, SW, NE and NW are self-explanatory. 

The directions E 10 , W 10 , E 15 and W 15 refer to east-west travel un- 

der conditions of N = 10 h for travel between Santiago and Perth 

and N = 15 h for travel between NYC and Beijing. Fig. 15 B shows 

reentrainment times for various modes of travel for τc = 24 . 6 h 

with I = 10 0 0 lux. There are effectively four pairs of reentrainment 

times: 

W 15 = NW < E 15 = NE < W 10 = SW < E 10 = SE . (8) 

Below we shall explain why these pairs exist and why the order- 

ing of reentrainment times follows this pattern. For now, note that 

SE travel has more jet lag than E 15 , and SW travel has more jet 

lag than W 15 . These results show how the change in photoperiod 

affects travel over different time zones. Consider the NYC, Beijing, 

Perth triangle. Travel from NYC to Beijing requires 11 days for reen- 

trainment. Travel from Beijing to Perth requires zero days of reen- 

trainment. Yet travel from NYC to Perth requires 13 days of reen- 

trainment despite the fact that strict north-south travel incurs no 

jet lag. Fig. 15 C shows reentrainment times for τc = 23 . 0 h with 

I = 10 0 0 lux. Here, as would be expected, the ordering of the reen- 

trainment times is exactly the opposite than the larger τ c case: 

W 15 = NW > E 15 = NE > W 10 = SW > E 10 = SE . (9) 
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What is different is the degree to which north-south travel af- 

fects jet lag, as illustrated by looking at the same travel triangle 

as above. Beijing to Perth still requires zero days of entrainment. 

Now E 15 travel from NYC to Beijing requires 17 days for reentrain- 

ment, while the NYC to Perth travel only requires about 10 days to 

reentrain. 

The reentrainment calculations for SE, SW, NE and NW travel 

combine the protocols that we had employed earlier to calculate 

reentrainment due to east-west or north-south travel. In particu- 

lar, we choose Poincaré sections as for north-south travel, but now 

adjust the initial condition to take the change in time zone into 

consideration. For example, consider travel from NYC to Perth with 

arrival occurring at 10 AM Perth local time (DTZ). This corresponds 

to 11 PM NYC local time (HTZ). The traveler, by assumption, re- 

mains entrained to the NYC LD cycle. Thus at arrival in Perth, the 

traveler is at X NY = 17 . 5 . We compute where this Poincaré section 

intersects the N = 10 Perth LD-entrained solution, which occurs 

at X PA = 14 . 697 for τc = 24 . 6 h, and X PA = 14 . 803 for τc = 23 . 0 h. 

We build an entrainment map for the N = 10 LD-entrained solu- 

tion and compute the reentrainment time with initial condition of 

x 0 = 2 . We choose this initial condition because arrival at 10 AM 

in Perth where sunrise occurs at 8AM means that 2 h of light have 

already occurred. Travel that is SW, NE, or NW is handled analo- 

gously. 

To understand why certain pairs of travel have the same reen- 

trainment time, consider the result that E 10 = SE. Above, we have 

already described the reentrainment protocol for SE travel. Now 

consider Santiago to Perth with arrival at 10 AM local Perth time 

(DTZ), which is 11 PM local Santiago time (HTZ). Now this corre- 

sponds to X SC = 15 . Our protocol for east-west travel dictates that 

we use X PA = 15 and again choose x 0 = 2 . Thus travel to Santiago 

from Perth (E 10 ) differs from NYC to Perth (SE) only to the extent 

that the entrainment maps being used are X PA = 15 compared to 

X PA = 14 . 697 (E 10 ) or 14.803 (SE). Both use the same initial con- 

dition x 0 = 2 . Thus the reentrainment time to these two different, 

but relatively close fixed points is nearly identical. Similar argu- 

ments show why the other three pairs of travel have nearly iden- 

tical reentrainment times. 

To explain the ordering of reentrainment times, take the case 

τc = 24 . 6 h, where we know that eastward travel is worse than 

westward travel. Thus W 10 < E 10 and W 15 < E 15 . The reason that 

E 15 < W 10 has to do with how far the N = 15 and N = 10 maps are 

from bifurcating. As τ c increases, the fixed points of the N = 15 

map bifurcate before those of the N = 10 map. Thus for τc = 24 . 6 

h the N = 15 map has a slope that is closer to one at its stable 

fixed point x s = 17 . 5 then the N = 10 map at its stable fixed point 

x s = 10 . As stated in the previous section, entrainment times in- 

crease dramatically when the map is close to bifurcation. When 

τc = 23 h, the N = 10 map is closer to bifurcating than the N = 15 

map and this causes W 10 < E 15 for this case. In fact for this case, 

the closeness of the map to bifurcation explains why the W 15 reen- 

trainment times are so much longer than the E 10 times. 

The choices of τc = 23 . 0 and 24.6 h were taken because those 

were the ones at which strict north-south travel incurs no jet lag. 

The entrainment times for those two cases are anti-symmetric in 

their ordering. For a normal human traveler with τc = 24 . 2 h, one 

might expect entrainment times to fall somewhere between those 

of the two specific cases. However, we would not expect the pair- 

ing of certain reentrainment times to continue to exist. Panel D of 

Fig. 15 confirms, in part, these observations. First, reentrainment 

times do generally lie between those of the two specific cases for 

each of the respective trips. Further, there is no pairing of entrain- 

ment times for certain trips since the Poincaré sections used to 

build the pairs, now, need not lie close to one another. We can 

explain the difference in reentrainment times within these pairs 

using the maps for north-south travel with τc = 24 . 2 h shown in 

Fig. 13 . 

Consider the pair W 15 and NW, which reentrain according to 

similarly-shaped maps with N = 15 and x 0 = 6 . 5 , where x s = 17 . 5 

(18.4 98) and x u = 3 . 04 8 (4.144) for W 15 (NW). Therefore both trav- 

elers reentrain through phase delays, however the NW traveler 

starts closer to x u and has to cobweb further to get to x s than does 

the W 15 traveler. Thus the maps predict that NW will take longer 

to reentrain, which is consistent with the direct simulation results 

shown in Fig. 15 D (12.5 versus 11.9 days). 

Next consider the pair W 10 and SW, which reentrain according 

to similarly-shaped maps with N = 10 and x 0 = 4 , where x s = 15 

(14.003) and x u = 2 . 781 (1.565) for W 10 (SW). Again both travel- 

ers reentrain through phase delays, however the SW traveler starts 

further from x u and does not have to cobweb as far to get to x s 
as does the W 10 traveler. Thus the maps predict that SW will take 

less time to reentrain, which is consistent with the direct simula- 

tion results (10.4 versus 11.9 days). 

To summarize, we have found that NW travel incurs worse jet 

lag than W 15 , whereas SW travel incurs less jet lag than W 10 . In 

both cases the westward component of the travel leads to reen- 

trainment through phase delay. What is different is that in the for- 

mer case, the northbound component of the travel also requires 

the traveler to phase delay to reentrain to the shorter photope- 

riod, while in the latter case the southbound component requires 

the traveler to phase advance to reentrain to the lengthened pho- 

toperiod. For NW the change in time zone and change in photope- 

riod exacerbate each other leading to longer total reentrainment 

than pure westward travel in the northern hemisphere. For SW the 

change in time zone and change in photoperiod counteract each 

other leading to shorter total reentrainment time than pure west- 

ward travel in the southern hemisphere. 

Now consider eastward travel, starting with the E 10 and SE pair. 

These reentrain according to the N = 10 maps with x 0 = 2 , where 

x s and x u are the same as for W 10 and SW. Here the maps predict 

that the Santiago to Perth traveler reentrains through phase ad- 

vances, but the NYC to Perth traveler reentrains through phase de- 

lays. Thus the change in photoperiod encountered by the SE trav- 

eler has moved the unstable fixed point enough that the south- 

bound component of the travel reverses the direction of reentrain- 

ment with respect to pure eastward travel. Since the two travel- 

ers reentrain in different directions and thereby traverse different 

x values of the map, it is difficult to say which one will reen- 

train faster based solely on knowledge of the locations of x s and 

x u . However cobwebbing the map predicts that E 10 reentrainment 

time will be longer than SE. These predictions regarding reentrain- 

ment times and directions are confirmed by the direct simulation 

results (13.0 days for E 10 versus 10.5 days for SE). 

Finally, consider the E 15 and NE pair. These reentrain according 

to the N = 15 maps with x 0 = 4 . 5 , where x s and x u are the same 

as for W 15 and NW. Both travelers reentrain through phase delays, 

with the NE traveler starting closer to x u and having to cobweb 

further to get to x s than the E 15 traveler. Thus the map predicts 

that NE will take longer to reentrain, however this is not what 

we find in direct simulation. Instead, the Santiago to Beijing trav- 

eler reentrains much more quickly (5.6 days) than the NYC to Bei- 

jing traveler (11.5 days), as shown in Fig. 15 D. The reentrainment 

time for NE is shorter than predicted by the map due to the ini- 

tial condition x 0 = 4 . 5 being very close to x u = 4 . 144 and hence in 

the phaseless set of the NE map. As discussed in Section 3.5 , with 

the higher intensity light level used for these simulations ( I = 10 0 0 

lux), reentrainment times for initial conditions lying in the phase- 

less set can be dramatically short. 
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4. Discussion 

For this study of jet lag, we chose the FJK model because 

it has been fit to human data on how light affects the circa- 

dian system ( Forger et al., 1999; Jewett and Kronauer, 1998; Kro- 

nauer, 1990; Kronauer et al., 1999 ), has been extensively validated 

through experiments ( Van Dongen, 2004 ), and has been used in 

“real-world” applications such as fatigue and performance model- 

ing ( Dean et al., 2007 ). Previous work employing the FJK model in 

the context of jet lag includes ( Dean et al., 2009; Qiao et al., 2017; 

Serkh and Forger, 2014; Zhang et al., 2016 ), all of which used tech- 

niques from optimization or control theory to design light expo- 

sure schedules for the traveler to follow after reaching their desti- 

nation in order to minimize reentrainment time. In our study, we 

assumed that the traveler will experience light according to the 

natural LD cycle in the destination and do not attempt to design al- 

ternative light exposure schedules. Instead, we systematically char- 

acterized how reentrainment depends on parameters such as the 

period of the endogenous circadian oscillator, the photoperiod and 

light intensity of the external LD forcing, the number of time zones 

crossed, the direction of travel, and the time of day at which the 

trip occurs. 

The main mathematical tool that we used in this paper is the 

construction and analysis of a set of entrainment maps. These 

maps determine how the phase of light onset changes each time 

a trajectory passes through a prescribed Poincaré section of the 

phase space. Entrainment map analysis offers several advantages. 

First, the maps depend on parameters in predictable ways that 

yield important findings on how the dynamics of the full set of 

equations actually evolve. For example, we showed here how the 

maps depend on endogenous period τ c , photoperiod N , and light 

intensity I . The parameter dependence was qualitatively similar to 

what we had found in an earlier study ( Diekman and Bose, 2016 ) 

of circadian models ( Gonze et al., 2005; Kim and Forger, 2012; 

Tyson et al., 1999 ), indicating that the map is capturing generic 

properties of circadian oscillators. Next, the fixed points of the en- 

trainment map provide valuable information about the reasons for 

the underlying dynamics of circadian models. For example, when 

the map is constructed from a numerically obtained LD-entrained 

solution, then the stable fixed point of the map x s corresponds to 

this stable limit cycle. The stability of x s is easily determined by 

visual inspection of the slope of the map at x s . The unstable fixed 

point of the map, x u , can correspond to an actual unstable orbit of 

the system, but, as demonstrated here, this is dependent on other 

factors such as the light intensity. However, the unstable fixed 

point definitely provides evidence for a location in phase space 

where trajectories either reentrain through phase advance or de- 

lay. For instance, we located Z D , a demarcation point, along the LD- 

entrained solution using information from x u . Perhaps the biggest 

advantage of the map is that it simultaneously provides informa- 

tion about both the stable and unstable phases, as well as the time 

it takes initial conditions to converge to the stable phase through 

the cobweb procedure. This is in contrast to methods based on 

phase response curves or Arnold tongues/onions, which primarily 

give information about the stable phase but not the dynamics of 

the reentrainment process. 

We used a combination of direct simulations and entrainment 

map analysis to obtain our results. In many cases, the map was 

used to organize and explain mathematically the results and ob- 

servations obtained through direct simulations. Whereas in other 

cases, analysis of the map provided information that simulations 

alone would not likely have found. While discussed in more detail 

below, we would like to emphasize that the map was particularly 

helpful in identifying certain mathematical objects that play a key 

role in the FJK model. First, the map was used to find the existence 

of neutral period curves for different length trips. Using the first it- 

erate of the map as a proxy for reentrainment times, we defined a 

neutral period point as an east or west trip for which the distance 

of the map from the diagonal is the same. This allowed us to ex- 

plain the existence of the east-west asymmetry of jet lag. Next, the 

map explained which circumstances led to antidromic versus or- 

thodromic reentrainment. Finally, the map revealed the existence 

of unstable periodic solutions for low light intensity. This led us to 

better understand the phase space structure of the full FJK model 

for all lux levels and to speculate about what geometric structure 

provides a separatrix-like effect for phase advancing versus phase 

delaying trajectories. Both of these latter two findings are related 

to the unstable fixed point of the map, which we discuss in more 

detail in the Appendix. 

4.1. Neutral period and east-west asymmetry 

Many travelers experience more severe symptoms of jet lag af- 

ter traveling east than they do after traveling west ( Sack, 2009; 

Waterhouse et al., 2007 ). The typical explanation for this asym- 

metry is that since the endogenous period of the human circadian 

clock is greater than 24 h, it is easier to phase delay the clock and 

entrain to the phase delay of sunrise/sunset that occurs following 

westward travel than it is to phase advance the clock and entrain 

to the phase advance of sunrise/sunset that occurs following east- 

ward travel ( Eastman and Burgess, 2009; Monk et al., 20 0 0 ). Our 

analysis agrees with this explanation in general but adds an impor- 

tant distinction: while the directional asymmetry does depend on 

endogenous period, we find however that whether the endogenous 

period is greater than or less than 24 h is not the critical factor. 

Instead, we suggest it is a generic property of circadian limit cy- 

cle oscillators that there exists a “neutral” endogenous period for 

which equivalent advances or delays of the LD cycle (i.e. eastward 

or westward travel across the same number of time zones) will 

induce the same amount of jet lag. Clocks with an endogenous pe- 

riod greater than the neutral period suffer worse jet lag after east- 

ward travel and those with an endogenous period less than the 

neutral period suffer worse jet lag after westward travel. The neu- 

tral period terminology was introduced by Aschoff et al. (1975) , 

who studied the asymmetry effect in a variety of species and a 

mathematical model ( Wever, 1966 ). We find that the neutral pe- 

riod depends on daylength and, as a result, we generalize this no- 

tion to a neutral period curve (see Figs. 10 and 11 ). For example, 

considering east/west trips of 6 time zones and I = 100 lux, we 

found the neutral period to be 24.2 under long days (15:9 pho- 

toperiod), 24 h for intermediate length days (11:13 photoperiod) 

and 23.9 under short days (10:14 photoperiod). Thus for a trav- 

eler with an endogenous period of 24.1 h, we predict that travel- 

ing east will be harder than west in the winter, but that traveling 

west will be harder than east in the summer, since for I = 100 lux 

these two cases correspond to parameter pairs that lie on opposite 

sides of the neutral period curve. While the existence of neutral 

period curves does not depend on light intensity, the shape of the 

NPC may be dependent on light intensity since a higher lux level 

increases the concavity of entrainment maps and leads to faster 

reentrainment. In turn, this may lead to different light intensity- 

dependent predictions regarding seasonal effects on the difficulty 

of travel. 

In work related to the east-west asymmetry of jet lag, 

Lu et al. (2016) studied a macroscopic reduction of a globally cou- 

pled network of phase models. Their approach is to derive an or- 

dinary differential equation for a complex-valued order parameter 

that governs whether or not the system is in an entrained or unen- 

trained state. In their model, depending on parameters, this differ- 

ential equation can have stable and unstable fixed points as well 

as limit cycle solutions. Lu et al. find that when the endogenous 

period is larger than 24 h, eastward trips take longer to reentrain 
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from then westward ones across the same number of timezones. 

They find the opposite to hold when the endogenous period is less 

than 24 h. In some sense, their model utilizes 24 h as a neutral 

period, independent of daylength. 

4.2. Threshold separating orthodromic and antidromic reentrainment 

After a small phase shift of the LD cycle a circadian oscilla- 

tor will reentrain orthodromically, i.e. in the same direction as the 

shift. This corresponds to reentrainment through phase advances 

after short eastward trips and through phase delays after short 

westward trips. Longer transmeridian trips that constitute larger 

phase shifts of the LD cycle and can lead to antidromic reentrain- 

ment where travelers reentrain through phase delays after east- 

ward travel or phase advances after westward travel ( Arendt et al., 

1987; Burgess et al., 2003; Klein and Wegmann, 1977; Takahashi 

et al., 2001 ). In a simulation study of a mammalian molecular clock 

model, Leloup and Goldbeter (2013) found a sharp threshold in 

the magnitude of the LD phase shift that separates orthodromic 

and antidromic reentrainment. They showed that phase shifts that 

put the traveler in the vicinity of this threshold result in very long 

reentrainment times, similiar to what we find in the FJK model for 

lux levels corresponding to indoor light. Leloup and Goldbeter used 

phase response curve (PRC) analysis to roughly predict the loca- 

tion of this threshold, but stressed that using the PRC for this pur- 

pose is not straightforward and not very accurate. We have shown 

that the entrainment map, in particular the unstable fixed point 

of the map, provides an easy and accurate method of predicting 

the critical phase shift (or trip) that separates these two modes of 

reentrainment. Lu et al. (2016) find circumstances where the sta- 

ble manifold of an unstable saddle fixed point determines whether 

solutions reentrain through phase advance or phase delay. The au- 

thors show this saddle fixed point merges with another fixed point 

as a parameter is varied. Interestingly, even after the bifurcation, 

the effect of the saddle is still present in separating phase advance 

versus phase delay. This is similar to what we find with the in- 

crease in the lux level ( I = 100 increasing to I = 10 0 0 ) causing the 

unstable fixed point of our map to no longer correspond to an ac- 

tual unstable periodic orbit. Still, as demonstrated, we find that x u 
separates out phase advancing versus phase delaying initial condi- 

tions even at high lux. 

4.3. Aiming to enter the phaseless set as a strategy for minimizing jet 

lag 

Our results show that as the light intensity is increased, reen- 

trainment times decrease. This is consistent with previous simu- 

lation studies of the FJK model ( Serkh and Forger, 2014 ). More- 

over, we have shown that the FJK model exhibits the curious phe- 

nomenon of very fast entrainment for certain trajectories that pass 

through the phaseless set when the light intensity is large. For ex- 

ample, for travelers with an endogenous period of 24.2, trips that 

are roughly 10.5 h to the east place the traveler in a neighbor- 

hood of the unstable fixed point of the map. For low lux I = 100 , 

this is the worst trip as this leads to the longest reentrainment 

time (roughly 25 days) compared to all other trips independent 

of arrival time; see Fig. 8 . But once the lux is increased to 10 0 0, 

the reentrainment time for this same trip is much shorter (on the 

order of 5 days) due to the “shortcut” that the trajectory takes 

through phase space; see Fig. 12 . However, this seems to depend to 

some extent on arrival time, e.g. arriving at X = 2 instead of X = 6 

will result in about 10 days of reentrainment. Thus our results sug- 

gest that a traveler may actually wish to intentionally make this 

“worst” trip, provided that the traveler can guarantee exposure to 

high lux levels during the reentrainment process and the correct 

arrival time. 

Fast reentrainment through the phaseless set is characterized 

by a suppression of oscillation amplitude where the trajectory en- 

ters what is effectively a region of phases that converge at a 

phase singularity or pinwheel, a manifestation of the phaseless set. 

When the trajectory enters this pinwheel region, it has a chance of 

emerging with a phase that is much closer to the entrained phase 

than when it enters, thereby shortening the reentrainment time. 

When computing optimal light exposure schedules to reentrain 

the FJK model in minimum time, Serkh and Forger (2014) found 

several examples of optimal reentrainment that involved taking a 

shortcut across the limit cycle and reduction of oscillator ampli- 

tude in the middle of the schedule. Consistent with our results, 

Serkh and Forger only observed this phenomenon at high lux val- 

ues. In Lu et al. (2016) , there is a local minimum of reentrainment 

times exactly in a neighborhood of the “worst” trip. Though not 

discussed in their paper, this faster than expected reentrainment 

may also be related to trajectories taking shortcuts in phase space. 

4.4. Jet lag due to north-south travel 

The medical definition of jet lag—insomnia, excessive daytime 

sleepiness, or general malaise associated with transmeridian travel 

of at least two time zones—precludes the possibility of jet lag due 

to purely north-south travel ( Sack, 2009 ). Indeed it has been ex- 

plicitly stated that travel along the same meridian, for example Eu- 

rope to southern Africa, causes no jet lag ( Herxheimer and Water- 

house, 2003 ). However if one considers a broader definition, such 

as jet lag symptoms resulting from any travel that shifts the align- 

ment of 24-h environmental cycles relative to the endogenous cir- 

cadian clock ( Song et al., 2017 ), then it seems plausible that the 

change in daylength encountered after long-distance translatitudi- 

nal travel in the summer or winter could induce jet lag-like ef- 

fects. In our simulations of the FJK model, we find that it takes 

about 3 days for an oscillator with the average human endoge- 

nous period (24.2 h) to reentrain following travel from summer 

days with 15 h of light to winter days with 10 h of light, or vice 

versa. For circadian oscillators with long or short endogenous peri- 

ods, the reentrainment time following such travel can be a week or 

more. We used the entrainment map to provide an explanation for 

these results by showing how the phase of entrainment (the sta- 

ble fixed point of the map) is affected by daylength. The map and 

simulations also predict that the natural mode of reentrainment 

is antidromic, in that traveling from summer to winter constitutes 

a phase delay of the LD cycle but reentrainment occurs through 

phase advances. We are not aware of any field, laboratory, or com- 

putational studies that have thoroughly explored the question of 

reentrainment after translatitudinal travel. A review of jet lag by 

Waterhouse et al. (2007) notes that travel between hemispheres 

produces disorientation because of changes in natural lighting but 

does not elaborate further. In a field study with four human sub- 

jects, Hauty and Adams (1965a ; 1965b ; 1965c ) included a north to 

south flight (from Washington, D.C. to Santiago, Chile) as a control 

to compare against east to west (Oklahoma City to Manila) and 

west to east (Oklahoma City to Rome) flights, in order to assess 

the effects solely attributable to a long flight versus effects due to 

changes in time zone. They found that all three flights produced a 

significant amount of subjective fatigue, but that the north-south 

flight did not cause a phase shift of circadian rhythms in physi- 

ological measurements such as rectal temperature and heart rate, 

whereas the other two flights did. However, the time of year that 

these flights took place is not reported in this study, and so it is 

possible that the flights were in spring or fall when the daylengths 

in D.C. and Santiago are similar. Moreover, the endogenous circa- 

dian period of the subjects was not reported, so it is difficult to 

compare their results to our predictions based on the FJK model. 



282 C.O. Diekman, A. Bose / Journal of Theoretical Biology 437 (2018) 261–285 

Horses are the only species other than humans that are flown 

around the world for athletic competitions. The effect on equine 

physiology and performance of shifts in the LD cycle equivalent 

to travel across time zones has been assessed using thoroughbred 

racehorses kept in light-controlled stables ( Tortonese et al., 2011 ). 

These studies found that horses are highly sensitive to light cues 

and rapidly adapt to phase shifts in the LD cycle. Surprisingly, ath- 

letic performance as measured by treadmill tests was actually en- 

hanced following phase advances of the LD cycle simulating east- 

ward travel. This enhancement was not attributed to an endoge- 

nous rhythm in athletic ability, but rather to masking effects of 

light and a timely rise in the hormone prolactin. In a commen- 

tary, the authors of this study note that horses have weak endoge- 

nous circadian rhythms but strong circannual biological rhythms 

( Tortonese and Short, 2012 ). The robust circannual clock may lead 

to slow adaptation in response to sudden changes in latitude, 

in contrast to the fast adaptation seen in response to simulated 

changes in longitude. Consistent with this prediction, racehorses 

subjected to simulated transequatorial flights exhibit negative ef- 

fects on athletic performance (Domingo Tortonese, personal com- 

munication). 

In our simulations of north-south travel, we have taken the 

photoperiod to be greater in the northern location ( N = 15 h) than 

the southern location ( N = 10 h) based on the duration of sunlight 

in the natural light-dark cycles at these latitudes at the selected 

time of year (June). However, the prevalence of electric lighting 

in modern society renders the duration of light that the circa- 

dian system is exposed to less dependent on the photoperiod of 

the natural light-dark cycle than it would be in the absence of ar- 

tificial lighting ( Skeldon et al., 2017 ). Despite the ability to con- 

trol certain aspects of our light environment, there is still sea- 

sonal variation in the amount of light humans are exposed to in 

industrialized societies, with greater light exposure in the sum- 

mer months than the winter months ( Park et al., 2007 ). Further- 

more, Thorne et al. (2009) found a seasonal effect on the time 

course of light exposure throughout the day. During the evening 

hours (5 PM–9 PM in their study), subjects were exposed to sig- 

nificantly more blue light in summer than in winter. Blue light is 

known to have a more potent phase shifting effect on the circadian 

clock than light at other wavelengths ( Warman et al., 2003 ), and 

most artificial light sources contain less blue than natural light. 

Taken together, these observations suggest that modern humans 

are exposed to a longer duration of natural light in the summer, 

and therefore suddenly shifting from summer to winter (for exam- 

ple by traveling from NYC to Santiago in June) may reasonably be 

modeled as a reduction in N . Nevertheless, extensions of the en- 

trainment map methodology to handle more realistic self-selected 

light exposure patterns would be useful for making quantitative 

predictions about the extent of north-south jet lag. 

4.5. Traveling diplomat problem 

The idea of minimizing reentrainment times has relevance for 

what we shall call the traveling diplomat problem. For example, 

the three most recent U.S. Secretaries of State traveled extensively 

during their tenures. John Kerry covered more than 1.3 million 

miles, Hillary Clinton visited 112 countries, and Condoleeza Rice 

made a total of 241 visits to foreign countries, all records within 

those categories ( Chow and Kessler, 2013; Kelemen, 2016 ). The 

problem one can consider is analogous to a traveling salesman 

problem in which the salesman has to arrange travel to several lo- 

cations so as to minimize total travel distance. In our scenario, a 

diplomat would seek to arrange his/her schedule to minimize jet 

lag. If a diplomat wished to visit a certain number of countries in 

the span of a certain number of days before returning home, could 

she arrange her travel to minimize her jet lag in each of the des- 

tination cities and also upon return home? Or if she were to re- 

main in each destination city until reentrained, before continuing 

to the next city, does an optimal path exist that minimizes total jet 

lag? Our results suggest that the diplomat could arrange her travel 

path to minimize jet lag. For example assuming a normal endoge- 

nous period of 24.2 h, if the diplomat were to travel between the 

four cities we studied, she would want to incorporate a NE compo- 

nent of travel; see Fig. 15 . The loop NYC → Santiago → Beijing → 

Perth → NYC would cause her to have the least overall amount of 

jet lag. Santiago to Perth has 12 days of reentrainment, and Perth 

to Beijing 2 days, for a total of 14 days of reentrainmnent. But San- 

tiago to Beijing has 5 days and Beijing to Perth 3 days, for a total of 

only 8 days of reentrainment. Thus by specifically including the NE 

component in her itinerary, she would minimize jet lag. The total 

number of reentrainment days for the NYC → Santiago → Beijing 

→ Perth → NYC is 23 days. Another loop that has a relatively 

short reentrainment time is NYC → Perth → Beijing → Santi- 

ago → NYC which has 24 days of reentrainment. This loop has 

the advantage of two direct northward trips compared to the pre- 

vious loop of two direct southward trips. This saves 2 days. Also, 

SE travel compared to NW travel saves 2 days. It is only because 

SW travel requires 5 more days of entrainment than NE that this 

loop is slightly worse than the previous. In comparison the loops 

NYC → Santiago → Perth → Beijing → NYC or NYC → Beijing 

→ Perth → Santiago → NYC each lead to 28 days of jet lag. The 

example presented here is for a single daytime lux level, which is 

surely a simplification of what a diplomat or other traveler would 

likely experience. In reality, travelers would experience a variety 

of lux levels across their waking hours dependent on being ex- 

posed to indoor or outdoor light. As noted in our earlier results, 

higher lux levels lead to faster reentrainment but do not signifi- 

cantly affect the phase of the entrained solution. Thus we expect 

that even when a traveler experiences a more realistic light proto- 

col than the single lux scenario presented here, there would still 

exist travel paths that minimize jetlag. 

