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About This Report

There is growing concern that machine learning (ML) algorithms can reinforce or exacerbate 
racial biases in the many sectors in which these algorithms are applied. The U.S. Depart-
ment of Defense (DoD) is investing in the development of ML methods to assist a wide array 
of decisions. If the possibility for algorithmic bias is not anticipated and addressed, dis-
criminatory practices analogous to those observed in other sectors may be repeated in DoD. 
In this report, we aim to provide developers of ML algorithms for DoD with a framework 
and tools to develop equitable algorithms. We propose a process for developing algorithms 
that are consistent with DoD’s equity priorities. We also introduce the RAND Algorithmic 
Equity Tool, which allows algorithm developers to enforce equity constraints on predictive 
algorithms while assessing the inherent trade-offs to doing so. The research reported here 
was conducted as part of a RAND Project AIR FORCE (PAF) initiative to support diversity, 
equity, and inclusion (DEI) within the Department of the Air Force. Oversight of the initia-
tive was provided by Dr. Ray Conley.
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of the Air Force’s (DAF’s) federally funded research and development center for studies and 
analyses, supporting both the United States Air Force and the United States Space Force. PAF 
provides the DAF with independent analyses of policy alternatives affecting the develop-
ment, employment, combat readiness, and support of current and future air, space, and cyber 
forces. Research is conducted in four programs: Strategy and Doctrine; Force Modernization 
and Employment; Resource Management; and Workforce, Development, and Health. The 
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Summary

Issue

Machine learning (ML) algorithms are increasingly used as an aid to human decisionmak-
ing. However, there is a growing recognition that the use of ML algorithms may reinforce 
or exacerbate human biases, thereby perpetuating inequities. This situation is commonly 
referred to as algorithmic bias. The U.S. Department of Defense (DoD) is investing heavily in 
the development of ML algorithms to assist in many decisionmaking processes. At the same 
time, DoD has a strong stated interest in promoting diversity, equity, and inclusion (DE&I) at 
all levels of the organization. The goal of this report is to provide policymakers and develop-
ers of ML algorithms with a framework and tools to produce algorithms that are consistent 
with DoD’s equity priorities. This report represents part of a larger effort to advance equity 
in DoD. 

Although predictive ML algorithms are deployed in some sectors within DoD—including 
intelligence and surveillance—ML algorithms are in the preliminary stages of development 
and are not at this time deployed in decisionmaking processes in the personnel space, where 
DoD has expressed equity goals. Despite this, we observe a growing interest in using ML 
algorithms as part of personnel decisions, as evidenced by the prototype tools developed in 
this space. Therefore, the utility of this report is primarily to preempt the possibility of algo-
rithmic bias in eventual personnel decisionmaking applications within DoD rather than to 
address existing instances of algorithmic bias.

Approach

We provide a review of the written DoD policies and statements regarding DE&I in order to 
understand DoD’s equity goals. We provide examples of the active development of ML tech-
nologies that interact with these equity goals, focusing specifically on ML algorithms that 
are embedded in decisionmaking processes. We review the technical concepts of algorithmic 
fairness and draw connections between DoD policy equity goals and possible comparable 
technical definitions of equity. We do not critique DoD policy statements as part of this work, 
though additional work could consider the adequacy of DoD’s policies.

We developed a framework and software tool, the RAND Algorithmic Equity Tool, to 
assist in the development of equitable predictive algorithms.1 For binary classification algo-
rithms, this tool allows users to modify an algorithm to enforce specified equity goals. It also 
allows users to modify input training data to minimize the predictive influence of a protected 

1  The tool is an interactive online RShiny application, which can be accessed on the product page for this 
report (www.rand.org/t/RRA1542-1).

http://www.rand.org/t/RRA1542-1
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attribute, such as race or sex. Importantly, the RAND Algorithmic Equity Tool helps users 
visualize trade-offs that are inherent to enforcing equity, such as diminished predictive accu-
racy. We display the functionality of this tool using a hypothetical ML algorithm that informs 
promotion decisions by automatically scoring candidates based on performance reviews, and 
we use the tool to enforce definitions of equity that may meet DoD’s policy goals.

Conclusions

With respect to DoD’s equity goals, we identify three principles that may be linked to math-
ematical notions of equity: (1) career entry and progression should be free of discrimination 
with respect to protected attributes, including race, religion, or sex, (2) career placement and 
progression within DoD should be based on merit, and (3) DoD should represent the demo-
graphics of the country it serves. We argue that each of these principles corresponds to a 
notion of algorithmic fairness: specifically, fairness through unawareness, true positive rate 
balance, and statistical parity, respectively.

To aid the development of equitable algorithms for particular decisionmaking processes, 
we propose the following five-stage procedure:

1. Determine equity risk.
2. Identify relevant equity mandates and priorities.
3. Determine relevant equity definitions.
4. Identify important performance priorities.
5. Weigh trade-offs of enforcing equity. 

We show in our theoretical case study how this framework could be used to constrain 
algorithms to meet the identified DoD principles and the possible trade-offs with such con-
straints. In practice, it is not possible to satisfy each principle simultaneously, so priorities 
will need to be set. In our application of the RAND Algorithmic Equity Tool to a hypothetical 
case study, we show what it may look like to successfully enforce equity priorities. 

Recommendations

Although ML algorithms have the potential to simplify existing human decisionmaking pro-
cesses, there is a need to audit them to ensure that they do not result in inequitable outcomes. 
However, there is no universal approach to defining equitable outcomes; different decision-
making processes involve different equity concerns. Additionally, attaining equity can come 
at the cost of other important priorities. 

Therefore, the framework we recommend for developing equitable ML algorithms requires 
precisely defined equity and non-equity priorities. We emphasize that this required degree 
of precision is seldom available in the official mandates and statements provided by DoD 
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regarding its DE&I priorities. To facilitate the development of equitable ML algorithms, DoD 
should collaborate with experts in the field of algorithmic fairness to translate institutional 
equity priorities into mathematical definitions. Once precise equity priorities are defined, 
the RAND Algorithmic Equity Tool allows users to enforce equity goals while monitoring 
the necessary trade-offs. 

We propose that algorithms can and should be used as aids to human decisionmak-
ing processes, both because algorithms can help reduce subjective human bias and because 
it is easier to audit and alter a well-constructed algorithm to enforce equitable outcomes. 
Although this report focuses on auditing algorithms, non-algorithmic (human only) pro-
cesses can be similarly audited to ensure they are equitable. The findings in this report should 
be useful for framing the idea of equity, determining how to measure fairness, and collecting 
the right information in order to audit decisionmaking processes.
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CHAPTER ONE

Introduction

There is a growing recognition that machine learning (ML) algorithms can perpetuate or 
exacerbate inequities. This situation, which is commonly referred to as algorithmic bias, has 
been observed in many domains in which ML algorithms are used to assist in decisionmak-
ing processes, including criminal justice, health care, insurance industries, and hiring prac-
tices. Algorithmic bias runs counter to the intuition that algorithms can provide objective 
measures that are free from the subjectivity and bias of a human decisionmaking process. 
This bias often occurs when ML algorithms are designed to predict outcomes using historical 
data, inadvertently recapitulating human biases rather than eliminating them.

The U.S. Department of Defense (DoD) is investing heavily in the development of ML 
technologies to assist many decisionmaking processes in a variety of capacities. At the same 
time, DoD has expressed a strong commitment to promoting diversity, equity, and inclusion 
(DE&I) across the organization. The purpose of this report is to provide guidance and tools 
to enable the production of ML algorithms that are in line with DoD’s stated equity priorities. 
This report focuses on algorithms to support personnel management decisions, for which 
there are both stated equity goals and interest in using ML algorithms to assist decisionmak-
ing. Nonpersonnel algorithmic applications, such as autonomous weapons systems or sur-
veillance technologies, can also raise significant equity concerns. However, we do not explore 
these applications in this report.

In Chapter Two, we provide an overview of the equity priorities of DoD through its offi-
cial policies and statements. These priorities largely relate to the management of personnel, 
through recruitment, retention, and promotion policies. We identify three central equity 
principles that guide DoD’s personnel priorities. First, individuals should have equal oppor-
tunity, and processes should be free from discriminatory prejudice with respect to protected 
characteristics, such as race, religion, or sex. Second, DoD is a meritocracy, and career place-
ment and progression within DoD should be based on merit. Third, the demographic com-
position of DoD should reflect the nation that it serves.

In Chapter Three, we summarize DoD’s investment in ML. Although DoD uses ML tech-
nologies in several sectors (e.g., in intelligence and surveillance), we find that DoD does not 
currently rely on ML technologies in personnel management. Therefore, we view this report 
as primarily preemptive. In Chapter Three, we review ML technologies that have been devel-
oped (although not deployed) to assist in decisionmaking processes regarding personnel, 
where DoD’s equity goals are focused. 
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In Chapter Four, we review some of the central concepts of the algorithmic fairness litera-
ture. There are three important lessons from this literature that guide our proposed frame-
work and tool for developing equitable ML algorithms. First, there are many definitions of 
equity, each with subtly different implications. Second, it is generally not possible to attain 
multiple types of equity simultaneously. It is typically the case that attaining one form of 
equity necessitates violating another. Therefore, it is important to be targeted when defining 
equity priorities. Finally, enforcing an algorithm to behave equitably typically comes at the 
cost of other performance priorities, such as overall predictive accuracy. 

In Chapter Five, we propose a five-step framework for developing equitable ML algo-
rithms. The first step is to determine the equity risk posed by the ML application in question. 
We emphasize that not all ML algorithms pose an imminent risk to equity. In particular, 
algorithms that do not assist in decisionmaking processes that affect individuals may not 
need to be evaluated from an equity lens. If the algorithm in question does pose an equity 
risk, one then proceeds to the second step, which is to determine the equity priorities sur-
rounding the decisionmaking process that the ML algorithm is assisting. These equity priori-
ties are then translated into mathematical expressions of equity, which is the third step of our 
framework. Because equity interventions may come at a cost to other performance priorities, 
the fourth step is to define the non-equity priorities of the algorithm. In most cases, overall 
predictive accuracy will be an important performance priority, which is not directly related 
to equity. The final step of the framework is to weigh the trade-offs of enforcing equity. This 
step is assisted by the RAND Algorithmic Equity Tool, which is provided as an interactive 
online RShiny application.1 This tool allows the user to modify a predictive algorithm to 
behave more equitably while displaying the trade-offs inherent to doing so. 

After overviewing the overall structure of our equity framework, we walk through this 
framework in Chapter Six using a hypothetical case study. In this case study, we evaluate a 
hypothetical algorithm used to assist promotion selection decisions by providing an auto-
mated score for candidates. We show how to use the RAND Algorithmic Equity Tool to 
identify modifications to the original algorithm that enforce relevant equity priorities while 
measuring the effect on algorithmic performance. Finally, we provide concluding recom-
mendations in Chapter Seven. 

1  The tool is an interactive online RShiny application, which can be accessed on the product page for this 
report (www.rand.org/t/RRA1542-1).

http://www.rand.org/t/RRA1542-1
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CHAPTER TWO

The Department of Defense’s Investment in 
Equity

DoD has a growing interest in measuring and enhancing DE&I. In recent years, DoD, along 
with the Department of the Air Force, Department of the Navy, and Department of the Army, 
have released directives and policies on DE&I. This report focuses specifically on DoD per-
sonnel management processes and decisions,1 the most common of which are recruitment, 
job assignment, promotion, retention, and disciplinary actions. 

The steps required to address DE&I matters are multifaceted, and we do not address all 
aspects in this report. We broadly categorize the types of strategies into the following three 
groups (these groups are not mutually exclusive but can interact with each other):

1. assessment strategies that seek to understand the underlying causes of disparities, 
which include benchmark and barriers analyses

2. enabling strategies that seek to address the culture of an organization through such 
approaches as leadership engagement on diversity, accountability, and culture changes 
(such as diversity training)

3. process strategies that seek to audit specific decisionmaking processes and, if neces-
sary, change them to mitigate bias and produce equitable decisions.

We adapt this language from Lim, Cho, and Curry Hall, 2008, to highlight the concept of 
a strategy toward increased diversity and equity. According to them, a policy is defined as a 
strategy if “it is deliberate and is associated with a bigger picture of where the organization is 
headed” (Lim, Cho, and Curry Hall, 2008, p. 35). Following their work, we separate process 
strategies from enabling strategies. Because of the nature of algorithm-aided decisionmaking, 
which we discuss in Chapter Three, we focus our work solely on process strategies. Process 
strategies relate to the operational systems that affect the equity of outcomes for individuals, 
such as how DoD handles accessions, career assignments, and promotions. 

1  DoD’s investment in equity and the findings of this report go beyond personnel management, and there 
are many important equity and ethical questions in regard to, for example, autonomous weapons or surveil-
lance. We address these topics in Appendix C.
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We separate out the first category of assessment strategies as distinct from process strate-
gies because a large portion of DE&I work seeks to first understand why we observe disparities 
and whether the problems are solvable. In some cases, the policy solutions from assessment 
strategies do not involve altering specific decisionmaking processes. They do not necessar-
ily assume a strategy of addressing cultural or process issues but instead act as a first step to 
assess the problem. This work carries additional importance in DoD because of the pipeline 
issue. By this we mean the general idea that, in a personnel pipeline that includes a sequence 
of decisions, decisions earlier in the pipeline can affect outcomes further down the pipeline. 
For much of DoD (particularly in the military), individuals are only promoted internally, so 
disparities at lower ranks typically translate into disparities at higher ranks. In other words, 
because senior DoD personnel must go through the pipeline, disparities at the upper levels 
may not be easily reduced until disparities earlier in the pipeline are addressed.

Although enabling strategies and assessment strategies merit attention and at times will 
overlap with process strategies, this report focuses in particular on DoD’s investment in tools 
to audit and mitigate potential bias in decisionmaking processes in order to achieve more-
equitable outcomes.2 We will not cover enabling or assessment strategies within our scope of 
recommendations. As we focus on process strategies, we further delineate between strategies 
that rely on procedural-based equity or those that rely on outcome- or substantive-based 
equity. As we will show in DoD’s equity policies and in the concepts of algorithmic fairness, 
some processes seek to be equitable by constraining the procedure to be fair, while others seek 
to be equitable by constraining the outcomes of the process to be fair. Both of these are valid 
approaches, and we highlight the differences to help better understand what type of equity 
the process strategy is seeking.

To better understand DoD’s investment in equity, we start by reviewing DoD’s DE&I poli-
cies concerning personnel management, along with some prior work on disparities in DoD 
and strategies for tackling this issue.

