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1 Project description

We propose to develop a theoretical and algorithmic foundation that will help create autonomous
robotic agents capable of executing patrol missions in urban environments, possibly in mixed teams
of a set of autonomous robotic agents with heterogeneous sensing, perception, computation and
actuation capabilities and a smaller number of soldiers (possibly in a supervisory role). To this end,
we will formalize a range of problems—some of which are considered for the first time in the pro-
posed e�ort—in the context of partial-information, stochastic games. While partial-information,
stochastic games provide a highly expressive modeling language, synthesis of strategies in such
games subject to temporal and logical constraints in their general form is known to be algorith-
mically impractical. Therefore, we plan to establish trade-o�s between the expressivity of the
problems and their algorithmic and computational tractability through a hierarchy of abstractions.
We partition the e�ort into three thrusts:

Thrust I – Synthesis in partial-information, stochastic games: We adopt partial-information,
stochastic, two-player games played over finite graphs as the base model for the proposed e�ort.
Additionally, we append this setting with temporal logic specifications in order to capture the
constraints on the evolution of the plays in the game as well as of the knowledge of the pa-
troller. Thrust I will develop approaches to suppress the computational complexity in synthesis
with this modeling class and to extract strategies that balance the induced risk, ambiguity and
randomization:

≠ Task I.1 – Strategy synthesis via belief set abstractions
≠ Task I.2 – Strategies with risk and ambiguity budgets
≠ Task I.3 – Strategies with partial and restricted randomization

Thrust II – Proactive strategies in adversarial environments: While Thrust I takes a passive ap-
proach by focusing on the synthesis of strategies that account for the limitations in prior knowl-
edge and run-time information, Thrust II aims at proactively coping with these limitations at
run time through learning and active sensing:

≠ Task II.1 – Safety-constrained learning in adversarial domains
≠ Task II.2 – Proactive sensing

Thrust III – Safeguarding against adversary’s adaptation and deception: Thrust III will help estab-
lish an understanding of cascading levels of reasoning between the patroller and the adversary.
The methods developed under Thrust III will account for the e�ects of such cascading levels
of reasoning in the decisions of the patroller. The proposed tasks are though also receptive to
the unsurmountable complexity of directly modeling such mutual adaptation into a stochas-
tic, partial-information game setting. We will rather pursue two indirect and complementary
approaches:

≠ Task III.1 – Suppressing the adversary’s ability to infer
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≠ Task III.2 – Discovering the adversary’s deceptive tactics

2 Accomplishments

Task-Aware Verifiable RNN-Based Policies for Partially Observable

Partially observable Markov decision processes (POMDPs) are models for sequential decision-
making under uncertainty and incomplete information. Machine learning methods typically train
recurrent neural networks (RNN) as e�ective representations of POMDP policies that can e�ciently
process sequential data. However, it is hard to verify whether the POMDP driven by such RNN-
based policies satisfies safety constraints, for instance, given by temporal logic specifications. We
propose a novel method that combines techniques from machine learning with the field of formal
methods: training an RNN-based policy and then automatically extracting a so-called finite-state
controller (FSC) from the RNN. Such FSCs o�er a convenient way to verify temporal logic con-
straints. Implemented on a POMDP, they induce a Markov chain, and probabilistic verification
methods can e�ciently check whether this induced Markov chain satisfies a temporal logic speci-
fication. Using such methods, if the Markov chain does not satisfy the specification, a byproduct
of verification is diagnostic information about the states in the POMDP that are critical for the
specification. The method exploits this diagnostic information to either adjust the complexity of
the extracted FSC or improve the policy by performing focused retraining of the RNN. The method
synthesizes policies that satisfy temporal logic specifications for POMDPs with up to millions of
states, which are three orders of magnitude larger than comparable approaches.