4.6. Future directions 

There are several directions of further research that can be pur- 

sued. We plan to explore the effects of “social jet lag” where in- 

dividuals stay up late on weekend nights, sleep in later the next 

day, and then return to their normal schedules for the work week 

( Crowley and Carskadon, 2010 ). This can be likened to taking a trip 

two or three hours west on a Friday night and returning home 

on Sunday night. Presumably, individuals who do this for several 

weeks in a row are not entrained to the daily light-dark cycle, but 

instead entrain to a more complicated weekly pattern ( Smith and 

Eastman, 2012 ). Using the methods developed in this paper, we 

could study this problem by looking for a periodic solution, rather 

than a fixed point, of a set of composed entrainment maps. The 

added complication of using multiple maps arises as one must take 

into consideration the change of photoperiod that would occur due 

to staying up late and waking up late. We also plan to apply our 

methods to analyze night-shift work, which also involves periodic 

solutions of composed entrainment maps due to different light ex- 

posure and sleep schedules on weekdays versus weekends. An- 

other situation where a periodic solution of the entrainment map 

would be relevant is for individuals who, because their endoge- 

nous period is too far from 24 h, are unable to entrain to LD forc- 

ing ( Duffy and Wright, 2005 ). In all of these cases, the goal of our 

research would be to first find a stable periodic orbit of the en- 

trainment map, and then find strategies (perturbations, perhaps of 

the light exposure) to move the individual closer to an entrained 

state. 

The light-dark cycle is not the only external forcing that a cir- 

cadian oscillator receives. For example, the effects of meals, exer- 
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cise, or taking melatonin can also be considered as external stim- 

uli. We would like to generalize the entrainment map to incorpo- 

rate multiple zeitgebers of this type. The main question to address 

is how a weaker, and perhaps conflicting, forcing signal would in- 

teract with the stronger light-dark forcing to determine entrain- 

ment properties. Another factor to consider is the entrainment 

of peripheral oscillators in tissues throughout the body by the 

suprachiasmatic nucleus (SCN), the master circadian pacemaker lo- 

cated in the hypothalamus. During jet lag, there can be internal 

desynchrony due to the SCN and peripheral oscillators reentrain- 

ing at different rates or even in opposite directions, a phenomenon 

known as reentrainment by partition ( Aschoff, 1978 ). Leise and 

Siegelmann (2006) studied reentrainment of a multistage compu- 

tational model of the circadian system. Our approach would be 

to construct entrainment maps for each system component with 

some form of coupling among the maps. There is also significant 

coupling between the SCN and sleep-wake control centers in the 

brain ( Vosko et al., 2010 ). Jet lag can desynchronize the circadian 

rhythm of the SCN and sleep-wake behavior. Models combining 

the circadian pacemaker and sleep-wake dynamics have been pro- 

posed ( Gleit et al., 2013; Phillips et al., 2010; Skeldon et al., 2015 ), 

and one-dimensional maps for the circadian modulation of sleep 

have been developed ( Booth et al., 2017; Nakao et al., 1997; Skel- 

don et al., 2014 ). An important future direction is to investigate 

the relationship between these maps and entrainment maps in the 

context of jet lag and other circadian rhythm sleep disorders. 
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Appendix 

In this Appendix, we further discuss the relationship between 

the fixed points x s and x u of an entrainment map and the dynam- 

ics of the forced FJK model. Given that we have considered many 

different entrainment maps, let us focus on the map constructed 

by taking a Poincaré section at X = 6 along the LD-entrained solu- 

tion obtained for τc = 24 . 2 h and N = 12 h. To construct the map, 

we choose initial conditions for A , C , and n that lie at the inter- 

section of the Poincaré section and the LD-entrained solution and 

vary the value of the offset of the lights x between 0 and 24. The 

value x s = 6 of the map therefore will correspond exactly to a peri- 

odic orbit of the FJK model because the trajectory returns to X = 6 

after exactly 24 h and for this case the A , C , and n values return 

to their original values after 24 h. In general, when the entrain- 

ment map is constructed using a Poincaré section that intersects 

an LD-entrained solution and A , C , and n initial conditions at that 

intersection point, there is a direct correspondence between x s and 

the stable LD-entrained solution. 

The relationship of x u to dynamic structures of the forced FJK 

model is more complicated. On one hand, we have found that the 

existence of a corresponding unstable periodic orbit depends on 

light intensity I . On the other hand, we have found that indepen- 

dent of light intensity, x u corresponds to a structure in phase space 

that separates trajectories that phase advance or phase delay as 

they converge to the entrained solution. We explain both of these 

observations below. 

First, consider low light intensity of I = 100 lux. For this case, 

x u = 16 . 24 . This means that the demarcation point predicted by 

our map is a journey given by Z D = 10 . 24 time zones to the east. 

In Fig. 16 A, the projection of the stable LD-entrained solution onto 

the A − C plane is plotted in solid red and black. The location Z = 0 

and X = 6 (solid blue circle) coincide. The projection of the unsta- 

ble periodic orbit is plotted in dashed red and black. Travel east 

corresponds to moving clockwise along the projection of the sta- 

ble orbit to a location marked by an open blue circle on the LD- 

entrained solution. In terms of x , this value is called ˆ x u = x s − Z D 
mod 24 and equals x = 19 . 8 . The map predicts that this location 

along the LD-entrained solution separates trajectories that con- 

verge via phase delay or advance. Note that this interpretation is 

equivalent to the one given in Section 3.5 where the trajectory be- 

gan on the Poincaré section with different light offset initial condi- 

tions taken in a neighborhood of x u . Here we instead fix the light 

offset to be x = 6 and vary the initial conditions in a neighborhood 

of ˆ x u chosen by making a trip Z D time zones on the LD-entrained 

solution. Panel A shows a stroboscopic map (solid dots) of different 

initial conditions projected onto the A − C plane every 24 h. From 

each initial condition, we ran a simulation under 6 h of light, fol- 

lowed by 12 h of dark, and then 6 h of light before plotting the 

ensuing location of the trajectories, and then repeated. From just 

to the left of ˆ x u emanates a set of points, also in dark blue, that 

converge towards a point corresponding to X = 6 on the unstable 

periodic orbit. Thus these points lie on the stable manifold of the 

unstable periodic orbit! Finding this manifold without the insights 

provided by the entrainment map would have been extremely un- 

likely. The unstable periodic orbit appears to be a saddle with a 

stable manifold that is at least 2-dimensional. The saddle-like na- 

ture makes backward integration largely useless in locating the un- 

stable periodic orbit. Instead it is the entrainment map that pro- 

vided the clue on where to locate it in the full phase space. The 

initial conditions at Z = 10 and Z = 11 start on “opposite sides” of 

the stable manifold of the unstable orbit and are seen to produce 

a sequence of iterates that converge to X = 6 on the stable peri- 

odic orbit by phase advancing (green) or delaying (magenta); see 

Fig. 16 B. In another set of simulations, we chose initial conditions 

very close to the solid blue separatrix on the LD-entrained solu- 

tion and these also entrained by advance or delay depending on 

from which side of the stable manifold they originated (data not 

shown). Finally, observe the cyan set of dots that emanate from 

X = 6 on the unstable orbit and then converge to the stable LD- 

entrained solution at X = 6 . The initial cyan dot that we chose as 

an initial condition was found in the following way. We located the 

value of ( A 

∗, C ∗, n ∗) at which the unstable periodic orbit intersected 

the Poincaré section at X = 6 on the unstable orbit. We then per- 

turbed the A and C values to A 

∗ − 0 . 00271035 and C ∗ + 0 . 01 , but 

kept n = n ∗. Therefore after 24 h the n value returns to n ∗. Thus 

all the cyan dots lie in the plane n = n ∗. These points are seen in 

both Fig. 16 A and B to take a shortcut across (through) phase space 

towards the stable LD-entrained solution. The trajectory is charac- 

terized by the fact that it neither phase advances or delays for the 

first few iterates until it undergoes amplitude suppression. After 

it reemerges to full amplitude it effectively has the correct phase 

of the LD-entrained solution. We suspect that these points lie on 

the strong stable manifold of the stable LD-entrained solution. We 

speculate that this strong stable manifold separates phase advanc- 

ing or phase delaying trajectories, in general, independent of the 

light intensity I . The figure also shows points that initially lie close 

to the cyan points but then follow the more predictable advance 

(green) or delay (magenta). 

Now consider Fig. 16 C and D which show the corresponding 

plots for a higher light intensity of I = 10 0 0 lux. For this case, 

x s = 6 remains, but now x u = 16 . 68 . Thus the demarcation point 

is Z D = 10 . 68 or ˆ x u = 19 . 32 . Panel C shows the projection onto the 

A − C plane and Panel D shows a few representative sequences of 

iterates in the three-dimensional phase space. The main difference 

to note is there is no unstable periodic orbit. Instead the sequence 

https://doi.org/10.13039/100000001
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Fig. 16. Relationship between the unstable fixed point of entrainment map and dynamics of the FJK model. (A) Projection of stable LD-entrained solution (solid red/black 

lines) onto A − C phase plane for τc = 24 . 2 h, N = 12 h, and I = 100 lux. Simulations were performed starting from initial conditions on the LD-entrained solution at the 

hourly markings denoted by the open red and black circles with a light-dark protocol based on x = 6 . Positions labeled with Z > 0 ( Z < 0) correspond to travel Z time zones 

to the east (west). The reentrainment process is depicted by strobing the system every 24 h and plotting the location of the trajectory (solid green and magenta dots). 

These trajectories converge to X = 6 (solid blue circle) by either phase advance (green) or phase delay (magenta). The blue set of dots emanating from near the open blue 

circle ( Z D = 10 . 24 ) does not phase advance or delay, and and converges to x = 6 on the unstable LD-entrained solution (dashed red and black lines, open circles red and 

black circles are hourly markings). These points lie on the stable manifold of the unstable periodic orbit, which serves to separate trajectories that entrain through phase 

advance and delay. The cyan dots are on a trajectory that starts near the unstable periodic orbit and takes a shortcut to converge to X = 6 on the stable LD-entrained 

solution, whereas nearby initial conditions converge to X = 6 by phase advancing or delaying. (B) Same objects as Panel A, plotted in the three-dimensional phase space A , 

C , n . (C) Projection of stable LD-entrained solution (solid red/black lines) onto A − C phase plane for τc = 24 . 2 h, N = 12 h, and I = 10 0 0 lux. Unlike Panel A, here there is 

no unstable LD-entrained solution. The blue dots emanating from near Z D = 10 . 68 are on a shortcut trajectory that exhibits amplitude suppression and converges to X = 6 

unusually fast. Trajectories on either side of the blue trajectory converge to X = 6 through phase advance (green) or delay (magenta). (D) Same objects as Panel C, plotted in 

the three-dimensional phase space A , C , n . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

of dark blue dots that emanate from near Z D converge directly to 

the stable LD-entrained solution at X = 6 . The corresponding se- 

quence behaves in the same way as the cyan sequence of Panel A. 

Nearby initial conditions also lead to a sequence of iterates that 

behave quite similarly to the blue one, which is in contrast to 

the I = 100 lux case. What we believe to be common between the 

two cases is that there exists a structure in phase space, perhaps 

the strong stable manifold associated with the point on the LD- 

entrained solution at X = 6 , that separates phase advancing and 

phase delaying trajectories. What differs between the two cases 

appears to be that the shortcut is only accessible from the LD- 

entrained solution when an unstable periodic orbit does not exist. 

When it does, the stable manifold of the unstable periodic orbit 

appears to preclude the possibility of taking the shortcut and ac- 

cessing the phaseless set. In summary, the entrainment map, and 

in particular, the unstable fixed point x u and its corresponding 

demarcation point Z D , provide a way to locate specific subspaces 

within the larger phase space that help organize the dynamics. 

Finally, let us address the quantitative difference in the worst 

case travel between the map and direct simulation shown in 

Fig. 8 D for τc = 23 . 4 h, I = 100 lux. For this set of parameters, an 

unstable periodic orbit exists similar to the one shown in Fig. 16 A 

and B. We believe that in direct simulation, the worst case travel 

Z = −6 is placing the trajectory very close to the stable manifold 

of the unstable orbit. In turn, this causes the entrainment time 

to increase. We don’t fully understand why the demarcation point 

Z D predicted from the map is further from the actual demarcation 

value from the simulation for τc = 23 . 4 h than it is for the other 

τ c values shown in Fig. 8 A–C. We believe, however, that is related 

to the fact that the system (and entrainment map) are closer to 

bifurcation for this τ c value (see Fig. 9 D) than it is for the others, 

and thus the unstable and stable limit cycles are quite close to one 

another in phase space. 
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Introduction

Almost all organisms on earth have adapted to 
environmental cycles by developing their own time-
keeping system, a circadian clock, to predict daily 
changes. The simplest circadian model system is 
found in cyanobacteria, a single-celled organism. The 
central oscillator of the cyanobacterial circadian clock 
is composed of only 3 proteins, KaiA, KaiB, and KaiC 
(Golden and Canales, 2003). Because oscillations con-
tinue without transcriptional-translational feedback 

loops (Tomita et  al., 2005), the cyanobacterial circa-
dian clock can be reconstituted in vitro by mixing 
those 3 proteins and adenosine 5′-triphosphate 
(ATP) with magnesium ions (Nakajima et al., 2005). 
KaiC undergoes rhythmic autophosphorylation and 
autodephosphorylation with a 24-h period in the 
presence of both KaiA and KaiB (Iwasaki and Kondo, 
2004). These autokinase and autophosphatase activi-
ties in KaiC are regulated by the conformation of the 
A-loop, which is known as a day/night switch located 
in the C-terminus of KaiC (residues 487-519; Kim 
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et  al., 2008). Without KaiA and KaiB, KaiC alone 
undergoes dephosphorylation in the in vitro reaction 
because the default conformation of the A-loop is the 
“buried” state (Kim et al., 2008). The A-loop changes 
its conformation from the buried to the “exposed” 
state by binding KaiA (Kim et  al., 2008; Vakonakis 
and LiWang, 2004). When the A-loop is in the exposed 
conformation, kinase activity is predominant and 
KaiC is phosphorylated. KaiA keeps the A-loop in the 
exposed conformation by binding the A-loop with 
differential affinity, while KaiB returns the A-loop to 
a buried conformation by sequestering KaiA far from 
the A-loop (Snijder et al., 2017; Tseng et al., 2017). At 
the active site of KaiC, S431 and T432 residues are 
phosphorylated and dephosphorylated sequentially 
over the daily cycle (Nishiwaki et al., 2007; Rust et al., 
2007). Because the active site is distal from the A-loop, 
the kinase and phosphatase activity of KaiC may be 
regulated by an allosteric effect that changes the con-
formation of the active site. Currently, the mechanism 
acting downstream of the A-loop is unknown. In this 
study, we found that magnesium is a key element 
regulating the kinase and phosphatase activity of 
KaiC as a downstream regulatory element of the 
A-loop. Based on our findings, we suggest a possible 
direction of the evolution of the cyanobacterial circa-
dian oscillator in cyanobacteria.

Materials And Methods

Cloning, Protein Purification, and Expression

Cloning and purifications were performed essen-
tially as described previously (Kim et al., 2015; Kim 
et al., 2012). The KaiC E318D protein expression plas-
mid was generated using the site-directed mutagen-
esis method.

Structure Analysis of KaiC Hexamer

Every structure analysis was performed with 
UCSF Chimera (Pettersen et al., 2004). Distance mea-
surements between OGlu and OThr were performed 
with the “Structure Analysis” function in UCSF 
Chimera.

In Vitro Assay of KaiC Phosphorylation

All assays were performed essentially as described 
previously (Kim et al., 2015) with the following modi-
fication: ethylenediaminetetraacetic acid (EDTA) was 
completely removed for all reactions that were per-
formed without KaiA. The magnesium concentration 
was modified as indicated in the main text. Disodium 

ATP (initial concentration: 1 mM), rather than MgATP, 
was used for all in vitro reactions to avoid the addi-
tion of magnesium ions from another source.

Molecular Dynamics Simulation of KaiC Hexamer

All-atom molecular dynamics simulations were 
performed using GROMACS version 5.1. The 
Charmm36 force field was used to account for the 
different interactions between the atoms of the sys-
tem that comprised the KaiC protein in the hexa-
meric state solvated with 60,000 to 70,000 TIP3P 
water molecules. For the initial conformation of the 
KaiC hexamer, we used its experimentally resolved 
crystal structure (i.e., PDB ID: 1U9I), wherein posi-
tions of each atom of residues 14-497 of KaiC were 
given. We also studied a variant of this experimental 
structure in which the A-loop (residue 489-497) was 
deleted from the PDB entry. The latter mimics the 
exposed conformation of the A-loop, in which KaiC 
becomes phosphorylated. Moreover, to study the 
effects of magnesium, 2 sets of simulations were per-
formed for these 2 initial conformations: one with 
magnesium ions and the other without them. The 
initial location of the magnesium atoms was indi-
cated in the PDB structure. The net charge of the sys-
tem was neutralized by adding Na and Cl ions to the 
solvent.

The 4 systems examined in this study underwent 
energy minimization as well as equilibration in the 
NVT ensemble for 10 ns at 300 K, with heavy atoms of 
the protein restrained to their initial positions via 
1000 kcal mol−1Å−2 springs. The leap-frog algorithm 
with a time step of 2 fs was used to integrate the equa-
tions of motion, and the neighbor list was updated 
every 10 steps. A Lennard-Jones cutoff of 1.0 nm was 
used. Electrostatics were treated using the smooth 
particle mesh Ewald method with a grid spacing of 
0.13 nm and a 1.0 nm real-space cutoff. The produc-
tion run was performed in the NPT ensemble (1 atm 
and 300 K), in which the temperature was controlled 
using the v-rescale thermostat (τT = 0.1 ps) and the 
pressure was controlled using the Parrinello-Rahman 
barostat (τP = 1 ps). The total simulation time of the 
production runs was 50 ns.

Hourglass Timer In Vitro

The KaiC (3.4 µM, 2 mL)–alone reaction mixture 
was prepared with the modified in vitro reaction 
buffer (150 mM NaCl, 20 mM Tris-HCl, 5 mM MgCl2, 
pH = 8.0). The reaction mixture was incubated at 30 
°C for 16 h to completely dephosphorylate KaiC. The 
incubated reaction mixture was passed through a 
spin desalting column (Zeba spin desalting column, 
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Fisher Scientific, Waltham, MA) at 100 × g for 3 min. 
The protein concentration was measured using the 
Bradford protein assay kit and adjusted by concen-
trating it with a spin concentrator (Vivaspin 2, 
Millipore, Burlington, MA). The reaction mixture was 
incubated at 30 °C for 12 h for phosphorylation. 
During the incubation, 20 µL of the reaction mixture 
was mixed with sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis (SDS-PAGE) loading dye 
every 2 h for 12 h. Then, 5 µL of highly concentrated 
magnesium solution in the modified in vitro reaction 
buffer was added for dephosphorylation and contin-
uously incubated at 30 °C for 12 h. Sampling was per-
formed in the same manner. The removal and 
addition of magnesium were performed repeatedly 
for 2 days to simulate light/dark alterations in mag-
nesium concentration. After collecting all the reaction 
samples, SDS-PAGE was performed with the previ-
ously reported method to analyze the phosphoryla-
tion state of KaiC (Kim et  al., 2015). The KaiB and 
KaiC reaction mixture for testing the hourglass timer 
was performed in the same manner as the KaiC-alone 
reaction mixture.

Mathematical Modeling of Hourglass Timer

Our mathematical model of magnesium-depen-
dent phosphorylation and dephosphorylation cycles 
of KaiC in the absence of KaiA and KaiB is based on 
the Rust model of ordered multisite phosphorylation 
for the KaiABC oscillator (Rust et  al., 2007). The 
model is a 3-dimensional system of ordinary differen-
tial equations that captures the temporal dynamics of 
KaiC in 4 different forms: unphosphorylated (U), sin-
gly phosphorylated at the T432 site (T), singly phos-
phorylated at the S431 site (S), and doubly 
phosphorylated at both the S431 and T432 sites (D). 
Our model equations are as follows:
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where kXY are the rate constants for transitions from 
state X to state Y, [KaiC] = 3.4 µM is the concentration 
of KaiC, [Mg] is the concentration of magnesium, KA 
is the concentration at which the effect of magnesium 
on the transition rates is half-maximal, and n is the 

Hill coefficient. Because the total amount of KaiC is 
conserved, [KaiC] is constant and U can be obtained 
algebraically from the amounts of the other phos-
phoforms. The transition rates consist of baseline 
rates kB

XY in the absence of magnesium and kM
XY at 

high magnesium concentrations. If kM
XY > kB

XY 
(kM

XY < kB
XY), then magnesium promotes (inhibits) 

that transition. We fit these baseline rates assuming 
first-order kinetics for the 2 limiting cases of high and 
low magnesium concentrations, respectively. First, 
suppose that [Mg] is sufficiently high such that the 
magnesium effect has saturated, that is, f ([Mg]) ≈ 1 
and kXY ≈ kM

XY. These experimental conditions are 
similar to those indicated in figure 2B of Rust et al. 
(2007), in which autonomous dephosphorylation of 
KaiC was observed after removing KaiA. Thus, we 
used the parameters that Rust et al. estimated from 
those data, namely, kM

TU = 0.21, kM
SU = 0.11, kM

DS = 0.31, 
and kM

DT = kM
UT = kM

US = kM
SD = kM

TD = 0 h−1. Second, 
suppose [Mg] = 0 and kXY = kB

XY. By fitting our 
experimental data on the autonomous phosphoryla-
tion of KaiC in the absence of magnesium (Suppl. 
Fig. S1), we obtained the parameters kB

TU = 0.5412, 
kB

SU = 0.0530, kB
DS = 0.1853, kB

DT = 0, kB
UT = 0.3623, 

kB
US = 0.0267, kB

SD = 0.0601, and kB
TD = 0.1269 h−1. 

These parameters were found by minimizing the 
total least-squares error between the model and data 
for T-KaiC, S-KaiC, and ST-KaiC using MATLAB’s 
constrained nonlinear optimization routine fmincon 
with the default interior point algorithm. We set 
parameter lower bounds of 0 and initial parameter 
guesses equal to the values of k0

XY + kA
XY given in 

Rust et al. (2007).
To determine the remaining parameters KA and n, 

we fit the model to the experimental hourglass data. 
In the simulations, we set [Mg] = 0 mM during the 
light periods and to the values 0.05, 0.1, 0.5, 1.0, and 
5.0 mM during the dark periods. We used fmincon to 
minimize the total least-squares error between the 
model and data for P-KaiC. With an initial guess of 
KA = 0.43 and n = 2, the optimized parameters 
were KA = 0.0298 and n = 1.1470. Setting n = 1 and 
optimizing KA alone yields KA = 0.0256 and less than 
a 1% increase in the error function. We selected the 
more parsimonious model with Michaelis-Menten 
kinetics for magnesium (n = 1) and show the hour-
glass simulation results for KA = 0.0256.

Adenosine diphosphate (ADP) inhibits the kinase 
reaction involved in KaiC phosphorylation, and peri-
odic changes in the ATP/ADP ratio can entrain the 
KaiABC oscillator (Rust et al., 2011). To incorporate 
the effect of the ATP/ADP ratio into our model, we 
followed Rust’s model (Rust et al., 2011) and added a 
multiplicative term to the transition rates for the 
phosphorylation (but not the dephosphorylation) 
reactions:
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where XY = UT, US, SD, and TD, and Krel = 1 is the 
relative affinity for ADP versus ATP in the kinase 
reactions. Because darkness leads to a drop in the 
ATP/ADP ratio, we simulated an hourglass experi-
ment with ATP = 100%/ADP = 0% during the light 
periods when magnesium is absent and ATP = 30%/
ADP = 70% during the dark periods when magne-
sium is present.

Results

Magnesium Ions Are Necessary for the 
Dephosphorylation of KaiC

To obtain insight into how the allosteric effect of 
the A-loop induces a conformational change in the 
active site of KaiC phosphorylation, we analyzed 
the crystal structure of the KaiC hexamer from a cya-
nobacterium, Synechococcus elongatus. The E318 resi-
due in the active site is known as a catalytic base, 

Figure 1.  Magnesium regulates the phosphorylation and dephosphorylation of KaiC. (a) Crystal structure of an active site in the KaiC 
hexamer (PDB ID: 1U9I). The phosphate group on T432 was removed for clearance. Black arrows indicate the electron movements in the 
phosphoryl transfer reaction. (b) Distances (in angstroms, Å) between the oxygen atom in E318 and the oxygen atom in T432 are labeled 
on the crystal structure of the KaiC hexamer. Black represents E318, and gray represents T432. (c) Phosphorylation state of KaiC in the in 
vitro reaction with many different magnesium concentrations. Magnesium concentrations are labeled on the right of the graph. (d) Phos-
phorylation state of KaiC in the absence of ethylenediaminetetraacetic acid with many different magnesium concentrations. Magnesium 
concentrations are labeled on the right of the graph. (e, f) Phosphorylation state of the KaiC mutant and other species of cyanobacteria. 
Open markers indicate the absence of magnesium. Closed markers indicate the presence of magnesium (5 mM). KaiC497 was mixed 
with KaiC497 alone (▲), KaiA (•), KaiB (■), and KaiA and KaiB (♦) (e). Phosphorylation state of KaiC from Thermosynechococcus elongatus 
(TeKaiC) and from Synechococcus elongatus (SeKaiC) (f).
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which activates T432 for the phosphoryl transfer 
reaction by taking a proton from the hydroxyl group 
in T432 (thereafter HThr; Hayashi et al., 2004; Valiev 
et al., 2003). In the active form of the KaiC hexamer, 
a magnesium ion holds E318 to prevent free rotation 
and movement, which are necessary to activate T432 
for the phosphoryl transfer reaction (Fig. 1a). All 
distances between the oxygen atom in the carboxyl 
group of the E318 side chain (thereafter OGlu) and 
the oxygen atom in the hydroxyl group of the T432 
side chain (thereafter OThr) in the 6 subunits of the 
KaiC hexamer are longer than the hydrogen bond-
ing distance (˜3 Å; Fig. 1b). With these distances and 
structural restrictions, E318 is unable to activate 
T432 for the phosphoryl transfer reaction in the 
presence of magnesium. We hypothesized that the 
OGlu can move or rotate freely in the absence of mag-
nesium and can activate T432 for the phosphoryl 
transfer reaction by taking the HThr. To test this 
hypothesis, in vitro reactions with KaiC alone were 
established with various magnesium concentra-
tions, and the KaiC phosphorylation state of each 
reaction was monitored. In general, KaiC alone is 
dephosphorylated in the reconstituted in vitro reac-
tion, which has a comparatively high (5 mM) mag-
nesium concentration (Kim et  al., 2008; Nakajima 
et al., 2005). In the KaiC-alone in vitro reaction with 

various magnesium concentrations, the intensity of 
the dephosphorylation was reduced when the mag-
nesium concentration was decreased, ultimately 
reaching a minimum in the absence of magnesium 
(Fig. 1c; Supplemental Fig. S2a). Although KaiC did 
not show phosphorylation under these reaction con-
ditions, the phosphatase activity disappeared com-
pletely in the absence of magnesium. Therefore, 
KaiC needs magnesium to be dephosphorylated and 
is possibly a magnesium-dependent phosphatase, 
which uses magnesium as a reaction center (Shi, 
2009).

EDTA Inhibits the Phosphorylation of KaiC in the 
Absence of KaiA and Magnesium

Because KaiC alone did not show phosphoryla-
tion in the absence of magnesium, we hypothesized 
that at least one of the components in the reaction 
mixture possibly inhibits the kinase activity of KaiC. 
For the original in vitro oscillator developed by 
Kondo (Nakajima et  al., 2005), EDTA is used as a 
metal chelator; however, EDTA is not present as a 
natural component in cyanobacteria. We removed 
EDTA from the in vitro reaction to determine 
whether the kinase activity was recovered. In the 
absence of magnesium and EDTA, KaiC was 

Figure 2.  Molecular dynamics (MD) simulations of the KaiC hexamer. (a) Four MD simulation structures are superimposed. The “bur-
ied” conformations are shown in magenta (with magnesium) and cyan (without magnesium). The “exposed” conformations are shown 
in orange (with magnesium) and blue (without magnesium). The 3 domains of KaiC are labeled at the position. (b,c,e,f) MD simulation 
structures of the KaiC hexamer. Magenta represents E318, and cyan represents T432. The distances (in angstroms, Å) between the oxy-
gen atom in E318 and the oxygen atom in T432 are labeled on the structure. Distances shorter than 3 Å are labeled in red. The average 
distance of all 6 subunits is labeled at the center of the structure. The combinations of the A-loop conformation and magnesium (see 
the cartoon representations) were the buried conformation with magnesium (b), the buried conformation without magnesium (c), the 
exposed conformation with magnesium (e), and the exposed conformation without magnesium (f). (d) Phosphorylation state of KaiC 
E318D. Four different reaction mixtures were prepared to measure the phosphorylation state: KaiC alone (Δ), KaiC and KaiA (□), KaiC 
and KaiB (×), KaiC, KaiA, and KaiB (○).
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phosphorylated to the same level as that observed 
when KaiC was incubated with KaiA in vitro (Fig. 
1d; Supplemental Fig. S2b). KaiC was still dephos-
phorylated with higher magnesium concentrations 
in the absence of EDTA. The removal of EDTA did 
not affect the dephosphorylation of KaiC. To con-
firm the inhibition of kinase activity by EDTA, we 
added different concentrations of EDTA to the KaiC-
alone in vitro reactions in the absence of magne-
sium. The intensity of the phosphorylation was 
decreased by increasing the EDTA concentration in 
the reaction mixture (Supplemental Fig. S3). 
Therefore, the deficiency of magnesium turns on the 
kinase activity of KaiC, while EDTA inhibits its 
kinase activity.