Official Statements on Equity

DoD has made it clear through established policies concerning DE&I that equity is a point 
of importance alongside the more standard goals of readiness and global competitiveness. In 
2012, DoD issued a five-year Diversity and Inclusion Strategy Plan (DoD, 2012) with a focus 
on defining diversity and laying out a strategy for diversity management. In 2020, the DoD 
Board on Diversity and Inclusion (DBDI) released a report with 15 specific recommenda-
tions (DBDI, 2020), which were later advanced (Miller, 2020). This report outlined more-
specific targets for recruitment, retention, and promotion among underrepresented minority 

2  In this report, we use the terms equity and fairness interchangeably. In certain contexts, these terms may 
have different connotations, but we assume them both to mean equality in a particular outcome of inter-
est for individuals of different groups, such as races. Definitions of different ways to measure equality are 
discussed in detail in Chapter Three.
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groups, with an increased focus on data collection and utilization for informing diversity 
management. In addition to DoD-wide policies, the Air Force, Army, and Navy have each 
released guidance on equity and diversity and offer guidance on applications of equal oppor-
tunity, nondiscrimination, and diversity (Air Force Instruction 36-7001, 2019; Headquarters, 
Department of the Army, 2010; U.S. Navy Chief of Naval Operations, 2020).3 These docu-
ments generally refer in broad terms to how equity is defined and will be achieved, and we 
highlight some specifics here in order to draw out the motivating concepts of equity that are 
relevant to this report.

The first recommendation from the DBDI report we highlight advises action in increas-
ing diversity and inclusion, particularly in the areas of recruitment, accessions, and retention. 
Recommendation 1.2 states that the military should develop

DoD-wide data-driven accessions and retention strategy for officers and enlisted person-
nel to achieve a talent pipeline reflecting the diversity of the current and future eligible 
population from U.S. Census projections. (DBDI, 2020, p. ix)

First, this recommendation indicates that DoD has specific numerical goals with regard 
to diversity, stating that “DoD must monitor current and future demographic population 
trends in order to measure its own demographics accordingly with the aim of reflecting the 
nation” (DBDI, 2020, p. 22). Second, the desired state is when “racial and ethnic representa-
tion within the military is more consistent across all grades” (DBDI, 2020, p. 22). This goal 
reiterates a 2011 report that stated a goal of attaining “an officer and enlisted corps across all 
communities and ranks that reflects the eligible U.S. population” (Military Leadership Diver-
sity Commission, 2011, p. 4). These policy recommendations describe a process that seeks a 
type of outcome equity.

The Air Force, Army, and Navy documents state similar commitments to achieving a 
military population that reflects the demographics of the United States. They also empha-
size recruitment, retention, and progression through the ranks. The Air Force policy differs 
somewhat by stating that

[n]o numerical goals may be set for the hiring or promotion of Air Force military or civil-
ian personnel on the basis of race, color, national origin, religion, sex (including gender 
identity), age, or sexual orientation. (Air Force Instruction 36-7001, 2019, p. 4)

However, Air Force policy does state that numerical goals are permissible for veterans 
and other civilians with disabilities and that it is acceptable to set goals for the number of 
applicants by such characteristics as gender or race. Although these ideas may be implicit in 
other policies, only the Air Force directive explicitly references numerical goals in any of the 
policies we reviewed for this report. We note a possible internal tension with the policy that 

3  Although we do not exclude them, we do not provide a specific focus on policies or outcomes for DoD 
civilian personnel or for U.S. Coast Guard personnel working with the Department of Homeland Security.



Advancing Equitable Decisionmaking for the Department of Defense Through Fairness in Machine Learning

6

it is acceptable to set goals for applications although it is not acceptable to set the same goals 
for accessions or promotions. One interpretation is that these policies implicitly assume that 
the processes of hiring and promotion are unbiased and that a representative applicant pool 
is sufficient to achieve a force that reflects the U.S. population.

For the second area we highlight, the DBDI report includes multiple recommendations 
concerning the promotion process. In addition to ensuring the pipeline is adequately diverse, 
the DBDI recommends auditing various aspects of the process to mitigate potential bias. 
Recommendation 1.4 states that the Under Secretary of Defense for Personnel and Readiness 
(USD[P&R])

will conduct an initial and biennial assessment of all aptitude tests currently administered 
by the Military Departments to analyze and remove barriers that adversely impact diver-
sity and are unrelated to predictive validity. (DBDI, 2020, p. ix)

This recommendation stems from a concern that “research demonstrates persistent racial 
and ethnic gaps in preparation for aptitude tests” (DBDI, 2020, p. 24). Using the Armed 
Services Vocational Aptitude Batter (ASVAB) test as an example, DBDI notes that “ASVAB 
scores only tell how well someone is expected to perform relative to others in the youth popu-
lation rather than predicting an absolute or specific level of performance” (DBDI, 2020, p. 24). 

In other words, this recommendation is meant to address the concern that personnel deci-
sions are being made using predictors that affect diversity (e.g., are correlated with such char-
acteristics as race or gender) but do not predict the outcomes of interest for DoD, such as high 
performance. The goal of this recommendation is to explore alternative methods of predict-
ing performance that maintain high validity but minimize disparity.

There also is an expressed desire to increase the transparency of promotion selection deci-
sionmaking processes. The DBDI’s Recommendation 2 advises USD(P&R) to “monitor and 
evaluate demographic trends in performance evaluations to inform career development pro-
cesses and identify potential biases in supervisor/rater populations” (DBDI, 2020, p. x). 

Similarly, Recommendation 5.4 states that USD(P&R) “will establish procedures for the 
release of demographic and other contextual data concerning promotion selection board 
results to improve transparency in career management processes” (DBDI, 2020, p. xi). 

Together these recommendations seek to increase the transparency of the performance 
evaluation and promotion processes and track selection rates with regard to race, ethnicity, 
and gender. This policy goal reflects a desire for procedural equity.

Among the departments within DoD, a 2021 Navy report builds directly on the DBDI 
report and, in some cases, extends its recommendations to add more-explicit guidance (Task 
Force One Navy, 2021). In particular, Recommendation 5.14 suggests that the Navy use arti-
ficial intelligence (AI) in its promotion selection decisionmaking pipeline:

Pilot the use of AI capability for centralized selection boards to support the selection pro-
cess and minimize bias in the selection process. AI would not replace the human inter-
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vention for this process, but rather support processes and potentially serve as a bias miti-
gation capability. (Task Force One Navy, 2021, p. 31)

This aligns with Recommendation 5.4 from the DBDI report as part of auditing and mitigat-
ing potential bias in the promotion process.

The last recommendation from the DBDI report we highlight focuses on the collection 
of data and metrics to improve DoD’s tracking of diversity and equity. Recommendation 4.2 
proposes to 

establish an enterprise-wide data system to improve DoD’s ability to aggregate Military 
Department human resource data to perform demographic, diversity, and inclusion 
analysis on Defense Manpower Data Center (DMDC) data. (DBDI, 2020, p. x)

We also note that language in regard to ensuring equal opportunity is common through-
out the directives, similar to equal opportunity policies established by the Equal Employ-
ment Opportunity Commission (EEOC) and the U.S. Office of Personnel Management. The 
civilian and military sides of DoD both have statements regarding equal opportunity that 
preclude the “unlawful discrimination on the basis of race, color, national origin, religion, 
sex (including gender identity), or sexual orientation” (Department of Defense Directive 
1020.02E, 2018, p. vi).4

For an in-depth review of the relationship between DoD’s current diversity policies and 
equal opportunity, we refer readers to Kamarck, 2019.

Prior Research on Disparities in DoD
Prior studies have analyzed disparities in DoD, seeking to both quantify the level of dispari-
ties and understand how they arise. We review a few studies here that are connected to the 
types of personnel disparities that are relevant to the strategies and policies highlighted in 
the previous sections.

In an extensive report prepared for Congress, Kamarck, 2019, provides findings concern-
ing racial diversity across the whole DoD, finding that racial minorities are overrepresented 
in the lower ranks but underrepresented among officers and senior leadership. We replicate 
Table 6 from Kamarck, 2019, in Table 2.1, which shows racial representation by selected levels. 

Kamarck, 2019, outlines the historical trends of representation in DoD and the system-
atic issues faced by racial minorities in participation, promotion, and retention. The report 
highlights the desire for equity-focused DoD policies to improve diversity and opportunities 
for minorities, but it also acknowledges the complexity of the issue. This highlights a possible 
tension between achieving equity goals and achieving other military goals, such as a merit-
based system or military readiness. It is notable that Kamarck, 2019, came before the 2020 

4  The DoD Civilian Equal Employment Opportunity Program statement includes additional categories 
not covered by the DoD Military Equal Opportunity Program.
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TABLE 2.1

Race and Ethnic Representation in the Active Component and U.S. Population (as of May 2018)

Rank and Grade White Black Asian
American Indian/

Alaska Native
Native Hawaiian/
Pacific Islander Multi/Unknown Hispanica

General and flag officer 
(O-7 and above)

87.5% 8.1% 1.8% None 0.3% 2.4% 2.1%

Officer (all) 77.3% 8.1% 5.2% 10.1% 0.5% 8.2% 7.6%

Warrant officer 69.0% 16.0% 3.1% 0.8% 0.6% 10.4% 11.6%

Senior enlisted (E-7 and 
above)

63.1% 19.1% 3.8% 1.3% 1.2% 11.5% 14.3%

Enlisted (all) 67.4% 18.5% 4.3% 1.3% 1.3% 7.3% 17.5%

Total active duty 69.1% 16.8% 4.4% 1.2% 1.1% 7.5% 15.8%

U.S. resident population 
(ages 18–64)

76.2% 13.7% 6.3% 1.2% 0.3% 2.2% 17.9%

SOURCES: Kamarck, 2019, p. 21. Officer and enlisted figures are as reported by the Defense Manpower Data Center, May 2018. Annual Estimates of the Resident Population by Sex, 
Age, Race and Hispanic Origin for the United States, States, and Counties: April 1, 2010, to July 1, 2017, U.S. Census Bureau, Population Division, Release Date: July 1, 2017.

NOTE: Race and Hispanic origin are self-identified. 
a The concept of race is separate from the concept of Hispanic origin. Hispanic may be more than one race (e.g., Hispanic and White or Hispanic and Black). Percentages for race should 
not be combined with the Hispanic percentage.
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DBDI report, which used the “eligible population” language. We also note here that the con-
cept of a merit-based system or meritocracy does not have a consistent definition. Although 
some sources may reference such a system as a DoD goal, it may mean different things in dif-
ferent contexts. In Chapter Four, we discuss the concept of merit in greater detail.

Lim, Cho, and Curry Hall, 2008, looks at diversity among Air Force officers and finds 
that minorities and women are underrepresented in the active-duty line officer population, 
particularly at the senior levels. The authors found that the disparities could primarily be 
explained by a difference in the candidate pool who were eligible for commission, which led 
to downstream disparities in more-senior ranks. In addition to this finding (as a contribut-
ing rather than competing explanation), Black and Hispanic promotion candidates were less 
likely to receive high review scores compared with White candidates with similar character-
istics. Additionally, minority candidates were less likely to have markers of early career suc-
cess, such as merit awards. This highlights the complexity of observed inequities. Although it 
should be desirable for DoD to increase its diversity in senior ranks, the cause of the disparity 
may stem from a combination of factors, such as representation earlier in the pipeline and 
potential bias in the performance review process. A 2020 RAND report presented similar 
findings among the White collar civilian workforce (Keller et al., 2020).

There also are concerns with regard to inequity in the military justice system, parallel-
ing similar concerns in the wider criminal justice system. A report on disciplinary outcomes 
for Black individuals found disparities in the rates of disciplinary actions, investigations, 
and involuntary discharges as compared with White service members (Department of the 
Air Force Inspector General, 2020). The report also found disparities outside the justice 
system: notably, differences in career field placement, career advancement opportunities, and 
promotions.

Kriner and Shen, 2016, raises the issue of inequality in military casualties and wounded 
service members. The authors find that combat casualties are more likely to occur for indi-
viduals from lower socioeconomic communities, which they attribute to unequal selection 
into the military and into certain jobs from individuals of different socioeconomic back-
grounds. They also examine inequality among support structures for veterans returning to 
different communities and whether decisions concerning warfare should take into account 
the unequal burden carried by different socioeconomic communities. We found no stated 
goals in DoD policies to address either inequality in military causalities or veteran outcomes.

In summary, much of this previous work points to the wide variety of problems that stem 
from inequity. Sometimes the causes of observed inequalities are complex and involve sys-
temic structures that go beyond any one organization. According to the findings of these 
reports, many of the inequalities identified do not have any easy fix, or the disparities are 
caused by practices that comply with current laws and policies but lead to undesirable out-
comes because of other, underlying structures. In this report, we do not seek to answer the 
broader questions of why inequalities exist or whether they are equitable or inequitable, but 
answering those questions is key to designing policy goals that guide the use of ML in deci-
sionmaking processes.
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As mentioned before, we focus only on process strategies specifically as they relate to deci-
sion points informed by algorithms. Prior research has shown the existence of racial inequali-
ties in such areas as officer representation, promotion, and military justice. In many cases, 
the studies found structural reasons for the disparities. Some of these reasons are outside 
DoD’s control, and some could be addressed through policy solutions. The remainder of this 
report addresses the question of what to do if the chosen policy solution concerns mitigat-
ing bias in a specific decision process, such as assignment or promotion. There are different 
ways of potentially mitigating bias, but we focus on the use of algorithms as an aid to human 
decisionmaking. The following chapter lays out this framework and considerations in order 
to ensure an equitable use of ML. 



11

CHAPTER THREE

Machine Learning as an Aid to 
Decisionmaking

There is a growing interest in developing ML as a tool to aid decisionmaking in various set-
tings across DoD. This reflects a recognition that these tools can make use of the significant 
amount of data collected and follows the direction that industry and other research fields are 
moving in terms of developing these new technologies. Automating parts of decisionmaking 
is an attractive proposition because automation imposes a level of consistency and possibly 
higher accuracy on the decisionmaking process. The availability of carefully curated data 
within the DoD ecosystem makes ML automation both attractive and often feasible, as some 
studies highlight (Schulker, Lim, et al., 2021).