Entropy Maximization for Partially Observable Markov Decision Processes

We study the problem of synthesizing a controller that maximizes the entropy of a partially observ-
able Markov decision process (POMDP) subject to a constraint on the expected total reward. Such
a controller minimizes the predictability of an agent’s trajectories to an outside observer while
guaranteeing the completion of a task expressed by a reward function. Focusing on finite-state
controllers (FSCs) with deterministic memory transitions, we show that the maximum entropy of
a POMDP is lower bounded by the maximum entropy of the parameteric Markov chain (pMC)
induced by such FSCs. This relationship allows us to recast the entropy maximization problem
as a so-called parameter synthesis problem for the induced pMC. We then present an algorithm
to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same
number of memory states. In a numerical example, we highlight the benefit of using an entropy-
maximizing FSC compared with an FSC that simply finds a feasible policy for accomplishing a
task.

Identity Concealment Games: How I Learned to Stop Revealing and Love the Coin-
cidences

In an adversarial environment, a hostile player performing a task may behave like a non-hostile
one in order not to reveal its identity to an opponent. To model such a scenario, we define identity
concealment games: zero-sum stochastic reachability games with a zero-sum objective of identity
concealment. To measure the identity concealment of the player, we introduce the notion of an
average player. The average player’s policy represents the expected behavior of a non-hostile player.
We show that there exists an equilibrium policy pair for every identity concealment game and give
the optimality equations to synthesize an equilibrium policy pair. If the player’s opponent follows
a non-equilibrium policy, the player can hide its identity better. For this reason, we study how
the hostile player may learn the opponent’s policy. Since learning via exploration policies would
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quickly reveal the hostile player’s identity to the opponent, we consider the problem of learning a
near-optimal policy for the hostile player using the game runs collected under the average player’s
policy. Consequently, we propose an algorithm that provably learns a near-optimal policy and give
an upper bound on the number of sample runs to be collected.

Probabilistic Control of Heterogeneous Swarms Subject to Graph Temporal Logic
Specifications: A Decentralized and Scalable Approach

We develop a probabilistic control algorithm, GTLProCo, for swarms of agents with heterogeneous
dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only
achieves decentralized control of the swarm but also significantly improves scalability over state-
of-the-art existing algorithms. Specifically, we study a setting in which the agents move along the
nodes of a graph, and the high-level task specifications for the swarm are expressed in a recently-
proposed language called graph temporal logic (GTL). By constraining the distribution of the
swarm over the nodes of the graph, GTL can specify a wide range of properties, including safety,
progress, and response. GTLProCo, with a computational complexity agnostic to the number of
agents comprising the swarm, controls the density distribution of the swarm in a decentralized and
probabilistic manner. To this end, it synthesizes a time-varying Markov chain modeling the time
evolution of the density distribution under the GTL constraints. We first identify a subset of GTL,
namely reach-avoid specifications, for which we can reduce the synthesis of such a Markov chain
to either linear or semi-definite programs. Then, in the general case, we formulate the synthesis
of the Markov chain as a mixed-integer nonlinear program (MINLP).We exploit the structure of
the problem to provide an e�cient sequential mixed-integer linear programming scheme with trust
regions to solve the MINLP. We empirically demonstrate that our sequential scheme is at least
three orders of magnitude faster than o�-the-shelf MINLP solvers and illustrate the e�ectiveness
of GTLProCo in several swarm scenarios.

Reward Machines for Cooperative Multi-Agent Reinforcement Learning

In cooperative multi-agent reinforcement learning, a collection of agents learns to interact in a
shared environment to achieve a common goal. We propose the use of reward machines (RM) –
Mealy machines used as structured representations of reward functions – to encode the team’s task.
The proposed novel interpretation of RMs in the multi-agent setting explicitly encodes required
teammate interdependencies, allowing the team-level task to be decomposed into sub-tasks for indi-
vidual agents. We define such a notion of RM decomposition and present algorithmically verifiable
conditions guaranteeing that distributed completion of the sub-tasks leads to team behavior accom-
plishing the original task. This framework for task decomposition provides a natural approach to
decentralized learning: agents may learn to accomplish their sub-tasks while observing only their
local state and abstracted representations of their teammates. We accordingly propose a decen-
tralized q-learning algorithm. Furthermore, in the case of undiscounted rewards, we use local value
functions to derive lower and upper bounds for the global value function corresponding to the team
task. Experimental results in three discrete settings exemplify the e�ectiveness of the proposed RM
decomposition approach, which converges to a successful team policy an order of magnitude faster
than a centralized learner and significantly outperforms hierarchical and independent q-learning
approaches.