Magnesium Regulation of KaiC Phosphorylation 
Is Universal

KaiC497 is a KaiC mutant with 23 residues (resi-
dues 497-519) deleted from the A-loop, maintaining a 
dephosphorylation state even in the presence of KaiA 
due to the lack of the KaiA binding site (Kim et al., 
2008). We checked the phosphorylation level of 
KaiC497 to test the magnesium regulation of KaiC 
phosphorylation in this mutant. KaiC497 alone spon-
taneously dephosphorylates with a high magnesium 
concentration while phosphorylating without mag-
nesium (Fig. 1e; Supplemental Fig. S4). The addition 
of KaiA or KaiB did not affect KaiC phosphorylation 
at either concentration. Therefore, the magnesium 
regulation of KaiC phosphorylation is a downstream 
regulatory element of the A-loop for the phosphory-
lation and dephosphorylation of KaiC.

We also tested the magnesium effect with ano
ther cyanobacterial species, Thermosynechococcus 
elongatus, which is mainly used for the structural 
study of the cyanobacterial circadian clock (Chang 
et  al., 2015; Vakonakis and LiWang, 2004). Again, 
KaiC from T. elongatus behaves in the same manner 
as that from S. elongatus (Fig. 1f; Supplemental  
Fig. S5). Therefore, the magnesium regulation of 
KaiC phosphorylation can be considered a univer-
sal mechanism shared by the 2 species.

Molecular Dynamics Simulation Reveals That 
E318 Activates T432 for the Phosphorylation of 
KaiC in the Absence of Magnesium

To provide structural insight into the effect of 
magnesium on the regulation of KaiC phosphoryla-
tion, we performed molecular dynamics simulations 
of the crystal structure of the KaiC hexamer, which 
has the A-loop in the buried conformation. The 
overall backbone conformation of KaiC did not sig-
nificantly change in the simulations performed with 

or without magnesium (Fig. 2a; Supplemental Fig. 
S6). However, the distances between OGlu and OThr 
were significantly longer than 3 Å when the simula-
tions were performed with magnesium (Fig. 2b; 
Supplemental Fig. S7a). In the simulations per-
formed without magnesium, 1 of the 6 pairs of OGlu-
OThr distances was found to be sufficiently short 
(less than ˜3 Å) to allow OGlu to interact with HThr 
(Fig. 2c; Supplemental Fig. S7b). This interaction 
enables T432 to be activated for phosphorylation. 
Thus, these molecular dynamics simulations sug-
gest that magnesium interacts with OGlu and keeps it 
away from HThr, which leads to the suppression of 
KaiC phosphorylation. In contrast, in the absence of 
magnesium, OGlu can move and/or rotate more 
freely toward HThr, which enables residue T432 to be 
activated for phosphorylation.

The molecular dynamics simulations reveal that 
certain OGlu-OThr distances are shorter than 3 Å but 
longer than 2 Å in the absence of magnesium. We 
hypothesized that if E318 is mutated to D318, this 
mutant would not be able to activate T432 for phos-
phorylation because of the shortness of the side chain. 
Indeed, KaiC E318D cannot phosphorylate in the 
absence of magnesium (Fig. 2d; Supplemental Fig. 
S8). Interestingly, the addition of KaiA cannot activate 
the kinase activity of KaiC E318D (Fig. 2d; 
Supplemental Fig. S8). Therefore, the OGlu−OThr dis-
tance is an important factor for KaiC phosphorylation 
and is regulated by magnesium.

Magnesium Is a Downstream Regulator of the 
A-Loop Conformation in the Circadian Oscillation 
of KaiC Phosphorylation

We hypothesized that magnesium regulation of 
KaiC phosphorylation is correlated with the conforma-
tion of the A-loop. A molecular dynamics simulation of 
KaiC was previously reported with an exposed A-loop 
conformation that is mimicked by removing the entire 
A-loop (residue 487 to 518) from KaiC (Egli et al., 2013). 
When the A-loop is in the exposed conformation, the 
flexibility of the 422-loop in KaiC is increased in the 
presence of magnesium, but the distance information 
between OGlu and OThr has not been reported (Egli et al., 
2013). To understand the relationship between the 
A-loop conformation and magnesium regulation, we 
performed molecular dynamics simulations with an 
A-loop deletion mutant KaiC in both the presence and 
absence of magnesium. As in the simulations per-
formed with the A-loop, the overall backbone con
formation of KaiC did not significantly change in the 
absence of the A-loop (Fig. 2a; Supplemental Fig. S6). 
All OGlu−OThr distances were longer than 3 Å in the 
presence of magnesium (Fig. 2e; Supplemental Fig. 
S7c). In contrast, the distances in the 2 subunits were 
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shorter than 3 Å in the absence of magnesium (Fig. 2f; 
Supplemental Fig. S7d). We suggest that this rare 
chance for activation helps explain why phosphoryla-
tion in the cyanobacterial circadian oscillator is so slow. 
These results also suggest that the distances between 
OGlu and OThr were significantly affected not by the con-
formation of the A-loop but by the presence or absence 
of magnesium (Fig. 2b, c, e, and f). However, the con-
formation of the A-loop does enhance the probability 
of phosphorylation in the absence of magnesium, as we 
found more subunits that were within the hydrogen 
bonding distance when the A-loop was in the exposed 
conformation (Fig. 2f) than in the buried conformation 
(Fig. 2e). The average OGlu−OThr distance of all subunits 
was the shortest when the A-loop was exposed in the 
absence of magnesium (Fig. 2f) and the longest when 
the A-loop was buried in the presence of magnesium 
(Fig. 2b). Therefore, the phosphorylation and dephos-
phorylation of KaiC is regulated by the presence or 
absence of magnesium, which is an effect downstream 
of the A-loop conformation.

We tested this finding using the KaiC E487A 
mutant, which shows constitutive phosphorylation 
without KaiA (Kim et al., 2008). The A-loop confor-
mation in the mutant KaiC seems to stay exposed by 
breaking the H-bond network formed between the 
A-loops in the KaiC hexamer (Kim et al., 2008). The 

binding affinity of the regulatory magnesium ion 
should be significantly lower in this mutant, keeping 
KaiC in the hyperphosphorylated state even in a high 
magnesium concentration. To test this hypothesis, we 
constructed the in vitro reaction with KaiC E487A in 
a high magnesium concentration. Indeed, KaiC 
E487A was able to stay hyperphosphorylated in 20 
mM magnesium (Supplemental Fig. S9).

The possible molecular mechanism of KaiC phos-
phorylation is proposed in Figure 3. When the A-loop 
in KaiC is exposed by binding KaiA, magnesium is 
released from the active site of KaiC, and OGlu moves 
and rotates toward HThr to activate T432 for the phos-
phoryl transfer reaction (Fig. 3). While the A-loop is 
buried after sequestration of KaiA by KaiB, magne-
sium is tightly bound to OGlu, making it unable to 
activate T432 for phosphorylation, and KaiC under-
goes dephosphorylation (Fig. 3).

The Circadian Oscillator Has Possibly Evolved 
from an Hourglass to a Self-sustained Oscillator in 
Cyanobacteria

This magnesium regulation of KaiC phosphoryla-
tion enables the construction of an hourglass-type in 
vitro reaction with KaiC alone that is suggestive of 
the evolutionary trajectory of the circadian clock in 

Figure 3.  Molecular mechanism of the circadian oscillator in cyanobacteria. KaiC is fully dephosphorylated, the A-loop (solid line) is 
“buried,” and the magnesium ion is bound on E318 in the active site (upper left). KaiA is bound to the A-loop to keep it in the “exposed” 
conformation, and magnesium is released from the active site (upper center). KaiC is fully phosphorylated (upper right). KaiB is bound 
on the CI domain of KaiC to sequester KaiA from the A-loop (lower right). A-loop turns to the buried conformation by dissociation of 
KaiA, and magnesium is bound on E318 in the active site (lower center). KaiC is fully dephosphorylated (lower left), and KaiB and KaiA 
are dissociated from KaiC (upper left).
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cyanobacteria. Previous genetic analysis indicated 
that KaiC is the oldest protein among the oscillator 
components and that KaiB and KaiA were added 
later, respectively (Dvornyk et al., 2003; Tauber et al., 
2004). Based on the evolutionary information of the 
oscillator components, a reasonable hypothesis was 
proposed: the prokaryotic timekeeping system 
evolved from an hourglass timer to a self-sustained 
oscillator in response to selective pressures (Johnson 
et al., 2017; Ma et al., 2016). Before the appearance of 
KaiB or KaiA, day/night alterations of the environ-
ment caused the phosphorylation state of KaiC to 
oscillate as an hourglass. In other organisms, magne-
sium concentration is altered by the natural light/
dark cycle and provides feedback to the circadian 
clock (Feeney et  al., 2016). Thus, we hypothesized 
that the KaiC-alone timekeeping system may operate 
as an hourglass timer driven by the influx and efflux 
of magnesium, assuming the magnesium concentra-
tion was altered by an environmental signal such as 
the light/dark cycle in the ancient cyanobacteria. If 
we assume that the environmental magnesium con-
centration in the habitat of cyanobacteria oscillated 
daily as a result of evaporation during the day and 
condensation during the night, then the KaiC-alone 
hourglass could have been used as a timekeeping 
system in the ancient cyanobacteria before establish-
ing the current magnesium homeostasis system.

To test the possibility of an hourglass timer in vitro, 
we constructed an in vitro reaction with KaiC alone. 
By altering the magnesium concentration every 12 h, 
KaiC showed a robust phosphorylation and dephos-
phorylation cycle with a 24-h period, although the 
variation of magnesium concentrations (0.5-5 mM) 
was somewhat greater than that observed under the 
physiological condition (Fig. 4a; Supplemental Fig. 
S10). We still observed the phosphorylation and 
dephosphorylation cycle in the low magnesium con-
centration range (0.05-0.1 mM), although the ampli-
tude was significantly decreased compared with that 
of the KaiABC oscillator. Simulations of a mathemati-
cal model of KaiC alone (see the Materials and 
Methods section) can reproduce the hourglass timer 
(Fig. 4b). In cyanobacteria, light alters ADP concen-
tration (Rust et al., 2011; Simons, 2009) in addition to 
magnesium concentration. Increasing ADP can 
induce dephosphorylation of KaiC in cyanobacteria 
and entrain the self-sustained KaiABC circadian 
oscillator (Rust et  al., 2011). This ADP effect may 
enhance the amplitude of the phosphorylation 
rhythm in the hourglass timer by inducing robust 
dephosphorylation at night. When we applied the 
ADP effect in simulations of the mathematical model 
of the KaiC-alone hourglass timer, robust oscillations 
were observed across the entire range of magnesium 

concentrations (Fig. 4c). The existence of the hour-
glass timer provides evidence for the hypothesis that 
the molecular evolution of the cyanobacterial circa-
dian clock started from a KaiC-alone hourglass timer. 
To further test steps along an evolutionary path to an 
oscillator, we constructed an in vitro reaction with 
KaiB and KaiC, which was proposed to be a damped 
oscillator (Johnson et al., 2017). Many different mag-
nesium concentrations were screened for the signa-
ture of a damped oscillator, but all the phosphorylation 
patterns were similar to the KaiC-alone reaction 
(Supplemental Fig. S11). The in vitro reaction with 
KaiB and KaiC also behaved as an hourglass timer 
(Fig. 4d; Supplemental Fig. S12). It is possible that the 
KaiBC timekeeping system in each species may be at 
a different stage of evolution. Thus, whether the 
mechanism is an hourglass timer, a damped oscilla-
tor, or a self-sustained oscillator is species-dependent. 
In this study, we found an hourglass KaiBC timer 
using both KaiB and KaiC from S. elongatus, but a 
KaiBC damped oscillator might be discovered using 
KaiB and KaiC from a different species of bacterium. 
Finally, we checked the magnesium effect on the self-
sustained circadian oscillator composed of KaiA, 
KaiB, and KaiC with many different magnesium con-
centrations. In the self-sustained oscillator, KaiC 
phosphorylation was observed as a stable oscillation 
with a circadian period (˜24 h) over a wide range of 
magnesium concentrations (Fig. 4e; Supplemental 
Fig. S13).

Discussion

We successfully demonstrate the phosphorylation 
of wild-type KaiC without KaiA. Until now, it was 
believed that KaiC needed KaiA or a mutation on the 
A-loop to undergo phosphorylation (Kim et al., 2008; 
Nishiwaki et  al., 2004). Because of this limitation, 
although the KaiC-alone hourglass was proposed 
before as a major step in the evolutionary pathway of 
the circadian oscillator, no experimental proof was 
reported (Axmann et  al., 2009; Ma et  al., 2016). We 
present a possible pathway for the evolution by remov-
ing EDTA, an unnatural reagent commonly used in 
reactions, from the hourglass reaction mixture. The 
inhibition of the phosphorylation of KaiC by EDTA 
was not observed in the presence of KaiA. Currently, 
the detailed mechanism of the inhibition of kinase 
activity by EDTA is unknown. We thought that the 
examination of the A-loop conformation could serve 
as a basis for elucidating the effect of EDTA on KaiC 
phosphorylation.

The general consensus on the mechanism of the 
phosphoryl-transfer reaction is that the magnesium 
ion acts as a cofactor to neutralize the negative charges 
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on the γ-phosphate of ATP to facilitate the nucleophilic 
phosphoryl-transfer reaction. Our findings on the acti-
vation of KaiC kinase activity run counter to this gen-
eral behavior. However, there are other examples of 
bacterial autokinases that respond in a similarly 
unusual way to changes in magnesium concentration. 
In PhoQ, which is involved in magnesium homeosta-
sis in bacteria, the autokinase and the autophospha-
tase activities are predominant in low and high 
magnesium concentrations, respectively (Montagne 
et al., 2001). Although the detailed reaction mechanism 
at the atomic level is not yet elucidated, the magne-
sium ion regulates the autokinase activity of PhoQ in 
the same way as KaiC. In either case, the addition of 
EDTA inhibits the autophosphorylation in low 

magnesium concentration (Castelli et  al., 2000). 
Therefore, we cannot exclude the possibility that a 
trace amount of magnesium ions from the impurities 
of the reagents may act as a cofactor for the phospho-
ryl-transfer reaction. EDTA may strip magnesium ions 
from the active sites, resulting in the inhibition of 
kinase activity. Indeed, 2 magnesium ions are found 
within some KaiC crystal structures. One is located at 
the same position that we are claiming here as a “regu-
latory magnesium,” and the other is located near the 
γ-phosphate of ATP (Supplemental Fig. S14). However, 
even if the kinase activity is inhibited in absolute zero 
magnesium concentration, our findings here are still 
valid because absolute zero magnesium is impossible 
in cyanobacteria.

Figure 4.  Molecular evolution of the circadian clock in cyanobacteria. (a) Hourglass timer of KaiC alone in vitro. The magnesium 
concentration was altered every 12 h (low in white and high in gray). The magnesium concentrations in gray are labeled on the right 
of the graph. (b) Simulations of a mathematical model of the hourglass KaiC timer. All other features are the same as those in (a). (c) 
Simulations of a mathematical model of the hourglass KaiC timer with ATP/ADP effect. All other features are the same as those in (b). 
(d) Hourglass-type oscillation of KaiBC in vitro oscillator. All other features are the same as those in (a). (e) Magnesium effect on the 
KaiABC self-sustained oscillator. Magnesium concentrations are labeled on the right of the graph.
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The magnesium concentration in cyanobacteria 
may be affected by fluctuating environmental con-
ditions such as evaporation and condensation, 
because cyanobacteria can live even in the small 
amount of moisture found in a desert. Although 
magnesium concentration did not have a large 
effect on the self-sustained period, it is still possible 
that day/night magnesium alternations play a role 
in entraining the KaiABC oscillator because small 
changes in the self-sustained period can have a 
large effect on the entrained phase (Granada et al., 
2013). We also hypothesize that signaling pathways 
other than magnesium, such as quinone signaling 
through KaiA (Kim et al., 2012), evolved to enable 
effective entrainment of the self-sustained oscilla-
tor. For example, CikA, a major input pathway pro-
tein (Kaur et al., 2019; Schmitz et al., 2000), directly 
interacts with the KaiABC oscillator to entrain cir-
cadian rhythms in cyanobacteria (Tseng et al., 2017). 
The step-by-step evolution from an hourglass timer 
permitted the development of a robust and entrain-
able circadian clock system in this single-celled 
organism.

Conclusion

Until recently, adding KaiA was the only way to 
activate the kinase activity of wild-type KaiC. We 
found that magnesium regulates KaiC phosphoryla-
tion downstream of the A-loop conformation, which 
is the master regulator of KaiC phosphorylation. By 
modulating magnesium concentration, the phos-
phorylation state of KaiC can be regulated without 
KaiA and KaiB. In ancient cyanobacteria, the KaiC-
alone hourglass timekeeping system, which evolved 
before the current homeostasis system was estab-
lished, may be used for the regulation of gene expres-
sion in the fluctuating magnesium environment. The 
current self-sustained circadian oscillator possibly 
evolved from the KaiC-alone hourglass controlled by 
magnesium.
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Summary 

Circadian transcriptional timekeepers in pacemaker neurons drive profound daily 

rhythms in sleep and wake. Here we reveal a molecular pathway that links core 

transcriptional oscillators to neuronal and behavioral rhythms. Using two independent 

genetic screens, we identified mutants of Transport and Golgi 10 (Tango10) with 

poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing 

the PDF neuropeptide is required for robust rhythms. Loss of Tango10 results in 

elevated PDF accumulation in nerve terminals even in mutants lacking a functional 

core clock.  TANGO10 protein itself is rhythmically expressed in PDF terminals. 

Mass spectrometry of TANGO10 complexes reveals interactions with the E3 

ubiquitin ligase Cullin-3 (Cul3). Cul3 knockdown phenocopies Tango10 mutant 

effects on PDF independent of the core clock gene timeless. Patch clamp 

electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous 

firing due potentially due to reduced voltage-gated Shaker-like potassium currents. 

We propose that Tango10/Cul3 transduces molecular oscillations from the core clock 

to neuropeptide release important for behavioral rhythms.   

 

 

Introduction 

Circadian (~24 h) clocks govern almost all aspects of behavior and physiology across 

the animal kingdom. These overt daily behavioral rhythms are driven by oscillatory 

transcriptional feedback loops whose components are modified by phosphorylation 

and ubiquitination. In Drosophila, the CLOCK(CLK)-CYCLE(CYC) heterodimer 

activates transcription from period (per) and timeless (tim) promoters (Allada et al., 

1998; Rutila et al., 1998). PER and TIM feedback to inhibit CLK-CYC activity and 



suppress their own transcription. CLK-CYC also activates activator Par Domain 

Protein-1e and repressor vrille (vri) which feedback to control Clk transcription 

(Cyran et al., 2003; Glossop et al., 2003). Post-transcriptional control of core clock 

components also plays a crucial role in sustaining molecular clocks (Kojima et al., 

2011; Lim and Allada, 2013a, b; Lim et al., 2011; Lim et al., 2007b; Zhang et al., 

2013). Phosphorylation of clock proteins modulates their subcellular localization, 

activity, and susceptibility to ubiquitin-dependent degradation (Grima et al., 2012; 

Grima et al., 2002; Ko et al., 2002; Koh et al., 2006; Peschel et al., 2009; Peschel et 

al., 2006).  

Core clock oscillations in about 150 networked pacemaker neurons are 

responsible for discrete aspects of rhythmic behavior. Of special importance are just 

10 Pigment Dispersing Factor (PDF) expressing pacemaker neurons (small ventral 

lateral neurons; sLNv) which are critical for free running behavioral rhythms. The 

sLNv act as master pacemakers in constant darkness, synchronizing the circadian 

phase of molecular clocks among PDF and non-PDF expressing groups of clock 

neurons, including the dorsal lateral neurons (LNd) and the PDF- sLNv. Loss of PDF 

or its receptor result in dramatically reduced free running rhythmicity, highlighting 

the crucial role of this neuropeptide (Hyun et al., 2005; Im et al., 2011; Lear et al., 

2005b; Lin et al., 2004; Mertens et al., 2005; Peng et al., 2003; Renn et al., 1999; 

Stoleru et al., 2005).  

 The circadian clock also regulates multiple aspects of pacemaker neural 

output. Clock regulation promotes rhythmic accumulation of PDF levels (Park et al., 

2000) in part through vri regulation  and the sodium leak channel narrow abdomen 

(na) (Blau and Young, 1999; Gunawardhana and Hardin, 2017; Lear et al., 2005a). In 

addition, the clock also regulates daily structural rhythms in the sLNv axonal 



terminals, including changes in arborization and fasciculation (Fernandez et al., 

2007). Structural plasticity rhythms may be mediated by clock transcriptional 

regulation of vri, Mef2/Fas2, and Puratrophin-1-like (Pura) (Abruzzi et al., 2011; 

Blanchard et al., 2010; Gunawardhana and Hardin, 2017; Petsakou et al., 2015; 

Sivachenko et al., 2013). Changes in structural plasticity appear to contribute to 

behavior under different environmental conditions likely through changes in sensory 

inputs (Fernandez et al., 2020; Petsakou et al., 2015). However, oscillations in 

structural plasticity or PDF levels are likely not essential for rhythmic behavior, as 

strains that lack these rhythms often retain strong behavioral rhythmicity (Blanchard 

et al., 2010; Kula et al., 2006; Petsakou et al., 2015; Sivachenko et al., 2013), 

suggesting other mechanisms play a role.  

Circadian neurons also exhibit daily rhythms in excitability (Cao and 

Nitabach, 2008; Flourakis et al., 2015; Sheeba et al., 2008), which may be mediated in 

part by clock regulation of the sodium leak channel regulator Nlf-1 and the calcium-

dependent potassium channel Slowpoke (Ceriani et al., 2002; Fernandez et al., 2007; 

Flourakis et al., 2015). Notably, acute or chronic hyperexcitation of PDF neurons 

elevates PDF levels and enhances defasciculation of the sLNv terminals (Herrero et 

al., 2020; Nitabach et al., 2006; Sivachenko et al., 2013), while acute silencing has 

opposing effects (Depetris-Chauvin et al., 2011), indicating that changes in clock 

neuron excitability can affect PDF levels and sLNv morphology. Clock and 

excitability dependent arborization changes depend on PDF/PDFR, highlighting the 

critical role for this neuropeptide (Gunawardhana and Hardin, 2017; Herrero et al., 

2020). Here we demonstrate that TANGO10-CUL3 defines a novel circadian output 

pathway important for regulating pacemaker neuron excitability and PDF levels. Loss 



of TANGO10-CUL3 severely disrupts free-running rhythmic behavior highlighting its 

crucial role in neuronal output.  

 

 

Results 

 

Loss of the BTB adaptor Tango10 strongly reduces free-running rhythms 

Identification of novel clock mutants has been an essential strategy to understand how 

genetic components shape circadian behaviors and clock-relevant physiology. As part 

of a genetic screen (Pfeiffenberger and Allada, 2012), we identified a P-element 

insertion allele of Tango10 (Tango10GG) that strongly reduces behavioral rhythmicity, 

comparable to the strongest clock mutants reported (Figure 1A,B; Figure S1, Table 

S1). Tango10GG head extracts do not express detectable TANGO10 protein, consistent 

with a strong or complete loss of function allele (Figure 1C). Females trans-

heterozygous for Tango10GG and chromosomal deletions of the Tango10 locus 

display poor rhythmic power similar to hemizygous male flies (Figure 1D; Table S1). 

Importantly, excision of the P element or transgenic expression of a genomic Tango10 

construct fully reverts/rescues the circadian arrhythmicity of Tango10GG mutants 

(Figure 1E; Table S2). 

We independently identified a novel mutant through an X chromosome ethyl 

methanesulfonate mutagenesis screen for disruptions in circadian and sleep behaviors. 

We named this mutant busy run (bsr), based on a Korean word meaning ‘diligent’ and 

pronounced as [bu:zirʌn]. bsr mutants display arrhythmic locomotor behavior in 

constant darkness comparable to Tango10GG mutants (Figure 1A, Table S1). 

Complementation tests revealed that neither Tango10GG nor genomic deletions 



spanning the Tango10 locus rescue bsr mutant phenotypes in trans-heterozygous 

females (Figure 1D; Table S2), suggesting that bsr might be a recessive mutant allele 

of Tango10. To assess this possibility, we compared the coding sequences of Tango10 

in wild-type and bsr mutants. Indeed, we found a missense mutation in bsr mutants 

that converts phenylalanine at the position of amino acid 462 to leucine (P462L) 

within the third coding exon of Tango10 (Figure 1B, Figure S2A). Sequence 

alignments reveal strong conservation of this residue among TANGO10 homologs 

including human (Figure S2B), implicating its significance in the structure, stability 

or function of TANGO10 proteins. Consistent with this hypothesis, we find that 

TANGO10 proteins are barely detectable in head extracts of bsr mutants (Figure 1C). 

Finally, a genomic transgene harboring a wild-type Tango10 locus fully rescues the 

circadian phenotypes in bsr mutants (Figure 1E; Table S2). Taken together, these 

genetic data convincingly demonstrate that Tango10 is a novel clock gene whose 

importance for sustaining high-amplitude rhythms is comparable to core clock genes.  

  

Tango10 functions in PDF neurons to control free-running rhythms 

To determine the anatomical requirements for Tango10, we employed GAL4-UAS to 

express wild-type Tango10 cDNA in Tango10GG mutants in specific tissues and 

stages. We find that adult-specific Tango10 induction using the RU486 inducible 

GeneSwitch system either pan-neuronally or ubiquitously (elav-geneswitchGAL4 or 

daughterless-geneswitchGAL4, respectively) restores robust behavioral rhythms in 

Tango10 mutants, indicating that Tango10 functions in adult neurons (Figure 2A; 

Table S3). In contrast, Tango10 expression in all (timGAL4) or subsets of (ClkGAL4-

8.0, pdfGAL4) circadian pacemaker neurons, does not rescue Tango10 mutant 

rhythms (Figure 2B; Table S4). The lack of rescue using circadian drivers cannot be 



attributed to overexpression, as Tango10 overexpression of Tango10 in a wild-type 

background does not reduce rhythmicity (Table S4).  

To narrow down the anatomical locus necessary for Tango10-dependent 

clocks, we combined broader Gal4 rescue with different Gal80 transgenes to block 

GAL4 induction in defined subsets of neurons. We used the broadly expressing 

GAL4, 30YGAL4 (Yang et al., 1995), which robustly rescues rhythmicity in Tango10 

mutants (Figure 2B, Table S4). 30Y-driven Tango10 rescue is blocked using the pan-

neuronal elavGAL80, confirming a neuronal Tango10 requirement (Figure 2C, Table 

S4). 30Y is notably active in mushroom body neurons (Yang et al., 1995) yet the MB-

specific GAL80, 247-Gal80 does not block rescue. On the other hand, blocking 30y 

specifically in PDF neurons did substantially suppress rescue of behavioral rhythms.  

Thus, Tango10 function in PDF neurons is necessary to drive free running rhythms 

(Figure 2C; Table S4).  

To validate the necessity of Tango10 in PDF neurons, we silenced endogenous 

Tango10 expression in the select neurons by RNA interference (RNAi) and examined 

effects on circadian locomotor rhythms. We first confirmed that pan-neuronal 

expression of the Tango10 RNAi transgene effectively depletes endogenous 

TANGO10 proteins in fly head extracts, indicating RNAi efficacy and neuronal 

TANGO10 expression (Figure S3). We further found that Tango10 depletion in PDF 

neurons, but not in mushroom body neurons, leads to behavioral arrhythmicity, 

comparable to that of Tango10 mutants (Figure 2D; Table S4). Taken together, these 

data demonstrate that Tango10 in PDF neurons is necessary for robust rhythmicity in 

circadian locomotor behavior.  