In this report, we focus on ML applications that affect personnel management decisions 
within DoD. Other areas of ML development involve algorithms used for purely evaluative 
purposes rather than as direct inputs into decisionmaking (e.g., Morral et al., 2018) or appli-
cations that assist in decisionmaking processes that do not directly involve humans (e.g., 
Hartnett et al., 2020), but these areas are not the focus of our work. Later in this chapter, we 
provide further examples of the types of ML applications that are relevant to our work and 
are being developed by RAND researchers for DoD.

The application of automated decisionmaking (of any kind) to human subjects can incur 
normative concerns that extend beyond standard concerns of model verification and valida-
tion. Experiences in the private sector highlight some of these concerns (e.g., Dastin, 2018). 
To better understand the potential benefits and concerns, it is useful to have a structured view 
of ML-aided decisionmaking and adaptations to personnel-focused decisionmaking.

A Structured View of Algorithm-Aided Decisionmaking 

Because ML algorithms are used in a broad variety of settings, we briefly detail the par-
ticular ML deployment context that we focus on throughout this report before reviewing 
relevant ML applications in the following section. Figure 3.1 outlines what we refer to as the 
algorithm-aided decisionmaking framework. This framework represents the process by which 
ML algorithms are developed and used in a decisionmaking context. The basic steps are as 
follows:
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1. The ML algorithm is trained on historical data.
2. The algorithm is used to make predictions about the outcomes of new individuals. 
3. Predictions are used as an input to a decisionmaking process made by a human.

For example, an algorithm used in a promotion selection setting may be trained to predict 
promotion selection decisions using a historical data set of performance reviews (Schulker, 
Lim, et al., 2021). A successfully trained algorithm would assign high scores to reviews of 
individuals who were promoted and low scores to reviews of individuals who were not pro-
moted. Once trained, the algorithm can be used to score new performance reviews, and these 
scores can be provided as recommendations to influence new promotion selection decisions. 

There are several potential benefits for incorporating ML algorithms into decisionmaking 
processes. One conceptual advantage of incorporating ML into decisionmaking is the ability 
to more clearly define the inputs and processes of the algorithm and maintain consistency 
across decisions. Additional benefits for incorporating ML come from improving efficiency 
through automation, potentially reducing the amount of human processing of large amounts 
of information. Another underlying motivation for the use of ML as an aid to decision making 
is an understanding that the human processes are imperfect and do not always deliver equi-
table results. The hope is that algorithms that are properly implemented and audited lead to a 
more transparent and more equitable process.

Although there are advantages, there also are several barriers to attaining equity through 
algorithms. Although algorithms are often perceived as objective, it is vital to understand 
that algorithms can be biased. First, relying on historical data is potentially problematic. If 
the historical data set used to train the algorithm exhibits biases, there is a risk that those 
biases will be repeated by the algorithms’ predictions. Relatedly, if the data do not sufficiently 
represent racial or ethnic minorities because they form a small number of historical cases, the 
resulting trained algorithm may have systematically poorer predictive performance within 
those underrepresented subgroups. Additionally, the implicit goals of an ML algorithm 
may conflict with equity. Although the goal of algorithmic training is often assumed to be 
maximizing overall predictive accuracy, equitable performance properties are not typically 
guaranteed by standard ML training objectives. In fact, the high overall predictive accuracy 
accomplished by typical ML training routines can be in direct competition with equity goals. 
In Chapter Four, we go into greater detail on this point.

Some of the methods discussed later in this report can help to address these issues. In 
general, however, if we use algorithms trained on historical data, we need to be aware of the 
validity of the historical data. Prior research, such as that discussed in Chapter Two, can help 
to understand whether historical biases may be present in available data. If known historical 
biases exist, extra precaution should be taken to avoid perpetuating such bias. We do not see 
the use of historical data as an insurmountable problem but one that should be realistically 
considered. We note that although current DoD processes for personnel decisions do not use 
ML, there is an increasing interest in using ML, as shown by the examples discussed in the 
following section.
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In addition to the difficulties of attaining equity through algorithm-aided decision-
making, a related important issue is that of transparency. Many standard ML algorithms may 
not be transparent, in the sense that the relationship between their data inputs and predictive 
outputs are difficult to understand. We do not discuss the transparency or interpretability of 
algorithms in this report, but we recommend Arrieta et al., 2020, and Lipton, 2018, on those 
topics as important corollaries to this report.

The process by which algorithmic output actually influences decisions varies by appli-
cation. In the cases of résumé filtering for job applications or fully autonomous weaponry, 
algorithmic output may entirely determine an outcome. In the promotion selection exam-
ple described earlier, algorithmic output may serve as one piece of evidence that is weighed 
alongside many others by a human decisionmaker. This report focuses on the equity prop-
erties of the ML component of the algorithmic decision framework, enclosed by the red box 
in Figure 3.1. In this report, we provide tools to audit the equity properties of algorithms, 
constrain algorithms to perform equitably, and weigh the inherent performance trade-offs. 
Algorithms might not replace human decisionmakers entirely but rather function as aids in 
the process. ML algorithms have the potential to leverage more information than would be 
possible by humans; if the underlying data and model are well understood, such algorithms 
should produce a transparent and auditable process. 

Another potential pitfall is that when algorithmic tools are used as input for human deci-
sions, the decisionmaker may choose to ignore the recommendation provided by the algo-

FIGURE 3.1

Algorithm-Aided Decision Framework 

NOTE: In this report, we are primarily concerned with approaches to making the algorithmic component (enclosed by the 
dotted red line) of the decision process equitable.

DecisionmakerAdditional input

Historical data

Decision

Prediction

ML algorithm

New data
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rithm, as was shown in a recent implementation in Allegheny County (Chouldechova et al., 
2018). Human decisionmaking processes that are downstream of the algorithmic component 
are not the focus of this report. However, these downstream processes are critical to overall 
equity of the decisionmaking process; an algorithm may produce equitable output that is 
ignored by an unfair human decisionmaker. 

In this report, we focus on developing tools to identify and mitigate inequities introduced 
in the algorithmic portion of the decisionmaking process. If bias is introduced through other 
parts of the process, the methods discussed in this report will not guarantee that such bias is 
mitigated. We do not propose that our framework addresses equity in all ways or that equity 
can be described completely as a feature of the algorithm. The mitigating tools that we pro-
vide to enforce equitable outcomes cannot be used outside the predictive algorithmic context. 
Despite these limitations, the proposed framework may be useful in situations in which an 
algorithmic component is being considered to augment an existing decisionmaking frame-
work that has desirable equity characteristics. The goal, in this scenario, is to ensure that the 
proposed introduction of an algorithmic component does not introduce new inequities. For 
instance, prior research suggests that the Air Force promotes service members at similar rates 
regardless of protected attributes once relevant characteristics are controlled for (Lim et al., 
2014). If an algorithm were to be introduced into an existing process that was considered fair 
according to a particular definition of equity and the given policy directives, it should be 
audited to ensure it does not bias the process.

Examples of the Algorithm-Aided Decision Process for DoD

To conclude this chapter, we describe the primary areas of research into using ML to inform 
DoD decisions. We discuss applications that are currently deployed as well as applications 
for which there is ongoing investment and development. A review of non–personnel man-
agement research that focuses on the integration of ML into national security, including a 
review of all RAND publications developed from 2017 to 2021, is provided in Appendix C. 
For broader assessments of the breadth of ML applications in the military and in other areas 
of interest in DoD, see Tarraf et al., 2019, and Morgan et al., 2020. In this section, we highlight 
the applications in personnel management that are relevant to equity concerns.

DoD has started investing significantly in researching ML algorithms for personnel man-
agement. Both the Army and the Air Force are developing models and strategies for talent 
management. In one recent example, the Army requested proposals for software and/or strat-
egies to help it recruit and distribute talent across the force, seeking “data science or machine 
learning solutions that will drastically change how it recruits, develops and distributes talent 
across the force” (GCN, 2020).

Prior RAND work has also produced numerous efforts on this topic. Schulker, Lim, et al., 
2021, proposes an ML application to develop a performance-scoring system to manage talent 
in the Air Force. Also for the Air Force, Schulker, Harrington, et al., 2021, presents an early 
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warning retention system to alert stakeholders of significant negative shifts in retention 
trends. The idea is to develop policies ahead of personnel shortages, once the model signals 
such a shift. 

The Army is also reported to be developing a similar model (Heckman, 2020). The Army 
is also pursuing ML solutions in the security contracting process. The office of the Defense 
Security Service started a pilot program to apply an ML algorithm on people holding and 
seeking security clearances in order to predict employees who have betrayed or are at risk of 
betraying trust (Tucker, 2019).

In other, more general personnel management applications, Tong et al., 2020, builds on 
RAND’s Dynamic Retention Model to predict retention and identify possible shortages. Sim-
ilarly, Terry et al., 2019, presents a linear programming approach to project future officer 
inventory. Walsh et al., 2021, presents the Air Force Personnel Policy Assessment Application 
to simulate the effects of personnel policies on such factors as career field health and demo-
graphic diversity. 
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CHAPTER FOUR

Approaches to Auditing Machine Learning or 
Constraining It to Be Fair

The previous chapters demonstrate that DoD has both a commitment to DE&I and an inter-
est in pursuing ML applications as an aid to decisionmaking. There is therefore a natural con-
cern that ML applications developed by DoD may be at odds with its DE&I interests through 
algorithmic bias. In this chapter, we summarize some of the major concepts and findings 
from the algorithmic fairness literature to motivate our proposed framework and tool for 
developing equitable ML applications, described in Chapters Five and Six. 

Two complementary aspects of ML are (1) auditing the equity characteristics of an algo-
rithm and (2) constraining an algorithm to perform equitably. Auditing an ML algorithm 
involves assessing whether it has different performance properties across levels of a protected 
characteristic (e.g., different races and ethnicities). As will be discussed later in more detail, 
there are many ways to define algorithmic equity, each corresponding to different perfor-
mance properties (e.g., balance of false positive versus balance of false negative rates across 
race and ethnicity). Constraining an algorithm to perform equitably involves altering the 
algorithm to reduce observed differences across a protected characteristic. 

We emphasize that the types of inequities that we can audit and address correspond to 
predefined (and often narrow) definitions of algorithmic equity, which may not directly map 
onto all broader concepts of equity. Even when equity concepts are narrowly defined, an 
additional problem that we will discuss is that it is often impossible for algorithms to simul-
taneously satisfy multiple concepts of algorithmic equity. Further, identifying and addressing 
algorithmic inequities is particularly difficult when the existing process that generates the 
algorithmic training data exhibits biases, making it difficult to benchmark the predictions of 
the algorithm using the outcomes observed in the training data. 

We emphasize that there is no universal approach to either auditing or enforcing equity. 
Equity audits are complicated by the fact that there are many equity definitions, each corre-
sponding to different notions of fairness. Thus, an algorithm that performs equitably accord-
ing to one definition may perform inequitably with respect to another. In each application, 
policy goals and legal mandates will help identify an appropriate equity definition. Another 
challenge is that constraining an algorithm to behave equitably typically comes at a cost to 
other performance properties. For example, enforcing equity may result in decreased predic-
tive accuracy, which may lead to other negative consequences for decisionmakers.
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In the remainder of this chapter, we review the available approaches for enforcing fairness 
in algorithms, connect select technical definitions of equity to specific DoD policy goals, and 
discuss the trade-offs inherent to enforcing fairness. 

Binary Classification Setup

For simplicity, we consider binary classification algorithms throughout this report. Binary 
classification algorithms may be used to influence binary decisions, such as the decision to 
promote or not promote an individual. We refer to binary predictions as positive or negative, 
with positive corresponding to the assumed beneficial outcome, such as promotion. Predic-
tions made from the algorithm typically are probabilities, which are then transformed to 
binary values based on a cutoff threshold. For example, a binary classification algorithm 
may predict promotion for a particular individual if the predicted probability of promotion 
is greater than 0.5 (or some other cutoff value). We note that, particularly in the algorithmic-
assisted framework in which a human makes the final decision, the nonbinarized probabili-
ties may be of more interest than the binarized predictions, since they carry more informa-
tion. However, we note that prior work (such as Chouldechova et al., 2018, and Zhang, Liao, 
and Bellamy, 2020) shows that human decisionmakers may find working with nonbinary 
information difficult or may respond to it in nonlinear ways. In other words, they may not 
effectively use continuous information.

Most of the implemented methods available in the current iteration of the RAND Algo-
rithmic Equity Tool directly modify the binarized predictions rather than the probabilities, 
primarily for ease of implementation and simplicity of presentation. (The pre-processing 
methods, discussed later, modify the input data only, allowing the user access to nonbina-
rized probabilities.) Future work may focus on methods for implementing equity interven-
tions directly on continuous variables, but such interventions would require different meth-
ods for ensuring algorithmic fairness. 

Classification algorithms are trained on historical data for which the true outcome is 
observed. The performance properties of an algorithm are derived by comparing algorithm 
predictions for historical data to historical outcomes. In the case of binary classification, there 
are four possible outcomes for each prediction: true positive, false positive, true negative, and 
false negative. These possibilities are summarized in Figure 4.1, which is commonly referred 
to as the confusion matrix. False positives and false negatives correspond to prediction errors: 
The algorithmic prediction and true outcome are not the same. For instance, an individual 
who was promoted but was not predicted to be promoted is a false negative. Conversely, an 
individual who was not promoted but was predicted to be promoted is a false positive. 

Algorithmic performance can be described by various error rates. For instance, the false 
positive rate refers to the proportion of incorrect predictions made within the population of 
truly negative individuals. Likewise, the false negative rate refers to the proportion of incorrect 
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predictions made within the population of truly positive individuals. The overall error rate of 
an algorithm refers to the proportion of incorrect predictions made in the entire population. 

It is important to recognize that using false positive or false negative rates as performance 
metrics is only useful insofar as observed outcomes are a reasonable “gold standard” to com-
pare predictions against. In the case of the promotional prediction example, if there is reason 
to believe that actual promotional decisions were poor historically, then it may be useful to 
develop alternative measures of achievement. For example, the outcome used in algorithmic 
training might be a measure that identifies those who should have been promoted based on 
other measures of career performance rather than historical promotional decisions. As noted 
in Chapter Three, prior literature on the possible biases in the historical data should be con-
sulted prior to using the historical data as training data.

Algorithmic Equity Definitions

Algorithmic equity definitions concern properties of algorithmic predictions with respect 
to a protected characteristic (e.g., race), which has several levels (e.g., Black, White, and His-
panic). There are many different ways to define equity, and we will provide a very brief over-

FIGURE 4.1

Confusion Matrix for the Binary Classification Problem 

NOTE: Red cells indicate incorrect predictions, and blue cells indicate correct predictions.
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view of several of the most important ones in this section. A more extensive and more rigor-
ous review can be found in Appendix A. 