Smooth Convex Optimization Using Sub-Zeroth-Order Oracles

We consider the problem of minimizing a smooth, Lipschitz, convex function over a compact, convex
set using sub-zeroth-order oracles: an oracle that outputs the sign of the directional derivative for
a given point and a given direction, an oracle that compares the function values for a given pair
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of points, and an oracle that outputs a noisy function value for a given point. We show that the
sample complexity of optimization using these oracles is polynomial in the relevant parameters.
The optimization algorithm that we provide for the comparator oracle is the first algorithm with
a known rate of convergence that is polynomial in the number of dimensions. We also give an
algorithm for the noisy-value oracle that incurs sublinear regret in the number of queries and
polynomial regret in the number of dimensions

Decentralized Online Influence Maximization

We consider the problem of finding the maximally influential node in random networks where each
node influences every other node with constant yet unknown probability. We develop an online
algorithm that learns the relative influences of the nodes. It relaxes the assumption in the existing
literature that a central observer can monitor the influence spread globally. The proposed algorithm
delegates the online updates to the nodes on the network; hence requires only local observations
at the nodes. We show that using an explore-then-commit learning strategy, the cumulative regret
accumulated by the algorithm over horizon T approaches O(T2/3) for a network with a large
number of nodes. Additionally, we show that, for fixed T , the worst case-regret grows linearly with
the number n of nodes in the graph. Numerical experiments illustrate this linear dependence for
Chung-Lu models. The experiments also demonstrate that -greedy learning strategies can achieve
similar performance to the explore-then-commit strategy on Chung-Lu models.

Exploiting Partial Observability for Optimal Deception

Deception is a useful tool in situations where an agent operates in the presence of its adversaries.
We consider a setting where a supervisor provides a reference policy to an agent, expects the agent
to operate in an environment by following the reference policy, and partially observes the agent’s
behavior. The agent instead follows a di�erent, deceptive policy to achieve a di�erent task. We
model the environment with a Markov decision process and study the synthesis of optimal deceptive
policies under partial observability. We formalize the notion of deception as a hypothesis testing
problem and show that the synthesis of optimal deceptive policies is NP-hard. As an approximation,
we consider the class of mixture policies, which provides a convex optimization formulation of the
deception problem. We give an algorithm that converges to the optimal mixture policy. We also
consider a special class of Markov decision processes where the transition and observation functions
are deterministic. For this case, we give a randomized algorithm for path planning that generates
a path for the agent in polynomial time and achieves the optimal value for the considered objective
function.

Memoryless Adversaries in Imperfect Information Games

Given an agent with limited sensing capabilities, we analyze whether it is possible to deploy a new
agent in the operational space of the preexisting agent in a safe manner. One approach for modeling
the interaction of the introduced agent with its environment, which contains the preexisting agent,
is through a two-player game of im- perfect information. However, the computational cost of solving
this game is prohibitive. Restricting the preexisting agent’s strategy to just memoryless strategies
and assuming that the introduced agent has perfect information alleviates the computational cost
while still modeling realistic environments. The proposed algorithm for solv- ing the game finds a
winning strategy for the introduced agent by solving a quantified Boolean formula (QBF) for the
game. We justify this approach by establishing a matching PSPACE lower bound. We also show
that this result holds even when the preexisting agent uses bounded history to condition its play.

Convex Optimization for Parameter Synthesis in MDPs

4



Status Report – D19AP00004 Ufuk Topcu

Probabilistic model-checking aims to prove whether a Markov decision process (MDP) satisfies
a temporal logic specification. The underlying methods rely on an often unrealistic assumption
that the MDP is precisely known. Consequently, parametric MDPs (pMDPs) extend MDPs with
transition probabilities that are functions over unspecified parameters. The parameter synthesis
problem is to compute an instantiation of these unspecified parameters such that the resulting
MDP satisfies the temporal logic specification. We formulate the parameter synthesis problem
as a quadratically constrained quadratic program, which is nonconvex and is NP-hard to solve
in general. We develop two approaches that iteratively obtain locally optimal solutions. The
first approach exploits the so-called convex–concave procedure (CCP), and the second approach
utilizes a sequential convex programming (SCP) method. The techniques improve the runtime and
scalability by multiple orders of magnitude compared to black-box CCP and SCP by merging ideas
from convex optimization and probabilistic model-checking. We demonstrate the approaches on a
satellite collision avoidance problem with hundreds of thousands of states and tens of thousands of
parameters and their scalability on a wide range of commonly used benchmarks.