 

Loss of Tango10 function selectively affects small LNv PER and TIM oscillations  



Daily rhythmic expression of clock proteins underlies circadian locomotor behavior. 

We thus examined the daily expression of core clock proteins PER and TIM as a 

measure of molecular clocks. Immunoblotting of adult head extracts at circadian time 

(CT) 3 and CT15 showed comparable levels of PER and TIM between wild-type and 

Tango10 mutants (Figure S4). We also evaluated PER and TIM rhythms in LD in 

individual groups of circadian pacemaker neurons: PDF+ sLNv and lLNv and PDF- 

LNd and 5th sLNv (Figure 3). PER and TIM oscillations were evident in all groups of 

neurons in both wild-type and Tango10 mutants (Figure 3). Moreover, in most of 

those groups, levels and oscillation amplitude were comparable between wild-type 

and Tango10 mutants, although modest time-dependent changes in protein levels are 

consistent with a small phase delay in Tango10 mutants (Figure 3). Tango10 sLNv 

exhibit the most prominent effects with a modest ~30% reduction in peak PER levels 

(2.5x oscillation in wild-type and 1.9x in Tango10) and a ~60% reduction in TIM 

levels, although TIM levels still oscillate significantly (~3x; Figure 3). Thus, while 

peak levels are reduced in the sLNv especially in TIM, both PER and TIM 

oscillations are still evident.  

 

Loss of Tango10 dramatically elevates PDF levels in clock neuron terminals 

The finding of largely intact molecular oscillations suggests that Tango10 may 

function to regulate the output of PDF neurons. The molecular clock is thought to 

transmit timing information in part via the daily rhythm in the circadian neuropeptide 

PDF. To assess Tango10 effects on PDF, we examined PDF accumulation at the 

dorsal axonal terminals of the sLNv. Wild-type sLNv display robust PDF rhythms 

with the peak levels 2 h after lights-on in LD cycle (i.e., zeitgeber time 2; lights-on at 

ZT0; lights-off at ZT12) (Figure 4A,B) (Park et al., 2000). Tango10 mutant sLNv, 



however, displayed constitutively high levels of PDF at their axon terminals, 

dampening PDF rhythms (Figure 4A,B). To address whether these PDF phenotypes 

are via changes in TIM, we generated double mutants of Tango10 and tim01 and 

examined PDF expression. We found that loss of Tango10 results in elevated PDF 

levels even in a tim null mutant background (Figure 4C), indicating a clock-

independent role for Tango10 in the regulation of PDF rhythms. 

We next examined the subcellular localization of TANGO10 to determine how 

it might exert its effects on PDF. Unfortunately, our anti-TANGO10 antibody failed 

to detect endogenous TANGO10 proteins in whole-mount brains by immunostaining. 

We thus expressed transgenic TANGO10 proteins with an HA epitope-tag in order to 

visualize expression in PDF neurons. We confirmed that the Tango10-HA transgene 

strongly rescues Tango10 mutant rhythms indicating it is functional (Figure 5A).  

When expressed in PDF neurons, transgenic TANGO10-HA exhibits punctate 

localization in the axonal tract and terminals of sLNv neurons (Figure 5B). We 

observe partial colocalization between PDF and TANGO10-HA expression in the 

sLNv terminals, with TANGO10 exhibiting somewhat broader localization (Figure 

5B). Moreover, our quantitative analysis revealed robust TANGO10 rhythms at 

axonal terminals of sLNv in LD cycles (Figure 5C,D; peak ZT 10, trough ZT 22). 

These data suggest that rhythmic TANGO10 expression in the dorsal terminals may 

contribute to rhythmic PDF levels.  

 

Proteomic analysis identifies CUL3 as a TANGO10-interacting partner 

Multiple sequence alignments indicate that BTB/POZ and BACK domains implicated 

in protein-protein interactions are well conserved among TANGO10 homologs 

(Figure S2B,C). Accordingly, we performed proteomic analyses of 



immunoprecipitated TANGO10 protein complexes from fly heads to identify factors 

mediating Tango10-dependent clock function in vivo. We first confirmed that a C-

terminal triple FLAG tag does not interfere with wild-type Tango10 function as pan-

neuronal expression of the FLAG-tagged TANGO10 rescues behavioral phenotypes 

in Tango10 mutants (Table S5). We expressed FLAG-tagged TANGO10 either in 

clock cells using timGAL4 or in all postmitotic neurons using elavGAL4. The protein 

complex associating with FLAG-tagged TANGO10 was then affinity-purified by 

immunoprecipitation at ZT10 and ZT22 and analyzed by mass spectrometry. To 

identify “hits”, we looked for proteins that were detected in at least two of the four 

samples but not present in GAL4/+ controls nor in immunoprecipitation of the clock 

translation factor TWENTY-FOUR (Lim and Allada, 2013a). This strategy revealed 

21 overlapping hits from independent proteomic analyses(Table S6). Interestingly, an 

E3 ligase Cullin-3 (Cul3) was identified as one of the overlapping hits present in both 

timGAL4 samples and one out of two elavGAL4 samples. CUL3 has been proposed to 

play a role in TIM ubiquitination, contributing to high-amplitude TIM cycling and 

behavioral rhythms (Grima et al., 2012; Guo et al., 2014; Szabo et al., 2018). 

TANGO10 and CUL3 co-immunoprecipitate from Drosophila S2 cells when 

transiently transfected. (Figure 6A). We also observed that endogenous CUL3 co-

immunoprecipitates with timGAL4 driven FLAG-tagged TANGO10 further 

confirming their in vivo interactions (Figure 6B).  Taken together, these data suggest 

that TANGO10 and CUL3 form a protein complex to sustain circadian rhythms. 

 

Cul3 depletion phenocopies the behavioral rhythms and PDF levels of Tango10 

mutants 



To assess Cul3 function in PDF neurons, we employed pdfGAL4 driven Cul3 RNAi. 

We find that Cul3 depletion in PDF neurons severely dampens DD locomotor 

rhythms (Figure 6C; Table S7), consistent with a prior report (Grima et al., 2012). We 

next determined if Cul3, like Tango10, similarly affects PDF levels and find that PDF 

levels are constitutively high in the axon terminals of Cul3-depleted sLNv (Figure 

6D,E), phenocopying the effects of Tango10 mutants. Given the proposed links 

between CUL3 and TIM, we assessed Cul3 effects in a tim null background (tim01) 

and find elevated PDF levels similar to what we observe for Tango10 mutants (Figure 

6D,E), supporting a tim-independent role of Cul3 downstream of the clock on PDF. 

Given the similarity of Cul3 and Tango10 phenotypes, we hypothesize that CUL3 

employs TANGO10 as an adaptor downstream of the molecular clock to drive PDF 

and behavioral rhythms.  

 

Loss of Tango10 increases firing rate and depolarizes membrane potential 

PDF levels in axonal terminals are also dependent on neuronal excitability (Herrero et 

al., 2020; Nitabach et al., 2006). To investigate the impact of a Tango10 mutation on 

excitability, we performed whole-cell patch electrophysiology on the PDF-expressing 

large LNv (lLNv). lLNv electrophysiology has been well-studied as their position 

near the surface of the brain and large soma makes them more accessible compared to 

other fly clock neurons. We find that Tango10 mutant lLNv exhibit increased 

excitability compared to wild-type (Figure 7A). Firing frequency of Tango10 lLNv 

neurons is significantly higher compared to wild-type lLNv (Figure 7B). The increase 

in firing rate of Tango10 lLNv is linked to a more depolarized membrane potential 

(Fig 7C, p<0.01). Input resistance of lLNv neurons was measured using a 

hyperpolarizing current injection protocol, with no significant difference found 



between wild-type and Tango10 (Figure 7D). Cell capacitance was determined from a 

current step measured in voltage-clamp mode, with Tango10 lLNv neurons found to 

have a significantly lower capacitance compared to wild-type during morning hours 

(Figure 7E). Nonetheless, the finding of elevated excitability in Tango10 mutant 

neurons is consistent with a role in neuronal output. 

 

4AP-sensitive IA potassium current is significantly reduced in Tango10 mutant 

lLNv 

To investigate which ion channels could be mediating the difference in Tango10 

mutant lLNv, we used voltage clamp electrophysiology. We observed a voltage-gated 

outward current with fast and slow inactivating components (Figure 8A). We noted 

that the fast, but not slow, inactivating component was reduced in Tango10 mutants 

(Figure 8A-C). We then used pharmacology to block subsets of potassium channels to 

further resolve the mechanisms underlying Tango10 hyperexcitability. Whole-cell 

currents were recorded in the presence of TTX to block sodium channels, before 

repeating the same voltage-clamp protocol while adding TEA to block voltage-gated 

potassium channels. The TEA-sensitive current was calculated by subtracting the 

currents measured in the two conditions (Figure 8D). No significant differences were 

found in the TEA-sensitive current between wild-type and Tango10 (Figure 8E). To 

further interrogate potassium channel currents the same voltage-clamp protocol was 

performed with the further addition of 4AP to the solution, with the 4AP-sensitive 

current again calculated using subtraction of the currents evoked in the two 

conditions. Isolating the 4AP-sensitive current revealed a significant reduction in 

Tango10 lLNv neurons, (Figure 8D,8F). The inactivation kinetics and 



pharmacological specificity of this current identifies a reduced Shaker-like (IA) 

current in Tango10 mutants. 

 To determine if reductions in IA current can explain the increased firing rate 

observed in Tango10 mutants, we developed a new mathematical model of lLNv 

electrophysiology (Table S8). Our model builds on the Smith model of lLNv neurons 

(Smith et al., 2019) which includes an inward sodium current, an inward calcium 

current, a leak current, and four outward potassium currents: fast inactivating A-type 

currents Shaker and Shal, and slow or non-inactivating currents Shab and Shaw. In 

the Smith model, the potassium current parameters were fit to voltage-clamp data 

isolating these currents in lLNv neurons, whereas the sodium and calcium current 

parameters were taken from a previously published model of mammalian circadian 

clock neurons (Sim and Forger, 2007). For our model, we retained the Smith model 

potassium current parameters, but refit the sodium and calcium current parameters to 

current-clamp data from lLNv neurons using data assimilation, a state and parameter 

estimation technique for optimally combining dynamical models with observations 

(see Methods). This approach yielded a model that closely matches the firing rate and 

action potential shape observed in recordings from WT LNv neurons (Figure 8G, S5, 

S6). We then simulated the model with reduced values of the maximal conductance 

parameter for the Shaker and Shal currents. We found that a 30% reduction in 

Shaker/Shal currents can reproduce the increased firing rate phenotype of the 

Tango10 mutants (Figure 8G-H).  

To experimentally test the contribution of the TEA-sensitive and 4AP-

sensitive currents on lLNv neurophysiology, we measured the effects of 

pharmacological application of the respective drugs upon resting membrane potential, 

measured in the presence of TTX. Application of TEA resulted in a small 



depolarization of membrane potential (~1-2mV), both at morning and evening, with 

no difference observed between Tango10 and wild-type (Fig S7A,B). However, 

application of 4AP caused a larger depolarization (~5-10mV) in wild-type lLNv, with 

a significantly smaller response in Tango10 lLNv evident in the evening (Figure 

S7A,C) providing further evidence for a reduction of the 4AP-sensitive current in 

Tango10 lLNv neurons. Interestingly, Shal gene expression and current levels are 

more elevated in the evening consistent with these 4-AP effects (Kula-Eversole et al., 

2010; Smith et al., 2019). 

 

Discussion 

To discover genes involved in circadian behavior, we performed two large scale 

genetic screens: one P-element candidate based and the other an unbiased chemical 

mutagenesis. These divergent approaches independently identified mutants of 

Transport and Golgi 10 (Tango10), highlighting its pivotal role. These mutants 

profoundly disrupt free running rhythmicity. Moreover, loss of Tango10 results in 

dramatic accumulation of PDF in clock neuron terminals and loss of PDF 

accumulation rhythms. These effects persist in the absence of a functioning core 

clock. To better understand the molecular mechanisms by which Tango10 functions 

we analyzed TANGO10 complexes using immunoprecipitation and mass 

spectrometry and found interactions with the E3 ubiquitin ligase Cullin-3 (Cul3) and 

Cul3 knockdown also results in similar PDF accumulation effects. Patch clamp 

electrophysiology of PDF neurons demonstrates increased excitability and reduction 

of Shaker-like potassium currents suggesting that Cul3/Tango10 effects are via 

elevated excitability. TANGO10 protein levels also oscillate in these terminals, 

suggesting they contribute to cellular rhythms.  Taken together, this study reveals a 



critical ubiquitin-proteasome pathway by which temporal information is conveyed to 

cellular and behavioral outputs (Figure S8). 

This work highlights a novel neuronal output pathway with remarkably robust 

effects on free-running circadian rhythms. Loss of Tango10 with two independent 

alleles results in a substantial reduction in rhythmic power (~ 95% reduction in P-S 

for the GG allele). Independent alleles were discovered in two phenotype-driven 

screens. The strength of the rhythmicity phenotype is in contrast with those previously 

reported for loss-of-function alleles of other putative output genes.  Much of the 

prominent work examining output in circadian neurons has focused on 

fasciculation/defasciculation of axonal arbors (Petsakou et al., 2015; Sivachenko et 

al., 2013). While the gold standard loss-of-function genetics (e.g., RNAi or dominant 

negative manipulations) have profound consequences on rhythmic fasciculation 

neural states (see Figure 1C in Petsakou et al. 2015) they have limited effects on the 

crucial functional output of these neurons, circadian behavior (see Figure 4D, 

Rho1DN, Petsakou et al. 2015 and Table 2 pdf>Mef2 RNAi; Sivachenko et al. 2013). 

The only studies that have observed large circadian behavioral phenotypes as a result 

of loss-of-function genetic manipulations are those targeting the PDF neuropeptide 

itself as well as subunits of the ion channel NARROW ABDOMEN and its regulator 

NLF-1, which function via excitability (Flourakis et al., 2015; Lear et al., 2013; Renn 

et al., 1999).  Our finding that Tango10 has profound effects on free running 

rhythmicity indicates it defines a special pathway crucial for free-running rhythmicity. 

Using cell-type specific genetic rescue and quantitative immunofluorescence, 

we demonstrate that Tango10 effects on rhythmicity map to just ~20 clock neurons 

expressing the neuropeptide PDF. RNAi knockdown specifically in the LNv disrupts 

free running rhythmicity, and LNv expression is required for robust rescue of the 



Tango10 rhythmicity phenotype. Moreover, the clock-independent effects of 

TANGO10 and CUL3 on PDF expression levels map to the PDF-positive LNv, as 

elevated PDF levels are observed when RNAi knockdown of either gene is restricted 

to the PDF neurons (Figure 6B, data not shown). Additionally, the effects of 

TANGO10 and CUL3 effects on the molecular clock are mainly observed in the sLNv 

group and not other pacemaker neuron groups (Figure 3, Grima et al. 2012). Taken 

together, our data indicate a critical functional requirement for TANGO10-CUL3 in 

the PDF-positive LNv to promote molecular and behavioral rhythmicity.  

 We have demonstrated that Tango10 likely functions in concert with the E3 

ubiquitin ligase Cul3, thus defining a role for protein ubiquitination in neuronal 

output. Proteomic and co-immunoprecipitation experiments indicate that CUL3 and 

TANGO10 interact in vivo. Loss of Tango10 or Cul3 function in PDF neurons causes 

comparable arrhythmicity. Moreover, decreased Tango10 or Cul3 function also 

results in similar molecular phenotypes, including clock-independent elevation of 

PDF levels. Ubiquitination can serve as a signal for protein degradation and/or traffic 

proteins to the cell membrane (Foot et al., 2017; Gschweitl et al., 2016). It will be of 

interest to examine the function of other TANGO10-interacting proteins as potential 

enzymatic targets of this complex. 

 Under this model (Figure S8), core clock effects observed may be secondary 

to Tango10-mediated effects on excitability/PDF. In most pacemaker neurons and in 

whole heads, PER and TIM oscillations are largely intact in Tango10 mutants. We did 

observe modest reductions in peak PER levels and more robust reductions in TIM 

specifically in the sLNv. Interestingly, these sLNv phenotypes are very similar to 

those observed after Cul3 impairments (Grima et al., 2012). This prior study proposed 

that CUL3 ubiquitinates TIM, targeting it for degradation.  Yet loss of putatively 



TIM-degrading Cul3 results in a decrease in peak TIM levels in clock neurons 

(Figure 2, Grima et al 2012), inconsistent with a direct role in degrading TIM. 

Moreover, reduction of Cul3 on its own in vivo does not alter TIM ubiquitination 

(Szabo et al., 2018).  

We believe that our data suggest that these effects are instead due to elevated 

excitability/PDF signaling. Acute increases in excitability lead to acute reductions in 

TIM but not PER (Guo et al., 2014).  Chronic activation of LNv clock neurons (via 

expression of the bacterial sodium channel NaChBac) results in reductions in peak 

levels of the CLK activated transcription factor PDP1 (Nitabach et al., 2006).  This 

effect is comparable to the reduction in peak levels in CLK-activated PER and TIM 

seen in Tango10 (Figure 3). Cul3 has previously been shown to be required for 

excitation-dependent reductions in TIM (Guo et al., 2014). One possibility is that 

knockdown of Cul3, like Tango10, elevates excitability and thus, additional excitation 

may not be able to further drive down TIM levels. In addition, PDF signaling is also 

known to feedback and regulate PER and/or TIM levels. The finding that PDF effects 

of Tango10 and Cul3 are evident even in a tim01 further cements the notion that core 

clock effects may be a secondary consequence of its excitability/PDF effects and not 

due to direct effects on the core clock or TIM. It is worth noting that a clockwork 

orange allele (cwoB9) with comparable effects on PER and TIM oscillation amplitude 

in the sLNv retain more robust rhythms than observed with Tango10 (Richier et al., 

2008), suggesting the core clock effects are not sufficient for the behavioral 

phenotype.   

 We hypothesize that the primary effects of Tango10 are on excitability which 

in turn regulates PDF levels in the terminals (Figure S8). Tango10 mutant lLNv 

exhibit an increased firing rate, possibly due to reductions in IA current. Electrical 



activation of the LNv via NaChBac or TrpA1 each result in elevated PDF, as seen in 

Tango10 or Cul3 reductions (Herrero et al., 2020; Nitabach et al., 2006). Activity-

induced increases in PDF may be further sustained by PDF release and PDFR 

feedback signaling (Herrero et al., 2020). 

 Our finding of reduced IA currents in Tango10 mutants suggest they are a key 

target for mediating LNv excitability and behavior. Reduction of IA currents elevates 

lLNv firing rates and alters the timing of sleep onset (Feng et al., 2018; Smith et al., 

2019). We have developed a new computational model for the lLNv that more 

faithfully recapitulates in vivo activity and this model demonstrates that the changes 

in IA observed in Tango10 can explain the elevated firing rates. The Shal transcript 

expression and current activity are time-dependent peaking in the evening hours 

suggesting a role in mediating clock control of neuronal excitability (Kula-Eversole et 

al., 2010; Smith et al., 2019).  These results are consistent with time-dependent effects 

of IA inhibition in the evening (Figure S7). One possibility is that TANGO10 

expression may enhance Shal currents in the evening. These effects may be conserved 

in mammals as reduction in IA currents also more strongly elevate firing rates at night 

in the suprachiasmatic nuclei and alter circadian behavior (Granados-Fuentes et al., 

2012; Hermanstyne et al., 2017). IA has also been observed to exhibit time-

dependence (Itri et al., 2010). It will be of interest to test the hypothesis that 

reductions in IA current may result from reduced ubiquitination of Shaker/Shal ion 

channels or their regulators. 

 In summary, we demonstrate a novel role for the BTB adapter TANGO10 in 

regulating LNv excitability and PDF signaling to promote circadian rhythmicity 

(Figure S8). Our behavioral, molecular and electrophysiological data support a 

primary role for CUL3-TANGO10 in increasing K current activity to decrease 



excitability. These effects on excitability can in turn regulate PDF signaling and levels 

to affect rhythmic behavior. Molecular clock effects may be downstream or 

independent of changes in excitability. Future studies will be required to determine 

whether CUL3/TANGO10 plays a broader role in other neuropeptidergic neurons, 

particularly in circadian output circuits.  

 

  



Figure Legends 

 

Figure 1. Loss of Tango10 disrupts behavioral rhythms. (A) Average activity 

profiles of wild-type and Tango10 mutant strains during 4 days LD (white and gray 

background) followed by 7 days DD (gray background). white: light conditions, gray: 

dark conditions. n=34-59. (B) Schematic diagrams of the Tango10 transcript and 

mutations. Untranslated regions are marked as black boxes and coding sequences are 

shown as white boxes. The Tango10GG mutant strain contains a P-element insertion 

within a coding exon (exon 2) while Tango10bsr contains an EMS-mediated missense 

mutation in exon 3 (P426L), marked with an asterisk. (C) Protein extracts from wild-

type, Tango10 mutant, and heterozygous flies blotted with Rat anti-TANGO10 and 

anti-Synapsin as loading control. GG indicates Tango10GG mutant while bsr refers to 

the Tango10bsr mutant. Representative images shown. (D-E) Locomotor rhythmicity, 

as determined by Chi-squared periodogram analysis over 7 days of constant darkness. 

Error bars indicate SEM. (D) Complementation rhythmicity data from adult female 

strains as indicated. Df1 refers to Df(1)ED7147 while Df2 refers to Df(1)BSC722 

(n=8-51). Statistical significance determined one-way ANOVA followed by 

Dunnett’s comparison test, with comparisons made to wild-type control (**P<0.02, 

*P<0.05). (E) Excision and genomic rescue rhythmicity data from the adult male 

strains indicated. ΔGG indicates precise (#5,#6) or mock (#1,#3) excision strains. 

[Tango10#1] and [Tango10#2] indicate Tango10 genomic rescue transgenes (n=12-

71). Statistical comparisons made using one-way ANOVA followed by Dunnett’s test 

(excision) or two-way ANOVA followed by Tukey’s multiple comparison test 

(genomic rescue). Asterisks indicated significant difference from corresponding 

mutant (Tango10GG or Tango10bsr) (** p < 0.02). 



 

 

Figure 2. Tango10 expression in PDF neurons and adult stage-specific expression 

are important for sustaining rhythmic behavior. (A-D) Assessment of behavioral 

rhythmicity in Tango10 mutant, rescue, and RNAi strains, as determined using chi-

squared periodogram analysis. GG indicates Tango10 GG mutant allele. Error bars 

indicate SEM. (A) Adult-specific expression of Tango10 in Tango10GG mutants, 

using elav-GeneSwitchGAL4 (Elav GS) and daughterless-GeneSwitchGAL4 (Da GS). 

Flies in which Tango10 expression is induced in adulthood (RU486) exhibit increased 

behavioral rhythmicity compared to ethanol (EtOH) fed flies (n= 8-22). Statistical 

significance determined by Student’s t-test (**P<0.02). (B) 30YGal4 restored 

rhythmicity of Tango10GG mutants in contrast to circadian Gal4s including PdfGAL4, 

timGAL4, and Clk8.0GAL4 (ClkGAL4; n=19-79). Statistical significance between 

Gal4 crossed lines and iso31 crossed control was determined by Student’s t-test 

(**P<0.02) (C) Elav- and Pdf-Gal80 blocked the rescue of rhythmicity by 30YGal4 

driven Tango10 expression (n=15-39). Statistical significance of GAL80 compared to 

control (30YGal4 mediated Tango10 expressed flies) was determined by one-way 

ANOVA with Dunnett's multiple comparisons test. (**P<0.02, N.S. : Not Significant) 

TANGO10 : uas-Tango10 (D) RNAi- depletion of Tango10 in clock neurons 

phenocopies Tango10GG mutants. Dicer2(DCR) was combined with Gal4s to increase 

RNAi efficiency (n=32-44). Statistical significance was determined by Student t-test 

between RNAi and Gal4 heterozygous controls (**P<0.02). 

 

Figure 3. Clock oscillations are dampened in s-LNvs in Tango10 mutants. 

Intensity of PER (A) and TIM (B) in confocal images of brains were normalized to 



averaged signal intensity of wild-type at zeitgeber time (ZT), normalized to average 

wild-type (WT) signal within each experiment. 7-9 hemispheres were imaged for each 

time-point per genotype per experiment, n=2 experiments.  Wild-type and Tango10 

measurements were compared  at each time-point using Student’s t-test (* p < 0.05, 

** p < 0.02). l-LNvs : large-ventral lateral neurons, s-LNvs: small-ventral lateral 

neurons, 5th: PDF negative LNv, LNds : dorsal lateral neurons (C-D) Representative 

confocal images of s-LNvs in wild-type (C) and Tango10 mutants (D). Proteins are 

labeled as follows: PER(red), PDF(blue), TIM(green). 

 

Figure 4. Loss of Tango10 results in elevated PDF independent of timeless 

function. (A) Representative Z-stacked maximum intensity projection images of PDF 

staining in dorsal terminals of sLNv under LD conditions. WT refers to wild-type, GG 

indicates Tango10GG mutant. ZT indicates Zeitgeber Time. (B) Quantification of PDF 

intensity in dorsal projection of s-LNvs from Z-stacked images. Section images were 

stacked as maximum intensity projection. Integrated densities above threshold were 

measured and normalized to averaged measurement of wild type and Tango10 

mutants at ZT2 (set as 1). Normalized value from two experiments (N=7~13 per 

genotype at each time point) were combined and samples were compared by Student’s 

t-test at each time point (* p < 0.05, **p < 0.02). (C) Representative images of and 

quantitation of PDF signal in dorsal projections of s-LNvs of tim01 and Tango10GG 

tim01 at ZT15. GG; tim01: Tango10GG; tim01. Quantification of PDF images in dorsal 

projections performed as in Figure 4B, except normalized to tim01 ZT 15 (average set 

to 1; n=22-24). Genotypes compared by Student t-test, (**P<0.02). 

 



Figure 5. Transgenic Tango10 protein localizes to and oscillates in PDF neuron 

dorsal terminals.  (A) Rescue of behavioral rhythmicity using UAS-Tango10HA 

construct vs. wild-type (WT) in Tango10GG mutants (GG) using 30YGAL4, analyzed 

over 7 days DD using Chi-squared periodogram analysis. Student’s t-test, P < 0.001 

(***). (B) Confocal images of a representative pdfGAL4 UAS-Tango10HA brain 

colabeled for PDF (green) and TANGO10-HA (red) in the sLNv dorsal terminals at 

ZT15. (C-D) PdfGAL4 driven TANGO10-HA cycles in the s-LNv dorsal projections. 

(C) Quantification of HA and PDF signal, performed as in Fig 4. ZT = Zeitgeber 

Time, gray area of chart indicates dark phase while white area indicates light phase. 

PDF intensity at ZT2 was set to 1 in three independent experiments. Sample size were 

27-38 at each time point. Tango10-HA cycling was detected by one-way ANOVA 

followed by Turkey’s post hoc test (p < 0.01). (D) Representative max projection 

images of TANGO10-HA staining at the timepoints indicated from pdfGAL4 UAS-

Tango10HA brains. 

 

Figure 6. Depletion of TANGO10 interactor CUL3 in PDF neurons phenocopies 

tim-independent PDF expression phenotype observed in Tango10 mutants. (A-B) 

Co-immunoprecipitation of CUL3 and TANGO10 in Drosophila tissues. (A) 

Representative Western blots of input and immunoprecipitation (IP) samples from S2 

cells transfected with CUL3-V5 and/or TANGO10-HA as indicated. (B) Western blot 

analysis of input and IP samples of adult head extracts upon transgenic expression of 

FLAG-tagged TANGO10 using timGAL4, compared to timGAL4/ wild-type (WT) 

control, assayed by anti-FLAG and anti-CUL3. CUL3 is detected in input blots as 

well as IP blots for samples in which TANGO10-FLAG is co-transfected. A non-

specific band (NS) is observed in both IP samples independent of TANGO10-FLAG 



transfection, but the size of this band is larger than CUL3. (C) Cul3 depletion in 

circadian neurons including PDF+ cells induces decreased rhythmicity. Cul3 RNAi 

refers to NIG strain 11861R-2, pDCR2: PdfGal4, Uas-dicer2, tDCR2: timGal4, Uas-

dicer2.  Power of rhythmicity determined using Chi-squared periodogram. Statistical 

significance determined by Student t-test compared to Gal4 heterozygous control 

(**P<0.02). (D-E) PDF intensity in dorsal lateral projection of LNvs increased by 

Cul3 depletion in PDF neurons at Zeitgeber Time 14 (ZT14) and is independent from 

timeless. PD2: PdfGal4 UAS-dicer2. (D) PDF signal analyzed similarly to data in 

Figure 4C. Relative values from two experiments were averaged. Cul3 depletion in 

PDF neurons has a significant effect.: Two-way ANOVA, F (1, 56) = 27.33 , 

P<0.0001. There was no effect of tim01 in Tukey's multiple comparisons test, whereas 

pdfGAL4 UAS-Dcr2 Cul3 RNAi is significantly different from RNAi control in both 

tim+ and tim mutant backgrounds (* p < 0.05, **p < 0.02). (E) Representative PDF 

staining images of dorsal projection of LNvs in Cul3 depleted flies and RNAi controls 

in a tim+ or  tim01 background at ZT14.  