Perhaps the simplest equity definition is fairness through unawareness. This definition 
simply requires that protected characteristics be removed from any input data upstream of 
algorithmic training. With respect to race, fairness through unawareness intuitively captures 
the notion of a “race-blind” decision. Despite its simplicity, many have noted that fairness 
through unawareness is a problematic notion within the ML framework. This is because 
simply removing protected characteristics may not actually remove their influence from pre-
dictions. For example, even if race is removed from the input data, an individual’s race may 
be predicted with high confidence from other variables that remain in the data, such as geog-
raphy. Even if race is removed, geography may act as a proxy for race. 

Another simple equity definition is that of statistical parity. This definition requires that 
positive predictions occur at equal rates for each level of the protected class. When statistical 
parity holds, the demographics of the population that are predicted to belong to the posi-
tive class match the demographics of the entire population. Many additional equity concepts 
are constructed by comparing different error rates across levels of a protected characteristic. 
For example, an important equity definition is that of false negative rate balance (false nega-
tive rate balance is equivalent to true positive rate balance). For the case of promotions, false 
negative rate balance may require that the algorithm does not erroneously predict nonpro-
motion for one race at a higher rate than another. False positive rate balance is defined analo-
gously (false positive rate balance is equivalent to true negative rate balance). Equalized odds 
is attained when both false positive rate balance and false negative rate balance are attained 
by an algorithm.

Approaches to Enforcing Algorithmic Equity

The fairness literature has developed many methods to enforce fairness. These methods 
differ both in the fairness criteria they enforce and in the stage of the algorithm at which 
the method intervenes. Methodologies typically are categorized into three classes: pre-
processing, in-processing, and post-processing (Berk et al., 2021). Pre-processing refers to any 
method that alters the input data before they are used by the algorithm to produce predic-
tions. In-processing refers to any corrective measure that intervenes during the ML training 
process. Finally, post-processing methods are applied entirely downstream of training the ML 
algorithm, directly adjusting the algorithmic predictions themselves. We connect the ideas of 
pre-processing and post-processing to the aforementioned concepts of procedural and out-
come equity. Loosely speaking, we can view pre-processing methods as seeking to create 
procedural equity, whereas post-processing approaches are focused on producing outcome 
equity. We find these connections to be useful analogies, although they are not identical. 
Importantly, some pre-processing methods can have theoretical guarantees in terms of the 
distribution of outcomes (Johndrow and Lum, 2019). 
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Figure 4.2 summarizes the distinction between these methods. The RAND Algorith-
mic Equity Tool implements both pre-processing and post-processing methods but not in-
processing methods. This is because pre-processing and post-processing methods are imple-
mented independently from the development of the predictive ML algorithm and are therefore 
easier to apply in general. By contrast, in-processing methods require more-customized 
implementation. We provide further details of the pre- and post-processing methods imple-
mented in the RAND Algorithmic Equity Tool below. A more thorough exploration of these 
ideas can be found in Berk et al., 2021.

Pre-Processing
Pre-processing methods typically seek transformations of the input training data that remove 
information about a protected characteristic. There are several attractive properties of pre-
processing. First, it can be coupled with any predictive model, making it generally versatile. 
Second, it does not require the differential manipulation of output model predictions that 
depend explicitly on the protected characteristic, as is often the case for post-processing. For 
example, many post-processing methods require race-specific adjustments to predictions. 
When predictions are modified in a race-specific manner, there is a risk that the algorithm 
will be perceived as explicitly discriminatory. By contrast, pre-processing can be performed 
completely blind to the outcome of interest.

Removing the protected characteristic from the input data is the simplest form of pre-
processing. Fairness through unawareness is therefore attained by the simple pre-processing 
procedure of redaction. Johndrow and Lum, 2019, provides a method for pre-processing that 
goes a step further than fairness through unawareness. Their method aims to transform input 
data, such that all variables are independent of the protected characteristic, while maintain-
ing as much information as possible about the original distribution of input variables. They 
show that this method of pre-processing implicitly enforces statistical parity. 

The RAND Algorithmic Equity Tool provides a simplified implementation of the Johnd-
row and Lum algorithm. Although the Johndrow and Lum algorithm insures mutual inde-
pendence between all input data and the protected characteristic, our implementation only 
insures pairwise independence between the protected characteristic and each variable. We do 
not currently implement the full algorithm in the RAND Algorithmic Equity Tool because 

FIGURE 4.2

Methods for Enforcing Equity Constraints
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it is difficult to operationalize for general data sets that contain predictors with varying data 
types, but future implementations could consider an extended implementation. 

In the algorithm-aided decisionmaking framework, pre-processing begins by altering the 
input data upstream of ML training. After the algorithm is trained on pre-processed data, 
both the predictive algorithm and the data transformations are passed to decisionmakers, 
who make predictions about new individuals. Data from the new individual must undergo 
the same transformation as the pre-processing data upstream of prediction. In the RAND 
Algorithmic Equity Tool, we recommend inputting both historical training data and the new 
data for which predictions will be made to the pre-processing algorithm. The RAND Algo-
rithmic Equity Tool will automatically transform all data. The transformed historical data 
are then used to train the ML algorithm, and the transformed prediction data will be used to 
make new predictions. 

Post-Processing
Post-processing methods are applied entirely downstream of ML training. As with pre-
processing, post-processing is extremely versatile and can be paired with virtually any pre-
dictive model. 

There is a broad literature on proposed post-processing methods. Damberg, Elliott, and 
Ewing, 2015, provides a simple post-processing method that adjusts model predictions to 
have equal means across levels of the protected characteristic. Although the method was 
introduced to enforce equity in pay-for-performance hospital reimbursement incentives, it is 
applicable more generally. Hardt, Price, and Srebro, 2016, proposes post-processing methods 
for enforcing false positive rate balance and false negative rate balance. Mishler, Kennedy, 
and Chouldechova, 2021, provides a post-processing method for enforcing counterfactual 
equalized odds: a form of fairness couched within a causal framework. The RAND Algo-
rithmic Equity Tool implements a simple post-processing method that is capable of enforc-
ing a wide array of equity definitions in a unified framework. As is common in most post-
processing approaches, our method seeks optimal thresholds of positive prediction, which 
typically differ across levels of the protected characteristic. For example, a baseline algorithm 
may return a positive prediction for any individual with a predicted probability greater than 
0.5. After post-processing, the algorithm may have a different threshold for positive predic-
tion for each racial group. Further details of our post-processing method are described in 
Appendix B. 

Mechanistically, post-processing is performed after ML training, and group-specific 
thresholds are returned. New predictions (not based on training data) are made using group-
specific thresholds, and these binary predictions are returned to decisionmakers. If the new 
data and historical data are drawn from similar populations, then the new binary predictions 
should attain equity priorities. 

The human component of the algorithm-assisted decisionmaking process, in which a 
human receives and interprets the algorithmic prediction before making a final decision, 
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can also be thought of as a form of post-processing. Like the post-processing methods 
described here, human post-processing can have a significant effect on the final distribution 
of outcomes. The primary distinction between human post-processing and algorithmic post-
processing is that algorithmic post-processing can be used to attain specific equity goals in a 
well-defined manner using a complex set of inputs, whereas the post-processing performed 
by a human, though potentially rule-based, may be ad hoc and inconsistently applied. For 
example, promotion boards might be provided information about the race and ethnicity of 
candidates and told that diversity is an important value in their decisions, without specific 
guidance concerning how to implement that value.

Inherent Trade-Offs to Enforcing Equity

When enforcing any particular equity priority, it is important to understand that there are 
significant inherent trade-offs. These include

1. conflicts between equity priorities 
2. conflicts between equity priorities and performance priorities 
3. conflicts between equity and legal mandates. 

The first important trade-off is that different equity concepts typically conflict with one 
another. As a simple example, it is generally not possible to satisfy statistical parity and false 
negative rate balance simultaneously. In the example of promotion selection predictions, this 
means that you can develop an algorithm that either (1) ensures that each racial group is 
predicted to be promoted at the same rate or (2) ensures that erroneous negative predic-
tions do not happen more for one racial group than another. Unfortunately, it is usually not 
possible to develop an algorithm that ensures that both of these equity priorities are met 
exactly. To see why, consider the following example. Suppose one racial group has histori-
cally been promoted at higher rates than another racial group. To make algorithmic predic-
tions obey statistical parity, the algorithm will need to either make more incorrect negative 
(do not promote) predictions for individuals belonging to the historically overrepresented 
group or make more incorrect positive (do promote) predictions for individuals belonging to 
the underrepresented group. In either case, it would be impossible to also obtain equal false 
negative (or true positive) rates.

There is a large literature documenting the mutual incompatibility of various fairness 
definitions, which we review at the end of Appendix A. To briefly summarize these findings, 
however, it is usually impossible to exactly satisfy multiple equity definitions simultaneously. 
Consequently, all predictive algorithms will violate certain equity concepts. When design-
ing an equitable algorithm, it is therefore necessary to be specific about the type of equity 
to enforce. We reiterate this point when providing our framework for developing equitable 
algorithms in Chapters Five and Six. It is important to note that these impossibility theorems, 
as they are often called, are not specific to algorithms. Regardless of the method by which 
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decisions are made—whether algorithmic or human—satisfying multiple notions of equity is 
a fundamental challenge.

In addition to navigating conflicts between equity definitions, enforcing equity may 
come at the cost of other priorities. Typically, overall accuracy suffers when an algorithm is 
constrained to perform equitably. The trade-off between equity and accuracy can have real-
world repercussions. For instance, Corbett-Davies et al., 2017, illustrates an inherent trade-off 
between public safety concerns and one set of equity concerns in an algorithm to predict vio-
lent recidivism. Demanding equitable performance characteristics according to their chosen 
definitions, they argued, would result in increased violent crime. Because of the possible 
competition between fairness and accuracy, especially when using historical data to measure 
accuracy, our tool allows developers to compare multiple equity interventions across multiple 
accuracy metrics in order to explicitly quantify this trade-off.

A final important consideration when implementing an equity intervention is that the 
intervention should satisfy policy mandates. For example, enforcing racial statistical parity 
in hiring decisions requires enforcing a type of racial quota, which often are explicitly pro-
hibited. This is because statistical parity requires that a specific proportion (determined by 
demographic statistics) of promoted individuals come from each race or ethnicity group, 
which is equivalent to numerical quotas for each race or ethnicity. In the next section, we give 
examples of ways to connect technical equity definitions to DoD policy. 

Connecting DoD Policies to Equity Definitions

In this section, we aim to identify connections between the formal equity concepts described 
earlier and DoD policies regarding personnel management. We emphasize that this is not an 
exact science, since policy directives are not written explicitly with technical equity norms in 
mind. However, connecting policy recommendations to specific equity definitions is neces-
sary to appropriately audit ML algorithms. This exercise will be useful in the framework we 
provide in the next chapter for developing equitable ML algorithms.

We consider three ideals expressed as equity priorities by DoD: (1) decisions should be 
blind to protected characteristics, (2) merit should be rewarded, and (3) the demographics of 
DoD should reflect the nation it serves. Although we find these to be the most clearly stated 
ideals, we do not imply that these encompass the entirety of DoD’s personnel policies. We 
also note that the connections between the policy goals and equity definitions contain some 
uncertainty because many of the policy directives are not written in language that perfectly 
translates to technical meanings. The following three connections are possible, not definitive, 
readings of DoD policy.
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Policy Connection 1: Not Explicitly Considering Protected 
Characteristics—Fairness Through Unawareness
One priority found in DoD policies is that individuals should not be treated differently purely 
on account of protected characteristics, such as gender or race. Although there are some 
exceptions for certain restrictions on age or physical ability, a common DoD principle is that 
individuals who are alike except in terms of protected characteristics should be treated alike. 
This principle can be seen, for example, through directives that discourage the use of diversity 
quotas, such as the Air Force Instruction on diversity and inclusion or the National Defense 
Authorization Act for Fiscal Year 2013 (Air Force Instruction 36-7001, 2019; Pub. L. 112-239, 
2013). It can also been seen in a recent move by the Secretary of Defense to consider removing 
photos and names from promotion selection packets in order to avoid explicitly considering 
an individual’s race or gender (Dickstein, 2020). 

We connect this concept to the equity definition of fairness through unawareness because 
the redaction of protected characteristics from these decisionmaking processes mirrors the 
exclusion of protected characteristics as input data to the algorithm, which is required to 
achieve fairness through unawareness. As noted earlier, simply redacting a protected char-
acteristic is rarely sufficient to remove its influence. This is because protected characteristics 
may be strongly correlated with other factors used in prediction, which in turn may inap-
propriately act as proxies for the redacted factor. For example, graduation from a Histori-
cally Black College or University (HBCU) is strongly correlated with race. Redacting race 
but retaining graduation from an HBCU may not sufficiently remove the influence of race. 
We therefore also connect DoD’s priority of ignoring protected characteristics with pre-
processing methods that remove correlations between race and other factors used in predic-
tion. These pre-processing procedures, which may be thought of as stronger forms of fairness 
through unawareness, arguably better capture DoD’s priority of ignoring protected charac-
teristics. We explore the utility of these pre-processing methods in Chapter Six. 

Policy Connection 2: Building the Best Fighting Force and Merit-
Based Achievements—True Positive Balance or False Negative 
Balance
DoD’s policies express the ideal that all individuals should be rewarded based on merit. 
Underlying this is DoD’s goal of developing the strongest and most capable personnel in 
order to achieve mission readiness and supremacy as a fighting force. DoD has argued that 
equity priorities complement the ideal of a meritocracy. As described in the 2012–2017 stra-
tegic initiative, 

Diversity is a strategic imperative, critical to mission readiness and accomplishment . . . 
we must focus our efforts on emerging diverse markets to successfully attract, recruit, 
and retain a highly-skilled workforce capable of meeting current and future readiness and 
mission requirements. (DoD, 2012, p. 3)
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We connect the concept of meritocracy to the equity definition of true positive balance. 
Considering promotion as an example, true positive balance implies that individuals who 
merit promotion are promoted at equal rates across different levels of a protected character-
istic (e.g., racial groups). We note that true positive balance is equivalent to false negative bal-
ance (since a change in the true positive rate indicates an equivalent corresponding change in 
the false negative rate). From this perspective, false negative balance ensures that individuals 
who merit promotion are not discriminatorily denied promotion on the basis of their race.