Online Learning with Implicit Exploration in Episodic Markov Decision Processes

A wide range of applications require autonomous agents that are capable of learning an a priori
unknown task. Additionally, an autonomous agent may be put in the same environment multiple
times, each time having to learn a di�erent task. Motivated by these applications, we study the
problem of learning an a priori and evolving task in an online manner. In particular, we consider
an agent whose behavior is modeled by an episodic Markov decision process. The agent’s task,
captured by a loss function, is unknown to the agent and, furthermore, may change in an adversarial
manner from episode to episode. However, in each episode, the agent receives a bandit feedback
corresponding to the loss function at that episode every time it takes an action. Given a limited
budget of T episodes, the objective is to learn a policy with minimum regret with respect to the
best policy in hindsight. We propose a policy search algorithm that employs online mirror descent
using an optimistically biased estimator of the loss function. We prove that the proposed algorithm
achieves both on expectation and with high probability a sublinear regret of O (L T— S ——
A —), where L is the length of each episode, — S — is the number of states, and — A — is the
number of actions.

Multiple Plans are Better than One: Diverse Stochastic Planning

In planning problems, it is often challenging to fully model the desired specifications. In particular,
in human-robot interaction, such di�culty may arise due to human’s preferences that are either
private or complex to model. Consequently, the resulting objective function can only partially
capture the specifications and optimizing that may lead to poor performance with respect to the
true specifications. Motivated by this challenge, we formulate a problem, called diverse stochastic
planning, that aims to generate a set of representative — small and diverse — behaviors that are
near-optimal with respect to the known objective. In particular, the problem aims to compute a
set of diverse and near-optimal policies for systems modeled by a Markov decision process. We
cast the problem as a constrained nonlinear optimization for which we propose a solution relying
on the Frank-Wolfe method. We then prove that the proposed solution converges to a stationary
point and demonstrate its e�cacy in several planning problems.

Robust Policy Synthesis for Uncertain POMDPs via Convex Optimization

We study the problem of policy synthesis for uncertain partially observable Markov decision pro-
cesses (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a
so-called uncertainty set, for instance in the form of probability intervals. Such a model arises when,
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for example, an agent operates under information limitation due to imperfect knowledge about the
accuracy of its sensors. The goal is to compute a policy for the agent that is robust against all pos-
sible probability distributions within the uncertainty set. In particular, we are interested in a policy
that robustly ensures the satisfaction of temporal logic and expected reward specifications. We state
the underlying optimization problem as a semi-infinite quadratically-constrained quadratic program
(QCQP), which has finitely many variables and infinitely many constraints. Since QCQPs are non-
convex in general and practically infeasible to solve, we resort to the so-called convex-concave
procedure to convexify the QCQP. Even though convex, the resulting optimization problem still
has infinitely many constraints and is NP-hard. For uncertainty sets that form convex polytopes,
we provide a transformation of the problem to a convex QCQP with finitely many constraints. We
demonstrate the feasibility of our approach by means of several case studies that highlight typical
bottlenecks for our problem. In particular, we show that we are able to solve benchmarks with
hundreds of thousands of states, hundreds of di�erent observations, and we investigate the e�ect
of di�erent levels of uncertainty in the models.