 

Figure 7. Loss of Tango10 increases excitability in PDF neurons. (A) 

Representative current-clamp recordings at ZT0~4 (top) and ZT8~12 (bottom) of 

wild-type (WT) (left) and Tango10GG (right). (B) Summary bar graphs showing mean 

firing rate of WT (n = 18 at ZT0~4; n = 21 at ZT8~12) and Tango10GG mutant (n = 19 

at ZT0~4; n = 19 at ZT8~12). (C) Summary bar graphs showing mean membrane 

potential (MP) of WT (n = 18 at ZT0~4; n = 21 at ZT8~12) and Tango10GG (T10) 

mutants (n = 19 at ZT0~4; n = 19 at ZT8~12). Values are means ± SEM. **P < 0.01 

by Student’s t-test. (D) Input resistance was measured in current clamp from the 

voltage response to hyperpolarizing current steps. No difference was found between 



WT and Tango10 at both morning and evening (Student’s t-test). (E) Cell capacitance 

of Tango10GG l-LNv neurons is significantly lower than WT at morning hours (** p < 

0.02) but not evening (p = 0.11), as determined by Student’s t-test. 

 

Figure 8. Decreased IA current in Tango10 mutants may underlie increased 

firing rate. (A-C) A) Whole-cell current traces induced by step pulse to potentials 

between -120 and +100 mV with 10 mV increment in WT (top) and Tango10GG 

mutant (bottom). Pulse protocols for recording whole-cell currents (inset). (B and C) 

I-V show mean whole-cell current densities for the peak current (IK fast; fig B) and 

the late portion (IK slow; fig C) of the current of lLNv in WT (n = 14 at ZT0~4; n = 

12 at 8~12) and Tango10 mutant (n = 17 at ZT0~4; n = 13 at ZT8~12). The amplitude 

of IKfast current was significantly lower in ILNv from Tango10 mutant compared with 

wild-type (two-way ANOVA, p < 0.0001). (Cont ZT0~4 vs. Mutant ZT0~4, Cont 

ZT8~12 vs. Mutants ZT8~12; P < 0.05 by Two-Way ANOVA; #P < 0.05, Tukey's 

HSD test). (D-F) TEA-sensitive and 4AP-sensitive current in WT and Tango10 

mutant. (D) TEA-sensitive outward current (top traces) and 4AP-sensitive outward 

current (bottom traces), respectively. (E) I-V show mean TEA-sensitive current 

densities of lLNv in WT (n = 7 at ZT0~4; n = 6 at 8~12) and Tango10 (n = 5 at 

ZT0~4; n = 7 at ZT8~12). (F) I-V show mean 4AP-sensitive current densities of lLNv 

in WT (n = 7 at ZT0~4; n = 6 at 8~12) and Tango10GG mutants (n = 5 at ZT0~4; n = 7 

at ZT8~12). The amplitude of 4AP-sensitive current was significantly lower in ILNv 

from Tango10 mutant compared with wild-type animal (two-way ANOVA, p < 

0.0001). (Cont ZT0~4 vs. Mutant ZT0~4, Cont ZT8~12 vs. Mutants ZT8~12; P < 

0.05 by Two-Way ANOVA; #P < 0.05, Tukey's HSD test). (G) Simulations of 

mathematical models of WT (top trace, firing rate ~1 Hz) and Tango10 mutant 



(bottom trace, firing rate ~4 Hz) in l-LNv neurons. (H) Firing rate of model as a 

function of the percentage reduction in Shaker/Shal current, with red dot (30% 

reduction) and gray dot (0% reduction) corresponding to the Tango10 and WT models 

shown in (G), respectively. 
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STAR METHODS 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Ravi Allada (r-allada@northwestern.edu). 

 

Materials Availability 

Drosophila strains and antibodies generated in this study are available upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Drosophila strains 



All flies used this study were raised at 25o C, 60% humidity with standard cornmeal 

food under 12hr:12hr light-dark cycles. Behavioral assays and immunostaining 

utilized male flies except for complementation assays performed in females. 

Proteomic and co-immunoprecipitation used a mix of males and females. w1118 (iso31) 

was used as a wild-type strain (Bloomington Drosophila Stock center, 5905). 

Tango10GG (aka Tango10GG01371)  and Tango10 deficiency strains were also obtained 

from the Bloomington Stock Center (stock numbers 12775 (Tango10GG01371), 9171 

(Df(1)ED7147), and 26574 (Df(1)BSC722)). The Tango10GG rhythmicity phenotype 

was initially identified from a screen for putative loss-of-function mutations covering 

1015 genes (Pfeiffenberger and Allada, 2012). Tango10bsr was isolated as part of an 

EMS mutagenesis screen in which F1 progeny of mutagenized w1118 males X C(1)DX 

females were assayed for locomotor behavioral phenotypes (Bokel, 2008). Tango10GG 

excision strains were generated using P-element transposition. The following 

Tango10 transgenic flies were generated through embryo injection by BestGene 

(Chino Hills, CA): UAS-Tango10 (no tag), UAS-Tango10-HA, UAS-Tango10-

3XFLAG. Tango10 RNAi (strain 103920)  and UAS-Dcr2 strains were obtained from 

Vienna Drosophila Stock Center. Cullin-3 RNAi was obtained from NIG-FLY stock 

center (11861R-1). Elav-Gal4 (Lin and Goodman, 1994), Pdf-Gal4 (Renn et al., 

1999), tim-Gal4 (Kaneko and Hall, 2000), Clk4.1-Gal4 (Zhang et al., 2010), 30Y-

Gal4 (Yang et al., 1995), 247-Gal4 (Zars et al., 2000), Elav-Gal80 (Rideout et al., 

2010), Pdf-Gal80 (Stoleru et al., 2004), 247-Gal80 (Krashes et al., 2007), tim01 

(Sehgal et al., 1994), per01 (Konopka and Benzer, 1971), Elav-GeneSwitch 

(Osterwalder et al., 2001), and Da-GeneSwitch (Tricoire et al., 2009) were described 

previously. 

 



Cell lines.  

Drosophila Schneider 2 cells (S2-R+) (Drosophila Genomics Resource Center), which 

are derived from Oregon R late embryonic stage male tissue, were cultured in Shields 

and Sang M3 Insect Medium (Sigma aldrich) containing 10% FBS and 1% Penicillin-

Streptomycin at 25°C. 

 

METHOD DETAILS 

 

Fly locomotor analysis 

Drosophila locomotor behavioral assays were performed as described previously 

(Lim et al., 2007a). Briefly, crosses and strains were raised at 25o C and individual 

progeny were loaded into tubes containing 1% agar, 5% sucrose food and monitored 

using the DAM (Drosophila activity monitor, Trikinetics) system under 5 days of 12 

hour light: 12 hour dark cycle followed by 7 days of constant darkness (DD) at 25o C. 

Period was calculated from chi square periodogram using Clocklab (Actimectrics). 

Rhythmic power of individual fly was calculated from Power-significance (P-S) and 

averaged in each genotype, and percent rhythmic was defined as percentage of flies 

with P-S value >= 10. For GeneSwitch crosses, 1-3 day old flies were maintained on 

standard Drosophila food supplemented with 250 �M RU486 in EtOH or EtOH alone 

for 5 days. Flies were then loaded into agar-sucrose behavior tubes, again containing 

either RU486 or EtOH, and activity was monitored using the DAM system as above. 

 

Plasmids 

The coding region of Tango10 was subcloned from DGRC, HL07962 into modified 

pAc5.1 (untagged, 3X-HA, or 3X-FLAG tags). Constructs were then subcloned into 



pUAS-C5 for generation of transgenic strains. The Tango10 genomic locus, spanning 

2969 bp upstream and 435bp downstreams of the transcript region, was subcloned 

into pCasper vector. A 3X HA tag was cloned in between the c-terminus of Tango10 

and the 3’ untranslated region. The Cul3-V5 expression vector was described 

previously (Pfeiffenberger and Allada, 2012). 

 

Antibody generation  

Rat anti-TANGO10 antibodies were generated using full length GST-Tango10 

(Cocalico Biologicals). Mouse anti-TANGO10 antibodies were generated using 

AKMVWGEDVP as epitope (Abmart). 

 

Immunohistochemistry 

Flies aged >= 5 days old were entrained at least 2 days before dissection. 

Immunostaining was performed as in (Lim et al., 2011).  Fly brains were dissected at 

the indicated time and fixed in 4% formaldehyde in PBS for 30 min at room 

temperature (RT). Brain samples were blocking with 5% normal goat serum in 0.3% 

triton X-100 in PBS for 30min in RT. Primary antibodies were diluted in PBST 

containing 5% normal goat serum and incubated in 4°C overnight. Binding with 

secondary antibodies in PBST was done in 4°C overnight. Samples were mounted 

using Vectashield (Vector Labs). The antibodies used for immunostaining were as 

follows: anti-mouse-PDF C7 (1:800, DSHB), anti-rabbit-PER (1:200, gift from 

EY.Kim), anti-guinea pig-TIM (1:5000,(Barbagallo et al., 2010)), anti-rat-HA 

(1:2000, Sigma-Aldrich), anti-rabbit-PDF (1:2000, gift from Choe)  Alexa488, Alexa 

594, Alexa 647 conjugated secondary antibodies (Invitrogen) were diluted as 1:800.  



Imaging was performed by confocal microscopy using a Nikon C2 or Zeiss LSM780 

confocal microscope system. 

 

Quantification of immunostaining 

Images were processed using NIH ImageJ. Images of dorsal projections of sLNv were 

Z-stacked as maximum intensity projection. Z-stacked images were thresholding and 

integrated density of dorsal terminals were measured and averaged for each genotype. 

Quantification of PER, TIM in clock cells was performed as described previously 

(Lim et al., 2011). 

 

S2 cell culture 

The Drosophila S2 cells were grown in Shields and Sang M3 Insect Medium (Sigma-

Aldrich) containing 10% FBS and 1% Penicillin-Streptomycin. The expression 

plasmids were transiently transfected using effectene (Qiagen) followed by 

manufacturer's protocol. Cell were harvested at 72hr post transfection. 

 

Immunoprecipitation 

Fly heads or S2 cell were lysed in T300 buffer (25mM Tris-Cl pH 7.5, 300mM NaCl, 

10% glycerol, 1mM EDTA, 0.5% Nonidet P-40, 1mM dithiothreitol, 1mM 

phenylmethylsulfonyl fluoride). After centrifugation, the same volume of T0 (without 

NaCl from same recipe of T300) was added to lysates and bound to Flag beads or V5 

beads (Sigma-Aldrich) for 1hr 30min in 4°C. Beads-bound protein was eluted by 

boiling with SDS sample buffer after 3 washes. 

 

Western blot 



For immunoblotting of heads extract, 40 heads of male flies were collected and frozen 

at indicated time. Heads were homogenized with T300 buffer and protein samples 

were loaded onto acrylamide gels. Proteins were transferred on nitrocellulose 

membranes (GE health) and the membranes incubated with rat anti-Tango10 (Fig1), 

mouse anti-Tango10 (Fig S3), mouse anti-Synapsin (Developmental Studies 

Hybridoma Bank 3C11),  rat anti-GE-1 (Eulalio et al., 2007), mouse anti-CUL3 (BD 

Biosciences 611848), mouse anti-V5 (ThermoFisher), rat anti-HA (Sigma Aldrich), 

rabbit anti-PER (Stanewsky et al., 1997), guinea pig anti-TIM (Lim et al., 2007b), 

mouse anti-Actin (Developmental Studies Hybridoma Bank, JLA20), and anti-Flag. 

The blots were detected using ECL prime (GE Healthcare). Quantitations were 

performed using Image J from two separate experiments (Figure S4). 

 

Proteomics 

Triple Flag tagged Tango10 expressed S2 cells and fly heads (tim Gal4/UAS-

Tango10-3xFlag, elav Gal4/Y; UAS-Tango10-3xFlag/+) were harvested and 

immunoprecipitated with Flag beads at ZT 10 or ZT 22, as in (Lim and Allada, 

2013a), with n=1 experiment per timepoint for each GAL4. Bound proteins were 

eluted using 3xFlag peptides (Sigma). The eluted solution were subject to LC-MS/MS 

and data analysis by the Northwestern Proteomics Core Facility. The proteomics hits 

were identified from analysis using Proteome Discoverer software ver 1.3 (Thermo 

Scientific), with hits for each GAL4 defined as proteins identified from either or both 

timepoints. Proteins identified in any GAL4-only controls were excluded. Proteins 

identified in proteomic analysis of Flag tagged TWENTY-FOUR (TYF) in fly heads 

(Lim and Allada, 2013a) were also removed from the hit list to improve specificity. 

 



Electrophysiology 

Brains from adult male Drosophila were removed from their heads in ice-cold control 

recording solution (in mM: 101 NaCl, 1 CaCl2, 4 MgCl2, 3 KCl, 5 glucose, 1.25 

NaH2PO4, and 20.7 NaHCO3, pH 7.2, 250 mOsm). The connective tissue, air sacs, 

and trachea were removed with fine forceps. No enzymatic treatment was used to 

avoid removing ion channels from the cell surface. Brains were then transferred to a 

recording chamber and held ventral side up with a harp slice grid. Brains were 

allowed to rest in continuously flowing oxygenated saline (95% oxygen and 5% 

carbon dioxide) for at least 10 min and no more than 2 h before recording. Perfusion 

with oxygenated saline was continued throughout the recording period. Time of 

recording is used to determine Zeitgeber Time (ZT). 

 Whole brain electrophysiology experiments were performed on an Ultima 

two-photon laser scanning microscope (Bruker, former Prairie Technologies, 

Middleton, WI) equipped with galvanometers driving a Coherent Chameleon laser. 

Fluorescence was detected via photomultiplier tubes. Images were acquired with an 

upright Zeiss Axiovert microscope with a 40×0.9 numerical aperture water immersion 

objective at 512 pixels × 512 pixels resolution and 1-μm steps. Current-clamp and 

voltage-clamp recordings were performed with thick-walled borosilicate glass 

electrodes (1B150F-4; World Precision Instruments) ranging in resistance 10–14 MΩ 

filled with internal solution containing the following (in mM): 102 K-gluconate, 0.085 

CaCl2 1.7, MgCl2, 17 NaCl, 0.94 EGTA, 8.5 HEPES, 4 Mg-ATP, 0.3 Tris-GTP, and 

14 phosphocreatine (di-tris salt), pH 7.2, 235 Osm. To visualize the recorded cell, 

Alexa Fluor 594 biocytin (10µM) was added into the intracellular solution. 

Recordings were made using Axopatch 200B patch-clamp amplifier, digitized with a 



Digidata 1320 A, and acquired with pCLAMP software (Axon Instruments, Union 

City, CA). 

 To determine firing frequency from current-clamp data, action potentials 

(APs) were detected by applying a median filter to the data, after which a set of 

biologically feasible thresholds were applied and used to count peaks in the 

signal. The most robust peaks were selected using the threshold that corresponded to 

the maximal voltage difference without changing the number of detected peaks. To 

assess membrane potential from current-clamp data, a 10th percentile windowed filter 

was applied and the membrane potential was estimated as the average of this filtered 

signal. See also (E.M. Johnson and W.L. Kath, Program No. 432.19, Society for 

Neuroscience, 2019). 

 

Mathematical Modeling of lLNv Electrophysiology 

Our conductance-based model is based on the Smith model of LNv neuron 

electrophysiology (Smith et al., 2019) and includes a voltage-gated sodium current 

(INa), a voltage-gated calcium current (ICa), four voltage-gated potassium currents 

(IKv1, IKv2, IKv3, IKv4), a sodium leak current (Ileak,Na) and a potassium leak current 

(Ileak,K):    
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The potassium channels Shaker, Shab, Shaw, Shal are the Drosophila orthologues of 

the mammalian Kv1, Kv2, Kv3, and Kv4 channels, respectively. For the Smith model, 

these four potassium currents were fit to voltage-clamp data from lLNv neurons to 

characterize the kinetic parameters associated with their steady state activation, 𝑥7, 

and time constants, 𝜏;. However, in the Smith model the kinetic parameters of the 

sodium and calcium currents were used unaltered from a previously published model 

of mammalian suprachiasmatic nucleus (SCN) neurons (Sim and Forger, 2007). 

Simulations of the Smith model show a discrepancy with our LNv recordings in terms 

of action potential amplitude and shape (Figure S6), presumably due to misspecified 

sodium and calcium kinetics. To address this issue, we employed data assimilation 

(DA) to fit the parameters of the sodium and calcium currents from current-clamp 

recordings from LNv neurons. Data assimilation is a technique for obtaining optimal 

state and parameter estimates for dynamical models directly from observations. DA 

was originally developed for numerical weather prediction but has recently been 

utilized in neuroscience applications (Moye and Diekman, 2018; Schiff, 2012). Here 

we used an implementation of a variational DA algorithm previously applied to fit 

models to current-clamp data from SCN neurons, see (Bano-Otalora et al., 2020)  for 

a detailed description of our implementation and its mathematical representation. This 

approach can simultaneously estimate the mean trajectory of the state variables (V, m, 

h) and parameters of our model. To simplify the optimization problem, we assume a 

more stable form of the rate kinetics: 
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1
2 +

1
2 tanh =

𝑉 − 𝑣𝑥	
𝑑𝑣𝑥	

@	

τ;(𝑉) = τ;= + τ;+ =1 − tanh0 =
𝑉 − 𝑣𝑥𝑡	
𝑑𝑣𝑥𝑡	

@@ 



for 𝑥 = 𝑚$%, ℎ$%, 𝑚(%, ℎ(% . For 𝑚(%, the time constant is assumed to be voltage-

independent, i.e. τ;(𝑉) = τ;=. We are estimating each of the parameters in these 

equations in addition to the maximal conductances 𝑔Na, 𝑔ca, 𝑔leak, Na, 𝑔leak, K. The 

Smith model has a single leak current, but here we separate the leak into sodium and 

potassium components as in previous SCN models (Diekman et al., 2013; Flourakis et 

al., 2015).   

In variational DA, a very high-dimensional optimization problem is constructed 

where each model state variable, parameter, and time point adds one dimension. The 

fact that each time point included increases the dimension of the optimization 

problem, combined with the high sampling rate (10 kHz) required for current-clamp 

experiments to accurately capture action potential waveforms, means that only a 

relatively small amount of data (a few seconds at most) can be assimilated before the 

optimization problem becomes too large to be solved. To increase the amount of 

information contained in these short windows of data, previous work with DA and 

conductance-based models have utilized current-clamp recordings performed with 

complex time-varying stimuli (Meliza et al., 2014) or a series of current pulses (Bano-

Otalora et al., 2020). In this work, we are able to fit models with DA in the absence of 

input currents to stimulate the neuron, i.e. using spontaneous firing activity alone. 

Since LNv neurons fire slowly, there may only be one or two action potentials present 

in the short window of data that can be used for DA due to constraints on the size the 

optimization problem that can be solved. Thus, rather than using a raw voltage trace 

as the data for the DA algorithm, we elected to use an average AP waveform obtained 

from multiple APs in a current-clamp recording (Figure S7A). We extracted 30 APs 

from this trace and aligned them at the time point where the voltage crossed a spike 

threshold of -35 mV (Figure S7B). We then computed the mean membrane potential 



across these aligned APs at each point in time for a window of 350 ms prior to and 

400 ms after the threshold crossing. This average AP waveform was then used as the 

data (observations) for our DA algorithm.  To our knowledge, the use of an average 

AP waveform as the observations is a novel contribution to DA methodology for 

constructing models of slow spontaneously firing neurons. We ran our DA algorithm 

starting from over 100 different initial conditions to select the parameters for the WT 

model (Figure S6 and Table S8). MATLAB code to perform simulations of the model 

is available at ModelDB (https://senselab.med.yale.edu/modeldb/).    
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Supplemental Figure Legends  

Figure S1. A reverse genetics screen identifies Tango10 as a novel circadian gene. 

The Tango10GG rhythmicity phenotype was identified from a locomotor behavior 

screen of 1297 putative loss-of-function mutations covering 1015 genes 

(Pfeiffenberger et al 2012). Average rhythmic power was determined using Chi-

squared periodogram analysis over 7 days constant darkness. Strains were binned 

based on average rhythmic power values, as indicated on the X axis +/- 5. Tango10GG 

mutants exhibited an average rhythmic power < 10. 

 

Figure S2. busyrun contains a mutation in a conserved residue of the TANGO10 

BTB-BACK domain protein. (A) Sequence analysis of the EMS-induced mutant 

strainTango10busyrun  identifies s a missense C->T mutation corresponding to a P-> L 

substitution at amino acid 462 in comparison to a wild-type (WT) strain, iso31  (B) 

Clustal W alignment of TANGO10 orthologs demonstrates strong conservation of 

P462 among other animals. (C) Protein domain analysis through Pfam identifies both 

BTB (BR-C,ttk, and bab) and BACK (BTB and C-terminal-Kelch) domains in 

Drosophila TANGO10. 

 

Figure S3. RNAi induced depletion of TANGO10 in Adult Heads.  Western blot 

analysis of adult head extracts from the strains indicated (Elav-GAL4, UAS-Dcr2, 

and/ or UAS-Tango10 RNAi). Blots were probed with mouse anti-Tango10 and rat 

anti-GE-1. 

 

Figure S4. Loss of Tango10 does not alter PER or TIM levels in whole heads. (A) 

Western blot analysis of adult head extracts in DD conditions. GG refers to 



Tango10GG mutants and WT refers to wild-type strain. CT indicates circadian time. 

(B-D) Quantification of (B) TANGO10, (C) PER, and (D) TIM levels performed 

using Image J from two independent experiments. Protein intensity is normalized to 

actin controls. Normalized value of WT at CT3 set as 1. Statistical comparison made 

using two-way ANOVA followed by Tukey’s post-hoc test.  (B) No significant 

interaction is detected between genotypes and timepoint. Significant differences were 

observed between WT and Tango10GG at CT3 and CT15 (** p < 0.02) but no 

differences found between timepoints within genotype (p >= 0.50). (C) No significant 

interactions detected in PER levels between genotypes and timepoints (p >= 0.46). 

(D) No significant interactions detected in TIM levels between genotypes and 

timepoints (p >=0.36). 

 

Figure S5. Simulations comparing a previously published LNv model and our 

newly developed LNv model to current-clamp data. (A)  Top panel: Simulation of 

the Smith et al (2019) model of LNv neurons (magenta) and a current-clamp trace 

(black) from a WT l-LNv neuron recorded at ZT 2. Bottom panel: Simulation of our 

newly developed LNv model (magenta) and the same current-clamp trace shown in 

the top panel (black). B) Phase-plane trajectory diagram showing dV/dt versus V for 

the simulations of the Smith model (magenta, left panel), our new model (magenta, 

right panel), and the current-clamp trace (black) shown in (A). 

 

Figure S6. Current-clamp recordings used in data assimilation (DA) procedure 

to estimate l-LNv model parameters. (A)  Current-clamp trace from a WT l-LNv 

neuron recorded at ZT 2. B) Alignment of all the action potentials for the recording 



shown in (A). C) Action potential waveform used in the DA algorithm obtained by 

averaging the aligned APs shown in (B).  

 

Fig S7. Membrane depolarization of l-LNv by potassium channel blockers is 

diminished in Tango10 mutants. A) Representative current clamp traces of l-LNv 

neurons showing the membrane potential responses to the potassium channel blockers 

TEA and 4AP (with TTX blocking sodium channels). Application of TEA alone 

results in a small membrane depolarization (~1-2mV), while the further addition of 

4AP causes a larger depolarization (5 – 10 mV). B) Resting Membrane Potential 

(RMP) was measure before (Bf) and after (At) application of channel blockers (left 

panel). Application of TEA alone does not result in a significantly different 

membrane potential response between WT and Tango10 (right panel). C) Application 

of 4AP results in larger membrane depolarization (left panel; * P<0.05, ** P<0.001; 

paired t-test), but this response was significantly lower in Tango10 mutant l-LNv 

neurons (right panel; Cont ZT8~12 vs. Mutant ZT0~4, Cont ZT8~12 vs. Mutants 

ZT8~12; * P<0.05 One-way ANOVA, Tukey's HSD test) 

 

Fig S8. TANGO10 and CUL3 link the core circadian clock to neuronal output 

and behavioral rhythmicity. Model for TANGO10/CUL3 circadian function, 

highlighting core clock regulation of TANGO 10 expression, TANGO10 regulation of 

excitability via Shaker/Shal currents, PDF expression, and impact on behavioral 

rhythmicity. We propose that the effects of TANGO10/CUL3 on PDF and/or the core 

circadian clock may be indirect via effects on excitability. 

 

  



Supplemental Tables 

Genotype Period Power %R n 

+/+ 24.1 ± 0.1 54 ± 7 88 32 

GG/+ 24.2 ± 0.2 53 ± 4 92 51 

GG/GG 21.0 ± 0.0 2 ± 1** 11 18 

bsr/+ 24.4 ± 0.2 58 ± 5 94 49 

bsr/bsr 24.3 ± 0.6 16 ± 10* 38 8 

GG/bsr 24.2 ± 1.6 6 ± 1** 19 37 

Df(1)ED7147/+ 24.6 ± 0.1 74 ± 10 80 40 

Df(1)ED7147/GG 14.5 ± n/a 2 ± 1** 10 10 

Df(1)ED7147/bsr 25.2 ± 1.3 5 ± 2** 23 26 

Df(1)BSC722/+ 24.5 ± 0.1 64 ± 7 78 50 

Df(1)BSC722/GG 33.0 ± n/a 2 ± 1** 6 17 

Df(1)BSC722/bsr 24.1 ± 1.0 6 ± 1** 27 37 

Table S1. Homozygous or trans-heterozygous Tango10 mutants exhibit disrupted 

rhythms. Chi squared periodogram analysis of DD locomotor rhythmicity from adult 

females with the genotypes indicated. Power refers to power-significance 

measurement %R indicates percent rhythmic, defined as flies with power >=10.  ‘+’ 

indicates wild-type, GG indicates Tango10GG allele, while bsr indicates Tango10bsr 

allele. Df(1)ED7147 and Df(1)BSC722 chromosomes are deficient for the Tango10 

locus. Error measurements are SEM. Statistical comparisons to wild-type control 

made using one-way ANOVA followed by Dunnett’s multiple comparison (* p < 

0.05, **p < 0.02). 

  



Genotype Period Power %R n 

P-element excision     

+ 23.8 ± 0.1 84 ± 4 96.6 59 

GG 24.8 ± 2.0 3 ± 1†† 16.1 31 

ΔGG#5 (precise excision) 24.1 ± 0.3 77 ± 8** 100.0 32 

ΔGG#6 (precise excision) 24.3 ± 0.1 83 ± 10** 96.2 26 

ΔGG#1 (excision control) 25.6 ± 2.2 8 ± 3 33.3 12 

ΔGG#3 (excision control) 25.0 ± 1.0 4 ± 2 18.8 16 

Genomic rescue     

[Tango10#1] 23.7 ± 0.0 81 ± 7 96.8 31 

[Tango10#2] 23.6 ± 0.0 111 ± 7 100.0 32 

GG 23.7 ± 0.4 9 ± 3†† 23.5 34 

GG+[Tango10#1] 23.6 ± 0.1 73 ± 6** 94.3 35 

GG+[Tango10#2] 23.9 ± 0.1 87 ± 6** 100.0 36 

bsr 24.7 ± 0.7 17 ± 4†† 42.9 56 

bsr+[Tango10#1] 23.8 ± 0.1 74 ± 5** 100.0 71 

bsr+[Tango10#2] 23.8 ± 0.1 58 ± 5** 92.1 63 

Table S2. P-element excision or genomic rescue restores rhythmicity to 

Tango10GG. Chi squared periodogram analysis of DD locomotor rhythmicity from 

adult females with the genotypes indicated. Power refers to power-significance 

measurement %R indicates percent rhythmic, defined as flies with power >=10. ‘+’ 

indicates wild-type, GG indicates Tango10GG allele, while bsr indicates Tango10bsr 

allele. ΔGG indicates precise (#5,#6) or mock (#1,#3) excision of Tango10GG. 

[Tango10#1] and [Tango10#2] indicate Tango10 genomic rescue transgenes. 

Statistical comparisons made using one-way ANOVA followed by Dunnett’s test 



(excision) or two-way ANOVA followed by Tukey’s multiple comparison test 

(genomic rescue). Asterisks indicated significant difference from corresponding 

mutant (Tango10GG or Tango10bsr) (** p < 0.02) or from wild-type control (†† p < 

0.02) for one-way ANOVA data. Error measurements are SEM. 