We note that we informally use the word merit in the descriptions above to intuitively 
convey the notion of true positive balance. In the actual ML context, true positive balance 
requires that individuals who are actually promoted are correctly predicted to be promoted at 
equal rates across levels of the protected characteristic. Whether the population of promoted 
individuals observed in the historical data do indeed merit promotion assumes that the his-
torical promotion process is an accurate measure of merit. In other words, true positive rate 
balance is only a valid interpretation of meritocracy if the historical promotions used to train 
the data are a desirable standard to emulate. If different standards were required historically 
for promotion for different levels of the protected characteristic, then true positive rate bal-
ance would not be appropriate. For example, it may be true that less deserving individuals 
from one group received promotion at higher rates, while individuals from another group 
had to work harder to receive promotions. If the historical promotion selection process is 
biased in the sense that individuals from one population face higher barriers to promotion 
than individuals from another population, then it would not reflect a meritocratic procedure; 
promoted individuals from the advantaged class would exhibit less merit. As noted in Chap-
ter Three, we recommend reviewing the prior work to assess the validity of historical data 
before using algorithms trained on such data. For example, there is some evidence to suggest 
that historical promotional decisions are not explicitly non-meritocratic. For instance, Lim 
et al., 2014, argues that Air Force officer promotion decisions do not differ across race or 
gender for individuals with similar records, which would suggest the historical process was 
equitable according to a particular definition of fairness.

True positive rate balance is also desirable because predictive algorithms may have dif-
ferential predictive accuracy for different groups, for reasons such as historical bias, major-
ity influence, nonrepresentative data, or predictors that are not equally predictive for each 
group. The last possibility was recognized in the 2020 DBDI report, which recommended a 
review of the military aptitude tests to analyze whether they “adversely impact diversity and 
are unrelated to predictive validity” (DBDI, 2020, p. ix).

Although true positive balance (or false negative balance) provides a natural connection 
to the idea of meritocracy, this is certainly not the only related equity definition. Indeed, the 
notion of meritocracy is sufficiently broad as to allow for connections between it and many 
equity concepts. For instance, one can similarly connect false positive (or, equivalently, true 
negative) balance to meritocracy. Returning to the promotion selection example, false posi-
tive balance suggests that truly unqualified individuals are not erroneously predicted as pro-
moted at different rates across levels of the protected class. Just as it is difficult to call a process 
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meritocratic if it differentially rewards truly deserving individuals, it is also difficult to call a 
process meritocratic if it differentially rewards truly undeserving individuals. One can simi-
larly make connections between the idea of meritocracy and the equity definitions of positive 
predictive balance and negative predicted balance (described in detail in Appendix A). It also 
is possible to connect fairness through unawareness to meritocracy: A meritocracy should 
only consider measures of merit and be blind to all other individual-level attributes. 

As mentioned previously in this section, multiple formal equity concepts are often not 
simultaneously attainable. The multitude of equity concepts that are related to the notion of 
meritocracy therefore poses a significant challenge to enforcing equity. Ultimately, the deci-
sion for how to define merit and connect it to a definition of algorithmic equity will lie in the 
hands of informed policymakers. The connection we make here to true positive rate balance 
represents our best understanding of the policies as currently written. If DoD further clari-
fied the term merit, in terms of how it is defined, measured, and rewarded, then more-precise 
connections to algorithmic fairness would be possible.

Policy Connection 3: Demographic Representation of the U.S. 
Eligible Population—Statistical Parity
Lastly, DoD consistently expresses a desire that its workforce reflect the eligible U.S. popula-
tion. This concept may be the most frequently referenced ideal. For example, the 2020 DBDI 
report’s Recommendation 1.2 is to “achieve a talent pipeline reflecting the diversity of the 
current and future eligible population from U.S. Census projections” (DBDI, 2020, p. ix), 
and the measure of success will be when data can “show that racial and ethnic representation 
within the military is more consistent across all grades and the number of minorities to be 
retained beyond initial commitment and promoted to senior grades increases” (DBDI, 2020, 
p. 22). We connect this concept to the equity definition of statistical parity, which means that 
individuals of different races receive positive outcomes at an equal rate. 

Returning to the promotion selection example, statistical parity implies that an equal 
proportion of candidates from different racial groups receive promotion. We note that in 
relation to DoD policies stated earlier, statistical parity only provides representation at the 
higher grade levels if there is adequate representation at the lower levels. If disparities exist at 
earlier stages of promotion selection, promoting individuals at equal rates will only maintain 
the same representation. In other words, to connect to DoD’s policy goals, statistical parity 
would need to work in tandem with a talent pipeline that started with a pool of applicants that 
reflects the eligible population. We know this is not currently the case. As shown in Table 2.1, 
for example, some racial and ethnic groups are already underrepresented at earlier stages for 
officers.

Rather than enforcing statistical parity with respect to the applicant pool, an alternative 
is to directly require that the demographic composition of the population who receive posi-
tive predictions matches a specific target distribution, such as the racial demographics of the 
entire United States or some eligible subset of that population. This would result in overse-
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lecting the underrepresented group within the applicant pool (rather than selecting at equal 
rates across all groups, as would be the case in standard statistical parity). We acknowledge 
that this is a viable alternative, but we will consider standard statistical parity throughout 
this work. Although DoD policies express a desire to reflect the nation DoD serves, there is 
tension with the idea of overselecting certain groups to achieve that representation (such as 
restricting quotas).

Alternative concepts of non-exact statistical parity might be more amenable to DoD under 
its current policies. The concept of parity has been connected to the legal concept of disparate 
impact, which concerns whether certain processes lead to disparate outcomes for groups with 
different protected characteristics. The Civilian Equal Employment Opportunity and Mili-
tary Equal Opportunity programs do not contain specific definitions of disparate impact, 
but the EEOC has long advocated the use of a “four-fifths rule” to identify disparate impact 
(U.S. Equal Employment Opportunity Commission, 1979). According to the four-fifths rule, 
the selection rate of the least-selected group is not less than 80 percent of the selection rate of 
the most-selected group. The four-fifths rule is another mathematically well-defined notion 
of parity that serves as a reasonable alternative to the standard statistical parity considered 
in this report. Under this framework, DoD might move toward closer representation without 
requiring exact quotas.
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CHAPTER FIVE

A Framework for Developing Equitable 
Machine Learning Algorithms

In this chapter, we present the RAND Algorithmic Equity Tool and discuss the general ratio-
nale and considerations for each step. In the next chapter, we demonstrate the tool’s use with 
a hypothetical ML application drawn from the personnel management space. The five steps 
are as follows:

1. determine equity risk
2. identify relevant equity mandates and priorities
3. determine relevant equity definitions
4. identify important overall performance priorities
5. weigh trade-offs of enforcing equity.

Determine Equity Risk

An important initial step is to determine whether the ML algorithm in question poses an 
equity risk. Whether an algorithm poses an equity risk is determined by the context in which 
the algorithm is deployed. Although it may be difficult to anticipate the downstream equity 
impact of any particular ML algorithm, the following two factors generally heighten the 
equity risk: 

1. The algorithm output directly influences a decision.
2. Those decisions directly affect individual people.

Although these two factors are not the only ones that can signal an equity risk, most high-
profile cases concerning algorithmic equity share these characteristics. The following are 
some examples:

• The well-studied Correctional Offender Management Profiling for Alternative Sanctions 
(COMPAS) algorithm produced recidivism risk scores for defendants that were then 
considered by judges during sentencing procedures (Angwin et al., 2016). Individual-
level predictive recidivism scores were used to influence individual bail and sentenc-
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ing decisions. The algorithm was criticized because it incorrectly predicted recidivism 
among Black defendants at a higher rate than it did for White defendants. 

• Amazon developed an algorithm that generated automated scores based on candidate 
résumés (Dastin, 2018). These résumé scores were reviewed by Amazon’s recruiters 
(although it is unclear to what degree these scores were actually used in hiring deci-
sions). The project was disbanded because of concerns that the algorithm learned to 
systematically penalize applications that identifiably belonged to women. For example, 
inclusion of the word “women” within the text of a résumé (e.g., “women’s rugby team”) 
incurred a penalty.

• Many hospitals rely on algorithms to identify patients of various risk categorizations. 
These risk scores are used to recommend individual patients to “high-risk care manage-
ment” programs, which provide additional resources. There has been concern that these 
algorithms systematically give lower risk scores to Black patients compared to White 
patients with similar medical conditions (Obermeyer et al., 2019). 

In addition to the two primary factors highlighted in this section, another important con-
sideration is whether already disadvantaged groups are likely to be negatively affected by the 
introduction of a proposed ML algorithm into a decisionmaking process. Depending on the 
setting, this circumstance may be more concerning from an equity perspective than if mem-
bers of advantaged groups face potentially adverse or equalizing effects. If an ML application 
does not pose a direct equity risk, it is likely unnecessary to evaluate its equity properties. 

Identify Relevant Equity Mandates and Priorities

After identifying whether a given ML application poses an equity risk, the next step is to 
understand the legal requirements and institutional priorities regarding equity that are 
relevant to the domain in which the algorithm is applied. For example, Amazon’s résumé-
scoring algorithm may not have been in compliance with Equal Employment Opportunity 
(Title VII of the Civil Rights Act of 1964), which protects against workplace discrimination 
on the basis of many protected characteristics, including sex (Goodman, 2018). Importantly, 
Equal Employment Opportunity protects against both disparate treatment and disparate 
impact. Whereas disparate treatment is generally interpreted as “intentional” discrimination, 
disparate impact protects against seemingly race-neutral policies that disproportionately 
affect protected groups. In addition to legal prohibitions against workplace discrimination, 
a résumé-scoring system that implicitly penalizes female candidates is counter to Amazon’s 
statements regarding diversity in hiring (Amazon, undated). This application provides an 
example of why explainable models are vital in addition to the need for fairness. 

Legal mandates regarding equity can have important differences across domains. For 
instance, the legal equity mandates regarding insurance pricing require that rates are not 
unfairly discriminatory. Importantly, unfair discrimination in this context does not preclude 
the possibility of average premiums differing across levels of a protected attribute, so long as 
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those differences reflect differences in risk. Unlike Equal Employment Opportunity, insur-
ance pricing does not directly limit the possibility of pricing policies with disparate impact. 
Osoba et al., 2019, provides an overview for identifying equity concepts in civilian domains 
that have encountered algorithmic equity concerns, including insurance industries, hiring 
practices, and criminal justice. 

Determine Relevant Equity Definitions

After identifying the legal requirements and institutional priorities that are relevant to the 
decision environment, these must be translated to concrete, mathematical equity definitions. 
This can be a difficult task, since legal mandates and institutional priorities related to equity 
are seldom stated in terms that easily map onto technical definitions of fairness. 

The EEOC four-fifths rule is a rare instance in which an equity concept is described with 
sufficient detail to unambiguously assign a mathematical criterion (Feldman et al., 2015). In 
particular, the four-fifths rule defines a form of approximate statistical parity, in which the 
selection rate of the least-selected group is not less than 80 percent that of the most-selected 
group (see Appendix A for further details). In most cases, however, mathematical translation 
is far less clear. So far, the Supreme Court has explicitly resisted providing concrete, math-
ematical formulations of equity definitions. 

To assist in the difficult process of matching equity goals to mathematical definitions, 
others have provided helpful guidelines for general settings. The decision tree shown in 
Figure 5.1, which we simplified and adapted from Aequitas (Saleiro et al., 2018), is one such 
example. As an example of how to use this decision tree, consider the question of racial bias 
in the COMPAS recidivism risk score introduced earlier in this chapter. Beginning at the 

FIGURE 5.1

Fairness Decision Tree Adapted from Aequitas

SOURCE: Adapted from Saleiro et al., 2018, p. 9.
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first node of the decision tree, one first decides whether equitable representation or equitable 
errors are sought. For the purposes of predicting recidivism, equal representation may not 
be an appropriate measure. If true recidivism rates vary by race, requiring an algorithm to 
predict equal recidivism rates may result in poor accuracy. However, for the algorithm to be 
useful in a legal or policing setting, it is desirable to require that an algorithm used to pre-
dict recidivism is equally accurate for different racial groups.1 Following the decision tree, 
we would choose to move down the right branch (“Errors”) and onto the second question. 
Because the algorithm is used in a punitive setting (e.g., positive predictions result in puni-
tive outcomes), we would choose to move down the left branch (“Punitive”), and we find that 
balancing false positive rates (or, equivalently, true negative rates) is an appropriate math-
ematical equity goal. Achieving false positive rate balance would ensure that, among those 
who truly did not recidivate, errors occur at the same rate for advantaged and disadvantaged 
groups. Intuitively, this avoids a circumstance in which innocent individuals from disadvan-
taged racial groups bear a disproportionate burden of inaccurate predictions. It is reasonable 
to argue that further harms to those who are already disadvantaged are more costly and that 
avoiding such harms should be prioritized.

Indeed, it was precisely the lack of false positive balance, first identified by Angwin et al., 
2016, that initially drew criticism with respect to the COMPAS algorithm. We emphasize 
that this decision tree is meant to provide a reasonable rule of thumb. In general, translating 
equity priorities to mathematical definitions should be done on a case-by-case basis. There 
are many other cases and potential equity definitions, which can be seen in the full decision 
tree provided by Saleiro et al., 2018.

In Chapter Four, we identified connections between three common equity priorities con-
cerning DoD personnel and formal equity definitions. As discussed in Chapter Four, it is 
possible that multiple fairness metrics conflict with one another. When identifying relevant 
equity definitions, it is therefore advisable to choose only the most important ones. In the 
event that multiple definitions are considered, the RAND Algorithmic Equity Tool gives the 
user the ability to compare multiple equity interventions across multiple fairness metrics.

Identify Important Overall Performance Priorities

Although equity attributes are important to monitor when an algorithm poses an equity 
risk, there typically are other important performance priorities not directly related to equity 
that should be assessed. Although equity is often characterized by an algorithm’s compar-
ative behavior across levels of a protected group, overall performance (i.e., without regard 
to protected characteristics) is typically also of interest. For example, in research on equity 

1  As previously noted, accuracy with respect to historical data is only useful insofar as outcomes in the 
historical data set are a reasonable standard to attain; this is arguably not the case for historical arrest data. 
This example is only meant to serve an illustrative purpose.
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in lending, the disparity in proportions of loans acquired by individuals of different races 
has been balanced against the amount of total profit the lending company can expect to 
make (Hardt, Price, and Srebro, 2016). Monitoring overall performance priorities is essential 
because enforcing equity typically comes at a cost to overall performance. To understand this 
trade-off, note that any algorithm can perform equitably with respect to false positive bal-
ance, false negative balance, and statistical parity by simply outputting a positive prediction 
for all individuals, blind to all individual attributes (protected or otherwise). False positive 
balance is attained because, among individuals who are truly “negative,” all are predicted as 
positives regardless of their protected attributes. Similarly, false negative balance is attained 
because, among individuals who are truly “positive,” none are incorrectly misclassified. 
Finally, statistical parity is attained because all groups attain positive predictions at the same 
rate (100 percent). Although such an algorithm will have equitable performance with respect 
to these measures, the overall accuracy of the algorithm may be poor. 