Blending Controllers via Multi-Objective Bandits

Safety and performance are often two competing objectives in sequential decision-making problems.
Existing performant controllers, such as controllers derived from reinforcement learning algorithms,
often fall short of safety guarantees. On the contrary, controllers that guarantee safety, such as those
derived from classical control theory, require restrictive assumptions and are often conservative in
performance. Our goal is to blend a performant and a safe controller to generate a single controller
that is safer than the performant and accumulates higher rewards than the safe controller. To
this end, we propose a blending algorithm using the framework of contextual multi-armed multi-
objective bandits. At each stage, the algorithm observes the environment’s current context alongside
an immediate reward and cost, which is the underlying safety measure. The algorithm then decides
which controller to employ based on its observations. We demonstrate that the algorithm achieves
sublinear Pareto regret, a performance measure that models coherence with an expert that always
avoids picking the controller with both inferior safety and performance. We derive an upper bound
on the loss in individual objectives, which imposes no additional computational complexity. We
empirically demonstrate the algorithm’s success in blending a safe and a performant controller
in a safety-focused testbed, the Safety Gym environment. A statistical analysis of the blended
controller’s total reward and cost reflects two key takeaways: The blended controller shows a strict
improvement in performance compared to the safe controller, and it is safer than the performant
controller.

3 Outcomes
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4 Conclusions and Lessons

The project has made significant progress in all three directions covered in its objectives. It has
achieved 3-to-4-orders of magnitude improvement in scalability in synthesis of policies in partial-
information, stochastic environments with limited modeling knowledge. It has developed new
methods for learning in uncertain, dynamic environments and improved their data e�ciency and
generalization by incorporating contextual knowledge. It also contributed to the synthesis of policies
that leak minimal critical information to their environment and actively aim to mislead potentially
adversarial observers.
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The results, put together, point to the fact that algorithmic capabilities for perception and decision-
making by autonomous systems are maturing to a level at which it is meaningful to think about how
these systems can become strategic agents that manipulate information flows in their interactions
with the world around them and create an advantage for their users.
The attached slide deck, presented to the program manager, summarizes the activities and progress
in this reporting period.
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Network Graph Impact 
• System operated on the inference that “alike actors congregate together” 
• Harder to classify those actors that did not interact with others (Lone Wolf) 
• Network effects were misleading: Two police officers (green) arresting a threat 

caused the system to misclassify the threat (red) as a non-threat (green)
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• Provide information for the operator about the most consequential 

decisions that lead to the system’s classification 
• Networking graphs to better describe actors behavior relative to each 

other



Recap - Problem Outline

5

Assumptions on each agent 
• One of  the six types (can be 

multiples of  the same one) 
• Fixed agent type 
• They operate independently 
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• Fixed number of  agents 
• The agent types are distinguishable
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Tends to stay at 2 

Tends to stay at 5 

Goes between fenced area (3) and 5 

Mostly goes between 2 and 5 

Copies shopper then takes advantage of  event 
to access neighborhood switch at 3  

Tends to stay at 7 but will go to both 2 and 5
7

A - Store Owner at 2 (NW) 

B - Store Owner at 5 (S) 

C - Repairman 

D - Shopper 
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F - Home Owner at 7 (NE)

6 different types Corresponding behavior
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Recap: Belief  Updates

Track the agent’s movement and compare the likelihoods for each agent type

Belief  analysis operates independently for each agent 
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l(st+1 |st, at, �)bt(�)
Normalization constant to ensure beliefs sum to 1

Previous beliefLikelihood update

Belief  update



11

Highlight Reel

Find the decision point   from run  with the highest change in belief  t T

argmax
t�T

(�bt(�))

Previous belief

Belief  delta

Current belief

What are the most impactful moments for that lead the system to its conclusion?

�bt+1(�) = max( |bt+1(�) � bt(�) | )
How much does belief  change with each decision?

Metric for threat/ 
non-threat condition
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Scenario 1

13



Scenario 1
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Highlights from Scenario 1
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�bt+1(�) = 0.517



Highlights from Scenario 1
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�bt+1(�) = 0.517



Highlights from Scenario 1
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�bt+1(�) = 0.505



Highlights from Scenario 1
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�bt+1(�) = 0.505



Simulation 2 - Network Demonstration 

16



Simulation 2 - Network Demonstration 
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Network Graph Construction
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Network Graph Construction
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Network Graph History
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Graph for the entire run

Remove rare connections 
< 20%



Network Graph History
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Graph for when the “nominal” condition is active



Network Graph History
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Graph for when alarm is active



Feed network information into belief  update rule 

Incorporate agents entering/leaving the scene 

Account for expected information (update belief  even when we don’t directly 
observe an agent) 

Next Steps
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