  



Genotype Period Power %R n 

GG; ElavGS U-Tango10: 

EtOH 
23.5 ± 0.5 5 ± 2 11 19 

GG; ElavGS U-Tango10: 

RU486 
23.5 ± 0.1 45 ± 8*** 82 22 

GG; Da GS U-Tango10: 

EtOH 
NA 1 ± 1 0 8 

GG; Da GS U-Tango10: 

RU486 
24.4 ± 0.2 98 ± 18*** 92 13 

Table S3.  Restoring Tango10 expression specifically in the adult stage rescues 

rhythmicity. Rhythmic power (Power - Signicance) of locomotor behavior for 

Tango10 mutants following adult specific rescue using pan-neuronal (ELAV GS) or 

pan-cellular (DA GS) induction of UAS-Tango10 expression (U-Tango10), as 

induced by RU486 of GeneSwitch (GS) GAL4. Error indicates SEM . Asterisks 

indicate significant difference from EtOH control (*** P<0.001) as determined using 

Student’s t-test. %R indicates percent rhythmic, defined as flies with power >=10.  

  



Genotype Period Power %R n 

Rescue     

GG; U-Tango10/+ 24.2 ± 0.9 15 ± 4 58 19 

GG;PdfGal4/+; U-Tango10/+ 25.1 ± 0.3 21 ± 3 73 33 

GG; timGal4/+; U-Tango10/+ 26.2 ± 0.6 14 ± 2 58 33 

GG;;U-Tango10 / Clk4-1MGal4 24.3 ± 0.4 8 ± 2 26 19 

GG;;U-Tango10/ 30yGal4 24.0 ± 0.1 87 ± 8** 100 34 

30Y GAL4 rescue plus GAL80     

GG;;30yGAL4/+ 24.6 ± 1.2 8 ± 2 29 24 

GG; 30yGAL4/ U-Tango10 23.9 ± 0.2 55 ± 5 95 39 

GG;ElavGAL80/+;30yGAL4/ U-

Tango10 
24.7 ± 0.3 13 ± 2** 49 39 

GG; PdfGal80/+; 30yGAL4/ U-

Tango10 
22.6 ± 0.5 25 ± 4** 87 15 

GG; 247Gal80/+; 30yGAL4/ U-

Tango10 
24.0 ± 0.2 64 ± 7 93 28 

Overexpression     

U-Tango10/+ 23.5 ± 0.0 92 ± 12 93 14 

pdfGal4+ 24.4 ± 0.1 69 ± 12 79 24 

pdfGal4/+; U-Tango10/+ 24.9 ± 0.1** 71 ± 7 96 24 

timGal4+/+ 25.1 ± 0.1 81 ± 10 93 27 

timGal4/+ U-Tango10/+ 25.5 ± 0.1** 71 ± 9 96 24 

Clk4.1GAL4/+ 23.6 ± 0.0 132 ± 8 100 32 

Clk4.1GAL4/ U-Tango10 23.7 ± 0.1 142 ± 8 100 31 



30YGal4/+ 23.8 ± 0.1 91 ± 10 100 20 

30YGal4/ U-Tango10 23.7 ± 0.1 121 ± 6** 100 28 

RNAi     

ElavGAL4;; U-Dcr2/+ 24.0 ± 0.1 78 ± 6 100 37 

U-Dcr2/+; 247GAL4/+ 23.7 ± 0.0 121 ± 5 100 36 

timGAL4/+; U-Dcr2/+ 24.3 ± 0.0 76 ± 6 100 38 

PdfGAL4 U-Dcr2/+ 24.3 ± 0.1 72 ± 7 97 32 

ElavGAL4;Tango10 RNAi/+; U-

Dcr2/+ 
23.1 ± 0.3 22 ± 3** 63 38 

U-Dcr2/ Tango10 RNAi; 

247GAL4/+ 
23.5 ± 0.0 125 ±5 100 39 

timGAL4/ Tango10 RNAi; U-

Dcr2/+ 
24.6 ± 0.3 13 ± 2** 42 38 

PdfGAL4 U-Dcr2/ Tango10 RNAi 23.4 ± 0.5 16 ± 3** 50 44 

Table S4.  Tango10 function is necessary but not sufficient in pacemaker neurons 

for locomotor rhythmicity. Chi squared periodogram analysis of DD locomotor 

rhythmicity from the genotypes indicated. ‘+’ indicates wild-type, GG refers to 

Tango10 GG allele, U-Dcr2 indicates UAS-Dicer2, U-Tango10 indicates UAS-

Tango10, and Tango10 RNAi refers to VDRC strain #103920. Power refers to power-

significance measurement %R indicates percent rhythmic, defined as flies with power 

>=10. Statistical comparisons made between rescue, overexpression, or RNAi and 

corresponding control using Student’s T-test (** p < 0.02). 

 

 



Genotype Period Power %R n 

GG ElavGAL4; (+) - 2 ± 1 0 9 

GG ElavGAL4; U-Tango10-

FLAG/+ 
23.7 ± 0.1 59 ± 6** 92 38 

GG ElavGal4; U-Tango10 WT/+ 23.9 ± 0.2 64 ± 5** 95 79 

ElavGAL4; U-Tango10-FLAG/+ 23.5 ± 0.1 62 ± 7** 92 38 

 

Table S5. Flag tagged Tango10 rescues rhythmicity in Tango10GG mutants. Chi 

squared periodogram analysis of DD locomotor rhythmicity from the genotypes 

indicated. GG refers to Tango10GG allele, U-Tango10-FLAG refers to UAS-Tango10-

3XFLAG tagged construct. Power refers to Power-Significance, %R indicates percent 

of flies with Power >= 10. SEM included for Period and Power measurements. 

Asterisks indicate significant different from GG ElavGAL4 using one-way ANOVA 

followed by Tukey’s post-hoc test (** p < 0.02). 

  



  
elavGAL4 

ZT10 
elavGAL4 

ZT22 
timGAL4 

ZT10 
timGAL4 

ZT22 
Cyt-c1 43.6 40.5 127.5 84.5 
Droj2 51.8 50.2 136.1 269.3 
RpS14a 103.8 35.8 62.8 198.8 
sta 54.3 71.2 57.4 114.3 
Cul3 - 115.5 46.6 249.9 
Pdh - 90.3 54.1 201.0 
Rab5 - 42.7 94.3 85.3 
CG5028 - 146.9 33.6 104.8 
bdl 58.2 - - 69.4 
GlyS 50.4 - - 82.9 
ND-49 63.0 - - 71.7 
Rpn1 41.0 - - 44.8 
CG42540 - 59.4 91.8 - 
Dic1 - 44.4 - 88.3 
Mcad - 68.0 - 134.1 
Mlp84B - 47.1 - 51.8 
Rpn12 - 23.3 - 53.0 
Rpt3 - 31.7 - 69.1 
Rpt4 - 33.9 - 104.2 
Scsalpha1 - 44.9 - 105.4 
wal - 52.2 - 116.0 

 
Table S6. The E3 Ligase CUL3 physically interacts with TANGO10 protein in 

vivo. List of protein scores for putative TANGO10 interactors from mass 

spectrometry analysis of FLAG-tagged TANGO10 using either elavGAL4 or 

timGAL4 at both ZT10 and ZT 22, as determined using Proteome Discoverer 

software (ThermoFisher). Fly heads from Gal4 heterozygotes were used as controls.  

The hits from FLAG-tagged twenty-four (TYF) proteomics were also excluded from 

the list to increase TANGO10-specificity. Proteins listed are those present in at least 

one elavGAL4 sample and at least one timGAL4 sample but no negative controls.  

 

 

 



 

 

 

 

 
Genotype Period Power %R n 

PdfGAL4 U-Dcr2/+ 24.6 ± 0.1 131 ± 8 97 33 

PdfGAL4 U-Dcr2/+;  CUL3 RNAi/+ 24.5 ± 0.4 39 ± 5** 77 44 

timGAL4/+; U-Dcr2/+ 24.2 ± 0.2 118 ± 13 88 26 

timGAL4/+; U-Dcr2/ CUL3 RNAi 23.7 ± 0.4 13 ± 4** 38 8 

 

Table S7. Cul3 RNAi mediated depletion in circadian neurons disrupts 

locomotor rhythmicity. Chi squared periodogram analysis of DD locomotor 

rhythmicity from the genotypes indicated. U-dcr2 indicates UAS-Dcr2, CUL3 RNAi 

refers to NIG strain 11861R-2. Power refers to periodogram power-significance. Error 

indicates SEM, %R refers to percent rhythmic, defined as flies with Power >= 10. 

Power measurements compared between GAL4/RNAi and GAL4/+ controls using 

Student’s t-test (** p < 0.02). 

  



 

Table S8. Parameter values for lLNv electrophysiology modeling 
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SUMMARY

Animals react to environmental changes over timescales ranging from seconds to days andweeks. An impor-
tant question is how sensory stimuli are parsed into neural signals operating over such diverse temporal
scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes
information about long-lasting, absolute cold temperature in Drosophila. We identify second-order thermo-
sensory projection neurons (TPN-IIs) exhibiting sustained firing that scales with absolute temperature. Strik-
ingly, this activity only appears below the species-specific, preferred temperature for D. melanogaster
(�25�C).We trace the inputs and outputs of TPN-IIs and find that they are embedded in a cold ‘‘thermometer’’
circuit that provides powerful and persistent inhibition to brain centers involved in regulating sleep and ac-
tivity. Our results demonstrate that the fly nervous system selectively encodes and relays absolute temper-
ature information and illustrate a sensory mechanism that allows animals to adapt behavior specifically to
cold conditions on the timescale of hours to days.

INTRODUCTION

Changes in temperature influence animal behavior on both short

(seconds to minutes) and long (hours to days and weeks) time-

scales. Rapid changes in the external temperature are trans-

formed by the nervous system into the percepts of heating and

cooling and used to quickly predict and avoid potentially

dangerous thermal extremes. Meanwhile, sustained thermal

conditions below or above the optimal range (perceived as

cold or hot, respectively) trigger specific long-term behavioral

and autonomic responses, including shivering or sweating;

changes in sleep/wake patterns; and seasonal adaptations,

such as hibernation or aestivation. Little is known on how these

responses, happening on vastly different temporal scales, are

orchestrated in the brain starting from the activity of peripheral

thermosensory neurons.

The debate on how absolute temperature and temperature

change are encoded in the nervous system is an old one and

one that is central to our understanding of how sensory stimuli

are processed on different timescales. Having observed robust

adaptation as a result of prolonged exposure to cold tempera-

ture in humans, in the 1800s, Weber argued that only tempera-

ture changes and not absolute temperature stimulate thermo-

sensory neurons [1]. In 1950, Hensel and Zotterman rebuked

this notion, presenting data from cold receptors of the skin that

showed a burst of firing in response to cooling but also persistent

activity in response to stable cold [2]. This led to the idea that

temperature change and absolute temperature information

could be extracted from the complex activity of sensory neurons

[3], but this has been difficult to prove experimentally in the

absence of specific assays and reagents that would allow one

to dis-entangle transient from persistent signals.

Recent advances in microscopy and the availability of activ-

ity indicators have made it possible to systematically charac-

terize the responses to temperature simultaneously in large

numbers of neurons of the mouse trigeminal ganglion (inner-

vating the oral cavity) [4] and dorsal horn of the spinal cord

(receiving input from neurons innervating the skin) [5]. The re-

sults revealed an unanticipated complexity—with multiple

functionally distinct classes of responses characterized by

different adaptation properties and thresholds of activation.

However, it is fair to say that, even after more than 200 years

of work in this area, we still do not understand how information

about temperature change and absolute temperature may be

differentially extracted from the activity of sensory neurons

at the periphery and relayed to the brain to trigger the appro-

priate responses.

Drosophila flies are small poikilothermic animals and are char-

acterized by robust temperature-evoked behavior and a numer-

ically simpler nervous system. On account of these advantages,

work in the fruit fly is providing fundamental insights into the

basic principles of temperature sensing and processing in the

brain.

In flies, rapid temperature changes are detected by thermo-

sensory neurons residing in the last antennal segment, the arista

[6]. Each arista contains three thermosensory sensilla, each

housing one hot- and one cold-activated cell. Much like their

mammalian counterparts, antennal thermosensory receptor

neurons (TRNs) respond to the preferred temperature stimulus

(cooling for cold-activated TRNs, etc.) with activity that generally

Current Biology 30, 2275–2288, June 22, 2020 ª 2020 Elsevier Inc. 2275
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scales with stimulus intensity. Non-preferred stimuli instead

cause a decrease in intracellular calcium [6] and firing rates [7].

From their origin at the periphery, the axons of hot- and cold-

activated TRNs of the arista converge onto a brain region called

the posterior antennal lobe (PAL), where they form adjacent

‘‘hot’’ and ‘‘cold’’ glomeruli, defining a simple sensory map for

the central representation of external temperature [6]. Next in

line, second-order thermosensory projection neurons (TPNs)

collect information from the PAL glomeruli and target higher

brain centers involved in the processing of both innate and

learned behavior [8, 9].

Interestingly, TPN cell types are characterized by different

response dynamics to temperature stimuli: ‘‘fast-adapting’’

cells respond rapidly but transiently to the onset of a tempera-

ture change, and ‘‘slow-/non-adapting’’ TPNs are characterized

by persistent activity [8, 9]. Differences in TPN adaptation dy-

namics are potentially very significant, as fast-adapting TPNs

may relay temperature change signals, while slow-adapting

cells are well positioned to relay information about absolute

temperature.

How are temperature change and absolute temperature sig-

nals encoded in the activity of TPNs, relayed to higher brain cir-

cuits, and used to inform behavior happening on timescales

ranging from milliseconds to seconds to days and weeks?

Here, focusing on cold responses, we set out to identify the

source and significance of the persistent activity observed in

slow-adapting TPNs. Our ultimate goal was to understand how

the thermosensory systemmay process information about abso-

lute temperature and how this information may be used to drive

behavior happening on the appropriate timescales.

Our work leads to the identification of a circuit that functions as

a conduit for information about absolute temperature in the cold

range. This circuit displays persistent activity that scales with

temperature, but only at absolute temperatures lower than the

fly’s favorite �25�C, and directly targets higher brain centers

involved in the control of sleep and activity, adjusting fly behavior

specifically to cold conditions.

RESULTS

A Thermosensory PN Displays Persistent Activity in
Response to Extended Cold Steps
To systematically study the adaptation dynamics of TPNs, we

focused on two cold-activated TPN cell types previously

described as fast and slow adapting (TPN-I and II in Figure 1A,

identified by expression of the drivers VT19428 and R60H12,

respectively) [8]. We designed a stimulation protocol that con-

sists of a rapid temperature change (�2�C/s) followed by

extended stable cold conditions (1–15 min), again followed by

a rapid return to baseline. As before, we initially chose as the

baseline the fly’s preferred temperature of 25�C and stimulus pa-

rameters (rate of change and temperatures ranges) reasonably

close to what a fly may encounter in the environment. We then

used two-photon calcium imaging and recorded TPN responses

to temperature stimulation by targeting expression of the trans-

genic calcium indicator GCaMP to each cell type (i.e., under the

control of selective drivers) [8].

Our results demonstrate that calcium levels in fast-adapting

VT19428 TPNs quickly return to baseline after an initial

cooling-induced spike (TPN-Is; Figure 1B). In contrast, R60H12

TPNs (TPN-IIs) respond to a cold temperature step with an initial

calcium spike that accompanies the onset of cooling and that is

followed by a rapid decrease to a plateau. The levels of intracel-

lular Ca2+ do not return to baseline for as long as the temperature

remains in the cold range (Figure 1C), supporting the notion that

these cells may not adapt at all under conditions of persistent

cold.

Calcium levels do not allow one to estimate the firing rate of a

neuron in stable conditions. To obtain a more direct readout of

TPN-II’s action potential firing under conditions of persistent

cold, we next developed a method to perform two-photon

guided patch-clamp electrophysiology by targeting TPN-IIs us-

ing GFP expression as a guide (again under the control of the se-

lective driver R60H12-Gal4) [8].

Our patch clamp results confirmed and expanded what we

had observed using calcium imaging. The firing rate of non-

adapting TPN-IIs showed little or no evidence of adaptation;

rather, TPN-IIs sustained a remarkably stable level of activity

for the entire duration of the cold step. Only when the temper-

ature started returning to baseline, TPN-II’s firing rate

decreased, followed by a small inflection in membrane poten-

tial (Figures 1D and 1E; note that heating steps caused little

response in TPN-IIs; Figures 1F and 1G). Protracted patch-

clamp recordings further demonstrated that TPN-IIs display

little or no adaptation even to extended cold stimuli

(�25 min; Figures 1H–1J).

TPN-II Activity Correlates with Absolute Temperature in
the Cold Range
Our next goal was to determine whether the persistent activity of

non-adapting TPN-IIs at stable cold conditions indeed scales

proportionally with (and may therefore contain information

about) ‘‘absolute’’ temperature rather than correlate with other

stimulus statistics, such as the magnitude of the initial cooling

change (Dt).

To address this question, we designed temperature steps that

either differed in the absolute temperature reached at stable

conditions (different |t|, same Dt) or in the magnitude of the tem-

perature change the preparation experiences on the way to the

same stable conditions (different Dt, same |t|).

Our data show that the firing rate of non-adapting TPN-IIs at

stable conditions (persistent activity) correlates with absolute

temperature rather than with stimulus history (Figure 2).

Remarkably, although an initial action potential burst (dynamic

activity) was invariably observed in response to cooling (Figures

2A–2D), persistent activity (i.e., ‘‘plateau’’ firing rates above

baseline firing) only appeared when the absolute temperature

stabilized at temperatures lower than 25�C (Figures 2B, 2D,

and 2E), i.e., lower than the preferred temperature for

Drosophila melanogaster. Even when challenged with pro-

longed stimuli involving multiple cooling steps, static activity

only emerged below 25�C (Figure 2F), and only in this range,

firing rates correlated well with absolute temperature (Figures

2G and 2H).

These observations suggest that the non-adapting activity of

TPN-IIs may indeed encode information about absolute temper-

ature below the preferred range for D. melanogaster, i.e., in what

can be described as cold temperature for the fly.
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The PAL Cold Glomerulus Is Independently Targeted by
Distinct Populations of Thermosensory Neurons
Our results raise a number of important questions: where does

this absolute cold temperature signal originate (at the sensory

layer or within TPNs)? And what may be the behavioral signifi-

cance of such a persistent cold-evoked activity in the fly brain?

We set out to address each question in turn.

First, we re-evaluated the contribution of the sensory neurons

of the antenna to TPN-II cold responses. Consistent with previ-

ous observations [8, 9], acute resection of the antennal nerve

completely abolished TPN-II responses (Figure S1), suggesting

that all cold-evoked activity originates in thermosensory neurons

of the antenna (rather than within TPN-IIs, and see below).

We reasoned that any sensory input into TPN-IIs would have to

come from neurons innervating the cold glomerulus of the PAL

(harboring the post-synaptic terminals of TPN-IIs; Figures 3A

and 3B) and screened a collection of Gal4 lines for drivers that

would allow us to identify and selectively manipulate sensory

input to this TPN cell type.

We discovered that at least 3 cell types independently target

the cold glomerulus of the PAL: (1) the well-known TRNs of the

arista [6] (labeled by a selective driver in Figures 3C and 3D);

(2) a new population of sensory neurons that innervate chamber

one of the sacculus, a structure previously shown to be involved

in olfaction and humidity sensing [10, 11] (labeled by a selective

driver in Figures 3E and 3F); and (3) an unusual cell type that ex-

presses the broad sensory co-receptor IR25a and that resides

on the surface of the antennal nerve (note that the terminals of

this cell type within the PAL are clearly visible after external abla-

tion of the antenna, i.e., as a result of degeneration of antennal
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Figure 1. Identification of Thermosensory Projection Neurons Characterized by Non-adapting Responses
(A) Thermosensory projection neurons (TPNs) receive synaptic input from antennal thermoreceptors (TRNs).

(B and C) Two-photon calcium imaging with GCaMP demonstrates significant differences in the adaptation of (B) type-I fast-adapting and (C) type-II slow/non-

adapting TPNs to a cold temperature step (~1min;DF/F traces are averages of B: 14 cells/3 animals, C: 5 cells/3 animals, ±SD; stimulus trace is an average of the

experiments ± SD).

(D–G) Two-photon guided patch-clamp electrophysiology reveals that TPN-IIs’ firing is indeed non-adapting.

(D) Representative whole-cell current clamp recording from a TPN-II in response to a cold step (~5�C; 1 min). Inset shows x axis expansion during cooling.

(E) Firing rate histogram for TPN-II’s responses to cold (9 animals/9 cells, 3 trials per cell were averaged in each experiment; n = 9 cells ± SEM; temperature [temp.]

trace: average [av.] of 9, ±SEM).

(F and G) TPN-IIs’ are not significantly modulated by heat.

(F) Representative whole-cell current-clamp recording from a TPN-II in response to a hot step (~5�C; 1 min). Inset shows x axis expansion.

(G) Firing rate histogram for TPN-II’s responses to hot (5 cells/4 animals, ±SEM; temp. trace av. of 5, ±SEM).

(H–J) TPN-IIs firing does not return to baseline even for extended cooling steps.

(H) (Top) Representative recording from a TPN-II subjected to extended cooling steps.

(I) Pseudo-colored spike rate histogram of 3 cells in response to a cooling stimulus similar to that in (H) (~20 min recordings; 3 Dt steps as in H; responses aligned

to stimuli).

(J) Quantification (gray lines, mean ± SD for individual cells calculated in regions corresponding numbered bars in I; blue line/shading, mean ± SEM firing rate

across cells; same 3 cells as in I).
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afferents; Figures 3G and 3H). The location of this cell is similar to

that of the previously described ‘‘anterior cell’’ neurons [12], and

we therefore refer to it as the anterior cold cell (ACc) (Figure 3H,

inset; see Figure S2 for further characterization of this unusual

sensory neuron).

The observation that additional sensory cell types (besides the

aristal TRNs) [6] converge onto the cold glomerulus of the PAL

was unexpected: we have previously described cold-responding

sensory neurons innervating sensilla located in chamber two of

the sacculus, but these neurons are part of an ‘‘hygrosensory

triad’’ (composed of a dry-, humid-, and cold-activated cell

innervating the same sensillum) and project to a distinct region

of the PAL (the ‘‘column’’ or VP1 glomerulus) [10, 11]. The results

of two-color two-photon microscopy instead suggest extensive

intermingling between TPN-II dendrites, the terminals of cham-

ber one sacculus neurons, and those of arista TRNs within the

cold glomerulus of the PAL (Figures 3I–3O). Finally, we were sur-

prised to find an additional ‘‘internal’’ temperature receptor

within the head capsule (ACc; see above), which also selectively

innervates the cold glomerulus. Our results confirm that each of

these cell types independently innervating the cold glomerulus

indeed selectively responds to cold temperature stimuli (see

below).

Multiple Pre-synaptic Drives Shape the Activity of
TPN-IIs
Our next goal was to determinewhether each of the sensory neu-

rons innervating the cold glomerulus indeed provides direct syn-

aptic drive to TPN-II. To test for connectivity, we employed activ-

ity-dependent, synaptic GFP reconstitution across synaptic

partners (syb:GRASP) [13].

Our results suggest that each sensory cell population makes

direct functional connections with TPN-II second-order neurons

(Figures 3P–3R). Using selective drivers, we could directly

demonstrate synaptic GFP reconstitution between chamber

one sacculus neurons and TPN-IIs (Figure 3P). We have been

so far unable to identify a driver only active in ACc neurons; to

test for ACc:TPN-II connectivity, we used R77C10-Gal4—a

driver active in both the arista cold-activated TRNs and ACc neu-

rons. Robust GFP reconstitution using this line confirmed that

one or both of these cell types indeed forms synapses with

TPN-IIs (Figure 3Q; see [8, 9] for arista TRNs:TPN-II

A B

C D
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Figure 2. TPN-II Neurons Encode Absolute Temperature in the Cold Range

(A–F) Sustained firing of TPN-IIs depends on absolute temperature rather than stimulus history.

(A and B) Representative whole-cell current-clamp recording from a TPN-II in response to a cold step starting from a baseline temperature (A) above or (B) below

25�C (see also Figure S1).

(C and D) Firing rate histograms from TPN-II in response to cooling steps of different sizes (Dt) and settling on distinct absolute temperatures (C) above or (D)

below 25�C (gray line), showing that persistent activity only appears in the cold range (below 25�C; 4 cells/4 animals, ±SD; temp. trace av. of 4, ±SD).

(E) Sustained firing in response to a large stimulus starting at 30�C and settling to ~20�C (3 cells/3 animals, av. ± SD; temp. trace av. of 3, ±SD).

(F) Representative response to a complex stimulus showing persistent firing below 25�C (gray line).

(G) Quantification of firing rates corresponding to numbered regions of interest (ROIs) in (C) and (D) (top: 10 cells/8 animals; bottom: 9 cells/9 animals).

(H) Quantification of TPN-II firing rate changes at stable temperatures below 25�C (readings were taken after ~1 min at each temp.; 9 cells/9 animals).

In (G) and (H), responses from the same cell are connected; colored lines and shading are population averages ± SD (G) or ±SEM (H); gray dots in (H) are averages

of 3 repeats/cell/condition ± SD; note that an f-test demonstrates a significant relationship between firing rates and temperature; p < 0.05.
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Figure 3. Three Distinct Populations of Peripheral Cold-Sensing Neurons Drive the Activity of TPN-IIs

(A) Confocal micrograph of the fly antenna showing the location of the sacculus (pink box) and arista (blue arrow).

(B) 3Dmodel of the fly brain showing the location of the posterior antennal lobe (PAL) and PAL glomeruli (inset; the glomerulus innervated by cold cells is shown in

blue, additional glomeruli are annotated with standard nomenclature).

(C–H) Selective drivers identify distinct sensory neuron populations targeting the cold glomerulus.

(C and D) A selective driver for arista cold cells labels (C) cell bodies in the arista and (D) their PAL termini.

(E and F) A selective driver for cold cells of the sacculus labels (E) cell bodies innervating chamber I of the sacculus and (F) their termini in the PAL (C and E are

confocal micrographs of the whole antenna; blue, cuticle autofluorescence, green, GFP; scale bars, 50 mm; D and F are single two-photon slices; scale bars,

10 mm).

(G and H) Antenna ablation demonstrates the existence of an unusual ‘‘internal’’ cold receptor also innervating the PAL.

(G) IR25a-Gal4 > UAS-GFP labels many of the antennal sensory neurons innervating PAL glomeruli.

(H) A week following antennal resection, all antennal afferents have degenerated, revealing anterior cold cell (ACc) termini in the PAL. The fluorescent signal can

be traced to one/two cell bodies located on the edge of the antennal nerve (AN) (inset; scale bar, 10 mm; see also Figure S2).

(I–O) Extensive overlap between TPN-II dendrites with both arista/ACc and sacculus termini in the PAL.

(I) A selective split-Gal4 driver reveals TPN-II’s anatomy (two-photon z stack).

(J–O) Two-color two-photon micrograph illustrating spatial overlap between (J–L) TPN-II dendrites (green) and Arista/ACc termini (magenta, single z slice) and

between (M–O) sacculus (green) and arista/ACc termini (magenta).

(P–R) Synaptobrevin GRASP confirms synaptic connectivity between TPN-IIs and (P) sacculus and (Q) arista/ACc; the fact that the syb:GRASP signal in (Q)

persists a week post-antenna ablation (R) shows ACc also connects to TPN-IIs.

(S–U) Two-photon Ca2+ imaging shows sacculus neurons exclusively respond in the cold range. Response profiles of (S) arista, (T) chamber I sacculus, and (U)

ACc neuron termini in response to cooling steps in the hot (bottom, above 25�C, red) or cold (bottom, below 25�C, blue) range are shown.

(S) Arista neurons show both a transient peak in response to cooling and a persistent Ca2+ elevation in both conditions.

(T) Sacculus cold cells only respond when the temperature drops below 25�C (arrows).

(U) ACc neurons show persistent signals both above and below 25�C.
(S)–(U) show averages of 4 animals ± SD. In all PAL panels, scale bars are 10 mm.
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connectivity). Moreover, significant syb:GRASP signal persisted

even a week following antenna ablation (i.e., following degener-

ation of antennal afferents; Figure 3R). This result suggests that

ACc neurons are also independently connected to TPN-IIs.

Chamber I Sacculus Neurons Selectively Respond to
Absolute Cold
Next, we asked which—if any—of these cold-sensing cell types

may contribute the absolute cold temperature signal recorded in

TPN-IIs. To address this question, we designed a stimulation

protocol whereby the temperature is stepped down by �5�C
either from a baseline of 25�C or, alternatively, from a hot base-

line of 30�C. In this setup, we expect that cells responding to ab-

solute cold (rather than cooling) would only respond to the stim-

ulus starting at the 25�C baseline and dipping into temperatures

that are below the fly’s favorite range (i.e., cold temperatures).