To appropriately weigh the trade-offs of enforcing equity (which is performed in the next 
step), it is important to first identify the overall performance priorities of interest. The most 
common overall performance priority is predictive accuracy, which measures the proportion 
of correct predictions by comparing algorithmic predictions to true outcomes observed in 
training data. Accuracy is typically connected to some desirable outcome, such as lending 
to individuals who will pay interest and not default, for which higher accuracy is associated 
with greater benefit to certain parties. In some situations, other performance priorities may 
be more important than overall predictive accuracy. For instance, if a facial recognition algo-
rithm is used to identify dangerous individuals on a watch list, incorrectly predicting that 
individuals are not on the watch list (false negative) may be much more consequential than 
incorrectly predicting that they are (false positive). In this scenario, minimizing false nega-
tives may be prioritized over minimizing false positives because of the security threats posed 
by a false negative. 

Weigh Trade-Offs of Enforcing Equity

After identifying relevant equity norms and overall performance priorities, the final step is 
to apply appropriate equity interventions and assess the trade-offs of doing so. The RAND 
Algorithmic Equity Tool is primarily designed to assist in this final step. 

The RAND Algorithmic Equity Tool allows users to pre-process input data or post-process 
algorithmic predictions using a suite of methodologies described in Chapter Four. Users can 
use the tool to assess the comparative equity and overall performance properties of each 
intervention. To evaluate the effect of pre-processing, the tool allows users to input algorith-
mic predictions derived from different sets of training data (e.g., the original data set versus 
the pre-processed data set). One can similarly use the tool to assess the equity performance of 
any set of candidate algorithms, which potentially differ in their model specification rather 
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than their training data. To evaluate the effects of post-processing, the tool allows users to 
apply several different post-processing methods to predictions from a single algorithm. 

As discussed previously, improvements from the perspective of one equity priority can 
come at the cost of negative consequences from the perspective of another. It is important that 
trade-offs in different types of equity are considered, not just trade-offs between equity and 
performance. This should involve dialogue with stakeholders and equity experts to determine 
the most important equity mandates and acceptable levels of trade-off between equity mea-
sures and overall performance. An important feature of the RAND Algorithmic Equity Tool 
is that it allows one to visualize the impact of algorithm modifications on both selected equity 
and overall performance priorities. We envision that this tool can be used during the devel-
opmental stages of an algorithm intended for use in an algorithm-assisted decision making 
process. Doing so would necessitate careful and explicit thinking about equity priorities—
potentially, facilitating early conversations between developers and stakeholders—before 
algorithmic deployment can inadvertently result in unacceptable biases. There are various 
frameworks for how to provide algorithmic output to human decisionmakers, and we do not 
explicitly explore questions such as how much weight should be given by humans to the algo-
rithmic output. In the following chapter, we provide a detailed illustration of how the RAND 
Algorithmic Equity Tool can be leveraged, assuming that decisionmakers will be provided 
with binary recommendations. 
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CHAPTER SIX

Demonstration of Equity Framework Through 
a Hypothetical Case Study

In this chapter, we demonstrate the workflow described in the previous chapter for a hypo-
thetical algorithm used to assist in DoD promotion decisions. We emphasize that the method 
evaluated in this chapter is intended only to provide an illustration of our developed tools and 
does not reflect any current DoD practice. 

Hypothetical Case Study Description: Promotion Prediction

To illustrate, we consider a hypothetical ML application developed to predict promotion 
selection decisions on the basis of individual-level data. We imagine that this algorithm has 
been trained on historical data consisting of a large set of individual-level attributes paired 
with actual promotion selection decisions. Although the algorithm we evaluate is purely for 
illustrative purposes and trained on simulated data, we note that similar applications have 
been proposed. For instance, Schulker, Lim, et al., 2021, proposes an exploratory ML tool (not 
currently used by DoD) capable of predicting promotion selection decisions from evaluations 
provided in essay-style narrative performance reviews. 

The output of this algorithm is a predicted probability of promotion for each individual. 
This predicted probability, which is a numerical value ranging from zero to one, may be used 
as a score at the time of the promotion selection decision. Higher predicted probabilities of 
promotion are viewed as indicative of an individual exhibiting attributes similar to those 
promoted in the past. The predicted probabilities may also be binarized by thresholding; 
individuals with high predicted probabilities are predicted to be promoted, and individuals 
with low predicted probabilities are predicted not to be promoted. These binary predictions 
may also be considered as binary classifications of applicant quality at the time of promotion 
decisions.

Determine Equity Risk

The equity risk of this predictive tool depends on the way the tool is used. For instance, 
Schulker, Lim, et al., 2021, provides several possible uses for the predictive tool, each of which 
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has different equity risks. One potential use is to broadly inform personnel management 
policies. In this setting, the individual-level promotion probabilities generated by a predictive 
algorithm would be pooled together to provide an overall index of the performance prop-
erties of a particular subdivision of the larger force (e.g., Air Force pilots). A subdivision 
composed of many individuals with high predicted probabilities of promotion might be con-
sidered high-performing, and vice versa. If the algorithms predicted lower probabilities of 
promotion for minority service members relative to similarly qualified White service mem-
bers, for instance, then subdivisions consisting of large proportions of minorities would have 
artificially lower aggregate quality estimates. Whether this poses an equity risk depends on 
what decisions are made in response to this aggregate quality measure. For instance, if low 
aggregate scores triggered changes to recruitment strategy by allocating additional recruit-
ment resources to underperforming divisions, then the inequitable predictions may result in 
overall resource inefficiencies, but they are unlikely to negatively affect the minority service 
members whose quality was underestimated. If, on the other hand, a punitive measure was 
taken against subdivisions with perceived lagging performance according to this measure, 
then the inequitable predictions may indeed pose an equity risk. Although the algorithmic 
output is used to inform higher-level policy decisions, individual-level predictions are not 
used to guide individual-level decisions, generally mitigating the equity risk posed by this 
type of application.

Another way this algorithmic output could be used is to guide competitive promotion 
selection decisions. In this setting, the individual-level prediction output would be used as 
input to promotion decisions; high scores would be viewed favorably by managers at the time 
of promotion, while low scores would be viewed negatively. Here, individual-level decisions 
are affected by the individual-level predictions of an algorithm. Consequently, the equity risk 
posed by the algorithm in this setting is considerable. Inequitable performance properties of 
the algorithm may result in inequitable promotion selection decisions. For the purposes of 
illustration, we will assume that the promotion selection predictions will be used in this set-
ting throughout the remainder of this chapter. 

Identify Relevant Equity Mandates and Priorities

As we outlined in Chapter Four, DoD’s equity priorities regarding personnel, as expressed 
through its written policies and statements, can be summarized by three overarching goals: 

1. Blinded. Career entry and progression within DoD should be blind with respect to 
protected attributes.

2. Meritocratic. DoD should function meritocratically by recognizing and rewarding 
performance.

3. Representative. DoD should reflect the demographics of the country it serves.
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As discussed previously, multiple equity goals will typically not be simultaneously attain-
able. Therefore, policymakers are encouraged to communicate with ML developers in order 
to prioritize equity goals. For the purposes of this illustration, however, we will monitor each 
of these goals and not prioritize any one of them. 

Identifying Relevant Equity Definitions

To enforce these three DoD equity goals, they need to be translated into concrete mathemati-
cal language. In Chapter Four, we explored connections between these three equity goals and 
formal equity definitions. Although we note that this generally is a difficult task, we suggest 
the following three translations:

1. blinded → fairness through unawareness
2. meritocratic → false negative or true positive balance
3. representative → statistical parity.

These three translations are not meant to be definitive for all applications; careful consid-
eration should be taken when translating informal policy language into formal mathematical 
equity priorities. Below, we describe some of the relevant assumptions and considerations 
that would be necessary to justify these translations. 

Blinded  →  Fairness Through Unawareness
To justify fairness through unawareness as a valid strategy for blinding decisions to protected 
characteristics, one must assume that inappropriate proxies of protected characteristics do 
not remain in the training data after the protected characteristics have been retracted. The 
résumé scoring tool from Amazon provides such an example (Dastin, 2018). Although appli-
cant sex was not a provided predictor, words revealing applicant sex (e.g., “women’s rugby 
team”) still existed in the text of applicant résumés and were shown to be penalized by the 
algorithm. When it is possible that inappropriate proxies remain after protected attributes 
are redacted, one should not rely on fairness through unawareness alone. A stronger form of 
pre-processing than fairness through unawareness, which removes all correlations between 
protected characteristics and predictor variables, is also considered in this example. 

Meritocratic  →  False Negative or True Positive Rate Balance
In the context of a promotion prediction, true positive balance requires that truly promoted 
individuals are predicted to be promoted at the same rate regardless of their protected char-
acteristics. This is only a valid mathematical interpretation of meritocracy if the historical 
promotions used to train the data are a desirable standard to emulate. If different standards 
were required for promotion for different levels of the protected characteristic, then true posi-
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tive rate balance may not be appropriate. For instance, suppose that higher levels of merit 
were historically required to promote for members of a disadvantaged class. In that case, 
the population of truly promoted individuals from the disadvantaged class will be of higher 
merit than the population of truly promoted individuals from the advantaged class. Predict-
ing promotions from both groups at the same rate, as would be done if true positive rate bal-
ance were attained, would not reflect a meritocratic procedure. This is because the histori-
cally promoted individuals from the advantaged class are less deserving. 

Representative  →  Statistical Parity
The most straightforward translation is between representativeness and statistical parity. 
However, there is some ambiguity regarding exactly how statistical parity should be enforced. 
An important question to answer is whether, at each promotion selection stage, aggregate 
national demographics should be reflected or whether the demographics of the relevant eli-
gible population should be reflected. For instance, Kamarck, 2019, notes that although the 
demographics of officers upon entry do not reflect the national demographics of the United 
States, they do reflect the demographics of the population of college-educated individuals. 
Because the demographics of college-educated people differ from the national demographics, 
initial officer selection occurring at equal rates across racial groups within the eligible popu-
lation will result in a population of officers that does not reflect the national demographics. 
For the purposes of this illustration, we assume that the target population is the subpopula-
tion that is eligible for promotion. 

Identifying Important Non-Equity Performance Priorities

In addition to the equity priorities of a promotion selection prediction algorithm, there are 
important non-equity performance concerns. As with most ML applications, overall accu-
racy, measured as the proportion of correct predictions based on training data, is a natural 
priority. We will use this performance measure when weighing trade-offs in the following 
step. 

Weighing Trade-Offs

After equity and non-equity performance priorities are identified, we can now intervene with 
the candidate ML algorithm and weigh the costs and benefits of doing so. We will present 
the results of pre- and post-processing methods here, which are available in our provided tool 
and described in further detail in Chapter Four. Although the underlying data used in these 
illustrations are simulated, they are useful to demonstrate typical trade-offs. 
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Pre-Processing Interventions
Using the provided tool, we can weigh the equity and performance trade-offs resulting from 
training the ML algorithm on three data sets. A baseline data set includes all available covari-
ates in the prediction, including race. The second training data set is identical to the base-
line data set, except that race is not included. This second training data set reflects fairness 
through unawareness. A final training data set is generated by modifying the baseline data 
set using a pre-processing method introduced by Johndrow and Lum, 2019. This method is 
discussed further in Chapter Four and is implemented in our provided tool. 

Figure 6.1, which is output from the RAND Algorithmic Equity Tool, displays the equity 
characteristics of the predictive algorithm after training on each of these three data sets. As 
discussed above, an understanding of the equity priorities related to promotion selection 
decisions leads us to focus on statistical parity and false negative rate balance as appropriate 
equity metrics. As a measure of statistical parity, we compute the proportion of predicted 
promotions for each racial group. Note that equal rates of promotion across racial categories 
will result in a promoted population that has the same demographics as the population eli-
gible for promotion. 

The left panel of Figure 6.1 shows that promotions are predicted at higher rates for the 
advantaged racial group than for the disadvantaged racial group when the algorithm is 

FIGURE 6.1

Equity Measures Compared Across Racial Categories for Each Pre-Processing 
Method

NOTE: The left panel shows a comparison of the proportion of positives predicted (Ŷ = 1) for each racial category, and 
the right panel shows a comparison of the false negative rates for each racial category.
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trained on the baseline data or the race-redacted data. For the ML algorithm trained on the 
pre-processed data set, however, promotions are predicted at equal rates across race. Thus, 
statistical parity is attained by data pre-processing. With respect to true positive rates (or, 
equivalently, false negative rates), the right panel of Figure 6.1 shows that all methods display 
imbalance across racial groups. While achieving statistical parity, pre-processing affects other 
equity metrics. For example, although training on the baseline data sets results in higher false 
negative rates for the disadvantaged racial category, training on the pre-processed data set 
has a higher false negative rate for the advantaged racial category. 

Figure 6.2 displays the overall prediction accuracy of the algorithm when it is trained with 
each of the three data sets. As shown in the figure, the best predictive accuracy is obtained 
from the baseline data set. Predictive information is lost both when race is redacted and when 
the data set is pre-processed to require independence between race and predictors. However, 
we see that redacting race induces a much larger performance penalty than does the pre-
processed data set.

Taken together, Figures 6.1 and 6.2 suggest that pre-processing the data may result in 
desirable performance and equity trade-offs. In particular, pre-processing enforces statis-
tical parity at a marginal performance cost. Although there is a discrepancy across racial 
groups with respect to false negative rates, we make three observations. First, it is not pos-
sible to attain statistical parity while balancing false negative rates (see Chapter Four for fur-
ther details). Second, the absolute discrepancy in false negative rates between the two racial 
groups is smallest using the pre-processed data. Finally, pre-processing results in a lower false 
negative rate for the disadvantaged racial group than for the advantaged racial group, shifting 
the burden of false negatives from disadvantaged to advantaged groups. This racial discrep-
ancy in error rates may be preferred to the opposite, especially if it is an institutional priority 
to minimize negative outcomes of policy changes on disadvantaged groups. 