To test for temperature responses, we again used two-photon

calcium imaging, measuring calcium transients at the PAL termi-

nals of each cell type by selective targeting of GCaMP. Our re-

sults clearly demonstrate that, although the calcium responses

of all three cell types appear to have non-adapting components,

only the chamber one sacculus neurons exclusively respond to

cold, but not to cooling (Figures 3S–3U).

Together with the results of connectivity experiments, this

observation suggests that all three sensory cell types may

contribute to shape TPN-II’s responses to temperature but that

the absolute cold temperature signal recorded in TPN-IIs is

relayed by chamber one neurons of the sacculus.

Interestingly, although calcium transients in the terminals

generally correlate well with synaptic release, the activity re-

corded in TPN-IIs does not appear to be a simple summation

of the activity of these pre-synaptic cell types, suggesting addi-

tional processing is likely to occur at this synapse.

TPN-IIs Have Selective Targets in the Fly Brain
What is the behavioral significance of this persistent, cold tem-

perature activity relayed by sensory neurons of the sacculus

and prominently recorded in specialized second-order neurons

of the thermosensory system?

Although many second-order neurons of the thermosensory

system (TPNs) share common higher brain targets (such as the

calyx of the mushroom body, lateral horn, and posterior lateral

protocerebrum) [8, 9], non-adapting TPN-IIs exclusively inner-

vate a microglomerulus at the edge of the calyx [8] (Figure 4A).

We reasoned that this anatomy may underlie selective connec-

tivity in the brain and that revealing TPN-II’s synaptic targets

may illuminate circuits that utilize specifically cold temperature

information to process behavior happening on slow timescales.

Therefore, we used two-photon guided conversion of photo-

activatable GFP (PA-GFP) [14] to identify TPN-II’s cellular
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B C Figure 4. TPN-IIs Target the DN1a Group of

Dorsal Neurons, Part of the Circadian Clock

Network

(A) 3D reconstruction of the TPN-II (blue)-DN1a

(purple) connection, at the edge of the mushroom

body (MB) calyx.

(B and C) Photolabeling with PA-GFP reveals

DN1as are candidate targets for TPN-IIs. For

this experiment, (B; pre-photoactivation) TPN-II

termini are targeted by independent labeling

with TdTomato, although PA-GFP is expressed

broadly. Following targeted photoactivation at

720 nm, (C; white) PA-GFP diffuses to label TPN-II

targets.

(D–M) DN1as are identifiable by anatomy and

because they express a combination of molecular

clock components. Here, (D) DN1as were labeled

by GFP expression (green, under the control of a

selective driver) and immunostained using an anti-

Clock antibody (CLK, purple; confocal z stack of a

whole-mount fly brain; note that CLK also labels

DN1p, DN2, and DN3).

(D–G) DN1 as were labeled by GFP expression

(green, under the control of a selective driver) and

immunostained using an anti-Clock antibody

(CLK, purple). (E) is an enlargement from panel (D)

centered on DN1as; (F) purple channel, (G) green

channel. (D-G, confocal z stack of a whole-mount

fly brain; note that CLK also labels DN1p, DN2,

and DN3).

(H–M) DN1as also express (H–J) period (anti-PER,

purple) and (K–M) cryptochrome (anti-CRY, pur-

ple; in all panels, scale bar, 10 mm).

(N and O) Syb:GRASP demonstrates mono-

synaptic connectivity between TPN-IIs and

DN1as.

(N) Enlargement of a 3D reconstruction showing predicted point of synaptic contact.

(O) Synaptic GFP reconstitution is observed between TPN-II and DN1a neurons at the edge of the mushroom body calyx (pseudocolored two-photon stack).
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Figure 5. TPN-IIs Robustly Inhibit DN1a Activity in Cold Conditions through GABA Release
(A) Schematic representation of the circuit, including cold thermosensory neurons (TRNs) (dark blue), TPN-IIs (light blue), and DN1as (pink).

(B and C) DN1a firing is persistently silenced by cold, correlating with TPN-II activation.

(B and C) Representative whole-cell current-clamp recording (B) from a DN1a neuron and (C) from a TPN-II in response to a cold step (recorded independently).

(D) Average firing rate histograms for DN1as challengedwith cooling steps of different amplitude show robust silencing even for small stimuli (blue boxes;Dt =�2,

Dt = �4, Dt = �6; 8 cells/7 animals; av. ± SD). Note that corresponding heating stimuli produce an initial burst in activity but modest persistent modulation (red

box, right; Dt = 2, Dt = 4, Dt = 6; 9 cells/8 animals; av. ± SD).

(E and F) Quantification of firing rates at plateau for (E) cold and (F) hot steps as in (D) (gray lines connect responses from the same cell; colored dots, averages ±

SD).

(G) Whole-mount immunostaining showing that TPN-II (labeled by expression of GFP, white arrow) expresses the inhibitory neurotransmitter GABA (anti-GABA,

pink, scale bar 10 mm).

(H–J) GABA release mediates cold inhibition of DN1as.

(H) Schematic of the experiment.

(I) Average firing rate histograms of DN1a in response to a Dt ~�4�C cooling before (black) and after (green) application of the GABA receptor antagonist,

picrotoxin (100 mM; 13 cells/13 animals; av. ± SD), showing that GABA receptor blockade abolishes cold inhibition of DN1as.

(J) Quantification of (I) as trough-to-baseline ratio of firing rate (in first 10 s after cooling), before (black) and after application of picrotoxin (green). Gray circles

connected by lines represent individual neurons; filled circles, population av. ± SD; *p < 0.05 in a paired, one-tailed t test.

(legend continued on next page)
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targets. First, we engineered flies where PA-GFP was constitu-

tively expressed throughout the brain (under the control of syb-

Gal4) and the TPN-II terminals were selectively labeled by a

red fluorescent protein (Figure 4B). Then, using the red fluores-

cence as a guide, we photo-converted PA-GFP exclusively in a

volume tightly overlapping the TPN-II axon terminals and traced

the labeled neurites of next-order neurons as they became illumi-

nated by diffusion of the photo-converted fluorophore

(Figure 4C).

Our results reveal that prominent targets of R60H12 cold-acti-

vated TPNs are two distinctive neurons that have been previ-

ously described as components of the circadian network in the

Drosophila brain (Figures 4C and 4D). The 1a cluster of ‘‘dorsal

neurons’’ (DN1a) is part of a network of DNs that express key

circadian gene products, such as clock and period (Figures

4D–4J). DN1as are defined by their unique anatomy (including

projections to the accessory medulla) and by the fact that they

are among a small group of DN1s that express cryptochrome

[15] (Figures 4K–4M). Importantly, DN1as are indeed direct syn-

aptic targets of TPN-IIs, as demonstrated by synaptic GRASP

(Figures 4N and 4O).

DN1a Neurons Are Directly Inhibited by TPN-IIs in Cold
Conditions
What is the effect of cold temperature on DN1a activity? Given

TPN-II’s firing rates are elevated in cold conditions and scale

proportionally with cold temperature, we expected TPN-IIs to

drive similar activity in the post-synaptic DN1as. Instead, cold

temperature all but shut down activity in this cell type (Figures

5A–5C).

Using temperature steps of different magnitude (and patch-

clamp electrophysiology as described above), we observed

that a cooling step as small as 2�C was sufficient to nearly

silence DN1as (from an initial baseline of nearly 10 Hz) and that

the firing of this cell type was essentially completely silenced at

temperatures 4�C or 6�C below the 25�C baseline (Figures 5D

and 5E). As expected, and consistent with the properties of

TPN-IIs, DN1a’s inhibition by cold temperature was very persis-

tent (showing limited recovery in stable cold conditions) and de-

pended on the presence of the antennae (Figure S3).

In contrast to strong responses to cold, DN1as demonstrated

little persistent modulation by heat (i.e., when the temperature

was stepped above the 25�C range; Figures 5D and 5F). This

is again consistent with the limited response recorded from

TPN-IIs in the hot range. Interestingly, we did observe a rapid,

heating-induced burst in DN1a firing that could not be directly

correlated with the responses of the pre-synaptic TPN-IIs (Fig-

ure 5D; compare with Figures 1F and 1G). This observation

suggests an additional (albeit transient) heating-evoked drive

to DN1a.

The fact that DN1as are powerfully silenced (rather than acti-

vated) by cold temperature and at the same time are synaptic

targets of cold-activated TPN-IIs suggests that TPN-IIs may be

inhibitory projection neurons. Indeed, immunohistochemistry

demonstrated that TPN-IIs express the inhibitory neurotrans-

mitter GABA (Figure 5G), and bath application of the GABAA-re-

ceptor antagonist picrotoxin abolished cold inhibition of DN1as

(Figures 5H–5J).

Together, our results suggest that cold-activated TPN-IIs

directly inhibit the activity of the clock neuron cluster DN1a,

through a GABA-ergic synapse, in cold conditions. Because

clock neurons can exhibit endogenous (clock-regulated)

rhythms in activity, we next tested the possibility that activity

rhythms may also shape the firing profile of DN1as, perhaps

gating the effect of cold temperature on DN1a activity.

DN1as Have Clock-Regulated Rhythms in Activity but
Are Invariably Inhibited by Cold
Previous work has demonstrated that ‘‘posterior’’ DN1s (DN1ps)

possess endogenous mechanisms to modulate firing rates in a

time-of-day-dependent fashion [16]. To test whether DN1as

may display similar properties, we recorded their activity at

different times of day and night. Our recordings suggest that,

as for DN1ps, DN1as also possess time-of-day-dependent mod-

ulation, with higher firing rates during the first part of the day

(zeitgeber time 0 [ZT0]–4; �12 Hz) as compared to the last

time point of the night (ZT20–24; �6 Hz; Figure 5K). These activ-

ity rhythms are present in both females and males (Figures 5K

and 5L) and are regulated by the molecular clock, as they were

abolished in per01 mutants (Figure 5L). Higher rates of DN1a

firing in the morning may reflect an important role for these cells

in the regulation of morning activity and/or in the night-to-day

sleep/wake transition. Interestingly, notwithstanding these

rhythms of activity, cold steps of 4�C or 6�C (from a baseline of

25�C) were effective in significantly reducing DN1a activity at

all time points tested (Figures 5M and 5N). Hence, in the absence

of other external stimuli, cold temperature should be effective in

silencing DN1a activity at all times of day and night.

Cold Temperature Has Both an Acute and Persistent
Effect on Fly Activity and Sleep
What is the functional significance of this powerful cold inhibition

of DN1a? The DN1ps have been abundantly implicated in the

regulation of sleep, including the onset and extent of the after-

noon ‘‘siesta’’ flies enjoy in hot days [17–19], as well as the regu-

lation of sleep patterns in cold days [20]. At least one previous

(K) Baseline firing rates of DN1as at 25�C measured during different times of day (white) and night (gray). Firing rates from different cells (black circles) were

grouped in 4-h bins (filled circles; mean ± SD). Morning rates (pink) were significantly higher than evening ones (purple; n = 39 cells/32 animals; *p < 0.05; unpaired

one-tailed t test).

(L) Circadian rhythms of DN1a firing are absent in per01 mutants. Nighttime and daytime firing rates of DN1as at 25�C recorded from wild-type (WT) (*p < 0.05;

unpaired one-tailed t test) and periodmutant flies are shown (per01; NS, not significant difference; unpaired one-tailed t test; black circles are individual cells; filled

circles indicate av. ± SD; n = 35 cells/21 animals; recordings are from +/Y and per01/Y male flies).

(M and N) DN1as are inhibited by cooling at all ZTs.

(M) Mean firing rate of DN1as in response to a cooling step (blue box, from 25�C; individual gray traces represent averages; ZTs as in L; ZT20–24 and ZT0–4 are

colorized as in K; envelope: ±SEM, n = 40 cells/32 animals).

(N) Quantification of change in firing frequency in response to different cooling steps (from 25�C) during the night (ZT20–24, purple) and day (ZT0–4, pink; gray

circles connected by lines indicated individual cells; filled circles indicate mean ± SD; *p < 0.05; paired one-tailed t test; 14 cells/10 animals; see also Figure S3).
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Figure 6. Genetic Silencing of Either DN1a or TPN-II Perturbs Normal Daytime Sleep Restructuring by Cold

In wild-type flies, cold temperature has both acute and persistent effects on daytime activity and sleep. In (A), (F), (G), and (I)–(K), activity and sleep were quantified

in 30-min bins in 2 consecutive days per condition (B and C: 1 day/condition). Schematics on top illustrate the experimental design. Data plots represent sleep

(above) and activity bar graphs (below) and are averages ± SEM across days and across individual flies; filled circles in sleep plots and black dots above activity

bars indicate time points that are significantly different between cold (18�C, blue) and 25�C (gray) conditions (p < 0.05; paired two-sided t test); dark shades

indicate lights off (night); ZT, zeitgeber time.

(A) In wild-type animals, cold conditions increase morning sleep and suppress morning activity (ZT0–3); in contrast, cold reduces both sleep and activity in the

evening (ZT6–12). Moreover, the onset of evening sleep is advanced (green arrowhead in A). As a result, the net effect of cold is an advancement of daytime sleep.

(B) Morning cold (ZT0–3) rapidly suppresses activity and increases sleep; following the return to 25�C, sleep and activity quickly return to normal levels.

(legend continued on next page)
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publication suggests that DN1as may also be involved in the

regulation of daytime sleep [21].

Here, our goal was to test the possibility that DN1as may be

directly involved in the regulation of activity and sleep by temper-

ature and that their powerful inhibition by cold may be of signif-

icance for the regulation of activity/sleep patterns in persistent

cold conditions. Unlike previous studies, our experiments could

be guided by knowledge of the specific thermal range that mod-

ulates DN1a’s activity via connections with the antennal TRNs/

TPN-II circuit (Figure 6).

At the normal rearing temperature of 25�C (and under 12 h

light:12 h dark, or LD, cycles), fly behavior is characterized by

peaks of activity corresponding to the late night-early morning

transition (‘‘morning peak’’) and to the end of the day (‘‘evening

peak’’; see Figure 6A, gray bar graph). Fly sleep is generally

defined as inactivity that persists for 5 min or longer [22, 23],

and as such, most of fly sleep occurs at night, yet flies (male flies

in particular) [24] also display a prominent mid-day siesta (Fig-

ure 6A, black plot)—perhaps to avoid potentially hot/dry condi-

tions in the mid-day [25].

Cold temperature (18�C) has both an acute and persistent ef-

fect on fly activity and sleep: cold conditions rapidly suppress

morning activity (and increase morning sleep; Figure 6A, blue

bar graphs and lines). Activity in the evening is also reduced; in

addition, the onset of evening activity is advanced (arrow in bar

graph, Figure 6A). The overall effect of cold on daytime sleep is

that the siesta is advanced to earlier time points—potentially

an adaptation to the fact that cooler conditions normally accom-

pany the seasonal shortening of days (Figure 6A, blue plot; see

also [26]).

Interestingly, this acute shift in siesta sleep can be ascribed to

independent and reversible effects of cold temperature on sleep

in the morning and evening: in LD conditions, a defined 3 h cold

step in themorning increases sleep (but, following return to 25�C,
fly behavior returns to normal; Figure 6B), although a similar

defined cold step in the evening decreases sleep (Figure 6C;

see Figure 6D for quantifications).

Silencing DN1a Output Mimics Cold Conditions
Are DN1as involved in the restructuring of daytime sleep in

response to cold temperature? To test the potential involvement

of DN1as (and TPN-IIs) in this process, we first developed ge-

netic reagents to selectively target each cell type for genetic

silencing. Starting from broader drivers, we created intersec-

tional split-Gal4 lines narrowly active in either DN1as (Figure 6E)

or non-adapting TPN-IIs (see Figure 3I and STAR Methods for

details). Next, we used these drivers to express a transgenic

blocker of synaptic transmission (tetanus toxin light chain) [27]

and monitored the effect of this manipulation on sleep and

activity.

Remarkably, genetic silencing of DN1a’s output at 25�C
partially mimicked cold conditions: under LD cycles, the onset

of siesta sleep was advanced even at 25�C, resembling the

response to cold conditions observed in controls (Figures 6G

and 6H; see Figures 6F and 6I for controls). This suggests

that reducing the output of DN1as in the morning may be a

key mechanism for daytime siesta sleep advancement by

cold temperature. Interestingly, blocking DN1a’s output also

prevented the plastic remodeling of sleep by cold temperature

in the evening (ZT6–12). This time, constitutive block of DN1a

output produced a stable (i.e., temperature-independent)

sleep profile more similar to the control’s 25�C conditions,

as DN1a > tetanus toxin light chain (TNT) flies did not reduce

the amount of evening sleep in response to cold (Figures 6G

and 6H).

As cold temperature suppresses DN1a firing in both morning

and evening (Figure 5), this observation is incompatible with sim-

ple models, in which silencing DN1a invariably results in more

sleep, irrespective of time of day. Instead, our results suggest

that the appropriate timing and extent of DN1a activity may be

crucial for the dynamic regulation of daytime sleep patterns

and for their plastic adaptation to changes in the external

temperature.

Next, we tested the potential impact of TPN-II silencing. Our

previous results suggest that TPN-IIs provide powerful inhibitory

drive to DN1as in cold conditions. Consistent with this, silencing

TPN-II’s output had no effect on sleep at 25�C. After a shift to

18�C, siesta sleep of TPN-II > TNT flies advanced normally. Inter-

estingly, constitutive block of TPN-II’s output again prevented

sleep restructuring in the evening, producing a stable sleep pro-

file similar to that of DN1a > TNT flies (Figures 6K and 6L;

compare to Figures 6G and 6H).

The fact that reducing the output of inhibitory neurons (TPN-

IIs) had the same (rather than the opposite) effect on evening

sleep to that obtained by silencing their targets (DN1as) is again

consistent with the notion that the dynamics of DN1a activity

(rather than their net output at a given time point) may be impor-

tant to determine the appropriate pattern of daytime sleep, so

that locking the system in one state may produce similar

effects.

Notably, the overall daytime sleep profile of TPN-II > TNT flies

at 18�C was remarkably similar to that of DN1a > TNT flies at

25�C (both in the morning and evening; compare Figure 6K,

blue plot with Figure 6G, black plot). This daytime sleep profile

(C andD) Evening cold (C; ZT6–12) decreases sleep so that, together, morning and evening effects recapitulate all day cold conditions (n = 31 animals in A, 26 in B

and C; see D for quantifications).

(E) A split-Gal4 driver allows selective targeting of DN1as (shown driving GFP; two-photon z stack; scale bar, 20 mm).

(F–L) Silencing DN1as or TPN-IIs using selective split-Gal4s perturbs sleep restructuring by cold temperature.

(F, I, and J) Control genotypes (n = 30 in F; n = 61 in I; n = 62 in J).

(G) Silencing DN1as by expression of tetanus toxin light chain (TNT) partially mimics cold conditions, producing flies that sleep more in the morning even at 25�C
and that fail to restructure their afternoon sleep in response to cold (n = 19 animals).

(K and L) Silencing (K) TPN-II output with TNT also produces flies that fail to restructure afternoon sleep in response to cold (n = 52 animals; see H and L for

quantifications; in all boxplots, box edges: 25th and 75th percentiles; thick lines: median; whiskers: data range; gray dots: individual data points/flies; *p < 0.05 in

paired two-sided t test comparing 25�C versus 18�C within genotype or two-way ANOVAs with a Bonferroni correction for multiple comparisons across ge-

notypes/temperatures).
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Figure 7. Sleep and DN1a Activity Are Modulated by the Opposing Pushes of Light and Cold Temperature

(A and B) Cold and dark synergize to increase sleep across the day.

(A) (Top) Behavioral protocol used to evaluate sleep on flies entrained in 12 h light-dark (LD) cycles (white box: day [lights on]; black box: night [lights off]; gray box:

subjective day [lights off]). (Bottom) Sleep plot for two independent groups of control (wild-type) flies during a single LD day at 25�Cand in the following dark day at

either 18�C (blue line; n= 19 animals, ±SEM) or 25�C is shown (gray line; N = 19 animals, ±SEM; filled circles indicate time points that are significantly different

between conditions; p < 0.05; unpaired two-sided t test).

(B) Quantification of total sleep in the indicated intervals (box edges: 25th and 75th percentiles; thick lines: median; whiskers: data range; gray dots: individual data

points/flies; *p < 0.05 in unpaired two-sided t test).

(C–E) In the dark, suppressing DN1a output by TNT expression mimics cold conditions, increasing sleep across the day.

(C) (Top) Behavioral protocol. (Bottom) Sleep in DN1a > TNT flies (orange trace; n = 25 animals), UAS-TNT/+ (gray; n = 32 animals) and DN1a-Gal4/+ flies is shown

(black; n = 31 animals; all traces are av. ± SEM; circles, significantly different from both controls in two-way ANOVA; p < 0.05).

(D and E) Quantification of total sleep in the indicated intervals for genotypes in (C) (box edges: 25th and 75th percentiles; thick lines: median; whiskers: data range;

gray dots: individual data points/flies; *p < 0.05; two-way ANOVA with a Bonferroni correction for multiple comparisons across genotypes).

(F–I) Optogenetic activation of TPN-II produces an acute increase in sleep.

(F) Protocol used (3 consecutive days represented top to bottom); red shading indicates optogenetic activation.

(G) Sleep pattern of TPN-II > Chrimson flies fed all-trans retinal (red trace; 25 animals) or control food (black; 27 animals—note that retinal is essential for Chrimson

function; traces: av. ± SEM; circles, significantly different from controls in two-sided t tests; p < 0.05).

(H and I) Quantification of total sleep in the indicated intervals (H) ZT0–3 on day 2 and (I) ZT6–12 on day 4 (box edges: 25th and 75th percentiles; thick lines: median;

whiskers: data range; gray dots: individual data points [flies]; *p < 0.05; unpaired, two-sided t test).

(legend continued on next page)
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may perhaps represent a default state of the system that results

from manipulations that disconnect it from external temperature

drive.

Despite this potentially complex interaction, our results sug-

gest that the circuit composed of inhibitory TPN-IIs and DN1a

plays a key role in mediating the restructuring sleep and activity

patterns in cold conditions.

Dark and Cold Synergize to Suppress Morning
Wakefulness
In the environment, the seasonal arrival of cold temperatures is

often accompanied with darker conditions and shorter days.

Next, we tested the potential impact of light on DN1a function

and fly behavior in the cold. Under light/dark cycles in constant

cold (LD at 18�C), control flies robustly wake up at the first

appearance of light (‘‘lights on’’) but quickly return to sleep within

60–90 min (Figure 6); our results also demonstrate that, at 25�C,
blocking DN1a output significantly increases morning sleep,

partially mimicking cold conditions (Figures 6G and 6H). Interest-

ingly, when switched to constant dark/cold conditions (DD at

18�C), control animals nearly fail to wake up in the morning alto-

gether (Figure 7A, blue line; see Figure 7B for quantification).

Blocking the output of DN1as mimics this effect of cold, so

that—in the absence of a light signal—most DN1a > TNT flies

fail to wake up in the morning even at 25�C (Figures 7C–7E). Op-

togenetic activation of TPN-IIs was sufficient to reproduce this

effect, generating animals that largely ignore the lights on signal

in the morning (Figures 7F–7H; note that, in dark conditions, cold

temperature also produces a significant increase in evening

sleep, an effect reproduced by DN1a silencing and optogenetic

activation of TPN-IIs; Figures 7F, 7G, and 7I).

Hence, light and cold have powerfully antagonistic effects on

morning wakefulness. Based on these results, we tested the

interaction of light and temperature in regulating DN1a firing

rates.

DN1as Directly Integrate Light and Cold Temperature
Signals
Ample evidence suggests that DN1a activity may be directly or

indirectly modulated by light. For example, DN1as express the

blue light receptor cryptochrome [15] and, in the larva, are known

targets of light-responsive ventral lateral neurons (LNvs) (a core

component of the clock circuit) [28]. Importantly, the ‘‘small’’

LNvs or sLNvs have been described as master regulators of

morning activity [29] and have been suggested to form reciprocal

connections with DN1as [21].

Our results suggest that indeed DN1as respond to light as well

as to sLNv signaling. First, we observed light responses in DN1a

(Figures 7J–7L; see [29]). Next, we showed that ‘‘artificial’’ acti-

vation of sLNvs using P2X2 results in an increase of DN1a firing

(Figures 7M and 7N). Finally, we recorded an increase in firing

rates in DN1as upon focal application of the neuropeptide

pigment dispersing factor (PDF) (normally expressed by sLNvs

[30] and for which DN1as express the cognate receptor PDF re-

ceptor [PDFR] [31]; Figures 7Q and 7R).

Strikingly, light exposure, artificial sLNv activation, and PDF

application were each able to partially overcome cold inhibition

of DN1as (Figures 7K, 7L, 7O, 7P, 7S, and 7T), suggesting that

light and/or LNv signaling (through PDF release) could drive

DN1as even in cold conditions and explaining the dominant ef-

fect of light in setting the beginning of daytime activity.

Together, our results demonstrate functional connectivity be-

tween sLNvs and DN1as and suggest that DN1a activity is

shaped by signals from the circadian clock and modulated by

the opposing pushes of light and cold temperature, dynamically

shifting the pattern of daytime sleep to better adapt to changing

environmental conditions.

DISCUSSION

In this work, we uncover a complete circuit, from sensory neu-

rons to circadian and sleep centers, that processes information

about absolute cold temperature to exert influence on fly

behavior in the timescale of minutes to hours to days.

The circuit we describe is composed of sensory neurons of the

antenna (including newly identified thermosensory neurons only

active in the cold) and of specialized second-order thermosen-

sory projection neurons of the PAL and provides persistent inhi-

bition to the DN1a cluster of circadian neurons to adapt sleep/

activity patterns specifically to cold conditions.

Our data show that ‘‘absolute temperature’’ and ‘‘temperature

change’’ signals can be extracted by second-order neurons from

(J) Circuit schematic including TPN-IIs (light blue), DN1as (pink), and sLNvs (orange).

(K and L) DN1as are excited by light.

(K) Light produces robust increases in firing rate at 25�C (black) and at 20�C (blue; gray circles connected by lines represent individual cells; filled circles are av. ±

SD; *p < 0.05; paired one-tailed t test).

(L) Representative whole-cell recordings from a single DN1a neuron before and during light stimulation (yellow box) at 25�C (black) or 20�C (blue).

(M–P) Artificial activation of sLNvs drives fire rate increases in DN1a and can overcome cold inhibition.

(M) Experiment schematic. sLNvs express the exogenous ATP receptor P2X2 and can be activated by pressure ejection of ATP (20mM, green), while patch clamp

records activity in DN1a (pink).

(N) ATP (20 mM, green) can drive an increase in DN1a firing at 25�C in animals in which sLNvs express P2X2 (green trace, 4 cells/animals), but not in control

animals (driver without the receptor, gray/black trace; 6 cells/4 animals).

(O) ATP can also overcome cold inhibition of DN1as (4 cells/4 animals av. ± SEM; the green trace at the bottom of N and O is Alexa Fluor 594 fluorescence, a dye

included as a marker in the ATP solution; arbitrary fluorescence units ± SEM).

(P) Quantification of (N) and (O) (gray circles connected by lines represent individual cells; filled circles are av. ± SD; *p < 0.05; paired one-tailed t test).

(Q–T) The neuropeptide PDF can increase DN1a firing to overcome inhibition in the cold.

(Q) Experiment schematic. PDF is pressure ejected (50 mM, yellow), while patch clamp records activity in DN1a (pink).

(R–T) PDF can drive an increase in DN1a firing both at (R) 25�C or (S) 20�C (9 cells/6 animals av. ± SD; the yellow line at the bottom of R and S represent the

approximate time of the PDF puff).

(T) Quantification of (R) and (S) (gray circles connected by lines represent individual cells; filled circles are av. ± SD; *p < 0.05; paired one-tailed t test; all ex-

periments were done at ZT 0–8).
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the activity of peripheral thermoreceptors and demonstrate that

persistent signaling in sensory circuits mediates long-lasting

changes in behavior, beyond the rapid responses that are gener-

ally well understood. Moreover, our results illustrate how the fly

nervous system selectively encodes and relays absolute cold

temperature information to adapt behavior specifically to cold

conditions.

What may be the significance of this sensory mechanism for

the animal’s natural behavior? Thermal conditions arewell known

to exert long-lasting changes in physiology and behavior, but due

to thepervasive nature of temperature itself, suchchangesdonot

necessarily require input from a sensory circuit. For example, on

the timescale of days andweeks, cold temperature promotes the

alternative splicing of clock genes [26, 32], directly affecting the

dynamics of the molecular clock. The sensory mechanism we

discover here allows the animal to respond both rapidly and

persistently to cold conditions. Suchamechanismmaybe impor-

tant to bridge the gap between behavioral responses on the time-

scale ofminutes to hours andbiochemical changes thatmay take

days to fully set in (and may be difficult to reverse).