FIGURE 6.2

Overall Accuracy ( Pr (  ̂  Y   = Y)  ) for Each Pre-Processing Method 
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Post-Processing Interventions
Figures 6.3–6.5 summarize the consequences of several post-processing methods applied 
to the original hypothetical algorithm. For all methods, results reflect post-processing the 
output of the algorithm trained using the full baseline data set without any pre-processing. 
Figure 6.3 summarizes the equity properties resulting from several post-processing meth-
ods (these methods are described in further detail in Appendixes A and B). The left panel of 
Figure 6.3 shows that although the baseline algorithm predicts promotions at higher rates 
for the advantaged racial group, several post-processing methods reduce this discrepancy. As 
expected, the statistical parity post-processing method attains nearly exact statistical parity; 
the advantaged and disadvantaged racial groups are predicted to be promoted at nearly the 
same rate. The equalized odds and equalized opportunity methods, though not designed 
explicitly to attain statistical parity, also greatly reduce the baseline discrepancy in promo-
tion rates. Interestingly, applying equalized error rate post-processing seems to exacerbate 
the baseline discrepancy. The right panel of Figure 6.3 shows that the baseline algorithm 
has higher false negative rates for the disadvantaged racial group, which are nearly elimi-

FIGURE 6.3

Equity Measures Compared Across Racial Categories for Each Post-Processing 
Method

NOTE: PP = post-processing. The left panel shows a comparison of the proportion of positives predicted (Ŷ = 1) for each 
racial category, and the right panel shows a comparison of the false negative rates for each racial category.
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nated by equalized odds and equalized opportunity post-processing. This is to be expected, 
because both post-processing methods are designed to equalize false negative rates across 
racial groups. Although statistical parity post-processing is not explicitly designed to equal-
ize false negative rates, we also see that the discrepancy observed in the baseline model is 
greatly reduced after it is applied. The slight discrepancy in false negative rates that per-
sists reverses the baseline scenario; after statistical parity is enforced, false negative rates are 
slightly higher for the advantaged racial group. Equalized error rate post-processing actually 
widens the disparity observed in the baseline, resulting in even higher false negative rates for 
the disadvantaged racial class. It is notable, however, that equalized error rate post-processing 
attains the lowest population-wide false negative rate. 

Although there are significant differences observed between the various post-processing 
methods with respect to equity, Figure 6.4 demonstrates that all of the methods are virtually 
indistinguishable with respect to overall performance (by a slim margin, statistical parity 
post-processing has the worst overall accuracy). Taken together, Figures 6.3 and 6.4 suggest 
that the equity gains provided by equalized odds, equalized opportunity, and statistical parity 
post-processing can be attained without substantially diminishing predictive performance. 
Although this holds in our simulated case, it may not be (and often will not be) the case in a 
real application, and performance will need to be balanced against equity goals.

Finally, Figure 6.5 displays the different thresholds applied to each racial category by each 
post-processing method. Recall that post-processing methods identify race-specific thresh-
olds to minimize differential performance across race with respect to a specific metric (see 
Appendix B). The baseline method applies the same threshold regardless of race when pre-
dicting promotion selection decisions. As shows in Figure 6.5, equalized odds, equalized 
opportunity, and statistical parity post-processing each require that the threshold for pre-

FIGURE 6.4

Overall Accuracy ( Pr (  ̂  Y   = Y)  ) for Each Post-Processing Method 
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dicted promotion is lower for the disadvantaged racial group and higher for the advantaged 
racial group. Conversely, the equalized error rate post-processing actually results in a lower 
threshold for the advantaged group. 

Intuitively, different thresholds across different racial groups connote different standards 
applied to different racial groups. This may not necessarily be a fair interpretation of differ-
ential thresholds. For instance, consider a situation in which the eligible populations in each 
racial group were equally qualified for promotion, but historical discriminatory practices 
resulted in fewer promotions among the disadvantaged group. In practice, then, the historical 
patterns of promotions required higher standards for the disadvantaged group relative to the 
advantaged group. Within the historical data, we would see that an individual from the dis-
advantaged group would have a lower predicted probability of promotion than a comparable 
member of the advantaged group. In this hypothetical situation, lowering the probability 
threshold via statistical parity post-processing would actually correct the observed historical 
discrimination. 

Summary

Because the hypothetical promotion selection prediction algorithm is used in high-stakes, 
individual-level decisions, it poses a high equity risk. We argue that the overarching military 
priorities can be translated into mathematical equity concepts of fairness through unaware-
ness, false negative rate balance, and statistical parity. After considering several algorithm 

FIGURE 6.5

Race-Specific Thresholds Identified for Each Post-Processing Method
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modifications, including pre- and post-processing, we found that several interventions 
yielded substantial equity benefits over the baseline with negligible overall performance 
impact. Particularly promising approaches were (1) data pre-processing using the method 
from Johndrow and Lum, 2019, (2) statistical parity post-processing, (3) equal opportunity 
post-processing, and (4) equalized odds post processing. Simply redacting race, in this exam-
ple, resulted in worse overall performance without substantially mitigating racial equity con-
cerns observed in the baseline model. We emphasize that these findings are not meant to 
serve as general suggestions but instead reflect the results of a hypothetical case study. Dif-
ferent methodologies may be better suited in real-world applications with alternative equity 
priorities. 
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CHAPTER SEVEN

Conclusions

We conclude this report with some recommendations for policymakers at DoD who wish to 
promote equity for their personnel and for researchers who seek to develop ML applications 
as aids to decisionmaking processes.

Recommendations

Recommendation 1: Audit Algorithms That Pose an Equity Risk
Algorithms that are used to aid high-stakes decisions about individuals must be audited to 
ensure they are meeting the equity goals for their particular application. This includes audit-
ing both the performance properties of algorithms and the data used to train them. The 
RAND Algorithmic Equity Tool developed with this report offers a way to assess the equity 
of the predictions made by an ML algorithm. It also allows users to make pre-processing or 
post-processing adjustments to algorithms that guarantee certain types of fairness. Lastly, 
the RAND Algorithmic Equity Tool allows users to weigh the equity and non-equity trade-
offs that result from modifications to enhance equity. Practitioners who are developing algo-
rithms for specific applications to be used as part of a decisionmaking process can use this 
tool to evaluate their algorithms.

Recommendation 2: Increase Specificity of Equity Priorities
Both auditing and enforcing equity priorities in ML algorithms necessitate translating those 
priorities into concrete, mathematical concepts. Current DoD equity policies typically lack 
adequate specificity to perform this translation. We recommend that DoD consider moving 
toward more concrete language in specifying its equity goals. To do so, DoD should consider 
adopting equity definitions developed by the algorithmic fairness literature. 

Although we sought in this report to draw connections between current DoD policies and 
technical definitions of equity, policymakers should aim to make these connections explicit. 
This would enable those who are creating decision-aiding algorithms to know what equity 
norms they need to meet, and it would inhibit downstream consequences that conflict with 
the desired policy goals. Defining these equity goals may be challenging for DoD, given the 
varying opinions and potential trade-offs, but providing clear goals that can be matched to 
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technical definitions would increase the development of equitable ML algorithms to help 
streamline personnel management decisions.

Recommendation 3: Consider Using Machine Learning as an Aid to 
Human Personnel Management Decisions
Although ML algorithms threaten to introduce algorithmic bias, we do not believe that the 
alternative of human-only decisions is preferable. The ability to both audit and constrain an 
ML algorithm to meet equity priorities is a considerable strength over a human-only decision 
process. Although human-only processes can and should be audited, it is far more difficult to 
adjust subjective human decisions to meet equity priorities than it is to enforce equity criteria 
on algorithmic predictions. We believe that, if implemented carefully, ML algorithms have 
the opportunity to offer a more objective and more equitable decision process. In addition to 
the potential equity advantages of ML algorithms, arguably the most significant advantages 
relate to non-equity considerations. ML algorithms are capable of leveraging far more data 
to derive their predictions than humans can, and such algorithms have the potential to auto-
mate otherwise laborious processes. 
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APPENDIX A

Overview of Technical Equity Definitions

In this appendix, we describe some standard equity definitions from the algorithmic fair-
ness literature. Each equity definition requires an algorithm to have identical performance 
properties across levels of the protected variable with respect to a particular performance 
measure. Various equity definitions differ from one another in their choice of performance 
measure. When the predicted outcome is binary (as is the case for all examples we consider in 
this report), the various performance measures are standard statistical concepts: false posi-
tive rates, positive predictive value, etc. 

Notation

We will use the following notations throughout this section.  G  denotes the protected class 
(which, in this report, will indicate an individual’s race).  Y  denotes the true outcome of inter-
est, and    ̂  Y    refers to the algorithm’s prediction of the outcome. For instance, in a recruiting 
application,  Y  may be a binary variable that indicates whether an individual truly accesses 
( Y = 1  if they do,  Y = 0  if they do not), and    ̂  Y    denotes the algorithm’s prediction of acces-
sion. Throughout this report, we exclusively focus on binary outcomes. Although there 
are extensions of all these concepts for numerical outcomes, the binary case reflects most 
common personnel management decisionmaking processes. We denote  X  to be any attributes 
(excluding race) that the algorithm uses to make its predictions. For instance, the ML algo-
rithm may predict whether an individual will access based on the individual’s age, gender, 
geographical location (all of which are included in  X ), and race ( G ). The accuracy of a pre-
dictive algorithm is determined by comparing    ̂  Y    (the predicted outcomes) to  Y  (the true out-
comes). We are interested in settings in which the prediction    ̂  Y    is used to inform a decision. 

Equity Definitions

We follow the equity framework of Barocas, Hardt, and Narayanan, 2019, and consider three 
broad classes of equity definitions: independence, separation, and sufficiency. Technically 
speaking, these three classes of definitions have to do with statistical independence relation-
ships between the outcome  Y , the predictions    ̂  Y   , and the protected class  G . The basic proper-
ties of these definitions are summarized in Table A.1. 
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Independence Definitions of Equity
The independence class of equity definitions require that the predicted outcomes    ̂  Y    are dis-
tributed similarly across different levels of the protected attribute  G . The most common such 
definition is that of statistical parity, which, for the case of a binary outcome and binary pro-
tected attribute, is met if the following condition holds:

 P (  ̂  Y   = 1 | G = 1)  = P (  ̂  Y   = 1 | G = 0) . 
A less rigid variant of statistical parity is referred to as limited disparate impact, which 

requires only approximately equal distributions across the protected class. For the case of a 
binary outcome and binary protected attribute, limited disparate impact may take the fol-
lowing form:

 0.8P (  ̂  Y   = 1 | G = 1)  ≤ P (  ̂  Y   = 1 | G = 0) . 
This expression requires that the rate of positive predictions for the disadvantaged race or 

ethnicity ( G = 0 ) is at least 80 percent that of the advantaged race or ethnicity ( G = 1 ). This 
condition follows what is sometimes referred to as the 80 percent rule (Feldman et al., 2015). 
This formulation of limited disparate impact treats the advantaged and disadvantaged group 
asymmetrically. In particular, if the advantaged group has a much lower rate of positive pre-
diction than the disadvantaged group, limited disparate impact will hold under this defini-
tion. Alternatively, one can treat the two groups symmetrically by additionally require that 

 0.8P (  ̂  Y   = 1 | G = 0)  ≤ P (  ̂  Y   = 1 | G = 1) . 
A final version of statistical parity is known as conditional statistical parity, which requires 

equal distributions of outcomes conditional on a set of variables deemed to be legitimate:

 P (  ̂  Y   = 1 | G = 1, X = x)  = P (  ̂  Y   = 1 | G = 0, X = x) . 

Separation Definitions of Equity
The separation class of definitions requires that individuals with the same true outcome have 
similar predictions, regardless of  G . When the outcome is binary, separation definitions of 
equity correspond to equating standard statistical measures across the protected class. For 
instance, false positive balance corresponds to equating false positive rates across the pro-
tected class,

 P (  ̂  Y   = 1 | G = 1, Y = 0)  = P (  ̂  Y   = 1 | G = 0, Y = 0)  
and false negative balance corresponds to equating false negative rates across the protected 
class,

TABLE A.1

Summary of the Classes of Equity Measures

Independence Separation Sufficiency

   ̂  Y   ⊥ G     ̂  Y   ⊥ G  |   Y     Y ⊥ G  |     ̂  Y    

NOTE:  ⊥  indicates the variables are independent of one another.
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 P (  ̂  Y   = 0 | G = 1, Y = 1)  = P (  ̂  Y   = 0 | G = 0, Y = 1) . 
Balancing false negative rates (or, equivalently, balancing false positive rates), is some-

times referred to as equal opportunity (Hardt, Price and Srebro, 2016).1 Balancing both false 
positives and false negatives is referred to as equalized odds. 

Sufficiency Definitions of Equity
The sufficiency class of definitions requires that individuals with similar predictions also 
have similar outcomes, regardless of  G . Note that this is, in a sense, the inverse of the separa-
tion definitions. Intuitively, these equity definitions are met when algorithmic predictions 
have the same meaning for individuals, regardless of their race. For instance, positive predic-
tions are not more predictive of positive outcomes for one race or another. When the outcome 
is binary, balancing positive predictive values,

 P (Y = 1 | G = 1,   ̂  Y   = 1)  = P (Y = 1 | G = 0,   ̂  Y   = 1)  
or balancing negative predictive values,

 P (Y = 0 | G = 1,   ̂  Y   = 0)  = P (Y = 0 | G = 0,   ̂  Y   = 0)  
are examples of sufficiency definitions. 

Although sufficiency and separation are closely related concepts, they typically are not 
simultaneously attainable, as is discussed below. In the context of recidivism prediction (as in 
the COMPAS algorithm [Angwin et al., 2016]), sufficiency is the primary concern for judges 
when interpreting the score to make sentencing decisions. If the predictions did not satisfy 
sufficiency, then a given score presented in court would correspond to different levels of evi-
dence depending on the race or ethnicity of the defendant. In the same setting, separation 
may be the primary concern for defendants. From their perspective, the algorithm would be 
considered unfair if Black individuals were more likely to receive positive recidivism predic-
tions than White individuals among the population of individuals who truly do not recidivate. 

Other Definitions of Equity
The notion of fairness through unawareness is related to a more general class of fairness 
concepts that are collectively referred to as similarity-based definitions (Dwork et al., 2012). 
The general concept behind all these definitions is that individuals who are similar across all 
nonprotected attributes (e.g.,   X  −G   ) should have similar outcomes. This definition of fairness is 
often referred to as individual fairness.

Another broad literature on fairness metrics concerns causal-based definitions, which are 
grounded in a more sophisticated causal framework (Coston et al., 2020; Mishler, Kennedy, 
and Chouldechova, 2021). These definitions may be preferred in settings in which the label-
ing of data used to train the algorithm is believed to be subject to racial biases.

1  Although the term is equal opportunity, this definition is not explicitly connected to equal opportunity 
as defined by the EEOC.
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Table A.2 provides a summary of the equity definitions discussed in this appendix.

Incompatibility of Equity Definitions
There is a large literature documenting the mutual incompatibility of various fairness defini-
tions (Berk et al., 2021; Chouldechova, 2017; Dwork et al., 2012; Kleinberg, 2018). Under weak 
assumptions, it can be shown that independence, separation, and sufficiency are all pairwise-
conflicting (e.g., independence and separation are not simultaneously attainable). Perhaps 
the most well-studied case is the incompatibility between calibration and equalized odds; 
the contradiction between these two fairness metrics was central to the debate surrounding 
the COMPAS recidivism risk score (Angwin et al., 2016). Although calibration and equalized 
odds are incompatible with each other, it is also generally true that calibration and equalized 
odds are both separately incompatible with statistical parity. Furthermore, statistical parity 
is known to conflict with individual fairness (Dwork et al., 2012).
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TABLE A.2

Equity Definitions 

Name Definition

Independence definitions

Statistical parity  P (  ̂  Y   = 1 | G = 0)  = P (  ̂  Y   = 1 | G = 1)  

Limited disparate impact 
(asymmetric)

 0.8P (Y = 1 | G = 1)  ≤ P (Y = 1 | G = 0)  

Limited disparate impact 
(symmetric)

 0.8P (Y = 1 | G = 1)  ≤ P (Y = 1 | G = 0) 

0.8P (Y = 1 | G = 0)  ≤ P (Y = 1 | G = 1)  

Conditional statistical parity  P (  ̂  Y   = 1 | G = 0, X = x)  = P (  ̂  Y   = 1 | G = 1, X = x)  

Separation definitions 

False positive balance  P (  ̂  Y   = 1 | Y = 0, G = g)  = P (  ̂  Y   = 1 | Y = 0)  

False negative balance  P (  ̂  Y   = 0 | Y = 1, G = g)  = P (  ̂  Y   = 0 | Y = 1)  

Equalized Odds False positive balance and false negative balance

Sufficiency definitions

Positive predictive value balance  P (Y = 1 |   ̂  Y   = 1, G = g)  = P (Y = 1 |   ̂  Y   = 1)  

Negative predictive value 
balance

 P (Y = 0 |   ̂  Y   = 0, G = g)  = P (Y = 0 |   ̂  Y   = 0)  

Conditional use accuracy 
equality

Positive predictive value balance and negative predictive value balance

Other definitions

Equalized accuracy  P (  ̂  Y   = Y | G = g)  = P (  ̂  Y   = Y)  

Fairness through unawareness    ̂  Y   = f ( X  
L
  )  

Similarity-based definitions (From Dwork et al., 2012)  D (M (X) , M ( X ′  ) )  ≤ d (X,  X ′  )  
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APPENDIX B

Technical Description of Post-Processing 
Methods

In this report, we implement a simple post-processing procedure that is applicable to virtually 
any equity concept in the binary classification setting. We assume that the baseline predic-
tive algorithm produces predicted probabilities   p  i    for each individual, corresponding to an 
estimated probability that   Y  i   = 1 . Binary estimates     ̂  Y    i    are obtained by assigning     ̂  Y    i   = 1  if   p  i    
is greater than a threshold  θ . Our procedure seeks optimal thresholds, which typically differ 
across levels of the protected class  G , that are intended to minimize differential performance 
while optimizing overall performance. For a protected variable  G  with two levels, we solve 
the optimization problem 

  minimize  
  (  θ  0  ,  θ  1   )  

     (Equity Penalty)  +  (Accuracy Penalty)  ,

where   θ  0    and   θ  1    are the thresholds for the disadvantaged and advantaged class, respectively. In 
the above optimization, we define the accuracy penalty to be  P (  ̂  Y   ≠ Y)  , which is one minus 
the overall observed accuracy of the predictive algorithm. We define the equity penalty to be 
the absolute value of the difference in performance between the two groups, where perfor-
mance is defined by an appropriate metric. For instance, if we seek to equalize false negatives, 
then

  Equity Penalty =  |  P (  ̂  Y   = 0 |  Y = 1, G = 0 )   − P (  ̂  Y   = 0 |  Y = 1, G = 1 )   |    ,
which is estimated from the observed data. Using this approach, the provided tool is capable 
of enforcing statistical parity, false negative balance, equalized odds, positive predictive value 
balance, and equalized accuracy. For equalized odds, the equity penalty is the sum of the 
equity penalties corresponding to false positive balance and false negative balance. 
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APPENDIX C

Machine Learning in the Department of 
Defense for Nonpersonnel Issues

Although military equity concerns lie primarily in personnel decisions, the use of ML may 
raise ethical questions in a wide variety of domains, such as improving situational awareness 
and decisionmaking in the military context, increasing the safety of operating equipment, 
and implementing predictive maintenance and supply. On these matters, DoD has laid out an 
AI strategy that includes a call for ethical and responsible use of AI by DoD (DoD, 2019). DoD 
states that it is not just interested in using AI to remain globally competitive but that it also 
wants to be a leader in the ethical use of AI and partner with leading academics and practitio-
ners outside the military. The Air Force has echoed these same ideas in its supplementary AI 
strategy document, signaling a commitment to increase public trust and transparency in the 
ethical use of AI throughout its five focus points (Department of the Air Force, 2019). Various 
reports have been developed by DoD, partners, or federally funded research and development 
centers that consider the use of AI by DoD. 

The Joint Artificial Intelligence Center (JAIC) was created to handle matters of deploying 
AI for DoD, and it has released ethical principles for AI (JAIC, undated). The five principles 
adopted were that AI should be responsible, equitable, traceable, reliable, and governable. 
Each of these principles relates to matters of diversity and fairness indirectly, but the second 
directly states, “The Department will take deliberate steps to minimize unintended bias in 
AI capabilities” (JAIC, 2020a, p. 4). The JAIC expands on this principle by stating that DoD 
should “account for statistical, social, and human bias,” “identify entry points for bias and 
interject controls to measure/mitigate/test for bias throughout the lifecycle,” “consider how 
other actors may use the data or model which may lead to unintended outcomes,” and per-
form “rigorous testing aimed at reducing risk, bias, and harm reduction” (JAIC, 2020a, p. 4).

The policies take on additional meaning when viewed through different applications of 
ML or artificial intelligence. For example, much of DoD’s AI work has focused on the use of 
autonomous weapons systems and other applications in warfare and defense. In this context, 
the goal may be to minimize racial bias in surveillance programs or protect against unin-
tended consequences when using autonomous weapons systems. In the context of personnel 
management, algorithms may be constructed to improve processes, such as promotion selec-
tion decisions, but these algorithms should be monitored for bias and tested to ensure they 
are working fairly.
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There are equity concerns in regard to DoD’s use of ML outside personnel management. 
Previous work, such as Morgan et al., 2020, considers the benefits and ethical risks in mili-
tary applications in the use of automated weapon systems and intelligence and surveillance. 
Although these applications do not involve personnel management, they often have direct or 
indirect impacts on individuals, and the consequences may be distributed unequally across 
sensitive attributes. For example, it is possible for surveillance or autonomous weapons to 
have differential performance properties across race or ethnicity, a circumstance that may 
not be considered fair or desirable. 

The technological edge from ML has the potential to boost national security, since well-
designed ML systems can detect targets or predict maintenance issues at faster rates than 
humans, especially compared to less experienced humans. Reducing personnel has its advan-
tages in the field by reducing the number of fighters that have to be placed in a potentially 
life-threatening situation. With an ML system making decisions, less experienced person-
nel might be left to manage the system, freeing up more-experienced personnel to perform 
more-complex decisions and tasks. ML systems can also assist with rescue operations, since 
unmanned systems can be developed to go into areas that humans probably could not. 

The greater complexity ML introduces carries with it more-nuanced risks. As ML sys-
tems get more complex, unexpected failures or interactions unforeseen in the original design, 
especially in relation to ML systems interacting with each other, may become harder to diag-
nose and preempt. The increased speed of automated decisionmaking may make conflicts 
escalate more rapidly. Replacing a human system with an ML system also creates a perceived 
“moral buffer.” Because an ML system makes decisions using existing data, any system failure 
that leads to unethical outcomes creates uncertainty as to how to remedy the situation, since 
no one person can easily be held morally or legally responsible for the decisions of a machine. 
These complexities may require that human managers of the system undergo extensive train-
ing, which may negate some of the potential benefits. In addition to privacy concerns and 
fears of implementing a system that relatively few people can understand, there are issues 
that plague any software, including issues that result from software bugs, adversaries suc-
cessfully attacking the system, and the fear of data feeding into the machine being poisoned 
in any way.

Prior Work Using Machine Learning for Nonpersonnel 
Decisionmaking

In this section, we describe the primary areas of ML application within the national security 
space beyond personnel management. We discuss applications that are currently deployed, 
as well as applications for which there is ongoing investment and development. Our litera-
ture review consisted of (1) a systematic review of all RAND projects developed from 2017 
to 2021 in the national security divisions and (2) a review of research external to RAND that 
was identified within RAND work. Our review is designed to reflect the applications within 
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DoD and the Department of Homeland Security. Other work provides more-detailed over-
views of the breadth of ML applications in the military and other areas of interest in relation 
to national security. Not all of these applications of ML pose an equity risk, but we aim to 
provide a brief overview of all categories to convey the breadth of ML in national security.

Unmanned Systems
Unmanned systems are a large area of development in national security that is increasingly 
attempting to incorporate ML into technology. Most development lies in unmanned aerial 
systems, but there has been growing investment by the Navy to developed unmanned subma-
rines and other submersible systems (Trevithick, 2020). There has been significant progress 
made in such programs as Skyborg, an autonomous capability that the Air Force seeks to 
implement on low-cost aircraft to assist with decisionmaking (Air Force Research Labora-
tory, undated). 

Intelligence, Surveillance, Reconnaissance 
There is much interest in integrating ML—particularly, Computer Vision technologies—to 
improve intelligence, surveillance, and reconnaissance (ISR) operations. Raytheon is invest-
ing in this space with such projects as Cognitive Aids to Sensor Processing, Exploration and 
Response (CASPER), a software program that interprets operator requests to control sensor 
and data processing functions. Jim Wright from Raytheon envisions CASPER to perform 
such tasks as scanning “for fast boats and prioritiz[ing] by threat to the carrier” (Raytheon 
Intelligence and Space, 2020). In 2020, Lockheed Martin demonstrated an ISR capability in 
an ML algorithm that was able to detect, identify, and capture an image of a target (Helfrich, 
2020). In the Army, facial recognition technology is being actively pursued to assist with 
ISR with U.S. Central Command and the Combined Joint Task Force. Operation Inherent 
Resolve already uses these technologies (Williams, 2019).

Humanitarian Assistance and Disaster Relief
There is increasing interest in the military for incorporation of ML in disaster relief opera-
tions. Most of these projects incorporate ML via detection and monitoring to assist in evacu-
ating residents. The main examples of such projects are Fireline (JAIC, 2019), which is being 
developed to detect and communicate wildfires, and Floodline (JAIC, 2020b), which is being 
developed to monitor and detect changing water levels for preventing flood damage and res-
cuing people. Both of these projects are being developed by the JAIC and partnering organi-
zations. Another example of ML use in disaster relief operations is AUDREY (Seffers, 2015), 
an ML tool being developed with the Department of Homeland Security and the National 
Aeronautics and Space Administration’s (NASA’s) Jet Propulsion Laboratory to combine and 
synthesize information from multiple channels to ease the cognitive load that first respond-
ers face during emergencies. 
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Command and Control
ML has been identified in some studies for potential support of command and control (C2). 
Lingel et al., 2020, summarizes many such applications. For example, ML could enable dis-
tributed C2, which is designated as a desire by the Air Force, by prioritizing communications 
between nodes. This would allow less experienced staff to complete planning activities, free-
ing up more-experienced staff for more-complex operations. Other examples include using 
Computer Vision to process multisource intelligence and perform data fusion, using expert 
systems to flag potential conflicts and opportunities, and using natural language processing 
to provide text recommendations (Lingel et al., 2020). An ML application used for enemy 
force suppression could also be combined with C2 in a surface-to-air missile scenario, espe-
cially in regard to resource selection and play recommendations (Lingel et al., 2020). Lastly, 
ML methods could be incorporated in simulating such scenarios to further inform decisions 
in regard to hypothetical scenarios.

Conclusion

This report focuses on the personnel space, where DoD has emphasized both equity priori-
ties and ML development. However, there is considerable development and deployment of 
ML outside the personnel space, where DoD has few or no expressed equity policies. Some of 
these areas of ML development involve high-stakes decisions about individuals, such as ML 
applications for surveillance and autonomous weapons. DoD should articulate equity guide-
lines in all areas in which ML development occurs. 
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T
he U.S. Department of Defense (DoD) places a high priority on 

promoting diversity, equity, and inclusion at all levels throughout the 

organization. Simultaneously, it is actively supporting the development 

of machine learning (ML) technologies to assist in decisionmaking for 

personnel management. There has been heightened concern about 

algorithmic bias in many non-DoD settings, whereby ML-assisted decisions have 

been found to perpetuate or, in some cases, exacerbate inequities.

This report is an attempt to equip both policymakers and developers of ML 

algorithms for DoD with the tools and guidance necessary to avoid algorithmic bias 

when using ML to aid human decisions. The authors first provide an overview of 

DoD’s equity priorities, which typically are centered on issues of representation and 

equal opportunity within personnel. They then provide a framework to enable ML 

developers to develop equitable tools. This framework emphasizes that there are 

inherent trade-offs to enforcing equity that must be considered when developing 

equitable ML algorithms.

The authors enable the process of weighing these trade-offs by providing a 

software tool, called the RAND Algorithmic Equity Tool, that can be applied to 

common classification ML algorithms that are used to support binary decisions. 

This tool allows users to audit the equity properties of their algorithms, modify 

algorithms to attain equity priorities, and weigh the costs of attaining equity on 

other, non-equity priorities. The authors demonstrate this tool on a hypothetical 

ML algorithm used to influence promotion selection decisions, which serves as an 

instructive case study.
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