In a small poikilotherm, cold (the range of temperature below

the optimal species-specific value determined by the biochem-

istry of the animal) profoundly impacts motility and the ability

to process stimuli. Cold temperature can quickly render a fly un-

able to move rapidly or fly away [33], and it is well known that

larger insects, such as bumble bees, have evolved adaptations

to ensure that their internal temperature is sufficient to support

flight once they leave the hive [34]. We speculate that, for

example, it may be adaptive for a fly to ‘‘sleep in’’ on a cold,

dark morning until the conditions are met for it to warm up suffi-

ciently as to rapidly avoid predation. If cold conditions indeed

persist, the new sleep/wake pattern may become further rein-

forced by stable biochemical/molecular changes and become

part of a new seasonal pattern of activity.

Following up on the TPN-II targets, our work also identifies

DN1a neurons as a key node for the integration of sensory infor-

mation with internally regulated drives for rest and activity. We

show that DN1as are powerfully and persistently inhibited by

cold temperature but also that they have clock-regulated

rhythms of activity, respond to light, and receive excitatory drive

from sLNvs (which are part of the endogenous pacemaker and

are in turn also activated by light) [35]. Together, our results

demonstrate how information about external conditions (light

and temperature) is directly relayed to a circadian/sleep center

in the brain and integrated with internal drives to adapt sleep

and wake cycles to changing external conditions.

Our results open a window on the temporal structure of sen-

sory signaling in the fly thermosensory system and reveal

how—even within sensory modality—distinct neural circuits

can operate on different temporal scales to drive appropriate

behavioral responses.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

chicken polyclonal anti-GFP Abcam Cat# ab13970, RRID:AB_300798

donkey polyclonal anti-mouse Alexa 594 Abcam Cat# ab150105, RRID:AB_2732856

chicken polyclonal anti-GFP Abcam Cat# ab13970, RRID:AB_300798

rat monoclonal anti-Elav Developmental Studies Hybridoma Bank Cat# Rat-Elav-7E8A10 anti-elav,

RRID:AB_528218

mouse monoclonal anti-Repo Developmental Studies Hybridoma Bank Cat# 8D12 anti-Repo, RRID:AB_528448

rabbit anti-Per Gift from R. Allada & M. Rosbash N/A

rabbit anti-Cry Gift from R. Allada N/A

donkey polyclonal anti-chicken Alexa 488 Jackson ImmunoResearch Labs Cat# 703-545-155, RRID:AB_2340375

donkey polyclonal anti-rabbit Alexa 594 Jackson ImmunoResearch Labs Cat# 711-585-152, RRID:AB_2340621

donkey polyclonal anti-chicken Alexa 488 Jackson ImmunoResearch Labs Cat# 703-545-155, RRID:AB_2340375

rabbit polyclonal anti-GABA Millipore Sigma Cat# A2052, RRID:AB_477652

goat anti-rat DyLight 594 NovusBio Cat# NBP1-76096, RRID:AB_11023227

goat polyclonal anti-CLK (dC-17) Santa Cruz Biotechnology Cat# sc-27070, RRID:AB_638555

rabbit polyclonal anti-dsRED Takara Bio Cat# 632496, RRID:AB_10013483

donkey polyclonal anti-goat Alexa 568 Thermo Fisher Scientific Cat# A-11057, RRID:AB_2534104

Chemicals, Peptides, and Recombinant Proteins

Adenosine 50-triphosphate magnesium salt Millipore Sigma Cat. # A9187; CAS: 74804-12-9

Pigment dispersing factor (PDF) peptide Gift from R. Allada; Genscript N/A

Alexa Fluor 594 Hydrazide Thermo Fisher Scientific Cat. # A10438

all trans-Retinal Millipore Sigma Cat. # R2500; CAS: 116-31-4

picrotoxin Tocris Cat. # 1128; CAS: 124-87-8

Experimental Models: Organisms/Strains

D. melanogaster: IR25a Gal4 Bloomington Drosophila Stock Center BDSC: 41728; Flybase: FBti0148895

D. melanogaster: R49B06 Gal4 Bloomington Drosophila Stock Center BDSC: 50409; Flybase: FBti0136309

D. melanogaster: R49B06 LexA Bloomington Drosophila Stock Center BDSC: 52707; Flybase: FBti0155964

D. melanogaster: R25B07 AD Bloomington Drosophila Stock Center BDSC: 70144; Flybase: FBti0188065

D. melanogaster: R25B07 LexA Bloomington Drosophila Stock Center BDSC: 54125; Flybase: FBti0155514

D. melanogaster: R77C10 Gal4 Bloomington Drosophila Stock Center BDSC: 39958; Flybase: FBti0138389

D. melanogaster: R77C10 DBD Bloomington Drosophila Stock Center BDSC: 69705; Flybase: FBti0191888

D. melanogaster: R60H12 AD Bloomington Drosophila Stock Center BDSC: 70761; Flybase: FBti0188587

D. melanogaster: VT032805 DBD Bloomington Drosophila Stock Center BDSC: 75119; Flybase: FBti0193574

D. melanogaster: R49A06 Gal4 Bloomington Drosophila Stock Center BDSC: 50401; Flybase: FBti0136298

D. melanogaster: R23E05 Gal4 Bloomington Drosophila Stock Center BDSC: 49029; Flybase: FBti0134061

D. melanogaster: R23E05 AD Bloomington Drosophila Stock Center BDSC: 70601; Flybase: FBti0188021

D. melanogaster: R92H07 DBD Bloomington Drosophila Stock Center BDSC: 70004; Flybase: FBti0192102

D. melanogaster: 20XUAS-IVS-GCaMP6f Bloomington Drosophila Stock Center BDSC: 42747; Flybase: FBti0151345

D. melanogaster: 20XUAS-IVS-jGCaMP7f Bloomington Drosophila Stock Center BDSC: 79031; Flybase: FBti0199863

D. melanogaster: 20XUAS-IVS-

CsChrimson.mVenus

Bloomington Drosophila Stock Center BDSC: 55135; Flybase: FBti0160803

D. melanogaster: 13XLexAop-IVS-

jGCaMP7f

Bloomington Drosophila Stock Center BDSC: 80914; Flybase: FBti0202387

D. melanogaster: AOP.Syb:spGFP

[1–10],UAS.spGFP [11]

Bloomington Drosophila Stock Center BDSC: 64315; Flybase: FBti0180566;

FBti0180561

D. melanogaster: 10XUAS-IVS-mCD8::GFP Bloomington Drosophila Stock Center BDSC: 32186; Flybase: FBst0032186

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Marco Gallio (marco.

gallio@northwestern.edu).

Materials Availability
This study did not generate new unique reagents. Requests of fly stocks should be directed to and will be fulfilled by the Lead Con-

tact, Marco Gallio (marco.gallio@northwestern.edu).

Data and Code Availability
All data are available in the main text or the supplementary materials. Further information and requests for data and code should be

directed to and will be fulfilled by the Lead Contact, Marco Gallio (marco.gallio@northwestern.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly Strains
Drosophila melanogaster strains were reared on cornmeal agar medium under 12:12 LD cycles at 25�C. Stocks were obtained from

BloomingtonDrosophila Stock Center (BDSC) or ViennaDrosophila Resource Center (VDRC). The following stocks were used: IR25a

Gal4 (BDSC 41728), R49B06 Gal4 (BDSC 50409), R49B06 LexA (BDSC 52707), R25B07 AD (BDSC 70144), R25B07 LexA (BDSC

54125), R77C10 Gal4 (BDSC 39958), R77C10 DBD (BDSC 69705), R60H12 AD (BDSC 70761), VT032805 DBD (BDSC 75119),

R49A06 Gal4 (BDSC 50401), VT003226 Gal4, R23E05 Gal4 (BDSC 49029), R23E05 AD (BDSC 70601), R92H07 DBD (BDSC

70004), 20XUAS-IVS-GCaMP6f (BDSC 42747), 20XUAS-IVS-jGCaMP7f (BDSC 79031), 20XUAS-IVS-CsChrimson.mVenus (BDSC

55135), 13XLexAop-IVS-jGCaMP7f (BDSC 80914),13XLexAop-TdTomato, UAS-C3PA, UAS-SPA and synaptobrevin-Gal4 (kind gifts

from V. Ruta and B. Noro), AOP.Syb:spGFP [1–10],UAS.spGFP [11] (BDSC 64315) PDF-LexA and Per01 (kind gifts of R. Allada),

AOP-P2X2 (kind gift of O. Shafer), 10XUAS-IVS-mCD8::GFP (BDSC 32186) UAS-TNT (kind gift from M. Rosbash). A full description

of genotypes used in each figure can be found in Table S1. Male flies were used for all behavioral experiments. In Figure 5, electro-

physiological recordings were performed on males and females, separately, as indicated; all other recordings were performed

on males. A full description of genotypes used in each figure can be found in Table S1. A full list of fly lines can be found in the

Key Resources Table.

METHOD DETAILS

Characterization of Gal4, LexA and split-Gal4 drivers
In addition to saccuclus chamber I neurons, R25B07-LexA expresses in the lateral horn, subesophageal ganglia, and a single olfac-

tory glomerulus in the antennal lobe. R77C10-Gal4 is active in arista cold cells, the ACc, and subesophageal ganglia. IR25a-Gal4

expresses in ACc, and a detailed description of antennal sensory neurons in this line can be found in Enjin et al., 2016. R25B07

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: UAS-TNT kind gift from M. Rosbash N/A

D. melanogaster: LexAop-P2X2 kind gift of O. Shafer N/A

D. melanogaster: 13XLexAop-TdTomato kind gifts from V. Ruta and B. Noro N/A

D. melanogaster: UAS-C3PA kind gifts from V. Ruta and B. Noro N/A

D. melanogaster: UAS-SPA kind gifts from V. Ruta and B. Noro N/A

D. melanogaster: Synaptobrevin-Gal4 kind gifts from V. Ruta and B. Noro N/A

D. melanogaster: w1118 CS kind gifts of R. Allada N/A

D. melanogaster: per01 kind gifts of R. Allada N/A

D. melanogaster: VT003226 Gal4 Vienna Drosophila Resource Center N/A

Software and Algorithms

MAT LAB The Mathworks http://www.mathworks.com

Fiji [36] http://fiji.sc

Pclamp (Clampex software v.9.2.1.9) Axon Instruments/Molecular Devices https://www.moleculardevices.com/

Igor Pro v.6.37 Wavemetrics, Inc. https://www.wavemetrics.com/

Neuromatic v2.6i plug-in for Igor Pro [37] http://www.neuromatic.thinkrandom.com/

Axograph v.1.70 Axograph https://axograph.com/
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AD X R77C10 DBD is active in 2-3 cold cells of the arista. R60H12 AD X VT032805 DBD expresses in TPN-IIs, weakly in subeso-

phageal ganglia, and a pair of cells in the ventral nerve cord. R92H07 ADX R23E05 DBD is active in DN1as and no other neurons in

the brain.

Electrophysiology
Whole-cell patch clamp electrophysiology experiments were performed on 2-3 days old flies. Flies (generally females, except for

per01 mutants and controls) were anaesthetized by brief cold exposure in an ice bath (�0�C) for �1 min. Using a dissection micro-

scope (Nikon SMZ1000), a small window in the head cuticle was opened and the underlying perineural sheath was gently removed

using fine forceps (Moria Surgical). Brain tissue was exposed while maintaining connectivity with peripheral antennae, and bathed in

artificial hemolymph (AHL) solution containing the following (inmM): 103NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 8 trehalose dihydrate,

10 dextrose, 5 TES, 4MgCl2, adjusted to 270-275mOSm. For experiments, 1.5mMCaCl2 was included and the solution was contin-

uously bubbled with 95%O2 5%CO2 to pH 7.3 and perfused over the brain at a flow rate of 1-2mL/min. To target neurons for patch-

ing under the 2-photon microscope, Gal4 lines expressing GFP for neuron targeting were excited at 840 nm and detected using a

photomultiplier tube (PMT) through a bandpass filter (490-560 nm) using an Ultima 2-photon laser scanning microscope (Bruker,

formerly Prairie Technologies). The microscope is equipped with galvanometers driving a Coherent Chameleon laser and a Dodt de-

tector was used to visualize neural tissue/somata. Images were acquired with an upright Zeiss Examiner.Z1 microscope with a Zeiss

W Plan-Apochromat 40 3 0.9 numerical aperture water immersion objective at 512 pixels 3 512 pixels resolution using PrairieView

software v. 5.2 (Bruker). Current clamp recordingswere performedwith pipettes pulled (Sutter P-97) using borosilicate capillary tubes

(WPI Cat # 1B150F-4) with open tip resistances of 20 ± 3MU filledwith internal solution containing the following (inmM): 140 K-aspar-

tate, 1 KCl, 1 EGTA, 10 HEPES, 4Mg-ATP, 0.5 Na3-GTP, pH 7.3, 265mOsm. To visualize the electrode and fill the cell after recording

to confirm GFP co-localization, Alexa Fluor 594 Hydrazide (5 mM; Thermofisher Scientific Cat. # A10438) was added into the intra-

cellular solution, excited using the 2-photon microscope at 840 nm, and detected with a second PMT through a bandpass filter

(580-630 nm). Recordings were made using Axopatch 200B patch-clamp amplifier and CV203BU headstage (Axon Instruments),

lowpass filtered at 2 KHz, scaled to a 20x output gain, digitized with a Digidata 1320 A, and acquired with Clampex software

v.9.2.1.9 (Axon Instruments).

Temperature stimulation

For temperature stimulation, preparations were continuously perfused with Ca2+-containing AHL (as described above). AHL was

gravity fed through a 3-way valve (Lee company, part # LHDA1231315H) and flow rate was adjusted through a flow regulator.

Following the valve, temperature was precisely regulated through 2 in-line solution heater/coolers (Warner, cat. # SC-20) in parallel

with by a dual channel bipolar temperature controller (Warner Instruments, Cl�200A). Excess heat produced by each SC-20 Peltier

was dissipated through a liquid cooling system (Koolance, Cat. # EXT-1055). To circumvent changes in resistivity and voltage offsets

from changing the temperature of the bathing solution, the reference Ag-Cl pellet electrode was placed in an isolated well adjacent to

the recording chamber (Warner Instruments, Cat. # RC-24N), filled with identical AHL and connected via a borosilicate capillary tube

filled by 2% agar in 3 M KCl. The bath temperature was precisely recorded using a custom Type T thermocouple with 1cm exposed

tip (Physitemp, Cat. # T-384A) connected to a thermometer (BAT-12, Physitemp) with an analog output connected to the digitizer and

sampled at 10 kHz. The tip of thermocouple was threaded through a borosilicate capillary tube and precisely placed near the

antennae using a micromanipulator (MP-225, Sutter Instruments).

Time of Day Electrophysiology Experiments

Flies were reared on a 12:12 L:D cycle at 25�C. Experiments were performed on female flies 2-3 days post-eclosion and recordings

were binned in 4 hr intervals according to Zeitgeber Time (ZT). For ZT0-12 recordings a white LED was used during the dissection,

whereas during ZT 12-24, red light was used instead in otherwise complete darkness. The baseline firing rate was established and

taken from an average of the firing rate in the first 1-2min after break-in and the establishment of whole cell configuration. Mean firing

rate (Hz) ± SD are reported for each bin. An unpaired 1-tailed t test was used to test for significant differences in firing rate between

night (ZT 20-24) and day (ZT 0-4). For experiments in a per01 background, Gal4 lines expressingGFPwere crossed to female per01; as

per maps to the X chromosome, only male progeny were used for experiments.

Light stimulation

Flies were reared on a 12:12 L:D cycle at 25�C and dissected using white light. Experiments were performed on female flies 2-3 days

post-eclosion at ZT 0-8 with intact eyes. Whole cell recordings were established using 2-photon illumination at 840 nm. Flies were

then left in darkness at 25�C until stimulated from below using the microscope condenser halogen lamp (Sunlite Q100). A light inten-

sity of�430 luxwasmeasured through the recording chamber using aDigital luxmeter (# LX1330B, Dr.Meter). Flies were then cooled

to 20�C for several minutes and then stimulated again with the condenser light. To quantify the change in firing rate from light stim-

ulation, a baseline period of �30 s was averaged and compared to the peak response elicited upon light exposure.

Pressure ejection of chemicals

For focal application of ATP (20 mM in AHL) or PDF peptide (50 mM in AHL, GenScript), solutions were backfilled into a borosilicate

capillary tube (WPI) connected to a TTL-triggerable PV830 Pneumatic PicoPump (WPI). Alexa 594 Hydrazide (5 mM) was included to

confirm and record the fluorescence intensity and time course of the ejected solution. Pipettes were pulled using a P-97 puller (Sutter)

to open tip resistances of 5-10 MU and precisely positioned using a micromanipulator (Sutter MP-225) near DN1a projections. Con-

stant pressure (5 psi) was maintained for the duration of the stimulus. For ATP experiments, controls were performed in Gal4 lines

expressing GFP only.
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Immunohistochemistry
Staining of fly brains was performed essentially as previously described [6]. Briefly, brains of young (3-5d old) male and female flies

were dissected in cold PBS or artificial hemolymph and fixed in 4%PFA. Blocking was performed in PBSBT (PBS, 0.2%Triton X-100,

3%BSA) and samples were incubated overnight at 4�Cwith the appropriate dilution of primary antibody in PBSBT. The following day,

samples were washed and incubated for 3hr with fluorescently tagged secondary antibody diluted to the appropriate concentration

in PBSBT. The following antibodies were used: chicken anti-GFP (Abcam #ab13970), rabbit anti-dsRED (Clontech #632496), rabbit

anti-GABA (1:200, Sigma #A2052), goat anti-CLK (dC-17) (1:500, Santa Cruz Biotechnology #sc-27070), rabbit anti-Per (1:5000, a gift

from the Allada lab), rabbit anti-Cry (1:50, a gift from the Allada lab [38], donkey anti-chicken Alexa 488 (1:250, Jackson ImmunoR-

esearch #703-545-155), donkey anti-rabbit Alexa 594 (1:250, Jackson ImmunoResearch #711-586-152), donkey anti-goat Alexa 568

(1:250, Invitrogen #A-11057). For staining of antennal nerves to characterize ACc, the following antibodies were used: rat anti-Elav

(1:50, Hybridoma Bank #Rat-Elav-7E8A10 anti-elav), goat anti-rat DyLight 594(1:500, NovusBio #NBP1-76096), mouse anti-Repo

(1:50, HybridomaBank #8D12 anti-Repo), donkey anti-mouse Alexa 594 (1:500, Abcam#ab150105), chicken anti-GFP (1:500 Abcam

#ab13970), donkey anti-chicken Alexa 488 (1:500, Jackson ImmunoResearch #703-545-155).

Fluorescence Microscopy and Image Analysis
Confocal imaging of antennae and immunofluorescent-stained brains was performed on a Zeiss LSM 510 confocal microscope

equipped with Argon 450-530nm, Helium-Neon 543nm, and Helium-Neon 633 nm lasers and a Zeiss LCI Plan-Neofluar/0.8 DIC

Imm Corr 25x objective at 512x512 pixel resolution. Two-photon imaging of GFP-, TdTomato-, and sybGRASP-labeled neurons

was performed on a Prairie Ultima two-photon microscope with a Coherent Chameleon Ti:Sapphire laser tuned to 945nm, GaAsP

PMTs and an Olympus 40X 0.9NA water immersion objective at 512x512 pixel resolution and 1X or 2X optical zoom. Maximum pro-

jections were obtained from stacks taken at 1 mm steps. Images were processed in Fiji.

Antennae Anatomy
Large online collections of Gal4 driver lines (Janelia Farm FlyLight initiative, Vienna Drosophila Resource Center ViennaTile) were

visually screened to identify driver lines putatively active in sensory neurons innervating the PAL. Drivers were crossed to

10XUAS-IVS-mCD8::GFP and the antennae of the resulting progeny examined under confocal microscopy. Antennae of young flies

were dissected and collected in cold artificial hemolymph and mounted in artificial hemolymph or Vectashield.

Ablation of Antennae
Male and female flies were collected shortly after eclosion and anesthetized on ice, fine forceps were used to gently pluck the

antennae from the flies. Removal of the entire third segment and arista was confirmed visually. Imaging experiments in the PAL

were conducted 7-10 days post-ablation.

Calcium Imaging
Calcium imaging of temperature stimuli was performed essentially as previously described [6, 8]. Gal4 driver line males were crossed

to virgin GCaMP females (see STAR Methods Key Resources Table for a complete list of genotypes) and progeny used for imaging

experiments 3-5 days post-eclosion. Dissections and temperature stimuli were performed as described above in AHL continuously

bubbled with 95% O2 5% CO2. Images were acquired at 256x256 or 512x512 pixels resolution at a rate of 4 Hz on a Prairie Ultima

two-photon microscope with a Coherent Chameleon Ti:Sapphire laser tuned to 945nm.

Circadian Behavioral Experiments
All flies were reared at 25�C in 12 hr light: 12 hr dark (LD) conditions. Male flies (3-5 days old) were loaded into 65mm x 5mm tubes

containing 5% sucrose 2% agar food medium. Locomotor activity was recorded using the Drosophila Activity Monitoring System

(DAMS, Trikinetics) in 1 minute intervals. Temperature, light and humidity were controlled using a DR-36NL incubator (Percival Sci-

entific). To suppress synaptic output of DN1a split Gal4 (R23E05 ADXR92H07 DBD) and TPN-II split Gal4 (R60H12 ADX VT032805

DBD), males were crossed to virgin UAS-TNT females, and male progeny were assayed.

Optogenetic Stimulation

All-trans retinal powder (RET, Sigma-Aldrich) was mixed with ethanol to prepare a 100mM stock solution. 1mL of stock was then

mixed with 250mL of molasses and cornmeal medium to produce 400mM food. Flies were reared on this medium, and then trans-

ferred to 400mM retinal 5% sucrose 2% agar medium for data collection using the DAMS. Control food was prepared using the

same volume of ethanol. To optogenetically activate TPN-II, TPN-II split Gal4 (R60H12 AD X VT032805 DBD) males were crossed

to virgin UAS-CsChrimson females, and male progeny were assayed in a DigiTherm incubator (Trikinetics). For time-delimited opto-

genetic activation (i.e., to miminize CsChrimson activation by the standard white incubator light), we covered the light tubes with

�488 nm polyester film (Rosco #R375) to produce 210 lux blue light. Flies were reared on blue light 12:12 LD cycles at 25�C and

behavior was assayed in the same incubator. For sleep analysis (Figures 7G–7I), flies were entrained to blue-LD cycles for 4 days,

with red light stimulation from ZT0-3 on day 2, and ZT6-12 on day 4. Constant red light (4800 lux) was produced using 3 symmetri-

cally-placed high-power 660nm LEDs (M660L3 or M660L4, Thorlabs) mounted on heat sinks. The angle and height of the LEDs were

adjusted to ensure uniform illumination. Lux measurements were made using a Digital lux meter (# LX1330B, Dr. Meter).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Detection of Action Potentials
Membrane potential recordings weremade in current clampmode sampled at 10 kHz. Data was analyzed offline using Axograph and

Igor Pro. Action potentials (spikes) were detected using custom scripts in Igor Pro using Neuromatic v2.6i plug-in [37]. A first deriv-

ative transformation was performed on the membrane potential trace defining dV/dt. Then a constant dV/dt threshold was used to

detect individual spikes. Peristimulus time histograms (PTH) of firing rate were made by binning detected spikes in 1 s bins, defining

spikes/s (Hz). In experiments in which single trials from individual cells were averaged, the line and shading indicate the mean firing

rate (Hz) ± SD. For experiments in which multiple sweeps were performed at a given stimulus temperature, average PTH were calcu-

lated per cell; the line and shading indicate the mean firing rate (Hz) ± SD; then across cells the line and shading indicate the mean

firing rate (Hz) ± SEM. For figure panels using pseudocolored histograms to show firing rates for extended temperature stimuli, an

image matrix representing the firing rates (in 1 s bins) was imported into ImageJ.

Temperature
In experiments in which single trials from individual cells were averaged, the line and shading indicate the mean temperature (�C) ±
SD. For experiments in which multiple sweeps were performed at a given stimulus temperature, the line and shading indicate the

mean temperature (�C) ± SD across cells. To test for a significant relationship between temperature and firing rate for TPN-II, a

f-test was performed and significance (*) defined as p < 0.05.

Time of Day Cellular Effects
An unpaired 1-tailed t test was used to test for significant differences in firing rate between night (ZT 20-24) and day (ZT 0-4) for WT or

per01 flies. A paired 1-tailed t test was used to test for significant decreases in firing rate of different magnitude cooling steps between

night (ZT 20-24) and day (ZT 0-4). Significance (*) was defined as p < 0.05.

Cellular Effects of Light
A paired, 1-tailed t test was used to test for significant differences in firing rate between darkness and light conditions, both at 25�C
and then at 20�C.

Pressure Ejected Chemicals
PTHs were calculated and the lines and shading represent the mean firing rate ± SEM. To confirm statistical significance between

baseline firing and baseline + ATP/PDF, a paired 1-tailed t test was used and significance (*) defined as p < 0.05.

Calcium Imaging
Delta F/F analysis was carried out using customMAT LAB scripts. To calculate change in fluorescence we used the formula Delta F/

F0 = (Ft-F0)/F0, where F0 is the baseline fluorescence determined by averaging frames before stimulus onset and Ft is the fluorescent

value at a given time. Circular regions of interest (ROIs) of constant area were drawn manually, as appropriate, using the overlaid

averaged image as a guide. Representative stimulus and Delta F/F response pairs were used to generate average traces in MATLAB.

Values across individual trials were averaged and the standard deviation was determined for each time point.

Circadian Behavior
Sleep was defined as R 5 consecutive minutes of inactivity. Activity and sleep analysis was performed using MATLAB 2016a soft-

ware (Mathworks). Sleep is displayed in 30 minute bins represented as mean ± SEM. For 25�C-18�C behavior comparisons, (Figures

6A, 6D, and 6F–6L), flies were entrained for 4 days to 12:12 LD at 25�C, then gradually transferred to 18�C during the 4th night (9 hr

�0.8�C/hr linear cooling ramp, ZT12-21) for 3 additional days. 25�Cactivity and sleep data are themean of 2 days before cooling, and

18�Cdata are themean of 2 days after cooling. For cold step experiments (Figures 6B–6D), flieswere entrained in 12:12 LD at 25�C for

3 days. On the subsequent day, the temperature was stepped to 18�C from ZT 0-3 (0.35�C/min); after a day of recovery, the tem-

perature was stepped to 18�C from ZT 6-12 (0.35�C/min). Quantifications are made between the pulse day and the preceding

non-pulse day at 25�C. To test for significance differences of both sleep and activity at 25�C versus 18�C (Figures 6A–6D and 6F–

6L), two-sided paired t tests were used. When comparing sleep across genotypes (Figures 6H and 6L), statistical significance

was determined using a 2-way Analysis of Variance (ANOVA) with a post hoc Bonferroni test for multiple comparisons. For Figures

7A–7E, flies were entrained for 3 days 12:12 LD at 25�C, then transferred to constant darkness (DD) for one day at 25�C, or transferred
to DD following a 9hr cooling ramp to 18�C (�0.8�C/hr). Because comparisons were made from different cohorts of flies (Figures 7A

and 7B), two-sided unpaired t tests were used to test for significance differences in sleep. When comparing sleep across genotypes

(Figures 7D and 7E), statistical significance was determined using a 2-way Analysis of Variance (ANOVA) with a post hoc Bonferroni

test for multiple comparisons. For optogenetic experiments, a two-sided unpaired t test was used to test for significant differences in

sleep between RET+ versus RET- flies (Figures 7G–7I).
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Extraction of features such as action potential peaks or widths, and determining how they change under different conditions, is an 
essential component of analyses of electrophysiological data.   Current methods range from using simple voltage thresholds to more 
complicated wavelet decompositions, but all perform relatively poorly when applied to noisy or low-resolution data.   Furthermore, 
many of these methods require user input or refinement of algorithm parameters, making them ill-suited for large data sets.   A suite 
of tools for robustly extracting features automatically from electrophysiological data has been developed using the Python 
programming language.   The tools in this package make use of the statistics of the data themselves to estimate algorithm parameters, 
minimizing user intervention while remaining robust to noise.   To demonstrate the use of these methods, we have applied them to a 
set of electrophysiological recordings of DN1 “clock” neurons in Drosophila (from Flourakis [Cell, 1162 (2015)]) to determine 
electrophysiological features that are coupled to the circadian rhythm.  
 
 
 
 




